Science.gov

Sample records for brain regions concerns

  1. Brain regions concerned with perceptual skills in tennis: an fMRI study.

    PubMed

    Wright, Michael J; Jackson, Robin C

    2007-02-01

    Sporting performance makes special demands on perceptual skills, but the neural mechanisms underlying such performance are little understood. We address this issue, making use of fMRI to identify the brain areas activated in viewing and responding to video sequences of tennis players, filmed from the opponent's perspective. In a block-design, fMRI study, 9 novice tennis players watched video clips of tennis play. The main stimulus conditions were (1) serve sequences, (2) non-serve behaviour (ball bouncing) and (3) static control sequences. A button response was required indicating the direction of serve (left or right for serve sequences, middle button for non-serve and static sequences). By comparing responses to the three stimulus conditions, it was possible to identify two groups of brain regions responsive to different components of the task. Areas MT/MST and STS in the posterior part of the temporal lobe responded either to serve and to non-serve stimuli, relative to static controls. Serve sequences produced additional regions of activation in the parietal lobe (bilateral IPL, right SPL) and in the right frontal cortex (IFGd, IFGv), and these areas were not activated by non-serve sequences. These regions of the parietal and frontal cortex have been implicated in a "mirror neuron" network in the human brain. It is concluded that the task of judgement of serve direction produces two different patterns of response: activations in the MT/MST and STS concerned with primarily with the analysis of motion and body actions, and activations in the parietal and frontal cortex associated specifically with the task of identification of direction of serve.

  2. Activation in inhibitory brain regions during food choice correlates with temptation strength and self-regulatory success in weight-concerned women

    PubMed Central

    van der Laan, Laura Nynke; de Ridder, Denise T. D.; Viergever, Max A.; Smeets, Paul A. M.

    2014-01-01

    Food choices constitute a classic self-control dilemma involving the trade-off between immediate eating enjoyment and the long term goal of being slim and healthy, especially for weight-concerned women. For them, decision-making concerning high (HE) and low energy (LE) snacks differs when it comes to the need for self-control. In line, our first study aim was to investigate which brain regions are activated during food choices during HE compared to LE energy snacks in weight-concerned women. Since it is particularly difficult to resist HE snacks when they are very tasty, our second aim was to investigate in which brain regions choice-related activation varies with the food's tastiness. Our third aim was to assess in which brain regions choice-related activation varies with individual differences in self-regulatory success. To this end, 20 weight-concerned women indicated for 100 HE or LE snacks whether they wanted to eat them or not, while their brains were scanned using fMRI. HE snacks were refused more often than equally-liked LE snacks. HE snack choice elicited stronger activation in reward-related brain regions [medial to middle orbitofrontal cortex (OFC), caudate]. Highly tasty HE snacks were more difficult to resist and, accordingly, activation in inhibitory areas (inferior frontal gyrus, lateral OFC) was negatively associated with tastiness. More successful self-controllers showed increased activation in the supplementary motor area during HE food choices. In sum, the results suggest that HE snacks constitute a higher reward for weight-concerned women compared to (equally-liked) LE snacks, and that activation during food choice in brain regions involved in response inhibition varied with tastiness and individual differences in self-regulatory success. These findings advance our understanding of the neural correlates of food choice and point to new avenues for investigating explanations for self-regulatory failure. PMID:25324714

  3. Fluoxetine potentiates methylphenidate-induced gene regulation in addiction-related brain regions: Concerns for use of cognitive enhancers?

    PubMed Central

    Steiner, Heinz; Van Waes, Vincent; Marinelli, Michela

    2009-01-01

    Background There is growing use of psychostimulant cognitive enhancers such as methylphenidate (Ritalin). Methylphenidate differs from the psychostimulant cocaine because it does not enhance brain levels of serotonin. We investigated whether exposure to methylphenidate combined with a serotonin-enhancing medication, the prototypical selective serotonin reuptake inhibitor (SSRI) fluoxetine (Prozac), would produce more “cocaine-like” molecular and behavioral changes. Methods We measured the effects of fluoxetine on gene expression induced by the cognitive enhancer methylphenidate in the striatum and nucleus accumbens of rats, by in situ hybridization histochemistry. We also determined whether fluoxetine modified behavioral effects of methylphenidate. Results Fluoxetine robustly potentiated methylphenidate-induced expression of the transcription factors c-fos and zif 268 throughout the striatum and to some degree in the nucleus accumbens. Fluoxetine also enhanced methylphenidate-induced stereotypical behavior. Conclusions Both potentiated gene regulation in the striatum and the behavioral effects indicate that combining the SSRI fluoxetine with the cognitive enhancer methylphenidate mimics cocaine effects, consistent with an increased risk for substance use disorder. PMID:19931852

  4. Brain regions concerned with the identification of deceptive soccer moves by higher-skilled and lower-skilled players

    PubMed Central

    Wright, Michael J.; Bishop, Daniel T.; Jackson, Robin C.; Abernethy, Bruce

    2013-01-01

    Expert soccer players are able to utilize their opponents' early body kinematics to predict the direction in which the opponent will move. We have previously demonstrated enhanced fMRI activation in experts in the motor components of an action observation network (AON) during sports anticipation tasks. Soccer players often need to prevent opponents from successfully predicting their line of attack, and consequently may try to deceive them; for example, by performing a step-over. We examined how AON activations and expertise effects are modified by the presence of deception. Three groups of participants; higher-skilled males, lower-skilled males, and lower-skilled females, viewed video clips in point-light format, from a defender's perspective, of a player approaching and turning with the ball. The observer's task in the scanner was to determine whether the move was normal or deceptive (involving a step-over), while whole-brain functional images were acquired. In a second counterbalanced block with identical stimuli the task was to predict the direction of the ball. Activations of AON for identification of deception overlapped with activations from the direction identification task. Higher-skilled players showed significantly greater activation than lower-skilled players in a subset of AON areas; and lower-skilled males in turn showed greater activation than lower-skilled females, but females showed more activation in visual cortex. Activation was greater for deception identification than for direction identification in dorsolateral prefrontal cortex, medial frontal cortex, anterior insula, cingulate gyrus, and premotor cortex. Conversely, greater activation for direction than deception identification was found in anterior cingulate cortex and caudate nucleus. Results are consistent with the view that explicit identification of deceptive moves entails cognitive effort and also activates limbic structures associated with social cognition and affective responses. PMID

  5. Brain regions concerned with the identification of deceptive soccer moves by higher-skilled and lower-skilled players.

    PubMed

    Wright, Michael J; Bishop, Daniel T; Jackson, Robin C; Abernethy, Bruce

    2013-01-01

    Expert soccer players are able to utilize their opponents' early body kinematics to predict the direction in which the opponent will move. We have previously demonstrated enhanced fMRI activation in experts in the motor components of an action observation network (AON) during sports anticipation tasks. Soccer players often need to prevent opponents from successfully predicting their line of attack, and consequently may try to deceive them; for example, by performing a step-over. We examined how AON activations and expertise effects are modified by the presence of deception. Three groups of participants; higher-skilled males, lower-skilled males, and lower-skilled females, viewed video clips in point-light format, from a defender's perspective, of a player approaching and turning with the ball. The observer's task in the scanner was to determine whether the move was normal or deceptive (involving a step-over), while whole-brain functional images were acquired. In a second counterbalanced block with identical stimuli the task was to predict the direction of the ball. Activations of AON for identification of deception overlapped with activations from the direction identification task. Higher-skilled players showed significantly greater activation than lower-skilled players in a subset of AON areas; and lower-skilled males in turn showed greater activation than lower-skilled females, but females showed more activation in visual cortex. Activation was greater for deception identification than for direction identification in dorsolateral prefrontal cortex, medial frontal cortex, anterior insula, cingulate gyrus, and premotor cortex. Conversely, greater activation for direction than deception identification was found in anterior cingulate cortex and caudate nucleus. Results are consistent with the view that explicit identification of deceptive moves entails cognitive effort and also activates limbic structures associated with social cognition and affective responses.

  6. Brain imaging and brain privacy: a realistic concern?

    PubMed

    Farah, Martha J; Smith, M Elizabeth; Gawuga, Cyrena; Lindsell, Dennis; Foster, Dean

    2009-01-01

    Functional neuroimaging has been used to study a wide array of psychological traits, including aspects of personality and intelligence. Progress in identifying the neural correlates of individual differences in such traits, for the sake of basic science, has moved us closer to the applied science goal of measuring them and thereby raised ethical concerns about privacy. How realistic are such concerns given the current state of the art? In this article, we describe the statistical basis of the measurement of psychological traits using functional neuroimaging and examine the degree to which current functional neuroimaging protocols could be used for this purpose. By analyzing the published data from 16 studies, we demonstrate that the use of imaging to gather information about an individual's psychological traits is already possible, but to an extremely limited extent.

  7. Describing functional diversity of brain regions and brain networks.

    PubMed

    Anderson, Michael L; Kinnison, Josh; Pessoa, Luiz

    2013-06-01

    Despite the general acceptance that functional specialization plays an important role in brain function, there is little consensus about its extent in the brain. We sought to advance the understanding of this question by employing a data-driven approach that capitalizes on the existence of large databases of neuroimaging data. We quantified the diversity of activation in brain regions as a way to characterize the degree of functional specialization. To do so, brain activations were classified in terms of task domains, such as vision, attention, and language, which determined a region's functional fingerprint. We found that the degree of diversity varied considerably across the brain. We also quantified novel properties of regions and of networks that inform our understanding of several task-positive and task-negative networks described in the literature, including defining functional fingerprints for entire networks and measuring their functional assortativity, namely the degree to which they are composed of regions with similar functional fingerprints. Our results demonstrate that some brain networks exhibit strong assortativity, whereas other networks consist of relatively heterogeneous parts. In sum, rather than characterizing the contributions of individual brain regions using task-based functional attributions, we instead quantified their dispositional tendencies, and related those to each region's affiliative properties in both task-positive and task-negative contexts. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Brain Region Mapping using Global Metabolomics

    PubMed Central

    Ivanisevic, Julijana; Epstein, Adrian; Kurczy, Michael E.; Benton, H. Paul; Uritboonthai, Winnie; Fox, Howard S.; Boska, Michael D.; Gendelman, Howard E.; Siuzdak, Gary

    2014-01-01

    SUMMARY Historically, studies of brain metabolism have been based on targeted analyses of a limited number of metabolites. Here we present a novel untargeted mass spectrometry-based metabolomics approach that has successfully uncovered differences in broad array of metabolites across anatomical regions of the mouse brain. The NSG immunodeficient mouse model was chosen because of its ability to undergo humanization leading to numerous applications in oncology and infectious disease research. Metabolic phenotyping by hydrophilic interaction liquid chromatography and nanostructure imaging mass spectrometry revealed unique water-soluble and lipid metabolite patterns between brain regions. Neurochemical differences in metabolic phenotypes were mainly defined by various phospholipids and several intriguing metabolites including carnosine, cholesterol sulfate, lipoamino acids, uric and sialic acid whose physiological roles in brain metabolism are poorly understood. This study lays important groundwork by defining regional homeostasis for the normal mouse brain to give context to the reaction to pathological events. PMID:25457182

  9. Brain region mapping using global metabolomics.

    PubMed

    Ivanisevic, Julijana; Epstein, Adrian A; Kurczy, Michael E; Benton, Paul H; Uritboonthai, Winnie; Fox, Howard S; Boska, Michael D; Gendelman, Howard E; Siuzdak, Gary

    2014-11-20

    Historically, studies of brain metabolism have been based on targeted analyses of a limited number of metabolites. Here we present an untargeted mass spectrometry-based metabolomic strategy that has successfully uncovered differences in a broad array of metabolites across anatomical regions of the mouse brain. The NSG immunodeficient mouse model was chosen because of its ability to undergo humanization leading to numerous applications in oncology and infectious disease research. Metabolic phenotyping by hydrophilic interaction liquid chromatography and nanostructure imaging mass spectrometry revealed both water-soluble and lipid metabolite patterns across brain regions. Neurochemical differences in metabolic phenotypes were mainly defined by various phospholipids and several intriguing metabolites including carnosine, cholesterol sulfate, lipoamino acids, uric acid, and sialic acid, whose physiological roles in brain metabolism are poorly understood. This study helps define regional homeostasis for the normal mouse brain to give context to the reaction to pathological events.

  10. Mature brain tissue in the sacrococcygeal region

    PubMed Central

    Shrestha, Binod Bade; Ghimire, Pradeep; Ghartimagar, Dilasma; Jwarchan, Bishnu; Lalchan, Subita; Karmacharya, Mikesh

    2016-01-01

    Complete mature brain tissue in sacrococcygeal region is a rare congenital anomaly in a newborn, which usually is misdiagnosed for sacrococcygeal teratoma. Glial tumor-like ependymoma is also common in sacrococcygeal area but mostly appears later in life. We present a case of complete heterotopic brain tissue in the sacrococcygeal region. The patient underwent total excision of mass with coccygectomy. To our knowledge it is the second case being reported. PMID:27194682

  11. Echelon approach to areas of concern in synoptic regional monitoring

    USGS Publications Warehouse

    Myers, Wayne; Patil, Ganapati P.; Joly, Kyle

    1997-01-01

    Echelons provide an objective approach to prospecting for areas of potential concern in synoptic regional monitoring of a surface variable. Echelons can be regarded informally as stacked hill forms. The strategy is to identify regions of the surface which are elevated relative to surroundings (Relative ELEVATIONS or RELEVATIONS). These are areas which would continue to expand as islands with receding (virtual) floodwaters. Levels where islands would merge are critical elevations which delimit echelons in the vertical dimension. Families of echelons consist of surface sectors constituting separate islands for deeper waters that merge as water level declines. Pits which would hold water are disregarded in such a progression, but a complementary analysis of pits is obtained using the surface as a virtual mould to cast a counter-surface (bathymetric analysis). An echelon tree is a family tree of echelons with peaks as terminals and the lowest level as root. An echelon tree thus provides a dendrogram representation of surface topology which enables graph theoretic analysis and comparison of surface structures. Echelon top view maps show echelon cover sectors on the base plane. An echelon table summarizes characteristics of echelons as instances or cases of hill form surface structure. Determination of echelons requires only ordinal strength for the surface variable, and is thus appropriate for environmental indices as well as measurements. Since echelons are inherent in a surface rather than perceptual, they provide a basis for computer-intelligent understanding of surfaces. Echelons are given for broad-scale mammalian species richness in Pennsylvania.

  12. Regional aerobic glycolysis in the human brain

    PubMed Central

    Vaishnavi, S. Neil; Vlassenko, Andrei G.; Rundle, Melissa M.; Snyder, Abraham Z.; Mintun, Mark A.; Raichle, Marcus E.

    2010-01-01

    Aerobic glycolysis is defined as glucose utilization in excess of that used for oxidative phosphorylation despite sufficient oxygen to completely metabolize glucose to carbon dioxide and water. Aerobic glycolysis is present in the normal human brain at rest and increases locally during increased neuronal activity; yet its many biological functions have received scant attention because of a prevailing energy-centric focus on the role of glucose as substrate for oxidative phosphorylation. As an initial step in redressing this neglect, we measured the regional distribution of aerobic glycolysis with positron emission tomography in 33 neurologically normal young adults at rest. We show that the distribution of aerobic glycolysis in the brain is differentially present in previously well-described functional areas. In particular, aerobic glycolysis is significantly elevated in medial and lateral parietal and prefrontal cortices. In contrast, the cerebellum and medial temporal lobes have levels of aerobic glycolysis significantly below the brain mean. The levels of aerobic glycolysis are not strictly related to the levels of brain energy metabolism. For example, sensory cortices exhibit high metabolic rates for glucose and oxygen consumption but low rates of aerobic glycolysis. These striking regional variations in aerobic glycolysis in the normal human brain provide an opportunity to explore how brain systems differentially use the diverse cell biology of glucose in support of their functional specializations in health and disease. PMID:20837536

  13. Inferences Concerning the Magnetospheric Source Region for Auroral Breakup

    NASA Technical Reports Server (NTRS)

    Lyons, L. R.

    1992-01-01

    It is argued that the magnetospheric source region for auroral arc breakup and substorm initiation is along boundary plasma sheet (BPS) magnetic field lines. This source region lies beyond a distinct central plasma sheet (CPS) region and sufficiently far from the Earth that energetic ion motion violates the guiding center approximation (i.e., is chaotic). The source region is not constrained to any particular range of distances from the Earth, and substorm initiation may be possible over a wide range of distances from near synchronous orbit to the distant tail. It is also argued that the layer of low-energy electrons and velocity dispersed ion beams observed at low altitudes on Aureol 3 is not a different region from the region of auroral arcs. Both comprise the BPS. The two regions occasionally appear distinct at low altitudes because of the effects of arc field-aligned potential drops on precipitating particles.

  14. Evolution of brain region volumes during artificial selection for relative brain size.

    PubMed

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-10-06

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use micro-CT to investigate how the volumes of 11 main brain regions respond to selection for larger vs. smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Cortical Brain Regions Associated with Color Processing: An FMRi Study

    PubMed Central

    Bramão, Inês; Faísca, Luís; Forkstam, Christian; Reis, Alexandra; Petersson, Karl Magnus

    2010-01-01

    To clarify whether the neural pathways concerning color processing are the same for natural objects, for artifacts objects and for non-objects we examined brain responses measured with functional magnetic resonance imaging (FMRI) during a covert naming task including the factors color (color vs. black&white (B&W)) and stimulus type (natural vs. artifacts vs. non-objects). Our results indicate that the superior parietal lobule and precuneus (BA 7) bilaterally, the right hippocampus and the right fusifom gyrus (V4) make part of a network responsible for color processing both for natural objects and artifacts, but not for non-objects. When color objects (both natural and artifacts) were contrasted with color non-objects we observed activations in the right parahippocampal gyrus (BA 35/36), the superior parietal lobule (BA 7) bilaterally, the left inferior middle temporal region (BA 20/21) and the inferior and superior frontal regions (BA 10/11/47). These additional activations suggest that colored objects recruit brain regions that are related to visual semantic information/retrieval and brain regions related to visuo-spatial processing. Overall, the results suggest that color information is an attribute that can improve object recognition (behavioral results) and activate a specific neural network related to visual semantic information that is more extensive than for B&W objects during object recognition. PMID:21270939

  16. Cortical brain regions associated with color processing: an FMRI study.

    PubMed

    Bramão, Inês; Faísca, Luís; Forkstam, Christian; Reis, Alexandra; Petersson, Karl Magnus

    2010-11-05

    To clarify whether the neural pathways concerning color processing are the same for natural objects, for artifacts objects and for non-objects we examined brain responses measured with functional magnetic resonance imaging (FMRI) during a covert naming task including the factors color (color vs. black&white (B&W)) and stimulus type (natural vs. artifacts vs. non-objects). Our results indicate that the superior parietal lobule and precuneus (BA 7) bilaterally, the right hippocampus and the right fusifom gyrus (V4) make part of a network responsible for color processing both for natural objects and artifacts, but not for non-objects. When color objects (both natural and artifacts) were contrasted with color non-objects we observed activations in the right parahippocampal gyrus (BA 35/36), the superior parietal lobule (BA 7) bilaterally, the left inferior middle temporal region (BA 20/21) and the inferior and superior frontal regions (BA 10/11/47). These additional activations suggest that colored objects recruit brain regions that are related to visual semantic information/retrieval and brain regions related to visuo-spatial processing. Overall, the results suggest that color information is an attribute that can improve object recognition (behavioral results) and activate a specific neural network related to visual semantic information that is more extensive than for B&W objects during object recognition.

  17. Regional brain hypometabolism is unrelated to regional amyloid plaque burden

    PubMed Central

    Altmann, Andre; Ng, Bernard; Landau, Susan M.; Jagust, William J.

    2015-01-01

    See Sorg and Grothe (doi:10.1093/brain/awv302) for a scientific commentary on this article. In its original form, the amyloid cascade hypothesis of Alzheimer’s disease holds that fibrillar deposits of amyloid are an early, driving force in pathological events leading ultimately to neuronal death. Early clinicopathological investigations highlighted a number of inconsistencies leading to an updated hypothesis in which amyloid plaques give way to amyloid oligomers as the driving force in pathogenesis. Rather than focusing on the inconsistencies, amyloid imaging studies have tended to highlight the overlap between regions that show early amyloid plaque signal on positron emission tomography and that also happen to be affected early in Alzheimer’s disease. Recent imaging studies investigating the regional dependency between metabolism and amyloid plaque deposition have arrived at conflicting results, with some showing regional associations and other not. We extracted multimodal neuroimaging data from the Alzheimer’s disease neuroimaging database for 227 healthy controls and 434 subjects with mild cognitive impairment. We analysed regional patterns of amyloid deposition, regional glucose metabolism and regional atrophy using florbetapir (18F) positron emission tomography, 18F-fluordeoxyglucose positron emission tomography and T1-weighted magnetic resonance imaging, respectively. Specifically, we derived grey matter density and standardized uptake value ratios for both positron emission tomography tracers in 404 functionally defined regions of interest. We examined the relation between regional glucose metabolism and amyloid plaques using linear models. For each region of interest, correcting for regional grey matter density, age, education and disease status, we tested the association of regional glucose metabolism with (i) cortex-wide florbetapir uptake; (ii) regional (i.e. in the same region of interest) florbetapir uptake; and (iii) regional florbetapir uptake

  18. Regional brain hypometabolism is unrelated to regional amyloid plaque burden.

    PubMed

    Altmann, Andre; Ng, Bernard; Landau, Susan M; Jagust, William J; Greicius, Michael D

    2015-12-01

    were Bonferroni corrected for 404 tests. Regions showing significant hypometabolism with increasing cortex-wide amyloid burden were classic Alzheimer's disease-related regions: the medial and lateral parietal cortices. The associations between regional amyloid burden and regional metabolism were more heterogeneous: there were significant hypometabolic effects in posterior cingulate, precuneus, and parietal regions but also significant positive associations in bilateral hippocampus and entorhinal cortex. However, after correcting for global amyloid burden, few of the negative associations remained and the number of positive associations increased. Given the wide-spread distribution of amyloid plaques, if the canonical cascade hypothesis were true, we would expect wide-spread, cortical hypometabolism. Instead, cortical hypometabolism appears to be linked to global amyloid burden. Thus we conclude that regional fibrillar amyloid deposition has little to no association with regional hypometabolism. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Future Concerns of Adult Siblings of Persons with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Olney, Marjorie F.

    2008-01-01

    This study examined future concerns conveyed by adult siblings who provided regular caregiving support to their brothers and sisters with traumatic brain injury (TBI). The authors surveyed a national sample of 280 adult siblings of persons with TBI. Using a constant comparative approach to text analysis, the authors analyzed responses to the…

  20. The motivation and actions of Australians concerning brain health and dementia risk reduction.

    PubMed

    Smith, Ben J; Ali, Suha; Quach, Henry

    2015-08-01

    Alzheimer's disease and dementia are recognised as critical public health priorities. This study investigated intentions and behaviours concerning brain health and dementia risk reduction among Australians. A cross-sectional survey of 1000 persons aged 20-75 years measured knowledge, beliefs, intentions and behaviours concerning brain health and dementia. The demographic, experiential and cognitive factors associated with intentions and actions were examined. Around half of respondents were motivated to improve brain health. Behaviours most often reported were mental activity (19%), physical activity (9.6%) and dietary action (6.5%). Actions were most likely among women (OR 1.59, 95% CI 1.19-2.14), those aged 60 years and over (OR 3.07, 95% CI 2.01-2.58), with university education (OR 1.67, 95% CI 1.08-2.58) or with prior contact with a person with dementia (OR 1.99, 95% CI 1.12-3.56). Both intentions and actions were associated with moderate to high knowledge, and beliefs and confidence that favoured dementia risk reduction. A lower proportion of Australians reported taking action to improve brain health than who expressed intentions in this regard. Strategies are needed to improve knowledge about the range of behaviours that contribute to dementia risk reduction and to increase confidence that this outcome is personally achievable. SO WHAT? The burden of disease due to Alzheimer's disease and dementia is growing dramatically. It is essential to promote awareness that dementia is not an inevitable result of ageing and to increase understanding that action can be taken throughout the life course to promote brain health.

  1. Does the Golem Feel Pain? Moral Instincts and Ethical Dilemmas Concerning Suffering and the Brain.

    PubMed

    Devor, Marshall; Rappaport, Isabelle; Rappaport, Z Harry

    2015-07-01

    Pain has variously been used as a means of punishment, extracting information, or testing commitment, as a tool for education and social control, as a commodity for sacrifice, and as a draw for sport and entertainment. Attitudes concerning these uses have undergone major changes in the modern era. Normative convictions on what is right and wrong are generally attributed to religious tradition or to secular-humanist reasoning. Here, we elaborate the perspective that ethical choices concerning pain have much earlier roots that are based on instincts and brain-seated empathetic responses. They are fundamentally a function of brain circuitry shaped by processes of Darwinian evolution. Social convention and other environmental influences, with their idiosyncrasies, are a more recent, ever-changing overlay. We close with an example in which details on the neurobiology of pain processing, specifically the question of where in the brain the experience of pain is generated, affect decision making in end-of-life situations. By separating innate biological substrates from culturally imposed attitudes (memes), we may arrive at a more reasoned approach to a morality of pain prevention.

  2. Species of conservation concern and environmental stressors: Local, regional and global effects [Chapter 6] (Executive Summary)

    Treesearch

    Steven M. Ostoja; Matthew L. Brooks; Jeanne C. Chambers; Burton K.. Pendleton

    2013-01-01

    Southern Nevada’s unique landscapes and landforms provide habitat for a diversity of plant and wildlife species of conservation concern including many locally and regionally endemic species. The high population density and urbanization of the Las Vegas metropolitan area is the source of many local and regional stressors that affect these species and their habitats:...

  3. Fused cerebral organoids model interactions between brain regions.

    PubMed

    Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A

    2017-07-01

    Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.

  4. Regional brain monitoring in the neurocritical care unit.

    PubMed

    Frontera, Jennifer; Ziai, Wendy; O'Phelan, Kristine; Leroux, Peter D; Kirkpatrick, Peter J; Diringer, Michael N; Suarez, Jose I

    2015-06-01

    Regional multimodality monitoring has evolved over the last several years as a tool to understand the mechanisms of brain injury and brain function at the cellular level. Multimodality monitoring offers an important augmentation to the clinical exam and is especially useful in comatose neurocritical care patients. Cerebral microdialysis, brain tissue oxygen monitoring, and cerebral blood flow monitoring all offer insight into permutations in brain chemistry and function that occur in the context of brain injury. These tools may allow for development of individual therapeutic strategies that are mechanistically driven and goal-directed. We present a summary of the discussions that took place during the Second Neurocritical Care Research Conference regarding regional brain monitoring.

  5. Portacaval shunting causes differential mitochondrial superoxide production in brain regions.

    PubMed

    Kosenko, Elena A; Tikhonova, Lyudmila A; Alilova, Gubidat A; Montoliu, Carmina; Barreto, George E; Aliev, Gjumrakch; Kaminsky, Yury G

    2017-09-27

    The portacaval shunting (PCS) prevents portal hypertension and recurrent bleeding of esophageal varices. On the other hand, it can induce chronic hyperammonemia and is considered to be the best model of mild hepatic encephalopathy (HE). Pathogenic mechanisms of HE and dysfunction of the brain in hyperammonemia are not fully elucidated, but it was originally suggested that the pathogenetic defect causes destruction of antioxidant defense which leads to an increase in the production of reactive oxygen species (ROS) and the occurrence of oxidative stress. In order to gain insight into the pathogenic mechanisms of HE in the brain tissue, we investigated the effects of PCS in rats on free radicals production and activity levels of antioxidant and prooxidant enzymes in mitochondria isolated from different brain areas. We found that O2(·-) production, activities of Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GT), nitric oxide synthase (NOS), and levels of carbonylated proteins differed between the four brain regions both in the amount and response to PCS. In PCS rats, Mn-SOD activity in the cerebellum was significantly decreased, and remained unchanged in the neocortex, hippocampus and striatum compared with that in sham-operated animals. Among the four brain regions in control rats, the levels of the carbonyl groups in mitochondrial proteins were maximal in the cerebellum. 4 weeks after PCS, the content of carbonylated proteins were higher only in mitochondria of this brain region. Under control conditions, O2(·-) production by submitochondrial particles in the cerebellum was significantly higher than in other brain regions, but was significantly increased in each brain region from PCS animals. Indeed, the production of O2(·-) by submitochondrial particles correlated with mitochondrial ammonia levels in the four brain regions of control and PCS-animals. These findings are the first to suggest

  6. Focused ultrasound modulates region-specific brain activity

    PubMed Central

    Yoo, Seung-Schik; Bystritsky, Alexander; Lee, Jong-Hwan; Zhang, Yongzhi; Fischer, Krisztina; Min, Byoung-Kyong; McDannold, Nathan J.; Pascual-Leone, Alvaro; Jolesz, Ferenc A.

    2012-01-01

    We demonstrated the in vivo feasibility of using focused ultrasound (FUS) to transiently modulate (through either stimulation or suppression) the function of regional brain tissue in rabbits. FUS was delivered in a train of pulses at low acoustic energy, far below the cavitation threshold, to the animal's somatomotor and visual areas, as guided by anatomical and functional information from magnetic resonance imaging (MRI). The temporary alterations in the brain function affected by the sonication were characterized by both electrophysiological recordings and functional brain mapping achieved through the use of functional MRI (fMRI). The modulatory effects were bimodal, whereby the brain activity could either be stimulated or selectively suppressed. Histological analysis of the excised brain tissue after the sonication demonstrated that the FUS did not elicit any tissue damages. Unlike transcranial magnetic stimulation, FUS can be applied to deep structures in the brain with greater spatial precision. Transient modulation of brain function using image-guided and anatomically-targeted FUS would enable the investigation of functional connectivity between brain regions and will eventually lead to a better understanding of localized brain functions. It is anticipated that the use of this technology will have an impact on brain research and may offer novel therapeutic interventions in various neurological conditions and psychiatric disorders. PMID:21354315

  7. Brain Region and Cell Type Transcripts for Informative Diagnostics

    DTIC Science & Technology

    2010-09-01

    cerebral cortex (CTX) region that is a sheet of neural tissue that is outermost to the cerebrum of the mammalian brain and takes a key role in...the cerebrum of the mammalian brain and plays a role in memory, attention, perceptual awareness, thought, language, and consciousness. The MDRN

  8. Age-and Brain Region-Specific Differences in Mitochondrial ...

    EPA Pesticide Factsheets

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cerebellum (CER), striatum (STR), hippocampus (HIP)] of four diverse age groups [1 Month (young), 4 Month (adult), 12 Month (middle-aged), 24 Month (old age)] to understand age-related differences in selected brain regions and their contribution to age-related chemical sensitivity. Mitochondrial bioenergetics parameters and enzyme activity were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State 111 respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12 and 24 Month age groups. Activities of mitochondrial pyruvate dehydrogenase complex (PDHC) and electron transport chain (ETC) complexes I, II, and IV enzymes were also age- and brain-region specific. In general changes associated with age were more pronounced, with

  9. Age-and Brain Region-Specific Differences in Mitochondrial ...

    EPA Pesticide Factsheets

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cerebellum (CER), striatum (STR), hippocampus (HIP)] of four diverse age groups [1 Month (young), 4 Month (adult), 12 Month (middle-aged), 24 Month (old age)] to understand age-related differences in selected brain regions and their contribution to age-related chemical sensitivity. Mitochondrial bioenergetics parameters and enzyme activity were measured under identical conditions across multiple age groups and brain regions in Brown Norway rats (n = 5). The results indicate age- and brain region-specific patterns in mitochondrial functional endpoints. For example, an age-specific decline in ATP synthesis (State 111 respiration) was observed in BS and HIP. Similarly, the maximal respiratory capacities (State V1 and V2) showed age-specific declines in all brain regions examined (young > adult > middle-aged > old age). Amongst all regions, HIP had the greatest change in mitochondrial bioenergetics, showing declines in the 4, 12 and 24 Month age groups. Activities of mitochondrial pyruvate dehydrogenase complex (PDHC) and electron transport chain (ETC) complexes I, II, and IV enzymes were also age- and brain-region specific. In general changes associated with age were more pronounced, with

  10. On Expression Patterns and Developmental Origin of Human Brain Regions.

    PubMed

    Kirsch, Lior; Chechik, Gal

    2016-08-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions.

  11. On Expression Patterns and Developmental Origin of Human Brain Regions

    PubMed Central

    Kirsch, Lior; Chechik, Gal

    2016-01-01

    Anatomical substructures of the human brain have characteristic cell-types, connectivity and local circuitry, which are reflected in area-specific transcriptome signatures, but the principles governing area-specific transcription and their relation to brain development are still being studied. In adult rodents, areal transcriptome patterns agree with the embryonic origin of brain regions, but the processes and genes that preserve an embryonic signature in regional expression profiles were not quantified. Furthermore, it is not clear how embryonic-origin signatures of adult-brain expression interplay with changes in expression patterns during development. Here we first quantify which genes have regional expression-patterns related to the developmental origin of brain regions, using genome-wide mRNA expression from post-mortem adult human brains. We find that almost all human genes (92%) exhibit an expression pattern that agrees with developmental brain-region ontology, but that this agreement changes at multiple phases during development. Agreement is particularly strong in neuron-specific genes, but also in genes that are not spatially correlated with neuron-specific or glia-specific markers. Surprisingly, agreement is also stronger in early-evolved genes. We further find that pairs of similar genes having high agreement to developmental region ontology tend to be more strongly correlated or anti-correlated, and that the strength of spatial correlation changes more strongly in gene pairs with stronger embryonic signatures. These results suggest that transcription regulation of most genes in the adult human brain is spatially tuned in a way that changes through life, but in agreement with development-determined brain regions. PMID:27564987

  12. Indices of Regional Brain Atrophy: Formulae and Nomenclature

    PubMed Central

    Arias-Carrión, Oscar

    2015-01-01

    The pattern of brain atrophy helps to discriminate normal age-related changes from neurodegenerative diseases. Albeit indices of regional brain atrophy have proven to be a parameter useful in the early diagnosis and differential diagnosis of some neurodegenerative diseases, indices of absolute regional atrophy still have some important limitations. We propose using indices of relative atrophy for representing how the volume of a given region of interest (ROI) changes over time in comparison to changes in global brain measures over the same time. A second problem in morphometric studies is terminology. There is a lack of systematization naming indices and the same measure can be named with different terms by different research groups or imaging softwares. This limits the understanding and discussion of studies. In this technological report, we provide a general description on how to compute indices of absolute and relative regional brain atrophy and propose a standardized nomenclature. PMID:26261753

  13. Morphogenesis and regionalization of the medaka embryonic brain.

    PubMed

    Kage, Takahiro; Takeda, Hiroyuki; Yasuda, Takako; Maruyama, Kouichi; Yamamoto, Naoyuki; Yoshimoto, Masami; Araki, Kazuo; Inohaya, Keiji; Okamoto, Hiroyuki; Yasumasu, Shigeki; Watanabe, Kaori; Ito, Hironobu; Ishikawa, Yuji

    2004-08-23

    We examined the morphogenesis and regionalization of the embryonic brain of an acanthopterygian teleost, medaka (Oryzias latipes), by in situ hybridization using 14 gene probes. We compared our results with previous studies in other vertebrates, particularly zebrafish, an ostariophysan teleost. During the early development of the medaka neural rod, three initial brain vesicles arose: the anterior brain vesicle, which later developed into the telencephalon and rostral diencephalon; the intermediate brain vesicle, which later developed into the caudal diencephalon, mesencephalon, and metencephalon; and the posterior brain vesicle, which later developed into the myelencephalon. In the late neural rod, the rostral brain bent ventrally and the axis of the brain had a marked curvature at the diencephalon. In the final stage of the neural rod, ventricles began to develop, transforming the neural rod into the neural tube. In situ hybridization revealed that the brain can be divided into three longitudinal zones (dorsal, intermediate, and ventral) and many transverse subdivisions, on the basis of molecular expression patterns. The telencephalon was subdivided into two transverse domains. Our results support the basic concept of neuromeric models, including the prosomeric model, which suggests the existence of a conserved organization of all vertebrate neural tubes. Our results also show that brain development in medaka differs from that reported in other vertebrates, including zebrafish, in gene-expression patterns in the telencephalon, in brain vesicle formation, and in developmental speed. Developmental and genetic programs for brain development may be somewhat different even among teleosts.

  14. Public concern about chemicals in the environment: Regional differences based on threat potential

    SciTech Connect

    Howe, H.L. )

    1990-03-01

    While the hazards of chronic environmental pollution remain unclear, people are making decisions about their exposure to pollution and its possible effects on their health. To compare people's concerns about environmental problems, a systematic, stratified sample was surveyed. The sample was made up of residents, ages 25 through 74 years, of three areas of New York State. The three areas were western New York, with a high density of toxic dump sites; Long Island, with a major shallow ground water aquifer; and the remainder of the State, excluding New York City, as a comparison area. The sampling list was obtained from records of licensed drivers of the New York State Department of Motor Vehicles. A 66 percent response rate was obtained to the mailed survey. As expected, most concerns were greater for western New York and Long Island, the two areas with highest threat potential for exposure or contamination, than for the comparison area. The single exception was that no regional differences were noted for concerns about environmental pollution and contamination. All concerns were associated with perceived distance between one's residence and a source of potential exposure. Regardless of region, women were more concerned than men about exposures, pollution, and related health effects. No sex differences, however, were noted for economic concerns.

  15. Childhood brain tumors: parental concerns and stressors by phase of illness.

    PubMed

    Freeman, Katherine; O'Dell, Christine; Meola, Carol

    2004-01-01

    The objective of this study is to identify common problems and helpful resources important to parents of children with brain tumors by illness phase and to determine associations with stress. Parents with a child diagnosed within the past 10 years were surveyed regarding healthcare provider interactions, medical information/education, health care utilization and psychosocial concerns. Survey items were rated as problems or helpful, and for importance at each phase of illness. Stress was recorded from 0 to 10 for each phase; associations with demographic characteristics and items were tested statistically. A total of 139 parents from 87 families responded, with 45 mother-father pairs. Half reported unmet informational needs as most important during diagnosis (etiology), recurrence (complementary therapy), end of life (dying process), and remission (long-term effects). Mothers experienced greater stress than fathers during adjuvant treatment (p = .009). Stress increased (p < .05) during diagnosis and hospitalization/surgery with being married, at hospital discharge because of changes in child's personality/moods, during adjuvant treatment with unmet informational needs regarding stopping treatment, during recurrence regarding employment concerns, and during remission with unmet informational needs regarding life-time expectations. Stressors changed across phases of illness. Married respondents appeared at increased risk for stress. Further work is needed to tailor and evaluate interventions to decrease stress during illness phases.

  16. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts.

    PubMed

    Dong, Guangheng; Huang, Jie; Du, Xiaoxia

    2012-08-18

    Internet gaming addiction (IGA), as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo) measures were used to detect the abnormal functional integrations. Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  17. Injured brain regions associated with anxiety in Vietnam veterans.

    PubMed

    Knutson, Kristine M; Rakowsky, Shana T; Solomon, Jeffrey; Krueger, Frank; Raymont, Vanessa; Tierney, Michael C; Wassermann, Eric M; Grafman, Jordan

    2013-03-01

    Anxiety negatively affects quality of life and psychosocial functioning. Previous research has shown that anxiety symptoms in healthy individuals are associated with variations in the volume of brain regions, such as the amygdala, hippocampus, and the bed nucleus of the stria terminalis. Brain lesion data also suggests the hemisphere damaged may affect levels of anxiety. We studied a sample of 182 male Vietnam War veterans with penetrating brain injuries, using a semi-automated voxel-based lesion-symptom mapping (VLSM) approach. VLSM reveals significant associations between a symptom such as anxiety and the location of brain lesions, and does not require a broad, subjective assignment of patients into categories based on lesion location. We found that lesioned brain regions in cortical and limbic areas of the left hemisphere, including middle, inferior and superior temporal lobe, hippocampus, and fusiform regions, along with smaller areas in the inferior occipital lobe, parahippocampus, amygdala, and insula, were associated with increased anxiety symptoms as measured by the Neurobehavioral Rating Scale (NRS). These results were corroborated by similar findings using Neuropsychiatric Inventory (NPI) anxiety scores, which supports these regions' role in regulating anxiety. In summary, using a semi-automated analysis tool, we detected an effect of focal brain damage on the presentation of anxiety. We also separated the effects of brain injury and war experience by including a control group of combat veterans without brain injury. We compared this control group against veterans with brain lesions in areas associated with anxiety, and against veterans with lesions only in other brain areas. Published by Elsevier Ltd.

  18. Regional growth and atlasing of the developing human brain

    PubMed Central

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel

    2016-01-01

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  19. Automated Recognition of Brain Region Mentions in Neuroscience Literature

    PubMed Central

    French, Leon; Lane, Suzanne; Xu, Lydia; Pavlidis, Paul

    2009-01-01

    The ability to computationally extract mentions of neuroanatomical regions from the literature would assist linking to other entities within and outside of an article. Examples include extracting reports of connectivity or region-specific gene expression. To facilitate text mining of neuroscience literature we have created a corpus of manually annotated brain region mentions. The corpus contains 1,377 abstracts with 18,242 brain region annotations. Interannotator agreement was evaluated for a subset of the documents, and was 90.7% and 96.7% for strict and lenient matching respectively. We observed a large vocabulary of over 6,000 unique brain region terms and 17,000 words. For automatic extraction of brain region mentions we evaluated simple dictionary methods and complex natural language processing techniques. The dictionary methods based on neuroanatomical lexicons recalled 36% of the mentions with 57% precision. The best performance was achieved using a conditional random field (CRF) with a rich feature set. Features were based on morphological, lexical, syntactic and contextual information. The CRF recalled 76% of mentions at 81% precision, by counting partial matches recall and precision increase to 86% and 92% respectively. We suspect a large amount of error is due to coordinating conjunctions, previously unseen words and brain regions of less commonly studied organisms. We found context windows, lemmatization and abbreviation expansion to be the most informative techniques. The corpus is freely available at http://www.chibi.ubc.ca/WhiteText/. PMID:19750194

  20. Imaging structural co-variance between human brain regions

    PubMed Central

    Alexander-Bloch, Aaron; Giedd, Jay N.; Bullmore, Ed

    2014-01-01

    Brain structure varies between people in a markedly organized fashion. Communities of brain regions co-vary in their morphological properties. For example, cortical thickness in one region influences the thickness of structurally and functionally connected regions. Such networks of structural co-variance partially recapitulate the functional networks of healthy individuals and the foci of grey matter loss in neurodegenerative disease. This architecture is genetically heritable, is associated with behavioural and cognitive abilities and is changed systematically across the lifespan. The biological meaning of this structural co-variance remains controversial, but it appears to reflect developmental coordination or synchronized maturation between areas of the brain. This Review discusses the state of current research into brain structural co-variance, its underlying mechanisms and its potential value in the understanding of various neurological and psychiatric conditions. PMID:23531697

  1. Regional development of glutamate dehydrogenase in the rat brain.

    PubMed

    Leong, S F; Clark, J B

    1984-07-01

    The development of glutamate dehydrogenase enzyme activity in rat brain regions has been followed from the late foetal stage to the adult and through to the aged (greater than 2 years) adult. In the adult brain the enzyme activity was greatest in the medulla oblongata and pons greater than midbrain = hypothalamus greater than cerebellum = striatum = cortex. In the aged adult brain, glutamate dehydrogenase activity was significantly lower in the medulla oblongata and pons when compared to the 90-day-old adult value, but not in other regions. The enzyme-specific activity of nonsynaptic (free) mitochondria purified from the medulla oblongata and pons of 90-day-old animals was about twice that of mitochondria purified from the striatum and the cortex. The specific activity of the enzyme in synaptic mitochondria purified from the above three brain regions, however, remained almost constant.

  2. Contaminant exposure and reproductive success of Ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern

    USGS Publications Warehouse

    Rattner, B.A.; McGowan, P.C.; Golden, N.H.; Hatfield, J.S.; Toschik, P.C.; Lukei, R.F.; Hale, R.C.; Schmitz-Afonso, I.; Rice, C.P.

    2004-01-01

    The Chesapeake Bay osprey population has more than doubled in size since restrictions were placed on the production and use of DDT and other toxic organochlorine contaminants in the 1970s. Ospreys are now nesting in the most highly polluted portions of the Bay. In 2000 and 2001, contaminant exposure and reproduction were monitored in ospreys nesting in regions of concern, including Baltimore Harbor and the Patapsco River, the Anacostia and middle Potomac rivers, and the Elizabeth River, and a presumed reference site consisting of the South, West, and Rhode rivers. A 'sample egg' from each study nest was collected for contaminant analysis, and the fate of eggs remaining in each nest (n = 14-16/site) was monitored at 7- to 10-day intervals from egg incubation through fledging of young. Ospreys fledged young in regions of concern (observed success: 0.88 -1.53 fledglings/active nest), although productivity was marginal for sustaining local populations in Baltimore Harbor and the Patapsco River and in the Anacostia and middle Potomac rivers. Concentrations of p,p'DDE and many other organochlorine pesticides or metabolites, total PCBs, some arylhydrocarbon receptor-active PCB congeners and polybrominated diphenyl ether congeners, and perfluorooctanesulfonate were often greater in sample eggs from regions of concern compared to the reference site. Nonetheless, logistic regression analyses did not provide evidence linking marginal productivity to p,p' -DDE, total PCBs, or arylhydrocarbon receptor-active PCB congener exposure in regions of concern. In view of the moderate concentrations of total PCBs in eggs from the reference site, concerns related to new and emerging toxicants, and the absence of ecotoxicological data for terrestrial vertebrates in many Bay tributaries, a more thorough spatial evaluation of contaminant exposure in ospreys throughout the Chesapeake may be warranted.

  3. Contaminant exposure and reproductive success of ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern.

    PubMed

    Rattner, B A; McGowan, P C; Golden, N H; Hatfield, J S; Toschik, P C; Lukei, R F; Hale, R C; Schmitz-Afonso, I; Rice, C P

    2004-07-01

    The Chesapeake Bay osprey population has more than doubled in size since restrictions were placed on the production and use of DDT and other toxic organochlorine contaminants in the 1970s. Ospreys are now nesting in the most highly polluted portions of the Bay. In 2000 and 2001, contaminant exposure and reproduction were monitored in ospreys nesting in regions of concern, including Baltimore Harbor and the Patapsco River, the Anacostia and middle Potomac rivers, and the Elizabeth River, and a presumed reference site consisting of the South, West, and Rhode rivers. A "sample egg" from each study nest was collected for contaminant analysis, and the fate of eggs remaining in each nest (n = 14-16/site) was monitored at 7- to 10-day intervals from egg incubation through fledging of young. Ospreys fledged young in regions of concern (observed success: 0.88-1.53 fledglings/active nest), although productivity was marginal for sustaining local populations in Baltimore Harbor and the Patapsco River and in the Anacostia and middle Potomac rivers. Concentrations of p,p'-DDE and many other organochlorine pesticides or metabolites, total PCBs, some arylhydrocarbon receptor-active PCB congeners and polybrominated diphenyl ether congeners, and perfluorooctanesulfonate were often greater in sample eggs from regions of concern compared to the reference site. Nonetheless, logistic regression analyses did not provide evidence linking marginal productivity to p,p'-DDE, total PCBs, or arylhydrocarbon receptor-active PCB congener exposure in regions of concern. In view of the moderate concentrations of total PCBs in eggs from the reference site, concerns related to new and emerging toxicants, and the absence of ecotoxicological data for terrestrial vertebrates in many Bay tributaries, a more thorough spatial evaluation of contaminant exposure in ospreys throughout the Chesapeake may be warranted.

  4. Injured Brain Regions Associated with Anxiety in Vietnam Veterans

    PubMed Central

    Knutson, Kristine M.; Rakowsky, Shana T.; Solomon, Jeffrey; Krueger, Frank; Raymont, Vanessa; Tierney, Michael C.; Wassermann, Eric M.; Grafman, Jordan

    2013-01-01

    Anxiety negatively affects quality of life and psychosocial functioning. Previous research has shown that anxiety symptoms in healthy individuals are associated with variations in the volume of brain regions, such as the amygdala, hippocampus, and the bed nucleus of the stria terminalis. Brain lesion data also suggests the hemisphere damaged may affect levels of anxiety. We studied a sample of 182 male Vietnam War veterans with penetrating brain injuries, using a semi-automated voxel-based lesion-symptom mapping (VLSM) approach. VLSM reveals significant associations between a symptom such as anxiety and the location of brain lesions, and does not require a broad, subjective assignment of patients into categories based on lesion location. We found that lesioned brain regions in cortical and limbic areas of the left hemisphere, including middle, inferior and superior temporal lobe, hippocampus, and fusiform regions, along with smaller areas in the inferior occipital lobe, parahippocampus, amygdala, and insula, were associated with increased anxiety symptoms as measured by the Neurobehavioral Rating Scale (NRS). These results were corroborated by similar findings using Neuropsychiatric Inventory (NPI) anxiety scores, which supports these regions’ role in regulating anxiety. In summary, using a semi-automated analysis tool, we detected an effect of focal brain damage on the presentation of anxiety. We also separated the effects of brain injury and war experience by including a control group of combat veterans without brain injury. We compared this control group against veterans with brain lesions in areas associated with anxiety, and against veterans with lesions only in other brain areas. PMID:23328629

  5. Extracellular matrix protein expression is brain region dependent.

    PubMed

    Dauth, Stephanie; Grevesse, Thomas; Pantazopoulos, Harry; Campbell, Patrick H; Maoz, Ben M; Berretta, Sabina; Parker, Kevin Kit

    2016-05-01

    In the brain, extracellular matrix (ECM) components form networks that contribute to structural and functional diversity. Maladaptive remodeling of ECM networks has been reported in neurodegenerative and psychiatric disorders, suggesting that the brain microenvironment is a dynamic structure. A lack of quantitative information about ECM distribution in the brain hinders an understanding of region-specific ECM functions and the role of ECM in health and disease. We hypothesized that each ECM protein as well as specific ECM structures, such as perineuronal nets (PNNs) and interstitial matrix, are differentially distributed throughout the brain, contributing to the unique structure and function in the various regions of the brain. To test our hypothesis, we quantitatively analyzed the distribution, colocalization, and protein expression of aggrecan, brevican, and tenascin-R throughout the rat brain utilizing immunohistochemistry and mass spectrometry analysis and assessed the effect of aggrecan, brevican, and/or tenascin-R on neurite outgrowth in vitro. We focused on aggrecan, brevican, and tenascin-R as they are especially expressed in the mature brain, and have established roles in brain development, plasticity, and neurite outgrowth. The results revealed a differentiated distribution of all three proteins throughout the brain and indicated that their presence significantly reduces neurite outgrowth in a 3D in vitro environment. These results underline the importance of a unique and complex ECM distribution for brain physiology and suggest that encoding the distribution of distinct ECM proteins throughout the brain will aid in understanding their function in physiology and in turn assist in identifying their role in disease. J. Comp. Neurol. 524:1309-1336, 2016. © 2016 Wiley Periodicals, Inc.

  6. The Ghosts of Brain States Past: Remembering Reactivates the Brain Regions Engaged during Encoding

    ERIC Educational Resources Information Center

    Danker, Jared F.; Anderson, John R.

    2010-01-01

    There is growing evidence that the brain regions involved in encoding an episode are partially reactivated when that episode is later remembered. That is, the process of remembering an episode involves literally returning to the brain state that was present during that episode. This article reviews studies of episodic and associative memory that…

  7. Regional manifold learning for deformable registration of brain MR images.

    PubMed

    Ye, Dong Hye; Hamm, Jihun; Kwon, Dongjin; Davatzikos, Christos; Pohl, Kilian M

    2012-01-01

    We propose a method for deformable registration based on learning the manifolds of individual brain regions. Recent publications on registration of medical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regional brain variations. We address this issue by first learning manifolds for specific regions and then computing region-specific deformations from these manifolds. We then determine deformations for the entire image domain by learning the global manifold in such a way that it preserves the region-specific deformations. We evaluate the accuracy of our method by applying it to the LPBA40 dataset and measuring the overlap of the deformed segmentations. The result shows significant improvement in registration accuracy on cortex regions compared to other state of the art methods.

  8. Brain regionalization: of signaling centers and boundaries.

    PubMed

    Cavodeassi, Florencia; Houart, Corinne

    2012-03-01

    Our knowledge of the general mechanisms controlling the formation of the vertebrate central nervous system has advanced tremendously in the last decade. Here, we discuss the impact of the combined use of cell manipulation, in vivo imaging and genetics in the zebrafish on recent progress in understanding how signaling processes progressively control regionalization of the central nervous system. We highlight the unresolved issues and speculate upon the fundamental role the zebrafish will continue having in answering them.

  9. Differentiating functional brain regions using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.

    2017-02-01

    The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference < 0.1cm-1). Image analysis was performed on the attenuation coefficient images to derive quantitative endpoints. We observed a statistically significant difference among the median attenuation coefficients of these five regions (one-way ANOVA, p<0.05). Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.

  10. Long-term variability of importance of brain regions in evolving epileptic brain networks

    NASA Astrophysics Data System (ADS)

    Geier, Christian; Lehnertz, Klaus

    2017-04-01

    We investigate the temporal and spatial variability of the importance of brain regions in evolving epileptic brain networks. We construct these networks from multiday, multichannel electroencephalographic data recorded from 17 epilepsy patients and use centrality indices to assess the importance of brain regions. Time-resolved indications of highest importance fluctuate over time to a greater or lesser extent, however, with some periodic temporal structure that can mostly be attributed to phenomena unrelated to the disease. In contrast, relevant aspects of the epileptic process contribute only marginally. Indications of highest importance also exhibit pronounced alternations between various brain regions that are of relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches. Nonetheless, these findings may guide new developments for individualized diagnosis, treatment, and control.

  11. Automated regional behavioral analysis for human brain images

    PubMed Central

    Lancaster, Jack L.; Laird, Angela R.; Eickhoff, Simon B.; Martinez, Michael J.; Fox, P. Mickle; Fox, Peter T.

    2012-01-01

    Behavioral categories of functional imaging experiments along with standardized brain coordinates of associated activations were used to develop a method to automate regional behavioral analysis of human brain images. Behavioral and coordinate data were taken from the BrainMap database (http://www.brainmap.org/), which documents over 20 years of published functional brain imaging studies. A brain region of interest (ROI) for behavioral analysis can be defined in functional images, anatomical images or brain atlases, if images are spatially normalized to MNI or Talairach standards. Results of behavioral analysis are presented for each of BrainMap's 51 behavioral sub-domains spanning five behavioral domains (Action, Cognition, Emotion, Interoception, and Perception). For each behavioral sub-domain the fraction of coordinates falling within the ROI was computed and compared with the fraction expected if coordinates for the behavior were not clustered, i.e., uniformly distributed. When the difference between these fractions is large behavioral association is indicated. A z-score ≥ 3.0 was used to designate statistically significant behavioral association. The left-right symmetry of ~100K activation foci was evaluated by hemisphere, lobe, and by behavioral sub-domain. Results highlighted the classic left-side dominance for language while asymmetry for most sub-domains (~75%) was not statistically significant. Use scenarios were presented for anatomical ROIs from the Harvard-Oxford cortical (HOC) brain atlas, functional ROIs from statistical parametric maps in a TMS-PET study, a task-based fMRI study, and ROIs from the ten “major representative” functional networks in a previously published resting state fMRI study. Statistically significant behavioral findings for these use scenarios were consistent with published behaviors for associated anatomical and functional regions. PMID:22973224

  12. Automated regional behavioral analysis for human brain images.

    PubMed

    Lancaster, Jack L; Laird, Angela R; Eickhoff, Simon B; Martinez, Michael J; Fox, P Mickle; Fox, Peter T

    2012-01-01

    Behavioral categories of functional imaging experiments along with standardized brain coordinates of associated activations were used to develop a method to automate regional behavioral analysis of human brain images. Behavioral and coordinate data were taken from the BrainMap database (http://www.brainmap.org/), which documents over 20 years of published functional brain imaging studies. A brain region of interest (ROI) for behavioral analysis can be defined in functional images, anatomical images or brain atlases, if images are spatially normalized to MNI or Talairach standards. Results of behavioral analysis are presented for each of BrainMap's 51 behavioral sub-domains spanning five behavioral domains (Action, Cognition, Emotion, Interoception, and Perception). For each behavioral sub-domain the fraction of coordinates falling within the ROI was computed and compared with the fraction expected if coordinates for the behavior were not clustered, i.e., uniformly distributed. When the difference between these fractions is large behavioral association is indicated. A z-score ≥ 3.0 was used to designate statistically significant behavioral association. The left-right symmetry of ~100K activation foci was evaluated by hemisphere, lobe, and by behavioral sub-domain. Results highlighted the classic left-side dominance for language while asymmetry for most sub-domains (~75%) was not statistically significant. Use scenarios were presented for anatomical ROIs from the Harvard-Oxford cortical (HOC) brain atlas, functional ROIs from statistical parametric maps in a TMS-PET study, a task-based fMRI study, and ROIs from the ten "major representative" functional networks in a previously published resting state fMRI study. Statistically significant behavioral findings for these use scenarios were consistent with published behaviors for associated anatomical and functional regions.

  13. Whole brain and brain regional coexpression network interactions associated with predisposition to alcohol consumption.

    PubMed

    Vanderlinden, Lauren A; Saba, Laura M; Kechris, Katerina; Miles, Michael F; Hoffman, Paula L; Tabakoff, Boris

    2013-01-01

    To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA). Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL) with a genomic region that regulates alcohol consumption (bQTL). To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories) and from gene expression data from 6 brain regions (nucleus accumbens (NA); prefrontal cortex (PFC); ventral tegmental area (VTA); striatum (ST); hippocampus (HP); cerebellum (CB)) available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three "meta-modules", composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA) and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits.

  14. Whole Brain and Brain Regional Coexpression Network Interactions Associated with Predisposition to Alcohol Consumption

    PubMed Central

    Vanderlinden, Lauren A.; Saba, Laura M.; Kechris, Katerina; Miles, Michael F.; Hoffman, Paula L.; Tabakoff, Boris

    2013-01-01

    To identify brain transcriptional networks that may predispose an animal to consume alcohol, we used weighted gene coexpression network analysis (WGCNA). Candidate coexpression modules are those with an eigengene expression level that correlates significantly with the level of alcohol consumption across a panel of BXD recombinant inbred mouse strains, and that share a genomic region that regulates the module transcript expression levels (mQTL) with a genomic region that regulates alcohol consumption (bQTL). To address a controversy regarding utility of gene expression profiles from whole brain, vs specific brain regions, as indicators of the relationship of gene expression to phenotype, we compared candidate coexpression modules from whole brain gene expression data (gathered with Affymetrix 430 v2 arrays in the Colorado laboratories) and from gene expression data from 6 brain regions (nucleus accumbens (NA); prefrontal cortex (PFC); ventral tegmental area (VTA); striatum (ST); hippocampus (HP); cerebellum (CB)) available from GeneNetwork. The candidate modules were used to construct candidate eigengene networks across brain regions, resulting in three “meta-modules”, composed of candidate modules from two or more brain regions (NA, PFC, ST, VTA) and whole brain. To mitigate the potential influence of chromosomal location of transcripts and cis-eQTLs in linkage disequilibrium, we calculated a semi-partial correlation of the transcripts in the meta-modules with alcohol consumption conditional on the transcripts' cis-eQTLs. The function of transcripts that retained the correlation with the phenotype after correction for the strong genetic influence, implicates processes of protein metabolism in the ER and Golgi as influencing susceptibility to variation in alcohol consumption. Integration of these data with human GWAS provides further information on the function of polymorphisms associated with alcohol-related traits. PMID:23894363

  15. Specific regions of the brain are capable of fructose metabolism.

    PubMed

    Oppelt, Sarah A; Zhang, Wanming; Tolan, Dean R

    2017-02-15

    High fructose consumption in the Western diet correlates with disease states such as obesity and metabolic syndrome complications, including type II diabetes, chronic kidney disease, and non-alcoholic fatty acid liver disease. Liver and kidneys are responsible for metabolism of 40-60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood. The primary metabolic pathway for fructose includes the fructose-transporting solute-like carrier transport proteins 2a (SLC2a or GLUT), including GLUT5 and GLUT9, ketohexokinase (KHK), and aldolase. Bioinformatic analysis of gene expression encoding these proteins (glut5, glut9, khk, and aldoC, respectively) identifies other organs capable of this fructose metabolism. This analysis predicts brain, lymphoreticular tissue, placenta, and reproductive tissues as possible additional organs for fructose metabolism. While expression of these genes is highest in liver, the brain is predicted to have expression levels of these genes similar to kidney. RNA in situ hybridization of coronal slices of adult mouse brains validate the in silico expression of glut5, glut9, khk, and aldoC, and show expression across many regions of the brain, with the most notable expression in the cerebellum, hippocampus, cortex, and olfactory bulb. Dissected samples of these brain regions show KHK and aldolase enzyme activity 5-10 times the concentration of that in liver. Furthermore, rates of fructose oxidation in these brain regions are 15-150 times that of liver slices, confirming the bioinformatics prediction and in situ hybridization data. This suggests that previously unappreciated regions across the brain can use fructose, in addition to glucose, for energy production.

  16. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions of interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.

  17. Chesapeake Bay regions of concern: Geographical targeting protocol for remediation, reduction, prevention and assessment actions

    SciTech Connect

    Batiuk, R.A.

    1994-12-31

    As a result of a two year reevaluation of a Basinwide Toxics Reduction Strategy, the Chesapeake Bay Program identified the need to more effectively direct reduction and prevention actions toward regional areas with known toxic problems as well as areas where significant potential exists for toxic impacts on living resources and habitats. Building upon the geographical targeting efforts in the Great Lakes and Puget Sound, a protocol was established for identifying and categorizing areas ranging from known toxic problems to areas with low probability for adverse effects to insufficient data. The identification protocol is based on a series of criteria which include evaluation of sediment contamination concentrations and ambient sediment toxicity. The process for development and application of the Regions of Concern protocol along with a focus on the sediment assessment criteria and how they influenced the over-all categorization of regions will be presented.

  18. Expression of arginine decarboxylase in brain regions and neuronal cells

    PubMed Central

    Iyo, Abiye H.; Zhu, Meng-Yang; Ordway, Gregory A.; Regunathan, Soundar

    2010-01-01

    After our initial report of a mammalian gene for arginine decarboxylase, an enzyme for the synthesis of agmatine from arginine, we have determined the regional expression of ADC in rat. We have analyzed the expression of ADC in rat brain regions by activity, protein and mRNA levels, and the regulation of expression in neuronal cells by RNA interference. In rat brain, ADC was widely expressed in major brain regions, with a substantial amount in hypothalamus, followed by cortex, and with least amounts in locus coeruleus and medulla. ADC mRNA was detected in primary astrocytes and C6 glioma cells. While no ADC message was detected in fresh neurons (3 days old), significant message appeared in differentiated neurons (3 weeks old). PC12 cells, treated with nerve growth factor, had higher ADC mRNA compared with naive cells. The siRNA mixture directed towards the N-terminal regions of ADC cDNA down-regulated the levels of mRNA and protein in cultured neurons/C6 glioma cells and these cells produced lower agmatine. Thus, this study demonstrates that ADC message is expressed in rat brain regions, that it is regulated in neuronal cells and that the down-regulation of ADC activity by specific siRNA leads to lower agmatine production. PMID:16445852

  19. Reproducibility of regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |

    1996-10-01

    Changes in regional brain glucose metabolism in response to benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men underwent scanning with PET and [{sup 18}F]fluorodeoxyglucose (FDG) twice: before placebo and before lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 wk later on the men to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained from the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased both whole-brain metabolism and the magnitude. The regional pattern of the changes were comparable for both studies (12.3% {plus_minus} 6.9% and 13.7% {plus_minus} 7.4%). Lorazepam effects were the largest in the thalamus (22.2% {plus_minus} 8.6% and 22.4% {plus_minus} 6.9%) and occipital cortex (19% {plus_minus} 8.9% and 21.8% {plus_minus} 8.9%). Relative metabolic measures were highly reproducible both for pharmacolgic and replication condition. This study measured the test-retest reproducibility in regional brain metabolic responses, and although the global and regional metabolic values were significantly lower for the repeated evaluation, the response to lorazepam was highly reproducible. 1613 refs., 3 figs., 3 tabs.

  20. Regional brain responses in humans during body heating and cooling

    PubMed Central

    Farrell, Michael J.

    2016-01-01

    ABSTRACT Functional brain imaging of responses to thermal challenge in humans provides a viable method to implicate widespread neuroanatomical regions in the processes of thermoregulation. Thus far, functional neuroimaging techniques have been used infrequently in humans to investigate thermoregulation, although preliminary outcomes have been informative and certainly encourage further forays into this field of enquiry. At this juncture, sustained regional brain activations in response to prolonged changes in body temperature are yet to be definitively characterized, but it would appear that thermoregulatory regions are widely distributed throughout the hemispheres of the human brain. Of those autonomic responses to thermal challenge investigated so far, the loci of associated brainstem responses in human are homologous with other species. However, human imaging studies have also implicated a wide range of forebrain regions in thermal sensations and autonomic responses that extend beyond outcomes reported in other species. There is considerable impetus to continue human functional neuroimaging of thermoregulatory responses because of the unique opportunities presented by the method to survey regions across the whole brain in compliant, conscious participants. PMID:27857952

  1. Region-specific growth restriction of brain following preterm birth

    PubMed Central

    Iwata, Sachiko; Katayama, Reiji; Kinoshita, Masahiro; Saikusa, Mamoru; Araki, Yuko; Takashima, Sachio; Abe, Toshi; Iwata, Osuke

    2016-01-01

    Regional brain sizes of very-preterm infants at term-equivalent age differ from those of term-born peers, which have been linked with later cognitive impairments. However, dependence of regional brain volume loss on gestational age has not been studied in detail. To investigate the spatial pattern of brain growth in neonates without destructive brain lesions, head MRI of 189 neonates with a wide range of gestational age (24–42 weeks gestation) was assessed using simple metrics measurements. Dependence of MRI findings on gestational age at birth (Agebirth) and the corrected age at MRI scan (AgeMRI) were assessed. The head circumference was positively correlated with AgeMRI, but not Agebirth. The bi-parietal width, deep grey matter area and the trans-cerebellar diameter were positively correlated with both Agebirth and AgeMRI. The callosal thickness (positive), atrial width of lateral ventricle (negative) and the inter-hemispheric distance (negative) were exclusively correlated with Agebirth. The callosal thickness and cerebral/cerebellar transverse diameters showed predominant dependence on Agebirth over AgeMRI, suggesting that brain growth after preterm-birth was considerably restricted or even became negligible compared with that in utero. Such growth restriction after preterm birth may extensively affect relatively more matured infants, considering the linear relationships observed between brain sizes and Agebirth. PMID:27658730

  2. Early life stress affects limited regional brain activity in depression

    PubMed Central

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-01-01

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients. PMID:27138376

  3. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  4. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  5. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  6. Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy

    ERIC Educational Resources Information Center

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-01-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…

  7. Early life stress affects limited regional brain activity in depression.

    PubMed

    Du, Lian; Wang, Jingjie; Meng, Ben; Yong, Na; Yang, Xiangying; Huang, Qingling; Zhang, Yan; Yang, Lingling; Qu, Yuan; Chen, Zhu; Li, Yongmei; Lv, Fajin; Hu, Hua

    2016-05-03

    Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder (MDD) in later life. This study investigated whether ELS contributes to differences in regional brain activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without controlling for ELS, and determined whether ELS level was correlated with regional brain activity in each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few impacts on MDD patients.

  8. Influence of ketamine on regional brain glucose use

    SciTech Connect

    Davis, D.W.; Mans, A.M.; Biebuyck, J.F.; Hawkins, R.A.

    1988-08-01

    The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with (6-/sup 14/C)glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic, steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus.

  9. Differential susceptibility of brain regions to tributyltin chloride toxicity.

    PubMed

    Mitra, Sumonto; Siddiqui, Waseem A; Khandelwal, Shashi

    2015-12-01

    Tributyltin (TBT), a well-known endocrine disruptor, is an omnipresent environmental pollutant and is explicitly used in many industrial applications. Previously we have shown its neurotoxic potential on cerebral cortex of male Wistar rats. As the effect of TBT on other brain regions is not known, we planned this study to evaluate its effect on four brain regions (cerebellum, hippocampus, hypothalamus, and striatum). Four-week-old male Wistar rats were gavaged with a single dose of TBT-chloride (TBTC) (10, 20, and 30 mg/kg) and sacrificed on days 3 and 7, respectively. Effect of TBTC on blood-brain barrier (BBB) permeability and tin (Sn) accumulation were measured. Oxidative stress indexes such as reactive oxygen species (ROS), reduced and oxidized glutathione (GSH/GSSG) ratio, lipid peroxidation, and protein carbonylation were analyzed as they play an imperative role in various neuropathological conditions. Since metal catalyzed reactions are a major source of oxidant generation, levels of essential metals like iron (Fe), zinc (Zn), and calcium (Ca) were estimated. We found that TBTC disrupted BBB and increased Sn accumulation, both of which appear significantly correlated. Altered metal homeostasis and ROS generation accompanied by elevated lipid peroxidation and protein carbonylation indicated oxidative damage which appeared more pronounced in the striatum than in cerebellum, hippocampus, and hypothalamus. This could be associated to the depleted GSH levels in striatum. These results suggest that striatum is more susceptible to TBTC induced oxidative damage as compared with other brain regions under study. © 2014 Wiley Periodicals, Inc.

  10. Subthreshold depression and regional brain volumes in young community adolescents.

    PubMed

    Vulser, Hélène; Lemaitre, Hervé; Artiges, Eric; Miranda, Ruben; Penttilä, Jani; Struve, Maren; Fadai, Tahmine; Kappel, Viola; Grimmer, Yvonne; Goodman, Robert; Stringaris, Argyris; Poustka, Luise; Conrod, Patricia; Frouin, Vincent; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Flor, Herta; Gallinat, Juergen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lawrence, Claire; Loth, Eva; Mann, Karl; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Schumann, Gunter; Martinot, Jean-Luc; Paillère-Martinot, Marie-Laure

    2015-10-01

    Neuroimaging findings have been reported in regions of the brain associated with emotion in both adults and adolescents with depression, but few studies have investigated whether such brain alterations can be detected in adolescents with subthreshold depression, a condition at risk for major depressive disorder. In this study, we searched for differences in brain structure at age 14 years in adolescents with subthreshold depression and their relation to depression at age 16 years. High-resolution structural magnetic resonance imaging was used to assess adolescents with self-reported subthreshold depression (n = 119) and healthy control adolescents (n = 461), all recruited from a community-based sample. Regional gray and white matter volumes were compared across groups using whole-brain voxel-based morphometry. The relationship between subthreshold depression at baseline and depression outcome was explored using causal mediation analyses to search for mediating effects of regional brain volumes. Adolescents with subthreshold depression had smaller gray matter volume in the ventromedial prefrontal and rostral anterior cingulate cortices and caudates, and smaller white matter volumes in the anterior limb of internal capsules, left forceps minor, and right cingulum. In girls, but not in boys, the relation between subthreshold depression at baseline and high depression score at follow-up was mediated by medial-prefrontal gray matter volume. Subthreshold depression in early adolescence might be associated with smaller gray and white matter volumes in regions of the frontal-striatal-limbic affective circuit, and the occurrence of depression in girls with subthreshold depression might be influenced by medial-prefrontal gray matter volume. However, these findings should be interpreted with caution because of the limitations of the clinical assessment methods. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights

  11. Increased ubiquinone concentration after intracerebroventricularly-administered ubiquinol to selected rat brain regions.

    PubMed

    Gvozdjáková, Anna; Mravec, Boris; Kucharská, Jarmila; Lackovičová, Lubica; Ondičová, Katarína; Tkačov, Martin; Singh, Ram B

    2012-12-01

    Brain coenzyme Q10 (CoQ10) concentration can influence the activity of several brain regions, including those which participate in the regulation of cardiovascular circadian rhythms, food intake, neuroendocrine stress response, activity and sleep regulation. However, the effect of supplemented ubiquinol (reduced CoQ) into brain regions is not known. This study determined baseline levels of ubiquinone (oxidized CoQ) in various rat brain regions and proved the bioavailability of the liposomal ubiquinol to selected brain regions after its administration into right brain ventricle. Our data indicate that administration of ubiquinol may create the basis for modulation of neuronal activities in specific brain regions.

  12. Personality traits and its association with resting regional brain activity.

    PubMed

    Tran, Yvonne; Craig, Ashley; Boord, Peter; Connell, Kathy; Cooper, Nicholas; Gordon, Evian

    2006-06-01

    The association between personality and resting brain activity was investigated. Personality was assessed using the NEO-Five-factor Inventory (NEO-FFI) and resting brain activity was indexed by eyes closed EEG spectral magnitude from four frequency bands over the entire cortex. Results suggest that there are differences between males and females in the NEO-FFI personality traits. The NEO FFI traits were associated with lower frequency brain activity in both males and females. Mild significant and consistent associations were found between delta and theta activity across all cortical regions with Extraversion and Conscientiousness. There were few associations between personality traits and alpha and beta activity, this was shown in males only. Fewer associations between personality and faster frequency bands such as alpha may be due to the methodological problem of using fixed alpha bands. Multiple regression analyses showed that individual alpha frequencies had a greater contribution to personality traits than fixed band alpha waves.

  13. Different Brain Regions are Infected with Fungi in Alzheimer's Disease.

    PubMed

    Pisa, Diana; Alonso, Ruth; Rábano, Alberto; Rodal, Izaskun; Carrasco, Luis

    2015-10-15

    The possibility that Alzheimer's disease (AD) has a microbial aetiology has been proposed by several researchers. Here, we provide evidence that tissue from the central nervous system (CNS) of AD patients contain fungal cells and hyphae. Fungal material can be detected both intra- and extracellularly using specific antibodies against several fungi. Different brain regions including external frontal cortex, cerebellar hemisphere, entorhinal cortex/hippocampus and choroid plexus contain fungal material, which is absent in brain tissue from control individuals. Analysis of brain sections from ten additional AD patients reveals that all are infected with fungi. Fungal infection is also observed in blood vessels, which may explain the vascular pathology frequently detected in AD patients. Sequencing of fungal DNA extracted from frozen CNS samples identifies several fungal species. Collectively, our findings provide compelling evidence for the existence of fungal infection in the CNS from AD patients, but not in control individuals.

  14. Overdrinking, swallowing inhibition, and regional brain responses prior to swallowing

    PubMed Central

    Saker, Pascal; Egan, Gary F.; McKinley, Michael J.; Denton, Derek A.

    2016-01-01

    In humans, drinking replenishes fluid loss and satiates the sensation of thirst that accompanies dehydration. Typically, the volume of water drunk in response to thirst matches the deficit. Exactly how this accurate metering is achieved is unknown; recent evidence implicates swallowing inhibition as a potential factor. Using fMRI, this study investigated whether swallowing inhibition is present after more water has been drunk than is necessary to restore fluid balance within the body. This proposal was tested using ratings of swallowing effort and measuring regional brain responses as participants prepared to swallow small volumes of liquid while they were thirsty and after they had overdrunk. Effort ratings provided unequivocal support for swallowing inhibition, with a threefold increase in effort after overdrinking, whereas addition of 8% (wt/vol) sucrose to water had minimal effect on effort before or after overdrinking. Regional brain responses when participants prepared to swallow showed increases in the motor cortex, prefrontal cortices, posterior parietal cortex, striatum, and thalamus after overdrinking, relative to thirst. Ratings of swallowing effort were correlated with activity in the right prefrontal cortex and pontine regions in the brainstem; no brain regions showed correlated activity with pleasantness ratings. These findings are all consistent with the presence of swallowing inhibition after excess water has been drunk. We conclude that swallowing inhibition is an important mechanism in the overall regulation of fluid intake in humans. PMID:27791015

  15. Brain banks: benefits, limitations and cautions concerning the use of post-mortem brain tissue for molecular studies.

    PubMed

    Ferrer, Isidre; Martinez, Anna; Boluda, Susana; Parchi, Piero; Barrachina, Marta

    2008-09-01

    Brain banks are facilities providing an interface between generous donation of nervous tissues and research laboratories devoted to increase our understanding of the diseases of the nervous system, discover new diagnostic targets, and develop new strategies. Considering this crucial role, it is important to learn about the suitabilities, limitations and proper handling of individual brain samples for particular studies. Several factors may interfere with preservation of DNA, RNA, proteins and lipids, and, therefore, special care must be taken first to detect sub-optimally preserved tissues and second to provide adequate material for each specific purpose. Basic aspects related with DNA, RNA and protein preservation include agonal state, post-mortem delay, temperature of storage and procedures of tissue preservation. Examination of DNA and RNA preservation is best done by using bioanalyzer technologies instead of less sensitive methods such as agarose gels. Adequate RNA preservation is mandatory in RNA microarray studies and adequate controls are necessary for proper PCR validation. Like for RNA, the preservation of proteins is not homogeneous since some molecules are more vulnerable than others. This aspect is crucial in the study of proteins including expression levels and possible post-translational modifications. Similarly, the reliability of functional and enzymatic studies in human post-mortem brain largely depends on protein preservation. Much less is known about other aspects, such as the effects of putative deleterious factors on epigenetic events such as methylation of CpGs in gene promoters, nucleosome preservation, histone modifications, and conservation of microRNA species. Most brains are appropriate for morphological approaches but not all brains are useful for certain biochemical and molecular studies.

  16. Differences in Regional Brain Volumes Two Months and One Year after Mild Traumatic Brain Injury.

    PubMed

    Zagorchev, Lyubomir; Meyer, Carsten; Stehle, Thomas; Wenzel, Fabian; Young, Stewart; Peters, Jochen; Weese, Juergen; Paulsen, Keith; Garlinghouse, Matthew; Ford, James; Roth, Robert; Flashman, Laura; McAllister, Thomas

    2016-01-01

    Conventional structural imaging is often normal after mild traumatic brain injury (mTBI). There is a need for structural neuroimaging biomarkers that facilitate detection of milder injuries, allow recovery trajectory monitoring, and identify those at risk for poor functional outcome and disability. We present a novel approach to quantifying volumes of candidate brain regions at risk for injury. Compared to controls, patients with mTBI had significantly smaller volumes in several regions including the caudate, putamen, and thalamus when assessed 2 months after injury. These differences persisted but were reduced in magnitude 1 year after injury, suggesting the possibility of normalization over time in the affected regions. More pronounced differences, however, were found in the amygdala and hippocampus, suggesting the possibility of regionally specific responses to injury.

  17. Public Health Emergencies of International Concern: Global, Regional, and Local Responses to Risk.

    PubMed

    Bennett, Belinda; Carney, Terry

    2017-03-31

    The declaration in 2009 that the H1N1 pandemic constituted a public health emergency of international concern (PHEIC) was the first such declaration under the revised International Health Regulations that were adopted in 2005. In the period since then PHEIC have been declared in relation to polio, Ebola, and Zika. This article evaluates initiatives that have been introduced globally, within the Asia-Pacific region, and within Australia, to strengthen preparedness for public health emergencies. Through analysis of evolving conceptualisations of risk, surveillance of zoonotic diseases, and development of public health capacities, the article argues that to date the global community has failed to make the necessary investments in health system strengthening, and that without these investments, global public health emergencies will continue to be an ongoing challenge.

  18. Predicting regional neurodegeneration from the healthy brain functional connectome.

    PubMed

    Zhou, Juan; Gennatas, Efstathios D; Kramer, Joel H; Miller, Bruce L; Seeley, William W

    2012-03-22

    Neurodegenerative diseases target large-scale neural networks. Four competing mechanistic hypotheses have been proposed to explain network-based disease patterning: nodal stress, transneuronal spread, trophic failure, and shared vulnerability. Here, we used task-free fMRI to derive the healthy intrinsic connectivity patterns seeded by brain regions vulnerable to any of five distinct neurodegenerative diseases. These data enabled us to investigate how intrinsic connectivity in health predicts region-by-region vulnerability to disease. For each illness, specific regions emerged as critical network "epicenters" whose normal connectivity profiles most resembled the disease-associated atrophy pattern. Graph theoretical analyses in healthy subjects revealed that regions with higher total connectional flow and, more consistently, shorter functional paths to the epicenters, showed greater disease-related vulnerability. These findings best fit a transneuronal spread model of network-based vulnerability. Molecular pathological approaches may help clarify what makes each epicenter vulnerable to its targeting disease and how toxic protein species travel between networked brain structures.

  19. Regional mechanical properties of human brain tissue for computational models of traumatic brain injury.

    PubMed

    Finan, John D; Sundaresh, Sowmya N; Elkin, Benjamin S; McKhann, Guy M; Morrison, Barclay

    2017-06-01

    To determine viscoelastic shear moduli, stress relaxation indentation tests were performed on samples of human brain tissue resected in the course of epilepsy surgery. Through the use of a 500µm diameter indenter, regional mechanical properties were measured in cortical grey and white matter and subregions of the hippocampus. All regions were highly viscoelastic. Cortical grey matter was significantly more compliant than the white matter or hippocampus which were similar in modulus. Although shear modulus was not correlated with the age of the donor, cortex from male donors was significantly stiffer than from female donors. The presented material properties will help to populate finite element models of the brain as they become more anatomically detailed. We present the first mechanical characterization of fresh, post-operative human brain tissue using an indentation loading mode. Indentation generates highly localized data, allowing structure-specific mechanical properties to be determined from small tissue samples resected during surgery. It also avoids pitfalls of cadaveric tissue and allows data to be collected before degenerative processes alter mechanical properties. To correctly predict traumatic brain injury, finite element models must calculate intracranial deformation during head impact. The functional consequences of injury depend on the anatomical structures injured. Therefore, morbidity depends on the distribution of deformation across structures. Accurate prediction of structure-specific deformation requires structure-specific mechanical properties. This data will facilitate deeper understanding of the physical mechanisms that lead to traumatic brain injury. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Zika virus: no cases in the Eastern Mediterranean Region but concerns remain.

    PubMed

    Minh, N N Tran; Huda, Q; Asghar, H; Samhouri, D; Abubakar, A; Barwa, C; Shaikh, I; Buliva, E; Mala, P; Malik, M

    2016-08-18

    Following the WHO declaration on 1 February 2016 of a Public Health Emergency of International Concern (PHEIC) with regard to clusters of microcephaly and neurological disorders potentially associated with Zika virus, the WHO Regional Office for the Eastern Mediterranean conducted three rounds of emergency meetings to address enhancing preparedness actions in the Region. The meetings provided up-to-date information on the current situation and agreed on a set of actions for the countries to undertake to enhance their preparedness and response capacities to Zika virus infection and its complications. The most urgent action is to enhance both epidemiological and entomological surveillance between now and the coming rainy seasons in countries with known presence of Aedes mosquitoes. Zika virus like other vector-borne diseases poses a particular challenge to the countries because of their complex nature which requires multidisciplinary competencies and strong rapid interaction among committed sectors. WHO is working closely with partners and countries to ensure the optimum support is provided to the countries to reduce the risk of this newly emerged health threat.

  1. Brain volumes and regional cortical thickness in young females with anorexia nervosa.

    PubMed

    Fuglset, Tone Seim; Endestad, Tor; Hilland, Eva; Bang, Lasse; Tamnes, Christian Krog; Landrø, Nils Inge; Rø, Øyvind

    2016-11-16

    Anorexia nervosa (AN) is a severe mental illness, with an unknown etiology. Magnetic resonance imaging studies show reduced brain volumes and cortical thickness in patients compared to healthy controls. However, findings are inconsistent, especially concerning the anatomical location and extent of the differences. The purpose of this study was to estimate and compare brain volumes and regional cortical thickness in young females with AN and healthy controls. Magnetic resonance imaging data was acquired from young females with anorexia nervosa (n = 23) and healthy controls (n = 28). Two different scanner sites were used. BMI varied from 13.5 to 20.7 within the patient group, and 11 patients had a BMI > 17.5. FreeSurfer was used to estimate brain volumes and regional cortical thickness. There were no differences between groups in total cerebral cortex volume, white matter volume, or lateral ventricle volume. There were also no volume differences in subcortical grey matter structures. However the results showed reduced cortical thickness bilaterally in the superior parietal gyrus, and in the right inferior parietal and superior frontal gyri. The functional significance of the findings is undetermined as the majority of the included patients was already partially weight-restored. We discuss whether these regions could be related to predisposing factors of the illness, or whether they are regions that are more vulnerable to starvation, malnutrition or associated processes in AN.

  2. Vascular risk and Aβ interact to reduce cortical thickness in AD vulnerable brain regions

    PubMed Central

    Reed, Bruce R.; Madison, Cindee M.; Wirth, Miranka; Marchant, Natalie L.; Kriger, Stephen; Mack, Wendy J.; Sanossian, Nerses; DeCarli, Charles; Chui, Helena C.; Weiner, Michael W.; Jagust, William J.

    2014-01-01

    Objective: The objective of this study was to define whether vascular risk factors interact with β-amyloid (Aβ) in producing changes in brain structure that could underlie the increased risk of Alzheimer disease (AD). Methods: Sixty-six cognitively normal and mildly impaired older individuals with a wide range of vascular risk factors were included in this study. The presence of Aβ was assessed using [11C]Pittsburgh compound B–PET imaging, and cortical thickness was measured using 3-tesla MRI. Vascular risk was measured with the Framingham Coronary Risk Profile Index. Results: Individuals with high levels of vascular risk factors have thinner frontotemporal cortex independent of Aβ. These frontotemporal regions are also affected in individuals with Aβ deposition, but the latter show additional thinning in parietal cortices. Aβ and vascular risk were found to interact in posterior (especially in parietal) brain regions, where Aβ has its greatest effect. In this way, the negative effect of Aβ in posterior regions is increased by the presence of vascular risk. Conclusion: Aβ and vascular risk interact to enhance cortical thinning in posterior brain regions that are particularly vulnerable to AD. These findings give insight concerning the mechanisms whereby vascular risk increases the likelihood of developing AD and supports the therapeutic intervention of controlling vascular risk for the prevention of AD. PMID:24907234

  3. Definitions and Guidelines Concerning Students with Traumatic Brain Injury. A Brief Report.

    ERIC Educational Resources Information Center

    McCaul, Edward; Osher, Trina W.

    This report addresses states' definitions and assessment guidelines for the category of traumatic brain injury, newly identified as a disability under the Individuals with Disabilities Education Act. Information sources included state policy documents from 19 states and interviews with state education agency personnel. A background section…

  4. Abnormal regional brain function in Parkinson's disease: truth or fiction?

    PubMed

    Ma, Yilong; Tang, Chengke; Moeller, James R; Eidelberg, David

    2009-04-01

    Normalization of regional measurements by the global mean is commonly employed to minimize inter-subject variability in functional imaging studies. This practice is based on the assumption that global values do not substantially differ between patient and control groups. In this issue of NeuroImage, Borghammer and colleagues challenge the validity of this assumption. They focus on Parkinson's disease (PD) and use computer simulations to show that lower global values can produce spurious increases in subcortical brain regions. The authors speculate that the increased signal observed in these areas in PD is artefactual and unrelated to localized changes in brain function. In this commentary, we summarize what is currently known of the relationship between regional and global metabolic activity in PD and experimental parkinsonism. We found that early stage PD patients exhibit global values that are virtually identical to those of age-matched healthy subjects. SPM analysis revealed increased normalized metabolic activity in a discrete set of biologically relevant subcortical brain regions. Because of their higher variability, the corresponding absolute regional measures did not differ across the two groups. Longitudinal imaging studies in this population showed that the subcortical elevations in normalized metabolism appeared earlier and progressed faster than did focal cortical or global metabolic reductions. The observed increases in subcortical activity, but not the global changes, correlated with independent clinical measures of disease progression. Multivariate analysis with SSM/PCA further confirmed that the abnormal spatial covariance structure of early PD is dominated by these subcortical increases as opposed to network-related reductions in cortical metabolic activity or global changes. Thus, increased subcortical activity in PD cannot be regarded as a simple artefact of global normalization. Moreover, stability of the normalized measurements, particularly at

  5. Relationship of regional brain β-amyloid to gait speed

    PubMed Central

    Payoux, Pierre; Djilali, Adel; Delrieu, Julien; Hoogendijk, Emiel O.; Rolland, Yves; Cesari, Matteo; Weiner, Michael W.; Andrieu, Sandrine; Vellas, Bruno

    2016-01-01

    Objective: To investigate in vivo the relationship of regional brain β-amyloid (Aβ) to gait speed in a group of elderly individuals at high risk for dementia. Methods: Cross-sectional associations between brain Aβ as measured with [18F]florbetapir PET and gait speed were examined in 128 elderly participants. Subjects ranged from healthy to mildly cognitively impaired enrolled in the control arm of the multidomain intervention in the Multidomain Alzheimer Preventive Trial (MAPT). Nearly all participants presented spontaneous memory complaints. Regional [18F]florbetapir (AV45) standardized uptake volume ratios were obtained via semiautomated quantitative analysis using the cerebellum as reference region. Gait speed was measured by timing participants while they walked 4 meters. Associations were explored with linear regression, correcting for age, sex, education, body mass index (BMI), and APOE genotype. Results: We found a significant association between Aβ in the posterior and anterior putamen, occipital cortex, precuneus, and anterior cingulate and slow gait speed (all corrected p < 0.05). A multivariate model emphasized the locations of the posterior putamen and the precuneus. Aβ burden explained up to 9% of the variance in gait speed, and significantly improved regression models already containing demographic variables, BMI, and APOE status. Conclusions: The present PET study confirms, in vivo, previous postmortem evidence showing an association between Alzheimer disease (AD) pathology and gait speed, and provides additional evidence on potential regional effects of brain Aβ on motor function. More research is needed to elucidate the neural mechanisms underlying these regional associations, which may involve motor and sensorimotor circuits hitherto largely neglected in the pathophysiology of AD. PMID:26643548

  6. Enhanced regional brain metabolic responses to benzodiazepines in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Wang, G.J.; Fowler, J.S.

    1997-05-01

    While dopamine (DA) appears to be crucial for cocaine reinforcement, its involvement in cocaine addiction is much less clear. Using PET we have shown persistent reductions in striatal DA D2 receptors (which arc predominantly located on GABA cells) in cocaine abusers. This finding coupled to GABA`s role as an effector for DA led us to investigate if there were GABAergic abnormalities in cocaine abusers. In this study we measured regional brain metabolic responses to lorazepam, to indirectly assess GABA function (benzodiazepines facilitate GABAergic neurotransmission). Methods: The experimental subjects consisted of 12 active cocaine abusers and 32 age matched controls. Each subject underwent two PET FDG scans obtained within 1 week of each other. The first FDG scan was obtained after administration of placebo (3 cc of saline solution) given 40-50 minutes prior to FDG; and the second after administration of lorazepam (30 {mu}g/kg) given 40-50 minutes prior to FDG. The subjects were blind to the drugs received. Results: Lorazepam-induced sleepiness was significantly greater in abusers than in controls (p<0.001). Lorazepam-induced decreases in brain glucose metabolism were significantly larger in cocaine abusers than in controls. Whereas in controls whole brain metabolism decreased 13{+-}7 %, in cocaine abusers it decreased 21{+-}13 % (p < 0.05). Lorazepam-induced decrements in regional metabolism were significantly larger in striatum (p < 0.0 1), thalamus (p < 0.01) and cerebellum (p < 0.005) of cocaine abusers than of controls (ANOVA diagnosis by condition (placebo versus lorazepam) interaction effect). The only brain region for which the absolute metabolic changes-induced by lorazepam in cocaine abusers were equivalent to those in controls was the orbitofrontal cortex. These results document an accentuated sensitivity to benzodiazepines in cocaine abusers which is compatible with disrupted GABAergic function in these patients.

  7. Repetitive Transcranial Magnetic Stimulation Activates Specific Regions in Rat Brain

    NASA Astrophysics Data System (ADS)

    Ji, Ru-Rong; Schlaepfer, Thomas E.; Aizenman, Carlos D.; Epstein, Charles M.; Qiu, Dike; Huang, Justin C.; Rupp, Fabio

    1998-12-01

    Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive technique to induce electric currents in the brain. Although rTMS is being evaluated as a possible alternative to electroconvulsive therapy for the treatment of refractory depression, little is known about the pattern of activation induced in the brain by rTMS. We have compared immediate early gene expression in rat brain after rTMS and electroconvulsive stimulation, a well-established animal model for electroconvulsive therapy. Our result shows that rTMS applied in conditions effective in animal models of depression induces different patterns of immediate-early gene expression than does electroconvulsive stimulation. In particular, rTMS evokes strong neural responses in the paraventricular nucleus of the thalamus (PVT) and in other regions involved in the regulation of circadian rhythms. The response in PVT is independent of the orientation of the stimulation probe relative to the head. Part of this response is likely because of direct activation, as repetitive magnetic stimulation also activates PVT neurons in brain slices.

  8. Local awakening: regional reorganizations of brain oscillations after sleep.

    PubMed

    Tsai, Pei-Jung; Chen, Sharon Chia-Ju; Hsu, Chun-Yao; Wu, Changwei W; Wu, Yu-Chin; Hung, Ching-Sui; Yang, Albert C; Liu, Po-Yu; Biswal, Bharat; Lin, Ching-Po

    2014-11-15

    Brain functions express rhythmic fluctuations accompanied by sleep and wakefulness each day, but how sleep regulates brain rhythms remains unclear. Following the dose-dependent local sleep concept, two succeeding questions emerge: (1) is the sleep regulation a network-specific process; and (2) is the awakening state dependent on the previous sleep stages? To answer the questions, we conducted simultaneous EEG and fMRI recordings over 22 healthy male participants, along pre-sleep, nocturnal sleep and awakening. Using paired comparisons between awakening and pre-sleep conditions, three scenarios of the regional specificity were demonstrated on awakening: (1) the default-mode and hippocampal networks maintained similar connectivity and spectral power; (2) the sensorimotor network presented reduced connectivity and spectral power; and (3) the thalamus demonstrated substantially enhanced connectivity to the neo-cortex with decreased spectral power. With regard to the stage effect, the deep sleep group had significant changes in both functional connectivity and spectral power on awakening, whereas the indices of light sleep group remained relatively quiescent after sleep. The phenomena implied that slow-wave sleep could be key to rebooting the BOLD fluctuations after sleep. In conclusion, the regional specificity and the stage effect were verified in support of the local awakening concept, indicating that sleep regulation leads to the reorganization of brain networks upon awakening.

  9. The global spread of Zika virus: is public and media concern justified in regions currently unaffected?

    PubMed

    Gyawali, Narayan; Bradbury, Richard S; Taylor-Robinson, Andrew W

    2016-04-19

    Zika virus, an Aedes mosquito-borne flavivirus, is fast becoming a worldwide public health concern following its suspected association with over 4000 recent cases of microcephaly among newborn infants in Brazil. Prior to its emergence in Latin America in 2015-2016, Zika was known to exist at a relatively low prevalence in parts of Africa, Asia and the Pacific islands. An extension of its apparent global dispersion may be enabled by climate conditions suitable to support the population growth of A. aegypti and A. albopictus mosquitoes over an expanding geographical range. In addition, increased globalisation continues to pose a risk for the spread of infection. Further, suspicions of alternative modes of virus transmission (sexual and vertical), if proven, provide a platform for outbreaks in mosquito non-endemic regions as well. Since a vaccine or anti-viral therapy is not yet available, current means of disease prevention involve protection from mosquito bites, excluding pregnant females from travelling to Zika-endemic territories, and practicing safe sex in those countries. Importantly, in countries where Zika is reported as endemic, caution is advised in planning to conceive a baby until such time as the apparent association between infection with the virus and microcephaly is either confirmed or refuted. The question arises as to what advice is appropriate to give in more economically developed countries distant to the current epidemic and in which Zika has not yet been reported. Despite understandable concern among the general public that has been fuelled by the media, in regions where Zika is not present, such as North America, Europe and Australia, at this time any outbreak (initiated by an infected traveler returning from an endemic area) would very probably be contained locally. Since Aedes spp. has very limited spatial dispersal, overlapping high population densities of mosquitoes and humans would be needed to sustain a focus of infection. However, as A

  10. Sex differences in brain structure in auditory and cingulate regions.

    PubMed

    Brun, Caroline C; Leporé, Natasha; Luders, Eileen; Chou, Yi-Yu; Madsen, Sarah K; Toga, Arthur W; Thompson, Paul M

    2009-07-01

    We applied a new method to visualize the three-dimensional profile of sex differences in brain structure based on MRI scans of 100 young adults. We compared 50 men with 50 women, matched for age and other relevant demographics. As predicted, left hemisphere auditory and language-related regions were proportionally expanded in women versus men, suggesting a possible structural basis for the widely replicated sex differences in language processing. In men, primary visual, and visuo-spatial association areas of the parietal lobes were proportionally expanded, in line with prior reports of relative strengths in visuo-spatial processing in men. We relate these three-dimensional patterns to prior functional and structural studies, and to theoretical predictions based on nonlinear scaling of brain morphometry.

  11. Radioreceptor assay of opioid peptides in selected canine brain regions

    SciTech Connect

    Desiderio, D.M.; Takeshita, H.

    1985-09-01

    A radioreceptor assay using the opioid delta receptor-preferring ligand D-/sup 2/ala, D-/sup 5/leu leucine enkephalin (/sup 3/H-DADL) and the broader-specificity ligand /sup 3/H-etorphine was used to measure five HPLC-purified neuropeptide fractions derived from the peptide-rich fraction of tissue homogenates of nine anatomical regions of the canine brain. The receptoractive peptides studied were methionine enkephalin, alpha-neo-endorphin, dynorphin 1-8, methionine enkephalin-Arg-Phe, and leucine enkephalin. These peptides derive from two larger precursors: proenkephalin A, which contains methionine enkephalin, leucine enkephalin, methionine enkephalin-Arg-Phe; and proenkephalin B, which contains alpha-neo-endorphin and dynorphin 1-8. Receptoractive peptides were measured in the peptide-rich fraction derived from homogenates of canine hypothalamus, pituitary, caudate nucleus, amygdala, hippocampus, mid-brain, thalamus, pons-medulla, and cortex.

  12. Copper pathology in vulnerable brain regions in Parkinson's disease.

    PubMed

    Davies, Katherine M; Bohic, Sylvain; Carmona, Asunción; Ortega, Richard; Cottam, Veronica; Hare, Dominic J; Finberg, John P M; Reyes, Stefanie; Halliday, Glenda M; Mercer, Julian F B; Double, Kay L

    2014-04-01

    Synchrotron-based x-ray fluorescence microscopy, immunofluorescence, and Western blotting were used to investigate changes in copper (Cu) and Cu-associated pathways in the vulnerable substantia nigra (SN) and locus coeruleus (LC) and in nondegenerating brain regions in cases of Parkinson's disease (PD) and appropriate healthy and disease controls. In PD and incidental Lewy body disease, levels of Cu and Cu transporter protein 1, were significantly reduced in surviving neurons in the SN and LC. Specific activity of the cuproprotein superoxide dismutase 1 was unchanged in the SN in PD but was enhanced in the parkinsonian anterior cingulate cortex, a region with α-synuclein pathology, normal Cu, and limited cell loss. These data suggest that regions affected by α-synuclein pathology may display enhanced vulnerability and cell loss if Cu-dependent protective mechanisms are compromised. Additional investigation of copper pathology in PD may identify novel targets for the development of protective therapies for this disorder.

  13. Determinants of land take at the regional scale: a study concerning Sardinia (Italy)

    SciTech Connect

    Zoppi, Corrado Lai, Sabrina

    2015-11-15

    In its “Roadmap to a Resource Efficient Europe” (Communication COM(2011) 571 of 20 September 2011), the European Commission (EC) established an ambitious goal for the European Union (EU), that of achieving no land take by 2050; towards this aim, a key milestone for the year 2020 was set, by stating that European policies in the programming period 2014–2020 ought to consider both their direct and their indirect impacts on land use in the EU. Within this framework, this paper builds upon the findings of a previous paper (Zoppi and Lai, 2014), in which we estimated the magnitude of land take over a short period of time (2003–2008) in Sardinia, an Italian NUTS2 region, and we assessed whether and how land take is related to a set of variables that are regarded as important determinants in the literature, such as parcel size, accessibility, and proximity to main cities and towns, to the coastline, or to protected areas. In this paper we study the land-taking process taking Sardinia as a case study, in two larger time periods, 1960–1990 and 1990–2008. We assess if, and to what extent, these factors reveal similar, or different, effects in the two periods, and try to identify consistencies concerning the determinants of land take. - Highlights: • Population density and parcel size significantly affect the magnitude of land take. • The presence of nature conservation areas hinders land taking processes. • Extensive urbanization might effectively preserve non-artificial land. • Balanced accessibility of settlements and nature conservation regional policies can effectively contrast land take. • Size of non-artificial land parcels that become artificial is negatively and significantly connected to land take.

  14. Magnetic Resonance Imaging of the Newborn Brain: Automatic Segmentation of Brain Images into 50 Anatomical Regions

    PubMed Central

    Gousias, Ioannis S.; Hammers, Alexander; Counsell, Serena J.; Srinivasan, Latha; Rutherford, Mary A.; Heckemann, Rolf A.; Hajnal, Jo V.; Rueckert, Daniel; Edwards, A. David

    2013-01-01

    We studied methods for the automatic segmentation of neonatal and developing brain images into 50 anatomical regions, utilizing a new set of manually segmented magnetic resonance (MR) images from 5 term-born and 15 preterm infants imaged at term corrected age called ALBERTs. Two methods were compared: individual registrations with label propagation and fusion; and template based registration with propagation of a maximum probability neonatal ALBERT (MPNA). In both cases we evaluated the performance of different neonatal atlases and MPNA, and the approaches were compared with the manual segmentations by means of the Dice overlap coefficient. Dice values, averaged across regions, were 0.81±0.02 using label propagation and fusion for the preterm population, and 0.81±0.02 using the single registration of a MPNA for the term population. Segmentations of 36 further unsegmented target images of developing brains yielded visibly high-quality results. This registration approach allows the rapid construction of automatically labeled age-specific brain atlases for neonates and the developing brain. PMID:23565180

  15. Regional brain metabolism in a murine systemic lupus erythematosus model.

    PubMed

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Uluğ, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-08-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood-brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb- mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb- mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects.

  16. Dynamic pupillary exchange engages brain regions encoding social salience.

    PubMed

    Harrison, Neil A; Gray, Marcus A; Critchley, Hugo D

    2009-01-01

    Covert exchange of autonomic responses may shape social affective behavior, as observed in mirroring of pupillary responses during sadness processing. We examined how, independent of facial emotional expression, dynamic coherence between one's own and another's pupil size modulates regional brain activity. Fourteen subjects viewed pairs of eye stimuli while undergoing fMRI. Using continuous pupillometry biofeedback, the size of the observed pupils was varied, correlating positively or negatively with changes in participants' own pupils. Viewing both static and dynamic stimuli activated right fusiform gyrus. Observing dynamically changing pupils activated STS and amygdala, regions engaged by non-static and salient facial features. Discordance between observed and observer's pupillary changes enhanced activity within bilateral anterior insula, left amygdala and anterior cingulate. In contrast, processing positively correlated pupils enhanced activity within left frontal operculum. Our findings suggest pupillary signals are monitored continuously during social interactions and that incongruent changes activate brain regions involved in tracking motivational salience and attentionally meaningful information. Naturalistically, dynamic coherence in pupillary change follows fluctuations in ambient light. Correspondingly, in social contexts discordant pupil response is likely to reflect divergence of dispositional state. Our data provide empirical evidence for an autonomically mediated extension of forward models of motor control into social interaction.

  17. Regional brain metabolism in a murine systemic lupus erythematosus model

    PubMed Central

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Uluğ, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-01-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood–brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb− mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb− mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects. PMID:24824914

  18. Isatin, regional distribution in rat brain and tissues.

    PubMed

    Watkins, P; Clow, A; Glover, V; Halket, J; Przyborowska, A; Sandler, M

    1990-01-01

    Isatin has recently been identified in rat tissues and normal human urine, where it forms the major proportion of the endogenous monoamine oxidase inhibitor, tribulin. In this paper, we show that isatin, measured by gas chromatography/mass spectrometry, has a distinct regional distribution in rat tissues, with highest concentrations in seminal vesicles (1.6 ?g/g) and vas deferens (3.4 ?g/g). There was also a discontinuous distribution within rat brain, concentrations being highest in the hippocampus (0.13 ?g/g).

  19. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip.

    PubMed

    Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit

    2017-03-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features.NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the

  20. Oxytocin's fingerprint in personality traits and regional brain volume.

    PubMed

    Andari, Elissar; Schneider, Fabien C; Mottolese, Raphaëlle; Vindras, Philippe; Sirigu, Angela

    2014-02-01

    Oxytocin has a fundamental role in social behavior. In humans, supporting evidence shows that oxytocin enhances people's ability to trust or affiliate with others. A key question is whether differences in plasma oxytocin concentration in humans are related to people's differences in their social traits of personality and if such differences are reflected in the structural organization of brain areas responsive to the action of this hormone. We examined the correlation between oxytocin plasma levels and personality traits in 30 healthy subjects, tested with the Inventory revised neuroticism-extroversion-openness personality inventory (NEO-PI-R). By using the voxel-based morphometry technique, we also investigated changes in gray matter volume as a function of the plasma oxytocin level and NEO-PI-R scores. A positive correlation was found between plasma oxytocin and extraversion scores, a dimension that captures social affiliative tendencies. Moreover, we found an inverse correlation between plasma oxytocin and the volume of the right amygdala and the right hippocampus, 2 brain areas implicated in fear and anxiety. Finally, we showed that the amygdala-hippocampal complex correlate negatively with extraversion scores. Our findings provide evidence for a neural mechanism linking physiological oxytocin's variability and structural variation of brain regions relevant for emotion regulation to individual differences in affiliative personality traits.

  1. Connectivity of epileptic brain regions in wake and sleep.

    PubMed

    Klimes, Petr; Duque, Juliano J; Jurak, Pavel; Halamek, Josef; Worrell, Gregory A

    2015-08-01

    Focal epileptic brain is characterized by a region of pathological tissue seizure onset zone (SOZ) - the pathologic tissue generating seizures. During the interictal period (nonseizure) the SOZ is characterized by epileptiform activity - interictal spikes & high-frequency oscillations (HFO). The SOZ also exhibits hyper-synchrony and functional disconnection from the surrounding areas. Recent studies have described the synchrony inside the SOZ and surrounding tissue for just small sets of patients (2-4) and without any distinction in behavioral states. Wake and sleep cycles can, however, have a significant influence on SOZ activity. Here we show the results of connectivity analysis in three fundamental areas of the epileptic brain - inside SOZ, outside SOZ and bridging areas in 7 patients during wake and sleep. We observed increased synchrony inside SOZ and decreased synchrony on its edges (bridging areas) in specific frequency bands. We also detected significant differences of synchrony levels between wake and sleep periods in HFO frequencies. Our results provide additional insight into the properties of SOZ connectivity. Knowledge of these principles may prove useful for SOZ localization and understanding epileptic brain function in general.

  2. Brain Regions Associated With Internalizing and Externalizing Psychiatric Symptoms in Patients With Penetrating Traumatic Brain Injury.

    PubMed

    Huey, Edward D; Lee, Seonjoo; Lieberman, Jeffrey A; Devanand, D P; Brickman, Adam M; Raymont, Vanessa; Krueger, Frank; Grafman, Jordan

    2016-01-01

    A factor structure underlying DSM-IV diagnoses has been previously reported in neurologically intact patients. The authors determined the brain regions associated with factors underlying DSM-IV diagnoses and compared the ability of DSM-IV diagnoses, factor scores, and self-report measures to account for the neuroanatomical findings in patients with penetrating brain injuries. This prospective cohort study included 254 Vietnam War veterans: 199 with penetrating brain injuries and 55 matched control participants. Measures include DSM-IV diagnoses (from a Structured Clinical Interview for DSM), self-report measures of depression and anxiety, and CT scans. Factors underlying DSM-IV diagnoses were determined using an exploratory factor analysis and correlated with percent of brain regions affected. The ability of the factor scores, DSM-IV diagnoses, and the self-report psychiatric measures to account for the anatomical variance was compared with multiple regressions. Internalizing and externalizing factors were identified in these brain-injured patients. Damage to the left amygdala and bilateral basal ganglia was associated with lower internalizing factor scores, and damage to the left medial orbitofrontal cortex (OFC) with higher, and bilateral hippocampi with lower, externalizing factor scores. Factor scores best predicted left amygdala and bilateral hippocampal involvement, whereas DSM-IV diagnoses best predicted bilateral basal ganglia and left OFC involvement. Damage to the limbic areas involved in the processing of emotional and reward information, including structures involved in the National Institute of Mental Health's Research Domain Criteria Negative Valence Domain, influences the development of internalizing and externalizing psychiatric symptoms. Self-report measures underperformed DSM-IV and factor scores in predicting neuroanatomical findings.

  3. Brain size and visual environment predict species differences in paper wasp sensory processing brain regions (hymenoptera: vespidae, polistinae).

    PubMed

    O'Donnell, Sean; Clifford, Marie R; DeLeon, Sara; Papa, Christopher; Zahedi, Nazaneen; Bulova, Susan J

    2013-01-01

    The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume.

  4. Microglial brain region-dependent diversity and selective regional sensitivities to ageing

    PubMed Central

    Grabert, Kathleen; Michoel, Tom; Karavolos, Michail H; Clohisey, Sara; Baillie, J Kenneth; Stevens, Mark P; Freeman, Tom C; Summers, Kim M; McColl, Barry W

    2015-01-01

    Microglia play critical roles in neural development, homeostasis and neuroinflammation and are increasingly implicated in age-related neurological dysfunction. Neurodegeneration often occurs in disease-specific spatially-restricted patterns, the origins of which are unknown. We performed the first genome-wide analysis of microglia from discrete brain regions across the adult lifespan of the mouse and reveal that microglia have distinct region-dependent transcriptional identities and age in a regionally variable manner. In the young adult brain, differences in bioenergetic and immunoregulatory pathways were the major sources of heterogeneity and suggested that cerebellar and hippocampal microglia exist in a more immune vigilant state. Immune function correlated with regional transcriptional patterns. Augmentation of the distinct cerebellar immunophenotype and a contrasting loss in distinction of the hippocampal phenotype among forebrain regions were key features during ageing. Microglial diversity may enable regionally localised homeostatic functions but could also underlie region-specific sensitivities to microglial dysregulation and involvement in age-related neurodegeneration. PMID:26780511

  5. Ethical concerns regarding commercialization of deep brain stimulation for obsessive compulsive disorder.

    PubMed

    Erickson-Davis, Cordelia

    2012-10-01

    The United States Food and Drug Administration's recent approval of the commercial use of Deep Brain Stimulation (DBS) as a treatment for Obsessive Compulsive Disorder (OCD) will be discussed within the context of the existing USA regulatory framework. The purpose will be to illustrate the current lack of regulation and oversight of the DBS market, which has resulted in the violation of basic ethical norms. The discussion will focus on: 1) the lack of available evidence on procedural safety and efficacy, 2) the numerous conflicts of interest held by research investigators, and 3) the ambiguity of both aforementioned categories due to an inherent lack of transparency in the research. It is argued that in order to address these issues, ethical analyses of DBS for psychiatric disorders must include the role of the industry forces that have become the primary impetus for this research. As such, DBS for OCD serves as an important case example in studies of neurotechnology and innovative surgery.

  6. Acetamiprid Accumulates in Different Amounts in Murine Brain Regions.

    PubMed

    Terayama, Hayato; Endo, Hitoshi; Tsukamoto, Hideo; Matsumoto, Koichi; Umezu, Mai; Kanazawa, Teruhisa; Ito, Masatoshi; Sato, Tadayuki; Naito, Munekazu; Kawakami, Satoshi; Fujino, Yasuhiro; Tatemichi, Masayuki; Sakabe, Kou

    2016-09-22

    Neonicotinoids such as acetamiprid (ACE) belong to a new and widely used single class of pesticides. Neonicotinoids mimic the chemical structure of nicotine and share agonist activity with the nicotine acetylcholine receptor (nAchR). Neonicotinoids are widely considered to be safe in humans; however, they have recently been implicated in a number of human health disorders. A wide range of musculoskeletal and neuromuscular disorders associated with high doses of neonicotinoids administered to animals have also been reported. Consequently, we used a mouse model to investigate the response of the central nervous system to ACE treatment. Our results show that exposure to ACE-containing water for three or seven days (decuple and centuple of no observable adverse effect level (NOAEL)/day) caused a decrease in body weight in 10-week old A/JJmsSlc (A/J) mice. However, the treatments did not affect brain histology or expression of CD34. ACE concentrations were significantly higher in the midbrain of ACE-treated mice than that of the normal and vehicle groups. Expression levels of α7, α4, and β2 nAChRs were found to be low in the olfactory bulb and midbrain of normal mice. Furthermore, in the experimental group (centuple ACE-containing water for seven days), β2 nAChR expression decreased in many brain regions. Information regarding the amount of accumulated ACE and expression levels of the acetylcholine receptor in each region of the brain is important for understanding any clinical symptoms that may be associated with ACE exposure.

  7. Acetamiprid Accumulates in Different Amounts in Murine Brain Regions

    PubMed Central

    Terayama, Hayato; Endo, Hitoshi; Tsukamoto, Hideo; Matsumoto, Koichi; Umezu, Mai; Kanazawa, Teruhisa; Ito, Masatoshi; Sato, Tadayuki; Naito, Munekazu; Kawakami, Satoshi; Fujino, Yasuhiro; Tatemichi, Masayuki; Sakabe, Kou

    2016-01-01

    Neonicotinoids such as acetamiprid (ACE) belong to a new and widely used single class of pesticides. Neonicotinoids mimic the chemical structure of nicotine and share agonist activity with the nicotine acetylcholine receptor (nAchR). Neonicotinoids are widely considered to be safe in humans; however, they have recently been implicated in a number of human health disorders. A wide range of musculoskeletal and neuromuscular disorders associated with high doses of neonicotinoids administered to animals have also been reported. Consequently, we used a mouse model to investigate the response of the central nervous system to ACE treatment. Our results show that exposure to ACE-containing water for three or seven days (decuple and centuple of no observable adverse effect level (NOAEL)/day) caused a decrease in body weight in 10-week old A/JJmsSlc (A/J) mice. However, the treatments did not affect brain histology or expression of CD34. ACE concentrations were significantly higher in the midbrain of ACE-treated mice than that of the normal and vehicle groups. Expression levels of α7, α4, and β2 nAChRs were found to be low in the olfactory bulb and midbrain of normal mice. Furthermore, in the experimental group (centuple ACE-containing water for seven days), β2 nAChR expression decreased in many brain regions. Information regarding the amount of accumulated ACE and expression levels of the acetylcholine receptor in each region of the brain is important for understanding any clinical symptoms that may be associated with ACE exposure. PMID:27669271

  8. Aging Effects on Regional Brain Structural Changes in Schizophrenia

    PubMed Central

    Nenadić, Igor; Sauer, Heinrich; Smesny, Stefan; Gaser, Christian

    2012-01-01

    Background: Although mostly conceptualized as a neurodevelopmental disorder, there is an increasing interest in progressive changes of cognitive deficits and brain structure and function in schizophrenia across the life span. Methods: In this study, we investigated age-related changes in regional gray matter using voxel-based morphometry in a sample of 99 patients (age range 18–65 years) with Diagnostic and Statistical Manual of Mental Disorders-IV schizophrenia and 113 healthy controls (age range 19–59 years) using a cross-sectional design. Results: We found steeper age-related decline in gray matter in patients in a cluster comprising the left superior temporal cortex and adjacent inferior parietal lobule. We then divided the schizophrenia sample in 3 subgroups based on a 3-factor model of psychopathology ratings. Age-related changes were markedly different in each of the 3 subgroups (compared with healthy controls). While patients with predominantly paranoid symptoms showed stronger age-related progression in the left superior temporal cortex and right inferior frontal gyrus, those of the disorganized subgroup had stronger gray matter loss in the left lateral cerebellum, while the predominantly negative subgroup showed minor effects in the left superior temporal gyrus. Conclusions: Our findings show that differences in brain structural changes associated with aging diverge between schizophrenia patients and healthy subjects and that different subgroups within a patient sample might be at higher risk of age-related regional gray matter loss. PMID:21296908

  9. Face processing in autism spectrum disorders: from brain regions to brain networks

    PubMed Central

    Nomi, Jason S.; Uddin, Lucina Q.

    2015-01-01

    Autism spectrum disorder (ASD) is characterized by reduced attention to social stimuli including the human face. This hypo-responsiveness to stimuli that are engaging to typically developing individuals may result from dysfunctioning motivation, reward, and attention systems in the brain. Here we review an emerging neuroimaging literature that emphasizes a shift from focusing on hypo-activation of isolated brain regions such as the fusiform gyrus, amygdala, and superior temporal sulcus in ASD to a more holistic approach to understanding face perception as a process supported by distributed cortical and subcortical brain networks. We summarize evidence for atypical activation patterns within brain networks that may contribute to social deficits characteristic of the disorder. We conclude by pointing to gaps in the literature and future directions that will continue to shed light on aspects of face processing in autism that are still under-examined. In particular, we highlight the need for more developmental studies and studies examining ecologically valid and naturalistic social stimuli. PMID:25829246

  10. Brain regions underlying word finding difficulties in temporal lobe epilepsy.

    PubMed

    Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine

    2009-10-01

    Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance. This evidence has highlighted a role for the anterior part of the dominant temporal lobe in oral word production. These conclusions contrast with findings from activation studies involving healthy speakers or acute ischaemic stroke patients, where the region most directly related to word retrieval appears to be the posterior part of the left temporal lobe. To clarify the neural basis of word retrieval in temporal lobe epilepsy, we tested forty-three drug-resistant temporal lobe epilepsy patients (28 left, 15 right). Comprehensive neuropsychological and language assessments were performed. Single spoken word production was elicited with picture or definition stimuli. Detailed analysis allowed the distinction of impaired word retrieval from other possible causes of naming failure. Finally, the neural substrate of the deficit was assessed by correlating word retrieval performance and resting-state brain metabolism in 18 fluoro-2-deoxy-d-glucose-Positron Emission Tomography. Naming difficulties often resulted from genuine word retrieval failures (anomic states), both in picture and in definition tasks. Left temporal lobe epilepsy patients showed considerably worse performance than right temporal lobe epilepsy patients. Performance was poorer in the definition than in the picture task. Across patients and the left temporal lobe epilepsy subgroup, frequency of anomic state was negatively correlated with resting-state brain metabolism in left posterior and basal temporal regions (Brodmann's area 20-37-39). These results show the involvement of posterior temporal regions, within a larger antero-posterior-basal temporal network, in

  11. Specific Regional Transcription of Apolipoprotein E in Human Brain Neurons

    PubMed Central

    Xu, Pu-Ting; Gilbert, John R.; Qiu, Hui-Ling; Ervin, John; Rothrock-Christian, Tracie R.; Hulette, Christine; Schmechel, Donald E.

    1999-01-01

    In central nervous system injury and disease, apolipoprotein E (APOE, gene; apoE, protein) might be involved in neuronal injury and death indirectly through extracellular effects and/or more directly through intracellular effects on neuronal metabolism. Although intracellular effects could clearly be mediated by neuronal uptake of extracellular apoE, recent experiments in injury models in normal rodents and in mice transgenic for the human APOE gene suggest the additional possibility of intraneuronal synthesis. To examine whether APOE might be synthesized by human neurons, we performed in situ hybridization on paraffin-embedded and frozen brain sections from three nondemented controls and five Alzheimer’s disease (AD) patients using digoxigenin-labeled antisense and sense cRNA probes to human APOE. Using the antisense APOE probes, we found the expected strong hybridization signal in glial cells as well as a generally fainter signal in selected neurons in cerebral cortex and hippocampus. In hippocampus, many APOE mRNA-containing neurons were observed in sectors CA1 to CA4 and the granule cell layer of the dentate gyrus. In these regions, APOE mRNA containing neurons could be observed adjacent to nonhybridizing neurons of the same cell class. APOE mRNA transcription in neurons is regionally specific. In cerebellar cortex, APOE mRNA was seen only in Bergmann glial cells and scattered astrocytes but not in Purkinje cells or granule cell neurons. ApoE immunocytochemical localization in semi-adjacent sections supported the selectivity of APOE transcription. These results demonstrate the expected result that APOE mRNA is transcribed and expressed in glial cells in human brain. The important new finding is that APOE mRNA is also transcribed and expressed in many neurons in frontal cortex and human hippocampus but not in neurons of cerebellar cortex from the same brains. This regionally specific human APOE gene expression suggests that synthesis of apoE might play a role

  12. Brain Region-Specific Activity Patterns after Recent or Remote Memory Retrieval of Auditory Conditioned Fear

    ERIC Educational Resources Information Center

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-01-01

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…

  13. Brain Region-Specific Activity Patterns after Recent or Remote Memory Retrieval of Auditory Conditioned Fear

    ERIC Educational Resources Information Center

    Kwon, Jeong-Tae; Jhang, Jinho; Kim, Hyung-Su; Lee, Sujin; Han, Jin-Hee

    2012-01-01

    Memory is thought to be sparsely encoded throughout multiple brain regions forming unique memory trace. Although evidence has established that the amygdala is a key brain site for memory storage and retrieval of auditory conditioned fear memory, it remains elusive whether the auditory brain regions may be involved in fear memory storage or…

  14. Increased body mass index is associated with specific regional alterations in brain structure

    PubMed Central

    Medic, N; Ziauddeen, H; Ersche, K D; Farooqi, I S; Bullmore, E T; Nathan, P J; Ronan, L; Fletcher, P C

    2016-01-01

    Background: Although obesity is associated with structural changes in brain grey matter, findings have been inconsistent and the precise nature of these changes is unclear. Inconsistencies may partly be due to the use of different volumetric morphometry methods, and the inclusion of participants with comorbidities that exert independent effects on brain structure. The latter concern is particularly critical when sample sizes are modest. The purpose of the current study was to examine the relationship between cortical grey matter and body mass index (BMI), in healthy participants, excluding confounding comorbidities and using a large sample size. Subjects: A total of 202 self-reported healthy volunteers were studied using surface-based morphometry, which permits the measurement of cortical thickness, surface area and cortical folding, independent of each other. Results: Although increasing BMI was not associated with global cortical changes, a more precise, region-based analysis revealed significant thinning of the cortex in two areas: left lateral occipital cortex (LOC) and right ventromedial prefrontal cortex (vmPFC). An analogous region-based analysis failed to find an association between BMI and regional surface area or folding. Participants' age was also found to be negatively associated with cortical thickness of several brain regions; however, there was no overlap between the age- and BMI-related effects on cortical thinning. Conclusions: Our data suggest that the key effect of increasing BMI on cortical grey matter is a focal thinning in the left LOC and right vmPFC. Consistent implications of the latter region in reward valuation, and goal control of decision and action suggest a possible shift in these processes with increasing BMI. PMID:27089992

  15. SLC9A9 Co-expression modules in autism-associated brain regions.

    PubMed

    Patak, Jameson; Hess, Jonathan L; Zhang-James, Yanli; Glatt, Stephen J; Faraone, Stephen V

    2016-07-21

    SLC9A9 is a sodium hydrogen exchanger present in the recycling endosome and highly expressed in the brain. It is implicated in neuropsychiatric disorders, including autism spectrum disorders (ASDs). Little research concerning its gene expression patterns and biological pathways has been conducted. We sought to investigate its possible biological roles in autism-associated brain regions throughout development. We conducted a weighted gene co-expression network analysis on RNA-seq data downloaded from Brainspan. We compared prenatal and postnatal gene expression networks for three ASD-associated brain regions known to have high SLC9A9 gene expression. We also performed an ASD-associated single nucleotide polymorphism enrichment analysis and a cell signature enrichment analysis. The modules showed differences in gene constituents (membership), gene number, and connectivity throughout time. SLC9A9 was highly associated with immune system functions, metabolism, apoptosis, endocytosis, and signaling cascades. Gene list comparison with co-immunoprecipitation data was significant for multiple modules. We found a disproportionately high autism risk signal among genes constituting the prenatal hippocampal module. The modules were enriched with astrocyte and oligodendrocyte markers. SLC9A9 is potentially involved in the pathophysiology of ASDs. Our investigation confirmed proposed functions for SLC9A9, such as endocytosis and immune regulation, while also revealing potential roles in mTOR signaling and cell survival.. By providing a concise molecular map and interactions, evidence of cell type and implicated brain regions we hope this will guide future research on SLC9A9. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  16. Brain Region-Specific Trafficking of the Dopamine Transporter

    PubMed Central

    Block, Ethan R.; Nuttle, Jacob; Balcita-Pedicino, Judith Joyce; Caltagarone, John; Watkins, Simon C.

    2015-01-01

    The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10–60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas. SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from

  17. Aerobic exercise reduces neuronal responses in food reward brain regions.

    PubMed

    Evero, Nero; Hackett, Laura C; Clark, Robert D; Phelan, Suzanne; Hagobian, Todd A

    2012-05-01

    Acute exercise suppresses ad libitum energy intake, but little is known about the effects of exercise on food reward brain regions. After an overnight fast, 30 (17 men, 13 women), healthy, habitually active (age = 22.2 ± 0.7 yr, body mass index = 23.6 ± 0.4 kg/m(2), Vo(2peak) = 44.2 ± 1.5 ml·kg(-1)·min(-1)) individuals completed 60 min of exercise on a cycle ergometer or 60 min of rest (no-exercise) in a counterbalanced, crossover fashion. After each condition, blood oxygen level-dependent responses to high-energy food, low-energy food, and control visual cues, were measured by functional magnetic resonance imaging. Exercise, compared with no-exercise, significantly (P < 0.005) reduced the neuronal response to food (high and low food) cues vs. control cues in the insula (-0.37 ± 0.13 vs. +0.07 ± 0.18%), putamen (-0.39 ± 0.10 vs. -0.10 ± 0.09%), and rolandic operculum (-0.37 ± 0.17 vs. 0.17 ± 0.12%). Exercise alone significantly (P < 0.005) reduced the neuronal response to high food vs. control and low food vs. control cues in the inferior orbitofrontal cortex (-0.94 ± 0.33%), insula (-0.37 ± 0.13%), and putamen (-0.41 ± 0.10%). No-exercise alone significantly (P < 0.005) reduced the neuronal response to high vs. control and low vs. control cues in the middle (-0.47 ± 0.15%) and inferior occipital gyrus (-1.00 ± 0.23%). Exercise reduced neuronal responses in brain regions consistent with reduced pleasure of food, reduced incentive motivation to eat, and reduced anticipation and consumption of food. Reduced neuronal response in these food reward brain regions after exercise is in line with the paradigm that acute exercise suppresses subsequent energy intake.

  18. Nonrigid brain MR image registration using uniform spherical region descriptor.

    PubMed

    Liao, Shu; Chung, Albert C S

    2012-01-01

    There are two main issues that make nonrigid image registration a challenging task. First, voxel intensity similarity may not be necessarily equivalent to anatomical similarity in the image correspondence searching process. Second, during the imaging process, some interferences such as unexpected rotations of input volumes and monotonic gray-level bias fields can adversely affect the registration quality. In this paper, a new feature-based nonrigid image registration method is proposed. The proposed method is based on a new type of image feature, namely, uniform spherical region descriptor (USRD), as signatures for each voxel. The USRD is rotation and monotonic gray-level transformation invariant and can be efficiently calculated. The registration process is therefore formulated as a feature matching problem. The USRD feature is integrated with the Markov random field labeling framework in which energy function is defined for registration. The energy function is then optimized by the α-expansion algorithm. The proposed method has been compared with five state-of-the-art registration approaches on both the simulated and real 3-D databases obtained from the BrainWeb and Internet Brain Segmentation Repository, respectively. Experimental results demonstrate that the proposed method can achieve high registration accuracy and reliable robustness behavior.

  19. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    PubMed

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Regional brain responses in nulliparous women to emotional infant stimuli.

    PubMed

    Montoya, Jessica L; Landi, Nicole; Kober, Hedy; Worhunsky, Patrick D; Rutherford, Helena J V; Mencl, W Einar; Mayes, Linda C; Potenza, Marc N

    2012-01-01

    Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high) and unknown infant faces of varying affect (happy, sad, and neutral) in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG) and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences in motivational

  1. Extracting brain regions from rest fMRI with total-variation constrained dictionary learning.

    PubMed

    Abraham, Alexandre; Dohmatob, Elvis; Thirion, Bertrand; Samaras, Dimitris; Varoquaux, Gael

    2013-01-01

    Spontaneous brain activity reveals mechanisms of brain function and dysfunction. Its population-level statistical analysis based on functional images often relies on the definition of brain regions that must summarize efficiently the covariance structure between the multiple brain networks. In this paper, we extend a network-discovery approach, namely dictionary learning, to readily extract brain regions. To do so, we introduce a new tool drawing from clustering and linear decomposition methods by carefully crafting a penalty. Our approach automatically extracts regions from rest fMRI that better explain the data and are more stable across subjects than reference decomposition or clustering methods.

  2. 18 CFR 1311.7 - How does TVA communicate with state, regional, and local officials concerning TVA's programs and...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false How does TVA communicate with state, regional, and local officials concerning TVA's programs and activities? 1311.7 Section 1311.7 Conservation of Power and Water Resources TENNESSEE VALLEY AUTHORITY INTERGOVERNMENTAL REVIEW OF...

  3. Reduced Regional Brain Cortical Thickness in Patients with Heart Failure

    PubMed Central

    Kumar, Rajesh; Yadav, Santosh K.; Palomares, Jose A.; Park, Bumhee; Joshi, Shantanu H.; Ogren, Jennifer A.; Macey, Paul M.; Fonarow, Gregg C.; Harper, Ronald M.; Woo, Mary A.

    2015-01-01

    Aims Autonomic, cognitive, and neuropsychologic deficits appear in heart failure (HF) subjects, and these compromised functions depend on cerebral cortex integrity in addition to that of subcortical and brainstem sites. Impaired autoregulation, low cardiac output, sleep-disordered-breathing, hypertension, and diabetic conditions in HF offer considerable potential to affect cortical areas by loss of neurons and glia, which would be expressed as reduced cortical thicknesses. However, except for gross descriptions of cortical volume loss/injury, regional cortical thickness integrity in HF is unknown. Our goal was to assess regional cortical thicknesses across the brain in HF, compared to control subjects. Methods and Results We examined localized cortical thicknesses in 35 HF and 61 control subjects with high-resolution T1-weighted images (3.0-Tesla MRI) using FreeSurfer software, and assessed group differences with analysis-of-covariance (covariates; age, gender; p<0.05; FDR). Significantly-reduced cortical thicknesses appeared in HF over controls in multiple areas, including the frontal, parietal, temporal, and occipital lobes, more markedly on the left side, within areas that control autonomic, cognitive, affective, language, and visual functions. Conclusion Heart failure subjects show reduced regional cortical thicknesses in sites that control autonomic, cognitive, affective, language, and visual functions that are deficient in the condition. The findings suggest chronic tissue alterations, with regional changes reflecting loss of neurons and glia, and presumably are related to earlier-described axonal changes. The pathological mechanisms contributing to reduced cortical thicknesses likely include hypoxia/ischemia, accompanying impaired cerebral perfusion from reduced cardiac output and sleep-disordered-breathing and other comorbidities in HF. PMID:25962164

  4. Cultural Perspectives Concerning Adolescent Use of Tobacco and Alcohol in the Appalachian Mountain Region

    ERIC Educational Resources Information Center

    Meyer, Michael G.; Toborg, Mary A.; Denham, Sharon A.; Mande, Mary J.

    2008-01-01

    Context: Appalachia has high rates of tobacco use and related health problems, and despite significant impediments to alcohol use, alcohol abuse is common. Adolescents are exposed to sophisticated tobacco and alcohol advertising. Prevention messages, therefore, should reflect research concerning culturally influenced attitudes toward tobacco and…

  5. Cultural Perspectives Concerning Adolescent Use of Tobacco and Alcohol in the Appalachian Mountain Region

    ERIC Educational Resources Information Center

    Meyer, Michael G.; Toborg, Mary A.; Denham, Sharon A.; Mande, Mary J.

    2008-01-01

    Context: Appalachia has high rates of tobacco use and related health problems, and despite significant impediments to alcohol use, alcohol abuse is common. Adolescents are exposed to sophisticated tobacco and alcohol advertising. Prevention messages, therefore, should reflect research concerning culturally influenced attitudes toward tobacco and…

  6. Blood Flow Diversion as a Primary Treatment Method for Ruptured Brain Aneurysms-Concerns, Controversy, and Future Directions.

    PubMed

    Walcott, Brian P; Koch, Matthew J; Stapleton, Christopher J; Patel, Aman B

    2016-11-14

    Flow diversion is a novel treatment for brain aneurysms that works by redirecting blood flow away from the aneurysm. Immediately after placement of the stent, blood flow stagnates within the aneurysm dome and it undergoes thrombosis. Over time, a new endothelium develops across the neck, thereby reconstructing the parent vessel and curing the aneurysm. The use of this treatment method for ruptured aneurysms has two specific concerns: 1) risk of hemorrhage from the aneurysm after treatment because of potential delayed aneurysm occlusion; and 2) hemorrhagic complications from antiplatelet use, which is required to prevent thromboembolic complications from the device. In this review, we explore these two concerns based on the emerging published literature. Optimal peri-procedural management of these issues in the neurocritical care setting is vital to improving outcomes. We also identify ongoing clinical trials of flow diversion for the treatment of ruptured aneurysms. Flow diversion is an alternative to clipping or coiling for many ruptured aneurysms and may be potentially more efficacious in certain aneurysm subtypes.

  7. New protein extraction/solubilization protocol for gel-based proteomics of rat (female) whole brain and brain regions.

    PubMed

    Hirano, Misato; Rakwal, Randeep; Shibato, Junko; Agrawal, Ganesh Kumar; Jwa, Nam-Soo; Iwahashi, Hitoshi; Masuo, Yoshinori

    2006-08-31

    The rat is an accepted model for studying human psychiatric/neurological disorders. We provide a protocol for total soluble protein extraction using trichloroacetic acid/acetone (TCA/A) from rat (female) whole brain, 10 brain regions and the pituitary gland, and show that two-dimensional gel electrophoresis (2-DGE) using pre-cast immobilized pH (4-7) gradient (IPG) strip gels (13 cm) in the first dimension yields clean silver nitrate stained protein profiles. Though TCA/A precipitation may not be "ideal", the important choice here is the selection of an appropriate lysis buffer (LB) for solubilizing precipitated proteins. Our results reveal enrichment of protein spots by use of individual brain regions rather than whole brain, as well as the presence of differentially expressed spots in their proteomes. Thus individual brain regions provide improved protein coverage and are better suited for differential protein detection. Moreover, using a phosphoprotein-specific dye, in-gel detection of phosphoproteins was demonstrated. Representative high-resolution silver nitrate stained proteome profiles of rat whole brain total soluble protein are presented. Shortcomings apart (failure to separate membrane proteins), gel-based proteomics remains a viable option, and 2-DGE is the method of choice for generating high-resolution proteome maps of rat brain and brain regions.

  8. Stroke bricks - spatial brain regions to assess ischemic stroke localization.

    PubMed

    Ciszek, Bogdan; Jóźwiak, Rafał; Sobieszczuk, Ewa; Przelaskowski, Artur; Skadorwa, Tymon

    2017-03-29

    Computer-aided analysis of non-contrast CT (NCCT) images for rapid diagnosis of ischemic stroke is based on the augmented visualization of evolving ischemic lesions. Computerized support of NCCT often leads to overinterpretation of ischemic areas, thus it is of great interest to provide neurologically verified regions in order to improve accuracy of subsequent radiological assessment. We propose Stroke Bricks (StBr) as an arbitrary spatial division of brain tissue into the regions associated with specific clinical symptoms of ischemic stroke. Neurological stroke deficit is formally translated into respective areas of possible ischemic lesions. StBr were designed according to formalized mapping of neurological symptoms and were attributed to the uniquely defined areas of impaired blood supply. StBr concept may be useful for an integrated radiological CT-based assessment of suspected stroke cases or can be included into computer-aided tools to optimize the evaluation of stroke site and its extent. These data in turn are appropriable for further diagnosis, predicting the therapeutic outcome as well as for patients' qualification for an appropriate form of reperfusion therapy. The usefulness of Stroke Bricks was illustrated in the case studies.

  9. Accurate and robust extraction of brain regions using a deformable model based on radial basis functions.

    PubMed

    Liu, Jia-Xiu; Chen, Yong-Sheng; Chen, Li-Fen

    2009-10-15

    Brain extraction from head magnetic resonance (MR) images is a classification problem of segmenting image volumes into brain and non-brain regions. It is a difficult task due to the convoluted brain surface and the inapparent brain/non-brain boundaries in images. This paper presents an automated, robust, and accurate brain extraction method which utilizes a new implicit deformable model to well represent brain contours and to segment brain regions from MR images. This model is described by a set of Wendland's radial basis functions (RBFs) and has the advantages of compact support property and low computational complexity. Driven by the internal force for imposing the smoothness constraint and the external force for considering the intensity contrast across boundaries, the deformable model of a brain contour can efficiently evolve from its initial state toward its target by iteratively updating the RBF locations. In the proposed method, brain contours are separately determined on 2D coronal and sagittal slices. The results from these two views are generally complementary and are thus integrated to obtain a complete 3D brain volume. The proposed method was compared to four existing methods, Brain Surface Extractor, Brain Extraction Tool, Hybrid Watershed Algorithm, and Model-based Level Set, by using two sets of MR images as well as manual segmentation results obtained from the Internet Brain Segmentation Repository. Our experimental results demonstrated that the proposed approach outperformed these four methods when jointly considering extraction accuracy and robustness.

  10. Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration.

    PubMed

    Pollard, Amelia Kate; Craig, Emma Louise; Chakrabarti, Lisa

    2016-01-01

    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70-71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions.

  11. Weight Perturbation Alters Leptin Signal Transduction in a Region-Specific Manner throughout the Brain

    PubMed Central

    Morabito, Michael V.; Ravussin, Yann; Mueller, Bridget R.; Skowronski, Alicja A.; Watanabe, Kazuhisa; Foo, Kylie S.; Lee, Samuel X.; Lehmann, Anders; Hjorth, Stephan; Zeltser, Lori M.; LeDuc, Charles A.; Leibel, Rudolph L.

    2017-01-01

    Diet-induced obesity (DIO) resulting from consumption of a high fat diet (HFD) attenuates normal neuronal responses to leptin and may contribute to the metabolic defense of an acquired higher body weight in humans; the molecular bases for the persistence of this defense are unknown. We measured the responses of 23 brain regions to exogenous leptin in 4 different groups of weight- and/or diet-perturbed mice. Responses to leptin were assessed by quantifying pSTAT3 levels in brain nuclei 30 minutes following 3 mg/kg intraperitoneal leptin. HFD attenuated leptin sensing throughout the brain, but weight loss did not restore central leptin signaling to control levels in several brain regions important in energy homeostasis, including the arcuate and dorsomedial hypothalamic nuclei. Effects of diet on leptin signaling varied by brain region, with results dependent on the method of weight loss (restriction of calories of HFD, ad lib intake of standard mouse chow). High fat diet attenuates leptin signaling throughout the brain, but some brain regions maintain their ability to sense leptin. Weight loss restores leptin sensing to some degree in most (but not all) brain regions, while other brain regions display hypersensitivity to leptin following weight loss. Normal leptin sensing was restored in several brain regions, with the pattern of restoration dependent on the method of weight loss. PMID:28107353

  12. Weight Perturbation Alters Leptin Signal Transduction in a Region-Specific Manner throughout the Brain.

    PubMed

    Morabito, Michael V; Ravussin, Yann; Mueller, Bridget R; Skowronski, Alicja A; Watanabe, Kazuhisa; Foo, Kylie S; Lee, Samuel X; Lehmann, Anders; Hjorth, Stephan; Zeltser, Lori M; LeDuc, Charles A; Leibel, Rudolph L

    2017-01-01

    Diet-induced obesity (DIO) resulting from consumption of a high fat diet (HFD) attenuates normal neuronal responses to leptin and may contribute to the metabolic defense of an acquired higher body weight in humans; the molecular bases for the persistence of this defense are unknown. We measured the responses of 23 brain regions to exogenous leptin in 4 different groups of weight- and/or diet-perturbed mice. Responses to leptin were assessed by quantifying pSTAT3 levels in brain nuclei 30 minutes following 3 mg/kg intraperitoneal leptin. HFD attenuated leptin sensing throughout the brain, but weight loss did not restore central leptin signaling to control levels in several brain regions important in energy homeostasis, including the arcuate and dorsomedial hypothalamic nuclei. Effects of diet on leptin signaling varied by brain region, with results dependent on the method of weight loss (restriction of calories of HFD, ad lib intake of standard mouse chow). High fat diet attenuates leptin signaling throughout the brain, but some brain regions maintain their ability to sense leptin. Weight loss restores leptin sensing to some degree in most (but not all) brain regions, while other brain regions display hypersensitivity to leptin following weight loss. Normal leptin sensing was restored in several brain regions, with the pattern of restoration dependent on the method of weight loss.

  13. Recommended Determination of Region IV Concerning the Yazoo Backwater Area Pumps Project

    EPA Pesticide Factsheets

    This document explains the basis for EPA Region IV’s recommendation to prohibit the specification of certain waters of the United States as a discharge site for dredge site for dredged or fill material.

  14. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    PubMed

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  15. Molecular cloning of the gene encoding the bovine brain ribonuclease and its expression in different regions of the brain.

    PubMed Central

    Sasso, M P; Carsana, A; Confalone, E; Cosi, C; Sorrentino, S; Viola, M; Palmieri, M; Russo, E; Furia, A

    1991-01-01

    In this paper we report the molecular cloning of the gene encoding the bovine brain ribonuclease. The nucleotide sequence determined in this work shows a high degree of identity to the homologous gene encoding the bovine pancreatic ribonuclease. Processing of the primary transcripts of these genes also follows a similar pathway, splicing of the unique intron in the 5' untranslated region occurs at corresponding positions. Expression of the bovine brain ribonuclease gene can be detected both at the transcriptional and translational levels in all the regions of the brain examined. Images PMID:1754384

  16. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  17. The role of severity information in health policy debates: a survey of state and regional concerns.

    PubMed

    Iezzoni, L I; Shwartz, M; Restuccia, J

    1991-01-01

    Severity of illness measurement has recently dominated many regional health policy debates, and some states now require severity ratings for inpatients. We summarize results of a telephone survey of regional activities involving severity data. Parties use severity information either to evaluate hospital resource use or to assist in comparing quality of hospital care. For quality assessment, various constituencies frequently specify different goals for the severity information. Business representatives commonly believe that it can quantify hospital performance and help them target cost-effective providers; in contrast, providers view severity information only as a screen for substandard care, suggesting areas requiring detailed examination.

  18. Regional cerebral brain metabolism correlates of neuroticism and extraversion.

    PubMed

    Deckersbach, Thilo; Miller, Karen K; Klibanski, Anne; Fischman, Alan; Dougherty, Darin D; Blais, Mark A; Herzog, David B; Rauch, Scott L

    2006-01-01

    Factor-analytic approaches to human personality have consistently identified several core personality traits, such as Extraversion/Introversion, Neuroticism, Agreeableness, Consciousness, and Openness. There is an increasing recognition that certain personality traits may render individuals vulnerable to psychiatric disorders, including anxiety disorders and depression. Our purpose in this study was to explore correlates between the personality dimensions neuroticism and extraversion as assessed by the NEO Five-Factor Inventory (NEO-FFI) and resting regional cerebral glucose metabolism (rCMRglu) in healthy control subjects. Based on the anxiety and depression literatures, we predicted correlations with a network of brain structures, including ventral and medial prefrontal cortex (encompassing anterior cingulate cortex and orbitofrontal cortex), insular cortex, anterior temporal pole, ventral striatum, and the amygdala. Twenty healthy women completed an (18F)FDG (18F-fluorodeoxyglucose) positron emission tomography (PET) scan at rest and the NEO-FFI inventory. We investigated correlations between scores on NEO-FFI Neuroticism and Extraversion and rCMRglu using statistical parametric mapping (SPM99). Within a priori search territories, we found significant negative correlations between Neuroticism and rCMRglu in the insular cortex and positive correlations between Extraversion and rCMRglu in the orbitofrontal cortex. No significant correlations were found involving anterior cingulate, amygdala, or ventral striatum. Neuroticism and Extraversion are associated with activity in insular cortex and orbitofrontal cortex, respectively.

  19. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    PubMed

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory.SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We

  20. Report: Review of Hotline Complaint Concerning the Region 4 Environmental Justice Small Grants Selection Process

    EPA Pesticide Factsheets

    Report #13-P-0299, June 21, 2013. Our review of the EPA’s Region 4 Office of Environmental Justice found that management had controls in place to protect against bias, fraud, and preselection of EJ Small Grants recipients during FYs 2010, 2011 and 2012.

  1. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    PubMed

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Epigenetics in Schizophrenia: A Pilot Study of Global DNA Methylation in Different Brain Regions Associated with Higher Cognitive Functions

    PubMed Central

    Alelú-Paz, Raúl; Carmona, Francisco J.; Sanchez-Mut, José V.; Cariaga-Martínez, Ariel; González-Corpas, Ana; Ashour, Nadia; Orea, Maria J.; Escanilla, Ana; Monje, Alfonso; Guerrero Márquez, Carmen; Saiz-Ruiz, Jerónimo; Esteller, Manel; Ropero, Santiago

    2016-01-01

    Attempts to discover genes that are involved in the pathogenesis of major psychiatric disorders have been frustrating and often fruitless. Concern is building about the need to understand the complex ways in which nature and nurture interact to produce mental illness. We analyze the epigenome in several brain regions from schizophrenic patients with severe cognitive impairment using high-resolution (450K) DNA methylation array. We identified 139 differentially methylated CpG sites included in known and novel candidate genes sequences as well as in and intergenic sequences which functions remain unknown. We found that altered DNA methylation is not restricted to a particular region, but includes others such as CpG shelves and gene bodies, indicating the presence of different DNA methylation signatures depending on the brain area analyzed. Our findings suggest that epimutations are not relatables between different tissues or even between tissues' regions, highlighting the need to adequately study brain samples to obtain reliable data concerning the epigenetics of schizophrenia. PMID:27746755

  3. Epigenetics in Schizophrenia: A Pilot Study of Global DNA Methylation in Different Brain Regions Associated with Higher Cognitive Functions.

    PubMed

    Alelú-Paz, Raúl; Carmona, Francisco J; Sanchez-Mut, José V; Cariaga-Martínez, Ariel; González-Corpas, Ana; Ashour, Nadia; Orea, Maria J; Escanilla, Ana; Monje, Alfonso; Guerrero Márquez, Carmen; Saiz-Ruiz, Jerónimo; Esteller, Manel; Ropero, Santiago

    2016-01-01

    Attempts to discover genes that are involved in the pathogenesis of major psychiatric disorders have been frustrating and often fruitless. Concern is building about the need to understand the complex ways in which nature and nurture interact to produce mental illness. We analyze the epigenome in several brain regions from schizophrenic patients with severe cognitive impairment using high-resolution (450K) DNA methylation array. We identified 139 differentially methylated CpG sites included in known and novel candidate genes sequences as well as in and intergenic sequences which functions remain unknown. We found that altered DNA methylation is not restricted to a particular region, but includes others such as CpG shelves and gene bodies, indicating the presence of different DNA methylation signatures depending on the brain area analyzed. Our findings suggest that epimutations are not relatables between different tissues or even between tissues' regions, highlighting the need to adequately study brain samples to obtain reliable data concerning the epigenetics of schizophrenia.

  4. Proliferation concerns in the Russian closed nuclear weapons complex cities : a study of regional migration behavior.

    SciTech Connect

    Flores, Kristen Lee

    2004-07-01

    The collapse of the Soviet Union in 1991 left the legacy of the USSR weapons complex with an estimated 50 nuclear, chemical, and biological weapons cities containing facilities responsible for research, production, maintenance, and destruction of the weapons stockpile. The Russian Federation acquired ten such previously secret, closed nuclear weapons complex cities. Unfortunately, a lack of government funding to support these facilities resulted in non-payment of salaries to employees and even plant closures, which led to an international fear of weapons material and knowledge proliferation. This dissertation analyzes migration in 33 regions of the Russian Federation, six of which contain the ten closed nuclear weapons complex cities. This study finds that the presence of a closed nuclear city does not significantly influence migration. However, the factors that do influence migration are statistically different in regions containing closed nuclear cities compared to regions without closed nuclear cities. Further, these results show that the net rate of migration has changed across the years since the break up of the Soviet Union, and that the push and pull factors for migration have changed across time. Specifically, personal and residential factors had a significant impact on migration immediately following the collapse of the Soviet Union, but economic infrastructure and societal factors became significant in later years. Two significant policy conclusions are derived from this research. First, higher levels of income are found to increase outmigration from regions, implying that programs designed to prevent migration by increasing incomes for closed city residents may be counter-productive. Second, this study finds that programs designed to increase capital and build infrastructure in the new Russian Federation will be more effective for employing scientists and engineers from the weapons complex, and consequently reduce the potential for emigration of

  5. Compliance with US asthma management guidelines and specialty care: a regional variation or national concern?

    PubMed

    Meng, Y Y; Leung, K M; Berkbigler, D; Halbert, R J; Legorreta, A P

    1999-05-01

    The objective of this study was to examine the compliance with the National Asthma Education Program (NAEP) guidelines among asthmatic members of eight health plans (regions) in seven states, as well as the factors related to the compliance. Information was gathered by means of a cross-sectional survey in a managed care environment. The participants were 6703 respondents (ages 14-65) with moderate or severe asthma. The main outcome measures were compliance with the NAEP guidelines on the use of inhaled steroids, inhaled beta2-agonists, peak flow measurement, and allergy evaluations. Among the results of this survey we found that although these health plans are located from the West Coast to the East Coast and the socioeconomic status of their members varied greatly, compliance with the NAEP guidelines was low among asthmatic members across all geographical regions. The major areas of low compliance identified were inappropriate pharmacological therapy, lack of objective measurement of lung function through peak flow meter, and insufficient environmental trigger control. The regression analyses indicated that the effect of the health plan explained little of the variation in compliance across these regions (only 0.3% at maximum). Low compliance was associated with young age, smoking, moderate asthma, being asthmatic for a few years, currently working, and being treated by a generalist rather than a specialist. In conclusion, this study showed that the compliance with the national guidelines for asthma care was consistently low across different geographical regions in the nation. Improvement in care for asthmatics will require greater commitment and involvement by all stakeholders including physicians, patients, health plans, and employers. We suggest a need for a national strategy to disseminate clinical guidelines not only to the medical community but also to patients themselves.

  6. Brain regions involved in observing and trying to interpret dog behaviour.

    PubMed

    Desmet, Charlotte; van der Wiel, Alko; Brass, Marcel

    2017-01-01

    Humans and dogs have interacted for millennia. As a result, humans (and especially dog owners) sometimes try to interpret dog behaviour. While there is extensive research on the brain regions that are involved in mentalizing about other peoples' behaviour, surprisingly little is known of whether we use these same brain regions to mentalize about animal behaviour. In this fMRI study we investigate whether brain regions involved in mentalizing about human behaviour are also engaged when observing dog behaviour. Here we show that these brain regions are more engaged when observing dog behaviour that is difficult to interpret compared to dog behaviour that is easy to interpret. Interestingly, these results were not only obtained when participants were instructed to infer reasons for the behaviour but also when they passively viewed the behaviour, indicating that these brain regions are activated by spontaneous mentalizing processes.

  7. Medicine and spiritual healing within a region of Canada: preliminary findings concerning Christian Scientists' healthcare practices.

    PubMed

    Manca, Terra

    2013-09-01

    Christian Science is the largest and most recognized of various spiritual healing groups that encourage members to forgo or overcome the need for medicine. Even so, it appears that some Scientists occasionally use medicine. In this study, I argue that Scientists in one region of Canada respond to influences on their healthcare practices differently and follow a variety of healthcare practices. These practices range from refusing medically necessary treatment (which could potentially harm individuals' health) to making full use of the medical system. I base my findings primarily on interviews with eleven current members and one former Christian Scientist.

  8. Seismicity of the Marmara Region and It's Indications Concerning the Other Geophysical and Geological Findings

    NASA Astrophysics Data System (ADS)

    Ozer, N.; Hisarli, M.; Kolcak, D.; Duzgit, Z.; Tok, B.; Tankut, M.

    2001-12-01

    The Marmara Region is settled in Northwestern of Turkiye(TR) and surrounds Marmara Sea as a world wide known active zone, especially, with 1999, M7+ earthquake sequence of TR. The region has had high seismic activity since ancient times and keeps own alive laboratory characteristics for the better understanding of the earth itself. This work is an overview of the historical and recent seismic activity and the focal mechanism solution of the large earthquakes in the area connection to the gravitational, magnetic, geomorphologic, bathymetric and geological/tectonic indications. The North Anatolian Transform(NAT) passes thorough the area in East-West direction. Although there is going on discussion on the length and behaviour of its branches in the sea of Marmara, there exist different models for the strands of NAT in the sea proposed by different scientific research groups. The LandsatTMs, geomorphological/tectonic lineaments will be superimposed with the seismological, gravitational and magnetic findings to discuss on the deformation and dynamics of the strands in the area.

  9. Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome.

    PubMed

    Illingworth, Robert S; Gruenewald-Schneider, Ulrike; De Sousa, Dina; Webb, Shaun; Merusi, Cara; Kerr, Alastair R W; James, Keith D; Smith, Colin; Walker, Robert; Andrews, Robert; Bird, Adrian P

    2015-01-01

    The possibility that alterations in DNA methylation are mechanistic drivers of development, aging and susceptibility to disease is widely acknowledged, but evidence remains patchy or inconclusive. Of particular interest in this regard is the brain, where it has been reported that DNA methylation impacts on neuronal activity, learning and memory, drug addiction and neurodegeneration. Until recently, however, little was known about the 'landscape' of the human brain methylome. Here we assay 1.9 million CpGs in each of 43 brain samples representing different individuals and brain regions. The cerebellum was a consistent outlier compared to all other regions, and showed over 16 000 differentially methylated regions (DMRs). Unexpectedly, the sequence characteristics of hypo- and hypermethylated domains in cerebellum were distinct. In contrast, very few DMRs distinguished regions of the cortex, limbic system and brain stem. Inter-individual DMRs were readily detectable in these regions. These results lead to the surprising conclusion that, with the exception of cerebellum, DNA methylation patterns are more homogeneous between different brain regions from the same individual, than they are for a single brain region between different individuals. This finding suggests that DNA sequence composition, not developmental status, is the principal determinant of the human brain DNA methylome. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome

    PubMed Central

    Illingworth, Robert S.; Gruenewald-Schneider, Ulrike; De Sousa, Dina; Webb, Shaun; Merusi, Cara; Kerr, Alastair R. W.; James, Keith D.; Smith, Colin; Walker, Robert; Andrews, Robert; Bird, Adrian P.

    2015-01-01

    The possibility that alterations in DNA methylation are mechanistic drivers of development, aging and susceptibility to disease is widely acknowledged, but evidence remains patchy or inconclusive. Of particular interest in this regard is the brain, where it has been reported that DNA methylation impacts on neuronal activity, learning and memory, drug addiction and neurodegeneration. Until recently, however, little was known about the ‘landscape’ of the human brain methylome. Here we assay 1.9 million CpGs in each of 43 brain samples representing different individuals and brain regions. The cerebellum was a consistent outlier compared to all other regions, and showed over 16 000 differentially methylated regions (DMRs). Unexpectedly, the sequence characteristics of hypo- and hypermethylated domains in cerebellum were distinct. In contrast, very few DMRs distinguished regions of the cortex, limbic system and brain stem. Inter-individual DMRs were readily detectable in these regions. These results lead to the surprising conclusion that, with the exception of cerebellum, DNA methylation patterns are more homogeneous between different brain regions from the same individual, than they are for a single brain region between different individuals. This finding suggests that DNA sequence composition, not developmental status, is the principal determinant of the human brain DNA methylome. PMID:25572316

  11. Pathways linking regional hyperintensities in the brain and slower gait.

    PubMed

    Bolandzadeh, Niousha; Liu-Ambrose, Teresa; Aizenstein, Howard; Harris, Tamara; Launer, Lenore; Yaffe, Kristine; Kritchevsky, Stephen B; Newman, Anne; Rosano, Caterina

    2014-10-01

    Cerebral white matter hyperintensities (WMHs) are involved in the evolution of impaired mobility and executive functions. Executive functions and mobility are also associated. Thus, WMHs may impair mobility directly, by disrupting mobility-related circuits, or indirectly, by disrupting circuits responsible for executive functions. Understanding the mechanisms underlying impaired mobility in late life will increase our capacity to develop effective interventions. To identify regional WMHs most related to slower gait and to examine whether these regional WMHs directly impact mobility, or indirectly by executive functions. Cross-sectional study. Twenty-one WMH variables (i.e., total WMH volume and WMHs in 20 tracts), gait speed, global cognition (Modified Mini-Mental State Examination; 3MS), and executive functions and processing speed (Digit-Symbol Substitution Test; DSST) were assessed. An L1-L2 regularized regression (i.e., Elastic Net model) identified the WMH variables most related to slower gait. Multivariable linear regression models quantified the association between these WMH variables and gait speed. Formal tests of mediation were also conducted. Community-based sample. Two hundred fifty-three adults (mean age: 83years, 58% women, 41% black). Gait speed. In older adults with an average gait speed of 0.91m/sec, total WMH volume, WMHs located in the right anterior thalamic radiation (ATRR) and frontal corpuscallosum (CCF) were most associated with slower gait. There was a >10% slower gait for each standard deviation of WMH in CCF, ATRR or total brain (standardized beta in m/sec [p value]: -0.11 [p=0.046], -0.15 [p=0.007] and -0.14 [p=0.010], respectively). These associations were substantially and significantly attenuated after adjustment for DSST. This effect was stronger for WMH in CCF than for ATRR or total WMH (standardized beta in m/sec [p value]: -0.07 [p=0.190], -0.12 [p=0.024] and -0.10 [p=0.049], respectively). Adjustment for 3MS did not change these

  12. Acid rain phenomenon in niger delta region of Nigeria: economic, biodiversity, and public health concern.

    PubMed

    Nduka, J K C; Orisakwe, O E; Ezenweke, L O; Ezenwa, T E; Chendo, M N; Ezeabasili, N G

    2008-08-28

    Rain samples were collected from Warri and Port Harcourt, two major oil-producing cities of Nigeria in April-June, July-August, and September-October 2005 and 2006. Awka, a "non-oil" city was used as control. Samples were collected from three points, using clean plastic basins fastened to a table, 2 m above ground level and 115 m away from tall buildings and trees. Water samples were filtered and acidity determined using digital pH meter. The results show that the rain samples were acidic. The pH values for the 2 years under study show that the rainfall in Warri was more acidic than that of Port Harcourt. Oil exploration and other anthropogenic sources may be responsible for the acid rain in the Niger Delta region of Nigeria.

  13. An automated method measures variability in P-glycoprotein and ABCG2 densities across brain regions and brain matter.

    PubMed

    Kannan, Pavitra; Schain, Martin; Kretzschmar, Warren W; Weidner, Lora; Mitsios, Nicholas; Gulyás, Balázs; Blom, Hans; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D; Mulder, Jan

    2017-06-01

    Changes in P-glycoprotein and ABCG2 densities may play a role in amyloid-beta accumulation in Alzheimer's disease. However, previous studies report conflicting results from different brain regions, without correcting for changes in vessel density. We developed an automated method to measure transporter density exclusively within the vascular space, thereby correcting for vessel density. We then examined variability in transporter density across brain regions, matter, and disease using two cohorts of post-mortem brains from Alzheimer's disease patients and age-matched controls. Changes in transporter density were also investigated in capillaries near plaques and on the mRNA level. P-glycoprotein density varied with brain region and matter, whereas ABCG2 density varied with brain matter. In temporal cortex, P-glycoprotein density was 53% lower in Alzheimer's disease samples than in controls, and was reduced by 35% in capillaries near plaque deposits within Alzheimer's disease samples. ABCG2 density was unaffected in Alzheimer's disease. No differences were detected at the transcript level. Our study indicates that region-specific changes in transporter densities can occur globally and locally near amyloid-beta deposits in Alzheimer's disease, providing an explanation for conflicting results in the literature. When differences in region and matter are accounted for, changes in density can be reproducibly measured using our automated method.

  14. Effects of bilingualism on vocabulary, executive functions, age of dementia onset, and regional brain structure.

    PubMed

    Gasquoine, Philip Gerard

    2016-11-01

    To review the current literature on the effects of bilingualism on vocabulary, executive functions, age of dementia onset, and regional brain structure. PubMed and PsycINFO databases were searched (from January 1999 to present) for relevant original research and review articles on bilingualism (but not multilingualism) paired with each target neuropsychological variable published in English. A qualitative review of these articles was conducted. It has long been known that mean scores of bilinguals fall below those of monolinguals on vocabulary and other language, but not visual-perceptual, format cognitive tests. Contemporary studies that have reported higher mean scores for bilinguals than monolinguals on executive function task-switching or inhibition tasks have not always been replicated, leading to concerns of publication bias, statistical flaws, and failures to match groups on potentially confounding variables. Studies suggesting the onset of Alzheimer's disease occurred about 4 years later for bilinguals versus monolinguals have not been confirmed in longitudinal, cohort, community-based, incidence studies that have used neuropsychological testing and diagnostic criteria to establish an age of dementia diagnosis. Neuroimaging studies of regional gray and white matter volume in bilinguals versus monolinguals show inconsistencies in terms of both the regions of difference and the nature of the difference. Resolving inconsistencies in the behavioral data is necessary before searching in the brain for neuroanatomical correlation. Comparisons of balanced versus language-dominant groups within the same ethnoculture combined with objective measurement of bilingualism could better match groups on potentially confounding variables. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Low-resolution brain electromagnetic tomography (LORETA) identifies brain regions linked to psychometric performance under modafinil in narcolepsy.

    PubMed

    Saletu, Michael; Anderer, Peter; Semlitsch, Heribert V; Saletu-Zyhlarz, Gerda Maria; Mandl, Magdalena; Zeitlhofer, Josef; Saletu, Bernd

    2007-01-15

    Low-resolution brain electromagnetic tomography (LORETA) showed a functional deterioration of the fronto-temporo-parietal network of the right hemispheric vigilance system in narcolepsy and a therapeutic effect of modafinil. The aim of this study was to determine the effects of modafinil on cognitive and thymopsychic variables in patients with narcolepsy and investigate whether neurophysiological vigilance changes correlate with cognitive and subjective vigilance alterations at the behavioral level. In a double-blind, placebo-controlled crossover design, EEG-LORETA and psychometric data were obtained during midmorning hours in 15 narcoleptics before and after 3 weeks of placebo or 400 mg modafinil. Cognitive investigations included the Pauli Test and complex reaction time. Thymopsychic/psychophysiological evaluation comprised drive, mood, affectivity, wakefulness, depression, anxiety, the Symptom Checklist 90 and critical flicker frequency. The Multiple Sleep Latency Test (MSLT) and the Epworth Sleepiness Scale (ESS) were performed too. Cognitive performance (Pauli Test) was significantly better after modafinil than after placebo. Concerning reaction time and thymopsychic variables, no significant differences were observed. Correlation analyses revealed that a decrease in prefrontal delta, theta and alpha-1 power correlated with an improvement in cognitive performance. Moreover, drowsiness was positively correlated with theta power in parietal and medial prefrontal regions and beta-1 and beta-2 power in occipital regions. A less significant correlation was observed between midmorning EEG LORETA and the MSLT; between EEG LORETA and the ESS, the correlation was even weaker. In conclusion, modafinil did not influence thymopsychic variables in narcolepsy, but it significantly improved cognitive performance, which may be related to medial prefrontal activity processes identified by LORETA.

  16. Resolving brain regions using nanostructure initiator mass spectrometry imaging of phospholipids.

    PubMed

    Lee, Do Yup; Platt, Virginia; Bowen, Ben; Louie, Katherine; Canaria, Christie A; McMurray, Cynthia T; Northen, Trent

    2012-06-01

    In a variety of neurological diseases, pathological progression is cell type and region specific. Previous reports suggest that mass spectrometry imaging has the potential to differentiate between brain regions enriched in specific cell types. Here, we utilized a matrix-free surface mass spectrometry approach, nanostructure initiator mass spectrometry (NIMS), to show that spatial distributions of multiple lipids can be used as a 'fingerprint' to discriminate between neuronal- and glial- enriched brain regions. In addition, glial cells from different brain regions can be distinguished based on unique lipid profiles. NIMS images were generated from sagittal brain sections and were matched with immunostained serial sections to define glial cell enriched areas. Tandem mass spectrometry (LC-MS/MS QTOF) on whole brain extracts was used to identify 18 phospholipids. Multivariate statistical analysis (Nonnegative Matrix Factorization) enhanced differentiation of brain regions and cell populations compared to single ion imaging methods. This analysis resolved brain regions that are difficult to distinguish using conventional stains but are known to have distinct physiological functions. This method accurately distinguished the frontal (or somatomotor) and dorsal (or retrosplenial) regions of the cortex from each other and from the pons region.

  17. Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks.

    PubMed

    Ruiz, Sergio; Buyukturkoglu, Korhan; Rana, Mohit; Birbaumer, Niels; Sitaram, Ranganatha

    2014-01-01

    With the advent of brain computer interfaces based on real-time fMRI (rtfMRI-BCI), the possibility of performing neurofeedback based on brain hemodynamics has become a reality. In the early stage of the development of this field, studies have focused on the volitional control of activity in circumscribed brain regions. However, based on the understanding that the brain functions by coordinated activity of spatially distributed regions, there have recently been further developments to incorporate real-time feedback of functional connectivity and spatio-temporal patterns of brain activity. The present article reviews the principles of rtfMRI neurofeedback, its applications, benefits and limitations. A special emphasis is given to the discussion of novel developments that have enabled the use of this methodology to achieve self-regulation of the functional connectivity between different brain areas and of distributed brain networks, anticipating new and exciting applications for cognitive neuroscience and for the potential alleviation of neuropsychiatric disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Identification of a set of genes showing regionally enriched expression in the mouse brain

    PubMed Central

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM

    2008-01-01

    Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066

  19. Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds.

    PubMed

    Choe, Myong-Sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S; Benasich, April A; Grant, P Ellen

    2013-09-01

    Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants' whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.

  20. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    NASA Astrophysics Data System (ADS)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  1. Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI

    PubMed Central

    Kong, Xiang-zhen; Liu, Zhaoguo; Huang, Lijie; Wang, Xu; Yang, Zetian; Zhou, Guangfu; Zhen, Zonglei; Liu, Jia

    2015-01-01

    Representing brain morphology as a network has the advantage that the regional morphology of ‘isolated’ structures can be described statistically based on graph theory. However, very few studies have investigated brain morphology from the holistic perspective of complex networks, particularly in individual brains. We proposed a new network framework for individual brain morphology. Technically, in the new network, nodes are defined as regions based on a brain atlas, and edges are estimated using our newly-developed inter-regional relation measure based on regional morphological distributions. This implementation allows nodes in the brain network to be functionally/anatomically homogeneous but different with respect to shape and size. We first demonstrated the new network framework in a healthy sample. Thereafter, we studied the graph-theoretical properties of the networks obtained and compared the results with previous morphological, anatomical, and functional networks. The robustness of the method was assessed via measurement of the reliability of the network metrics using a test-retest dataset. Finally, to illustrate potential applications, the networks were used to measure age-related changes in commonly used network metrics. Results suggest that the proposed method could provide a concise description of brain organization at a network level and be used to investigate interindividual variability in brain morphology from the perspective of complex networks. Furthermore, the method could open a new window into modeling the complexly distributed brain and facilitate the emerging field of human connectomics. PMID:26536598

  2. Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI.

    PubMed

    Kong, Xiang-zhen; Liu, Zhaoguo; Huang, Lijie; Wang, Xu; Yang, Zetian; Zhou, Guangfu; Zhen, Zonglei; Liu, Jia

    2015-01-01

    Representing brain morphology as a network has the advantage that the regional morphology of 'isolated' structures can be described statistically based on graph theory. However, very few studies have investigated brain morphology from the holistic perspective of complex networks, particularly in individual brains. We proposed a new network framework for individual brain morphology. Technically, in the new network, nodes are defined as regions based on a brain atlas, and edges are estimated using our newly-developed inter-regional relation measure based on regional morphological distributions. This implementation allows nodes in the brain network to be functionally/anatomically homogeneous but different with respect to shape and size. We first demonstrated the new network framework in a healthy sample. Thereafter, we studied the graph-theoretical properties of the networks obtained and compared the results with previous morphological, anatomical, and functional networks. The robustness of the method was assessed via measurement of the reliability of the network metrics using a test-retest dataset. Finally, to illustrate potential applications, the networks were used to measure age-related changes in commonly used network metrics. Results suggest that the proposed method could provide a concise description of brain organization at a network level and be used to investigate interindividual variability in brain morphology from the perspective of complex networks. Furthermore, the method could open a new window into modeling the complexly distributed brain and facilitate the emerging field of human connectomics.

  3. The robo-pigeon based on the multiple brain regions synchronization implanted microelectrodes.

    PubMed

    Huai, Rui-Tuo; Yang, Jun-Qing; Wang, Hui

    2016-07-03

    Almost all multichannel microelectrodes are only applied to the same nucleus. The multiple brain regions synchronization implanted microelectrodes can be implanted in the several brain regions at the same time, when used in the robo-animal, which can reduce the operation process, shorten animals operation time. Due to electrode position relatively fixed, errors caused by each separately implanted electrode were reduced and the animal control effect was greatly increased compared to the original electrodes. The electrode fixed time was also extended. This microelectrode provided beneficial reference function for the study of the free state of small animals in different brain regions.

  4. In Alzheimer's disease, hypometabolism in low-amyloid brain regions may be a functional consequence of pathologies in connected brain regions.

    PubMed

    Klupp, Elisabeth; Förster, Stefan; Grimmer, Timo; Tahmasian, Masoud; Yakushev, Igor; Sorg, Christian; Yousefi, Behrooz H; Drzezga, Alexander

    2014-06-01

    In patients with Alzheimer's disease (AD), prominent hypometabolism has been observed in brain regions with minor amyloid load. These hypometabolism-only (HO) areas cannot be explained merely as a consequence of local amyloid toxicity. The aim of this multimodal imaging study was to explore whether such HO phenomenon may be related to pathologies in functionally connected, remote brain regions. Nineteen AD patients and 15 matched controls underwent examinations with [(11)C]PiB-PET and [(18)F]FDG-PET. Voxel-based statistical group comparisons were performed to obtain maps of significantly elevated amyloid burden and reduced cerebral glucose metabolism, respectively, in patients. An HO area was identified by subtraction of equally thresholded result maps (hypometabolism minus amyloid burden). To identify the network typically functionally connected to this HO area, it was used as a seed region for a functional connectivity analysis in resting-state functional magnetic resonance imaging data of 17 elderly healthy controls. The resulting intrinsic connectivity network (HO-ICN) was retransferred into the brains of AD patients to be able to analyze pathologies within this network in the positron emission tomography (PET) datasets. The most prominent HO area was detected in the left middle frontal gyrus of AD patients. The HO-ICN in healthy controls showed a major overlap with brain areas significantly affected by both amyloid deposition and hypometabolism in patients. This association was substantiated by the results of region-of-interest-based and voxel-wise correlation analyses, which revealed strong correlations between the degree of hypometabolism within the HO region and within the HO-ICN. These results support the notion that hypometabolism in brain regions not strongly affected by locoregional amyloid pathology may be related to ongoing pathologies in remote but functionally connected regions, that is, by reduced neuronal input from these regions.

  5. Comparative Connectomics: Mapping the Inter-Individual Variability of Connections within the Regions of the Human Brain.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2017-10-05

    The human braingraph, or connectome is a description of the connections of the brain: the nodes of the graph correspond to small areas of the gray matter, and two nodes are connected by an edge if a diffusion MRI-based workflow finds fibers between those brain areas. We have constructed 1015-vertex graphs from the diffusion MRI brain images of 392 human subjects and compared the individual graphs with respect to several different areas of the brain. The inter-individual variability of the graphs within different brain regions was discovered and described. We have found that the frontal and the limbic lobes are more conservative, while the edges in the temporal and occipital lobes are more diverse. Interestingly, a "hybrid" conservative and diverse distribution was found in the paracentral lobule and the fusiform gyrus. Smaller cortical areas were also evaluated: precentral gyri were found to be more conservative, and the postcentral and the superior temporal gyri to be very diverse. Similar studies concerning the human genome discovered more and less conservative sections of the DNA, opening up entirely new fields in genomics. We think that the present study is the first step in this direction in human connectomics. The clinical significance of the conservativity of a given cerebral area could be the higher sensitivity for traumas and developmental or neuro-degenerative events than the less conservative areas. Copyright © 2017. Published by Elsevier B.V.

  6. Activity in high-level brain regions reflects visibility of low-level stimuli.

    PubMed

    Imamoglu, F; Heinzle, J; Imfeld, A; Haynes, J-D

    2014-11-15

    Stimulus visibility is associated with neural signals in multiple brain regions, ranging from visual cortex to prefrontal regions. Here we used functional magnetic resonance imaging (fMRI) to investigate to which extent the perceived visibility of a "low-level" grating stimulus is reflected in the brain activity in high-level brain regions. Oriented grating stimuli were presented under varying visibility conditions created by backward masking. Visibility was manipulated using four different stimulus onset asynchronies (SOAs), which created a continuum from invisible to highly visible target stimuli. Brain activity in early visual areas, high-level visual brain regions (fusiform gyrus), as well as parietal and prefrontal brain regions was significantly correlated with subjects' psychometric visibility functions. In addition, increased stimulus visibility was reflected in the functional coupling between low and high-level visual areas. Specifically, neuroimaging signals in the middle occipital gyrus were significantly more correlated with signals in the inferior temporal gyrus when subjects successfully perceived the target stimulus than when they did not. These results provide evidence that not only low-level visual but also high-level brain regions reflect visibility of low-level grating stimuli and that changes in functional connectivity reflect perceived stimulus visibility. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Regional selection of the brain size regulating gene CASC5 provides new insight into human brain evolution.

    PubMed

    Shi, Lei; Hu, Enzhi; Wang, Zhenbo; Liu, Jiewei; Li, Jin; Li, Ming; Chen, Hua; Yu, Chunshui; Jiang, Tianzi; Su, Bing

    2017-02-01

    Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.

  8. Multiple Determinants of Whole and Regional Brain Volume among Terrestrial Carnivorans

    PubMed Central

    Swanson, Eli M.; Holekamp, Kay E.; Lundrigan, Barbara L.; Arsznov, Bradley M.; Sakai, Sharleen T.

    2012-01-01

    Mammalian brain volumes vary considerably, even after controlling for body size. Although several hypotheses have been proposed to explain this variation, most research in mammals on the evolution of encephalization has focused on primates, leaving the generality of these explanations uncertain. Furthermore, much research still addresses only one hypothesis at a time, despite the demonstrated importance of considering multiple factors simultaneously. We used phylogenetic comparative methods to investigate simultaneously the importance of several factors previously hypothesized to be important in neural evolution among mammalian carnivores, including social complexity, forelimb use, home range size, diet, life history, phylogeny, and recent evolutionary changes in body size. We also tested hypotheses suggesting roles for these variables in determining the relative volume of four brain regions measured using computed tomography. Our data suggest that, in contrast to brain size in primates, carnivoran brain size may lag behind body size over evolutionary time. Moreover, carnivore species that primarily consume vertebrates have the largest brains. Although we found no support for a role of social complexity in overall encephalization, relative cerebrum volume correlated positively with sociality. Finally, our results support negative relationships among different brain regions after accounting for overall endocranial volume, suggesting that increased size of one brain regions is often accompanied by reduced size in other regions rather than overall brain expansion. PMID:22719890

  9. Neural Representations Used by Brain Regions Underlying Speech Production

    ERIC Educational Resources Information Center

    Segawa, Jennifer Anne

    2013-01-01

    Speech utterances are phoneme sequences but may not always be represented as such in the brain. For instance, electropalatography evidence indicates that as speaking rate increases, gestures within syllables are manipulated separately but those within consonant clusters act as one motor unit. Moreover, speech error data suggest that a syllable's…

  10. Bilateral Brain Regions Associated with Naming in Older Adults

    ERIC Educational Resources Information Center

    Obler, Loraine K.; Rykhlevskaia, Elena; Schnyer, David; Clark-Cotton, Manuella R.; Spiro, Avron, III; Hyun, JungMoon; Kim, Dae-Shik; Goral, Mira; Albert, Martin L.

    2010-01-01

    To determine structural brain correlates of naming abilities in older adults, we tested 24 individuals aged 56-79 on two confrontation-naming tests (the Boston Naming Test (BNT) and the Action Naming Test (ANT)), then collected from these individuals structural Magnetic-Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data. Overall,…

  11. Neural Representations Used by Brain Regions Underlying Speech Production

    ERIC Educational Resources Information Center

    Segawa, Jennifer Anne

    2013-01-01

    Speech utterances are phoneme sequences but may not always be represented as such in the brain. For instance, electropalatography evidence indicates that as speaking rate increases, gestures within syllables are manipulated separately but those within consonant clusters act as one motor unit. Moreover, speech error data suggest that a syllable's…

  12. Bilateral Brain Regions Associated with Naming in Older Adults

    ERIC Educational Resources Information Center

    Obler, Loraine K.; Rykhlevskaia, Elena; Schnyer, David; Clark-Cotton, Manuella R.; Spiro, Avron, III; Hyun, JungMoon; Kim, Dae-Shik; Goral, Mira; Albert, Martin L.

    2010-01-01

    To determine structural brain correlates of naming abilities in older adults, we tested 24 individuals aged 56-79 on two confrontation-naming tests (the Boston Naming Test (BNT) and the Action Naming Test (ANT)), then collected from these individuals structural Magnetic-Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data. Overall,…

  13. Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain

    NASA Astrophysics Data System (ADS)

    Sethi, Sarab S.; Zerbi, Valerio; Wenderoth, Nicole; Fornito, Alex; Fulcher, Ben D.

    2017-04-01

    Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking pairs of neuronal elements; the so-called connectome. Prior work has indicated that structural brain connectivity constrains pairwise correlations of brain dynamics ("functional connectivity"), but it is not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in each brain region by computing 6930 time-series properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only when edge weights were accounted for, and were associated with variations in the autocorrelation properties of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation ρ = 0.58 ), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ = - 0.43 ). Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections display longer timescales of activity fluctuations.

  14. The effects of cocaine on regional brain glucose metabolism is attenuated in dopamine transporter knockout mice.

    PubMed

    Thanos, Panayotis K; Michaelides, Michael; Benveniste, Helene; Wang, Gene Jack; Volkow, Nora D

    2008-05-01

    Cocaine's ability to block the dopamine transporter (DAT) is crucial for its reinforcing effects. However the brain functional consequences of DAT blockade by cocaine are less clear since they are confounded by its concomitant blockade of norepinephrineand serotonin transporters. To separate the dopaminergic from the non-dopaminergic effects of cocaine on brain function we compared the regional brain metabolic responses to cocaine between dopamine transporter deficient (DAT(-/-)) mice with that of their DAT(+/+) littermates. We measured regional brain metabolism (marker of brain function) with 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) and microPET (muPET) before and after acute cocaine administration (i.p. 10 mg/kg). Scans were conducted 2 weeks apart. At baseline DAT(-/-) mice had significantly greater metabolism in thalamus and cerebellum than DAT(+/+). Acute cocaine decreased whole brain metabolismand this effect was greater in DAT(+/+) (15%) than in DAT(-/-) mice (5%). DAT(+/+) mice showed regional decreases in the olfactory bulb, motor cortex, striatum, hippocampus, thalamus and cerebellum whereas DAT(-/-) mice showed decreases only in thalamus. The differential pattern of regional responses to cocaine in DAT(-/-) and DAT(+/+) suggests that most of the brain metabolic changes from acute cocaine are due to DAT blockade. Cocaine-induced decreases in metabolism in thalamus (region with dense noradrenergic innervation) in DAT(-/-) suggest that these were mediated by cocaine's blockade of norepinephrine transporters. The greater baseline metabolism in DAT(-/-) than DAT(+/+) mice in cerebellum (brain region mostly devoid of DAT) suggests that dopamine indirectly regulates activity of these brain regions.

  15. Age- and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    EPA Pesticide Factsheets

    Differences in various mitochondrial bioenergetics parameters in different brain regions in different age groups.This dataset is associated with the following publication:Pandya, J.D., J. Royland , R.C. McPhail, P.G. Sullivan, and P. Kodavanti. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats. NEUROBIOLOGY OF AGING. Elsevier Science Ltd, New York, NY, USA, 42: 25-34, (2016).

  16. Gene expression in the rodent brain is associated with its regional connectivity.

    PubMed

    Wolf, Lior; Goldberg, Chen; Manor, Nathan; Sharan, Roded; Ruppin, Eytan

    2011-05-01

    The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations), we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels-the outgoing (incoming) connectivity is successfully predicted for 73% (56%) of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83). Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-value<1e-5). Reassuringly, the genes previously known from the literature to be involved in axon guidance do carry significant information about regional brain connectivity. Surveying the genes known to be associated with the pathogenesis of several brain disorders, we find that those associated with schizophrenia, autism and attention deficit disorder are the most highly enriched in the connectivity-related genes identified here. Finally, we find that the profile of functional annotation groups that are associated with regional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming). Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data.

  17. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations.

    PubMed

    Morgan, Julie A; Corrigan, Frances; Baune, Bernhard T

    2015-01-01

    Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer's disease, depression, and Parkinson's disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important CNS functions have yet to be clarified. Here we review murine evidence about the effects of exercise on discrete brain regions involved in important CNS functions. Exercise effects on circadian rhythm, central metabolism, cardiovascular function, stress responses in the brain stem and hypothalamic pituitary axis, and movement are examined. The databases Pubmed, Web of Science, and Embase were searched for articles investigating regional brain adaptations to exercise. Brain regions examined included the brain stem, hypothalamus, and basal ganglia. We found evidence of multiple regional adaptations to both forced and voluntary exercise. Exercise can induce molecular adaptations in neuronal function in many instances. Taken together, these findings suggest that the regional physiological adaptations that occur with exercise could constitute a promising field for elucidating molecular and cellular mechanisms of recovery in psychiatric and neurological health conditions.

  18. Better Glasgow outcome score, cerebral perfusion pressure and focal brain oxygenation in severely traumatized brain following direct regional brain hypothermia therapy: A prospective randomized study

    PubMed Central

    Idris, Zamzuri; Zenian, Mohd Sofan; Muzaimi, Mustapha; Hamid, Wan Zuraida Wan Abdul

    2014-01-01

    Background: Induced hypothermia for treatment of traumatic brain injury is controversial. Since many pathways involved in the pathophysiology of secondary brain injury are temperature dependent, regional brain hypothermia is thought capable to mitigate those processes. The objectives of this study are to assess the therapeutic effects and complications of regional brain cooling in severe head injury with Glasgow coma scale (GCS) 6-7. Materials and Methods: A prospective randomized controlled pilot study involving patients with severe traumatic brain injury with GCS 6 and 7 who required decompressive craniectomy. Patients were randomized into two groups: Cooling and no cooling. For the cooling group, analysis was made by dividing the group into mild and deep cooling. Brain was cooled by irrigating the brain continuously with cold Hartmann solution for 24-48 h. Main outcome assessments were a dichotomized Glasgow outcome score (GOS) at 6 months posttrauma. Results: A total of 32 patients were recruited. The cooling-treated patients did better than no cooling. There were 63.2% of patients in cooling group attained good GOS at 6 months compared to only 15.4% in noncooling group (P = 0.007). Interestingly, the analysis at 6 months post-trauma disclosed mild-cooling-treated patients did better than no cooling (70% vs. 15.4% attained good GOS, P = 0.013) and apparently, the deep-cooling-treated patients failed to be better than either no cooling (P = 0.074) or mild cooling group (P = 0.650). Conclusion: Data from this pilot study imply direct regional brain hypothermia appears safe, feasible and maybe beneficial in treating severely head-injured patients. PMID:25685201

  19. Prefrontal hypometabolism in Alzheimer disease is related to longitudinal amyloid accumulation in remote brain regions.

    PubMed

    Klupp, Elisabeth; Grimmer, Timo; Tahmasian, Masoud; Sorg, Christian; Yakushev, Igor; Yousefi, Behrooz H; Drzezga, Alexander; Förster, Stefan

    2015-03-01

    In PET studies of patients with Alzheimer disease (AD), prominent hypometabolism can occur in brain regions without major amyloid load. These hypometabolism-only (HO) areas may not be explained easily as a consequence of local amyloid toxicity. The aim of this longitudinal multimodal imaging study was the investigation of locoregional and remote relationships between metabolism in HO areas and longitudinal amyloid increase in functionally connected brain areas, with a particular focus on intrinsic functional connectivity as a relevant linking mechanism between pathology and dysfunction. Fifteen AD patients underwent longitudinal examinations with (11)C-Pittsburgh compound B ((11)C-PiB) and (18)F-FDG PET (mean follow-up period, 2 y). The peak HO region was identified by the subtraction of equally thresholded statistical T maps (hypometabolism minus amyloid burden), resulting from voxel-based statistical parametric mapping group comparisons between the AD patients and 15 healthy controls. Then functionally connected and nonconnected brain networks were identified by means of seed-based intrinsic functional connectivity analysis of the resting-state functional MRI data of healthy controls. Finally, network-based, region-of-interest-based, and voxel-based correlations were calculated between longitudinal changes of normalized (11)C-PiB binding and (18)F-FDG metabolism. Positive voxel-based and region-of-interest-based correlations were demonstrated between longitudinal (11)C-PiB increases in the HO-connected network, encompassing bilateral temporoparietal and frontal brain regions, and metabolic changes in the peak HO region as well as locoregionally within several AD-typical brain regions. Our results indicate that in AD amyloid accumulation in remote but functionally connected brain regions may significantly contribute to longitudinally evolving hypometabolism in brain regions not strongly affected by local amyloid pathology, supporting the amyloid- and network

  20. Integrative network analysis of nineteen brain regions identifies molecular signatures and networks underlying selective regional vulnerability to Alzheimer's disease.

    PubMed

    Wang, Minghui; Roussos, Panos; McKenzie, Andrew; Zhou, Xianxiao; Kajiwara, Yuji; Brennand, Kristen J; De Luca, Gabriele C; Crary, John F; Casaccia, Patrizia; Buxbaum, Joseph D; Ehrlich, Michelle; Gandy, Sam; Goate, Alison; Katsel, Pavel; Schadt, Eric; Haroutunian, Vahram; Zhang, Bin

    2016-11-01

    Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. However, despite extensive clinical and genomic studies, the molecular basis of AD development and progression remains elusive. To elucidate molecular systems associated with AD, we developed a large scale gene expression dataset from 1053 postmortem brain samples across 19 cortical regions of 125 individuals with a severity spectrum of dementia and neuropathology of AD. We excluded brain specimens that evidenced neuropathology other than that characteristic of AD. For the first time, we performed a pan-cortical brain region genomic analysis, characterizing the gene expression changes associated with a measure of dementia severity and multiple measures of the severity of neuropathological lesions associated with AD (neuritic plaques and neurofibrillary tangles) and constructing region-specific co-expression networks. We rank-ordered 44,692 gene probesets, 1558 co-expressed gene modules and 19 brain regions based upon their association with the disease traits. The neurobiological pathways identified through these analyses included actin cytoskeleton, axon guidance, and nervous system development. Using public human brain single-cell RNA-sequencing data, we computed brain cell type-specific marker genes for human and determined that many of the abnormally expressed gene signatures and network modules were specific to oligodendrocytes, astrocytes, and neurons. Analysis based on disease severity suggested that: many of the gene expression changes, including those of oligodendrocytes, occurred early in the progression of disease, making them potential translational/treatment development targets and unlikely to be mere bystander result of degeneration; several modules were closely linked to cognitive compromise with lesser association with traditional measures of neuropathology. The brain regional analyses identified temporal lobe gyri as

  1. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.

    PubMed

    Banerjee, Soumyabrata; Poddar, Mrinal K

    2015-03-01

    Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  2. Cohort-level brain mapping: learning cognitive atoms to single out specialized regions.

    PubMed

    Varoquaux, Gaël; Schwartz, Yannick; Pinel, Philippe; Thirion, Bertrand

    2013-01-01

    Functional Magnetic Resonance Imaging (fMRI) studies map the human brain by testing the response of groups of individuals to carefully-crafted and contrasted tasks in order to delineate specialized brain regions and networks. The number of functional networks extracted is limited by the number of subject-level contrasts and does not grow with the cohort. Here, we introduce a new group-level brain mapping strategy to differentiate many regions reflecting the variety of brain network configurations observed in the population. Based on the principle of functional segregation, our approach singles out functionally-specialized brain regions by learning group-level functional profiles on which the response of brain regions can be represented sparsely. We use a dictionary-learning formulation that can be solved efficiently with on-line algorithms, scaling to arbitrary large datasets. Importantly, we model inter-subject correspondence as structure imposed in the estimated functional profiles, integrating a structure-inducing regularization with no additional computational cost. On a large multi-subject study, our approach extracts a large number of brain networks with meaningful functional profiles.

  3. Longitudinal Regional Brain Development and Clinical Risk Factors in Extremely Preterm Infants.

    PubMed

    Kersbergen, Karina J; Makropoulos, Antonios; Aljabar, Paul; Groenendaal, Floris; de Vries, Linda S; Counsell, Serena J; Benders, Manon J N L

    2016-11-01

    To investigate third-trimester extrauterine brain growth and correlate this with clinical risk factors in the neonatal period, using serially acquired brain tissue volumes in a large, unselected cohort of extremely preterm born infants. Preterm infants (gestational age <28 weeks) underwent brain magnetic resonance imaging (MRI) at around 30 weeks postmenstrual age and again around term equivalent age. MRIs were segmented in 50 different regions covering the entire brain. Multivariable regression analysis was used to determine the influence of clinical variables on volumes at both scans, as well as on volumetric growth. MRIs at term equivalent age were available for 210 infants and serial data were available for 131 infants. Growth over these 10 weeks was greatest for the cerebellum, with an increase of 258%. Sex, birth weight z-score, and prolonged mechanical ventilation showed global effects on brain volumes on both scans. The effect of brain injury on ventricular size was already visible at 30 weeks, whereas growth data and volumes at term-equivalent age revealed the effect of brain injury on the cerebellum. This study provides data about third-trimester extrauterine volumetric brain growth in preterm infants. Both global and local effects of several common clinical risk factors were found to influence serial volumetric measurements, highlighting the vulnerability of the human brain, especially in the presence of brain injury, during this period. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain

    PubMed Central

    Montoya, Julio Cesar; Fajardo, Dianora; Peña, Angela; Sánchez, Adalberto; Domínguez, Martha C; Satizábal, José María

    2014-01-01

    Background: The information of gene expression obtained from databases, have made possible the extraction and analysis of data related with several molecular processes involving not only in brain homeostasis but its disruption in some neuropathologies; principally in Down syndrome and the Alzheimer disease. Objective: To correlate the levels of transcription of 19 genes located in the Down Syndrome Critical Region (DSCR) with their expression in several substructures of normal human brain. Methods: There were obtained expression profiles of 19 DSCR genes in 42 brain substructures, from gene expression values available at the database of the human brain of the Brain Atlas of the Allen Institute for Brain Sciences", (http://human.brain-map.org/). The co-expression patterns of DSCR genes in brain were calculated by using multivariate statistical methods. Results: Highest levels of gene expression were registered at caudate nucleus, nucleus accumbens and putamen among central areas of cerebral cortex. Increased expression levels of RCAN1 that encode by a protein involved in signal transduction process of the CNS were recorded for PCP4 that participates in the binding to calmodulin and TTC3; a protein that is associated with differentiation of neurons. That previously identified brain structures play a crucial role in the learning process, in different class of memory and in motor skills. Conclusion: The precise regulation of DSCR gene expression is crucial to maintain the brain homeostasis, especially in those areas with high levels of gene expression associated with a remarkable process of learning and cognition. PMID:25767303

  5. Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.

    PubMed

    Montoya, Julio Cesar; Fajardo, Dianora; Peña, Angela; Sánchez, Adalberto; Domínguez, Martha C; Satizábal, José María; García-Vallejo, Felipe

    2014-01-01

    The information of gene expression obtained from databases, have made possible the extraction and analysis of data related with several molecular processes involving not only in brain homeostasis but its disruption in some neuropathologies; principally in Down syndrome and the Alzheimer disease. To correlate the levels of transcription of 19 genes located in the Down Syndrome Critical Region (DSCR) with their expression in several substructures of normal human brain. There were obtained expression profiles of 19 DSCR genes in 42 brain substructures, from gene expression values available at the database of the human brain of the Brain Atlas of the Allen Institute for Brain Sciences", (http://human.brain-map.org/). The co-expression patterns of DSCR genes in brain were calculated by using multivariate statistical methods. Highest levels of gene expression were registered at caudate nucleus, nucleus accumbens and putamen among central areas of cerebral cortex. Increased expression levels of RCAN1 that encode by a protein involved in signal transduction process of the CNS were recorded for PCP4 that participates in the binding to calmodulin and TTC3; a protein that is associated with differentiation of neurons. That previously identified brain structures play a crucial role in the learning process, in different class of memory and in motor skills. The precise regulation of DSCR gene expression is crucial to maintain the brain homeostasis, especially in those areas with high levels of gene expression associated with a remarkable process of learning and cognition.

  6. Stars from the darkest night: unlocking the neurogenic potential of astrocytes in different brain regions.

    PubMed

    Magnusson, Jens P; Frisén, Jonas

    2016-04-01

    In a few regions of the adult brain, specialized astrocytes act as neural stem cells capable of sustaining life-long neurogenesis. In other, typically non-neurogenic regions, some astrocytes have an intrinsic capacity to produce neurons when provoked by particular conditions but do not use this ability to replace neurons completely after injury or disease. Why do astrocytes display regional differences and why do they not use their neurogenic capacity for brain repair to a greater extent? In this Review, we discuss the neurogenic potential of astrocytes in different brain regions and ask what stimulates this potential in some regions but not in others. We discuss the transcriptional networks and environmental cues that govern cell identity, and consider how the activation of neurogenic properties in astrocytes can be understood as the de-repression of a latent neurogenic transcriptional program. © 2016. Published by The Company of Biologists Ltd.

  7. Mapping brain region activity during chewing: a functional magnetic resonance imaging study.

    PubMed

    Onozuka, M; Fujita, M; Watanabe, K; Hirano, Y; Niwa, M; Nishiyama, K; Saito, S

    2002-11-01

    Mastication has been suggested to increase neuronal activities in various regions of the human brain. However, because of technical difficulties, the fine anatomical and physiological regions linked to mastication have not been fully elucidated. Using functional magnetic resonance imaging during cycles of rhythmic gum-chewing and no chewing, we therefore examined the interaction between chewing and brain regional activity in 17 subjects (aged 20-31 years). In all subjects, chewing resulted in a bilateral increase in blood oxygenation level-dependent (BOLD) signals in the sensorimotor cortex, supplementary motor area, insula, thalamus, and cerebellum. In addition, in the first three regions, chewing of moderately hard gum produced stronger BOLD signals than the chewing of hard gum. However, the signal was higher in the cerebellum and not significant in the thalamus, respectively. These results suggest that chewing causes regional increases in brain neuronal activities which are related to biting force.

  8. Displacement of Brain Regions in Preterm Infants with Non-Synostotic Dolichocephaly Investigated by MRI

    PubMed Central

    Mewes, Andrea U.J.; Zöllei, Lilla; Hüppi, Petra S.; Als, Heidelise; McAnulty, Gloria; Inder, Terrie E.; Wells, William M.; Warfield, Simon K.

    2012-01-01

    Regional investigations of newborn MRI are important to understand the appearance and consequences of early brain injury. Previously, regionalization in neonates has been achieved with a Talairach parcellation, using internal landmarks of the brain. Non-synostotic dolichocephaly defines a bi-temporal narrowing of the preterm infant’s head caused by pressure on the immature skull. The impact of dolichocephaly on brain shape and regional brain shift, which may compromise the validity of the parcellation scheme, has not yet been investigated. Twenty-four preterm and 20 fullterm infants were scanned at term equivalent. Skull shapes were investigated by cephalometric measurements and population registration. Brain tissue volumes were calculated to rule out brain injury underlying skull shape differences. The position of Talairach landmarks was evaluated. Cortical structures were segmented to determine a positional shift between both groups. The preterm group displayed dolichocephalic head shapes and had similar brain volumes compared to the mesocephalic fullterm group. In preterm infants, Talairach landmarks were consistently positioned relative to each other and to the skull base, but were displaced with regard to the calvarium. The frontal and superior region was enlarged; central and temporal gyri and sulci were shifted comparing preterm and fullterm infants. We found that in healthy preterm infants, dolichocephaly led to a shift of cortical structures, but did not influence deep brain structures. We concluded that the validity of a Talairach parcellation scheme is compromised and may lead to a miscalculation of regional brain volumes and inconsistent parcel contents when comparing infant populations with divergent head shapes. PMID:17513129

  9. Hormone replacement therapy and age-related brain shrinkage: regional effects.

    PubMed

    Raz, Naftali; Rodrigue, Karen M; Kennedy, Kristen M; Acker, James D

    2004-11-15

    Neuroprotective properties of estrogen have been established in animal models, but clinical trials of hormone replacement therapy (HRT) produced contradictory results. We examined the impact of HRT on age-related regional changes in human brain volume. Six brain regions were measured twice, five years apart, in 12 healthy women who took HRT and in matched controls who did not. The controls showed a typical pattern of differential brain shrinkage in the association cortices and the hippocampus with no change in the primary visual cortex. In contrast, women who took HRT showed comparable shrinkage of the hippocampus but no significant shrinkage of the neocortex. Future large scale studies may benefit from applying regional rather than global measures in assessment of brain integrity.

  10. The construction of common and specific significance subnetworks of Alzheimer's disease from multiple brain regions.

    PubMed

    Kong, Wei; Mou, Xiaoyang; Zhang, Na; Zeng, Weiming; Li, Shasha; Yang, Yang

    2015-01-01

    Alzheimer's disease (AD) is a progressively and fatally neurodegenerative disorder and leads to irreversibly cognitive and memorial damage in different brain regions. The identification and analysis of the dysregulated pathways and subnetworks among affected brain regions will provide deep insights for the pathogenetic mechanism of AD. In this paper, commonly and specifically significant subnetworks were identified from six AD brain regions. Protein-protein interaction (PPI) data were integrated to add molecular biological information to construct the functional modules of six AD brain regions by Heinz algorithm. Then, the simulated annealing algorithm based on edge weight is applied to predicting and optimizing the maximal scoring networks for common and specific genes, respectively, which can remove the weak interactions and add the prediction of strong interactions to increase the accuracy of the networks. The identified common subnetworks showed that inflammation of the brain nerves is one of the critical factors of AD and calcium imbalance may be a link among several causative factors in AD pathogenesis. In addition, the extracted specific subnetworks for each brain region revealed many biologically functional mechanisms to understand AD pathogenesis.

  11. Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy.

    PubMed

    Proix, Timothée; Bartolomei, Fabrice; Chauvel, Patrick; Bernard, Christophe; Jirsa, Viktor K

    2014-11-05

    Brain regions generating seizures in patients with refractory partial epilepsy are referred to as the epileptogenic zone (EZ). During a seizure, paroxysmal activity is not restricted to the EZ, but may recruit other brain regions and propagate activity through large brain networks, which comprise brain regions that are not necessarily epileptogenic. The identification of the EZ is crucial for candidates for neurosurgery and requires unambiguous criteria that evaluate the degree of epileptogenicity of brain regions. To obtain such criteria and investigate the mechanisms of seizure recruitment and propagation, we develop a mathematical framework of coupled neural populations, which can interact via signaling through a slow permittivity variable. The permittivity variable captures effects evolving on slow timescales, including extracellular ionic concentrations and energy metabolism, with time delays of up to seconds as observed clinically. Our analyses provide a set of indices quantifying the degree of epileptogenicity and predict conditions, under which seizures propagate to nonepileptogenic brain regions, explaining the responses to intracerebral electric stimulation in epileptogenic and nonepileptogenic areas. In conjunction, our results provide guidance in the presurgical evaluation of epileptogenicity based on electrographic signatures in intracerebral electroencephalograms. Copyright © 2014 the authors 0270-6474/14/3415009-13$15.00/0.

  12. Response of regional brain glutamate transaminases of rat to aluminum in protein malnutrition

    PubMed Central

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2002-01-01

    Background The mechanism of aluminum-induced neurotoxicity is not clear. The involvement of glutamate in the aluminium-induced neurocomplications has been suggested. Brain glutamate levels also found to be altered in protein malnutrition. Alterations in glutamate levels as well as glutamate-α-decarboxylase in different regions of rat brain has been reported in response to aluminum exposure. Thus the study of glutamate metabolising enzymes in different brain regions of rats maintained on either normal or restricted protein diet may be of importance for understanding the neurotoxicity properties of aluminium. Results Dietary protein restrictions does not have an significant impact on regional aluminum content of the brain. The interaction of aluminum intoxication and protein restriction is significant in the thalamic area and the midbrain-hippocampal region in cases of glutamate oxaloacetate transaminase. In the case of gluatmate pyruvate transaminase, this interaction is significant only in thalamic area. Conclusion The metabolism of amino acids, as indicated by activities of specific transaminases, of brain is altered in response to aluminum exposure. These alterations are region specific and are dependent on dietary protein intake or manipulation of the brain amino acid homeostasis. PMID:12197946

  13. Response of regional brain glutamate transaminases of rat to aluminum in protein malnutrition.

    PubMed

    Nayak, Prasunpriya; Chatterjee, Ajay K

    2002-08-28

    The mechanism of aluminum-induced neurotoxicity is not clear. The involvement of glutamate in the aluminium-induced neurocomplications has been suggested. Brain glutamate levels also found to be altered in protein malnutrition. Alterations in glutamate levels as well as glutamate-alpha-decarboxylase in different regions of rat brain has been reported in response to aluminum exposure. Thus the study of glutamate metabolising enzymes in different brain regions of rats maintained on either normal or restricted protein diet may be of importance for understanding the neurotoxicity properties of aluminium. Dietary protein restrictions does not have an significant impact on regional aluminum content of the brain. The interaction of aluminum intoxication and protein restriction is significant in the thalamic area and the midbrain-hippocampal region in cases of glutamate oxaloacetate transaminase. In the case of glutamate pyruvate transaminase, this interaction is significant only in thalamic area. The metabolism of amino acids, as indicated by activities of specific transaminases, of brain is altered in response to aluminum exposure. These alterations are region specific and are dependent on dietary protein intake or manipulation of the brain amino acid homeostasis.

  14. Differential oxidative stress and DNA damage in rat brain regions and blood following chronic arsenic exposure.

    PubMed

    Mishra, D; Flora, S J S

    2008-05-01

    Chronic arsenic poisoning caused by contaminated drinking water is a wide spread and worldwide problem particularly in India and Bangladesh. One of the possible mechanisms suggested for arsenic toxicity is the generation of reactive oxygen species (ROS). The present study was planned 1) to evaluate if chronic exposure to arsenic leads to oxidative stress in blood and brain - parts of male Wistar rats and 2) to evaluate which brain region of the exposed animals was more sensitive to oxidative injury. Male Wistar rats were exposed to arsenic (50A ppm sodium arsenite in drinking water) for 10A months. The brain was dissected into five major parts, pons medulla, corpus striatum, cortex, hippocampus, and cerebellum. A number of biochemical variables indicative of oxidative stress were studied in blood and different brain regions. Single-strand DNA damage using comet assay was also assessed in lymphocytes. We observed a significant increase in blood and brain ROS levels accompanied by the depletion of GSH/GSSG ratio and glucose-6-phosphate dehydrogenase (G6PD) activity in different brain regions of arsenic-exposed rats. Chronic arsenic exposure also caused significant single-strand DNA damage in lymphocytes as depicted by comet with a tail in arsenic-exposed cells compared with the control cells. On the basis of results, we concluded that the cortex region of the brain was more sensitive to oxidative injury compared with the other regions studied. The present study, thus, leads us to suggest that arsenic induces differential oxidative stress in brain regions with cortex followed by hippocampus and causes single-strand DNA damage in lymphocytes.

  15. Regional and temporal differences in leptin signaling in rat brain.

    PubMed

    Burgos-Ramos, Emma; Chowen, Julie A; Argente, Jesús; Barrios, Vicente

    2010-05-15

    Leptin regulates energy homeostasis through activation of different hypothalamic pathways. Evidence indicates that leptin is a pleiotropic hormone that acts on many brain areas, altering food intake, metabolism, and locomotion, among other functions. Because short-term effects of leptin infusion and intracellular pathways in other brain areas involved in food regulation have not been thoroughly analysed, we have studied the acute effect of intracerebroventricular leptin administration on the levels of the long form of leptin receptor (Ob-Rb), as well as on activation of Janus kinase 2 (JAK2)-signal transducer and activator of transcription 3 (STAT3), protein kinase B (Akt), extracellular regulated kinases (ERKs) and levels of suppressor of cytokine signaling-3 (SOCS3) in the hypothalamus, hippocampus, frontal cortex and cerebellum of adult male Wistar rats at 15min, 1 and 6h. The levels of Ob-Rb increased at 6h in hypothalamus only. Leptin activated the JAK2/STAT3 pathway in all areas, although in a temporally specific pattern. In contrast, this hormone decreased Akt activation in hypothalamus, hippocampus and cerebellum and ERK activation in frontal cortex, while it increased ERK activation in hypothalamus and hippocampus. These differences in modulation of Ob-Rb levels and signaling indicate that the rapid effects of leptin in non-hypothalamic areas are mediated, at least in part, through the intracellular pathways involved in hypothalamic energy balance, but in a temporally specific manner. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Temporal and regional changes after focal traumatic brain injury.

    PubMed

    Lescot, Thomas; Fulla-Oller, Laurence; Fulla-Oller, Lawrence; Po, Chrystelle; Chen, Xiao Ru; Puybasset, Louis; Gillet, Brigitte; Plotkine, Michel; Meric, Philippe; Marchand-Leroux, Catherine

    2010-01-01

    Magnetic resonance imaging (MRI) is widely used to evaluate the consequences of traumatic brain injury (TBI) in both experimental and clinical studies. Improved assessment of experimental TBI using the same methods as those used in clinical investigations would help to translate laboratory research into clinical advances. Here our goal was to characterize lateral fluid percussion-induced TBI, with special emphasis on differentiating the contused cortex from the pericontusional subcortical tissue. We used both in vivo MRI and proton magnetic resonance spectroscopy ((1)H-MRS) to evaluate adult male Sprague-Dawley rats 24 h and 48 h and 7 days after TBI. T2 and apparent diffusion coefficient (ADC) maps were derived from T2-weighted and diffusion-weighted images, respectively. Ratios of N-acetylaspartate (NAA), choline compounds (Cho), and lactate (Lac) over creatine (Cr) were estimated by (1)H-MRS. T2 values were high in the contused cortex 24 h after TBI, suggesting edema development; ADC was low, consistent with cytotoxic edema. At the same site, NAA/Cr was decreased and Lac/Cr elevated during the first week after TBI. In the ipsilateral subcortical area, NAA/Cr was markedly decreased and Lac/Cr was elevated during the first week, although MRI showed no evidence of edema, suggesting that (1)H-MRS detected "invisible" damage. (1)H-MRS combined with MRI may improve the detection of brain injury. Extensive assessments of animal models may increase the chances of developing successful neuroprotective strategies.

  17. An integrative analysis of regional gene expression profiles in the human brain.

    PubMed

    Myers, Emma M; Bartlett, Christopher W; Machiraju, Raghu; Bohland, Jason W

    2015-02-01

    Studies of the brain's transcriptome have become prominent in recent years, resulting in an accumulation of datasets with somewhat distinct attributes. These datasets, which are often analyzed only in isolation, also are often collected with divergent goals, which are reflected in their sampling properties. While many researchers have been interested in sampling gene expression in one or a few brain areas in a large number of subjects, recent efforts from the Allen Institute for Brain Sciences and others have focused instead on dense neuroanatomical sampling, necessarily limiting the number of individual donor brains studied. The purpose of the present work is to develop methods that draw on the complementary strengths of these two types of datasets for study of the human brain, and to characterize the anatomical specificity of gene expression profiles and gene co-expression networks derived from human brains using different specific technologies. The approach is applied using two publicly accessible datasets: (1) the high anatomical resolution Allen Human Brain Atlas (AHBA, Hawrylycz et al., 2012) and (2) a relatively large sample size, but comparatively coarse neuroanatomical dataset described previously by Gibbs et al. (2010). We found a relatively high degree of correspondence in differentially expressed genes and regional gene expression profiles across the two datasets. Gene co-expression networks defined in individual brain regions were less congruent, but also showed modest anatomical specificity. Using gene modules derived from the Gibbs dataset and from curated gene lists, we demonstrated varying degrees of anatomical specificity based on two classes of methods, one focused on network modularity and the other focused on enrichment of expression levels. Two approaches to assessing the statistical significance of a gene set's modularity in a given brain region were studied, which provide complementary information about the anatomical specificity of a gene

  18. Longitudinal regional brain volume loss in schizophrenia: Relationship to antipsychotic medication and change in social function.

    PubMed

    Guo, Joyce Y; Huhtaniska, Sanna; Miettunen, Jouko; Jääskeläinen, Erika; Kiviniemi, Vesa; Nikkinen, Juha; Moilanen, Jani; Haapea, Marianne; Mäki, Pirjo; Jones, Peter B; Veijola, Juha; Isohanni, Matti; Murray, Graham K

    2015-10-01

    Progressive brain volume loss in schizophrenia has been reported in previous studies but its cause and regional distribution remains unclear. We investigated progressive regional brain reductions in schizophrenia and correlations with potential mediators. Participants were drawn from the Northern Finland Birth Cohort 1966. A total of 33 schizophrenia individuals and 71 controls were MRI scanned at baseline (mean age=34.7, SD=0.77) and at follow-up (mean age=43.4, SD=0.44). Regional brain change differences and associations with clinical mediators were examined using FSL voxelwise SIENA. Schizophrenia cases exhibited greater progressive brain reductions than controls, mainly in the frontal and temporal lobes. The degree of periventricular brain volume reductions were predicted by antipsychotic medication exposure at the fourth ventricular edge and by the number of days in hospital between the scans (a proxy measure of relapse duration) at the thalamic ventricular border. Decline in social and occupational functioning was associated with right supramarginal gyrus reduction. Our findings are consistent with the possibility that antipsychotic medication exposure and time spent in relapse partially explain progressive brain reductions in schizophrenia. However, residual confounding could also account for the findings and caution must be applied before drawing causal inferences from associations demonstrated in observational studies of modest size. Less progressive brain volume loss in schizophrenia may indicate better preserved social and occupational functions. Copyright © 2015. Published by Elsevier B.V.

  19. Longitudinal regional brain volume loss in schizophrenia: Relationship to antipsychotic medication and change in social function

    PubMed Central

    Guo, Joyce Y.; Huhtaniska, Sanna; Miettunen, Jouko; Jääskeläinen, Erika; Kiviniemi, Vesa; Nikkinen, Juha; Moilanen, Jani; Haapea, Marianne; Mäki, Pirjo; Jones, Peter B.; Veijola, Juha; Isohanni, Matti; Murray, Graham K.

    2015-01-01

    Background Progressive brain volume loss in schizophrenia has been reported in previous studies but its cause and regional distribution remains unclear. We investigated progressive regional brain reductions in schizophrenia and correlations with potential mediators. Method Participants were drawn from the Northern Finland Birth Cohort 1966. A total of 33 schizophrenia individuals and 71 controls were MRI scanned at baseline (mean age = 34.7, SD = 0.77) and at follow-up (mean age = 43.4, SD = 0.44). Regional brain change differences and associations with clinical mediators were examined using FSL voxelwise SIENA. Results Schizophrenia cases exhibited greater progressive brain reductions than controls, mainly in the frontal and temporal lobes. The degree of periventricular brain volume reductions were predicted by antipsychotic medication exposure at the fourth ventricular edge and by the number of days in hospital between the scans (a proxy measure of relapse duration) at the thalamic ventricular border. Decline in social and occupational functioning was associated with right supramarginal gyrus reduction. Conclusion Our findings are consistent with the possibility that antipsychotic medication exposure and time spent in relapse partially explain progressive brain reductions in schizophrenia. However, residual confounding could also account for the findings and caution must be applied before drawing causal inferences from associations demonstrated in observational studies of modest size. Less progressive brain volume loss in schizophrenia may indicate better preserved social and occupational functions. PMID:26189075

  20. The DNA methylome and transcriptome of different brain regions in schizophrenia and bipolar disorder.

    PubMed

    Xiao, Yun; Camarillo, Cynthia; Ping, Yanyan; Arana, Tania Bedard; Zhao, Hongying; Thompson, Peter M; Xu, Chaohan; Su, Bin Brenda; Fan, Huihui; Ordonez, Javier; Wang, Li; Mao, Chunxiang; Zhang, Yunpeng; Cruz, Dianne; Escamilla, Michael A; Li, Xia; Xu, Chun

    2014-01-01

    Extensive changes in DNA methylation have been observed in schizophrenia (SC) and bipolar disorder (BP), and may contribute to the pathogenesis of these disorders. Here, we performed genome-scale DNA methylation profiling using methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) on two brain regions (including frontal cortex and anterior cingulate) in 5 SC, 7 BP and 6 normal subjects. Comparing with normal controls, we identified substantial differentially methylated regions (DMRs) in these two brain regions of SC and BP. To our surprise, different brain regions show completely distinct distributions of DMRs across the genomes. In frontal cortex of both SC and BP subjects, we observed widespread hypomethylation as compared to normal controls, preferentially targeting the terminal ends of the chromosomes. In contrast, in anterior cingulate, both SC and BP subjects displayed extensive gain of methylation. Notably, in these two brain regions of SC and BP, only a few DMRs overlapped with promoters, whereas a greater proportion occurs in introns and intergenic regions. Functional enrichment analysis indicated that important psychiatric disorder-related biological processes such as neuron development, differentiation and projection may be altered by epigenetic changes located in the intronic regions. Transcriptome analysis revealed consistent dysfunctional processes with those determined by DMRs. Furthermore, DMRs in the same brain regions from SC and BP could successfully distinguish BP and/or SC from normal controls while differentially expressed genes could not. Overall, our results support a major role for brain-region-dependent aberrant DNA methylation in the pathogenesis of these two disorders.

  1. The DNA Methylome and Transcriptome of Different Brain Regions in Schizophrenia and Bipolar Disorder

    PubMed Central

    Xiao, Yun; Camarillo, Cynthia; Ping, Yanyan; Arana, Tania Bedard; Zhao, Hongying; Thompson, Peter M.; Xu, Chaohan; Su, Bin Brenda; Fan, Huihui; Ordonez, Javier; Wang, Li; Mao, Chunxiang; Zhang, Yunpeng; Cruz, Dianne; Escamilla, Michael A.; Li, Xia; Xu, Chun

    2014-01-01

    Extensive changes in DNA methylation have been observed in schizophrenia (SC) and bipolar disorder (BP), and may contribute to the pathogenesis of these disorders. Here, we performed genome-scale DNA methylation profiling using methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq) on two brain regions (including frontal cortex and anterior cingulate) in 5 SC, 7 BP and 6 normal subjects. Comparing with normal controls, we identified substantial differentially methylated regions (DMRs) in these two brain regions of SC and BP. To our surprise, different brain regions show completely distinct distributions of DMRs across the genomes. In frontal cortex of both SC and BP subjects, we observed widespread hypomethylation as compared to normal controls, preferentially targeting the terminal ends of the chromosomes. In contrast, in anterior cingulate, both SC and BP subjects displayed extensive gain of methylation. Notably, in these two brain regions of SC and BP, only a few DMRs overlapped with promoters, whereas a greater proportion occurs in introns and intergenic regions. Functional enrichment analysis indicated that important psychiatric disorder-related biological processes such as neuron development, differentiation and projection may be altered by epigenetic changes located in the intronic regions. Transcriptome analysis revealed consistent dysfunctional processes with those determined by DMRs. Furthermore, DMRs in the same brain regions from SC and BP could successfully distinguish BP and/or SC from normal controls while differentially expressed genes could not. Overall, our results support a major role for brain-region-dependent aberrant DNA methylation in the pathogenesis of these two disorders. PMID:24776767

  2. Parameters of diffusional kurtosis imaging for the diagnosis of acute cerebral infarction in different brain regions.

    PubMed

    Guo, Yue-Lin; Li, Su-Juan; Zhang, Zhong-Ping; Shen, Zhi-Wei; Zhang, Gui-Shan; Yan, Gen; Wang, Yan-Ting; Rao, Hai-Bing; Zheng, Wen-Bin; Wu, Ren-Hua

    2016-08-01

    Diffusional kurtosis imaging (DKI) is a new type diffusion-weighted sequence which measures the non-Gaussianity of water diffusion. The present study aimed to investigate whether the parameters of DKI could distinguish between differences in water molecule diffusion in various brain regions under the conditions of acute infarction and to identify the optimal DKI parameter for locating ischemic lesions in each brain region. A total of 28 patients with acute ischemic stroke in different brain regions were recruited for the present study. The relative values of DKI parameters were selected as major assessment indices, and the homogeneity of background image and contrast of adjacent structures were used as minor assessment indices. According to the brain region involved in three DKI parametric maps, including mean kurtosis (MK), axial kurtosis (Ka) and radial kurtosis (Kr), 112 groups of regions of interest were outlined in the following regions: Corpus callosum (n=17); corona radiata (n=26); thalamus (n=21); subcortical white matter (n=24); and cerebral cortex (n=24). For ischemic lesions in the corpus callosum and corona radiata, significant increases in relative Ka were detected, as compared with the other parameters (P<0.05). For ischemic lesions in the thalamus, subcortical white matter and cerebral cortices, an increase in the three parameters was detected, however this difference was not significant. Minor assessment indices demonstrated that Ka lacked tissue contrast and the background of Kr was heterogeneous; thus, MK was the superior assessment parameter for ischemic lesions in these regions. In conclusion, Ka is better suited for the diagnosis of acute ischemic lesions in highly anisotropic brain regions, such as the corpus callosum and corona radiate. MK may be appropriate for the lesions in low anisotropic or isotropic brain regions, such as the thalamus, subcortical white matter and cerebral cortices.

  3. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay Regions of Concern

    USGS Publications Warehouse

    Lazarus, Rebecca; Rattner, Barnett A.; McGowan, Peter C.; Hale, Robert C.; Schultz, Sandra; Karouna, Natalie; Ottinger, Mary Ann

    2015-01-01

    The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000-2001 and focused on U.S. EPA-designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). In 2011-2012, ROCs were re-evaluated to determine spatial and temporal trends in productivity and contaminants. Concentrations of p,p'-DDE were low in eggs and below the threshold associated with eggshell thinning. Eggs from the Anacostia/middle Potomac Rivers had lower total PCB concentrations in 2011 than in 2000; however, concentrations remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined by 40%, and five alternative brominated flame retardants were detected at low levels. Osprey productivity was adequate to sustain local populations, and there was no relation between productivity and halogenated contaminants. Our findings document continued recovery of the osprey population, declining levels of many persistent halogenated compounds, and modest evidence of genetic damage in nestlings from industrialized regions.

  4. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay Regions of Concern.

    PubMed

    Lazarus, Rebecca S; Rattner, Barnett A; McGowan, Peter C; Hale, Robert C; Schultz, Sandra L; Karouna-Renier, Natalie K; Ottinger, Mary Ann

    2015-10-01

    The last large-scale ecotoxicological study of ospreys (Pandion haliaetus) in Chesapeake Bay was conducted in 2000-2001 and focused on U.S. EPA-designated Regions of Concern (ROCs; Baltimore Harbor/Patapsco, Anacostia/middle Potomac, and Elizabeth Rivers). In 2011-2012, ROCs were re-evaluated to determine spatial and temporal trends in productivity and contaminants. Concentrations of p,p'-DDE were low in eggs and below the threshold associated with eggshell thinning. Eggs from the Anacostia/middle Potomac Rivers had lower total PCB concentrations in 2011 than in 2000; however, concentrations remained unchanged in Baltimore Harbor. Polybrominated diphenyl ether flame retardants declined by 40%, and five alternative brominated flame retardants were detected at low levels. Osprey productivity was adequate to sustain local populations, and there was no relation between productivity and halogenated contaminants. Our findings document continued recovery of the osprey population, declining levels of many persistent halogenated compounds, and modest evidence of genetic damage in nestlings from industrialized regions.

  5. Test-retest reproducibility for regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |||

    1996-05-01

    Changes in regional brain glucose metabolism as assessed with PET and FDG in response to acute administration of benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men were scanned with positron emission tomography (PET) and [F-18] fluorodeoxyglucose (FDG) twice: prior to placebo and prior to lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 weeks later to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained for the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased whole brain metabolism and the magnitude as well as the regional pattern of the changes was comparable for both studies (12.3 {plus_minus} 6.9% and 13.7 {plus_minus} 7.4%). Lorazepam effects were largest in thalamus (22.2 {plus_minus} 8.9%). Relative metabolic measures ROI/global were highly reproducible both for drug as well as replication condition. This is the first study to measure test-retest reproducibility in regional brain metabolic response to a pharmacological challenge. While the global and regional absolute metabolic values were significantly lower for the repeated evaluation, the regional brain metabolic response to lorazepam was highly reproducible.

  6. Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant.

    PubMed

    Iwata, Sachiko; Tachtsidis, Ilias; Takashima, Sachio; Matsuishi, Toyojiro; Robertson, Nicola J; Iwata, Osuke

    2014-10-01

    Small shifts in brain temperature after hypoxia-ischaemia affect cell viability. The main determinants of brain temperature are cerebral metabolism, which contributes to local heat production, and brain perfusion, which removes heat. However, few studies have addressed the effect of cerebral metabolism and perfusion on regional brain temperature in human neonates because of the lack of non-invasive cot-side monitors. This study aimed (i) to determine non-invasive monitoring tools of cerebral metabolism and perfusion by combining near-infrared spectroscopy and echocardiography, and (ii) to investigate the dependence of brain temperature on cerebral metabolism and perfusion in unsedated newborn infants. Thirty-two healthy newborn infants were recruited. They were studied with cerebral near-infrared spectroscopy, echocardiography, and a zero-heat flux tissue thermometer. A surrogate of cerebral blood flow (CBF) was measured using superior vena cava flow adjusted for cerebral volume (rSVC flow). The tissue oxygenation index, fractional oxygen extraction (FOE), and the cerebral metabolic rate of oxygen relative to rSVC flow (CMRO₂ index) were also estimated. A greater rSVC flow was positively associated with higher brain temperatures, particularly for superficial structures. The CMRO₂ index and rSVC flow were positively coupled. However, brain temperature was independent of FOE and the CMRO₂ index. A cooler ambient temperature was associated with a greater temperature gradient between the scalp surface and the body core. Cerebral oxygen metabolism and perfusion were monitored in newborn infants without using tracers. In these healthy newborn infants, cerebral perfusion and ambient temperature were significant independent variables of brain temperature. CBF has primarily been associated with heat removal from the brain. However, our results suggest that CBF is likely to deliver heat specifically to the superficial brain. Further studies are required to assess the

  7. Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice

    PubMed Central

    Coleman, Leon G.; He, Jun; Lee, Joohwi; Styner, Martin; Crews, Fulton T.

    2013-01-01

    Background Binge-drinking is common in human adolescents. The adolescent brain is undergoing structural maturation and has a unique sensitivity to alcohol neurotoxicity. Therefore, adolescent binge ethanol may have long-term effects on the adult brain that alter brain structure and behaviors that are relevant to alcohol use disorders. Methods In order to determine if adolescent ethanol binge drinking alters the adult brain, male C57BL/6 mice were treated with either water or ethanol during adolescence (5g/kg/day i.g., post-natal days P28-37) and assessed during adulthood (P60-P88). An array of neurotransmitter-specific genes, behavioral tests (i.e. reversal learning, prepulse inhibition, and open field), and post-mortem brain structure using MRI and immunohistochemistry, were employed to assess persistent alterations in adult brain. Results At P38, 24 hours after adolescent ethanol (AE) binge, many neurotransmitter genes, particularly cholinergic and dopaminergic, were reduced by ethanol treatment. Interestingly, dopamine receptor type 4 mRNA was reduced and confirmed using immunohistochemistry. Normal control maturation (P38-P88) resulted in decreased neurotransmitter mRNA, e.g. an average decrease of 56%. Following adolescent ethanol treatment, adults showed greater gene expression reductions than controls, averaging 73%. Adult spatial learning assessed in the Morris water maze was not changed by adolescent ethanol treatment, but reversal learning experiments revealed deficits. Assessment of adult brain region volumes using MRI indicated that the olfactory bulb and basal forebrain were smaller in adults following adolescent ethanol. Immunohistochemical analyses found reduced basal forebrain area and fewer basal forebrain cholinergic neurons. Conclusions Adolescent binge ethanol treatment reduces adult neurotransmitter gene expression, particularly cholinergic genes, reduces basal forebrain and olfactory bulb volumes, and causes a reduction in the density of basal

  8. Perinatal Risk Factors Altering Regional Brain Structure in the Preterm Infant

    ERIC Educational Resources Information Center

    Thompson, Deanne K.; Warfield, Simon K.; Carlin, John B.; Pavlovic, Masa; Wang, Hong X.; Bear, Merilyn; Kean, Michael J.; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.

    2007-01-01

    Neuroanatomical structure appears to be altered in preterm infants, but there has been little insight into the major perinatal risk factors associated with regional cerebral structural alterations. MR images were taken to quantitatively compare regional brain tissue volumes between term and preterm infants and to investigate associations between…

  9. Perinatal Risk Factors Altering Regional Brain Structure in the Preterm Infant

    ERIC Educational Resources Information Center

    Thompson, Deanne K.; Warfield, Simon K.; Carlin, John B.; Pavlovic, Masa; Wang, Hong X.; Bear, Merilyn; Kean, Michael J.; Doyle, Lex W.; Egan, Gary F.; Inder, Terrie E.

    2007-01-01

    Neuroanatomical structure appears to be altered in preterm infants, but there has been little insight into the major perinatal risk factors associated with regional cerebral structural alterations. MR images were taken to quantitatively compare regional brain tissue volumes between term and preterm infants and to investigate associations between…

  10. Regional volumes in brain stem and cerebellum are associated with postural impairments in young brain-injured patients.

    PubMed

    Drijkoningen, David; Leunissen, Inge; Caeyenberghs, Karen; Hoogkamer, Wouter; Sunaert, Stefan; Duysens, Jacques; Swinnen, Stephan P

    2015-12-01

    Many patients with traumatic brain injury (TBI) suffer from postural control impairments that can profoundly affect daily life. The cerebellum and brain stem are crucial for the neural control of posture and have been shown to be vulnerable to primary and secondary structural consequences of TBI. The aim of this study was to investigate whether morphometric differences in the brain stem and cerebellum can account for impairments in static and dynamic postural control in TBI. TBI patients (n = 18) and healthy controls (n = 30) completed three challenging postural control tasks on the EquiTest® system (Neurocom). Infratentorial grey matter (GM) and white matter (WM) volumes were analyzed with cerebellum-optimized voxel-based morphometry using the spatially unbiased infratentorial toolbox. Volume loss in TBI patients was revealed in global cerebellar GM, global infratentorial WM, middle cerebellar peduncles, pons and midbrain. In the TBI group and across both groups, lower postural control performance was associated with reduced GM volume in the vermal/paravermal regions of lobules I-IV, V and VI. Moreover, across all participants, worse postural control performance was associated with lower WM volume in the pons, medulla, midbrain, superior and middle cerebellar peduncles and cerebellum. This is the first study in TBI patients to demonstrate an association between postural impairments and reduced volume in specific infratentorial brain areas. Volumetric measures of the brain stem and cerebellum may be valuable prognostic markers of the chronic neural pathology, which complicates rehabilitation of postural control in TBI.

  11. A new neonatal cortical and subcortical brain atlas: the Melbourne Children's Regional Infant Brain (M-CRIB) atlas.

    PubMed

    Alexander, Bonnie; Murray, Andrea L; Loh, Wai Yen; Matthews, Lillian G; Adamson, Chris; Beare, Richard; Chen, Jian; Kelly, Claire E; Rees, Sandra; Warfield, Simon K; Anderson, Peter J; Doyle, Lex W; Spittle, Alicia J; Cheong, Jeanie L Y; Seal, Marc L; Thompson, Deanne K

    2017-02-15

    Investigating neonatal brain structure and function can offer valuable insights into behaviour and cognition in healthy and clinical populations; both at term age, and longitudinally in comparison with later time points. Parcellated brain atlases for adult populations are readily available, however warping infant data to adult template space is not ideal due to morphological and tissue differences between these groups. Several parcellated neonatal atlases have been developed, although there remains strong demand for manually parcellated ground truth data with detailed cortical definition. Additionally, compatibility with existing adult atlases is favourable for use in longitudinal investigations. We aimed to address these needs by replicating the widely-used Desikan-Killiany (2006) adult cortical atlas in neonates. We also aimed to extend brain coverage by complementing this cortical scheme with basal ganglia, thalamus, cerebellum and other subcortical segmentations. Thus, we have manually parcellated these areas volumetrically using high-resolution neonatal T2-weighted MRI scans, and initial automated and manually edited tissue classification, providing 100 regions in all. Linear and nonlinear T2-weighted structural templates were also generated. In this paper we provide manual parcellation protocols, and present the parcellated probability maps and structural templates together as the Melbourne Children's Regional Infant Brain (M-CRIB) atlas.

  12. Detecting Epileptic Regions Based on Global Brain Connectivity Patterns

    PubMed Central

    Sweet, Andrew; Venkataraman, Archana; Stufflebeam, Steven M.; Liu, Hesheng; Tanaka, Naoro; Madsen, Joseph; Golland, Polina

    2014-01-01

    We present a method to detect epileptic regions based on functional connectivity differences between individual epilepsy patients and a healthy population. Our model assumes that the global functional characteristics of these differences are shared across patients, but it allows for the epileptic regions to vary between individuals. We evaluate the detection performance against intracranial EEG observations and compare our approach with two baseline methods that use standard statistics. The baseline techniques are sensitive to the choice of thresholds, whereas our algorithm automatically estimates the appropriate model parameters and compares favorably with the best baseline results. This suggests the promise of our approach for pre-surgical planning in epilepsy. PMID:24505654

  13. Detecting epileptic regions based on global brain connectivity patterns.

    PubMed

    Sweet, Andrew; Venkataraman, Archana; Stufflebeam, Steven M; Liu, Hesheng; Tanaka, Naoro; Madsen, Joseph; Golland, Polina

    2013-01-01

    We present a method to detect epileptic regions based on functional connectivity differences between individual epilepsy patients and a healthy population. Our model assumes that the global functional characteristics of these differences are shared across patients, but it allows for the epileptic regions to vary between individuals. We evaluate the detection performance against intracranial EEG observations and compare our approach with two baseline methods that use standard statistics. The baseline techniques are sensitive to the choice of thresholds, whereas our algorithm automatically estimates the appropriate model parameters and compares favorably with the best baseline results. This suggests the promise of our approach for pre-surgical planning in epilepsy.

  14. Brain regions associated with visual cues are important for bird migration.

    PubMed

    Vincze, Orsolya; Vágási, Csongor I; Pap, Péter L; Osváth, Gergely; Møller, Anders Pape

    2015-11-01

    Long-distance migratory birds have relatively smaller brains than short-distance migrants or residents. Here, we test whether reduction in brain size with migration distance can be generalized across the different brain regions suggested to play key roles in orientation during migration. Based on 152 bird species, belonging to 61 avian families from six continents, we show that the sizes of both the telencephalon and the whole brain decrease, and the relative size of the optic lobe increases, while cerebellum size does not change with increasing migration distance. Body mass, whole brain size, optic lobe size and wing aspect ratio together account for a remarkable 46% of interspecific variation in average migration distance across bird species. These results indicate that visual acuity might be a primary neural adaptation to the ecological challenge of migration.

  15. Brain regions associated with visual cues are important for bird migration

    PubMed Central

    Vincze, Orsolya; Vágási, Csongor I.; Pap, Péter L.; Osváth, Gergely; Møller, Anders Pape

    2015-01-01

    Long-distance migratory birds have relatively smaller brains than short-distance migrants or residents. Here, we test whether reduction in brain size with migration distance can be generalized across the different brain regions suggested to play key roles in orientation during migration. Based on 152 bird species, belonging to 61 avian families from six continents, we show that the sizes of both the telencephalon and the whole brain decrease, and the relative size of the optic lobe increases, while cerebellum size does not change with increasing migration distance. Body mass, whole brain size, optic lobe size and wing aspect ratio together account for a remarkable 46% of interspecific variation in average migration distance across bird species. These results indicate that visual acuity might be a primary neural adaptation to the ecological challenge of migration. PMID:26538538

  16. Efficient regeneration by activation of neurogenesis in homeostatically quiescent regions of the adult vertebrate brain.

    PubMed

    Berg, Daniel A; Kirkham, Matthew; Beljajeva, Anna; Knapp, Dunja; Habermann, Bianca; Ryge, Jesper; Tanaka, Elly M; Simon, András

    2010-12-01

    In contrast to mammals, salamanders and teleost fishes can efficiently repair the adult brain. It has been hypothesised that constitutively active neurogenic niches are a prerequisite for extensive neuronal regeneration capacity. Here, we show that the highly regenerative salamander, the red spotted newt, displays an unexpectedly similar distribution of active germinal niches with mammals under normal physiological conditions. Proliferation zones in the adult newt brain are restricted to the forebrain, whereas all other regions are essentially quiescent. However, ablation of midbrain dopamine neurons in newts induced ependymoglia cells in the normally quiescent midbrain to proliferate and to undertake full dopamine neuron regeneration. Using oligonucleotide microarrays, we have catalogued a set of differentially expressed genes in these activated ependymoglia cells. This strategy identified hedgehog signalling as a key component of adult dopamine neuron regeneration. These data show that brain regeneration can occur by activation of neurogenesis in quiescent brain regions.

  17. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers

    PubMed Central

    Hirvonen, J; Goodwin, RS; Li, C-T; Terry, GE; Zoghbi, SS; Morse, C; Pike, VW; Volkow, ND; Huestis, MA; Innis, RB

    2011-01-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB1 (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in human subjects who chronically smoke cannabis. Downregulation correlated with years of cannabis smoking and was selective to cortical brain regions. After ~4 weeks of continuously monitored abstinence from cannabis on a secure research unit, CB1 receptor density returned to normal levels. This is the first direct demonstration of cortical cannabinoid CB1 receptor downregulation as a neuroadaptation that may promote cannabis dependence in human brain. PMID:21747398

  18. Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging

    PubMed Central

    Hamani, Clement; Lozano, Andres M.; Mazzone, Paolo A.M.; Moro, Elena; Hutchison, William; Silburn, Peter A.; Zrinzo, Ludvic; Alam, Mesbah; Goetz, Laurent; Pereira, Erlick; Rughani, Anand; Thevathasan, Wesley; Aziz, Tipu; Bloem, Bastiaan R.; Brown, Peter; Chabardes, Stephan; Coyne, Terry; Foote, Kelly; Garcia-Rill, Edgar; Hirsch, Etienne C.; Okun, Michael S.; Krauss, Joachim K.

    2017-01-01

    The pedunculopontine nucleus (PPN) region has received considerable attention in clinical studies as a target for deep brain stimulation (DBS) in Parkinson disease. These studies have yielded variable results with an overall impression of improvement in falls and freezing in many but not all patients treated. We evaluated the available data on the surgical anatomy and terminology of the PPN region in a companion paper. Here we focus on issues concerning surgical technique, imaging, and early side effects of surgery. The aim of this paper was to gain more insight into the reasoning for choosing specific techniques and to discuss short-comings of available studies. Our data demonstrate the wide range in almost all fields which were investigated. There are a number of important challenges to be resolved, such as identification of the optimal target, the choice of the surgical approach to optimize electrode placement, the impact on the outcome of specific surgical techniques, the reliability of intraoperative confirmation of the target, and methodological differences in postoperative validation of the electrode position. There is considerable variability both within and across groups, the overall experience with PPN DBS is still limited, and there is a lack of controlled trials. Despite these challenges, the procedure seems to provide benefit to selected patients and appears to be relatively safe. One important limitation in comparing studies from different centers and analyzing outcomes is the great variability in targeting and surgical techniques, as shown in our paper. The challenges we identified will be of relevance when designing future studies to better address several controversial issues. We hope that the data we accumulated may facilitate the development of surgical protocols for PPN DBS. PMID:27728909

  19. Light scattering properties vary across different regions of the adult mouse brain

    NASA Astrophysics Data System (ADS)

    Al-Juboori, Saif I.

    Recently developed optogenetic tools provide powerful approaches to optically excite or inhibit neural activity. In a typical in-vivo experiment, light is delivered to deep nuclei via an implanted optical fiber. Light intensity attenuates with increasing distance from the fiber tip, determining the volume of tissue in which optogenetic proteins can successfully be activated. However, whether and how this volume of effective light intensity varies as a function of brain region or wavelength has not been systematically studied. The goal of this study was to measure and compare how light scatters in different areas of the mouse brain. We delivered different wavelengths of light via optical fibers to acute slices of mouse brainstem, midbrain and forebrain tissue. We measured light intensity as a function of distance from the fiber tip, and used the data to model the spread of light in specific regions of the mouse brain. We found substantial differences in effective attenuation coefficients among different brain areas, which lead to substantial differences in light intensity demands for optogenetic experiments. The use of light of different wavelengths additionally changes how light illuminates a given brain area. We created a brain atlas of effective attenuation coefficients of the adult mouse brain, and integrated our data into an application that can be used to estimate light scattering as well as required light intensity for optogenetic manipulation within a given volume of tissue.

  20. Light Scattering Properties Vary across Different Regions of the Adult Mouse Brain

    PubMed Central

    Stubblefield, Elizabeth A.; Felsen, Gidon

    2013-01-01

    Recently developed optogenetic tools provide powerful approaches to optically excite or inhibit neural activity. In a typical in-vivo experiment, light is delivered to deep nuclei via an implanted optical fiber. Light intensity attenuates with increasing distance from the fiber tip, determining the volume of tissue in which optogenetic proteins can successfully be activated. However, whether and how this volume of effective light intensity varies as a function of brain region or wavelength has not been systematically studied. The goal of this study was to measure and compare how light scatters in different areas of the mouse brain. We delivered different wavelengths of light via optical fibers to acute slices of mouse brainstem, midbrain and forebrain tissue. We measured light intensity as a function of distance from the fiber tip, and used the data to model the spread of light in specific regions of the mouse brain. We found substantial differences in effective attenuation coefficients among different brain areas, which lead to substantial differences in light intensity demands for optogenetic experiments. The use of light of different wavelengths additionally changes how light illuminates a given brain area. We created a brain atlas of effective attenuation coefficients of the adult mouse brain, and integrated our data into an application that can be used to estimate light scattering as well as required light intensity for optogenetic manipulation within a given volume of tissue. PMID:23874433

  1. The Brain Tourniquet: Physiological Isolation of Brain Regions Damaged by Traumatic Head Injury

    DTIC Science & Technology

    2008-06-19

    Richardson, B., Necrotic cell injury in the preterm and near-term ovine fetal brain after intermittent umbilical cord occlusion, American Journal of...physiological saline. We had originally proposed to use whole-cell, patch- clamp techniques to record from neocortical neurons, but found that these techniques...in layer V of neocortex (Fig I A and 1 E). Membrane potentials were measured using a high impedance amplifier operating in current- clamp mode

  2. Toward Epileptic Brain Region Detection Based on Magnetic Nanoparticle Patterning.

    PubMed

    Pedram, Maysam Z; Shamloo, Amir; Alasty, Aria; Ghafar-Zadeh, Ebrahim

    2015-09-22

    Resection of the epilepsy foci is the best treatment for more than 15% of epileptic patients or 50% of patients who are refractory to all forms of medical treatment. Accurate mapping of the locations of epileptic neuronal networks can result in the complete resection of epileptic foci. Even though currently electroencephalography is the best technique for mapping the epileptic focus, it cannot define the boundary of epilepsy that accurately. Herein we put forward a new accurate brain mapping technique using superparamagnetic nanoparticles (SPMNs). The main hypothesis in this new approach is the creation of super-paramagnetic aggregates in the epileptic foci due to high electrical and magnetic activities. These aggregates may improve tissue contrast of magnetic resonance imaging (MRI) that results in improving the resection of epileptic foci. In this paper, we present the mathematical models before discussing the simulation results. Furthermore, we mimic the aggregation of SPMNs in a weak magnetic field using a low-cost microfabricated device. Based on these results, the SPMNs may play a crucial role in diagnostic epilepsy and the subsequent treatment of this disease.

  3. Toward Epileptic Brain Region Detection Based on Magnetic Nanoparticle Patterning

    PubMed Central

    Pedram, Maysam Z.; Shamloo, Amir; Alasty, Aria; Ghafar-Zadeh, Ebrahim

    2015-01-01

    Resection of the epilepsy foci is the best treatment for more than 15% of epileptic patients or 50% of patients who are refractory to all forms of medical treatment. Accurate mapping of the locations of epileptic neuronal networks can result in the complete resection of epileptic foci. Even though currently electroencephalography is the best technique for mapping the epileptic focus, it cannot define the boundary of epilepsy that accurately. Herein we put forward a new accurate brain mapping technique using superparamagnetic nanoparticles (SPMNs). The main hypothesis in this new approach is the creation of super-paramagnetic aggregates in the epileptic foci due to high electrical and magnetic activities. These aggregates may improve tissue contrast of magnetic resonance imaging (MRI) that results in improving the resection of epileptic foci. In this paper, we present the mathematical models before discussing the simulation results. Furthermore, we mimic the aggregation of SPMNs in a weak magnetic field using a low-cost microfabricated device. Based on these results, the SPMNs may play a crucial role in diagnostic epilepsy and the subsequent treatment of this disease. PMID:26402686

  4. Determination of regional brain temperature using proton magnetic resonance spectroscopy to assess brain-body temperature differences in healthy human subjects.

    PubMed

    Childs, Charmaine; Hiltunen, Yrjö; Vidyasagar, Rishma; Kauppinen, Risto A

    2007-01-01

    Proton magnetic resonance spectroscopy ((1)H MRS) was used to determine brain temperature in healthy volunteers. Partially water-suppressed (1)H MRS data sets were acquired at 3T from four different gray matter (GM)/white matter (WM) volumes. Brain temperatures were determined from the chemical-shift difference between the CH(3) of N-acetyl aspartate (NAA) at 2.01 ppm and water. Brain temperatures in (1)H MRS voxels of 2 x 2 x 2 cm(3) showed no substantial heterogeneity. The volume-averaged temperature from single-voxel spectroscopy was compared with body temperatures obtained from the oral cavity, tympanum, and temporal artery regions. The mean brain parenchyma temperature was 0.5 degrees C cooler than readings obtained from three extra-brain sites (P < 0.01). (1)H MRS imaging (MRSI) data were acquired from a slice encompassing the single-voxel volumes to assess the ability of spectroscopic imaging to determine regional brain temperature within the imaging slice. Brain temperature away from the center of the brain determined by MRSI differed from that obtained by single-voxel MRS in the same brain region, possibly due to a poor line width (LW) in MRSI. The data are discussed in the light of proposed brain-body temperature gradients and the use of (1)H MRSI to monitor brain temperature in pathologies, such as brain trauma.

  5. Effect of whole-brain irradiation on the specific brain regions in a rat model: Metabolic and histopathological changes.

    PubMed

    Bálentová, Soňa; Hnilicová, Petra; Kalenská, Dagmar; Murín, Peter; Hajtmanová, Eva; Lehotský, Ján; Adamkov, Marian

    2017-03-19

    Effect of ionizing radiation on the brain affects neuronal, glial, and endothelial cell population and lead to significant morphological, metabolic, and functional deficits. In the present study we investigated a dose- and time-dependent correlation between radiation-induced metabolic and histopathological changes. Adult male Wistar rats received a total dose of 35Gy delivered in 7 fractions (dose 5Gy per fraction) once per week in the same weekday during 7 consecutive weeks. Proton magnetic resonance spectroscopy ((1)H MRS), histochemistry, immunohistochemistry and confocal microscopy were used to determine whether radiation-induced alteration of the brain metabolites correlates with appropriate histopathological changes of neurogenesis and glial cell response in 2 neurogenic regions: the hippocampal dentate gyrus (DG) and the subventricular zone-olfactory bulb axis (SVZ-OB axis). Evaluation of the brain metabolites 18-19 weeks after irradiation performed by (1)H MRS revealed a significant decrease in the total N-acetylaspartate to total creatine (tNAA/tCr) ratio in the striatum and OB. A significant decline of gamma-aminobutyric acid to tCr (GABA/tCr) ratio was seen in the OB and hippocampus. MR revealed absence of gross inflammatory or necrotic lesions in these regions. Image analysis of the brain sections 18-21 weeks after the exposure showed a radiation-induced increase of neurodegeneration, inhibition of neurogenesis and strong resemblance to the reactive astrogliosis. Results showed that fractionated whole-brain irradiation led to the changes in neurotransmission and to the loss of neuronal viability in vivo. Metabolic changes were closely associated with histopathological findings, i.e. initiation of neuronal cell death, inhibition of neurogenesis and strong response of astrocytes indicated development of late radiation-induced changes.

  6. Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset

    PubMed Central

    Raschle, Nora Maria; Zuk, Jennifer; Gaab, Nadine

    2012-01-01

    Individuals with developmental dyslexia (DD) show a disruption in posterior left-hemispheric neural networks during phonological processing. Additionally, compensatory mechanisms in children and adults with DD have been located within frontal brain areas. However, it remains unclear when and how differences in posterior left-hemispheric networks manifest and whether compensatory mechanisms have already started to develop in the prereading brain. Here we investigate functional networks during phonological processing in 36 prereading children with a familial risk for DD (n = 18, average age = 66.50 mo) compared with age and IQ-matched controls (n = 18; average age = 65.61 mo). Functional neuroimaging results reveal reduced activation in prereading children with a family-history of DD (FHD+), compared with those without (FHD−), in bilateral occipitotemporal and left temporoparietal brain regions. This finding corresponds to previously identified hypoactivations in left hemispheric posterior brain regions for school-aged children and adults with a diagnosis of DD. Furthermore, left occipitotemporal and temporoparietal brain activity correlates positively with prereading skills in both groups. Our results suggest that differences in neural correlates of phonological processing in individuals with DD are not a result of reading failure, but are present before literacy acquisition starts. Additionally, no hyperactivation in frontal brain regions was observed, suggesting that compensatory mechanisms for reading failure are not yet present. Future longitudinal studies are needed to determine whether the identified differences may serve as neural premarkers for the early identification of children at risk for DD. PMID:22308323

  7. Regional Blood-Brain Barrier Responses to Central Cholinergic Activity

    DTIC Science & Technology

    1989-07-30

    regions were of particular interest because they show the largest decreases in glucose metabolism following limbic seizures ( Ben - Ari et al., 1981). It is...following seizures ( Ben - Ari et. al., 1981). The piriform cortex-amygdala also appears to be a generator of epileptiform activity in a variety of seizure...produced by PTZ. Such studies are ongoing and the results will be given in subsequent reports. 11 REFERENCES Ben - Ari , Y., D. Richie, E. Tremblay and G

  8. Brain activation during the perception of stressful word stimuli concerning interpersonal relationships in anorexia nervosa patients with high degrees of alexithymia in an fMRI paradigm.

    PubMed

    Miyake, Yoshie; Okamoto, Yasumasa; Onoda, Keiichi; Shirao, Naoko; Okamoto, Yuri; Yamawaki, Shigeto

    2012-02-28

    Several studies have reported that anorexia nervosa (AN) patients have high levels of alexithymia. However, relatively little is known about the underlying neurobiological relationships between alexithymia and AN. We used functional magnetic resonance imaging to examine the brain responses in 30 AN patients and 20 healthy women during the processing of negative words concerning interpersonal relationships. We investigated the relationship between alexithymia levels and brain activation in AN. AN patients showed significant activation of the orbitofrontal cortex, dorsolateral prefrontal cortex and medial prefrontal cortex while processing negative words concerning interpersonal relationships, as compared to the processing of neutral words. Moreover, the subjective rating of unpleasantness with negative words and neural activities in the amygdala, posterior cingulate cortex (PCC) and anterior cingulate cortex (ACC) negatively correlated with the level of alexithymia in AN. Our neuroimaging results suggest that AN patients tend to cognitively process negative words concerning interpersonal relationships, resulting in activation of the prefrontal cortex. Lower activation of the amygdala, PCC and ACC in response to these words may contribute to the impairments of emotional processing that are hallmarks of alexithymia. Functional abnormalities associated with alexithymia may be involved in the emotional processing impairments in AN patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Regional and strain-specific gene expression mapping in the adult mouse brain

    PubMed Central

    Sandberg, Rickard; Yasuda, Rie; Pankratz, Daniel G.; Carter, Todd A.; Del Rio, Jo A.; Wodicka, Lisa; Mayford, Mark; Lockhart, David J.; Barlow, Carrolee

    2000-01-01

    To determine the genetic causes and molecular mechanisms responsible for neurobehavioral differences in mice, we used highly parallel gene expression profiling to detect genes that are differentially expressed between the 129SvEv and C57BL/6 mouse strains at baseline and in response to seizure. In addition, we identified genes that are differentially expressed in specific brain regions. We found that approximately 1% of expressed genes are differentially expressed between strains in at least one region of the brain and that the gene expression response to seizure is significantly different between the two inbred strains. The results lead to the identification of differences in gene expression that may account for distinct phenotypes in inbred strains and the unique functions of specific brain regions. PMID:11005875

  10. Moral values are associated with individual differences in regional brain volume.

    PubMed

    Lewis, Gary J; Kanai, Ryota; Bates, Timothy C; Rees, Geraint

    2012-08-01

    Moral sentiment has been hypothesized to reflect evolved adaptations to social living. If so, individual differences in moral values may relate to regional variation in brain structure. We tested this hypothesis in a sample of 70 young, healthy adults examining whether differences on two major dimensions of moral values were significantly associated with regional gray matter volume. The two clusters of moral values assessed were "individualizing" (values of harm/care and fairness) and "binding" (deference to authority, in-group loyalty, and purity/sanctity). Individualizing was positively associated with left dorsomedial pFC volume and negatively associated with bilateral precuneus volume. For binding, a significant positive association was found for bilateral subcallosal gyrus and a trend to significance for the left anterior insula volume. These findings demonstrate that variation in moral sentiment reflects individual differences in brain structure and suggest a biological basis for moral sentiment, distributed across multiple brain regions.

  11. Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility

    PubMed Central

    Bagot, Rosemary C.; Cates, Hannah M.; Purushothaman, Immanuel; Lorsch, Zachary S.; Walker, Deena M.; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M.; Maze, Ian; Peña, Catherine J.; Heller, Elizabeth A.; Issler, Orna; Wang, Minghui; Song, Won-min; Stein, Jason. L.; Liu, Xiaochuan; Doyle, Marie A.; Scobie, Kimberly N.; Sun, Hao Sheng; Neve, Rachael L.; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J.

    2016-01-01

    Summary Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here we performed RNA-sequencing on 4 brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  12. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  13. Changes in Regional Brain Perfusion During Functional Brain Activation: Comparison of [64Cu]-PTSM with [14C]-Iodoantipyrine

    PubMed Central

    Holschneider, DP; Yang, J; Sadler, TR; Galifianakis, NB; Bozorgzadeh, MH; Bading, JR; Conti, PS; Maarek, J-M I

    2008-01-01

    A dilemma in behavioral brain mapping is that conventional techniques immobilize the subject, extinguishing all but the simplest behaviors. This is avoided if brain activation is imaged after completion of the behavior and tissue capture of the tracer. A single-pass flow tracer proposed for positron emission tomography (PET) is a radiolabeled copper(II) complex of pyruvaldehyde bis(N4-methylthiosemicarbazone), [Cu64]-PTSM. [Cu64]-PTSM reaches steady-state cerebral distribution more rapidly than the metabolic tracer [18F]-fluorodeoxyglucose, allowing imaging with substantially greater temporal resolution. Using dual-label autoradiography, this study compares the relative regional cerebral blood flow tracer distribution (CBF-TR) of [64Cu]-PTSM to that of the classic perfusion tracer [14C]-iodoantipyrine in a rat model during treadmill walking. Rats were exposed to continuous walking on a treadmill and compared to quiescent controls. [64Cu]-PTSM was bolus injected (iv) after 1 minute, followed by a 5 minute uptake and subsequent bolus injection of [14C]-iodoantipyrine. CBF-TR was quantified by autoradiography and analyzed in the three-dimensionally reconstructed brain by statistical parametric mapping, as well as by region-of-interest analysis. A high homology was found between the [64Cu]-PTSM and [14C]-iodoantipyrine patterns of cerebral activation in cortical and subcortical regions. For white matter, however, [64Cu]-PTSM showed lower perfusion than [14Cu]-iodoantipyrine. [64Cu]-PTSM is a useful tracer for functional brain mapping in freely-moving subjects. Its application in conjunction with PET promises to increase our understanding of the neural circuitry of behaviors dependent on locomotion. PMID:18687316

  14. Influence of high deformation rate, brain region, transverse compression, and specimen size on rat brain shear stress morphology and magnitude.

    PubMed

    Haslach, Henry W; Gipple, Jenna M; Leahy, Lauren N

    2017-01-26

    An external mechanical insult to the brain, such as a blast, may create internal stress and deformation waves, which have shear and longitudinal components that can induce combined shear and compression of the brain tissue. To isolate the consequences of such interactions for the shear stress and to investigate the role of the extracellular fluid in the mechanical response, translational shear stretch at 10/s, 60/s, and 100/s translational shear rates under either 0% or 33% fixed transverse compression is applied without preconditioning to rat brain specimens. The specimens from the cerebrum, the cerebellum grey matter, and the brainstem white matter are nearly the full length of their respective regions. The translational shear stress response to translational shear deformation is characterized by the effect that each of four factors, high deformation rate, brain region, transverse compression, and specimen size, have on the shear stress magnitude averaged over ten specimens for each combination of factors. Increasing the deformation rate increases the magnitude of the shear stress at a given translational shear stretch, and as tested by ANOVAs so does applying transverse fixed compression of 33% of the thickness. The stress magnitude differs by the region that is the specimen source: cerebrum, cerebellum or brainstem. The magnitude of the shear stress response at a given deformation rate and stretch depends on the specimen length, called a specimen size effect. Surprisingly, under no compression a shorter length specimen requires more shear stress, but under 33% compression a shorter length specimen requires less shear stress, to meet a required shear deformation rate. The shear specimen size effect calls into question the applicability of the classical shear stress definition to hydrated soft biological tissue.

  15. Changes in regional brain perfusion during functional brain activation: comparison of [(64)Cu]-PTSM with [(14)C]-Iodoantipyrine.

    PubMed

    Holschneider, D P; Yang, J; Sadler, T R; Galifianakis, N B; Bozorgzadeh, M H; Bading, J R; Conti, P S; Maarek, J-M I

    2008-10-09

    A dilemma in behavioral brain mapping is that conventional techniques immobilize the subject, extinguishing all but the simplest behaviors. This is avoided if brain activation is imaged after completion of the behavior and tissue capture of the tracer. A single-pass flow tracer proposed for positron emission tomography (PET) is a radiolabeled copper(II) complex of pyruvaldehyde bis(N(4)-methylthiosemicarbazone), [Cu(64)]-PTSM. [Cu(64)]-PTSM reaches steady-state cerebral distribution more rapidly than the metabolic tracer [(18)F]-fluorodeoxyglucose, allowing imaging with substantially greater temporal resolution. Using dual-label autoradiography, this study compares the relative regional cerebral blood flow tracer distribution (CBF-TR) of [(64)Cu]-PTSM to that of the classic perfusion tracer [(14)C]-iodoantipyrine in a rat model during treadmill walking. Rats were exposed to continuous walking on a treadmill and compared to quiescent controls. [(64)Cu]-PTSM was bolus injected (iv) after 1 min, followed by a 5-minute uptake and subsequent bolus injection of [(14)C]-iodoantipyrine. CBF-TR was quantified by autoradiography and analyzed in the three-dimensionally reconstructed brain by statistical parametric mapping, as well as by region-of-interest analysis. A high homology was found between the [(64)Cu]-PTSM and [(14)C]-iodoantipyrine patterns of cerebral activation in cortical and subcortical regions. For white matter, however, [(64)Cu]-PTSM showed lower perfusion than [(14)Cu]-iodoantipyrine. [(64)Cu]-PTSM is a useful tracer for functional brain mapping in freely-moving subjects. Its application in conjunction with PET promises to increase our understanding of the neural circuitry of behaviors dependent on locomotion.

  16. Longitudinal change in regional brain volumes in prodromal Huntington disease

    PubMed Central

    Aylward, Elizabeth H.; Nopoulos, Peggy C.; Ross, Christopher A.; Langbehn, Douglas R.; Pierson, Ronald K.; Mills, James A.; Johnson, Hans J.; Magnotta, Vincent A.; Juhl, Andrew R.; Paulsen, Jane S.

    2011-01-01

    Objective As therapeutics are being developed to target the underlying neuropathology of Huntington disease (HD), interest is increasing in methodologies for conducting clinical trials in the prodromal phase. This study was designed to examine the potential utility of structural MRI measures as outcome measures for such trials. Methods Data are presented from 211 prodromal individuals and 60 controls, scanned both at baseline and two-year follow-up. Prodromal participants were divided into groups based on proximity to estimated onset of diagnosable clinical disease: Far (>15 years from estimated onset); Mid (9–15 years); and Near (<9 years). Volumetric measurements of caudate, putamen, total striatum, globus pallidus, thalamus, total gray and white matter, and CSF were performed. Results All prodromal groups showed a faster rate of atrophy than Controls in striatum, total brain, and cerebral white matter (especially in the frontal lobe). Neither prodromal participants nor Controls showed significant longitudinal change in cortex (either total cortical gray or within individual lobes). When normal age-related atrophy (i.e., change observed in the Control group) was taken into account, there was more statistically significant disease-related atrophy in white matter than in striatum. Conclusion Measures of volume change in striatum and white matter volume, particularly in the frontal lobe, may serve as excellent outcome measures for future clinical trials in prodromal HD. Clinical trials using white matter or striatal volume change as an outcome measure will be most efficient if the sample is restricted to individuals who are within 15 years of estimated onset of diagnosable disease. PMID:20884680

  17. Regional brain [(11)C]carfentanil binding following tobacco smoking.

    PubMed

    Domino, Edward F; Hirasawa-Fujita, Mika; Ni, Lisong; Guthrie, Sally K; Zubieta, Jon Kar

    2015-06-03

    To determine if overnight tobacco abstinent carriers of the AG or GG (*G) vs. the AA variant of the human mu opioid receptor (OPRM1) A118G polymorphism (rs1799971) differ in [(11)C]carfentanil binding after tobacco smoking. Twenty healthy American male smokers who abstained from tobacco overnight were genotyped and completed positron emission tomography (PET) scans with the mu opioid receptor agonist, [(11)C]carfentanil. They smoked deniconized (denic) and average nicotine (avnic) cigarettes during the PET scans. Smoking avnic cigarette decreased the binding potential (BPND) of [(11)C]carfentanil in the right medial prefrontal cortex (mPfc; 6, 56, 18), left anterior medial prefrontal cortex (amPfc; -2, 46, 44), right ventral striatum (vStr; 16, 3, -10), left insula (Ins; -42, 10, -12), right hippocampus (Hippo; 18, -6, -14) and left cerebellum (Cbl; -10, -88, -34), and increased the BPND in left amygdala (Amy; -20, 0, -22), left putamen (Put; -22, 10, -6) and left nucleus accumbens (NAcc; -10, 12, -8). In the AA allele carriers, avnic cigarette smoking significantly changed the BPND compared to after denic smoking in most brain areas listed above. However in the *G carriers the significant BPND changes were confirmed in only amPfc and vStr. Free mu opioid receptor availability was significantly less in the *G than the AA carriers in the Amy and NAcc. The present study demonstrates that BPND changes induced by avnic smoking in OPRM1 *G carriers were blunted compared to the AA carriers. Also *G smokers had less free mu opioid receptor availability in Amy and NAcc. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Regional Brain [11C]carfentanil Binding Following Tobacco Smoking

    PubMed Central

    Domino, Edward F; Hirasawa-Fujita, Mika; Ni, Lisong; Guthrie, Sally K; Zubieta, Jon Kar

    2015-01-01

    Objective To determine if overnight tobacco abstinent carriers of the AG or GG (*G) vs. the AA variant of the human mu opioid receptor (OPRM1) A118G polymorphism (rs1799971) differ in [11C]carfentanil binding after tobacco smoking. Methods Twenty healthy American male smokers who abstained from tobacco overnight were genotyped and completed positron emission tomography (PET) scans with the mu opioid receptor agonist, [11C]carfentanil. They smoked deniconized (denic) and average nicotine (avnic) cigarettes during the PET scans. Results Smoking avnic cigarette decreased the binding potential (BPND) of [11C]carfentanil in the right medial prefrontal cortex (mPfc; 6,56,18), left anterior medial prefrontal cortex (amPfc; −2,46,44), right ventral striatum (vStr; 16, 3, −10), left insula (Ins; −42,10, −12), right hippocampus (Hippo; 18, −6, −14) and left cerebellum (Cbl; −10, −88, −34), and increased the BPND in left amygdala (Amy; −20,0, −22), left putamen (Put; −22, 10, −6) and left nucleus accumbens (NAcc; −10,12, −8). In the AA allele carriers, avnic cigarette smoking significantly changed the BPND compared to after denic smoking in most brain areas listed above. However in the *G carriers the significant BPND changes were confirmed in only amPfc and vStr. Free mu opioid receptor availability was significantly less in the *G than the AA carriers in the Amy and NAcc. Conclusion The present study demonstrates BPND changes induced by avnic smoking in OPRM1 *G carriers were blunted compared to the AA carriers. Also *G smokers had less free mu opioid receptor availability in Amy and NAcc. PMID:25598501

  19. Dynamic, regional mechanical properties of the porcine brain: indentation in the coronal plane.

    PubMed

    Elkin, Benjamin S; Ilankova, Ashok; Morrison, Barclay

    2011-07-01

    Stress relaxation tests using a custom designed microindentation device were performed on ten anatomic regions of fresh porcine brain (postmortem time <3 h). Using linear viscoelastic theory, a Prony series representation was used to describe the shear relaxation modulus for each anatomic region tested. Prony series parameters fit to load data from indentations performed to ∼10% strain differed significantly by anatomic region. The gray and white matter of the cerebellum along with corpus callosum and brainstem were the softest regions measured. The cortex and hippocampal CA1/CA3 were found to be the stiffest. To examine the large strain behavior of the tissue, multistep indentations were performed in the corona radiata to strains of 10%, 20%, and 30%. Reduced relaxation functions were not significantly different for each step, suggesting that quasi-linear viscoelastic theory may be appropriate for representing the nonlinear behavior of this anatomic region of porcine brain tissue. These data, for the first time, describe the dynamic and short time scale behavior of multiple anatomic regions of the porcine brain which will be useful for understanding porcine brain injury biomechanics at a finer spatial resolution than previously possible.

  20. Functionally connected brain regions in the network activated during capsaicin inhalation.

    PubMed

    Farrell, Michael J; Koch, Saskia; Ando, Ayaka; Cole, Leonie J; Egan, Gary F; Mazzone, Stuart B

    2014-11-01

    Coughing and the urge-to-cough are important mechanisms that protect the patency of the airways, and are coordinated by the brain. Inhaling a noxious substance leads to a widely distributed network of responses in the brain that are likely to reflect multiple functional processes requisite for perceiving, appraising, and behaviorally responding to airway challenge. The broader brain network responding to airway challenge likely contains subnetworks that are involved in the component functions required for coordinated protective behaviors. Functional connectivity analyses were used to determine whether brain responses to airway challenge could be differentiated regionally during inhalation of the tussive substance capsaicin. Seed regions were defined according to outcomes of previous activation studies that identified regional brain responses consistent with cough suppression, stimulus intensity coding, and perception of urge-to-cough. The subnetworks during continuous inhalation of capsaicin recapitulated the distributed regions previously implicated in discrete functional components of airway challenge. The outcomes of this study highlight the central representation of airways defence as a distributed network. Copyright © 2014 Wiley Periodicals, Inc.

  1. Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants.

    PubMed

    Sachdeva, Sherry; Pant, Satish C; Kushwaha, Pramod; Bhargava, Rakesh; Flora, Swaran J S

    2015-08-01

    Tungsten, recognized recently as an environmental contaminant, is being used in arms and ammunitions as substitute to depleted uranium. We studied the effects of sodium tungstate on oxidative stress, few selected neurological variables like acetylcholinesterase, biogenic amines in rat brain regions (cerebral cortex, hippocampus and cerebellum) and their prevention following co-administration of N-acetylcysteine (NAC), naringenin and quercetin. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) and orally co-supplemented with different antioxidants (0.30 mM) for three months. Sodium tungstate significantly decreased the activity of acetylcholinesterase, dopamine, nor-epinephrine and 5-hydroxytryptamine levels while it increased monoamine oxidase activity in different brain regions. Tungstate exposure produced a significant increase in biochemical variables indicative of oxidative stress while, neurological alterations were more pronounced in the cerebral cortex compared to other regions. Co-administration of NAC and flavonoids with sodium tungstate significantly restored glutathione, prevented changes in the brain biogenic amines, reactive oxygen species (ROS) and TBARS levels in the different brain regions. The protection was more prominent in the animals co-administered with NAC. We can thus conclude that sodium tungstate induced brain oxidative stress and the alterations in some neurological variables can effectively be reduced by co-supplementation of NAC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Regional Gray Matter Growth, Sexual Dimorphism, and Cerebral Asymmetry in the Neonatal Brain

    PubMed Central

    Gilmore, John H.; Lin, Weili; Prastawa, Marcel W.; Looney, Christopher B.; Vetsa, Y. Sampath K.; Knickmeyer, Rebecca C.; Evans, Dianne D.; Smith, J. Keith; Hamer, Robert M.; Lieberman, Jeffrey A.; Gerig, Guido

    2010-01-01

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth. PMID:17287499

  3. Classification of Alzheimer's disease using regional saliency maps from brain MR volumes

    NASA Astrophysics Data System (ADS)

    Pulido, Andrea; Rueda, Andrea; Romero, Eduardo

    2013-02-01

    Accurate diagnosis of Alzheimer's disease (AD) from structural Magnetic Resonance (MR) images is difficult due to the complex alteration of patterns in brain anatomy that could indicate the presence or absence of the pathology. Currently, an effective approach that allows to interpret the disease in terms of global and local changes is not available in the clinical practice. In this paper, we propose an approach for classification of brain MR images, based on finding pathology-related patterns through the identification of regional structural changes. The approach combines a probabilistic Latent Semantic Analysis (pLSA) technique, which allows to identify image regions through latent topics inferred from the brain MR slices, with a bottom-up Graph-Based Visual Saliency (GBVS) model, which calculates maps of relevant information per region. Regional saliency maps are finally combined into a single map on each slice, obtaining a master saliency map of each brain volume. The proposed approach includes a one-to-one comparison of the saliency maps which feeds a Support Vector Machine (SVM) classifier, to group test subjects into normal or probable AD subjects. A set of 156 brain MR images from healthy (76) and pathological (80) subjects, splitted into a training set (10 non-demented and 10 demented subjects) and one testing set (136 subjects), was used to evaluate the performance of the proposed approach. Preliminary results show that the proposed method reaches a maximum classification accuracy of 87.21%.

  4. Differential production of reactive oxygen species in distinct brain regions of hypoglycemic mice.

    PubMed

    Amador-Alvarado, Leticia; Montiel, Teresa; Massieu, Lourdes

    2014-09-01

    Hypoglycemia is a serious complication of insulin therapy in patients suffering from type 1 Diabetes Mellitus. Severe hypoglycemia leading to coma (isoelectricity) induces massive neuronal death in vulnerable brain regions such as the hippocampus, the striatum and the cerebral cortex. It has been suggested that the production of reactive oxygen species (ROS) and oxidative stress is involved in hypoglycemic brain damage, and that ROS generation is stimulated by glucose reintroduction (GR) after the hypoglycemic coma. However, the distribution of ROS in discrete brain regions has not been studied in detail. Using the oxidation sensitive marker dihydroethidium (DHE) we have investigated the distribution of ROS in different regions of the mouse brain during prolonged severe hypoglycemia without isoelectricity, as well as the effect of GR on ROS levels. Results show that ROS generation increases in the hippocampus, the cerebral cortex and the striatum after prolonged severe hypoglycemia before the coma. The hippocampus showed the largest increases in ROS levels. GR further stimulated ROS production in the hippocampus and the striatum while in the cerebral cortex, only the somatosensory and parietal areas were significantly affected by GR. Results suggest that ROS are differentially produced during the hypoglycemic insult and that a different response to GR is present among distinct brain regions.

  5. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.

    PubMed

    Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido

    2007-02-07

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.

  6. Risk factors of cerebral microbleeds in strictly deep or lobar brain regions differed.

    PubMed

    Zhang, Changqing; Li, Zixiao; Wang, Yilong; Zhao, Xingquan; Wang, Chunxue; Liu, Liping; Pu, Yuehua; Zou, Xinying; Pan, Yuesong; Du, Wanliang; Jing, Jing; Wang, Dongxue; Luo, Yang; Wong, Ka Sing; Wang, Yongjun

    2015-01-01

    T2*-weighted gradient echo magnetic resonance imaging is sensitive in detecting cerebral microbleeds (MBs), but there are few reports on the risk factors of MBs in different brain regions. Therefore, we aimed to investigate whether the risk factors associated with the presence of MBs in strictly deep or lobar brain regions were different. This study consisted of 696 consecutive acute ischemic stroke patients from 6 hospitals in the Chinese IntraCranial AtheroSclerosis Study. We evaluated the number and location of MBs, severity of lacune and leukoaraiosis (LA), and etiologic subtype of ischemic stroke. Multivariable logistic regression was used to analyze risk factors of MBs in different brain regions. Among 696 acute ischemic stroke patients, 162 patients (23.3%) had MBs. Of them, 62 patients had strictly deep brain MBs, 49 patients had strictly lobar MBs. There was a significant correlation between the number of MBs, the number of lacune, and the severity of LA (P < .0001). In multivariable logistic regression analysis, both strictly deep and strictly lobar brain, MBs were significantly associated with history of cerebral hemorrhage (P = .037 and P = .026, respectively), presence of lacune (P = .004 and P = .032, respectively), and severe LA (P = .002 and P = .008, respectively). However, MBs in strictly deep regions were significantly associated with higher mean arterial pressure (P = .030), and those in strictly lobar brain regions were significantly associated with older age (P = .023). The risk factors of MBs in strictly deep or lobar regions differ modestly, which may be related to heterogeneous vascular pathologic changes. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Greater regional brain atrophy rate in healthy elderly subjects with a history of cigarette smoking.

    PubMed

    Durazzo, Timothy C; Insel, Philip S; Weiner, Michael W

    2012-11-01

    Little is known about the effects of cigarette smoking on longitudinal brain morphological changes in the elderly. This study investigated the effects of a history of cigarette smoking on changes in regional brain volumes over 2 years in healthy, cognitively intact elderly individuals. We predicted that individuals with a history of cigarette smoking, compared with never smokers, demonstrate greater rate of atrophy over 2 years in regions that manifest morphological abnormalities in the early stages of Alzheimer's disease (AD), as well as in the extended brain reward/executive oversight system (BREOS), which is implicated in the development and maintenance of substance use disorders. Participants were healthy, cognitively normal elderly control subjects (75.9 ± 4.8 years of age) with any lifetime history of cigarette smoking (n = 68) or no history of smoking (n = 118). Data were obtained through the Alzheimer Disease Neuroimaging Initiative from 2005 to 2010. Participants completed four magnetic resonance scans over 2 years. A standardized protocol using high-resolution three-dimensional T1-weighted sequences at 1.5 T was used for structural imaging and regional brain volumetric analyses. Smokers demonstrated a significantly greater atrophy rate over 2 years than nonsmokers in multiple brain regions associated with the early stages of AD, as well as in the BREOS system. Groups did not differ on the rate of global cortical atrophy. A history of cigarette smoking in this healthy elderly cohort was associated with decreased structural integrity of multiple brain regions, which manifested as a greater rate of atrophy over 2 years in regions specifically affected by incipient AD as well as chronic substance abuse. Published by Elsevier Inc.

  8. Effects of Fructose vs Glucose on Regional Cerebral Blood Flow in Brain Regions Involved With Appetite and Reward Pathways

    PubMed Central

    Page, Kathleen A.; Chan, Owen; Arora, Jagriti; Belfort-DeAguiar, Renata; Dzuira, James; Roehmholdt, Brian; Cline, Gary W.; Naik, Sarita; Sinha, Rajita; Constable, R. Todd; Sherwin, Robert S.

    2014-01-01

    Importance Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety. Objective To study neurophysiological factors that might underlie associations between fructose consumption and weight gain. Design, Setting, and Participants Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design. Main Outcome Measures Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion. Results There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (–5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P=.01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P<.05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform

  9. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways.

    PubMed

    Page, Kathleen A; Chan, Owen; Arora, Jagriti; Belfort-Deaguiar, Renata; Dzuira, James; Roehmholdt, Brian; Cline, Gary W; Naik, Sarita; Sinha, Rajita; Constable, R Todd; Sherwin, Robert S

    2013-01-02

    Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety. To study neurophysiological factors that might underlie associations between fructose consumption and weight gain. Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design. Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion. There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (-5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P = .01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P < .05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex (P < .05 significance threshold, FWE whole-brain corrected). In

  10. MRI patterns of atrophy and hypoperfusion associations across brain regions in frontotemporal dementia.

    PubMed

    Tosun, Duygu; Rosen, Howard; Miller, Bruce L; Weiner, Michael W; Schuff, Norbert

    2012-02-01

    Magnetic Resonance Imaging (MRI) provides various imaging modes to study the brain. We tested the benefits of a joint analysis of multimodality MRI data in combination with a large-scale analysis that involved simultaneously all image voxels using joint independent components analysis (jICA) and compared the outcome to results using conventional voxel-by-voxel unimodality tests. Specifically, we designed a jICA to decompose multimodality MRI data into independent components that explain joint variations between the image modalities as well as variations across brain regions. We tested the jICA design on structural and perfusion-weighted MRI data from 12 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD) and 12 cognitively normal elderly individuals. While unimodality analyses showed widespread brain atrophy and hypoperfusion in the patients, jICA further revealed two significant joint components of variations between atrophy and hypoperfusion across brain regions. The 1st joint component revealed associated brain atrophy and hypoperfusion predominantly in the right brain hemisphere in behavioral variant frontotemporal dementia, and the 2nd joint component revealed greater atrophy relative to hypoperfusion affecting predominantly the left hemisphere in behavioral variant frontotemporal dementia. The patterns are consistent with the clinical symptoms of behavioral variant frontotemporal dementia that relate to asymmetric compromises of the left and right brain hemispheres. The joint components also revealed that that structural alterations can be associated with physiological alterations in spatially separated but potentially connected brain regions. Finally, jICA outperformed voxel-by-voxel unimodal tests significantly in terms of an effect size, separating the behavioral variant frontotemporal dementia patients from the controls. Taken together, the results demonstrate the benefit of multimodality MRI in conjunction with jICA for mapping

  11. MRI Patterns of Atrophy and Hypoperfusion Associations Across Brain Regions in Frontotemporal Dementia

    PubMed Central

    Tosun, Duygu; Rosen, Howard; Miller, Bruce L.; Weiner, Michael W.; Schuff, Norbert

    2011-01-01

    Magnetic Resonance Imaging (MRI) provides various imaging modes to study the brain. We tested the benefits of a joint analysis of multimodality MRI data in combination with a large-scale analysis that involved simultaneously all image voxels using joint independent components analysis (jICA) and compared the outcome to results using conventional voxel-by-voxel unimodality tests. Specifically, we designed a jICA to decompose multimodality MRI data into independent components that explain joint variations between the image modalities as well as variations across brain regions. We tested the jICA design on structural and perfusion-weighted MRI data from 12 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD) and 12 cognitively normal elderly individuals. While unimodality analyses showed widespread brain atrophy and hypoperfusion in the patients, jICA further revealed two significant joint components of variations between atrophy and hypoperfusion across brain regions. The 1st joint component revealed associated brain atrophy and hypoperfusion predominantly in the right brain hemisphere in behavioral variant frontotemporal dementia, and the 2nd joint component revealed greater atrophy relative to hypoperfusion affecting predominantly the left hemisphere in behavioral variant frontotemporal dementia. The patterns are consistent with the clinical symptoms of behavioral variant frontotemporal dementia that relate to asymmetric compromises of the left and right brain hemispheres. The joint components also revealed that that structural alterations can be associated with physiological alterations in spatially separated but potentially connected brain regions. Finally, jICA outperformed voxel-by-voxel unimodal tests significantly in terms of an effect size, separating the behavioral variant frontotemporal dementia patients from the controls. Taken together, the results demonstrate the benefit of multimodality MRI in conjunction with jICA for mapping

  12. Molecular regionalization in the compact brain of the meiofaunal annelid Dinophilus gyrociliatus (Dinophilidae).

    PubMed

    Kerbl, Alexandra; Martín-Durán, José M; Worsaae, Katrine; Hejnol, Andreas

    2016-01-01

    Annelida is a morphologically diverse animal group that exhibits a remarkable variety in nervous system architecture (e.g., number and location of longitudinal cords, architecture of the brain). Despite this heterogeneity of neural arrangements, the molecular profiles related to central nervous system patterning seem to be conserved even between distantly related annelids. In particular, comparative molecular studies on brain and anterior neural region patterning genes have focused so far mainly on indirect-developing macrofaunal taxa. Therefore, analyses on microscopic, direct-developing annelids are important to attain a general picture of the evolutionary events underlying the vast diversity of annelid neuroanatomy. We have analyzed the expression domains of 11 evolutionarily conserved genes involved in brain and anterior neural patterning in adult females of the direct-developing meiofaunal annelid Dinophilus gyrociliatus. The small, compact brain shows expression of dimmed, foxg, goosecoid, homeobrain, nk2.1, orthodenticle, orthopedia, pax6, six3/6 and synaptotagmin-1. Although most of the studied markers localize to specific brain areas, the genes six3/6 and synaptotagmin-1 are expressed in nearly all perikarya of the brain. All genes except for goosecoid, pax6 and nk2.2 overlap in the anterior brain region, while the respective expression domains are more separated in the posterior brain. Our findings reveal that the expression patterns of the genes foxg, orthodenticle, orthopedia and six3/6 correlate with those described in Platynereis dumerilii larvae, and homeobrain, nk2.1, orthodenticle and synaptotagmin-1 resemble the pattern of late larvae of Capitella teleta. Although data on other annelids are limited, molecular similarities between adult Dinophilus and larval Platynereis and Capitella suggest an overall conservation of molecular mechanisms patterning the anterior neural regions, independent from developmental and ecological strategies, or of the

  13. Rheological regional properties of brain tissue studied under cyclic creep/ recovery shear stresses

    NASA Astrophysics Data System (ADS)

    Boudjema, F.; Lounis, M.; Khelidj, B.; Bessai, N.

    2015-04-01

    The rheological properties of brain tissue were studied by repeated creep-recovery shear tests under static conditions for different regions. Corpus callosum CC, Thalamus Th and Corona radiata CR. Non-linear viscoelastic model was also proposed to characterize the transient/steady states of shear creep results. From the creep-recovery data it was obvious that the brain tissues show high regional anisotropy. However. the both samples exhibit fluid viscoelastic properties in the first shear stress cycle of 100 Pa, while this behaviour evolutes to solid viscoelastic with cyclic effect.

  14. Genetic contributions to regional variability in human brain structure: methods and preliminary results.

    PubMed

    Wright, I C; Sham, P; Murray, R M; Weinberger, D R; Bullmore, E T

    2002-09-01

    Twin studies provide one approach for investigating and partitioning genetic and environmental contributions to phenotypic variability in human brain structure. Previous twin studies have found that cerebral volume, hemispheric volume, ventricular volume, and cortical gyral pattern variability were heritable. We investigated the contributions of genetic and environmental factors to both global (brain volume and lateral ventricular volume) and regional (parcellated gray matter) variability in brain structure. We examined MR images from 10 pairs of healthy monozygotic and 10 pairs of same-sex dizygotic twins. Regional gray matter volume was estimated by automated image segmentation, transformation to standard space, and parcellation using a digital atlas. Heritability was estimated by path analysis. Estimated heritability for brain volume variability was high (0.66; 95% confidence interval 0.17, 1.0) but the major effects on lateral ventricular volume variability were common and unique environmental factors. We constructed a map of regional brain heritability and found large genetic effects shared in common between several bilateral brain regions, particularly paralimbic structures and temporal-parietal neocortex. We tested three specific hypotheses with regard to the genetic control of brain variability: (i) that the strength of the genetic effect is related to gyral ontogenesis, (ii) that there is greater genetic control of left than of right hemisphere variability, and (iii) that random or fluctuating asymmetry in bilateral structures is not heritable. We found no evidence in support of the first two hypotheses, but our results were consistent with the third hypothesis. Finally, we used principal component (PC) analysis of the genetic correlation matrix, to identify systems of anatomically distributed gray matter regions which shared major genetic effects in common. Frontal and parietal neocortical areas loaded positively on the first PC; some paralimbic and

  15. Smoking is associated with reduced cortical regional gray matter density in brain regions associated with incipient Alzheimer disease.

    PubMed

    Almeida, Osvaldo P; Garrido, Griselda J; Lautenschlager, Nicola T; Hulse, Gary K; Jamrozik, Konrad; Flicker, Leon

    2008-01-01

    The results of observational studies suggest that smoking increases the risk of Alzheimer disease (AD). The authors designed this study to determine if older people who smoke have decreased gray matter density in brain regions associated with incipient AD. The authors recruited 39 pairs (N = 78) of smokers/never-smokers 70 to 83 years of age who were matched for age, sex, education, and handedness. Participants were free of clinically significant cognitive impairment, depression, stroke, or other serious medical conditions. Gray matter density was determined by voxel-based morphometry using statistical parametric mapping of T1-weighted magnetic resonance images. Smokers had decreased gray matter density in the posterior cingulum and precuneus (bilateral), right thalamus, and frontal cortex (bilateral) compared with never-smokers. Smoking is associated with decreased gray matter density in brain regions previously associated with incipient AD. Longitudinal investigations are required to clarify whether these changes are progressive in nature.

  16. Simian virus 40 regulatory region structural diversity and the association of viral archetypal regulatory regions with human brain tumors.

    PubMed

    Lednicky, J A; Butel, J S

    2001-02-01

    The regulatory region (RR) of simian virus 40 (SV40) contains enhancer/promoter elements and an origin of DNA replication. Natural SV40 isolates from simian brain or kidney tissues typically have an archetypal RR arrangement with a single 72-basepair enhancer element. A rare simpler, shorter SV40 RR exists that lacks a duplicated sequence in the G/C-rich region and is termed protoarchetypal. Occasionally, SV40 strain variants arise de novo that have complex RRs, which typically contain sequence reiterations, rearrangements, and/or deletions. These variants replicate faster and to higher titers in tissue culture; we speculate that such faster-growing variants were selected when laboratory strains of SV40 were initially recovered. SV40 strains with archetypal RRs have been found in some human brain tumors. The possible implications of these findings and a brief review of the SV40 RR structure are presented.

  17. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    PubMed

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP(Sc)). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP(Sc) deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae

    PubMed Central

    Sakai, Sharleen T.; Arsznov, Bradley M.; Hristova, Ani E.; Yoon, Elise J.; Lundrigan, Barbara L.

    2016-01-01

    Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions (Panthera leo), leopards (Panthera pardus), cougars (Puma concolor), and cheetahs (Acinonyx jubatus). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls (n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes

  19. Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae.

    PubMed

    Sakai, Sharleen T; Arsznov, Bradley M; Hristova, Ani E; Yoon, Elise J; Lundrigan, Barbara L

    2016-01-01

    Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions (Panthera leo), leopards (Panthera pardus), cougars (Puma concolor), and cheetahs (Acinonyx jubatus). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls (n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes

  20. Cardiorespiratory concerns shape brain responses during automatic panic-related scene processing in patients with panic disorder.

    PubMed

    Feldker, Katharina; Heitmann, Carina Yvonne; Neumeister, Paula; Brinkmann, Leonie; Bruchmann, Maximillan; Zwitserlood, Pienie; Straube, Thomas

    2017-09-26

    Increased automatic processing of threat-related stimuli has been proposed as a key element in panic disorder. Little is known about the neural basis of automatic processing, in particular to task-irrelevant, panic-related, ecologically valid stimuli, or about the association between brain activation and symptomatology in patients with panic disorder. The present event-related fMRI study compared brain responses to task-irrelevant, panic-related and neutral visual stimuli in medication-free patients with panic disorder and healthy controls. Panic-related and neutral scenes were presented while participants performed a spatially nonoverlapping bar orientation task. Correlation analyses investigated the association between brain responses and panic-related aspects of symptomatology, measured using the Anxiety Sensitivity Index (ASI). We included 26 patients with panic disorder and 26 heatlhy controls in our analysis. Compared with controls, patients with panic disorder showed elevated activation in the amygdala, brainstem, thalamus, insula, anterior cingulate cortex and midcingulate cortex in response to panic-related versus neutral task-irrelevant stimuli. Furthermore, fear of cardiovascular symptoms (a subcomponent of the ASI) was associated with insula activation, whereas fear of respiratory symptoms was associated with brainstem hyperactivation in patients with panic disorder. The additional implementation of measures of autonomic activation, such as pupil diameter, heart rate, or electrodermal activity, would have been informative during the fMRI scan as well as during the rating procedure. Results reveal a neural network involved in the processing of panic-related distractor stimuli in patients with panic disorder and suggest an automatic weighting of panic-related information depending on the magnitude of cardiovascular and respiratory symptoms. Insula and brainstem activations show function-related associations with specific components of panic symptomatology.

  1. Changes in dietary iron exacerbate regional brain manganese accumulation as determined by magnetic resonance imaging.

    PubMed

    Fitsanakis, Vanessa A; Zhang, Na; Avison, Malcolm J; Erikson, Keith M; Gore, John C; Aschner, Michael

    2011-03-01

    Manganese (Mn) is an essential metal required for normal homeostasis. Humans chronically exposed to high Mn levels, however, may exhibit psychomotor signs secondary to increased brain Mn. As Mn and iron (Fe) share several cellular membrane transporters, decreased Fe levels resulting from Fe deficiency or anemia lead to increased brain Mn deposition. Conversely, decreased Mn levels are associated with abnormal brain Fe accumulation. To reduce potential Mn toxicity resulting from brain Mn accumulation, we proposed that increased dietary Fe would attenuate brain Mn deposition. To test this hypothesis, three groups of Sprague-Dawley rats were injected weekly (14 weeks) with Mn (3 mg/kg) and fed normal Fe (TX), Fe-supplemented (FeS), or Fe-deficient (FeD) chow. Control (CN) rats received normal dietary Fe and saline injections. Using magnetic resonance imaging, rats were imaged biweekly for 14 weeks to qualitatively monitor brain Mn and Fe accumulation. Both FeS and FeD had greater brain Mn deposition than TX rats. By week 3, R(1) values, which correlate with Mn deposition, were statistically significantly increased (p < 0.05) in brain stem, cerebellum, cortex, midbrain, and striatum compared with CN or TX animals. By week 14, R(1) values for all brain regions in FeS and FeD animals were statistically significantly increased (p < 0.05). By the end of the study, similar results were obtained for R(2) values, a marker of Fe accumulation. These data suggest that Fe supplementation does not effectively protect and may even exacerbate brain Mn accumulation in mammals subchronically exposed to Mn.

  2. Changes in Dietary Iron Exacerbate Regional Brain Manganese Accumulation as Determined by Magnetic Resonance Imaging

    PubMed Central

    Fitsanakis, Vanessa A.; Zhang, Na; Avison, Malcolm J.; Erikson, Keith M.; Gore, John C.; Aschner, Michael

    2011-01-01

    Manganese (Mn) is an essential metal required for normal homeostasis. Humans chronically exposed to high Mn levels, however, may exhibit psychomotor signs secondary to increased brain Mn. As Mn and iron (Fe) share several cellular membrane transporters, decreased Fe levels resulting from Fe deficiency or anemia lead to increased brain Mn deposition. Conversely, decreased Mn levels are associated with abnormal brain Fe accumulation. To reduce potential Mn toxicity resulting from brain Mn accumulation, we proposed that increased dietary Fe would attenuate brain Mn deposition. To test this hypothesis, three groups of Sprague-Dawley rats were injected weekly (14 weeks) with Mn (3 mg/kg) and fed normal Fe (TX), Fe-supplemented (FeS), or Fe-deficient (FeD) chow. Control (CN) rats received normal dietary Fe and saline injections. Using magnetic resonance imaging, rats were imaged biweekly for 14 weeks to qualitatively monitor brain Mn and Fe accumulation. Both FeS and FeD had greater brain Mn deposition than TX rats. By week 3, R1 values, which correlate with Mn deposition, were statistically significantly increased (p < 0.05) in brain stem, cerebellum, cortex, midbrain, and striatum compared with CN or TX animals. By week 14, R1 values for all brain regions in FeS and FeD animals were statistically significantly increased (p < 0.05). By the end of the study, similar results were obtained for R2 values, a marker of Fe accumulation. These data suggest that Fe supplementation does not effectively protect and may even exacerbate brain Mn accumulation in mammals subchronically exposed to Mn. PMID:21177776

  3. Differential modulation of emotion processing brain regions by noradrenergic and serotonergic antidepressants.

    PubMed

    Brühl, Annette Beatrix; Jäncke, Lutz; Herwig, Uwe

    2011-08-01

    Most widely used antidepressant drugs affect the serotonergic and noradrenergic pathways. However, there are currently no neurobiological criteria for selecting between these targets and predicting the treatment response in individual depressed patients. The current study is aimed at differentiating brain regions known to be pathophysiologically and functionally involved in depression-related emotion processing with respect to their susceptibility to serotonergic and noradrenergic modulation. In a single-blind pseudo-randomized crossover study, 16 healthy subjects (out of 21 enrolled) were included in analysis after ingesting a single dose of citalopram (a selective serotonin-reuptake inhibitor, 40 mg), reboxetine (a selective noradrenaline-reuptake inhibitor, 8 mg), or placebo at three time points prior to functional magnetic resonance imaging (fMRI). During fMRI, subjects anticipated and subsequently viewed emotional pictures. Effects of serotonergic and noradrenergic modulation versus placebo on brain activity during the perception of negative pictures were analyzed with a repeated measures ANOVA in the whole brain and in specific regions of interest relevant to depression. Noradrenergic modulation by reboxetine increased brain activity in the thalamus, right dorsolateral prefrontal cortex and occipital regions during the perception of negative emotional stimuli. Citalopram primarily affected the ventrolateral prefrontal cortical regions. The brain regions involved in the processing of negative emotional stimuli were differentially modulated by selective noradrenergic and serotonergic drugs: thalamic activity was increased by reboxetine, whereas citalopram primarily affected ventrolateral prefrontal regions. Thus, dysfunction in these regions, which could be identified in depressed patients, may predict treatment responses to either noradrenergic or serotonergic antidepressants.

  4. Region-Specific Defects of Respiratory Capacities in the Ndufs4(KO) Mouse Brain

    PubMed Central

    Kayser, Ernst-Bernhard; Sedensky, Margaret M.; Morgan, Philip G.

    2016-01-01

    Background Lack of NDUFS4, a subunit of mitochondrial complex I (NADH:ubiquinone oxidoreductase), causes Leigh syndrome (LS), a progressive encephalomyopathy. Knocking out Ndufs4, either systemically or in brain only, elicits LS in mice. In patients as well as in KO mice distinct regions of the brain degenerate while surrounding tissue survives despite systemic complex I dysfunction. For the understanding of disease etiology and ultimately for the development of rationale treatments for LS, it appears important to uncover the mechanisms that govern focal neurodegeneration. Results Here we used the Ndufs4(KO) mouse to investigate whether regional and temporal differences in respiratory capacity of the brain could be correlated with neurodegeneration. In the KO the respiratory capacity of synaptosomes from the degeneration prone regions olfactory bulb, brainstem and cerebellum was significantly decreased. The difference was measurable even before the onset of neurological symptoms. Furthermore, neither compensating nor exacerbating changes in glycolytic capacity of the synaptosomes were found. By contrast, the KO retained near normal levels of synaptosomal respiration in the degeneration-resistant/resilient “rest” of the brain. We also investigated non-synaptic mitochondria. The KO expectedly had diminished capacity for oxidative phosphorylation (state 3 respiration) with complex I dependent substrate combinations pyruvate/malate and glutamate/malate but surprisingly had normal activity with α-ketoglutarate/malate. No correlation between oxidative phosphorylation (pyruvate/malate driven state 3 respiration) and neurodegeneration was found: Notably, state 3 remained constant in the KO while in controls it tended to increase with time leading to significant differences between the genotypes in older mice in both vulnerable and resilient brain regions. Neither regional ROS damage, measured as HNE-modified protein, nor regional complex I stability, assessed by blue

  5. Chronic Ethanol Consumption Profoundly Alters Regional Brain Ceramide and Sphingomyelin Content in Rodents

    PubMed Central

    2015-01-01

    Ceramides (CER) are involved in alcohol-induced neuroinflammation. In a mouse model of chronic alcohol exposure, 16 CER and 18 sphingomyelin (SM) concentrations from whole brain lipid extracts were measured using electrospray mass spectrometry. All 18 CER concentrations in alcohol exposed adults increased significantly (range: 25–607%); in juveniles, 6 CER decreased (range: −9 to −37%). In contrast, only three SM decreased in adult and one increased significantly in juvenile. Next, regional identification at 50 μm spatial resolution from coronal sections was obtained with matrix implanted laser desorption/ionization mass spectrometry imaging (MILDI-MSI) by implanting silver nanoparticulate matrices followed by focused laser desorption. Most of the CER and SM quantified in whole brain extracts were detected in MILDI images. Coronal sections from three brain levels show qualitative regional changes in CER-SM ion intensities, as a function of group and brain region, in cortex, striatum, accumbens, habenula, and hippocampus. Highly correlated changes in certain white matter CER-SM pairs occur in regions across all groups, including the hippocampus and the lateral (but not medial) cerebellar cortex of adult mice. Our data provide the first microscale MS evidence of regional lipid intensity variations induced by alcohol. PMID:25387107

  6. Chronic ethanol exposure produces time- and brain region-dependent changes in gene coexpression networks.

    PubMed

    Osterndorff-Kahanek, Elizabeth A; Becker, Howard C; Lopez, Marcelo F; Farris, Sean P; Tiwari, Gayatri R; Nunez, Yury O; Harris, R Adron; Mayfield, R Dayne

    2015-01-01

    Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global 'rewiring' of coexpression systems involving glial and immune signaling as well as neuronal genes.

  7. Chronic ethanol consumption profoundly alters regional brain ceramide and sphingomyelin content in rodents.

    PubMed

    Roux, Aurelie; Muller, Ludovic; Jackson, Shelley N; Baldwin, Katherine; Womack, Virginia; Pagiazitis, John G; O'Rourke, Joseph R; Thanos, Panayotis K; Balaban, Carey; Schultz, J Albert; Volkow, Nora D; Woods, Amina S

    2015-02-18

    Ceramides (CER) are involved in alcohol-induced neuroinflammation. In a mouse model of chronic alcohol exposure, 16 CER and 18 sphingomyelin (SM) concentrations from whole brain lipid extracts were measured using electrospray mass spectrometry. All 18 CER concentrations in alcohol exposed adults increased significantly (range: 25-607%); in juveniles, 6 CER decreased (range: -9 to -37%). In contrast, only three SM decreased in adult and one increased significantly in juvenile. Next, regional identification at 50 μm spatial resolution from coronal sections was obtained with matrix implanted laser desorption/ionization mass spectrometry imaging (MILDI-MSI) by implanting silver nanoparticulate matrices followed by focused laser desorption. Most of the CER and SM quantified in whole brain extracts were detected in MILDI images. Coronal sections from three brain levels show qualitative regional changes in CER-SM ion intensities, as a function of group and brain region, in cortex, striatum, accumbens, habenula, and hippocampus. Highly correlated changes in certain white matter CER-SM pairs occur in regions across all groups, including the hippocampus and the lateral (but not medial) cerebellar cortex of adult mice. Our data provide the first microscale MS evidence of regional lipid intensity variations induced by alcohol.

  8. Brain-Region Specific Apoptosis Triggered by Eph/ephrin Signaling.

    PubMed

    Park, Soochul

    2013-09-01

    Eph receptors and their ligands, ephrins, are abundantly expressed in neuroepithelial cells of the early embryonic brain. Overstimulation of Eph signaling in vivo increases apoptotic cell death of neuroepithelial cells, whereas null mutation of the Eph gene leads to the development of a larger brain during embryogenesis. Thus, it appears that Eph-ephrin signaling plays a role in regulating apoptotic cell death of neuroepithelial cells, thereby influencing brain size during embryonic development. Interestingly, Eph-ephrin signaling is bi-directional, with forward signaling from ephrin- to Eph-expressing cells and reverse signaling from Eph- to ephrin-expressing cells. However, it is not clear whether this forward or reverse signaling plays a role in regulating the size of the neuroepithelial cell population during early brain development. Also, Eph receptors and their corresponding ligands are mutually exclusive in their expression domains, and they encounter each other only at interfaces between their expression domains. This expression pattern may be a critical mechanism for preventing overstimulation of Eph-ephrin signaling. Nevertheless, Eph receptors are co-expressed with their corresponding ligands in certain brain regions. Recently, two studies demonstrated that brain region-specific apoptosis may be triggered by the overlapping expression of Eph and ephrin, a theme that will be explored in this mini-review.

  9. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.

    PubMed

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-20

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.

  10. Systematically characterizing dysfunctional long intergenic non-coding RNAs in multiple brain regions of major psychosis

    PubMed Central

    Zhao, Hongying; Li, Feng; Deng, Yulan; Liu, Ling; Lan, Yujia; Zhang, Xinxin; Zhao, Tingting; Xu, Chaohan; Xu, Chun; Xiao, Yun; Li, Xia

    2016-01-01

    Schizophrenia (SZ) and bipolar disorder (BD) are severe neuropsychiatric disorders with serious impact on patients, together termed “major psychosis”. Recently, long intergenic non-coding RNAs (lincRNAs) were reported to play important roles in mental diseases. However, little was known about their molecular mechanism in pathogenesis of SZ and BD. Here, we performed RNA sequencing on 82 post-mortem brain tissues from three brain regions (orbitofrontal cortex (BA11), anterior cingulate cortex (BA24) and dorsolateral prefrontal cortex (BA9)) of patients with SZ and BD and control subjects, generating over one billion reads. We characterized lincRNA transcriptome in the three brain regions and identified 20 differentially expressed lincRNAs (DELincRNAs) in BA11 for BD, 34 and 1 in BA24 and BA9 for SZ, respectively. Our results showed that these DELincRNAs exhibited brain region-specific patterns. Applying weighted gene co-expression network analysis, we revealed that DELincRNAs together with other genes can function as modules to perform different functions in different brain regions, such as immune system development in BA24 and oligodendrocyte differentiation in BA9. Additionally, we found that DNA methylation alteration could partly explain the dysregulation of lincRNAs, some of which could function as enhancers in the pathogenesis of major psychosis. Together, we performed systematical characterization of dysfunctional lincRNAs in multiple brain regions of major psychosis, which provided a valuable resource to understand their roles in SZ and BD pathology and helped to discover novel biomarkers. PMID:27661005

  11. Regional differences in actomyosin contraction shape the primary vesicles in the embryonic chicken brain

    NASA Astrophysics Data System (ADS)

    Filas, Benjamen A.; Oltean, Alina; Majidi, Shabnam; Bayly, Philip V.; Beebe, David C.; Taber, Larry A.

    2012-12-01

    In the early embryo, the brain initially forms as a relatively straight, cylindrical epithelial tube composed of neural stem cells. The brain tube then divides into three primary vesicles (forebrain, midbrain, hindbrain), as well as a series of bulges (rhombomeres) in the hindbrain. The boundaries between these subdivisions have been well studied as regions of differential gene expression, but the morphogenetic mechanisms that generate these constrictions are not well understood. Here, we show that regional variations in actomyosin-based contractility play a major role in vesicle formation in the embryonic chicken brain. In particular, boundaries did not form in brains exposed to the nonmuscle myosin II inhibitor blebbistatin, whereas increasing contractile force using calyculin or ATP deepened boundaries considerably. Tissue staining showed that contraction likely occurs at the inner part of the wall, as F-actin and phosphorylated myosin are concentrated at the apical side. However, relatively little actin and myosin was found in rhombomere boundaries. To determine the specific physical mechanisms that drive vesicle formation, we developed a finite-element model for the brain tube. Regional apical contraction was simulated in the model, with contractile anisotropy and strength estimated from contractile protein distributions and measurements of cell shapes. The model shows that a combination of circumferential contraction in the boundary regions and relatively isotropic contraction between boundaries can generate realistic morphologies for the primary vesicles. In contrast, rhombomere formation likely involves longitudinal contraction between boundaries. Further simulations suggest that these different mechanisms are dictated by regional differences in initial morphology and the need to withstand cerebrospinal fluid pressure. This study provides a new understanding of early brain morphogenesis.

  12. Selenotranscriptomic Analyses Identify Signature Selenoproteins in Brain Regions in a Mouse Model of Parkinson's Disease.

    PubMed

    Zhang, Xiong; Ye, Yang-Lie; Zhu, Hui; Sun, Sheng-Nan; Zheng, Jing; Fan, Hui-Hui; Wu, Hong-Mei; Chen, Song-Fang; Cheng, Wen-Hsing; Zhu, Jian-Hong

    Genes of selenoproteome have been increasingly implicated in various aspects of neurobiology and neurological disorders, but remain largely elusive in Parkinson's disease (PD). In this study, we investigated the selenotranscriptome (24 selenoproteins in total) in five brain regions (cerebellum, substantia nigra, cortex, pons and hippocampus) by real time qPCR in a two-phase manner using a mouse model of chronic PD. A wide range of changes in selenotranscriptome was observed in a manner depending on selenoproteins and brain regions. While Selv mRNA was not detectable and Dio1& 3 mRNA levels were not affected, 1, 11 and 9 selenoproteins displayed patterns of increase only, decrease only, and mixed response, respectively, in these brain regions of PD mice. In particular, the mRNA expression of Gpx1-4 showed only a decreased trend in the PD mouse brains. In substantia nigra, levels of 17 selenoprotein mRNAs were significantly decreased whereas no selenoprotein was up-regulated in the PD mice. In contrast, the majority of selenotranscriptome did not change and a few selenoprotein mRNAs that respond displayed a mixed pattern of up- and down-regulation in cerebellum, cortex, hippocampus, and/or pons of the PD mice. Gpx4, Sep15, Selm, Sepw1, and Sepp1 mRNAs were most abundant across all these five brain regions. Our results showed differential responses of selenoproteins in various brain regions of the PD mouse model, providing critical selenotranscriptomic profiling for future functional investigation of individual selenoprotein in PD etiology.

  13. Cerebral white matter--historical evolution of facts and notions concerning the organization of the fiber pathways of the brain.

    PubMed

    Schmahmann, Jeremy D; Pandya, Deepak N

    2007-01-01

    Gross and microscopic studies by early investigators led the cerebral white matter from being regarded as an amorphous mass to an intricately organized system of fasciculi that facilitate the highest expression of cerebral activity. Here we pay homage to the anatomists whose observations resulted in the evolution of ideas about the cerebral white matter. We also draw attention to limitations of the earlier methodologies and to some of the conflicts and controversies that have characterized this field and that persist in the current literature. We conclude with brief reference to the principles of organization of the fiber pathways derived from our studies in the monkey using the autoradiographic tract tracing technique, another step in the ongoing investigations of the cerebral white matter. This historical review has contemporary relevance because the fiber pathways of the brain are crucial components of the distributed neural circuits that subserve nervous system function; the clinical manifestations of white matter damage are recognized with greater frequency and clarity; and magnetic resonance imaging tractography has made it possible to view these fiber bundles within the living human brain.

  14. Bivariate Heritability of Total and Regional Brain Volumes: the Framingham Study

    PubMed Central

    DeStefano, Anita L.; Seshadri, Sudha; Beiser, Alexa; Atwood, Larry D.; Massaro, Joe M.; Au, Rhoda; Wolf, Philip A.; DeCarli, Charles

    2009-01-01

    Heritability and genetic and environmental correlations of total and regional brain volumes were estimated from a large, generally healthy, community-based sample, to determine if there are common elements to the genetic influence of brain volumes and white matter hyperintensity volume. There were 1538 Framingham Heart Study participants with brain volume measures from quantitative magnetic resonance imaging (MRI) who were free of stroke and other neurological disorders that might influence brain volumes and who were members of families with at least two Framingham Heart Study participants. Heritability was estimated using variance component methodology and adjusting for the components of the Framingham stroke risk profile. Genetic and environmental correlations between traits were obtained from bivariate analysis. Heritability estimates ranging from 0.46 to 0.60, were observed for total brain, white matter hyperintensity, hippocampal, temporal lobe, and lateral ventricular volumes. Moderate, yet significant, heritability was observed for the other measures. Bivariate analyses demonstrated that relationships between brain volume measures, except for white matter hyperintensity, reflected both moderate to strong shared genetic and shared environmental influences. This study confirms strong genetic effects on brain and white matter hyperintensity volumes. These data extend current knowledge by showing that these two different types of MRI measures do not share underlying genetic or environmental influences. PMID:19812462

  15. Positron-emission tomography of brain regions activated by recognition of familiar music.

    PubMed

    Satoh, M; Takeda, K; Nagata, K; Shimosegawa, E; Kuzuhara, S

    2006-05-01

    We can easily recognize familiar music by listening to only one or 2 of its opening bars, but the brain regions that participate in this cognitive processing remain undetermined. We used positron-emission tomography (PET) to study changes in regional cerebral blood flow (rCBF) that occur during listening to familiar music. We used a PET subtraction technique to elucidate the brain regions associated with the recognition of familiar melodies such as well-known nursery tunes. Nonmusicians performed 2 kinds of musical tasks: judging the familiarity of musical pieces (familiarity task) and detecting deliberately altered notes in the pieces (alteration-detecting task). During the familiarity task, bilateral anterior portions of bilateral temporal lobes, superior temporal regions, and parahippocampal gyri were activated. The alteration-detecting task bilaterally activated regions in the precunei, superior/inferior parietal lobules, and lateral surface of frontal lobes, which seemed to show a correlation with the analysis of music. We hypothesize that during the familiarity task, activated brain regions participate in retrieval from long-term memory and verbal and emotional processing of familiar melodies. Our results reinforced the hypothesis reported in the literature as a result of group and case studies, that temporal lobe regions participate in the recognition of familiar melodies.

  16. Corticosteroid receptors and glucocorticoid content in microdissected brain regions: correlative aspects.

    PubMed

    Magariños, A M; Ferrini, M; De Nicola, A F

    1989-12-01

    Stereoselective competition was used to determine (3H)-aldosterone binding to type I corticosteroid receptors, and (3H)-dexamethasone binding to type II receptors in punches obtained from 11 brain regions of short-term adrenalectomized (ADX) rats. It was observed that type I receptor binding was almost exclusive of the hippocampus (HIPPO), while type II receptor binding was more generally distributed among HIPPO, cerebral cortex, lateral septum, ventromedial and arcuate hypothalamic nuclei, with lower levels in 6 additional regions studies. We determined corticosterone (CORT) in brain punches from ADX rats, ADX rats receiving CORT for 5 days, intact rats and intact rats receiving ACTH for 5 days. We correlated (3H)-ligand binding with CORT content in punches obtained from identical brain regions and showed a significant positive correlation in the case of the ADX plus CORT group, for type II corticosteroid receptors. Similarly, a significant correlation emerged with type II sites, when binding capacity was correlated with percentage increases of CORT in brain areas of rats receiving ACTH. It is suggested that in situations where CORT levels are elevated, changes in CORT retention throughout the brain occur as a function of the type II glucocorticoid receptor, although at the level of the HIPPO, both receptors may provide appropriate control of the CNS-pituitary-adrenal axis, according to the physiological or stress levels of circulating hormone.

  17. Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia

    PubMed Central

    Wang, Yanping; Zhang, Xiaoling; Guan, Qiaobing; Wan, Lihong; Yi, Yahui; Liu, Chun-Feng

    2015-01-01

    The pathophysiology of idiopathic trigeminal neuralgia (ITN) has conventionally been thought to be induced by neurovascular compression theory. Recent structural brain imaging evidence has suggested an additional central component for ITN pathophysiology. However, far less attention has been given to investigations of the basis of abnormal resting-state brain activity in these patients. The objective of this study was to investigate local brain activity in patients with ITN and its correlation with clinical variables of pain. Resting-state functional magnetic resonance imaging data from 17 patients with ITN and 19 age- and sex-matched healthy controls were analyzed using regional homogeneity (ReHo) analysis, which is a data-driven approach used to measure the regional synchronization of spontaneous brain activity. Patients with ITN had decreased ReHo in the left amygdala, right parahippocampal gyrus, and left cerebellum and increased ReHo in the right inferior temporal gyrus, right thalamus, right inferior parietal lobule, and left postcentral gyrus (corrected). Furthermore, the increase in ReHo in the left precentral gyrus was positively correlated with visual analog scale (r=0.54; P=0.002). Our study found abnormal functional homogeneity of intrinsic brain activity in several regions in ITN, suggesting the maladaptivity of the process of daily pain attacks and a central role for the pathophysiology of ITN. PMID:26508861

  18. A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis.

    PubMed

    Ma, Shang; Santhosh, Devi; Kumar T, Peeyush; Huang, Zhen

    2017-05-22

    Intimate communication between neural and vascular cells is critical for normal brain development and function. Germinal matrix (GM), a key primordium for the brain reward circuitry, is unique among brain regions for its distinct pace of angiogenesis and selective vulnerability to hemorrhage during development. A major neonatal condition, GM hemorrhage can lead to cerebral palsy, hydrocephalus, and mental retardation. Here we identify a brain-region-specific neural progenitor-based signaling pathway dedicated to regulating GM vessel development. This pathway consists of cell-surface sphingosine-1-phosphate receptors, an intracellular cascade including Gα co-factor Ric8a and p38 MAPK, and target gene integrin β8, which in turn regulates vascular TGF-β signaling. These findings provide insights into region-specific specialization of neurovascular communication, with special implications for deciphering potent early-life endocrine, as well as potential gut microbiota impacts on brain reward circuitry. They also identify tissue-specific molecular targets for GM hemorrhage intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Evaluation of region selective bilirubin-induced brain damage as a basis for a pharmacological treatment

    PubMed Central

    Dal Ben, Matteo; Bottin, Cristina; Zanconati, Fabrizio; Tiribelli, Claudio; Gazzin, Silvia

    2017-01-01

    The neurologic manifestations of neonatal hyperbilirubinemia in the central nervous system (CNS) exhibit high variations in the severity and appearance of motor, auditory and cognitive symptoms, which is suggestive of a still unexplained selective topography of bilirubin-induced damage. By applying the organotypic brain culture (OBC: preserving in vitro the cellular complexity, connection and architecture of the in vivo brain) technique to study hyperbilirubinemia, we mapped the regional target of bilirubin-induced damage, demonstrated a multifactorial toxic action of bilirubin, and used this information to evaluate the efficacy of drugs applicable to newborns to protect the brain. OBCs from 8-day-old rat pups showed a 2–13 fold higher sensitivity to bilirubin damage than 2-day-old preparations. The hippocampus, inferior colliculus and cerebral cortex were the only brain regions affected, presenting a mixed inflammatory-oxidative mechanism. Glutamate excitotoxicity was appreciable in only the hippocampus and inferior colliculus. Single drug treatment (indomethacin, curcumin, MgCl2) significantly improved cell viability in all regions, while the combined (cocktail) administration of the three drugs almost completely prevented damage in the most affected area (hippocampus). Our data may supports an innovative (complementary to phototherapy) approach for directly protecting the newborn brain from bilirubin neurotoxicity. PMID:28102362

  20. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions.

    PubMed

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-06-10

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity.

  1. Brain regions responsible for tinnitus distress and loudness: a resting-state FMRI study.

    PubMed

    Ueyama, Takashi; Donishi, Tomohiro; Ukai, Satoshi; Ikeda, Yorihiko; Hotomi, Muneki; Yamanaka, Noboru; Shinosaki, Kazuhiro; Terada, Masaki; Kaneoke, Yoshiki

    2013-01-01

    Subjective tinnitus is characterized by the perception of phantom sound without an external auditory stimulus. We hypothesized that abnormal functionally connected regions in the central nervous system might underlie the pathophysiology of chronic subjective tinnitus. Statistical significance of functional connectivity (FC) strength is affected by the regional autocorrelation coefficient (AC). In this study, we used resting-state functional MRI (fMRI) and measured regional mean FC strength (mean cross-correlation coefficient between a region and all other regions without taking into account the effect of AC (rGC) and with taking into account the effect of AC (rGCa) to elucidate brain regions related to tinnitus symptoms such as distress, depression and loudness. Consistent with previous studies, tinnitus loudness was not related to tinnitus-related distress and depressive state. Although both rGC and rGCa revealed similar brain regions where the values showed a statistically significant relationship with tinnitus-related symptoms, the regions for rGCa were more localized and more clearly delineated the regions related specifically to each symptom. The rGCa values in the bilateral rectus gyri were positively correlated and those in the bilateral anterior and middle cingulate gyri were negatively correlated with distress and depressive state. The rGCa values in the bilateral thalamus, the bilateral hippocampus, and the left caudate were positively correlated and those in the left medial superior frontal gyrus and the left posterior cingulate gyrus were negatively correlated with tinnitus loudness. These results suggest that distinct brain regions are responsible for tinnitus symptoms. The regions for distress and depressive state are known to be related to depression, while the regions for tinnitus loudness are known to be related to the default mode network and integration of multi-sensory information.

  2. Evolutionary conservation of mechanisms for neural regionalization, proliferation and interconnection in brain development

    PubMed Central

    Reichert, Heinrich

    2008-01-01

    Comparative studies of brain development in vertebrate and invertebrate model systems demonstrate remarkable similarities in expression and action of developmental control genes during embryonic patterning, neural proliferation and circuit formation in the brain. Thus, comparable sets of developmental control genes are involved in specifying the early brain primordium as well as in regionalized patterning along its anteroposterior and dorsoventral axes. Furthermore, similar cellular and molecular mechanisms underlie the formation and proliferation of neural stem cell-like progenitors that generate the neurons in the central nervous systems. Finally, neural identity and some complex circuit interconnections in specific brain domains appear to be comparable in vertebrates and invertebrates and may depend on similar developmental control genes. PMID:18755655

  3. "Hiding the story": indigenous consumer concerns about communication related to chronic disease in one remote region of Australia.

    PubMed

    Lowell, Anne; Maypilama, Elaine; Yikaniwuy, Stephanie; Rrapa, Elizabeth; Williams, Robyn; Dunn, Sandra

    2012-06-01

    This paper reports on a collaborative qualitative study which explored education and communication practice related to chronic disease from the perspectives of Aboriginal people in a remote region of the Northern Territory, Australia, where the prevalence of chronic disease is extremely high. Most Yolngu (Aboriginal people of Northeast Arnhem Land) do not speak English as their first language and few health staff share the language and cultural background of their clients. Semi-structured interviews were conducted with Yolngu community members and health staff in their preferred language in small groups or individually, in an approach that was flexible and responsive to the concerns and priorities of Yolngu researchers and participants. As well, health education interactions were videotaped to facilitate more in-depth understanding of the strengths and challenges in communication (one video can be viewed at http://informahealthcare.com/doi/abs/10.3109/17549507.2012.663791). An iterative and collaborative process of analysis, interpretation, and verification revealed that communication and education related to chronic disease is highly ineffective, restricting the extent to which Yolngu can make informed decisions in managing their health. Yolngu participants consistently stated that they wanted a detailed and direct explanation about causes and management of chronic disease from health staff, and rarely believed this had been provided, sometimes assuming that information about their health is deliberately withheld. These serious limitations in communication and education have extensive negative consequences for individuals, their families, and health services. These findings also have broader relevance to all areas of healthcare, including allied health services, which share similar challenges in achieving effective communication. Without addressing the profound and pervasive inadequacies in communication, other interventions designed to close the gap in Indigenous

  4. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain.

    PubMed

    Tsukano, Hiroaki; Horie, Masao; Hishida, Ryuichi; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2016-02-29

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex.

  5. Quantitative map of multiple auditory cortical regions with a stereotaxic fine-scale atlas of the mouse brain

    PubMed Central

    Tsukano, Hiroaki; Horie, Masao; Hishida, Ryuichi; Takahashi, Kuniyuki; Takebayashi, Hirohide; Shibuki, Katsuei

    2016-01-01

    Optical imaging studies have recently revealed the presence of multiple auditory cortical regions in the mouse brain. We have previously demonstrated, using flavoprotein fluorescence imaging, at least six regions in the mouse auditory cortex, including the anterior auditory field (AAF), primary auditory cortex (AI), the secondary auditory field (AII), dorsoanterior field (DA), dorsomedial field (DM), and dorsoposterior field (DP). While multiple regions in the visual cortex and somatosensory cortex have been annotated and consolidated in recent brain atlases, the multiple auditory cortical regions have not yet been presented from a coronal view. In the current study, we obtained regional coordinates of the six auditory cortical regions of the C57BL/6 mouse brain and illustrated these regions on template coronal brain slices. These results should reinforce the existing mouse brain atlases and support future studies in the auditory cortex. PMID:26924462

  6. Reduction of variance in measurements of average metabolite concentration in anatomically-defined brain regions

    NASA Astrophysics Data System (ADS)

    Larsen, Ryan J.; Newman, Michael; Nikolaidis, Aki

    2016-11-01

    Multiple methods have been proposed for using Magnetic Resonance Spectroscopy Imaging (MRSI) to measure representative metabolite concentrations of anatomically-defined brain regions. Generally these methods require spectral analysis, quantitation of the signal, and reconciliation with anatomical brain regions. However, to simplify processing pipelines, it is practical to only include those corrections that significantly improve data quality. Of particular importance for cross-sectional studies is knowledge about how much each correction lowers the inter-subject variance of the measurement, thereby increasing statistical power. Here we use a data set of 72 subjects to calculate the reduction in inter-subject variance produced by several corrections that are commonly used to process MRSI data. Our results demonstrate that significant reductions of variance can be achieved by performing water scaling, accounting for tissue type, and integrating MRSI data over anatomical regions rather than simply assigning MRSI voxels with anatomical region labels.

  7. Regional anatomy of the pedunculopontine nucleus: relevance for deep brain stimulation.

    PubMed

    Fournier-Gosselin, Marie-Pierre; Lipsman, Nir; Saint-Cyr, Jean A; Hamani, Clement; Lozano, Andres M

    2013-09-01

    The pedunculopontine nucleus (PPN) is currently being investigated as a potential deep brain stimulation target to improve gait and posture in Parkinson's disease. This review examines the complex anatomy of the PPN region and suggests a functional mapping of the surrounding nuclei and fiber tracts that may serve as a guide to a more accurate placement of electrodes while avoiding potentially adverse effects. The relationships of the PPN were examined in different human brain atlases. Schematic representations of those structures in the vicinity of the PPN were generated and correlated with their potential stimulation effects. By providing a functional map and representative schematics of the PPN region, we hope to optimize the placement of deep brain stimulation electrodes, thereby maximizing safety and clinical efficacy.

  8. Regional brain gray and white matter changes in perinatally HIV-infected adolescents.

    PubMed

    Sarma, Manoj K; Nagarajan, Rajakumar; Keller, Margaret A; Kumar, Rajesh; Nielsen-Saines, Karin; Michalik, David E; Deville, Jaime; Church, Joseph A; Thomas, M Albert

    2014-01-01

    Despite the success of antiretroviral therapy (ART), perinatally infected HIV remains a major health problem worldwide. Although advance neuroimaging studies have investigated structural brain changes in HIV-infected adults, regional gray matter (GM) and white matter (WM) volume changes have not been reported in perinatally HIV-infected adolescents and young adults. In this cross-sectional study, we investigated regional GM and WM changes in 16 HIV-infected youths receiving ART (age 17.0 ± 2.9 years) compared with age-matched 14 healthy controls (age 16.3 ± 2.3 years) using magnetic resonance imaging (MRI)-based high-resolution T1-weighted images with voxel based morphometry (VBM) analyses. White matter atrophy appeared in perinatally HIV-infected youths in brain areas including the bilateral posterior corpus callosum (CC), bilateral external capsule, bilateral ventral temporal WM, mid cerebral peduncles, and basal pons over controls. Gray matter volume increase was observed in HIV-infected youths for several regions including the left superior frontal gyrus, inferior occipital gyrus, gyrus rectus, right mid cingulum, parahippocampal gyrus, bilateral inferior temporal gyrus, and middle temporal gyrus compared with controls. Global WM and GM volumes did not differ significantly between groups. These results indicate WM injury in perinatally HIV-infected youths, but the interpretation of the GM results, which appeared as increased regional volumes, is not clear. Further longitudinal studies are needed to clarify if our results represent active ongoing brain infection or toxicity from HIV treatment resulting in neuronal cell swelling and regional increased GM volume. Our findings suggest that assessment of regional GM and WM volume changes, based on VBM procedures, may be an additional measure to assess brain integrity in HIV-infected youths and to evaluate success of current ART therapy for efficacy in the brain.

  9. Investigating Connectivity of Orbitomedial Prefrontal Region in a Patient with Traumatic Brain Injury.

    PubMed

    Hepdurgun, Cenan; Özalay, Özgün; Eroğlu, Seda; Polat Nazlı, Irmak; Kitiş, Ömer; Gönül, Ali Saffet

    2016-01-01

    The majority of the research studying the prefrontal region has focused on gray matter injury. However, recent studies show that damage to white matter also contributes to the development of cognitive impairment after traumatic brain injury (TBI). Through the use of diffusion tensor imaging (DTI), it is now possible to assess the white matter fiber pathways between brain regions. With Diffusion Tensor Tractography (DTT), fibers of interest can be three dimensionally reconstructed and associated measurements can be performed. In this paper, we present the case of an individual that suffered from panic attacks, behavioral changes, auditory hallucinations and disturbing bodily sensations after traumatic brain injury. The patient was evaluated with a detailed clinical and neuropsychological assessment, magnetic resonance imaging (MRI) and DTI. MRI revealed cystic encephalomalasia with a diameter of 3.4 cm in the left orbitomedial frontal region. With DTT, major white matter tracts of the traumatized area were compared with symmetrical tracts in the contralateral side. Streamline count for the right inferior fronto-occipital fasciculus (iFOF) was 54 while no streamlines could be found for the left iFOF. For the left uncinate fasciculus and the left cingulum, streamline counts were significantly lower compared with the right side (62% and 34% lower; respectively). White matter damage in TBI can cause dysfunction of different brain regions through disruption of connections with the traumatized area. In this case report, we emphasized that symptoms were not limited with dysfunction of the traumatized region and the regular functions of other brain regions were also affected via the disturbance of connection pathways.

  10. The transitional association between β-amyloid pathology and regional brain atrophy.

    PubMed

    Insel, Philip S; Mattsson, Niklas; Donohue, Michael C; Mackin, R Scott; Aisen, Paul S; Jack, Clifford R; Shaw, Leslie M; Trojanowski, John Q; Weiner, Michael W

    2015-10-01

    Alzheimer's disease (AD) is characterized by the accumulation of β-amyloid (Aβ) associated with brain atrophy and cognitive decline. The functional form to model the association between Aβ and regional brain atrophy has not been well defined. To determine the relationship between Aβ and atrophy, we compared the performance of the usual dichotomization of cerebrospinal fluid (CSF) Aβ to identify subjects as Aβ+ and Aβ- with a trilinear spline model of CSF Aβ. One hundred and eighty-three subjects with mild cognitive impairment and 108 cognitively normal controls with baseline CSF Aβ and up to 4 years of longitudinal magnetic resonance imaging data from the Alzheimer's Disease Neuroimaging Initiative were analyzed using mixed-effects regression. Piecewise-linear splines were used to evaluate the nonlinear nature of the association between CSF Aβ and regional atrophy and to identify points of acceleration of atrophy with respect to Aβ. Several parameterizations of CSF Aβ were compared using likelihood ratio tests and the Akaike information criterion. Periods of acceleration of atrophy in which subjects transition from CSF Aβ negativity to CSF Aβ positivity were estimated from the spline models and tested for significance. Spline models resulted in better fits for many temporal and parietal regions compared with the dichotomous models. The trilinear model showed that periods of acceleration of atrophy varied greatly by region with early changes seen in the insula, amygdala, precuneus, hippocampus, and other temporal regions, occurring before the clinical threshold for CSF Aβ positivity. The use of piecewise-linear splines provides an improved model of the nonlinear association between CSF Aβ and regional atrophy in regions implicated in the progression of AD. The important biological finding of this work is that some brain regions show periods of accelerated volume loss well before the CSF Aβ42 threshold. This implies that signs of brain atrophy

  11. The effect of the stereoisomers of butaclamol on neurotensin content in discrete regions of the rat brain.

    PubMed

    Bissette, G; Dauer, W T; Kilts, C D; O'Connor, L; Nemeroff, C B

    1988-12-01

    The prevailing hypothesis concerning the mechanism of antipsychotic drug action is principally based on the striking correlation between their clinical potency and their potency in blockade of D2 dopamine receptors. However, most of these compounds also have effects at serotonin, acetylcholine, histamine, and alpha-adrenergic receptors and have recently been shown to alter the concentrations of certain neuropeptides in the rat brain after chronic drug administration. One such neuropeptide that is increased in concentration in dopamine terminal regions by clinically effective neuroleptic drugs is neurotensin (NT). Neurotensin is closely associated with dopamine neurons, as demonstrated by evidence derived from anatomic, physiologic, and pharmacologic studies. In this report, we determined the effects of chronic administration of the potent D2 receptor antagonist (+)-butaclamol and its inactive (-) stereoisomer on regional brain NT content. Moreover, we sought to determine whether the effects of haloperidol on NT concentrations can be antagonized by concomitant administration of an indirect dopamine agonist, d-amphetamine. Neurotensin content in the caudate nucleus and nucleus accumbens of the rat were significantly increased by 3 weeks of daily injections of haloperidol or (+)-butaclamol, but not (-)-butaclamol. d-Amphetamine did not alter this effect of haloperidol on NT concentrations in either the nucleus accumbens or caudate nucleus. These data are concordant with the hypothesis that D2 receptor blockade is required for NT concentration increases after antipsychotic drug treatment and that the increase in synaptic cleft dopamine content produced by d-amphetamine cannot reverse this effect of dopamine receptor antagonists.

  12. Development of T2-relaxation Values in Regional Brain Sites during Adolescence

    PubMed Central

    Kumar, Rajesh; Delshad, Sean; Macey, Paul M.; Woo, Mary A.; Harper, Ronald M.

    2010-01-01

    Brain tissue changes accompany multiple neurodegenerative and developmental conditions in adolescents. Complex processes that occur in the developing brain with disease can be evaluated accurately only against normal aging processes. Normal developmental changes in different brain areas alter tissue water content, which can be assessed by magnetic resonance (MR) T2-relaxometery. We acquired proton-density and T2-weighted images from 31 subjects (mean age ± SD, 17.4 ± 4.9 years; 18 male), using a 3.0-Tesla MR imaging scanner. Voxel-by-voxel T2-relaxation values were calculated, and whole-brain T2-relaxation maps constructed and normalized to a common space template. We created a set of regions-of-interest (ROIs) over cortical gray and white matter, basal ganglia, amygdala, thalamic, hypothalamic, pontine and cerebellar sites, with sizes of ROIs varying from 12 to 243 mm3; regional T2-relaxation values were determined from these ROIs and normalized T2-relaxation maps. Correlations between R2 (1/T2) values in these sites and age were assessed with Pearson’s correlation procedures, and gender differences in regional T2-relaxation values were evaluated with independent-samples t-tests. Several brain regions, but not all, showed principally positive correlations between R2 values and age; negative correlations emerged in the cerebellar peduncles. No significant differences in T2-relaxation values emerged between males and females for those areas, except for the mid pons and left occipital white matter; males showed higher T2-relaxation values over females. The findings indicate that T2-relaxation values vary with development between brain structures, and emphasize the need to correct for such age-related effects during any determination of potential changes from control values. PMID:20933351

  13. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers

    SciTech Connect

    Volkow, N.D.; Fowler, J.; Wang, G.J.; Telang, F.; Logan, J.; Jayne, M.; Ma, Y.; Pradhan, K.; Wong, C.T.; Swanson, J.M.

    2010-01-01

    Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statistical parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.

  14. Neuropeptide processing in regional brain slices: Effect of conformation and sequence

    SciTech Connect

    Li, Z.W.; Bijl, W.A.; van Nispen, J.W.; Brendel, K.; Davis, T.P. )

    1990-05-01

    The central enzymatic stability of des-enkephalin-gamma-endorphin and its synthetic analogs (cycloN alpha 6, C delta 11)beta-endorphin-(6-17) and (Pro7, Lys(Ac)9)-beta-endorphin(6-17) was studied in vitro using a newly developed, regionally dissected rat brain slice, time course incubation procedure. Tissue slice viability was estimated as the ability of the brain slice to take up or release gamma-(3H)aminobutyric acid after high K+ stimulation. Results demonstrated stability of uptake/release up to 5 hr of incubation, suggesting tissue viability over this period. The estimated half-life of peptides based on the results obtained in our incubation protocol suggest that the peptides studied are metabolized at different rates in the individual brain regions tested. A good correlation exists between the high enzyme activity of neutral endopeptidase and the rapid degradation of des-enkephalin-gamma-endorphin and (cycloN alpha 6, C delata 11)beta-endorphin-(6-17) in caudate putamen. Proline substitution combined with lysine acetylation appears to improve resistance to enzymatic metabolism in caudate putamen and hypothalamus. However, cyclization of des-enkephalin-gamma-endorphin forming an amide bond between the alpha-NH2 of the N-terminal threonine and the gamma-COOH of glutamic acid did not improve peptide stability in any brain region tested. The present study has shown that the brain slice technique is a valid and unique approach to study neuropeptide metabolism in small, discrete regions of rat brain where peptides, peptidases and receptors are colocalized and that specific structural modifications can improve peptide stability.

  15. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    EPA Science Inventory

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cereb...

  16. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    PubMed

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults.

    PubMed

    Durazzo, Timothy C; Meyerhoff, Dieter J; Murray, Donna E

    2015-07-16

    Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal) on cerebral perfusion (i.e., blood flow). Predominately middle-aged male (47 ± 11 years of age) smokers (n = 34) and non-smokers (n = 27) were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age) was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain.

  18. Functional Connectivity between Brain Regions Involved in Learning Words of a New Language

    ERIC Educational Resources Information Center

    Veroude, Kim; Norris, David G.; Shumskaya, Elena; Gullberg, Marianne; Indefrey, Peter

    2010-01-01

    Previous studies have identified several brain regions that appear to be involved in the acquisition of novel word forms. Standard word-by-word presentation is often used although exposure to a new language normally occurs in a natural, real world situation. In the current experiment we investigated naturalistic language exposure and applied a…

  19. Effects of acrylonitrile on antioxidant status of different brain regions in rats.

    PubMed

    Rongzhu, Lu; Suhua, Wang; Guangwei, Xing; Chunlan, Ren; Fangan, Han; Suxian, Chen; Zhengxian, Zhang; Qiuwei, Zhu; Aschner, Michael

    2009-12-01

    While the adverse effects of acrylonitrile (AN) on the central nervous system (CNS) are known to be mediated, at least in part, by the generation of free radicals and oxidative stress, there is a paucity of data on region-specific alterations in biomarkers of oxidative stress in the brain of AN-exposed animals. The present study was designed to examine the effects of AN on biomarkers of oxidative stress in several brain regions of adult Sprague-Dawley rats. Daily intraperitoneal (i.p.) treatment of animals to 0 (control, normal saline solution), 25, 50 or 75mgAN/kg body weight for 7 days resulted in statistically significant (p<0.05) increases in the levels of lipid peroxidation product, malondialdehyde (MDA), in the cortex and cerebellum; a statistically significant (p<0.05) decrease MDA levels were noted in the striatum. Contents of reduced glutathione (GSH) were significantly (p<0.05) decreased in cortex, cerebellum and hippocampus. The activities of the antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (GPx) were differentially affected by AN and these effects were brain region-specific and AN dose-dependent. Taken together, these data suggest brain region-specific effects of AN on lipid peroxidation, activities of antioxidant enzymes and non-enzymatic antioxidant levels. These effects may provide biochemical evidence for AN-induced neurobehavioral damage and disturbance of monoamine neurotransmitters.

  20. Age-and Brain Region-Specific Differences in Mitochondrial Bioenergetics in Brown Norway Rats

    EPA Science Inventory

    Mitochondria are central regulators of energy homeostasis and play a pivotal role in mechanisms of cellular senescence. The objective of the present study was to evaluate mitochondrial bio­-energetic parameters in five brain regions [brainstem (BS), frontal cortex (FC), cereb...

  1. Comparison of Regional Brain Perfusion Levels in Chronically Smoking and Non-Smoking Adults

    PubMed Central

    Durazzo, Timothy C.; Meyerhoff, Dieter J.; Murray, Donna E.

    2015-01-01

    Chronic cigarette smoking is associated with numerous abnormalities in brain neurobiology, but few studies specifically investigated the chronic effects of smoking (compared to the acute effects of smoking, nicotine administration, or nicotine withdrawal) on cerebral perfusion (i.e., blood flow). Predominately middle-aged male (47 ± 11 years of age) smokers (n = 34) and non-smokers (n = 27) were compared on regional cortical perfusion measured by continuous arterial spin labeling magnetic resonance studies at 4 Tesla. Smokers showed significantly lower perfusion than non-smokers in the bilateral medial and lateral orbitofrontal cortices, bilateral inferior parietal lobules, bilateral superior temporal gyri, left posterior cingulate, right isthmus of cingulate, and right supramarginal gyrus. Greater lifetime duration of smoking (adjusted for age) was related to lower perfusion in multiple brain regions. The results indicated smokers showed significant perfusion deficits in anterior cortical regions implicated in the development, progression, and maintenance of all addictive disorders. Smokers concurrently demonstrated reduced blood flow in posterior brain regions that show morphological and metabolic aberrations as well as elevated beta amyloid deposition demonstrated by those with early stage Alzheimer disease. The findings provide additional novel evidence of the adverse effects of cigarette smoking on the human brain. PMID:26193290

  2. Astrocytes and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids.

    PubMed

    Hofmann, Kristina; Rodriguez-Rodriguez, Rosalia; Gaebler, Anne; Casals, Núria; Scheller, Anja; Kuerschner, Lars

    2017-09-07

    The grey and white matter regions of the mammalian brain consist of both neurons and neuroglial cells. Among the neuroglia, the two macroglia oligodendrocytes and astrocytes are the most abundant cell types. While the major function of oligodendrocytes is the formation of the lipid-rich myelin structure, the heterogeneous group of astrocytes fulfils a multitude of important roles in cerebral development and homeostasis. Brain lipid homeostasis involves the synthesis of a specific cerebral lipidome by local lipid metabolism. In this study we have investigated the fatty acid uptake and lipid biosynthesis in grey and white matter regions of the murine brain. Key findings were: (i) white matter oligodendrocytes and astrocytes take up saturated and unsaturated fatty acids, (ii) different grey matter regions show varying lipid labelling intensities, (iii) the medial habenula, an epithalamic grey matter structure, and the oligodendrocytes and astrocytes therein are targeted by fatty acids, and (iv) in the medial habenula, the neutral lipid containing lipid droplets are found in cells facing the ventricle but undetectable in the habenular parenchyma. Our data indicate a role for oligodendrocytes and astrocytes in local lipid metabolism of white and grey matter regions in the brain.

  3. Individual Differences in Cognitive Function in Older Adults Predicted by Neuronal Selectivity at Corresponding Brain Regions.

    PubMed

    Jiang, Xiong; Petok, Jessica R; Howard, Darlene V; Howard, James H

    2017-01-01

    Relating individual differences in cognitive abilities to neural substrates in older adults is of significant scientific and clinical interest, but remains a major challenge. Previous functional magnetic resonance imaging (fMRI) studies of cognitive aging have mainly focused on the amplitude of fMRI response, which does not measure neuronal selectivity and has led to some conflicting findings. Here, using local regional heterogeneity analysis, or Hcorr , a novel fMRI analysis technique developed to probe the sparseness of neuronal activations as an indirect measure of neuronal selectivity, we found that individual differences in two different cognitive functions, episodic memory and letter verbal fluency, are selectively related to Hcorr -estimated neuronal selectivity at their corresponding brain regions (hippocampus and visual-word form area, respectively). This suggests a direct relationship between cognitive function and neuronal selectivity at the corresponding brain regions in healthy older adults, which in turn suggests that age-related neural dedifferentiation might contribute to rather than compensate for cognitive decline in healthy older adults. Additionally, the capability to estimate neuronal selectivity across brain regions with a single data set and link them to cognitive performance suggests that, compared to fMRI-adaptation-the established fMRI technique to assess neuronal selectivity, Hcorr might be a better alternative in studying normal aging and neurodegenerative diseases, both of which are associated with widespread changes across the brain.

  4. Identifying dysfunctional crosstalk of pathways in various regions of Alzheimer's disease brains

    PubMed Central

    2010-01-01

    Background Alzheimer's disease (AD) is a major neurodegenerative disorder leading to amnesia, cognitive impairment and dementia in the elderly. Usually this type of lesions results from dysfunctional protein cooperations in the biological pathways. In addition, AD progression is known to occur in different brain regions with particular features. Thus identification and analysis of crosstalk among dysregulated pathways as well as identification of their clusters in various diseased brain regions are expected to provide deep insights into the pathogenetic mechanism. Results Here we propose a network-based systems biology approach to detect the crosstalks among AD related pathways, as well as their dysfunctions in the six brain regions of AD patients. Through constructing a network of pathways, the relationships among AD pathway and its neighbor pathways are systematically investigated and visually presented by their intersections. We found that the significance degree of pathways related to the fatal disorders and the pathway overlapping strength can indicate the impacts of these neighbored pathways to AD development. Furthermore, the crosstalks among pathways reveal some evidence that the neighbor pathways of AD pathway closely cooperate and play important tasks in the AD progression. Conclusions Our study identifies the common and distinct features of the dysfunctional crosstalk of pathways in various AD brain regions. The global pathway crosstalk network and the clusters of relevant pathways of AD provide evidence of cooperativity among pathways for potential pathogenesis of the neuron complex disease. PMID:20840725

  5. Functional Connectivity between Brain Regions Involved in Learning Words of a New Language

    ERIC Educational Resources Information Center

    Veroude, Kim; Norris, David G.; Shumskaya, Elena; Gullberg, Marianne; Indefrey, Peter

    2010-01-01

    Previous studies have identified several brain regions that appear to be involved in the acquisition of novel word forms. Standard word-by-word presentation is often used although exposure to a new language normally occurs in a natural, real world situation. In the current experiment we investigated naturalistic language exposure and applied a…

  6. Preserved pontine glucose metabolism in Alzheimer disease: A reference region for functional brain image (PET) analysis

    SciTech Connect

    Minoshima, Satoshi; Frey, K.A.; Foster, N.L.; Kuhl, D.W.

    1995-07-01

    Our goal was to examine regional preservation of energy metabolism in Alzheimer disease (AD) and to evaluate effects of PET data normalization to reference regions. Regional metabolic rates in the pons, thalamus, putamen, sensorimotor cortex, visual cortex, and cerebellum (reference regions) were determined stereotaxically and examined in 37 patients with probable AD and 22 normal controls based on quantitative {sup 18}FDG-PET measurements. Following normalization of metabolic rates of the parietotemporal association cortex and whole brain to each reference region, distinctions of the two groups were assessed. The pons showed the best preservation of glucose metabolism in AD. Other reference regions showed relatively preserved metabolism compared with the parietotemporal association cortex and whole brain, but had significant metabolic reduction. Data normalization to the pons not only enhanced statistical significance of metabolic reduction in the parietotemporal association cortex, but also preserved the presence of global cerebral metabolic reduction indicated in analysis of the quantitative data. Energy metabolism in the pons in probable AD is well preserved. The pons is a reliable reference for data normalization and will enhance diagnostic accuracy and efficiency of quantitative and nonquantitative functional brain imaging. 39 refs., 2 figs., 3 tabs.

  7. Delineation of separate brain regions used for scientific versus engineering modes of thinking

    NASA Astrophysics Data System (ADS)

    Patterson, Clair C.

    1994-08-01

    Powerful, latent abilities for extreme sophistication in abstract rationalization as potential biological adaptive behavioral responses were installed entirely through accident and inadvertence by biological evolution in the Homo sapiens sapiens species of brain. These potentials were never used, either in precursor species as factors in evolutionary increase in hominid brain mass, nor in less sophisticated forms within social environments characterized by Hss tribal brain population densities. Those latent abilities for unnatural biological adaptive behavior were forced to become manifest in various ways by growths in sophistication of communication interactions engendered by large growths in brain population densities brought on by developments in agriculture at the onset of the Holocene. It is proposed that differences probably exist between regions of the Hss brain involved in utilitarian, engineering types of problem conceptualization-solving versus regions of the brain involved in nonutilitarian, artistic-scientific types of problem conceptualization-solving. Populations isolated on separate continents from diffusive contact and influence on cultural developments, and selected for comparison of developments during equivalent stages of technological and social sophistication in matching 4000 year periods, show, at the ends of those periods, marked differences in aesthetic attributes expressed in cosmogonies, music, and writing (nonutilitarian thinking related to science and art). On the other hand the two cultures show virtually identical developments in three major stages of metallurgical technologies (utilitarian thinking related to engineering). Such archaeological data suggest that utilitarian modes of thought may utilize combinations of neuronal circuits in brain regions that are conserved among tribal populations territorially separated from each other for tens of thousands of years. Such conservation may not be true for neuronal circuits involved in

  8. Common and specific brain regions in high- versus low-confidence recognition memory.

    PubMed

    Kim, Hongkeun; Cabeza, Roberto

    2009-07-28

    The goal of the present functional magnetic resonance imaging (fMRI) study was to investigate whether and to what extent brain regions involved in high-confidence recognition (HCR) versus low-confidence recognition (LCR) overlap or separate from each other. To this end, we performed conjunction analyses involving activations elicited during high-confidence hit, low-confidence hit, and high-confidence correct rejection responses. The analyses yielded 3 main findings. First, sensory/perceptual and associated posterior regions were common to HCR and LCR, indicating contribution of these regions to both HCR and LCR activity. This finding may help explain why these regions are among the most common in functional neuroimaging studies of episodic retrieval. Second, medial temporal lobe (MTL) and associated midline regions were associated with HCR, possibly reflecting recollection-related processes, whereas specific prefrontal cortex (PFC) regions were associated with LCR, possibly reflecting executive control processes. This finding is consistent with the notion that the MTL and PFC networks play complementary roles during episodic retrieval. Finally, within posterior parietal cortex, a dorsal region was associated with LCR, possibly reflecting top-down attentional processes, whereas a ventral region was associated with HCR, possibly reflecting bottom-up attentional processes. This finding may help explain why functional neuroimaging studies have found diverse parietal effects during episodic retrieval. Taken together, our findings provide strong evidence that HCR versus LCR, and by implication, recollection versus familiarity processes, are represented in common as well as specific brain regions.

  9. Genome-wide coexpression of steroid receptors in the mouse brain: Identifying signaling pathways and functionally coordinated regions.

    PubMed

    Mahfouz, Ahmed; Lelieveldt, Boudewijn P F; Grefhorst, Aldo; van Weert, Lisa T C M; Mol, Isabel M; Sips, Hetty C M; van den Heuvel, José K; Datson, Nicole A; Visser, Jenny A; Reinders, Marcel J T; Meijer, Onno C

    2016-03-08

    Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone receptor (Pgr)] with sets of steroid target genes that were identified in single brain regions. These coexpression relationships were also present in distinct other brain regions, suggestive of as yet unidentified coordinate regulation of brain regions by, for example, glucocorticoids and estrogens. Second, coexpression of a set of 62 known NR coregulators and the six steroid receptors in 12 nonoverlapping mouse brain regions revealed selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothalamus. The brain- and genome-wide correlations of mRNA expression levels of six steroid receptors that we provide constitute a rich resource for further predictions and understanding of brain modulation by steroid hormones.

  10. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    PubMed Central

    Jiang, De-guo; Jin, Shi-li; Li, Gong-ying; Li, Qing-qing; Li, Zhi-ruo; Ma, Hong-xia; Zhuo, Chuan-jun; Jiang, Rong-huan; Ye, Min-jie

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress. PMID:27857753

  11. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress.

    PubMed

    Jiang, De-Guo; Jin, Shi-Li; Li, Gong-Ying; Li, Qing-Qing; Li, Zhi-Ruo; Ma, Hong-Xia; Zhuo, Chuan-Jun; Jiang, Rong-Huan; Ye, Min-Jie

    2016-09-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry and in situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no significant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our findings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  12. Altered regional connectivity reflecting effects of different anaesthesia protocols in the mouse brain.

    PubMed

    Wu, Tong; Grandjean, Joanes; Bosshard, Simone C; Rudin, Markus; Reutens, David; Jiang, Tianzi

    2017-04-01

    Studies in mice using resting-state functional magnetic resonance imaging (rs-fMRI) have provided opportunities to investigate the effects of pharmacological manipulations on brain function and map the phenotypes of mouse models of human brain disorders. Mouse rs-fMRI is typically performed under anaesthesia, which induces both regional suppression of brain activity and disruption of large-scale neural networks. Previous comparative studies using rodents investigating various drug effects on long-distance functional connectivity (FC) have reported agent-specific FC patterns, however, effects of regional suppression are sparsely explored. Here we examined changes in regional connectivity under six different anaesthesia conditions using mouse rs-fMRI with the goal of refining the framework of understanding the brain activation under anaesthesia at a local level. Regional homogeneity (ReHo) was used to map local synchronization in the brain, followed by analysis of several brain areas based on ReHo maps. The results revealed high local coherence in most brain areas. The primary somatosensory cortex and caudate-putamen showed agent-specific properties. Lower local coherence in the cingulate cortex was observed under medetomidine, particularly when compared to the combination of medetomidine and isoflurane. The thalamus was associated with retained local coherence across anaesthetic levels and multiple nuclei. These results show that anaesthesia induced by the investigated anaesthetics through different molecular targets promote agent-specific regional connectivity. In addition, ReHo is a data-driven method with minimum user interaction, easy to use and fast to compute. Given that examination of the brain at a local level is widely applied in human rs-fMRI studies, our results show its sensitivity to extract information on varied neuronal activity under six different regimens relevant to mouse functional imaging. These results, therefore, will inform future rs

  13. Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions.

    PubMed

    Toschi, Nicola; Kim, Jieun; Sclocco, Roberta; Duggento, Andrea; Barbieri, Riccardo; Kuo, Braden; Napadow, Vitaly

    2017-01-01

    The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity.

  14. Functional approach using intraoperative brain mapping and neurophysiological monitoring for the surgical treatment of brain metastases in the central region.

    PubMed

    Sanmillan, Jose L; Fernández-Coello, Alejandro; Fernández-Conejero, Isabel; Plans, Gerard; Gabarrós, Andreu

    2017-03-01

    OBJECTIVE Brain metastases are the most frequent intracranial malignant tumor in adults. Surgical intervention for metastases in eloquent areas remains controversial and challenging. Even when metastases are not infiltrating intra-parenchymal tumors, eloquent areas can be affected. Therefore, this study aimed to describe the role of a functional guided approach for the resection of brain metastases in the central region. METHODS Thirty-three patients (19 men and 14 women) with perirolandic metastases who were treated at the authors' institution were reviewed. All participants underwent resection using a functional guided approach, which consisted of using intraoperative brain mapping and/or neurophysiological monitoring to aid in the resection, depending on the functionality of the brain parenchyma surrounding each metastasis. Motor and sensory functions were monitored in all patients, and supplementary motor and language area functions were assessed in 5 and 4 patients, respectively. Clinical data were analyzed at presentation, discharge, and the 6-month follow-up. RESULTS The most frequent presenting symptom was seizure, followed by paresis. Gross-total removal of the metastasis was achieved in 31 patients (93.9%). There were 6 deaths during the follow-up period. After the removal of the metastasis, 6 patients (18.2%) presented with transient neurological worsening, of whom 4 had worsening of motor function impairment and 2 had acquired new sensory disturbances. Total recovery was achieved before the 3rd month of follow-up in all cases. Excluding those patients who died due to the progression of systemic illness, 88.9% of patients had a Karnofsky Performance Scale score greater than 80% at the 6-month follow-up. The mean survival time was 24.4 months after surgery. CONCLUSIONS The implementation of intraoperative electrical brain stimulation techniques in the resection of central region metastases may improve surgical planning and resection and may spare eloquent

  15. Recruitment of Language-, Emotion- and Speech-Timing Associated Brain Regions for Expressing Emotional Prosody: Investigation of Functional Neuroanatomy with fMRI

    PubMed Central

    Mitchell, Rachel L. C.; Jazdzyk, Agnieszka; Stets, Manuela; Kotz, Sonja A.

    2016-01-01

    We aimed to progress understanding of prosodic emotion expression by establishing brain regions active when expressing specific emotions, those activated irrespective of the target emotion, and those whose activation intensity varied depending on individual performance. BOLD contrast data were acquired whilst participants spoke non-sense words in happy, angry or neutral tones, or performed jaw-movements. Emotion-specific analyses demonstrated that when expressing angry prosody, activated brain regions included the inferior frontal and superior temporal gyri, the insula, and the basal ganglia. When expressing happy prosody, the activated brain regions also included the superior temporal gyrus, insula, and basal ganglia, with additional activation in the anterior cingulate. Conjunction analysis confirmed that the superior temporal gyrus and basal ganglia were activated regardless of the specific emotion concerned. Nevertheless, disjunctive comparisons between the expression of angry and happy prosody established that anterior cingulate activity was significantly higher for angry prosody than for happy prosody production. Degree of inferior frontal gyrus activity correlated with the ability to express the target emotion through prosody. We conclude that expressing prosodic emotions (vs. neutral intonation) requires generic brain regions involved in comprehending numerous aspects of language, emotion-related processes such as experiencing emotions, and in the time-critical integration of speech information. PMID:27803656

  16. Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging

    PubMed Central

    Zanni, Giulia; Michno, Wojciech; Di Martino, Elena; Tjärnlund-Wolf, Anna; Pettersson, Jean; Mason, Charlotte Elizabeth; Hellspong, Gustaf; Blomgren, Klas; Hanrieder, Jörg

    2017-01-01

    Lithium (Li) is a potent mood stabilizer and displays neuroprotective and neurogenic properties. Despite extensive investigations, the mechanisms of action have not been fully elucidated, especially in the juvenile, developing brain. Here we characterized lithium distribution in the juvenile mouse brain during 28 days of continuous treatment that result in clinically relevant serum concentrations. By using Time-of-Flight Secondary Ion Mass Spectrometry- (ToF-SIMS) based imaging we were able to delineate temporospatial lithium profile throughout the brain and concurrent distribution of endogenous lipids with high chemical specificity and spatial resolution. We found that Li accumulated in neurogenic regions and investigated the effects on hippocampal neurogenesis. Lithium increased proliferation, as judged by Ki67-immunoreactivity, but did not alter the number of doublecortin-positive neuroblasts at the end of the treatment period. Moreover, ToF-SIMS revealed a steady depletion of sphingomyelin in white matter regions during 28d Li-treatment, particularly in the olfactory bulb. In contrast, cortical levels of cholesterol and choline increased over time in Li-treated mice. This is the first study describing ToF-SIMS imaging for probing the brain-wide accumulation of supplemented Li in situ. The findings demonstrate that this technique is a powerful approach for investigating the distribution and effects of neuroprotective agents in the brain. PMID:28098178

  17. Lithium Accumulates in Neurogenic Brain Regions as Revealed by High Resolution Ion Imaging.

    PubMed

    Zanni, Giulia; Michno, Wojciech; Di Martino, Elena; Tjärnlund-Wolf, Anna; Pettersson, Jean; Mason, Charlotte Elizabeth; Hellspong, Gustaf; Blomgren, Klas; Hanrieder, Jörg

    2017-01-18

    Lithium (Li) is a potent mood stabilizer and displays neuroprotective and neurogenic properties. Despite extensive investigations, the mechanisms of action have not been fully elucidated, especially in the juvenile, developing brain. Here we characterized lithium distribution in the juvenile mouse brain during 28 days of continuous treatment that result in clinically relevant serum concentrations. By using Time-of-Flight Secondary Ion Mass Spectrometry- (ToF-SIMS) based imaging we were able to delineate temporospatial lithium profile throughout the brain and concurrent distribution of endogenous lipids with high chemical specificity and spatial resolution. We found that Li accumulated in neurogenic regions and investigated the effects on hippocampal neurogenesis. Lithium increased proliferation, as judged by Ki67-immunoreactivity, but did not alter the number of doublecortin-positive neuroblasts at the end of the treatment period. Moreover, ToF-SIMS revealed a steady depletion of sphingomyelin in white matter regions during 28d Li-treatment, particularly in the olfactory bulb. In contrast, cortical levels of cholesterol and choline increased over time in Li-treated mice. This is the first study describing ToF-SIMS imaging for probing the brain-wide accumulation of supplemented Li in situ. The findings demonstrate that this technique is a powerful approach for investigating the distribution and effects of neuroprotective agents in the brain.

  18. Brain regions essential for improved lexical access in an aged aphasic patient: a case report.

    PubMed

    Meinzer, Marcus; Flaisch, Tobias; Obleser, Jonas; Assadollahi, Ramin; Djundja, Daniela; Barthel, Gabriela; Rockstroh, Brigitte

    2006-08-17

    The relationship between functional recovery after brain injury and concomitant neuroplastic changes is emphasized in recent research. In the present study we aimed to delineate brain regions essential for language performance in aphasia using functional magnetic resonance imaging and acquisition in a temporal sparse sampling procedure, which allows monitoring of overt verbal responses during scanning. An 80-year old patient with chronic aphasia (2 years post-onset) was investigated before and after intensive language training using an overt picture naming task. Differential brain activation in the right inferior frontal gyrus for correct word retrieval and errors was found. Improved language performance following therapy was mirrored by increased fronto-thalamic activation while stability in more general measures of attention/concentration and working memory was assured. Three healthy age-matched control subjects did not show behavioral changes or increased activation when tested repeatedly within the same 2-week time interval. The results bear significance in that the changes in brain activation reported can unequivocally be attributed to the short-term training program and a language domain-specific plasticity process. Moreover, it further challenges the claim of a limited recovery potential in chronic aphasia, even at very old age. Delineation of brain regions essential for performance on a single case basis might have major implications for treatment using transcranial magnetic stimulation.

  19. Individual differences in personality traits reflect structural variance in specific brain regions.

    PubMed

    Gardini, Simona; Cloninger, C Robert; Venneri, Annalena

    2009-06-30

    Personality dimensions such as novelty seeking (NS), harm avoidance (HA), reward dependence (RD) and persistence (PER) are said to be heritable, stable across time and dependent on genetic and neurobiological factors. Recently a better understanding of the relationship between personality traits and brain structures/systems has become possible due to advances in neuroimaging techniques. This Magnetic Resonance Imaging (MRI) study investigated if individual differences in these personality traits reflected structural variance in specific brain regions. A large sample of eighty five young adult participants completed the Three-dimensional Personality Questionnaire (TPQ) and had their brain imaged with MRI. A voxel-based correlation analysis was carried out between individuals' personality trait scores and grey matter volume values extracted from 3D brain scans. NS correlated positively with grey matter volume in frontal and posterior cingulate regions. HA showed a negative correlation with grey matter volume in orbito-frontal, occipital and parietal structures. RD was negatively correlated with grey matter volume in the caudate nucleus and in the rectal frontal gyrus. PER showed a positive correlation with grey matter volume in the precuneus, paracentral lobule and parahippocampal gyrus. These results indicate that individual differences in the main personality dimensions of NS, HA, RD and PER, may reflect structural variance in specific brain areas.

  20. Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility.

    PubMed

    Coleman, Leon Garland; Liu, Wen; Oguz, Ipek; Styner, Martin; Crews, Fulton T

    2014-01-01

    Adolescents binge drink more than any other age group, increasing risk of disrupting the development of the frontal cortex. We hypothesized that adolescent binge drinking would lead to persistent alterations in adulthood. In this study, we modeled adolescent weekend underage binge-drinking, using adolescent mice (post-natal days [P] 28-37). The adolescent intermittent binge ethanol (AIE) treatment includes 6 binge intragastric doses of ethanol in an intermittent pattern across adolescence. Assessments were conducted in adulthood following extended abstinence to determine if there were persistent changes in adults. Reversal learning, open field and other behavioral assessments as well as brain structure using magnetic imaging and immunohistochemistry were determined. We found that AIE did not impact adult Barnes Maze learning. However, AIE did cause reversal learning deficits in adults. AIE also caused structural changes in the adult brain. AIE was associated with adulthood volume enlargements in specific brain regions without changes in total brain volume. Enlarged regions included the orbitofrontal cortex (OFC, 4%), cerebellum (4.5%), thalamus (2%), internal capsule (10%) and genu of the corpus callosum (7%). The enlarged OFC volume in adults after AIE is consistent with previous imaging studies in human adolescents. AIE treatment was associated with significant increases in the expression of several extracellular matrix (ECM) proteins in the adult OFC including WFA (55%), Brevican (32%), Neurocan (105%), Tenacin-C (25%), and HABP (5%). These findings are consistent with AIE causing persistent changes in brain structure that could contribute to a lack of behavioral flexibility.

  1. Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility

    PubMed Central

    Coleman, Leon Garland; Liu, Wen; Oguz, Ipek; Styner, Martin; Crews, Fulton T.

    2014-01-01

    Adolescents binge drink more than any other age group, increasing risk of disrupting the development of the frontal cortex. We hypothesized that adolescent binge drinking would lead to persistent alterations in adulthood. In this study, we modeled adolescent weekend underage binge-drinking, using adolescent mice (post-natal days [P] 28–37). The adolescent intermittent binge ethanol (AIE) treatment includes 6 binge intragastric doses of ethanol in an intermittent pattern across adolescence. Assessments were conducted in adulthood following extended abstinence to determine if there were persistent changes in adults. Reversal learning, open field and other behavioral assessments as well as brain structure using magnetic imaging and immunohistochemistry were determined. We found AIE did not impact adult Barnes Maze learning. However, AIE did cause reversal learning deficits in adults. AIE also caused structural changes in the adult brain. AIE was associated with adulthood volume enlargements in specific brain regions without changes in total brain volume. Enlarged regions included the orbitofrontal cortex (OFC, 4%), cerebellum (4.5%), thalamus (2%), internal capsule (10%) and genu of the corpus callosum (7%). The enlarged OFC volume in adults after AIE is consistent with previous imaging studies in human adolescents. AIE treatment was associated with significant increases in the expression of several extracellular matrix (ECM) proteins in the adult OFC including WFA (55%), Brevican (32%), Neurocan (105%), Tenacin-C (25%), and HABP (5%). These findings are consistent with AIE causing persistent changes in brain structure that could contribute to a lack of behavioral flexibility. PMID:24275185

  2. Evaluation of Different EEG Acquisition Systems Concerning Their Suitability for Building a Brain-Computer Interface: Case Studies.

    PubMed

    Pinegger, Andreas; Wriessnegger, Selina C; Faller, Josef; Müller-Putz, Gernot R

    2016-01-01

    One important aspect in non-invasive brain-computer interface (BCI) research is to acquire the electroencephalogram (EEG) in a proper way. From an end-user perspective, it means with maximum comfort and without any extra inconveniences (e.g., washing the hair), whereas from a technical perspective, the signal quality has to be optimal to make the BCI work effectively and efficiently. In this work, we evaluated three different commercially available EEG acquisition systems that differ in the type of electrodes (gel-, water-, and dry-based), the amplifier technique, and the data transmission method. Every system was tested regarding three different aspects, namely, technical, BCI effectiveness and efficiency (P300 communication and control), and user satisfaction (comfort). We found that water-based system had the lowest short circuit noise level, the hydrogel-based system had the highest P300 spelling accuracies, and the dry electrode-based system caused the least inconveniences. Therefore, building a reliable BCI is possible with all the evaluated systems, and it is on the user to decide which system meets the given requirements best.

  3. Changes in multiple brain regions underlie species differences in a complex, congenital behavior

    PubMed Central

    Balaban, Evan

    1997-01-01

    The evolutionary brain modifications that produce any complex, congenital behavioral difference between two species have never been identified. Evolutionary processes may (i) alter a single, “higher” brain area that generates and/or coordinates the diverse motor components of a complex act; (ii) separately change independent, “lower” brain areas that modulate the fine motor control of the individual components; or (iii) modify both types of areas. This study explores the brain localization of a species difference in one such behavior, the crowing of chickens (Gallus gallus domesticus) and Japanese quail (Coturnix coturnix japonica). Two major subcomponents of the behavioral difference can be independently transferred with interspecies transplantation of separate brain regions, despite the fact that these components, sound and patterned head movement, occur together in a highly integrated fashion. To our knowledge, this is the first experimental demonstration that species differences in a complex behavior are built up from separate changes to distinct cell groups in different parts of the brain and that these cell groups have independent effects on individual behavioral components. PMID:9050894

  4. Neuronal DNA content variation (DCV) with regional and individual differences in the human brain

    PubMed Central

    Westra, Jurjen W.; Rivera, Richard R.; Bushman, Diane M.; Yung, Yun C.; Peterson, Suzanne E.; Barral, Serena; Chun, Jerold

    2010-01-01

    It is widely assumed that the human brain contains genetically identical cells through which post-genomic mechanisms contribute to its enormous diversity and complexity. The relatively recent identification of neural cells throughout the neuraxis showing somatically generated mosaic aneuploidy indicates that the vertebrate brain can be genomically heterogeneous (Rehen et al., 2001; Rehen et al., 2005; Westra et al., 2008; Yurov et al., 2007). The extent of human neural aneuploidy is currently unknown because of technically limited sample sizes, but is reported to be small (Iourov et al., 2006). During efforts to interrogate larger cell populations using DNA content analyses, a surprising result was obtained: human frontal cortex brain cells were found to display “DNA content variation (DCV)” characterized by an increased range of DNA content both in cell populations and within single cells. On average, DNA content increased by ~250 megabases often representing a substantial fraction of cells within a given sample. DCV within individual human brains showed regional variation, with increased prevalence in the frontal cortex and less variation in the cerebellum. Further, DCV varied between individual brains. These results identify DCV as a new feature of the human brain, encompassing and further extending genomic alterations produced by aneuploidy, which may contribute to neural diversity in normal and pathophysiological states, altered functions of normal and disease-linked genes, and differences amongst individuals. PMID:20737596

  5. Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain.

    PubMed

    van der Meer, Thomas P; Artacho-Cordón, Francisco; Swaab, Dick F; Struik, Dicky; Makris, Konstantinos C; Wolffenbuttel, Bruce H R; Frederiksen, Hanne; van Vliet-Ostaptchouk, Jana V

    2017-09-13

    Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain regions: the hypothalamus and white-matter tissue. In addition, a potential association between these npEDCs concentrations and obesity was investigated. Post-mortem brain material was obtained from 24 individuals, made up of 12 obese and 12 normal-weight subjects (defined as body mass index (BMI) > 30 and BMI < 25 kg/m², respectively). Nine phenols and seven parabens were measured by isotope dilution TurboFlow-LC-MS/MS. In the hypothalamus, seven suspect npEDCs (bisphenol A, triclosan, triclocarban and methyl-, ethyl-, n-propyl-, and benzyl paraben) were detected, while five npEDCs (bisphenol A, benzophenone-3, triclocarban, methyl-, and n-propyl paraben) were found in the white-matter brain tissue. We observed higher levels of methylparaben (MeP) in the hypothalamic tissue of obese subjects as compared to controls (p = 0.008). Our findings indicate that some suspected npEDCs are able to cross the blood-brain barrier. Whether the presence of npEDCs can adversely affect brain function and to which extent the detected concentrations are physiologically relevant needs to be further investigated.

  6. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions.

    PubMed

    Puthiyedth, Nisha; Riveros, Carlos; Berretta, Regina; Moscato, Pablo

    2016-01-01

    Alzheimer's disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we identified

  7. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer’s Disease Affected Brain Regions

    PubMed Central

    Berretta, Regina; Moscato, Pablo

    2016-01-01

    Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD

  8. Regional brain uptake and retention of Tc-99m-propylene amine oxime derivatives

    SciTech Connect

    Chaplin, S.B.; Oberle, P.O.; Hoffman, T.J.; Volkert, W.A.; Holmes, R.A.; Nowotnik, D.P.; Pickett, R.D.; Neirinckx, R.

    1985-05-01

    Tc-99m-propylene amine oxime (Tc-99m-PnAO) is a neutral lipophilic chelate that rapidly and passively enters the cerebral cortex (80% on first pass in baboon brain) and then clears exponentially leaving inadequate activity to perform conventional SPECT brain imaging. When side chains are attached to the PnAO backbone lipophilicity is increased, as well as brain retention. In this work the authors evaluated regional brain uptake and retention of Tc-99m-PnAO and several of its derivatives in rat brain using serial autoradiography (ARG). Autoradiographs of each Tc-99m chelate at 5 sec. post peak brain uptake demonstrate discrete grey to white matter differentiation. White matter tracts are well delineated and the darker areas of grey matter appearing in the midbrain and thalamus, corresponding to areas of high capillary density and high blood flow documented with C-14-iodoantipyrine, are easily distinguished. Within 5 min. of the peak uptake the regional uptake and grey/white differentiation is lost on the Tc-99m-PnAO ARG. In contrast the 5 min. ARG of the more lipophilic Tc-99m, chelate with dimethyl-PnAO (DMPnAO) shows the complete reverse of the 5 sec. ARG, with greater activity in the white matter tracts than in the grey matter. One of the derivatives, tetramethyl-PAO (TMPAO) complexed with Tc-99m is retained in the grey matter of rat brain and shows persistent grey to white localization for at least 60 min., analogous to what has been reported with I-123-IMP. These results suggest that Tc-99m-TMPAO or one of its derivatives may be appropriate for SPECT imaging of cerebral blood flow abnormalities.

  9. The effect of fasting on 5-hydroxytryptamine metabolism in brain regions of the albino rat.

    PubMed Central

    Fuenmayor, L. D.; García, S.

    1984-01-01

    The turnover of 5-hydroxytryptamine (5-HT) in the whole brain and different brain regions was studied in rats fasted for 24 h. These rats showed an increased tissue concentration of the amine in the whole brain and of its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in the whole brain, the striatum, the combined pons-medulla and the cerebral cortex. The accumulation of 5-HIAA after probenecid was increased by fasting in the regions mentioned above except for the striatum. The effect of probenecid was also increased by fasting in the midbrain, the hypothalamus and the hippocampus. In the striatum, the administration of probenecid produced a smaller increase in 5-HIAA concentration in fasted than in fed rats. The decay of 5-HT following p-chlorophenylalanine (PCPA) was increased in the hypothalamus of fasted rats at 16 h, but not at 4 h, after the intraperitoneal administration of the inhibitor. In the midbrain, the striatum and the combined pons-medulla, food deprivation did not modify the decrease induced by PCPA. However, the inhibitor induced a reduction of food consumption in the fed group, which made this group rather similar to the fasted one and complicated the interpretation of the results in these last three cerebral areas. Our results confirm that food deprivation increases the turnover of brain 5-HT and point out that the increase probably occurs in all brain areas. This increased turnover appears to be accompanied, in the hypothalamus, by an increased neuronal release of the amine. In the striatum, fasting probably blocks the active transport system which removes acid metabolites from the brain. PMID:6207885

  10. Region- and Cell-Specific Expression of Transmembrane Collagens in Mouse Brain.

    PubMed

    Monavarfeshani, Aboozar; Knill, Courtney N; Sabbagh, Ubadah; Su, Jianmin; Fox, Michael A

    2017-01-01

    Unconventional collagens are nonfribrillar proteins that not only contribute to the structure of extracellular matrices but exhibit unique bio-activities. Although roles for unconventional collagens have been well-established in the development and function of non-neural tissues, only recently have studies identified roles for these proteins in brain development, and more specifically, in the formation and refinement of synaptic connections between neurons. Still, our understanding of the full cohort of unconventional collagens that are generated in the mammalian brain remains unclear. Here, we sought to address this gap by assessing the expression of transmembrane collagens (i.e., collagens XIII, XVII, XXIII and XXV) in mouse brain. Using quantitative PCR and in situ hybridization (ISH), we demonstrate both region- and cell-specific expression of these unique collagens in the developing brain. For the two most highly expressed transmembrane collagens (i.e., collagen XXIII and XXV), we demonstrate that they are expressed by select subsets of neurons in different parts of the brain. For example, collagen XXIII is selectively expressed by excitatory neurons in the mitral/tufted cell layer of the accessory olfactory bulb (AOB) and by cells in the inner nuclear layer (INL) of the retina. On the other hand, collagen XXV, which is more broadly expressed, is generated by subsets of excitatory neurons in the dorsal thalamus and midbrain and by inhibitory neurons in the retina, ventral thalamus and telencephalon. Not only is col25a1 expression present in retina, it appears specifically enriched in retino-recipient nuclei within the brain (including the suprachiasmatic nucleus (SCN), lateral geniculate complex, olivary pretectal nucleus (OPN) and superior colliculus). Taken together, the distinct region- and cell-specific expression patterns of transmembrane collagens suggest that this family of unconventional collagens may play unique, yet-to-be identified roles in brain

  11. Mercury exposure and neurochemical biomarkers in multiple brain regions of Wisconsin river otters (Lontra canadensis).

    PubMed

    Dornbos, Peter; Strom, Sean; Basu, Niladri

    2013-04-01

    River otters are fish-eating wildlife that bioaccumulate high levels of mercury (Hg). Mercury is a proven neurotoxicant to mammalian wildlife, but little is known about the underlying, sub-clinical effects. Here, the overall goal was to increase understanding of Hg's neurological risk to otters. First, Hg values across several brain regions and tissues were characterized. Second, in three brain regions with known sensitivity to Hg (brainstem, cerebellum, and occipital cortex), potential associations among Hg levels and neurochemical biomarkers [N-methyl-D-aspartic acid (NMDA) and gamma-aminobutyric acid (GABAA) receptor] were explored. There were no significant differences in Hg levels across eight brain regions (rank order, highest to lowest: frontal cortex, cerebellum, temporal cortex, occipital cortex, parietal cortex, basal ganglia, brainstem, and thalamus), with mean values ranging from 0.7 to 1.3 ug/g dry weight. These brain levels were significantly lower than mean values in the muscle (2.1 ± 1.4 ug/g), liver (4.7 ± 4.3 ug/g), and fur (8.8 ± 4.8 ug/g). While a significant association was found between Hg and NMDA receptor levels in the brain stem (P = 0.028, rp = -0.293), no relationships were found in the cerebellum and occipital cortex. For the GABA receptor, no relationships were found. The lack of consistent Hg-associated neurochemical changes is likely due to low brain Hg levels in these river otters, which are amongst the lowest reported.

  12. Similarities in lindane induced alterations in protein expression profiling in different brain regions with neurodegenerative diseases.

    PubMed

    Mudawal, Anubha; Singh, Anshuman; Yadav, Sanjay; Mishra, Manisha; Singh, Pradhyumna Kumar; Chandravanshi, Lalit Pratap; Mishra, Juhi; Khanna, Vinay K; Bandyopadhyay, Sanghamitra; Parmar, Devendra

    2015-11-01

    Previous studies have reported that lindane, an organochlorine pesticide induces oxidative stress in rat brain that may lead to neurodegeneration. However, as the proteins involved in lindane induced neurodegeneration are yet to be identified, the present study aims to identify the proteins that may regulate lindane induced neurotoxicity. The data showed that repeated exposure of lindane (2.5 mg/kg) for 21 days to adult rats significantly increased the reactive oxygen species and lipid peroxidation in different brain regions. Proteomic study revealed that lindane induces major dysregulation in the ubiquitin proteasome pathway. Alterations in the expression of molecular chaperones in brain regions and an increase in the expression of α-synuclein in substantia-nigra and corpus-striatum and amyloid precursor protein in hippocampus and frontal-cortex suggests the accumulation of proteins in these brain regions. Western blotting also revealed alterations in the dopaminergic and cholinergic pathways in hippocampus and substantia-nigra isolated from lindane treated rats. Neurobehavioural data indicating alterations in learning and working memory, conditioned avoidance response and motor function, supports the proteomic data. The data suggest that repeated exposure of lindane to adult rats induces alterations, which are similar to that seen in neurodegenerative diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Regional heterogeneity of cellular prion protein isoforms in the mouse brain.

    PubMed

    Beringue, Vincent; Mallinson, Gary; Kaisar, Maria; Tayebi, Mourad; Sattar, Zahid; Jackson, Graham; Anstee, David; Collinge, John; Hawke, Simon

    2003-09-01

    Prion diseases are a group of invariably fatal neurodegenerative disorders that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, and bovine spongiform encephalopathy in cattle. The infectious agent or prion is largely composed of an abnormal isoform (PrPSc) of a host encoded normal cellular protein (PrPc). The conversion of PrPc to PrPSc is a dynamic process and, for reasons that are not clear, the distribution of spongiform change and PrPSc deposition varies among prion strains. An obvious explanation for this would be that the transformation efficiency in any given brain region depends on favourable interactions between conformations of PrPc and the prion strain being propagated within it. However, identification of specific PrPc conformations has until now been hampered by a lack of suitable panels of antibodies that discriminate PrPc subspecies under native conditions. In this study, we show that monoclonal antibodies raised against recombinant human prion protein folded into alpha or beta conformations exhibit striking heterogeneity in their specificity for truncations and glycoforms of mouse brain PrPc. We then show that some of these PrPc isoforms are expressed differentially in certain mouse brain regions. This suggests that variation in the expression of PrPc conformations in different brain regions may dictate the pattern of PrPSc deposition and vacuolation, characteristic for different prion strains.

  14. Nuclear factors in human brain cells bind specifically to the JCV regulatory region.

    PubMed Central

    Khalili, K; Rappaport, J; Khoury, G

    1988-01-01

    The human polyomavirus, JCV, differs from other papovaviruses in its tissue tropism for human glial cells. Transcription of the early region of the virus, at least in part, contributes to the tissue specificity of JCV. In this study, we have synthesized oligonucleotides which span the JCV 98 bp repeat unit. Using gel mobility shift and UV cross-linking assays, we have demonstrated that four proteins from a human fetal brain extract interact specifically with the JCV promoter/enhancer. Two proteins of 82 kd and 78/80 kd recognize the 5'- and 3'-terminal regions of the JCV 98 bp repeat sequence, respectively. The mol. wt of these proteins are similar in HeLa and brain extracts. In contrast, the proteins which recognize the central region of the 98 bp enhancer are distinct in HeLa (85 kd) and fetal brain (45 kd) extracts. The possible role of these proteins in tissue-specific expression of the JCV early promoter in brain cells is discussed. Images PMID:2841118

  15. Repeated verum but not placebo acupuncture normalizes connectivity in brain regions dysregulated in chronic pain.

    PubMed

    Egorova, Natalia; Gollub, Randy L; Kong, Jian

    2015-01-01

    Acupuncture, an ancient East Asian therapy, is aimed at rectifying the imbalance within the body caused by disease. Studies evaluating the efficacy of acupuncture with neuroimaging tend to concentrate on brain regions within the pain matrix, associated with acute pain. We, however, focused on the effect of repeated acupuncture treatment specifically on brain regions known to support functions dysregulated in chronic pain disorders. Transition to chronic pain is associated with increased attention to pain, emotional rumination, nociceptive memory and avoidance learning, resulting in brain connectivity changes, specifically affecting the periaqueductal gray (PAG), medial frontal cortex (MFC) and bilateral hippocampus (Hpc). We demonstrate that the PAG-MFC and PAG-Hpc connectivity in patients with chronic pain due to knee osteoarthritis indeed correlates with clinical severity scores and further show that verum acupuncture-induced improvement in pain scores (compared to sham) is related to the modulation of PAG-MFC and PAG-Hpc connectivity in the predicted direction. This study shows that repeated verum acupuncture might act by restoring the balance in the connectivity of the key pain brain regions, altering pain-related attention and memory.

  16. Early development of arterial spin labeling to measure regional brain blood flow by MRI.

    PubMed

    Koretsky, Alan P

    2012-08-15

    Two major avenues of work converged in the late 1980's and early 1990's to give rise to brain perfusion MRI. The development of anatomical brain MRI quickly had as a major goal the generation of angiograms using tricks to label flowing blood in macroscopic vessels. These ideas were aimed at getting information about microcirculatory flow as well. Over the same time course the development of in vivo magnetic resonance spectroscopy had as its primary goal the assessment of tissue function and in particular, tissue energetics. For this the measurement of the delivery of water to tissue was critical for assessing tissue oxygenation and viability. The measurement of the washin/washout of "freely" diffusible tracers by spectroscopic based techniques pointed the way for quantitative approaches to measure regional blood flow by MRI. These two avenues came together in the development of arterial spin labeling (ASL) MRI techniques to measure regional cerebral blood flow. The early use of ASL to measure brain activation to help verify BOLD fMRI led to a rapid development of ASL based perfusion MRI. Today development and applications of regional brain blood flow measurements with ASL continues to be a major area of activity.

  17. Expression of connexin29 and 32 in the penumbra region after traumatic brain injury of mice.

    PubMed

    Moon, Younghye; Choi, So Yoen; Kim, Kyungjin; Kim, Hyun; Sun, Woong

    2010-12-29

    Connexins (Cx) are transmembrane proteins forming vertebrate gap junction channels for direct cell-cell communication. We found that the expressions of two Cx family members, Cx29 and Cx32, were progressively increased in the sharp border of injury penumbra regions after cryotraumatic brain injury. Although these two Cxs are expressed exclusively in the oligodendrocytes in the normal cerebral cortex, their expressions were increased in the astrocytes and microglia localized in the injury border. Highly selective induction of Cxs in the injury border suggests that altered Cxs may contribute to the propagations of injury-related and/or regeneration signals after acute brain injury.

  18. Exploring the relationship between personality and regional brain volume in healthy aging.

    PubMed

    Jackson, Jonathan; Balota, David A; Head, Denise

    2011-12-01

    Aging is characterized by a reduction in regional brain volumes, particularly in prefrontal and medial temporal regions. Recent evidence suggests that personality may be related to neuroanatomical integrity. The present investigation explored whether the three targeted personality traits of neuroticism, conscientiousness, and extraversion moderated cross-sectional age-related decline in measures of neural integrity. Estimates of the personality traits and volumes of cerebral gray and white matter, prefrontal and medial temporal regions were obtained in a sample of 79 healthy adults aged 44-88. Higher neuroticism was associated with smaller regional volumes and greater decreases in volume with increasing age. Higher conscientiousness was related to larger regional volumes and less decline with advancing age. These results suggest that personality may not only relate to, but may also moderate age-related cross-sectional decline in prefrontal and medial temporal regions. Copyright © 2009 Elsevier Inc. All rights reserved.

  19. Regional brain responses associated with thermogenic and psychogenic sweating events in humans

    PubMed Central

    Trevaks, David; Taylor, Nigel A. S.; McAllen, Robin M.

    2015-01-01

    Sweating events occur in response to mental stress (psychogenic) or with increased body temperature (thermogenic). We previously found that both were linked to activation of common brain stem regions, suggesting that they share the same output pathways: a putative common premotor nucleus was identified in the rostral-lateral medulla (Farrell MJ, Trevaks D, Taylor NA, McAllen RM. Am J Physiol Regul Integr Comp Physiol 304: R810–R817, 2013). We therefore looked in higher brain regions for the neural basis that differentiates the two types of sweating event. Previous work has identified hemispheric activations linked to psychogenic sweating, but no corresponding data have been reported for thermogenic sweating. Galvanic skin responses were used to measure sweating events in two groups of subjects during either psychogenic sweating (n = 11, 35.3 ± 11.8 yr) or thermogenic sweating (n = 11, 34.4 ± 10.2 yr) while regional brain activation was measured by BOLD signals in a 3-Tesla MRI scanner. Common regions activated with sweating events in both groups included the anterior and posterior cingulate cortex, insula, premotor cortex, thalamus, lentiform nuclei, and cerebellum (Pcorrected < 0.05). Psychogenic sweating events were associated with significantly greater activation in the dorsal midcingulate cortex, parietal cortex, premotor cortex, occipital cortex, and cerebellum. No hemispheric region was found to show statistically significantly greater activation with thermogenic than with psychogenic sweating events. However, a discrete cluster of activation in the anterior hypothalamus/preoptic area was seen only with thermogenic sweating events. These findings suggest that the expected association between sweating events and brain regions implicated in “arousal” may apply selectively to psychogenic sweating; the neural basis for thermogenic sweating events may be subcortical. PMID:26289468

  20. Regional brain responses associated with thermogenic and psychogenic sweating events in humans.

    PubMed

    Farrell, Michael J; Trevaks, David; Taylor, Nigel A S; McAllen, Robin M

    2015-11-01

    Sweating events occur in response to mental stress (psychogenic) or with increased body temperature (thermogenic). We previously found that both were linked to activation of common brain stem regions, suggesting that they share the same output pathways: a putative common premotor nucleus was identified in the rostral-lateral medulla (Farrell MJ, Trevaks D, Taylor NA, McAllen RM. Am J Physiol Regul Integr Comp Physiol 304: R810-R817, 2013). We therefore looked in higher brain regions for the neural basis that differentiates the two types of sweating event. Previous work has identified hemispheric activations linked to psychogenic sweating, but no corresponding data have been reported for thermogenic sweating. Galvanic skin responses were used to measure sweating events in two groups of subjects during either psychogenic sweating (n = 11, 35.3 ± 11.8 yr) or thermogenic sweating (n = 11, 34.4 ± 10.2 yr) while regional brain activation was measured by BOLD signals in a 3-Tesla MRI scanner. Common regions activated with sweating events in both groups included the anterior and posterior cingulate cortex, insula, premotor cortex, thalamus, lentiform nuclei, and cerebellum (P(corrected) < 0.05). Psychogenic sweating events were associated with significantly greater activation in the dorsal midcingulate cortex, parietal cortex, premotor cortex, occipital cortex, and cerebellum. No hemispheric region was found to show statistically significantly greater activation with thermogenic than with psychogenic sweating events. However, a discrete cluster of activation in the anterior hypothalamus/preoptic area was seen only with thermogenic sweating events. These findings suggest that the expected association between sweating events and brain regions implicated in "arousal" may apply selectively to psychogenic sweating; the neural basis for thermogenic sweating events may be subcortical.

  1. Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium.

    PubMed

    Kumar, Vijay; Bal, Amanjit; Gill, Kiran Dip

    2008-09-26

    The present study was designed with an aim to evaluate the effects of chronic aluminium exposure (10 mg/kg b.wt, intragastrically for 12 weeks) on mitochondrial energy metabolism in different regions of rat brain in vivo. Mitochondrial preparations from aluminium treated rats revealed significant decrease in the activity of various electron transport complexes viz. cytochrome oxidase, NADH cytochrome c reductase and succinic dehydrogenase as well, in the hippocampus region. The decrease in the activity of these respiratory complexes was also seen in the other two regions viz. corpus striatum and cerebral cortex, but to a lesser extent. This decrease in the activities of electron transport complexes in turn affected the ATP synthesis and ATP levels adversely in the mitochondria isolated from aluminium treated rat brain regions. We also studied the spectral properties of the mitochondrial cytochromes viz. cyt a, cyt b, cyt c1, and cyt c in both control and treated rat brains. The various cytochrome levels were found to be decreased following 12 weeks of aluminium exposure. Further, these impairments in mitochondrial functions may also be responsible for the production of reactive oxygen species and impaired antioxidant defense system as observed in our study. The electron micrographs of neuronal cells depicted morphological changes in mitochondria as well as nucleus only from hippocampus and corpus striatum regions following 12 weeks exposure to aluminium. The present study thus highlights the significance of altered mitochondrial energy metabolism and increased ROS production as a result of chronic aluminium exposure in different regions of the rat brain.

  2. Regional brain activity that determines successful and unsuccessful working memory formation.

    PubMed

    Teramoto, Shohei; Inaoka, Tsubasa; Ono, Yumie

    2016-08-01

    Using EEG source reconstruction with Multiple Sparse Priors (MSP), we investigated the regional brain activity that determines successful memory encoding in two participant groups of high and low accuracy rates. Eighteen healthy young adults performed a sequential fashion of visual Sternberg memory task. The 32-channel EEG was continuously measured during participants performed two 70 trials of memory task. The regional brain activity corresponding to the oscillatory EEG activity in the alpha band (8-13 Hz) during encoding period was analyzed by MSP implemented in SPM8. We divided the data of all participants into 2 groups (low- and highperformance group) and analyzed differences in regional brain activity between trials in which participants answered correctly and incorrectly within each of the group. Participants in low-performance group showed significant activity increase in the visual cortices in their successful trials compared to unsuccessful ones. On the other hand, those in high-performance group showed a significant activity increase in widely distributed cortical regions in the frontal, temporal, and parietal areas including those suggested as Baddeley's working memory model. Further comparison of activated cortical volumes and mean current source intensities within the cortical regions of Baddeley's model during memory encoding demonstrated that participants in high-performance group showed enhanced activity in the right premotor cortex, which plays an important role in maintaining visuospatial attention, compared to those in low performance group. Our results suggest that better ability in memory encoding is associated with distributed and stronger regional brain activities including the premotor cortex, possibly indicating efficient allocation of cognitive load and maintenance of attention.

  3. Modulation of Brain Activity with Noninvasive Transcranial Direct Current Stimulation (tDCS): Clinical Applications and Safety Concerns

    PubMed Central

    Zhao, Haichao; Qiao, Lei; Fan, Dongqiong; Zhang, Shuyue; Turel, Ofir; Li, Yonghui; Li, Jun; Xue, Gui; Chen, Antao; He, Qinghua

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a widely-used tool to induce neuroplasticity and modulate cortical function by applying weak direct current over the scalp. In this review, we first introduce the underlying mechanism of action, the brief history from discovery to clinical scientific research, electrode positioning and montages, and parameter setup of tDCS. Then, we review tDCS application in clinical samples including people with drug addiction, major depression disorder, Alzheimer's disease, as well as in children. This review covers the typical characteristics and the underlying neural mechanisms of tDCS treatment in such studies. This is followed by a discussion of safety, especially when the current intensity is increased or the stimulation duration is prolonged. Given such concerns, we provide detailed suggestions regarding safety procedures for tDCS operation. Lastly, future research directions are discussed. They include foci on the development of multi-tech combination with tDCS such as with TMS and fMRI; long-term behavioral and morphological changes; possible applications in other research domains, and more animal research to deepen the understanding of the biological and physiological mechanisms of tDCS stimulation. PMID:28539894

  4. Theory of Mind Performance in Children Correlates with Functional Specialization of a Brain Region for Thinking about Thoughts

    ERIC Educational Resources Information Center

    Gweon, Hyowon; Dodell-Feder, David; Bedny, Marina; Saxe, Rebecca

    2012-01-01

    Thinking about other people's thoughts recruits a specific group of brain regions, including the temporo-parietal junctions (TPJ), precuneus (PC), and medial prefrontal cortex (MPFC). The same brain regions were recruited when children (N = 20, 5-11 years) and adults (N = 8) listened to descriptions of characters' mental states, compared to…

  5. Theory of Mind Performance in Children Correlates with Functional Specialization of a Brain Region for Thinking about Thoughts

    ERIC Educational Resources Information Center

    Gweon, Hyowon; Dodell-Feder, David; Bedny, Marina; Saxe, Rebecca

    2012-01-01

    Thinking about other people's thoughts recruits a specific group of brain regions, including the temporo-parietal junctions (TPJ), precuneus (PC), and medial prefrontal cortex (MPFC). The same brain regions were recruited when children (N = 20, 5-11 years) and adults (N = 8) listened to descriptions of characters' mental states, compared to…

  6. Aberrant Global and Regional Topological Organization of the Fractional Anisotropy-weighted Brain Structural Networks in Major Depressive Disorder

    PubMed Central

    Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing

    2016-01-01

    Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371

  7. Effects of Blocking GABA Degradation on Corticotropin-Releasing Hormone Gene Expression in Selected Brain Regions

    PubMed Central

    Tran, Viet; Hatalski, Carolyn G.; Yan, Xiao-Xin; Baram, Tallie Z.

    2011-01-01

    Summary Purpose The γ-aminobutyric acid (GABA) degradation blocker γ-vinyl-GABA (VGB) is used clinically to treat seizures in both adult and immature individuals. The mechanism by which VGB controls developmental seizures is not fully understood. Specifically, whether the anticonvulsant properties of VGB arise only from its elevation of brain GABA levels and the resulting activation of GABA receptors, or also from associated mechanisms, remains unresolved. Corticotropin-releasing hormone (CRH), a neuropeptide present in many brain regions involved in developmental seizures, is a known convulsant in the immature brain and has been implicated in some developmental seizures. In certain brain regions, it has been suggested that CRH synthesis and release may be regulated by GABA. Therefore we tested the hypothesis that VGB decreases CRH gene expression in the immature rat brain, consistent with the notion that VGB may decrease seizures also by reducing the levels of the convulsant molecule, CRH. Methods VGB was administered to immature, 9-day-old rats in clinically relevant doses, whereas littermate controls received vehicle. Results In situ hybridization histochemistry demonstrated a downregulation of CRH mRNA levels in the hypothalamic paraventricular nucleus but not in other limbic regions of VGB-treated pups compared with controls. In addition, VGB-treated pups had increased CRH peptide levels in the anterior hypothalamus, as shown by radioimmunoassay. Conclusions These findings are consistent with a reduction of both CRH gene expression and secretion in the hypothalamus, but do not support an indirect anticonvulsant mechanism of VGB via downregulation of CRH levels in limbic structures. However, the data support a region-specific regulation of CRH gene expression by GABA. PMID:10487181

  8. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    PubMed Central

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  9. Regional brain shrinkage over two years: individual differences and effects of pro-inflammatory genetic polymorphisms.

    PubMed

    Persson, N; Ghisletta, P; Dahle, C L; Bender, A R; Yang, Y; Yuan, P; Daugherty, A M; Raz, N

    2014-12-01

    We examined regional changes in brain volume in healthy adults (N=167, age 19-79years at baseline; N=90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (Hc), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the Hc, CbH, In, OF, and PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants modified shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1β C-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFR C677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC, thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan.

  10. Regional differences in cerebral edema after traumatic brain injury identified by impedance analysis.

    PubMed

    Harting, Matthew T; Smith, Carter T; Radhakrishnan, Ravi S; Aroom, Kevin R; Dash, Pramod K; Gill, Brijesh; Cox, Charles S

    2010-03-01

    Cerebral edema is a common and potentially devastating sequel of traumatic brain injury. We developed and validated a system capable of tissue impedance analysis, which was found to correlate with cerebral edema. Constant sinusoidal current (50 microA), at frequencies from 500 to 5000 Hz, was applied across a bipolar electrode unit superficially placed in a rat brain after traumatic brain injury. Rats were randomized to three groups: severe controlled cortical injury (CCI), mild CCI, or sham injury. At 60 h post-CCI, cerebral voltage and phase angle were measured at each frequency at the site of injury, at the penumbral region, at the ipsilateral frontal region, and in the contralateral hemisphere. Impedance measurements were also obtained in vivo. The electrical properties of varied injuries and specified locations were compared using a repeated measures analysis of variance (RMANOVA), were correlated with regional tissue water percentage using regression analyses, and were combined to generate polar coordinates. The measured voltage was significantly different at the site of injury (P<0.0001), in the penumbra (P=0.002), and in the contralateral hemisphere (P=0.005) when severe, mild, and sham CCI rats were compared. Severely injured rats had statistically different voltage measurements when the various sites were compared (P=0.002). The ex vivo measurements correlated with in vivo measurements. Further, the impedance measurements correlated with measured tissue water percentage at the site of injury (R2=0.69; P<0.0001). The creation of a polar coordinate graph, incorporating voltage and phase angle measurements, enabled the identification of impedance areas unique to normal, mild edema, and severe edema measurements in the rat brain. Electrical measurements and tissue water percentages quantified regional and severity differences in rat brain edema after CCI. Impedance was inversely proportional to the tissue water percentage. Thus, impedance measurement can be

  11. Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex- specific ways.

    PubMed

    Dumais, Kelly M; Bredewold, Remco; Mayer, Thomas E; Veenema, Alexa H

    2013-09-01

    Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.

  12. India Should Develop Its Naval Power in View of Growing Potential Security Concerns Connected to China’s Non-Transparent Intentions in the Indian Ocean Region

    DTIC Science & Technology

    2017-06-09

    INDIAN OCEAN REGION A thesis presented to the Faculty of the U.S. Army Command and General Staff College in partial fulfillment of the...its naval power in view of growing potential security concerns connected to China’s non-transparent intentions in the Indian Ocean Region 5a...13. SUPPLEMENTARY NOTES 14. ABSTRACT Indian Ocean is a major conduit for the international trade. Growing demand for energy and maritime trade

  13. Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer's disease brain.

    PubMed

    Condliffe, Daniel; Wong, Andrew; Troakes, Claire; Proitsi, Petroula; Patel, Yogen; Chouliaras, Leonidas; Fernandes, Cathy; Cooper, Jonathan; Lovestone, Simon; Schalkwyk, Leonard; Mill, Jonathan; Lunnon, Katie

    2014-08-01

    Epigenetic processes play a key role in the central nervous system and altered levels of 5-methylcytosine have been associated with a number of neurologic phenotypes, including Alzheimer's disease (AD). Recently, 3 additional cytosine modifications have been identified (5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine), which are thought to be intermediate steps in the demethylation of 5-methylcytosine to unmodified cytosine. Little is known about the frequency of these modifications in the human brain during health or disease. In this study, we used immunofluorescence to confirm the presence of each modification in human brain and investigate their cross-tissue abundance in AD patients and elderly control samples. We identify a significant AD-associated decrease in global 5-hydroxymethylcytosine in entorhinal cortex and cerebellum, and differences in 5-formylcytosine levels between brain regions. Our study further implicates a role for epigenetic alterations in AD.

  14. Different Brain Regions are Infected with Fungi in Alzheimer’s Disease

    PubMed Central

    Pisa, Diana; Alonso, Ruth; Rábano, Alberto; Rodal, Izaskun; Carrasco, Luis

    2015-01-01

    The possibility that Alzheimer’s disease (AD) has a microbial aetiology has been proposed by several researchers. Here, we provide evidence that tissue from the central nervous system (CNS) of AD patients contain fungal cells and hyphae. Fungal material can be detected both intra- and extracellularly using specific antibodies against several fungi. Different brain regions including external frontal cortex, cerebellar hemisphere, entorhinal cortex/hippocampus and choroid plexus contain fungal material, which is absent in brain tissue from control individuals. Analysis of brain sections from ten additional AD patients reveals that all are infected with fungi. Fungal infection is also observed in blood vessels, which may explain the vascular pathology frequently detected in AD patients. Sequencing of fungal DNA extracted from frozen CNS samples identifies several fungal species. Collectively, our findings provide compelling evidence for the existence of fungal infection in the CNS from AD patients, but not in control individuals. PMID:26468932

  15. Methamphetamine induces DNA damage in specific regions of the female rat brain.

    PubMed

    Johnson, Zane; Venters, Jace; Guarraci, Fay A; Zewail-Foote, Maha

    2015-06-01

    Methamphetamine (METH) is a highly addictive psychostimulant that has been shown to produce neurotoxicity. Methamphetamine increases the release of dopamine by reversing the direction of monoamine transporter proteins, leading to the formation of reactive oxygen species in the brain. In this study, we examined the effect of METH on DNA damage in vivo using the single cell gel electrophoresis assay (comet assay) under two different conditions. Rats treated with multiple doses of METH (10 mg/kg × 4) showed significant levels of DNA damage in the nucleus accumbens and striatum, both dopamine-rich areas. In contrast, a single dose of METH did not lead to significant levels of DNA damage in any of the dopamine-rich brain regions that were tested. Overall, the results of our study demonstrate that METH produces greater oxidative DNA damage in brain areas that receive greater dopamine innervation.

  16. Empathic control through coordinated interaction of amygdala, theory of mind and extended pain matrix brain regions.

    PubMed

    Bruneau, Emile G; Jacoby, Nir; Saxe, Rebecca

    2015-07-01

    Brain regions in the "pain matrix", can be activated by observing or reading about others in physical pain. In previous research, we found that reading stories about others' emotional suffering, by contrast, recruits a different group of brain regions mostly associated with thinking about others' minds. In the current study, we examined the neural circuits responsible for deliberately regulating empathic responses to others' pain and suffering. In Study 1, a sample of college-aged participants (n=18) read stories about physically painful and emotionally distressing events during functional magnetic resonance imaging (fMRI), while either actively empathizing with the main character or trying to remain objective. In Study 2, the same experiment was performed with professional social workers, who are chronically exposed to human suffering (n=21). Across both studies activity in the amygdala was associated with empathic regulation towards others' emotional pain, but not their physical pain. In addition, psychophysiological interaction (PPI) analysis and Granger causal modeling (GCM) showed that amygdala activity while reading about others' emotional pain was preceded by and positively coupled with activity in the theory of mind brain regions, and followed by and negatively coupled with activity in regions associated with physical pain and bodily sensations. Previous work has shown that the amygdala is critically involved in the deliberate control of self-focused distress - the current results extend the central importance of amygdala activity to the control of other-focused empathy, but only when considering others' emotional pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Associations between regional brain physiology and trait impulsivity, motor inhibition, and impaired control over drinking

    PubMed Central

    Weafer, Jessica; Dzemidzic, Mario; Eiler, William; Oberlin, Brandon G.; Wang, Yang; Kareken, David A.

    2015-01-01

    Trait impulsivity and poor inhibitory control are well-established risk factors for alcohol misuse, yet little is known about the associated neurobiological endophenotypes. Here we examined correlations among brain physiology and self-reported trait impulsive behavior, impaired control over drinking, and a behavioral measure of response inhibition. A sample of healthy drinkers (n=117) completed a pulsed arterial spin labeling (PASL) scan to quantify resting regional cerebral blood flow (rCBF), and measures of self-reported impulsivity (Eysenck I7 Impulsivity scale) and impaired control over drinking. A subset of subjects (n=40) performed a stop signal task during blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to assess brain regions involved in response inhibition. Eysenck I7 scores were inversely related to blood flow in the right precentral gyrus. Significant BOLD activation during response inhibition occurred in an overlapping right frontal motor/premotor region. Moreover, impaired control over drinking was associated with reduced BOLD response in the same region. These findings suggest that impulsive personality and impaired control over drinking are associated with brain physiology in areas implicated in response inhibition. This is consistent with the idea that difficulty controlling behavior is due in part to impairment in motor restraint systems. PMID:26065376

  18. Region-dependent changes in endocannabinoid transmission in the brain of morphine-dependent rats.

    PubMed

    González, Sara; Schmid, Patricia C; Fernández-Ruiz, Javier; Krebsbach, Randy; Schmid, Harald H O; Ramos, José A

    2003-06-01

    It has been suggested recently that the endocannabinoid system might be a component of the brain reward circuitry and thus play a role not only in cannabinoid tolerance/dependence, but also in dependence/withdrawal to other drugs of abuse. Here we have examined the changes in endocannabinoid ligands and their receptors in different brain regions, with particular attention to those areas related to reinforcement processes, during dependence on the powerful addictive drug, morphine. Thus, we analysed the brain contents of N-arachidonoylethanolamine (anandamide, AEA), the first discovered endocannabinoid, in rats subjected to daily injections of increasing doses of morphine, according to a schedule designed to render the animals opiate-dependent. Although evidence of physical dependence was assured by the appearance of somatic and neurovegetative responses in these animals after an acute challenge with naloxone, there were no changes in the contents of this endocannabinoid in any of the brain regions analysed. By contrast, we observed a significant decrease in the specific binding for CB(1) receptors in the midbrain and the cerebral cortex of morphine-dependent rats, with no changes in the other regions. The decrease in the cerebral cortex was, however, accompanied by a rise in the activation of signalling mechanisms by CB(1) receptor agonists, as revealed by WIN-55,212-2-stimulated [(35)S]GTPgammaS binding, whereas a reduction in this parameter was measured in the brainstem of morphine-dependent rats. In summary, the present data are indicative of the existence of an alteration of the endocannabinoid transmission during morphine dependence in rats, although the changes observed were region-dependent and affected exclusively CB(1) receptors with no changes in endocannabinoid levels. Because the changes occurred in regions of the midbrain, the cerebral cortex and the brainstem, which have been implicated in drug dependence, our data suggest that pharmacological

  19. Trajectories of brain aging in middle-aged and older adults: Regional and individual differences

    PubMed Central

    Raz, Naftali; Ghisletta, Paolo; Rodrigue, Karen M.; Kennedy, Kristen M.; Lindenberger, Ulman

    2010-01-01

    The human brain changes with age. However, the rate and the trajectories of change vary among the brain regions and among individuals, and the reasons for these differences are unclear. In a sample of healthy middle-aged and older adults, we examined mean volume change and individual differences in the rate of change in 12 regional brain volumes over approximately 30 months. In addition to the baseline assessment, there were two follow-ups, 15 months apart. We observed significant average shrinkage of the hippocampus, entorhinal cortex, orbital–frontal cortex, and cerebellum in each of the intervals. Shrinkage of the hippocampus accelerated with time, whereas shrinkage of the caudate nucleus, prefrontal subcortical white matter, and corpus callosum emerged only at the second follow-up. Throughout both assessment intervals, the mean volumes of the lateral prefrontal and primary visual cortices, putamen, and pons did not change. Significant individual differences in shrinkage rates were observed in the lateral prefrontal cortex, the cerebellum, and all the white matter regions throughout the study, whereas additional regions (medial–temporal structures, the insula, and the basal ganglia) showed significant individual variation in change during the second follow-up. No individual variability was noted in the change of orbital frontal and visual cortices. In two white matter regions, we were able to identify factors associated with individual differences in brain shrinkage. In corpus callosum, shrinkage rate was greater in persons with hypertension, and in the pons, women and carriers of the ApoEε4 allele exhibited declines not noted in the whole sample. PMID:20298790

  20. Trajectories of brain aging in middle-aged and older adults: regional and individual differences.

    PubMed

    Raz, Naftali; Ghisletta, Paolo; Rodrigue, Karen M; Kennedy, Kristen M; Lindenberger, Ulman

    2010-06-01

    The human brain changes with age. However, the rate and the trajectories of change vary among the brain regions and among individuals, and the reasons for these differences are unclear. In a sample of healthy middle-aged and older adults, we examined mean volume change and individual differences in the rate of change in 12 regional brain volumes over approximately 30 months. In addition to the baseline assessment, there were two follow-ups, 15 months apart. We observed significant average shrinkage of the hippocampus, entorhinal cortex, orbital-frontal cortex, and cerebellum in each of the intervals. Shrinkage of the hippocampus accelerated with time, whereas shrinkage of the caudate nucleus, prefrontal subcortical white matter, and corpus callosum emerged only at the second follow-up. Throughout both assessment intervals, the mean volumes of the lateral prefrontal and primary visual cortices, putamen, and pons did not change. Significant individual differences in shrinkage rates were observed in the lateral prefrontal cortex, the cerebellum, and all the white matter regions throughout the study, whereas additional regions (medial-temporal structures, the insula, and the basal ganglia) showed significant individual variation in change during the second follow-up. No individual variability was noted in the change of orbital frontal and visual cortices. In two white matter regions, we were able to identify factors associated with individual differences in brain shrinkage. In corpus callosum, shrinkage rate was greater in persons with hypertension, and in the pons, women and carriers of the ApoEepsilon4 allele exhibited declines not noted in the whole sample.

  1. What Is the Threshold of Teachers' Recognition and Report of Concerns about Anxiety and Depression in Students? An Exploratory Study with Teachers of Adolescents in Regional Australia

    ERIC Educational Resources Information Center

    Trudgen, Michelle; Lawn, Sharon

    2011-01-01

    Introduction: Anxiety and depression in adolescence is prevalent but often unrecognised and untreated. This can lead to serious disorders in later life. This study explored how teachers recognise anxiety and depression in secondary school students and act on their concerns. Method: Twenty teachers from four secondary colleges in regional Victoria,…

  2. What Is the Threshold of Teachers' Recognition and Report of Concerns about Anxiety and Depression in Students? An Exploratory Study with Teachers of Adolescents in Regional Australia

    ERIC Educational Resources Information Center

    Trudgen, Michelle; Lawn, Sharon

    2011-01-01

    Introduction: Anxiety and depression in adolescence is prevalent but often unrecognised and untreated. This can lead to serious disorders in later life. This study explored how teachers recognise anxiety and depression in secondary school students and act on their concerns. Method: Twenty teachers from four secondary colleges in regional Victoria,…

  3. Age- and brain-region-specific effects of dietary vitamin K on myelin sulfatides

    PubMed Central

    Crivello, Natalia A.; Casseus, Sherley L.; Peterson, James W.; Smith, Donald E.; Booth, Sarah L.

    2009-01-01

    Dysregulation of myelin sulfatides is a risk factor for cognitive decline with age. Vitamin K is present in high concentrations in the brain and has been implicated in the regulation of sulfatide metabolism. Our objective was to investigate the age-related interrelation between dietary vitamin K and sulfatides in myelin fractions isolated from the brain regions of Fischer 344 male rats fed one of two dietary forms of vitamin K: phylloquinone or its hydrogenated form, dihydrophylloquinone for 28 days. Both dietary forms of vitamin K were converted to menaquinone-4 in the brain. The efficiency of dietary dihydrophylloquinone conversion to menaquinone-4 compared to dietary phylloquinone was lower in the striatum and cortex, and was similar to those in the hippocampus. There were significant positive correlations between sulfatides and menaquinone-4 in the hippocampus (phylloquinone-supplemented diet -12mo and 24mo; dihydrophylloquinone -supplemented diet - 12mo) and cortex (phylloquinone-supplemented diet -12mo and 24 mo). No significant correlations were observed in the striatum. Furthermore, sulfatides in the hippocampus were significantly positively correlated with MK-4 in serum. This is the first attempt to establish and characterize a novel animal model that exploits the inability of dietary dihydrophylloquinone to convert to brain menaquinone-4 to study the dietary effects of vitamin K on brain sulfatide in brain regions controlling motor and cognitive functions. Our findings suggest that this animal model may be useful for investigation of the effect of the dietary vitamin K on sulfatide metabolism, myelin structure, and behavior functions. PMID:20092997

  4. Three-Dimensional Eigenbrain for the Detection of Subjects and Brain Regions Related with Alzheimer's Disease.

    PubMed

    Zhang, Yudong; Wang, Shuihua; Phillips, Preetha; Yang, Jiquan; Yuan, Ti-Fei

    2016-01-01

    Considering that Alzheimer's disease (AD) is untreatable, early diagnosis of AD from the healthy elderly controls (HC) is pivotal. However, computer-aided diagnosis (CAD) systems were not widely used due to its poor performance. Inspired from the eigenface approach for face recognition problems, we proposed an eigenbrain to detect AD brains. Eigenface is only for 2D image processing and is not suitable for volumetric image processing since faces are usually obtained as 2D images. We extended the eigenbrain to 3D. This 3D eigenbrain (3D-EB) inherits the fundamental strategies in either eigenface or 2D eigenbrain (2D-EB). All the 3D brains were transferred to a feature space, which encoded the variation among known 3D brain images. The feature space was named as the 3D-EB, and defined as eigenvectors on the set of 3D brains. We compared four different classifiers: feed-forward neural network, support vector machine (SVM) with linear kernel, polynomial (Pol) kernel, and radial basis function kernel. The 50x10-fold stratified cross validation experiments showed that the proposed 3D-EB is better than the 2D-EB. SVM with Pol kernel performed the best among all classifiers. Our "3D-EB + Pol-SVM" achieved an accuracy of 92.81% ± 1.99% , a sensitivity of 92.07% ± 2.48% , a specificity of 93.02% ± 2.22% , and a precision of 79.03% ± 2.37% . Based on the most important 3D-EB U1, we detected 34 brain regions related with AD. The results corresponded to recent literature. We validated the effectiveness of the proposed 3D-EB by detecting subjects and brain regions related to AD.

  5. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    PubMed

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells

  6. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths.

    PubMed

    de Vries, Liv; Pfeiffer, Keram; Trebels, Björn; Adden, Andrea K; Green, Ken; Warrant, Eric; Heinze, Stanley

    2017-01-01

    Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species-thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the

  7. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths

    PubMed Central

    de Vries, Liv; Pfeiffer, Keram; Trebels, Björn; Adden, Andrea K.; Green, Ken; Warrant, Eric; Heinze, Stanley

    2017-01-01

    Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in

  8. A regional consensus recommendation on brain atrophy as an outcome measure in multiple sclerosis.

    PubMed

    Alroughani, Raed; Deleu, Dirk; El Salem, Khalid; Al-Hashel, Jasem; Alexander, K John; Abdelrazek, Mohamed Assem; Aljishi, Adel; Alkhaboori, Jaber; Al Azri, Faisal; Al Zadjali, Nahida; Hbahbih, Majed; Sokrab, Tag Eldin; Said, Mohamed; Rovira, Àlex

    2016-11-24

    Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammatory and neurodegenerative processes leading to irreversible neurological impairment. Brain atrophy occurs early in the course of the disease at a rate greater than the general population. Brain volume loss (BVL) is associated with disability progression and cognitive impairment in patients with MS; hence its value as a potential target in monitoring and treating MS is discussed. A group of MS neurologists and neuro-radiologists reviewed the current literature on brain atrophy and discussed the challenges in assessing and implementing brain atrophy measurements in clinical practice. The panel used a voting system to reach a consensus and the votes were counted for the proposed set of questions for cognitive and brain atrophy assessments. The panel of experts was able to identify recent studies, which demonstrated the correlation between BVL and future worsening of disability and cognition. The current evidence revealed that reduction of BVL could be achieved with different disease-modifying therapies (DMTs). BVL provided a better treatment and monitoring strategy when it is combined to the composite measures of "no evidence of disease activity" (NEDA). The panel recommended a set of cognitive assessment tools and MRI methods and software applications that may help in capturing and measuring the underlying MS pathology with high degree of specificity. BVL was considered to be a useful measurement to longitudinally assess disease progression and cognitive function in patients with MS. Brain atrophy measurement was recommended to be incorporated into the concept of NEDA. Consequently, a consensus recommendation was reached in anticipation for implementation of the use of cognitive assessment and brain atrophy measurements on a regional level.

  9. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition

    PubMed Central

    Cheng, Jun; Huang, Wei; Cao, Shuangliang; Yang, Ru; Yang, Wei; Yun, Zhaoqiang; Wang, Zhijian; Feng, Qianjin

    2015-01-01

    Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI. PMID:26447861

  10. Organization and cellular arrangement of two neurogenic regions in the adult ferret (Mustela putorius furo) brain.

    PubMed

    Takamori, Yasuharu; Wakabayashi, Taketoshi; Mori, Tetsuji; Kosaka, Jun; Yamada, Hisao

    2014-06-01

    In the adult mammalian brain, two neurogenic regions have been characterized, the subventricular zone (SVZ) of the lateral ventricle (LV) and the subgranular zone (SGZ) of the dentate gyrus (DG). Despite remarkable knowledge of rodents, the detailed arrangement of neurogenic regions in most mammals is poorly understood. In this study, we used immunohistochemistry and cell type-specific antibodies to investigate the organization of two germinal regions in the adult ferret, which belongs to the order Carnivora and is widely used as a model animal with a gyrencephalic brain. From the SVZ to the olfactory bulb, doublecortin-positive cells tended to organize in chain-like clusters, which are surrounded by a meshwork of astrocytes. This structure is homologous to the rostral migratory stream (RMS) described in other species. Different from rodents, the horizontal limb of the RMS emerges directly from the LV, and the anterior region of the LV extends rostrally and reached the olfactory bulb. In the DG, glial fibrillary acidic protein-positive cells with long radial processes as well as doublecortin-positive cells are oriented in the SGZ. In both regions, doublecortin-positive cells showed characteristic morphology and were positive for polysialylated-neural cell adhesion molecule, beta-III tubulin, and lamin B1 (intense staining). Proliferating cells were detected in both regions using antibodies against proliferating cell nuclear antigen and phospho-histone H3. These observations demonstrate that the two neurogenic regions in ferrets have a similar cellular composition as those of other mammalian species despite anatomical differences in the brain. Copyright © 2013 Wiley Periodicals, Inc.

  11. Regional Brain Differences in Cortical Thickness, Surface Area and Subcortical Volume in Individuals with Williams Syndrome

    PubMed Central

    Meda, Shashwath A.; Pryweller, Jennifer R.; Thornton-Wells, Tricia A.

    2012-01-01

    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex

  12. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    PubMed

    Meda, Shashwath A; Pryweller, Jennifer R; Thornton-Wells, Tricia A

    2012-01-01

    Williams syndrome (WS) is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume) in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD) controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both) morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and complex

  13. Molecular and Functional Properties of Regional Astrocytes in the Adult Brain.

    PubMed

    Morel, Lydie; Chiang, Ming Sum R; Higashimori, Haruki; Shoneye, Temitope; Iyer, Lakshmanan K; Yelick, Julia; Tai, Albert; Yang, Yongjie

    2017-09-06

    The molecular signature and functional properties of astroglial subtypes in the adult CNS remain largely undefined. By using translational ribosome affinity purification followed by RNA-Seq, we profiled astroglial ribosome-associated (presumably translating) mRNAs in major cortical and subcortical brain regions (cortex, hippocampus, caudate-putamen, nucleus accumbens, thalamus, and hypothalamus) of BAC aldh1l1-translational ribosome affinity purification (TRAP) mice (both sexes). We found that the expression of astroglial translating mRNAs closely follows the dorsoventral axis, especially from cortex/hippocampus to thalamus/hypothalamus posteriorly. This region-specific expression pattern of genes, such as synaptogenic modulator sparc and transcriptional factors (emx2, lhx2, and hopx), was validated by qRT-PCR and immunostaining in brain sections. Interestingly, cortical or subcortical astrocytes selectively promote neurite growth and synaptic activity of neurons only from the same region in mismatched cocultures, exhibiting region-matched astrocyte to neuron communication. Overall, these results generated new molecular signature of astrocyte types in the adult CNS, providing insights into their origin and functional diversity.SIGNIFICANCE STATEMENT We investigated the in vivo molecular and functional heterogeneity of astrocytes inter-regionally from adult brain. Our results showed that the expression pattern of ribosome-associated mRNA profiles in astrocytes closely follows the dorsoventral axis, especially posteriorly from cortex/hippocampus to thalamus/hypothalamus. In line with this, our functional results further demonstrated region-selective roles of cortical and subcortical astrocytes in regulating cortical or subcortical neuronal synaptogenesis and maturation. These in vivo studies provide a previously uncharacterized and important molecular atlas for exploring region-specific astroglial functions. Copyright © 2017 the authors 0270-6474/17/378706-12$15.00/0.

  14. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition.

    PubMed

    Cheng, Jun; Huang, Wei; Cao, Shuangliang; Yang, Ru; Yang, Wei; Yun, Zhaoqiang; Wang, Zhijian; Feng, Qianjin

    2015-01-01

    Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

  15. Regional and developmental brain expression patterns of SNAP25 splice variants.

    PubMed

    Prescott, Gerald R; Chamberlain, Luke H

    2011-04-28

    SNAP25 is an essential SNARE protein for regulated exocytosis in neuronal cells. Differential splicing of the SNAP25 gene results in the expression of two transcripts, SNAP25a and SNAP25b. These splice variants differ by only 9 amino acids, and studies of their expression to date have been limited to analysis of the corresponding mRNAs. Although these studies have been highly informative, it is possible that factors such as differential turnover of the SNAP25 proteins could complicate interpretations based entirely on mRNA expression profiles. We report the generation and characterization of antibodies that distinguish between SNAP25a and SNAP25b isoforms, and their use to investigate the expression profile of these proteins in rat and human brain. In rat brain, SNAP25b protein expression increased dramatically during post-natal development, whereas the increase in SNAP25a expression was more modest and variable. The extent of this up-regulation in SNAP25b expression was similar across cortex, cerebellum and hippocampus. The SNAP25 isoforms also displayed distinct regional expression patterns, with SNAP25a very weakly expressed in both rat and human cerebellum. Quantitative analysis revealed that SNAP25b was the dominant isoform in all adult human brain regions examined. SNAP25a and SNAP25b display distinct developmental and regional expression profiles in rat and human brain. These differences might reflect distinct functions of these highly conserved isoforms in membrane fusion pathways in the brain. The antibodies generated and characterized in this study represent important tools for future analyses of these essential SNARE protein isoforms.

  16. Proteomic profiling of proteins associated with methamphetamine-induced neurotoxicity in different regions of rat brain.

    PubMed

    Li, Xuefeng; Wang, Huijun; Qiu, Pingming; Luo, Hong

    2008-01-01

    It is well documented that methamphetamine (MA) can cause obvious damage to the brain, but the exact mechanism is still unknown. In the present study, proteomic methods of two-dimensional gel electrophoresis in combination with mass spectrometry analysis were used to identify global protein profiles associated with MA-induced neurotoxicity. For the first time, 30 protein spots have been found differentially expressed in different regions of rat brain, including 14 in striatum, 12 in hippocampus and 4 in frontal cortex. The proteins identified by tandem mass spectrometry were Cu, Zn superoxide dismutase, dimethylarginine dimethylaminohydrolase 1, alpha synuclein, ubiquitin-conjugating enzyme E2N, stathmin 1, calcineurin B, cystatin B, subunit of mitochondrial H-ATP synthase, ATP synthase D chain, mitochondrial, NADH dehydrogenase(ubiquinone) Fe-S protein 8, glia maturation factor, beta, Ash-m, neurocalcin delta, myotrophin, profiling IIa, D-dopachrome tautomerase, and brain lipid binding protein. The known functions of these proteins were related to the pathogenesis of MA-induced neurotoxicity, including oxidative stress, degeneration/apoptosis, mitochontrial/energy metabolism and others. Of these proteins, alpha-synuclein was up-regulated, and ATP synthase D chain, mitochondrial was down-regulated in all brain regions. Two proteins, Cu, Zn superoxide dismutase, subunit of mitochondrial H-ATPsynthase were down-regulated and Ubiquitin-conjugating enzyme E2N, NADH dehydrogenase (ubiquinone) Fe-S protein 8 were up-regulated simultaneously in striatum and hippocaltum. The expression of dimethylarginine dimethylaminohydrolase 1 (DDAH 1) increased both in striatum and frontal cortex. The parallel expression patterns of these proteins suggest that the pathogenesis of MA neurotoxicity in different brain regions may share some same pathways.

  17. Teneurin-1 is expressed in interconnected regions of the developing brain and is processed in vivo

    PubMed Central

    Kenzelmann, Daniela; Chiquet-Ehrismann, Ruth; Leachman, Nathaniel T; Tucker, Richard P

    2008-01-01

    Background Teneurins are a unique family of transmembrane proteins conserved from C. elegans and D. melanogaster to mammals. In vertebrates there are four paralogs (teneurin-1 to -4), all of which are expressed prominently in the developing central nervous system. Results Analysis of teneurin-1 expression in the developing chick brain by in situ hybridization and immunohistochemistry defined a unique, distinct expression pattern in interconnected regions of the brain. Moreover we found complementary patterns of teneurin-1 and-2 expression in many parts of the brain, including the retina, optic tectum, olfactory bulb, and cerebellum as well as in brain nuclei involved in processing of sensory information. Based on these expression patterns, we suspect a role for teneurins in neuronal connectivity. In contrast to the cell-surface staining of the antibody against the extracellular domain, an antibody recognizing the intracellular domain revealed nuclear staining in subpopulations of neurons and in undifferentiated mesenchyme. Western blot analysis of brain lysates showed the presence of N-terminal fragments of teneurin-1 containing the intracellular domain indicating that proteolytic processing occurs. Finally, the teneurin-1 intracellular domain was found to contain a nuclear localization signal, which is required for nuclear localization in transfected cells. Conclusion Teneurin-1 and -2 are expressed by distinct interconnected populations of neurons in the developing central nervous system. Our data support the hypothesis that teneurins can be proteolytically processed leading to the release of the intracellular domain and its translocation to the nucleus. PMID:18366734

  18. Mapping the brain of the chicken (Gallus gallus), with emphasis on the septal-hypothalamic region.

    PubMed

    Kuenzel, Wayne J

    2017-09-18

    There has been remarkable progress in discoveries made in the avian brain, particularly over the past two decades. This review first highlights some of the discoveries made in the forebrain and credits the Avian Brain Nomenclature Forum, responsible for changing many of the terms found in the cerebrum and for stimulating collaborative research thereafter. The Forum facilitated communication among comparative neurobiologists by eliminating confusing and inaccurate names. The result over the past 15yearshas been a standardized use of avian forebrain terms. Nonetheless, additional changes are needed. The goal of the paper is to encourage a continuing effort to unify the nomenclature throughout the entire avian brain. To emphasize the need for consensus for a single name for each neural structure, I have selected specific structures in the septum and hypothalamus that our laboratory has been investigating, to demonstrate a lack of uniformity in names applied to conservative brain regions compared to the forebrain. The specific areas reviewed include the distributions of gonadotropin-releasing hormone neurons and their terminal fields in circumventricular organs, deep-brain photoreceptors, gonadotropin inhibitory neurons and a complex structure and function of the nucleus of the hippocampal commissure. Copyright © 2017. Published by Elsevier Inc.

  19. Functional magnetic resonance imaging investigation of brain regions associated with astringency.

    PubMed

    Kishi, Mayo; Sadachi, Hidetoshi; Nakamura, Junji; Tonoike, Mitsuo

    2017-03-30

    Previous studies have investigated mechanisms of the perception of the five basic tastes at the peripheral and neural levels. However, little is known regarding the specific mechanisms and brain activity associated with the perception of astringency. In the present study, we aimed to clarify these mechanisms using functional magnetic resonance imaging (fMRI) in conjunction with taste stimuli, and to investigate the association between subjective appraisal of taste and brain activity. Brain activation to astringency was observed in the insula, superior orbitofrontal cortex, cingulate cortex, and frontal inferior triangularis. In addition, the right ventral anterior insula, which is part of the primary gustatory cortex, showed the strongest blood oxygen level-dependent (BOLD) response to astringent stimuli. Brain activation to bitter and sweet taste was observed in the insula. Each of the three tastes activated a different region of the insula. Also, a subregion in the right anterior insula responded to both astringent and bitter stimuli. Moreover, we observed relationships between the BOLD responsivity during astringent, sweet, and bitter stimuli and the participant's drinking habits regarding representative beverages of each taste. These results indicate a potential correlation between lifestyle and brain activity with regard to taste perception.

  20. Global and regional differences in brain anatomy of young children born small for gestational age.

    PubMed

    De Bie, Henrica M A; Oostrom, Kim J; Boersma, Maria; Veltman, Dick J; Barkhof, Frederik; Delemarre-van de Waal, Henriette A; van den Heuvel, Martijn P

    2011-01-01

    In children who are born small for gestational age (SGA), an adverse intrauterine environment has led to underdevelopment of both the body and the brain. The delay in body growth is (partially) restored during the first two years in a majority of these children. In addition to a negative influence on these physical parameters, decreased levels of intelligence and cognitive impairments have been described in children born SGA. In this study, we used magnetic resonance imaging to examine brain anatomy in 4- to 7-year-old SGA children with and without complete bodily catch-up growth and compared them to healthy children born appropriate for gestational age. Our findings demonstrate that these children strongly differ on brain organisation when compared with healthy controls relating to both global and regional anatomical differences. Children born SGA displayed reduced cerebral and cerebellar grey and white matter volumes, smaller volumes of subcortical structures and reduced cortical surface area. Regional differences in prefrontal cortical thickness suggest a different development of the cerebral cortex. SGA children with bodily catch-up growth constitute an intermediate between those children without catch-up growth and healthy controls. Therefore, bodily catch-up growth in children born SGA does not implicate full catch-up growth of the brain.

  1. Sharing self-related information is associated with intrinsic functional connectivity of cortical midline brain regions

    PubMed Central

    Meshi, Dar; Mamerow, Loreen; Kirilina, Evgeniya; Morawetz, Carmen; Margulies, Daniel S.; Heekeren, Hauke R.

    2016-01-01

    Human beings are social animals and they vary in the degree to which they share information about themselves with others. Although brain networks involved in self-related cognition have been identified, especially via the use of resting-state experiments, the neural circuitry underlying individual differences in the sharing of self-related information is currently unknown. Therefore, we investigated the intrinsic functional organization of the brain with respect to participants’ degree of self-related information sharing using resting state functional magnetic resonance imaging and self-reported social media use. We conducted seed-based correlation analyses in cortical midline regions previously shown in meta-analyses to be involved in self-referential cognition: the medial prefrontal cortex (MPFC), central precuneus (CP), and caudal anterior cingulate cortex (CACC). We examined whether and how functional connectivity between these regions and the rest of the brain was associated with participants’ degree of self-related information sharing. Analyses revealed associations between the MPFC and right dorsolateral prefrontal cortex (DLPFC), as well as the CP with the right DLPFC, the left lateral orbitofrontal cortex and left anterior temporal pole. These findings extend our present knowledge of functional brain connectivity, specifically demonstrating how the brain’s intrinsic functional organization relates to individual differences in the sharing of self-related information. PMID:26948055

  2. Protein and DNA oxidation in different anatomic regions of rat brain in a mimetic ageing model.

    PubMed

    Yanar, Karolin; Aydın, Seval; Cakatay, Ufuk; Mengi, Murat; Buyukpınarbaşılı, Nur; Atukeren, Pınar; Sitar, Mustafa E; Sönmez, Aslı; Uslu, Ezel

    2011-12-01

    It has been reported that d-galactose administration causes an increase in oxidative and osmotic stresses in several tissues of rodents. In this study, we established a brain ageing model by using d-galactose and investigated the concentrations of oxidative stress markers on the hippocampus, parietal and frontal lobes of male Sprague-Dawley rats. A mimetic ageing model was established by injecting d-galactose (60 mg/kg/day/i.p.) in the experimental group for 42 days. At the end of this period, we tested spatial memory using the Morris water maze test. To investigate the magnitude of oxidative damage in proteins, lipids and DNA, we studied the concentrations of various oxidative stress parameters in the hippocampus, parietal and frontal lobes of the brain. Glial and neuronal cell oxidative damage was observed in each of the three anatomic regions. It was found that protein carbonyl groups and advanced oxidation product concentrations in the d-galactose applied group were significantly high in each of the three brain lobes compared with the control group. Thiol concentration was found to be decreased in the parietal lobe. A concurrent increase in lipid hydroperoxides was also observed in this lobe. On the other hand, 8-hydroxy-2'-deoxyguanosine concentration was significantly increased in the hippocampal lobe of rats in the experimental group when compared with the controls. The results obtained from the mimetic ageing model rats showed that various anatomical regions of brain have different susceptibility to oxidative damage of proteins, lipids and DNA.

  3. Brain regions involved in dispositional mindfulness during resting state and their relation with well-being.

    PubMed

    Kong, Feng; Wang, Xu; Song, Yiying; Liu, Jia

    2016-01-01

    Mindfulness can be viewed as an important dispositional characteristic that reflects the tendency to be mindful in daily life, which is beneficial for improving individuals' both hedonic and eudaimonic well-being. However, no study to date has examined the brain regions involved in individual differences in dispositional mindfulness during the resting state and its relation with hedonic and eudaimonic well-being. To investigate this issue, the present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to evaluate the regional homogeneity (ReHo) that measures the local synchronization of spontaneous brain activity in a large sample. We found that dispositional mindfulness was positively associated with the ReHo in the left orbitofrontal cortex (OFC), left parahippocampal gyrus (PHG), and right insula implicated in emotion processing, body awareness, and self-referential processing, and negatively associated with the ReHo in right inferior frontal gyrus (IFG) implicated in response inhibition and attentional control. Furthermore, we found different neural associations with hedonic (i.e., positive and negative affect) and eudaimonic well-being (i.e., the meaningful and purposeful life). Specifically, the ReHo in the IFG predicted eudaimonic well-being whereas the OFC predicted positive affect, both of which were mediated by dispositional mindfulness. Taken together, our study provides the first evidence for linking individual differences in dispositional mindfulness to spontaneous brain activity and demonstrates that dispositional mindfulness engages multiple brain mechanisms that differentially influence hedonic and eudaimonic well-being.

  4. Tryptophan overloading activates brain regions involved with cognition, mood and anxiety.

    PubMed

    Silva, Luana C A; Viana, Milena B; Andrade, José S; Souza, Melyssa A; Céspedes, Isabel C; D'Almeida, Vânia

    2017-02-16

    Tryptophan is the only precursor of serotonin and mediates serotonergic activity in the brain. Previous studies have shown that the administration of tryptophan or tryptophan depletion significantly alters cognition, mood and anxiety. Nevertheless, the neurobiological alterations that follow these changes have not yet been fully investigated. The aim of this study was to verify the effects of a tryptophan-enriched diet on immunoreactivity to Fos-protein in the rat brain. Sixteen male Wistar rats were distributed into two groups that either received standard chow diet or a tryptophan-enriched diet for a period of thirty days. On the morning of the 31st day, animals were euthanized and subsequently analyzed for Fos-immunoreactivity (Fos-ir) in the dorsal and median raphe nuclei and in regions that receive serotonin innervation from these two brain areas. Treatment with a tryptophan-enriched diet increased Fos-ir in the prefrontal cortex, nucleus accumbens, paraventricular hypothalamus, arcuate and ventromedial hypothalamus, dorsolateral and dorsomedial periaqueductal grey and dorsal and median raphe nucleus. These observations suggest that the physiological and behavioral alterations that follow the administration of tryptophan are associated with the activation of brain regions that regulate cognition and mood/anxiety-related responses.

  5. Impulsivity and aggression mediate regional brain responses in Borderline Personality Disorder: An fMRI study.

    PubMed

    Soloff, Paul H; Abraham, Kristy; Burgess, Ashley; Ramaseshan, Karthik; Chowdury, Asadur; Diwadkar, Vaibhav A

    2017-02-28

    Fronto-limbic brain networks involved in regulation of impulsivity and aggression are abnormal in Borderline Personality Disorder (BPD). However, it is unclear whether, or to what extent, these personality traits actually modulate brain responses during cognitive processing. Using fMRI, we examined the effects of trait impulsivity, aggression, and depressed mood on regional brain responses in 31 female BPD and 25 control subjects during a Go No-Go task using Ekman faces as targets. First-level contrasts modeled effects of negative emotional context. Second-level regression models used trait impulsivity, aggression and depressed mood as predictor variables of regional brain activations. In BPD, trait impulsivity was positively correlated with activation in the dorsal anterior cingulate cortex, orbital frontal cortex (OFC), basal ganglia (BG), and dorsolateral prefrontal cortex, with no areas of negative correlation. In contrast, aggression was negatively correlated with activation in OFC, hippocampus, and BG, with no areas of positive correlation. Depressed mood had a generally dampening effect on activations. Effects of trait impulsivity on healthy controls differed from effects in BPD, suggesting a disorder-specific response. Negative emotional context and trait impulsivity, but not aggression or depression, diminished task performance across both groups. Negative emotional context may interfere with cognitive functioning in BPD through interaction with the neurobiology of personality traits.

  6. Identification of human brain regions underlying responses to resistive inspiratory loading with functional magnetic resonance imaging.

    PubMed Central

    Gozal, D; Omidvar, O; Kirlew, K A; Hathout, G M; Hamilton, R; Lufkin, R B; Harper, R M

    1995-01-01

    Compensatory ventilatory responses to increased inspiratory loading are essential for adequate breathing regulation in a number of pulmonary diseases; however, the human brain sites mediating such responses are unknown. Midsagittal and axial images were acquired in 11 healthy volunteers during unloaded and loaded (30 cmH2O; 1 cmH2O = 98 Pa) inspiratory breathing, by using functional magnetic resonance imaging (fMRI) strategies (1.5-tesla MR; repetition time, 72 msec; echo time, 45 msec; flip angle, 30 degrees; field of view, 26 cm; slice thickness, 5 mm; number of excitations, 1; matrix, 128 x 256). Digital image subtractions and region of interest analyses revealed significantly increased fMRI signal intensity in discrete areas of the ventral and dorsal pons, interpeduncular nucleus, basal forebrain, putamen, and cerebellar regions. Upon load withdrawal, certain regions displayed a rapid fMRI signal off-transient, while in others, a slower fMRI signal decay emerged. Sustained loading elicited slow decreases in fMRI signal across activated regions, while second application of an identical load resulted in smaller signal increases compared to initial signal responses (P < 0.001). A moderate inspiratory load is associated with consistent regional activation of discrete brain locations; certain of these regions have been implicated in mediation of loaded breathing in animal models. We speculate that temporal changes in fMRI signal may indicate respiratory after-discharge and/or habituation phenomena. Images Fig. 1 Fig. 3 PMID:7604040

  7. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    NASA Technical Reports Server (NTRS)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  8. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain

    PubMed Central

    Liang, Winnie S.; Dunckley, Travis; Beach, Thomas G.; Grover, Andrew; Mastroeni, Diego; Walker, Douglas G.; Caselli, Richard J.; Kukull, Walter A.; McKeel, Daniel; Morris, John C.; Hulette, Christine; Schmechel, Donald; Alexander, Gene E.; Reiman, Eric M.; Rogers, Joseph; Stephan, Dietrich A.

    2008-01-01

    In this article, we have characterized and compared gene expression profiles from laser capture microdissected neurons in six functionally and anatomically distinct regions from clinically and histopathologically normal aged human brains. These regions, which are also known to be differentially vulnerable to the histopathological and metabolic features of Alzheimer’s disease (AD), include the entorhinal cortex and hippocampus (limbic and paralimbic areas vulnerable to early neurofibrillary tangle pathology in AD), posterior cingulate cortex (a paralimbic area vulnerable to early metabolic abnormalities in AD), temporal and prefrontal cortex (unimodal and heteromodal sensory association areas vulnerable to early neuritic plaque pathology in AD), and primary visual cortex (a primary sensory area relatively spared in early AD). These neuronal profiles will provide valuable reference information for future studies of the brain, in normal aging, AD and other neurological and psychiatric disorders. PMID:17077275

  9. Neuronal actions of endorphins and enkephalins among brain regions: a comparative microiontophoretic study.

    PubMed Central

    Nicoll, R A; Siggins, G R; Ling, N; Bloom, F E; Guillemin, R

    1977-01-01

    The brain peptides alpha- and beta-endorphin, leucine- and methionine-enkephalin, as well as the opiate normorphine, have been evaluated by microiontophoresis for their effects on neuronal activity in several regions of the rat brain. In cerebral cortex, brainstem, caudate nucleus, and thalamus, most responsive cells were inhibited by the peptides and by normorphine, while in hippocampus all responsive cells were excited. Both inhibitory and excitatory responses were blocked by the narcotic antagonist naloxone. Occurrence of responsive cells encountered in a particular region was loosely correlated with density of stereospecific opiate binding sites as reported by others. These results are consistent with the hypothesis that the endorphins and enkephalins may represent a new class of central neurotransmitters; among other functions, these peptides may play a role in the regulation of behavior and the expression of psychopharmacological agents such as the opiate alkaloids. PMID:267951

  10. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state.

    PubMed

    Yang, Yan-Li; Deng, Hong-Xia; Xing, Gui-Yang; Xia, Xiao-Luan; Li, Hai-Fang

    2015-02-01

    It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  11. Implicit memory for object locations depends on reactivation of encoding-related brain regions.

    PubMed

    Manelis, Anna; Hanson, Catherine; Hanson, Stephen José

    2011-01-01

    This study explored the correspondence between implicit memory and the reactivation of encoding-related brain regions. By using a classification method, we examined whether reactivation reflects only the similarities between study and test or voxels at the reactivated regions are diagnostic of facilitation in the implicit memory task. A simple detection task served as incidental encoding of object-location pairings. A subsequent visual search task served as the indirect (implicit) test of memory. Subjects did not know that their memory would be tested. Half of the subjects were unaware that some stimuli in the search task are the same as those that had appeared during the detection task. Another group of subjects was made aware of this relationship at the onset of the visual search task. Memory performance was superior for the study-test aware, compared to study-test unaware, subjects. Brain reactivation was calculated using a conjunction analysis implemented through overlaying the neural activity at encoding and testing. The conjunction analysis revealed that implicit memory in both groups of subjects was associated with reactivation of parietal and occipital brain regions. We were able to classify study-test aware and study-test unaware subjects based on the per-voxel reactivation values representing the neural dynamics between encoding and test. The classification results indicate that neural dynamics between encoding and test accounts for the differences in implicit memory. Overall, our study demonstrates that implicit memory performance requires and depends upon reactivation of encoding-related brain regions. Copyright © 2010 Wiley-Liss, Inc.

  12. Regional dynamics of N-isopropyl-(/sup 123/I)p-iodoamphetamine in human brain

    SciTech Connect

    Nishizawa, S.; Tanada, S.; Yonekura, Y.; Fujita, T.; Mukai, T.; Saji, H.; Fukuyama, H.; Miyoshi, T.; Harada, K.; Ishikawa, M.

    1989-02-01

    Regional cerebral dynamics of N-isopropyl-(123I)p-iodoamphetamine (IMP) in the human brain were studied using a multi-detector single photon emission computed tomography (SPECT) scanner in 35 subjects both normal and with a variety of neurological conditions. Distribution of IMP in the brain was also compared with regional cerebral blood flow (CBF) measured by positron emission tomography (PET) in 15 of these 35 cases. A significant regional difference in temporal changes of radioactivity was observed among normal brain structures. A rapid increase with early washout of the tracer was shown in the cerebellum and the occipital cortex, while the basal ganglia revealed a relatively slow increase and prolonged retention, indicating the regional difference in extraction and/or retention of IMP among the cerebral tissues. In cases with unilateral hypoperfusion, the percentage of the activity in the lesion to that in the contralateral normal cortex on the early SPECT was correlated well with that on CBF measured by PET (r = 0.870, p less than 0.001). However, the contrast on the SPECT image decreased with time after injection; 84.0 +/- 7.4% on the SPECT at 5-20 min scan, 87.6 +/- 7.6% at 35-50 min scan and 96.2 +/- 6.3% at 5 hr scan. In a case with a brain tumor having high blood flow documented by PET, increased accumulation of IMP was observed in the tumor on the early images obtained within 20 min followed by a rapid washout. These findings suggested altered extraction and/or retention of IMP in normal and diseased tissues, and these factors should be considered for the assessment of distribution and redistribution of IMP.

  13. Broca's region: linking human brain functional connectivity data and non-human primate tracing anatomy studies.

    PubMed

    Kelly, Clare; Uddin, Lucina Q; Shehzad, Zarrar; Margulies, Daniel S; Castellanos, F Xavier; Milham, Michael P; Petrides, Michael

    2010-08-01

    Brodmann areas 6, 44 and 45 in the ventrolateral frontal cortex of the left hemisphere of the human brain constitute the anterior language production zone. The anatomical connectivity of these areas with parietal and temporal cortical regions was recently examined in an autoradiographic tract-tracing study in the macaque monkey. Studies suggest strong correspondence between human resting state functional connectivity (RSFC) based on functional magnetic resonance imaging data and experimentally demonstrated anatomical connections in non-human primates. Accordingly, we hypothesized that areas 6, 44 and 45 of the human brain would exhibit patterns of RSFC consistent with patterns of anatomical connectivity observed in the macaque. In a primary analysis, we examined the RSFC associated with regions-of-interest placed in ventrolateral frontal areas 6, 44 and 45, on the basis of local sulcal and gyral anatomy. We validated the results of the primary hypothesis-driven analysis with a data-driven partitioning of ventrolateral frontal cortex into regions exhibiting distinct RSFC patterns, using a spectral clustering algorithm. The RSFC of ventrolateral frontal areas 6, 44 and 45 was consistent with patterns of anatomical connectivity shown in the macaque. We observed a striking dissociation between RSFC for the ventral part of area 6 that is involved in orofacial motor control and RSFC associated with Broca's region (areas 44 and 45). These findings indicate rich and differential RSFC patterns for the ventrolateral frontal areas controlling language production, consistent with known anatomical connectivity in the macaque brain, and suggest conservation of connectivity during the evolution of the primate brain.

  14. Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine.

    PubMed

    Banerjee, S; Poddar, M K

    2016-04-05

    Monoamine neurotransmitter, serotonin (5-HT) has its own specific receptors in both pre- and post-synapse. In the present study the role of carnosine on aging-induced changes of [(3)H]-5-HT receptor binding in different brain regions in a rat model was studied. The results showed that during aging (18 and 24 months) the [(3)H]-5-HT receptor binding was reduced in hippocampus, hypothalamus and pons-medulla with a decrease in their both Bmax and KD but in cerebral cortex the [(3)H]-5-HT binding was increased with the increase of its only Bmax. The aging-induced changes in [(3)H]-5-HT receptor binding with carnosine (2.0 μg/kg/day, intrathecally, for 21 consecutive days) attenuated in (a) 24-month-aged rats irrespective of the brain regions with the attenuation of its Bmax except hypothalamus where both Bmax and KD were significantly attenuated, (b) hippocampus and hypothalamus of 18-month-aged rats with the attenuation of its Bmax, and restored toward the [(3)H]-5-HT receptor binding that observed in 4-month-young rats. The decrease in pons-medullary [(3)H]-5-HT binding including its Bmax of 18-month-aged rats was promoted with carnosine without any significant change in its cerebral cortex. The [(3)H]-5-HT receptor binding with the same dosages of carnosine in 4-month-young rats (a) increased in the cerebral cortex and hippocampus with the increase in their only Bmax whereas (b) decreased in hypothalamus and pons-medulla with a decrease in their both Bmax and KD. These results suggest that carnosine treatment may (a) play a preventive role in aging-induced brain region-specific changes in serotonergic activity (b) not be worthy in 4-month-young rats in relation to the brain regional serotonergic activity. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Brain regional differences in CB1 receptor adaptation and regulation of transcription.

    PubMed

    Lazenka, M F; Selley, D E; Sim-Selley, L J

    2013-03-19

    Cannabinoid CB1 receptors (CB1Rs) are expressed throughout the brain and mediate the central effects of cannabinoids, including Δ(9)-tetrahydrocannabinol (THC), the main psychoactive constituent of marijuana. Repeated THC administration produces tolerance to cannabinoid-mediated effects, although the magnitude of tolerance varies by effect. Consistent with this observation, CB1R desensitization and downregulation, as well as induction of immediate early genes (IEGs), vary by brain region. Zif268 and c-Fos are induced in the forebrain after acute THC administration. Phosphorylation of the cAMP response-element binding protein (CREB) is increased in a region-specific manner after THC administration. Results differ between acute versus repeated THC injection, and suggest that tolerance to IEG activation might develop in some regions. Repeated THC treatment produces CB1R desensitization and downregulation in the brain, although less adaption occurs in the striatum as compared to regions such as the hippocampus. Repeated THC treatment also induces expression of ΔFosB, a very stable isoform of FosB, in the striatum. Transgenic expression of ∆FosB in the striatum enhances the rewarding effects of several drugs, but its role in THC-mediated effects is not known. The inverse regional relationship between CB1R desensitization and ∆FosB induction suggests that these adaptations might inhibit each other, although this possibility has not been investigated. The differential regional expression of individual IEGs by acute or repeated THC administration suggests that regulation of target genes and effects on CB1R signaling will contribute to the behavioral effects of THC.

  16. Changes in the regional homogeneity of resting-state brain activity in minimal hepatic encephalopathy.

    PubMed

    Chen, Hua-Jun; Zhu, Xi-Qi; Yang, Ming; Liu, Bin; Zhang, Yi; Wang, Yu; Teng, Gao-Jun

    2012-01-17

    Resting-state functional magnetic resonance imaging (fMRI) has facilitated the study of spontaneous brain activity by measuring low-frequency oscillations in blood-oxygen-level-dependent signals. Analyses of regional homogeneity (ReHo), which reflects the local synchrony of neural activity, have been used to reveal the mechanisms underlying the brain dysfunction in various neuropsychiatric diseases. However, it is not known whether the ReHo is altered in cirrhotic patients with minimal hepatic encephalopathy (MHE). We recruited 18 healthy controls and 18 patients with MHE. The ReHo was calculated to assess the strength of the local signal synchrony. Compared with the healthy controls, the patients with MHE had significantly decreased ReHo in the cuneus and adjacent precuneus, and left inferior parietal lobe, whereas the regions showing increased ReHo in patients with MHE included the left parahippocampal gyrus, right cerebellar vermis, and bilateral anterior cerebellar lobes. We found a positive correlation between the mean ReHo in the cuneus and adjacent precuneus and the score on the digit-symbol test in the patient group. In conclusion, the analysis of the regional homogeneity of resting-state brain activity may provide additional information with respect to a clinical definition of MHE.

  17. Revealing the cerebral regions and networks mediating vulnerability to depression: oxidative metabolism mapping of rat brain.

    PubMed

    Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J

    2014-07-01

    The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects.

  18. Differential Activation Patterns in the Same Brain Region Led to Opposite Emotional States

    PubMed Central

    Shibata, Kazuhisa; Watanabe, Takeo; Kawato, Mitsuo; Sasaki, Yuka

    2016-01-01

    In human studies, how averaged activation in a brain region relates to human behavior has been extensively investigated. This approach has led to the finding that positive and negative facial preferences are represented by different brain regions. However, using a functional magnetic resonance imaging (fMRI) decoded neurofeedback (DecNef) method, we found that different patterns of neural activations within the cingulate cortex (CC) play roles in representing opposite directions of facial preference. In the present study, while neutrally preferred faces were presented, multi-voxel activation patterns in the CC that corresponded to higher (or lower) preference were repeatedly induced by fMRI DecNef. As a result, previously neutrally preferred faces became more (or less) preferred. We conclude that a different activation pattern in the CC, rather than averaged activation in a different area, represents and suffices to determine positive or negative facial preference. This new approach may reveal the importance of an activation pattern within a brain region in many cognitive functions. PMID:27608359

  19. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    PubMed Central

    Wu, Ping; Zhou, Yu-mei; Zeng, Fang; Li, Zheng-jie; Luo, Lu; Li, Yong-xin; Fan, Wei; Qiu, Li-hua; Qin, Wei; Chen, Lin; Bai, Lin; Nie, Juan; Zhang, San; Xiong, Yan; Bai, Yu; Yin, Can-xin; Liang, Fan-rong

    2016-01-01

    Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = –0.609, P = 0.047) and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = –0.737, P = 0.010). Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients. PMID:27857744

  20. Regional development of carbachol-, glutamate-, norepinephrine-, and serotonin-stimulated phosphoinositide metabolism in rat brain.

    PubMed

    Balduini, W; Candura, S M; Costa, L G

    1991-09-19

    Phosphoinositide metabolism stimulated by activation of cholinergic muscarinic, glutamatergic, alpha-adrenergic and serotoninergic receptors was measured in brain regions of the developing rats. Accumulation of [3H]inositol phosphates ([3H]InsPs) in [3H]inositol-prelabeled slices from cerebral cortex, hippocampus, brainstem and cerebellum was measured as an index of phosphoinositide metabolism. Large age-, neurotransmitter receptor-, and brain region-dependent differences were found. Carbachol-stimulated [3H]InsPs accumulation peaked on postnatal day 7 in cerebral cortex and hippocampus while in cerebellum and brainstem the effect of muscarinic stimulation was maximal at birth and then declined to adulthood. The effect of glutamate also showed a peak on day 7 in hippocampus and brainstem and a developmentally related decrease in cerebral cortex. In the cerebellum, on the other hand, the response to glutamate remained sustained through adulthood. Stimulation of phosphoinositide metabolism by norepinephrine increased with age in hippocampus and cerebral cortex, but decreased in the cerebellum, while the effect of serotonin did not change significantly with age except in cerebellum. These changes in receptor-stimulated phosphoinositide metabolism do not parallel, for the most part, the ontogeny of receptor recognition sites. Activation of the phosphoinositide metabolism pathway leads to an increase in intracellular calcium levels and to stimulation of protein kinase C, which are believed to play significant roles in cellular proliferation and differentiation. Thus, the differential ability of neurotransmitters to stimulate phosphoinositide hydrolysis might play a role in the development of brain regions.

  1. Financial literacy is associated with medial brain region functional connectivity in old age.

    PubMed

    Han, S Duke; Boyle, Patricia A; Yu, Lei; Fleischman, Debra A; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A

    2014-01-01

    Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest (ROI) in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age.

  2. Morphological features of the neonatal brain following exposure to regional anesthesia during labor and delivery.

    PubMed

    Spann, Marisa N; Serino, Dana; Bansal, Ravi; Hao, Xuejun; Nati, Giancarlo; Toth, Zachary; Walsh, Kirwan; Chiang, I-Chin; Sanchez-Peña, Juan; Liu, Jun; Kangarlu, Alayar; Liu, Feng; Duan, Yunsuo; Shova, Satie; Fried, Jane; Tau, Gregory Z; Rosen, Tove S; Peterson, Bradley S

    2015-02-01

    Recent animal and human epidemiological studies suggest that early childhood exposure to anesthesia may have adverse effects on brain development. As more than 50% of pregnant women in the United States and one-third in the United Kingdom receive regional anesthesia during labor and delivery, understanding the effects of perinatal anesthesia on postnatal brain development has important public health relevance. We used high-resolution magnetic resonance imaging (MRI) to assess the effects of regional anesthesia during labor and delivery as part of a larger study of perinatal exposures on the morphological features of the neonatal brain. We mapped morphological features of the cortical surface in 37 healthy infants, 24 exposed and 13 unexposed to regional anesthesia at delivery, who were scanned within the first 6 weeks of life. Infants exposed to maternal anesthesia compared with unexposed infants had greater local volumes in portions of the frontal and occipital lobes bilaterally and right posterior portion of the cingulate gyrus. Longer durations of exposure to anesthesia correlated positively with local volumes in the occipital lobe. Anesthesia exposure during labor and delivery was associated with larger volumes in portions of the frontal and occipital lobes and cingulate gyrus in neonates. Longitudinal MRI studies are needed to determine whether these morphological effects of anesthesia persist and what their consequences on cognition and behavior may be. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Financial Literacy is Associated with Medial Brain Region Functional Connectivity in Old Age

    PubMed Central

    Han, S. Duke; Boyle, Patricia A.; Yu, Lei; Fleischman, Debra A.; Arfanakis, Konstantinos; Leurgans, Sue; Bennett, David A.

    2014-01-01

    Financial literacy refers to the ability to access and utilize financial information in ways that promote better outcomes. In old age, financial literacy has been associated with a wide range of positive characteristics; however, the neural correlates remain unclear. Recent work has suggested greater co-activity between anterior-posterior medial brain regions is associated with better brain functioning. We hypothesized financial literacy would be associated with this pattern. We assessed whole-brain functional connectivity to a posterior cingulate cortex (PCC) seed region of interest in 138 participants of the Rush Memory and Aging Project. Results revealed financial literacy was associated with greater functional connectivity between the PCC and three regions: the right ventromedial prefrontal cortex (vmPFC), the left postcentral gyrus, and the right precuneus. Results also revealed financial literacy was associated negatively with functional connectivity between the PCC and left caudate. Post-hoc analyses showed the PCC-vmPFC relationship accounted for the most variance in a regression model adjusted for all four significant functional connectivity relationships, demographic factors, and global cognition. These findings provide information on the neural mechanisms associated with financial literacy in old age. PMID:24893911

  4. Effect of manganese on the concentration of amino acids in different regions of the rat brain.

    PubMed

    Lipe, G W; Duhart, H; Newport, G D; Slikker, W; Ali, S F

    1999-01-01

    The present study was designed to determine if chronic exposure of weanlings and adult rats to Mn produces significant alterations in amino acid concentrations in different regions of the rat brain. Weanling (30 day old) and adult (90 day old) male rats were exposed to 10 and 20 mg Mn/kg body weight per day, by gavage, for 30 days. Forty-eight hours after the last dose, animals were sacrificed by decapitation and brains were dissected into different regions to determine the concentration of amino acids by HPLC/EC. A dose dependent decrease in body weight gain was found in the adult, but not in the weanling rats. Significant increases occurred in concentrations of aspartate, glutamate, glutamine, taurine and gamma-aminobutyric acid (GABA) in the cerebellum of the adult rats dosed with 20 mg/kg per day, Mn. A significant decrease in the concentration of glutamine was observed in caudate nucleus and hippocampus of weanling rats dosed with 10 mg/kg, Mn. These data suggest that chronic Mn exposure can produce a decrease in body weight gain in adult rats and alterations in amino acids in different regions of weanling and adult rat brains.

  5. Vasopressin modulates the activity of catecholamine containing neurons in specific brain regions.

    PubMed

    Versteeg, D H; De Kloet, E R; Greidanus, T V; De Wied, D

    1979-01-01

    Following the i.c.v. administration of antivasopressin serum the alpha-MPT-induced disappearance of noradrenaline was decreased in the dorsal septal nucleus, parafascicular nucleus and the rostral part of the nucleus tractus solitarii, whereas that of dopamine was lowered in the caudate nucleus and in the A2 region of the medulla oblongata. In general the effects are opposite to those previously found following the i.c.v. administration of vasopressin. The results support the hypothesis that vasopressin modulates catecholamine neurotransmission in specific brain regions of the rat.

  6. Dissociable Effects on Birdsong of Androgen Signaling in Cortex-Like Brain Regions of Canaries.

    PubMed

    Alward, Beau A; Balthazart, Jacques; Ball, Gregory F

    2017-09-06

    The neural basis of how learned vocalizations change during development and in adulthood represents a major challenge facing cognitive neuroscience. This plasticity in the degree to which learned vocalizations can change in both humans and songbirds is linked to the actions of sex steroid hormones during ontogeny but also in adulthood in the context of seasonal changes in birdsong. We investigated the role of steroid hormone signaling in the brain on distinct features of birdsong using adult male canaries (Serinus canaria), which show extensive seasonal vocal plasticity as adults. Specifically, we bilaterally implanted the potent androgen receptor antagonist flutamide in two key brain regions that control birdsong. We show that androgen signaling in the motor cortical-like brain region, the robust nucleus of the arcopallium (RA), controls syllable and trill bandwidth stereotypy, while not significantly affecting higher order features of song such syllable-type usage (i.e., how many times each syllable type is used) or syllable sequences. In contrast, androgen signaling in the premotor cortical-like brain region, HVC (proper name), controls song variability by increasing the variability of syllable-type usage and syllable sequences, while having no effect on syllable or trill bandwidth stereotypy. Other aspects of song, such as the duration of trills and the number of syllables per song, were also differentially affected by androgen signaling in HVC versus RA. These results implicate androgens in regulating distinct features of complex motor output in a precise and nonredundant manner.SIGNIFICANCE STATEMENT Vocal plasticity is linked to the actions of sex steroid hormones, but the precise mechanisms are unclear. We investigated this question in adult male canaries (Serinus canaria), which show extensive vocal plasticity throughout their life. We show that androgens in two cortex-like vocal control brain regions regulate distinct aspects of vocal plasticity. For

  7. Regional specificity in deltamethrin induced cytochrome P450 expression in rat brain

    SciTech Connect

    Yadav, Sanjay; Johri, Ashu; Dhawan, Alok; Seth, Prahlad K.; Parmar, Devendra . E-mail: parmar_devendra@hotmail.com

    2006-11-15

    Oral administration of deltamethrin (5 mg/kg x 7 or 15 or 21 days) was found to produce a time-dependent increase in the mRNA expression of xenobiotic metabolizing cytochrome P450 1A1 (CYP1A1), 1A2 and CYP2B1, 2B2 isoenzymes in rat brain. RT-PCR studies further showed that increase in the mRNA expression of these CYP isoenzymes observed after 21 days of exposure was region specific. Hippocampus exhibited maximum increase in the mRNA expression of CYP1A1, which was followed by pons-medulla, cerebellum and hypothalamus. The mRNA expression of CYP2B1 also exhibited maximum increase in the hypothalamus and hippocampus followed by almost similar increase in midbrain and cerebellum. In contrast, mRNA expression of CYP1A2 and CYP2B2, the constitutive isoenzymes exhibited relatively higher increase in pons-medulla, cerebellum and frontal cortex. Immunoblotting studies carried out with polyclonal antibody raised against rat liver CYP1A1/1A2 or CYP2B1/2B2 isoenzymes also showed increase in immunoreactivity comigrating with CYP1A1/1A2 or 2B1/2B2 in the microsomal fractions isolated from hippocampus, hypothalamus and cerebellum of rat treated with deltamethrin. Though the exact relationship of the xenobiotic metabolizing CYPs with the physiological function of the brain is yet to be clearly understood, the increase in the mRNA expression of the CYPs in the brain regions that regulate specific brain functions affected by deltamethrin have further indicated that modulation of these CYPs could be associated with the various endogenous functions of the brain.

  8. The stability of the transcriptome during the estrous cycle in four regions of the mouse brain.

    PubMed

    DiCarlo, Lisa M; Vied, Cynthia; Nowakowski, Richard S

    2017-10-15

    We analyzed the transcriptome of the C57BL/6J mouse hypothalamus, hippocampus, neocortex, and cerebellum to determine estrous cycle-specific changes in these four brain regions. We found almost 16,000 genes are present in one or more of the brain areas but only 210 genes, ∼1.3%, are significantly changed as a result of the estrous cycle. The hippocampus has the largest number of differentially expressed genes (DEGs) (82), followed by the neocortex (76), hypothalamus (63), and cerebellum (26). Most of these DEGs (186/210) are differentially expressed in only one of the four brain regions. A key finding is the unique expression pattern of growth hormone (Gh) and prolactin (Prl). Gh and Prl are the only DEGs to be expressed during only one stage of the estrous cycle (metestrus). To gain insight into the function of the DEGs, we examined gene ontology and phenotype enrichment and found significant enrichment for genes associated with myelination, hormone stimulus, and abnormal hormone levels. Additionally, 61 of the 210 DEGs are known to change in response to estrogen in the brain. 50 of the 210 genes differentially expressed as a result of the estrous cycle are related to myelin and oligodendrocytes and 12 of the 63 DEGs in the hypothalamus are oligodendrocyte- and myelin-specific genes. This transcriptomic analysis reveals that gene expression in the female mouse brain is remarkably stable during the estrous cycle and demonstrates that the genes that do fluctuate are functionally related. © 2017 Wiley Periodicals, Inc.

  9. Assessing Region of Interest Schemes for the Corticospinal Tract in Patients With Brain Tumors

    PubMed Central

    Niu, Chen; Liu, Xin; Yang, Yong; Zhang, Kun; Min, Zhigang; Wang, Maode; Li, Wenfei; Guo, Liping; Lin, Pan; Zhang, Ming

    2016-01-01

    Abstract Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) techniques are widely used for identifying the corticospinal tract (CST) white matter pathways as part of presurgical planning. However, mass effects in patients with brain tumors tend to cause anatomical distortions and compensatory functional reorganization of the cortex, which may lead to inaccurate mapping of white matter tracts. To overcome these problems, we compared different region-of-interest (ROI) selection schemes to track CST fibers in patients with brain tumors. Our study investigated the CSTs of 16 patients with intracranial tumors. The patients were classified into 3 subgroups according to the spatial relationships of the lesion and the primary motor cortex (PMC)/internal capsule. Specifically, we investigated the key factors that cause distorted tractography in patients with tumors. We compared 3 CST tractography methods that used different ROI selection schemes. The results indicate that CST fiber tracking methods based only on anatomical ROIs could possibly lead to distortions near the PMC region and may be unable to effectively localize the PMC. In contrast, the dual ROI method, which uses ROIs that have been selected from both blood oxygen level-dependent functional MRI (BOLD-fMRI) activation and anatomical landmarks, enabled the tracking of fibers to the motor cortex. The results demonstrate that the dual ROI method can localize the entire CST fiber pathway and can accurately describe the spatial relationships of CST fibers relative to the tumor. These results illustrate the reliability of using fMRI-guided DTT in patients with tumors. The combination of fMRI and anatomical information enhances the identification of tracts of interest in brains with anatomical deformations, which provides neurosurgeons with a more accurate approach for visualizing and localizing white matter fiber tracts in patients with brain tumors. This approach enhances surgical performance and

  10. Effects of dietary glycemic index on brain regions related to reward and craving in men1234

    PubMed Central

    Lennerz, Belinda S; Alsop, David C; Holsen, Laura M; Stern, Emily; Rojas, Rafael; Ebbeling, Cara B; Goldstein, Jill M

    2013-01-01

    Background: Qualitative aspects of diet influence eating behavior, but the physiologic mechanisms for these calorie-independent effects remain speculative. Objective: We examined effects of the glycemic index (GI) on brain activity in the late postprandial period after a typical intermeal interval. Design: With the use of a randomized, blinded, crossover design, 12 overweight or obese men aged 18–35 y consumed high- and low-GI meals controlled for calories, macronutrients, and palatability on 2 occasions. The primary outcome was cerebral blood flow as a measure of resting brain activity, which was assessed by using arterial spin-labeling functional magnetic resonance imaging 4 h after test meals. We hypothesized that brain activity would be greater after the high-GI meal in prespecified regions involved in eating behavior, reward, and craving. Results: Incremental venous plasma glucose (2-h area under the curve) was 2.4-fold greater after the high- than the low-GI meal (P = 0.0001). Plasma glucose was lower (mean ± SE: 4.7 ± 0.14 compared with 5.3 ± 0.16 mmol/L; P = 0.005) and reported hunger was greater (P = 0.04) 4 h after the high- than the low-GI meal. At this time, the high-GI meal elicited greater brain activity centered in the right nucleus accumbens (a prespecified area; P = 0.0006 with adjustment for multiple comparisons) that spread to other areas of the right striatum and to the olfactory area. Conclusions: Compared with an isocaloric low-GI meal, a high-GI meal decreased plasma glucose, increased hunger, and selectively stimulated brain regions associated with reward and craving in the late postprandial period, which is a time with special significance to eating behavior at the next meal. This trial was registered at clinicaltrials.gov as NCT01064778. PMID:23803881

  11. Regional brain glucose metabolism in chronic schizophrenia. A positron emission transaxial tomographic study

    SciTech Connect

    Farkas, T.; Wolf, A.P.; Jaeger, J.; Brodie, J.D.; Christman, D.R.; Fowler, J.S.

    1984-03-01

    Thirteen diagnosed schizophrenics and 11 normal controls were studied with a method using the PETT III positron emission tomograph (PET) and fluorodeoxyglucose labeled with fluorine 18. Each subject also had a computed tomographic (CT) scan. For each subject, two brain levels, one through the basal ganglia and one through the semioval center, were analyzed for the mean regional metabolic glucose rate. Specifically, relationships between frontal and posterior regions were evaluated. The CT scans of matching levels were superimposed on the functional PET images to provide anatomic criteria for region of interest selection. While no whole-slice metabolic differences were apparent between groups, schizophrenics had significantly lower activity in the frontal lobes, relative to posterior regions. The medicated and drug-free groups did not differ from one another in these regards. Trait v state dependency of the phenomenon was analyzed, and several technological limitations were considered.

  12. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions.

    PubMed

    Li, Hongyun; Ruberu, Kalani; Karl, Tim; Garner, Brett

    2016-01-01

    Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer's disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.

  13. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions

    PubMed Central

    Li, Hongyun; Ruberu, Kalani; Karl, Tim; Garner, Brett

    2016-01-01

    Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer’s disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein. PMID:26829325

  14. [Regional distribution of pancreatic polypeptide-like immunoreactivity in the canine brain].

    PubMed

    Inui, A; Mizuno, N; Ogawa, T; Fujii, S; Ishida, M; Baba, S

    1983-02-20

    Recently many gut hormones have been found in the brain, and there is some evidence to suggest that pancreatic polypeptide-like immunoreactivity (PP-LI) is also present in the brain. Although in mammals, confirmative evidence is not yet shown. In the present paper we report the distribution and tissue localization of PP-LI in the canine brain by radio-immunoassay (RIA) and immunohistochemistry. Normal, fasted mongrel dogs were used. Brain tissue was extracted by boiling water. High concentrations of PP-LI were found in the pituitary gland (3.67 +/- 1.10 ng/g wet wt), substantia nigra (1.58 +/- 0.36 ng/g wet wt), hypothalamus (0.74 +/- 0.28 ng/g wet wt) and olfactory lobe (0.58 +/- 0.21 ng/g wet wt). PP-LI was not detectable in the frontal lobe, parietal lobe, striatum, thalamus, hippocampus, pons, cerebellum and medulla oblongata. The amounts of PP-LI in the brain were more less than the amounts of PP present in the pancreas (duodenal lobe, 29.3 +/- 1.1 microgram/g wet wt). The dilution curve of the brain tissue extracts showed parallelism with the standard curve of human and porcine PP on the RIA system. On Bio-Gel P-30 column chromatography, PP-LI from the pituitary gland and olfactory lobe eluted as a single peak coincided with highly purified bovine PP. In immunohistochemical study, PP-LI was found in the intermediate lobe and the stalk of the pituitary gland by means of anti-bovine PP antiserum. These findings of the specific regional localization suggest that PP or PP-LI may have a physiological role in the central nervous system.

  15. Regional and Gender Study of Neuronal Density in Brain during Aging and in Alzheimer's Disease

    PubMed Central

    Martínez-Pinilla, Eva; Ordóñez, Cristina; del Valle, Eva; Navarro, Ana; Tolivia, Jorge

    2016-01-01

    Background: Learning processes or language development are only some of the cognitive functions that differ qualitatively between men and women. Gender differences in the brain structure seem to be behind these variations. Indeed, this sexual dimorphism at neuroanatomical level is accompanied unequivocally by differences in the way that aging and neurodegenerative diseases affect men and women brains. Objective: The aim of this study is the analysis of neuronal density in four areas of the hippocampus, and entorhinal and frontal cortices to analyze the possible gender influence during normal aging and in Alzheimer's disease (AD). Methods: Human brain tissues of different age and from both sexes, without neurological pathology and with different Braak's stages of AD, were studied. Neuronal density was quantified using the optical dissector. Results: Our results showed the absence of a significant neuronal loss during aging in non-pathological brains in both sexes. However, we have demonstrated specific punctual significant variations in neuronal density related with the age and gender in some regions of these brains. In fact, we observed a higher neuronal density in CA3 and CA4 hippocampal areas of non-pathological brains of young men compared to women. During AD, we observed a negative correlation between Braak's stages and neuronal density in hippocampus, specifically in CA1 for women and CA3 for men, and in frontal cortex for both, men and women. Conclusion: Our data demonstrated a sexual dimorphism in the neuronal vulnerability to degeneration suggesting the need to consider the gender of the individuals in future studies, regarding neuronal loss in aging and AD, in order to avoid problems in interpreting data. PMID:27679571

  16. Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies.

    PubMed

    Tang, D W; Fellows, L K; Small, D M; Dagher, A

    2012-06-06

    In healthy individuals, food cues can trigger hunger and feeding behavior. Likewise, smoking cues can trigger craving and relapse in smokers. Brain imaging studies report that structures involved in appetitive behaviors and reward, notably the insula, striatum, amygdala and orbital frontal cortex, tend to be activated by both visual food and smoking cues. Here, by carrying out a meta-analysis of human neuro-imaging studies, we investigate the neural network activated by: 1) food versus neutral cues (14 studies, 142 foci) 2) smoking versus neutral cues (15 studies, 176 foci) 3) smoking versus neutral cues when correlated with craving scores (7 studies, 108 foci). PubMed was used to identify cue-reactivity imaging studies that compared brain response to visual food or smoking cues to neutral cues. Fourteen articles were identified for the food meta-analysis and fifteen articles were identified for the smoking meta-analysis. Six articles were identified for the smoking cue correlated with craving analysis. Meta-analyses were carried out using activation likelihood estimation. Food cues were associated with increased blood oxygen level dependent (BOLD) response in the left amygdala, bilateral insula, bilateral orbital frontal cortex, and striatum. Smoking cues were associated with increased BOLD signal in the same areas, with the exception of the insula. However, the smoking meta-analysis of brain maps correlating cue-reactivity with subjective craving did identify the insula, suggesting that insula activation is only found when craving levels are high. The brain areas identified here are involved in learning, memory and motivation, and their cue-induced activity is an index of the incentive salience of the cues. Using meta-analytic techniques to combine a series of studies, we found that food and smoking cues activate comparable brain networks. There is significant overlap in brain regions responding to conditioned cues associated with natural and drug rewards.

  17. Decreased functional connectivity density in pain-related brain regions of female migraine patients without aura.

    PubMed

    Gao, Qing; Xu, Fei; Jiang, Cui; Chen, Zhifeng; Chen, Huafu; Liao, Huaqiang; Zhao, Ling

    2016-02-01

    Migraine is one of the most prevalent neurological disorders which is suggested to be associated with dysfunctions of the central nervous system. The purpose of the present study was to detect the altered functional connectivity architecture in the large-scale network of the whole brain in migraine without aura (MWoA). Meanwhile, the brain functional hubs which are targeted by MWoA could be identified. A new voxel-based method named functional connectivity density (FCD) mapping was applied to resting-state functional magnetic resonance imaging data of 55 female MWoA patients and 44 age-matched female healthy controls (HC). Comparing to HC, MWoA patients showed abnormal short-range FCD values in bilateral hippocampus, bilateral insula, right amygdale, right anterior cingulate cortex, bilateral putamen, bilateral caudate nucleus and the prefrontal cortex. The results suggested decreased intraregional connectivity of these pain-related brain regions in female MWoA. In addition, short-range FCD values in left prefrontal cortex, putamen and caudate nucleus were significantly negatively correlated with duration of disease in MWoA group, implying the repeated migraine attacks over time may consistently affect the resting-state functional connectivity architecture of these brain hubs. Our findings revealed the dysfunction of brain hubs in female MWoA, and suggested the left prefrontal cortex, putamen and caudate nucleus served as sensitive neuroimaging markers for reflecting the disease duration of female MWoA. This may provide us new insights into the changes in the organization of the large-scale brain network in MWoA. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Regional brain signal variability: a novel indicator of pain sensitivity and coping.

    PubMed

    Rogachov, Anton; Cheng, Joshua C; Erpelding, Nathalie; Hemington, Kasey S; Crawley, Adrian P; Davis, Karen D

    2016-11-01

    Variability in blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals reflects the moment-by-moment fluctuations in resting-state fMRI (rs-fMRI) activity within specific areas of the brain. Regional BOLD signal variability was recently proposed to serve an important functional role in the efficacy of neural systems because of its relationship to behavioural performance in aging and cognition studies. We previously showed that individuals who better cope with pain have greater fluctuations in interregional functional connectivity, but it is not known whether regional brain signal variability is a mechanism underlying pain coping. We tested the hypothesis that individual pain sensitivity and coping is reflected by regional fMRI BOLD signal variability within dynamic pain connectome-brain systems implicated in the pain experience. We acquired resting-state fMRI and assessed pain threshold, suprathreshold temporal summation of pain, and the impact of pain on cognition in 80 healthy right-handed individuals. We found that regional BOLD signal variability: (1) inversely correlated with an individual's temporal summation of pain within the ascending nociceptive pathway (primary and secondary somatosensory cortex), default mode network, and salience network; (2) was correlated with an individual's ability to cope with pain during a cognitive interference task within the periaqueductal gray, a key opiate-rich brainstem structure for descending pain modulation; and (3) provided information not captured from interregional functional connectivity. Therefore, regional BOLD variability represents a pain metric with potential implications for prediction of chronic pain resilience vs vulnerability.

  19. Modulation of sensitivity to alcohol by cortical and thalamic brain regions

    PubMed Central

    Jaramillo, Anel A.; Randall, Patrick A.; Frisbee, Suzanne; Besheer, Joyce

    2017-01-01

    The nucleus accumbens core (AcbC) is a key brain region known to regulate the discriminative stimulus/interoceptive effects of alcohol. As such, the goal of the present work was to identify AcbC projection regions that may also modulate sensitivity to alcohol. Accordingly, AcbC afferent projections were identified in behaviorally naïve rats using a retrograde tracer which led to the focus on the medial prefrontal cortex (mPFC), insular cortex (IC) and rhomboid thalamic nucleus (Rh). Next, to examine the possible role of these brain regions in modulating sensitivity to alcohol, neuronal response to alcohol in rats trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water was examined using a two-lever drug discrimination task. As such, rats were administered water or alcohol (1g/kg, IG) and brain tissue was processed for c-Fos immunoreactivity (IR), a marker of neuronal activity. Alcohol decreased c-Fos IR in the mPFC, IC, Rh, and AcbC. Lastly, site-specific pharmacological inactivation with muscimol+baclofen (GABAA agonist+GABAB agonist) was used to determine the functional role of the mPFC, IC and Rh in modulating the interoceptive effects of alcohol in rats trained to discriminate alcohol (1 g/kg, IG) vs. water. mPFC inactivation resulted in full substitution for the alcohol training dose, and IC and Rh inactivation produced partial alcohol-like effects, demonstrating the importance of these regions, with known projections to the AcbC, in modulating sensitivity to alcohol. Together, these data demonstrate a site of action of alcohol and the recruitment of cortical/thalamic regions in modulating sensitivity to the interoceptive effects of alcohol. PMID:27543844

  20. Modulation of sensitivity to alcohol by cortical and thalamic brain regions.

    PubMed

    Jaramillo, Anel A; Randall, Patrick A; Frisbee, Suzanne; Besheer, Joyce

    2016-10-01

    The nucleus accumbens core (AcbC) is a key brain region known to regulate the discriminative stimulus/interoceptive effects of alcohol. As such, the goal of the present work was to identify AcbC projection regions that may also modulate sensitivity to alcohol. Accordingly, AcbC afferent projections were identified in behaviorally naïve rats using a retrograde tracer which led to the focus on the medial prefrontal cortex (mPFC), insular cortex (IC) and rhomboid thalamic nucleus (Rh). Next, to examine the possible role of these brain regions in modulating sensitivity to alcohol, neuronal response to alcohol in rats trained to discriminate alcohol (1 g/kg, intragastric [IG]) vs. water was examined using a two-lever drug discrimination task. As such, rats were administered water or alcohol (1 g/kg, IG) and brain tissue was processed for c-Fos immunoreactivity (IR), a marker of neuronal activity. Alcohol decreased c-Fos IR in the mPFC, IC, Rh and AcbC. Lastly, site-specific pharmacological inactivation with muscimol + baclofen (GABAA agonist + GABAB agonist) was used to determine the functional role of the mPFC, IC and Rh in modulating the interoceptive effects of alcohol in rats trained to discriminate alcohol (1 g/kg, IG) vs. water. mPFC inactivation resulted in full substitution for the alcohol training dose, and IC and Rh inactivation produced partial alcohol-like effects, demonstrating the importance of these regions, with known projections to the AcbC, in modulating sensitivity to alcohol. Together, these data demonstrate a site of action of alcohol and the recruitment of cortical/thalamic regions in modulating sensitivity to the interoceptive effects of alcohol.