Sample records for brain remain unknown

  1. Boosting Endogenous Resistance of Brain to Ischemia

    PubMed Central

    Sun, Fen; Johnson, Stephen R.; Jin, Kunlin; Uteshev, Victor V.

    2016-01-01

    Most survivors of ischemic stroke remain physically disabled and require prolonged rehabilitation. However, some stroke victims achieve a full neurological recovery suggesting that human brain can defend itself against ischemic injury, but the protective mechanisms are unknown. This study used selective pharmacological agents and a rat model of cerebral ischemic stroke to detect endogenous brain protective mechanisms that require activation of α7 nicotinic acetylcholine receptors (nAChRs). This endogenous protection was found to be: 1) limited to less severe injuries; 2) significantly augmented by intranasal administration of a positive allosteric modulator of α7 nAChRs, significantly reducing brain injury and neurological deficits after more severe ischemic injuries; and 3) reduced by inhibition of calcium/calmodulin-dependent kinase-II. The physiological role of α7 nAChRs remains largely unknown. The therapeutic activation of α7 nAChRs after cerebral ischemia may serve as an important physiological responsibility of these ubiquitous receptors and holds a significant translational potential. PMID:26910820

  2. Artificial organs: recent progress in artificial hearing and vision.

    PubMed

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.

  3. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    ERIC Educational Resources Information Center

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  4. Blood and Brain Glutamate Levels in Children with Autistic Disorder

    ERIC Educational Resources Information Center

    Hassan, Tamer H.; Abdelrahman, Hadeel M.; Fattah, Nelly R. Abdel; El-Masry, Nagda M.; Hashim, Haitham M.; El-Gerby, Khaled M.; Fattah, Nermin R. Abdel

    2013-01-01

    Despite of the great efforts that move forward to clarify the pathophysiologic mechanisms in autism, the cause of this disorder, however, remains largely unknown. There is an increasing body of literature concerning neurochemical contributions to the pathophysiology of autism. We aimed to determine blood and brain levels of glutamate in children…

  5. Blood-Brain Barrier Permeability and Monocyte Infiltration in Experimental Allergic Encephalomyelitis

    ERIC Educational Resources Information Center

    Floris, S.; Blezer, E. L. A.; Schreibelt, G.; Dopp, E.; van der Pol, S. M. A.; Schadee-Eestermans, I. L.; Nicolay, K.; Dijkstra, C. D.; de Vries, H. E.

    2004-01-01

    Enhanced cerebrovascular permeability and cellular infiltration mark the onset of early multiple sclerosis lesions. So far, the precise sequence of these events and their role in lesion formation and disease progression remain unknown. Here we provide quantitative evidence that blood-brain barrier leakage is an early event and precedes massive…

  6. Causal mapping of emotion networks in the human brain: Framework and initial findings.

    PubMed

    Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph

    2017-11-13

    Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chronic Traumatic Encephalopathy: Known Causes, Unknown Effects.

    PubMed

    Iacono, Diego; Shively, Sharon B; Edlow, Brian L; Perl, Daniel P

    2017-05-01

    Chronic traumatic encephalopathy (CTE) is a neuropathologic diagnosis typically made in human brains with a history of repetitive traumatic brain injury (rTBI). It remains unknown whether CTE occurs exclusively after rTBI, or whether a single TBI (sTBI) can cause CTE. Similarly, it is unclear whether impact (eg, motor vehicle accidents) and non-impact (eg, blasts) types of energy transfer trigger divergent or common pathologies. While it is established that a history of rTBI increases the risk of multiple neurodegenerative diseases (eg, dementia, parkinsonism, and CTE), the possible pathophysiologic and molecular mechanisms underlying these risks have yet to be elucidated. Published by Elsevier Inc.

  8. Two areas for familiar face recognition in the primate brain.

    PubMed

    Landi, Sofia M; Freiwald, Winrich A

    2017-08-11

    Familiarity alters face recognition: Familiar faces are recognized more accurately than unfamiliar ones and under difficult viewing conditions when unfamiliar face recognition fails. The neural basis for this fundamental difference remains unknown. Using whole-brain functional magnetic resonance imaging, we found that personally familiar faces engage the macaque face-processing network more than unfamiliar faces. Familiar faces also recruited two hitherto unknown face areas at anatomically conserved locations within the perirhinal cortex and the temporal pole. These two areas, but not the core face-processing network, responded to familiar faces emerging from a blur with a characteristic nonlinear surge, akin to the abruptness of familiar face recognition. In contrast, responses to unfamiliar faces and objects remained linear. Thus, two temporal lobe areas extend the core face-processing network into a familiar face-recognition system. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Adolescent Maturity and the Brain: The Promise and Pitfalls of Neuroscience Research in Adolescent Health Policy

    PubMed Central

    Johnson, Sara B.; Blum, Robert W.; Giedd, Jay N.

    2010-01-01

    Longitudinal neuroimaging studies demonstrate that the adolescent brain continues to mature well into the 20s. This has prompted intense interest in linking neuromaturation to maturity of judgment. Public policy is struggling to keep up with burgeoning interest in cognitive neuroscience and neuroimaging. However, empirical evidence linking neurodevelopmental processes and adolescent real-world behavior remains sparse. Nonetheless, adolescent brain development research is already shaping public policy debates about when individuals should be considered mature for policy purposes. With this in mind, in this article we summarize what is known about adolescent brain development and what remains unknown, as well as what neuroscience can and cannot tell us about the adolescent brain and behavior. We suggest that a conceptual framework that situates brain science in the broader context of adolescent developmental research would help to facilitate research-to-policy translation. Furthermore, although contemporary discussions of adolescent maturity and the brain often use a deficit-based approach, there is enormous opportunity for brain science to illuminate the great strengths and potentialities of the adolescent brain. So, too, can this information inform policies that promote adolescent health and well-being. PMID:19699416

  10. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    PubMed

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Rett'S syndrome : a case report.

    PubMed

    Gupta, V

    2001-01-01

    Rett's syndrome is a rare condition affecting only the girl child. It presents as a pervasive developmental disorder with a remarkable behavioural phenotype. The cause for this remains unknown but genetic factors and brain dysfunction have been implicated. This case report emphasises the importance of being aware of rare yet significant disorders of interest to neuro-developmental psychiatrists.

  12. T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice

    PubMed Central

    Clarkson, Benjamin D.S.; Ling, Changying; Shi, Yejie; Harris, Melissa G.; Rayasam, Aditya; Sun, Dandan; Salamat, M. Shahriar; Kuchroo, Vijay; Lambris, John D.; Sandor, Matyas

    2014-01-01

    T lymphocytes are key contributors to the acute phase of cerebral ischemia reperfusion injury, but the relevant T cell–derived mediators of tissue injury remain unknown. Using a mouse model of transient focal brain ischemia, we report that IL-21 is highly up-regulated in the injured mouse brain after cerebral ischemia. IL-21–deficient mice have smaller infarcts, improved neurological function, and reduced lymphocyte accumulation in the brain within 24 h of reperfusion. Intracellular cytokine staining and adoptive transfer experiments revealed that brain-infiltrating CD4+ T cells are the predominant IL-21 source. Mice treated with decoy IL-21 receptor Fc fusion protein are protected from reperfusion injury. In postmortem human brain tissue, IL-21 localized to perivascular CD4+ T cells in the area surrounding acute stroke lesions, suggesting that IL-21–mediated brain injury may be relevant to human stroke. PMID:24616379

  13. Spatio-temporal neural stem cell behavior that leads to both perfect and imperfect structural brain regeneration in adult newts.

    PubMed

    Urata, Yuko; Yamashita, Wataru; Inoue, Takeshi; Agata, Kiyokazu

    2018-06-14

    Adult newts can regenerate large parts of their brain from adult neural stem cells (NSCs), but how adult NSCs reorganize brain structures during regeneration remains unclear. In development, elaborate brain structures are produced under broadly coordinated regulations of embryonic NSCs in the neural tube, whereas brain regeneration entails exquisite control of the reestablishment of certain brain parts, suggesting a yet-unknown mechanism directs NSCs upon partial brain excision. Here we report that upon one-quarter excision of the adult newt ( Pleurodeles waltl ) mesencephalon, active participation of local NSCs around specific brain subregions' boundaries leads to some imperfect and some perfect brain regeneration along an individual's rostrocaudal axis. Regeneration phenotypes depend on how the wound closing occurs using local NSCs, and perfect regeneration replicates development-like processes but takes more than one year. Our findings indicate that newt brain regeneration is supported by modularity of boundary-domain NSCs with self-organizing ability in neighboring fields. © 2018. Published by The Company of Biologists Ltd.

  14. RETT'S SYNDROME : A CASE REPORT

    PubMed Central

    Gupta, Vinay

    2001-01-01

    Rett's syndrome is a rare condition affecting only the girl child. It presents as a pervasive developmental disorder with a remarkable behavioural phenotype. The cause for this remains unknown but genetic factors and brain dysfunction have been implicated. This case report emphasises the importance of being aware of rare yet significant disorders of interest to neuro-developmental psychiatrists. PMID:21407847

  15. The Repetition Paradigm: Enhancement of Novel Metaphors and Suppression of Conventional Metaphors in the Left Inferior Parietal Lobe

    ERIC Educational Resources Information Center

    Subramaniam, Karuna; Faust, Miriam; Beeman, Mark; Mashal, Nira

    2012-01-01

    The neural mechanisms underlying the process of understanding novel and conventional metaphoric expressions remain unclear largely because the specific brain regions that support the formation of novel semantic relations are still unknown. A well established way to study distinct cognitive processes specifically associated with an event of…

  16. Topological relationships between brain and social networks.

    PubMed

    Sakata, Shuzo; Yamamori, Tetsuo

    2007-01-01

    Brains are complex networks. Previously, we revealed that specific connected structures are either significantly abundant or rare in cortical networks. However, it remains unknown whether systems from other disciplines have similar architectures to brains. By applying network-theoretical methods, here we show topological similarities between brain and social networks. We found that the statistical relevance of specific tied structures differs between social "friendship" and "disliking" networks, suggesting relation-type-specific topology of social networks. Surprisingly, overrepresented connected structures in brain networks are more similar to those in the friendship networks than to those in other networks. We found that balanced and imbalanced reciprocal connections between nodes are significantly abundant and rare, respectively, whereas these results are unpredictable by simply counting mutual connections. We interpret these results as evidence of positive selection of balanced mutuality between nodes. These results also imply the existence of underlying common principles behind the organization of brain and social networks.

  17. Helping to combat chronic wasting disease

    USGS Publications Warehouse

    ,

    2003-01-01

    Chronic wasting disease (CWD) is a disease of the nervous system that results in distinctive brain lesions. CWD affects elk, white-tailed deer, and mule deer, but has not been documented in livestock or humans. The origins of the disease, as well as the modes of transmission, remain unknown. Infected deer and elk appear robust and healthy in the early stages of CWD; clinical signs might not show for years. Mortality typically occurs within months after the appearance of clinical signs. The route of transmission is unknown; likely routes include direct transmission between infected and noninfected animals and infected animals contaminating local environments.

  18. Reality Check: What Science Has to Tell Us about Psychiatric Drugs and Their Long-Term Effects

    ERIC Educational Resources Information Center

    Whitaker, Robert B.

    2007-01-01

    Three decades of research into the "chemical imbalance" theory of mental disorders failed to pan out. The biological causes of most mental disorders remain unknown. However, it is now well understood that psychiatric drugs work by perturbing neurotransmitter systems, and that the brain, in response to this blocking of normal function, undergoes a…

  19. Deviant Processing of Letters and Speech Sounds as Proximate Cause of Reading Failure: A Functional Magnetic Resonance Imaging Study of Dyslexic Children

    ERIC Educational Resources Information Center

    Blau, Vera; Reithler, Joel; van Atteveldt, Nienke; Seitz, Jochen; Gerretsen, Patty; Goebel, Rainer; Blomert, Leo

    2010-01-01

    Learning to associate auditory information of speech sounds with visual information of letters is a first and critical step for becoming a skilled reader in alphabetic languages. Nevertheless, it remains largely unknown which brain areas subserve the learning and automation of such associations. Here, we employ functional magnetic resonance…

  20. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  1. Transcranial magnetic stimulation: physics, electrophysiology, and applications.

    PubMed

    Fatemi-Ardekani, Ali

    2008-01-01

    Transcranial magnetic stimulation (TMS) is a noninvasive technique used to stimulate the brain. This review will examine the fundamental principles of physics upon which magnetic stimulation is based, the design considerations of the TMS device, and hypotheses about its electrophysiological effects resulting in neuromodulation. TMS is valuable in neurophysiology research and has significant therapeutic potential in clinical neurology and psychiatry. While TMS can modify neuronal currents in the brain, its underlying mechanism remains unknown. Salient applications are included and some suggestions are outlined for future development of magnetic stimulators that could lead to more effective neuronal stimulation and therefore better therapeutic and diagnostic applications.

  2. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  3. Optimal trajectories of brain state transitions

    PubMed Central

    Gu, Shi; Betzel, Richard F.; Mattar, Marcelo G.; Cieslak, Matthew; Delio, Philip R.; Grafton, Scott T.; Pasqualetti, Fabio; Bassett, Danielle S.

    2017-01-01

    The complexity of neural dynamics stems in part from the complexity of the underlying anatomy. Yet how white matter structure constrains how the brain transitions from one cognitive state to another remains unknown. Here we address this question by drawing on recent advances in network control theory to model the underlying mechanisms of brain state transitions as elicited by the collective control of region sets. We find that previously identified attention and executive control systems are poised to affect a broad array of state transitions that cannot easily be classified by traditional engineering-based notions of control. This theoretical versatility comes with a vulnerability to injury. In patients with mild traumatic brain injury, we observe a loss of specificity in putative control processes, suggesting greater susceptibility to neurophysiological noise. These results offer fundamental insights into the mechanisms driving brain state transitions in healthy cognition and their alteration following injury. PMID:28088484

  4. Human brain networks function in connectome-specific harmonic waves.

    PubMed

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  5. Stimulation-Based Control of Dynamic Brain Networks

    PubMed Central

    Pasqualetti, Fabio; Gu, Shi; Cieslak, Matthew

    2016-01-01

    The ability to modulate brain states using targeted stimulation is increasingly being employed to treat neurological disorders and to enhance human performance. Despite the growing interest in brain stimulation as a form of neuromodulation, much remains unknown about the network-level impact of these focal perturbations. To study the system wide impact of regional stimulation, we employ a data-driven computational model of nonlinear brain dynamics to systematically explore the effects of targeted stimulation. Validating predictions from network control theory, we uncover the relationship between regional controllability and the focal versus global impact of stimulation, and we relate these findings to differences in the underlying network architecture. Finally, by mapping brain regions to cognitive systems, we observe that the default mode system imparts large global change despite being highly constrained by structural connectivity. This work forms an important step towards the development of personalized stimulation protocols for medical treatment or performance enhancement. PMID:27611328

  6. The Cannabinoid System in the Retrosplenial Cortex Modulates Fear Memory Consolidation, Reconsolidation, and Extinction

    ERIC Educational Resources Information Center

    Sachser, Ricardo Marcelo; Crestani, Ana Paula; Quillfeldt, Jorge Alberto; e Souza, Tadeu Mello; de Oliveira Alvares, Lucas

    2015-01-01

    Despite the fact that the cannabinoid receptor type 1 (CB1R) plays a pivotal role in emotional memory processing in different regions of the brain, its function in the retrosplenial cortex (RSC) remains unknown. Here, using contextual fear conditioning in rats, we showed that a post-training intra-RSC infusion of the CB1R antagonist AM251…

  7. Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy.

    PubMed

    Braakman, Hilde M H; Vaessen, Maarten J; Jansen, Jacobus F A; Debeij-van Hall, Mariette H J A; de Louw, Anton; Hofman, Paul A M; Vles, Johan S H; Aldenkamp, Albert P; Backes, Walter H

    2013-03-01

    Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE), but its etiology is unknown. With functional magnetic resonance imaging (fMRI), we have explored the relationship between brain activation, functional connectivity, and cognitive functioning in a cohort of pediatric patients with FLE and healthy controls. Thirty-two children aged 8-13 years with FLE of unknown cause and 41 healthy age-matched controls underwent neuropsychological assessment and structural and functional brain MRI. We investigated to which extent brain regions activated in response to a working memory task and assessed functional connectivity between distant brain regions. Data of patients were compared to controls, and patients were grouped as cognitively impaired or unimpaired. Children with FLE showed a global decrease in functional brain connectivity compared to healthy controls, whereas brain activation patterns in children with FLE remained relatively intact. Children with FLE complicated by cognitive impairment typically showed a decrease in frontal lobe connectivity. This decreased frontal lobe connectivity comprised both connections within the frontal lobe as well as connections from the frontal lobe to the parietal lobe, temporal lobe, cerebellum, and basal ganglia. Decreased functional frontal lobe connectivity is associated with cognitive impairment in pediatric FLE. The importance of impairment of functional integrity within the frontal lobe network, as well as its connections to distant areas, provides new insights in the etiology of the broad-range cognitive impairments in children with FLE. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  8. Innate immune memory in the brain shapes neurological disease hallmarks.

    PubMed

    Wendeln, Ann-Christin; Degenhardt, Karoline; Kaurani, Lalit; Gertig, Michael; Ulas, Thomas; Jain, Gaurav; Wagner, Jessica; Häsler, Lisa M; Wild, Katleen; Skodras, Angelos; Blank, Thomas; Staszewski, Ori; Datta, Moumita; Centeno, Tonatiuh Pena; Capece, Vincenzo; Islam, Md Rezaul; Kerimoglu, Cemil; Staufenbiel, Matthias; Schultze, Joachim L; Beyer, Marc; Prinz, Marco; Jucker, Mathias; Fischer, André; Neher, Jonas J

    2018-04-01

    Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident macrophages (microglia) that persists for at least six months. Strikingly, in a mouse model of Alzheimer's pathology, immune training exacerbates cerebral β-amyloidosis and immune tolerance alleviates it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results identify immune memory in the brain as an important modifier of neuropathology.

  9. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease

    PubMed Central

    de Hemptinne, Coralie; Swann, Nicole; Ostrem, Jill L.; Ryapolova-Webb, Elena S.; Luciano, Marta San; Galifianakis, Nicholas; Starr, Philip A.

    2015-01-01

    Deep brain stimulation (DBS) is increasingly applied to the treatment of brain disorders, but its mechanism of action remains unknown. Here, we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the β rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive β phase locking of motor cortex neurons. PMID:25867121

  10. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations

    PubMed Central

    Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058

  11. Intrathecal immunoglobulin synthesis in patients with symptomatic epilepsy and epilepsy of unknown etiology ('cryptogenic').

    PubMed

    Fauser, S; Soellner, C; Bien, C G; Tumani, H

    2017-09-01

    To compare the frequency of intrathecal immunoglobulin (Ig) synthesis in patients with symptomatic epilepsy and epilepsy of unknown etiology ('cryptogenic'). Patients with epileptic (n = 301) and non-epileptic (n = 10) seizures were retrospectively screened for autochthonous intrathecal Ig synthesis and oligoclonal bands (OCBs) in the cerebrospinal fluid. Intrathecal IgG/OCBs were detected in 8% of patients with epilepsies of unknown etiology, 5% of patients with first seizures of unknown cause and 0-4% of patients with epilepsy due to brain tumors, cerebrovascular disease or other etiologies. Intrathecal IgG/OCBs were not seen in patients with psychogenic seizures. Identical OCBs in serum and cerebrospinal fluid were more common in all patient groups (10-40% depending on underlying etiology). Intrathecal IgG synthesis/OCBs were observed slightly more frequently in patients with 'cryptogenic' epilepsy and with first seizures of unknown etiology than in other patient groups. However, this remained an infrequent finding and thus we could not confirm humoral immunity as a leading disease mechanism in patients with epilepsy in general or with unknown etiology in particular. © 2017 EAN.

  12. TMEM106B expression is reduced in Alzheimer’s disease brains

    PubMed Central

    2014-01-01

    Introduction TMEM106B is a transmembrane glycoprotein of unknown function located within endosome/lysosome compartments expressed ubiquitously in various cell types. Previously, the genome-wide association study (GWAS) identified a significant association of TMEM106B single nucleotide polymorphisms (SNPs) with development of frontotemporal lobar degeneration with ubiquitinated TAR DNA-binding protein-43 (TDP-43)-positive inclusions (FTLD-TDP), particularly in the patients exhibiting the progranulin (PGRN) gene (GRN) mutations. Recent studies indicate that TMEM106B plays a pathological role in various neurodegenerative diseases, including Alzheimer’s disease (AD). However, at present, the precise levels of TMEM106B expression in AD brains remain unknown. Methods By quantitative reverse transcription (RT)-PCR (qPCR), western blot and immunohistochemistry, we studied TMEM106B and PGRN expression levels in a series of AD and control brains, including amyotrophic lateral sclerosis, Parkinson’s disease, multiple system atrophy and non-neurological cases. Results In AD brains, TMEM106B mRNA and protein levels were significantly reduced, whereas PGRN mRNA levels were elevated, compared with the levels in non-AD brains. In all brains, TMEM106B was expressed in the majority of cortical neurons, hippocampal neurons, and some populations of oligodendrocytes, reactive astrocytes and microglia with the location in the cytoplasm. In AD brains, surviving neurons expressed intense TMEM106B immunoreactivity, while senile plaques, neurofibrillary tangles and the perivascular neuropil, almost devoid of TMEM106B, intensely expressed PGRN. Conclusions We found an inverse relationship between TMEM106B (downregulation) and PGRN (upregulation) expression levels in AD brains, suggesting a key role of TMEM106B in the pathological processes of AD. PMID:24684749

  13. Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis.

    PubMed

    Saldana, Sandra M; Lee, Heng-Huan; Lowery, Frank J; Khotskaya, Yekaterina B; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of phospho-AKT and phospho-p70s6k, as well as decreased migration and invasion of MDA-MB-231Br brain-seeking cells. In addition, transient ablation of IGFBP3, which is overexpressed in brain-seeking cells, blocks IGF-IR activation. Using an in vivo experimental brain metastasis model, we show that IGF-IR knockdown brain-seeking cells have reduced potential to establish brain metastases. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

  14. The ketogenic diet: metabolic influences on brain excitability and epilepsy

    PubMed Central

    Lutas, Andrew; Yellen, Gary

    2012-01-01

    A dietary therapy for pediatric epilepsy known as the ketogenic diet has seen a revival in its clinical use in the past decade. Though the diet’s underlying mechanism remains unknown, modern scientific approaches like genetic disruption of glucose metabolism are allowing for more detailed questions to be addressed. Recent work indicates that several mechanisms may exist for the ketogenic diet including disruption of glutamatergic synaptic transmission, inhibition of glycolysis, and activation of ATP-sensitive potassium channels. Here we describe on-going work in these areas that is providing a better understanding of metabolic influences on brain excitability and epilepsy. PMID:23228828

  15. Neurotropic Astrovirus in Cattle with Nonsuppurative Encephalitis in Europe

    PubMed Central

    Bouzalas, Ilias G.; Wüthrich, Daniel; Walland, Julia; Drögemüller, Cord; Zurbriggen, Andreas; Vandevelde, Marc; Oevermann, Anna; Bruggmann, Rémy

    2014-01-01

    Encephalitis is a frequently diagnosed condition in cattle with neurological diseases. Many affected animals present with a nonsuppurative inflammatory reaction pattern in the brain. While this pattern supports a viral etiology, the causative pathogen remains unknown in a large proportion of cases. Using viral metagenomics, we identified an astrovirus (bovine astrovirus [BoAstV]-CH13) in the brain of a cow with nonsuppurative encephalitis. Additionally, BoAstV RNA was detected with reverse transcription-PCR and in situ hybridization in about one fourth (5/22 animals) of cattle with nonsuppurative encephalitis of unknown etiology. Viral RNA was found primarily in neurons and at the site of pathology. These findings support the notion that BoAstV infection is a common cause of encephalitis in cattle. Phylogenetically, BoAstV-CH13 was closely related to rare astrovirus isolates from encephalitis cases in animals and a human patient. Future research needs to be directed toward the pathogenic mechanisms, epidemiology, and potential cross-species transmission of these neurotropic astroviruses. PMID:24989603

  16. The nuclear receptor tailless is required for neurogenesis in the adult subventricular zone

    PubMed Central

    Liu, Hai-Kun; Belz, Thorsten; Bock, Dagmar; Takacs, Andrea; Wu, Hui; Lichter, Peter; Chai, Minqiang; Schütz, Günther

    2008-01-01

    The tailless (Tlx) gene encodes an orphan nuclear receptor that is expressed by neural stem/progenitor cells in the adult brain of the subventricular zone (SVZ) and the dentate gyrus (DG). The function of Tlx in neural stem cells of the adult SVZ remains largely unknown. We show here that in the SVZ of the adult brain Tlx is exclusively expressed in astrocyte-like B cells. An inducible mutation of the Tlx gene in the adult brain leads to complete loss of SVZ neurogenesis. Furthermore, analysis indicates that Tlx is required for the transition from radial glial cells to astrocyte-like neural stem cells. These findings demonstrate the crucial role of Tlx in the generation and maintenance of NSCs in the adult SVZ in vivo. PMID:18794344

  17. Caffeine intake increases plasma ketones: an acute metabolic study in humans.

    PubMed

    Vandenberghe, Camille; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Hennebelle, Marie; Castellano, Christian-Alexandre; Cunnane, Stephen C

    2017-04-01

    Brain glucose uptake declines during aging and is significantly impaired in Alzheimer's disease. Ketones are the main alternative brain fuel to glucose so they represent a potential approach to compensate for the brain glucose reduction. Caffeine is of interest as a potential ketogenic agent owing to its actions on lipolysis and lipid oxidation but whether it is ketogenic in humans is unknown. This study aimed to evaluate the acute ketogenic effect of 2 doses of caffeine (2.5; 5.0 mg/kg) in 10 healthy adults. Caffeine given at breakfast significantly stimulated ketone production in a dose-dependent manner (+88%; +116%) and also raised plasma free fatty acids. Whether caffeine has long-term ketogenic effects or could enhance the ketogenic effect of medium chain triglycerides remains to be determined.

  18. Intergenerational neural mediators of early-life anxious temperament.

    PubMed

    Fox, Andrew S; Oler, Jonathan A; Shackman, Alexander J; Shelton, Steven E; Raveendran, Muthuswamy; McKay, D Reese; Converse, Alexander K; Alexander, Andrew; Davidson, Richard J; Blangero, John; Rogers, Jeffrey; Kalin, Ned H

    2015-07-21

    Understanding the heritability of neural systems linked to psychopathology is not sufficient to implicate them as intergenerational neural mediators. By closely examining how individual differences in neural phenotypes and psychopathology cosegregate as they fall through the family tree, we can identify the brain systems that underlie the parent-to-child transmission of psychopathology. Although research has identified genes and neural circuits that contribute to the risk of developing anxiety and depression, the specific neural systems that mediate the inborn risk for these debilitating disorders remain unknown. In a sample of 592 young rhesus monkeys that are part of an extended multigenerational pedigree, we demonstrate that metabolism within a tripartite prefrontal-limbic-midbrain circuit mediates some of the inborn risk for developing anxiety and depression. Importantly, although brain volume is highly heritable early in life, it is brain metabolism-not brain structure-that is the critical intermediary between genetics and the childhood risk to develop stress-related psychopathology.

  19. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    PubMed

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  20. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    PubMed Central

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain. PMID:17901127

  1. Brain calcifications and PCDH12 variants

    PubMed Central

    Nicolas, Gaël; Sanchez-Contreras, Monica; Ramos, Eliana Marisa; Lemos, Roberta R.; Ferreira, Joana; Moura, Denis; Sobrido, Maria J.; Richard, Anne-Claire; Lopez, Alma Rosa; Legati, Andrea; Deleuze, Jean-François; Boland, Anne; Quenez, Olivier; Krystkowiak, Pierre; Favrole, Pascal; Geschwind, Daniel H.; Aran, Adi; Segel, Reeval; Levy-Lahad, Ephrat; Dickson, Dennis W.; Coppola, Giovanni; Rademakers, Rosa

    2017-01-01

    Objective: To assess the potential connection between PCDH12 and brain calcifications in a patient carrying a homozygous nonsense variant in PCDH12 and in adult patients with brain calcifications. Methods: We performed a CT scan in 1 child with a homozygous PCDH12 nonsense variant. We screened DNA samples from 53 patients with primary familial brain calcification (PFBC) and 26 patients with brain calcification of unknown cause (BCUC). Results: We identified brain calcifications in subcortical and perithalamic regions in the patient with a homozygous PCDH12 nonsense variant. The calcification pattern was different from what has been observed in PFBC and more similar to what is described in in utero infections. In patients with PFBC or BCUC, we found no protein-truncating variant and 3 rare (minor allele frequency <0.001) PCDH12 predicted damaging missense heterozygous variants in 3 unrelated patients, albeit with no segregation data available. Conclusions: Brain calcifications should be added to the phenotypic spectrum associated with PCDH12 biallelic loss of function, in the context of severe cerebral developmental abnormalities. A putative role for PCDH12 variants remains to be determined in PFBC. PMID:28804758

  2. Fever and therapeutic normothermia in severe brain injury: an update.

    PubMed

    Bohman, Leif-Erik; Levine, Joshua M

    2014-04-01

    Fever is common in the ICU among patients with severe brain injury. Fever has been consistently shown to exacerbate brain injuries in animal models and has been consistently associated with poor outcome in human studies. However, whether fever control improves outcome and the ideal means of fever control remain unknown. This review will address recent literature on the impact of fever on severe brain injury and on interventions to maintain normothermia. Current guidelines generally recommend maintenance of normothermia after brain injury but have scant recommendations on methods to do this. Observational trials have continued to demonstrate the association between fever and poor outcome after severe brain injury. Recent trials have shown the efficacy of more aggressive approaches to fever reduction, whereas a large randomized trial showed the relative ineffectiveness of acetaminophen alone for fever control. Several studies have also described the impact of fever and of fever control on brain physiology. The value of therapeutic normothermia in the neurocritical care unit (NCCU) is increasingly accepted, yet prospective trials that demonstrate a functional benefit to patients are lacking.

  3. Neural substrates of updating the prediction through prediction error during decision making.

    PubMed

    Wang, Ying; Ma, Ning; He, Xiaosong; Li, Nan; Wei, Zhengde; Yang, Lizhuang; Zha, Rujing; Han, Long; Li, Xiaoming; Zhang, Daren; Liu, Ying; Zhang, Xiaochu

    2017-08-15

    Learning of prediction error (PE), including reward PE and risk PE, is crucial for updating the prediction in reinforcement learning (RL). Neurobiological and computational models of RL have reported extensive brain activations related to PE. However, the occurrence of PE does not necessarily predict updating the prediction, e.g., in a probability-known event. Therefore, the brain regions specifically engaged in updating the prediction remain unknown. Here, we conducted two functional magnetic resonance imaging (fMRI) experiments, the probability-unknown Iowa Gambling Task (IGT) and the probability-known risk decision task (RDT). Behavioral analyses confirmed that PEs occurred in both tasks but were only used for updating the prediction in the IGT. By comparing PE-related brain activations between the two tasks, we found that the rostral anterior cingulate cortex/ventral medial prefrontal cortex (rACC/vmPFC) and the posterior cingulate cortex (PCC) activated only during the IGT and were related to both reward and risk PE. Moreover, the responses in the rACC/vmPFC and the PCC were modulated by uncertainty and were associated with reward prediction-related brain regions. Electric brain stimulation over these regions lowered the performance in the IGT but not in the RDT. Our findings of a distributed neural circuit of PE processing suggest that the rACC/vmPFC and the PCC play a key role in updating the prediction through PE processing during decision making. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Role of voltage-gated L-type Ca2+ channel isoforms for brain function.

    PubMed

    Striessnig, J; Koschak, A; Sinnegger-Brauns, M J; Hetzenauer, A; Nguyen, N K; Busquet, P; Pelster, G; Singewald, N

    2006-11-01

    Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.

  5. Soluble erythropoietin receptor is present in the mouse brain and is required for the ventilatory acclimatization to hypoxia

    PubMed Central

    Soliz, Jorge; Gassmann, Max; Joseph, Vincent

    2007-01-01

    While erythropoietin (Epo) and its receptor (EpoR) have been widely investigated in brain, the expression and function of the soluble Epo receptor (sEpoR) remain unknown. Here we demonstrate that sEpoR, a negative regulator of Epo's binding to the EpoR, is present in the mouse brain and is down-regulated by 62% after exposure to normobaric chronic hypoxia (10% O2 for 3 days). Furthermore, while normoxic minute ventilation increased by 58% in control mice following hypoxic acclimatization, sEpoR infusion in brain during the hypoxic challenge efficiently reduced brain Epo concentration and abolished the ventilatory acclimatization to hypoxia (VAH). These observations imply that hypoxic downregulation of sEpoR is required for adequate ventilatory acclimatization to hypoxia, thereby underlying the function of Epo as a key factor regulating oxygen delivery not only by its classical activity on red blood cell production, but also by regulating ventilation. PMID:17584830

  6. The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes.

    PubMed

    Schnell, Christian; Shahmoradi, Ali; Wichert, Sven P; Mayerl, Steffen; Hagos, Yohannes; Heuer, Heike; Rossner, Moritz J; Hülsmann, Swen

    2015-01-01

    Sulforhodamine 101 (SR101) is widely used for astrocyte identification, though the labeling mechanism remains unknown and the efficacy of labeling in different brain regions is heterogeneous. By combining region-specific isolation of astrocytes followed by transcriptome analysis, two-photon excitation microscopy, and mouse genetics, we identified the thyroid hormone transporter OATP1C1 as the SR101-uptake transporter in hippocampus and cortex.

  7. Optimal Treatment Decision for Brain Metastases of Unknown Primary Origin: The Role and Timing of Radiosurgery

    PubMed Central

    Han, Hyun Jin; Chang, Won Seok; Jung, Hyun Ho; Park, Yong Gou

    2016-01-01

    Background Up to 15% of all patients with brain metastases have no clearly detected primary site despite intensive evaluation, and this incidence has decreased with the use of improved imaging technology. Radiosurgery has been evaluated as one of the treatment modality for patients with limited brain metastases. In this study, we evaluated the effectiveness of radiosurgery for brain metastases from unknown primary tumors. Methods We retrospectively evaluated 540 patients who underwent gamma knife radiosurgery (GKRS) for brain metastases radiologically diagnosed between August 1992 and September 2007 in our institution. First, the brain metastases were grouped into metachronous, synchronous, and precocious presentations according to the timing of diagnosis of the brain metastases. Then, synchronous and precocious brain metastases were further grouped into 1) unknown primary; 2) delayed known primary; and 3) synchronous metastases according to the timing of diagnosis of the primary origin. We analyzed the survival time and time to new brain metastasis in each group. Results Of the 540 patients, 29 (5.4%) presented precocious or synchronous metastases (34 GKRS procedures for 174 lesions). The primary tumor was not found even after intensive and repeated systemic evaluation in 10 patients (unknown primary, 34.5%); found after 8 months in 3 patients (delayed known primary, 1.2%); and diagnosed at the same time as the brain metastases in 16 patients (synchronous metastasis, 55.2%). No statistically significant differences in survival time and time to new brain metastasis were found among the three groups. Conclusion Identification of a primary tumor before GKRS did not affect the patient outcomes. If other possible differential diagnoses were completely excluded, early GKRS can be an effective treatment option for brain metastases from unknown primary tumor. PMID:27867920

  8. Neuroprotective Role of Exogenous Brain-Derived Neurotrophic Factor in Hypoxia-Hypoglycemia-Induced Hippocampal Neuron Injury via Regulating Trkb/MiR134 Signaling.

    PubMed

    Huang, Weidong; Meng, Facai; Cao, Jie; Liu, Xiaobin; Zhang, Jie; Li, Min

    2017-05-01

    Hypoxic-ischemic brain injury is an important cause of neonatal mortality and morbidity. Brain-derived neurotrophic factor (BDNF) has been reported to play a neuroprotective role in hypoxic-ischemic brain injury; however, the specific effects and mechanism of BDNF on hypoxic-hypoglycemic hippocampal neuron injury remains unknown. The current study investigated the action of BDNF in regulating cerebral hypoxic-ischemic injury by simulating hippocampal neuron ischemia and hypoxia. We found that BDNF, p-Trkb, and miR-134 expression levels decreased, and that exogenous BDNF increased survival and reduced apoptosis in hypoxic-hypoglycemic hippocampal neurons. The results also show that BDNF inhibits MiR-134 expression by activating the TrkB pathway. Transfection with TrkB siRNA and pre-miR-134 abrogated the neuroprotective role of BDNF in hypoxic-hypoglycemic hippocampal neurons. Our results suggest that exogenous BDNF alleviates hypoxic-ischemic brain injury through the Trkb/MiR-134 pathway. These findings may help to identify a potential therapeutic agent for the treatment of hypoxic-ischemic brain injury.

  9. Interactive Social Neuroscience to Study Autism Spectrum Disorder

    PubMed Central

    Rolison, Max J.; Naples, Adam J.; McPartland, James C.

    2015-01-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative “interactive social neuroscience” methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD. PMID:25745371

  10. Interactive social neuroscience to study autism spectrum disorder.

    PubMed

    Rolison, Max J; Naples, Adam J; McPartland, James C

    2015-03-01

    Individuals with autism spectrum disorder (ASD) demonstrate difficulty with social interactions and relationships, but the neural mechanisms underlying these difficulties remain largely unknown. While social difficulties in ASD are most apparent in the context of interactions with other people, most neuroscience research investigating ASD have provided limited insight into the complex dynamics of these interactions. The development of novel, innovative "interactive social neuroscience" methods to study the brain in contexts with two interacting humans is a necessary advance for ASD research. Studies applying an interactive neuroscience approach to study two brains engaging with one another have revealed significant differences in neural processes during interaction compared to observation in brain regions that are implicated in the neuropathology of ASD. Interactive social neuroscience methods are crucial in clarifying the mechanisms underlying the social and communication deficits that characterize ASD.

  11. The evolution of modern human brain shape

    PubMed Central

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123

  12. The evolution of modern human brain shape.

    PubMed

    Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp

    2018-01-01

    Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.

  13. Early parental care is important for hippocampal maturation: evidence from brain morphology in humans.

    PubMed

    Rao, Hengyi; Betancourt, Laura; Giannetta, Joan M; Brodsky, Nancy L; Korczykowski, Marc; Avants, Brian B; Gee, James C; Wang, Jiongjiong; Hurt, Hallam; Detre, John A; Farah, Martha J

    2010-01-01

    The effects of early life experience on later brain structure and function have been studied extensively in animals, yet the relationship between childhood experience and normal brain development in humans remains largely unknown. Using a unique longitudinal data set including ecologically valid in-home measures of early experience during childhood (at age 4 and 8 years) and high-resolution structural brain imaging during adolescence (mean age 14 years), we examined the effects on later brain morphology of two dimensions of early experience: parental nurturance and environmental stimulation. Parental nurturance at age 4 predicts the volume of the left hippocampus in adolescence, with better nurturance associated with smaller hippocampal volume. In contrast, environmental stimulation did not correlate with hippocampal volume. Moreover, the association between hippocampal volume and parental nurturance disappears at age 8, supporting the existence of a sensitive developmental period for brain maturation. These findings indicate that variation in normal childhood experience is associated with differences in brain morphology, and hippocampal volume is specifically associated with early parental nurturance. Our results provide neuroimaging evidence supporting the important role of warm parental care during early childhood for brain maturation.

  14. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    PubMed

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  15. Effects of Biotin Deficiency on Biotinylated Proteins and Biotin-Related Genes in the Rat Brain.

    PubMed

    Yuasa, Masahiro; Aoyama, Yuki; Shimada, Ryoko; Sawamura, Hiromi; Ebara, Shuhei; Negoro, Munetaka; Fukui, Toru; Watanabe, Toshiaki

    2016-01-01

    Biotin is a water-soluble vitamin that functions as a cofactor for biotin-dependent carboxylases. The biochemical and physiological roles of biotin in brain regions have not yet been investigated sufficiently in vivo. Thus, in order to clarify the function of biotin in the brain, we herein examined biotin contents, biotinylated protein expression (e.g. holocarboxylases), and biotin-related gene expression in the brain of biotin-deficient rats. Three-week-old male Wistar rats were divided into a control group, biotin-deficient group, and pair-fed group. Rats were fed experimental diets from 3 wk old for 8 wk, and the cortex, hippocampus, striatum, hypothalamus, and cerebellum were then collected. In the biotin-deficient group, the maintenance of total biotin and holocarboxylases, increases in the bound form of biotin and biotinidase activity, and the expression of an unknown biotinylated protein were observed in the cortex. In other regions, total and free biotin contents decreased, holocarboxylase expression was maintained, and bound biotin and biotinidase activity remained unchanged. Biotin-related gene (pyruvate carboxylase, sodium-dependent multivitamin transporter, holocarboxylase synthetase, and biotinidase) expression in the cortex and hippocampus also remained unchanged among the dietary groups. These results suggest that biotin may be related to cortex functions by binding protein, and the effects of a biotin deficiency and the importance of biotin differ among the different brain regions.

  16. General anesthetics and cytotoxicity: possible implications for brain health.

    PubMed

    Armstrong, Ryden; Xu, Fenglian; Arora, Anish; Rasic, Nivez; Syed, Naweed I

    2017-04-01

    The search for agents that bring about faster induction and quicker recovery in the operating room have yielded numerous anesthetics whose mechanisms of action and potential toxic side effects remain unknown, especially in the young and aging brain. Taking advantage of our clinical and basic science expertise, here we subject the reader to an interesting perspective vis-à-vis the current applications of general anesthetics, and present evidence for their neurotoxic effects on the developing and elderly brains. Recent studies have called into question the safety of general anesthetics, especially with regards to potentially significant detrimental impacts on the developing brains of young children, and cognitive decline in the elderly - often following multiple episodes of anesthesia. Despite accumulating evidence from animal studies demonstrating that general anesthesia leads to neurodegeneration and cognitive impairment, to date a clear consensus on the impact of anesthetics in humans remains elusive. Because a direct impact of anesthetics on human neuronal networks is often difficult to deduce experimentally, most laboratories have resorted to animal models - albeit with limited success in translating these findings back to the clinic. Moreover, the precise mechanisms that lead to potential cognitive, learning, and memory decline in young and elderly patients also remain to be fully defined. This review will focus primarily on the cytotoxic effects of anesthetics, and offer some practical resolutions that may attenuate their long-term harm. An urgent need for studies on animal models and an increased focus on highly controlled prospective epidemiological studies is also reinforced.

  17. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a novel neurotransmitter system

    PubMed Central

    Brooks, Elizabeth S.; Greer, Christina L.; Romero-Calderón, Rafael; Serway, Christine N.; Grygoruk, Anna; Haimovitz, Jasmine M.; Nguyen, Bac T.; Najibi, Rod; Tabone, Christopher J.; de Belle, J. Steven; Krantz, David E.

    2011-01-01

    Summary Storage and release of classical and amino acid neurotransmitters requires vesicular transporters. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male’s position during copulation that is rescued by expression in KCs. Since prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning. PMID:22017990

  18. Dystrophic neurites express C9orf72 in Alzheimer's disease brains

    PubMed Central

    2012-01-01

    Introduction Chromosome 9 open reading frame 72 (C9orf72) is an evolutionarily conserved protein with unknown function, expressed at high levels in the brain. An expanded hexanucleotide GGGGCC repeat located in the first intron of the C9orf72 gene represents the most common genetic cause of familial frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Previous studies by immunohistochemistry with two different anti-C9orf72 antibodies named sc-138763 and HPA023873 showed that C9orf72 is expressed chiefly in the cytoplasm of neurons, and is concentrated in the synaptic terminals in the brains of FTD/ALS with or without C9orf72 repeat expansion as well as those of controls. At present, a pathological role of C9orf72 in the process of neurodegeneration remains unknown. Methods Using immunohistochemistry we studied C9orf72 expression in the frontal cortex and the hippocampus of six Alzheimer's disease (AD) and 13 control cases, including ALS, Parkinson's disease, multiple system atrophy, and non-neurological cases. Results The HPA023873 antibody showed a cross-reactivity to glial fibrillary acidic protein, and therefore stained intensely reactive astrocytes in AD and non-AD brains. Both sc-138763 and HPA023873 antibodies labeled the neuronal cytoplasm and the neuropil with variable intensities, and intensely stained a cluster of p62-negative, UBQLN1-positive swollen neurites, which were distributed in the CA1 region and the molecular layer in the hippocampus of both AD and non-AD brains. Most notably, both of these antibodies reacted strongly with dystrophic neurites accumulated on senile plaques in AD brains. Conclusion These results suggest a general role of C9orf72 in the process of neurodegeneration in a range of human neurodegenerative diseases. PMID:22898310

  19. Active Dentate Granule Cells Encode Experience to Promote the Addition of Adult-Born Hippocampal Neurons

    PubMed Central

    Kirschen, Gregory W.; Shen, Jia; Wang, Jia; Man, Guoming; Wu, Song

    2017-01-01

    The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca2+ imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca2+ event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs. SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca2+ imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly. Exploration in multiple novel virtual environments, compared with a single environment, promoted dentate activation and enhanced the addition of new hippocampal neurons accumulatively. Finally, silencing this activation optogenetically during novel experiences perturbed experience-induced neuronal addition. PMID:28373391

  20. Deficits of learning and memory in Hemojuvelin knockout mice.

    PubMed

    Li, Jinglong; Zhang, Peng; Liu, Hongju; Ren, Wei; Song, Jinjing; Rao, Elizabeth; Takahashi, Eiki; Zhou, Ying; Li, Weidong; Chen, Xiaoping

    2015-10-01

    Iron is involved in various physiological processes of the human body to maintain normal functions. Abnormal iron accumulation in brain has been reported as a pathogenesis of several neurodegenerative disorders and cognitive impairments. Hemojuvelin (HVJ) is a membrane-bound and soluble protein in mammals that is responsible for the iron overload condition known as juvenile hemochromatosis. Although iron accumulation in brain has been related to neurodegenerative diseases, it remains unknown the effect of mutation of HVJ gene on cognitive performance. In our studies, HJV(-/-) mice showed deficits in novel object recognition and Morris water maze tests. Furthermore, the expression ration of apoptotic marker Bax and anti-apoptotic marker Bcl-2 in the hippocampus and prefrontal cortex showed higher levels in HJV(-/-) mice. Our results suggested that deletion of HJV gene could increase apoptosis in brain which might contribute to learning and memory deficits in mutant mice. These results indicated that HJV(-/-) mice would be a useful model to study cognitive impairment induced by iron overload in brain.

  1. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia

    PubMed Central

    Argibay, Bárbara; Trekker, Jesse; Himmelreich, Uwe; Beiras, Andrés; Topete, Antonio; Taboada, Pablo; Pérez-Mato, María; Vieites-Prado, Alba; Iglesias-Rey, Ramón; Rivas, José; Planas, Anna M.; Sobrino, Tomás; Castillo, José; Campos, Francisco

    2017-01-01

    Mesenchymal stem cells (MSCs) are a promising clinical therapy for ischemic stroke. However, critical parameters, such as the most effective administration route, remain unclear. Intravenous (i.v.) and intraarterial (i.a.) delivery routes have yielded varied outcomes across studies, potentially due to the unknown MSCs distribution. We investigated whether MSCs reached the brain following i.a. or i.v. administration after transient cerebral ischemia in rats, and evaluated the therapeutic effects of both routes. MSCs were labeled with dextran-coated superparamagnetic nanoparticles for magnetic resonance imaging (MRI) cell tracking, transmission electron microscopy and immunohistological analysis. MSCs were found in the brain following i.a. but not i.v. administration. However, the i.a. route increased the risk of cerebral lesions and did not improve functional recovery. The i.v. delivery is safe but MCS do not reach the brain tissue, implying that treatment benefits observed for this route are not attributable to brain MCS engrafting after stroke. PMID:28091591

  2. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia.

    PubMed

    Argibay, Bárbara; Trekker, Jesse; Himmelreich, Uwe; Beiras, Andrés; Topete, Antonio; Taboada, Pablo; Pérez-Mato, María; Vieites-Prado, Alba; Iglesias-Rey, Ramón; Rivas, José; Planas, Anna M; Sobrino, Tomás; Castillo, José; Campos, Francisco

    2017-01-16

    Mesenchymal stem cells (MSCs) are a promising clinical therapy for ischemic stroke. However, critical parameters, such as the most effective administration route, remain unclear. Intravenous (i.v.) and intraarterial (i.a.) delivery routes have yielded varied outcomes across studies, potentially due to the unknown MSCs distribution. We investigated whether MSCs reached the brain following i.a. or i.v. administration after transient cerebral ischemia in rats, and evaluated the therapeutic effects of both routes. MSCs were labeled with dextran-coated superparamagnetic nanoparticles for magnetic resonance imaging (MRI) cell tracking, transmission electron microscopy and immunohistological analysis. MSCs were found in the brain following i.a. but not i.v. administration. However, the i.a. route increased the risk of cerebral lesions and did not improve functional recovery. The i.v. delivery is safe but MCS do not reach the brain tissue, implying that treatment benefits observed for this route are not attributable to brain MCS engrafting after stroke.

  3. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia

    NASA Astrophysics Data System (ADS)

    Argibay, Bárbara; Trekker, Jesse; Himmelreich, Uwe; Beiras, Andrés; Topete, Antonio; Taboada, Pablo; Pérez-Mato, María; Vieites-Prado, Alba; Iglesias-Rey, Ramón; Rivas, José; Planas, Anna M.; Sobrino, Tomás; Castillo, José; Campos, Francisco

    2017-01-01

    Mesenchymal stem cells (MSCs) are a promising clinical therapy for ischemic stroke. However, critical parameters, such as the most effective administration route, remain unclear. Intravenous (i.v.) and intraarterial (i.a.) delivery routes have yielded varied outcomes across studies, potentially due to the unknown MSCs distribution. We investigated whether MSCs reached the brain following i.a. or i.v. administration after transient cerebral ischemia in rats, and evaluated the therapeutic effects of both routes. MSCs were labeled with dextran-coated superparamagnetic nanoparticles for magnetic resonance imaging (MRI) cell tracking, transmission electron microscopy and immunohistological analysis. MSCs were found in the brain following i.a. but not i.v. administration. However, the i.a. route increased the risk of cerebral lesions and did not improve functional recovery. The i.v. delivery is safe but MCS do not reach the brain tissue, implying that treatment benefits observed for this route are not attributable to brain MCS engrafting after stroke.

  4. Mapping Brain Metals to Evaluate Therapies for Neurodegenerative Disease

    PubMed Central

    Popescu, Bogdan Florin Gh; Nichol, Helen

    2013-01-01

    The brain is rich in metals and has a high metabolic rate, making it acutely vulnerable to the toxic effects of endogenously produced free radicals. The abundant metals, iron and copper, transfer single electrons as they cycle between their reduced (Fe2+, Cu1+) and oxidized (Fe3+, Cu2+) states making them powerful catalysts of reactive oxygen species (ROS) production. Even redox inert zinc, if present in excess, can trigger ROS production indirectly by altering mitochondrial function. While metal chelators seem to improve the clinical outcome of several neurodegenerative diseases, their mechanisms of action remain obscure and the effects of long-term use are largely unknown. Most chelators are not specific to a single metal and could alter the distribution of multiple metals in the brain, leading to unexpected consequences over the long-term. We show here how X-ray fluorescence will be a valuable tool to examine the effect of chelators on the distribution and amount of metals in the brain. PMID:20553312

  5. Optical manipulation for optogenetics: otoliths manipulation in zebrafish (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Favre-Bulle, Itia A.; Scott, Ethan; Rubinsztein-Dunlop, Halina

    2016-03-01

    Otoliths play an important role in Zebrafish in terms of hearing and sense of balance. Many studies have been conducted to understand its structure and function, however the encoding of its movement in the brain remains unknown. Here we developed a noninvasive system capable of manipulating the otolith using optical trapping while we image its behavioral response and brain activity. We'll also present our tools for behavioral response detection and brain activity mapping. Acceleration is sensed through movements of the otoliths in the inner ear. Because experimental manipulations involve movements, electrophysiology and fluorescence microscopy are difficult. As a result, the neural codes underlying acceleration sensation are poorly understood. We have developed a technique for optically trapping otoliths, allowing us to simulate acceleration in stationary larval zebrafish. By applying forces to the otoliths, we can elicit behavioral responses consistent with compensation for perceived acceleration. Since the animal is stationary, we can use calcium imaging in these animals' brains to identify the functional circuits responsible for mediating responses to acceleration in natural settings.

  6. Selective loss of glycogen synthase kinase-3α in birds reveals distinct roles for GSK-3 isozymes in tau phosphorylation.

    PubMed

    Alon, Lina Tsaadon; Pietrokovski, Shmuel; Barkan, Shay; Avrahami, Limor; Kaidanovich-Beilin, Oksana; Woodgett, James R; Barnea, Anat; Eldar-Finkelman, Hagit

    2011-04-20

    Mammalian glycogen synthase kinase-3 (GSK-3), a critical regulator in neuronal signaling, cognition, and behavior, exists as two isozymes GSK-3α and GSK-3β. Their distinct biological functions remains largely unknown. Here, we examined the evolutionary significance of each of these isozymes. Surprisingly, we found that unlike other vertebrates that harbor both GSK-3 genes, the GSK-3α gene is missing in birds. GSK-3-mediated tau phosphorylation was significantly lower in adult bird brains than in mouse brains, a phenomenon that was reproduced in GSK-3α knockout mouse brains. Tau phosphorylation was detected in brains from bird embryos suggesting that GSK-3 isozymes play distinct roles in tau phosphorylation during development. Birds are natural GSK-3α knockout organisms and may serve as a novel model to study the distinct functions of GSK-3 isozymes. Copyright © 2011 Federation of European Biochemical Societies. All rights reserved.

  7. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    PubMed

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test.

  8. Cerebellar Granule Cell Replenishment Post-Injury by Adaptive Reprogramming of Nestin+ Progenitors

    PubMed Central

    Wojcinski, Alexandre; Lawton, Andrew K.; Bayin, N Sumru.; Lao, Zhimin; Stephen, Daniel N.; Joyner, Alexandra L.

    2017-01-01

    Regeneration of several organs involves adaptive reprogramming of progenitors, however, the intrinsic capacity of the developing brain to replenish lost cells remains largely unknown. In this study, we discovered that the developing cerebellum has unappreciated progenitor plasticity, since it undergoes near full growth and functional recovery following acute depletion of granule cells, the most plentiful neuron population in the brain. We demonstrate that following postnatal ablation of granule cell progenitors, Nestin-expressing progenitors (NEPs) specified during mid-embryogenesis to produce astroglia and interneurons, switch their fate and generate granule neurons in mice. Moreover, Hedgehog-signaling in two NEP populations is crucial not only for the compensatory replenishment of granule neurons but also to scale interneuron and astrocyte numbers. Thus we provide insights into the mechanisms underlying robustness of circuit formation in the cerebellum, and speculate that adaptive reprogramming of progenitors in other brain regions plays a greater role than appreciated in developmental regeneration. PMID:28805814

  9. The Drosophila homolog of Down's syndrome critical region 1 gene regulates learning: Implications for mental retardation

    PubMed Central

    Chang, Karen T.; Shi, Yi-Jun; Min, Kyung-Tai

    2003-01-01

    Mental retardation is the most common phenotypic abnormality seen in Down's syndrome (DS) patients, yet the underlying mechanism remains mysterious. DS critical region 1 (DSCR1), located on chromosome 21, is overexpressed in the brain of DS fetus and encodes an inhibitor of calcineurin, but its physiological significance is unknown. To study its functional importance and role in mental retardation in DS, we generated Drosophila mutants of nebula, an ortholog of human DSCR1. Here, we report that both nebula loss-of-function and overexpression mutants exhibit severe learning defects that are attributed by biochemical perturbations rather than maldevelopment of the brain. These results, combined with our data showing that the same biochemical signaling pathway is altered in human DS fetal brain tissue overexpressing DSCR1, suggest that alteration of DSCR1 expression could contribute to mental retardation in DS. PMID:14668437

  10. Non-cell autonomous cell death caused by transmission of Huntingtin aggregates in Drosophila.

    PubMed

    Babcock, Daniel T; Ganetzky, Barry

    2015-01-01

    Recent evidence indicates that protein aggregates can spread between neurons in several neurodegenerative diseases but much remains unknown regarding the underlying mechanisms responsible for this spreading and its role in disease progression. We recently demonstrated that mutant Huntingtin aggregates spread between cells within the Drosophila brain resulting in non-cell autonomous loss of a pair of large neurons in the posterior protocerebrum. However, the full extent of neuronal loss throughout the brain was not determined. Here we examine the effects of driving expression of mutant Huntingtin in Olfactory Receptor Neurons (ORNs) by using a marker for cleaved caspase activity to monitor neuronal apoptosis as a function of age. We find widespread caspase activity in various brain regions over time, demonstrating that non-cell autonomous damage is widespread. Improved understanding of which neurons are most vulnerable and why should be useful in developing treatment strategies for neurodegenerative diseases that involve transcellular spreading of aggregates.

  11. Beyond static measures: A review of functional magnetic resonance spectroscopy and its potential to investigate dynamic glutamatergic abnormalities in schizophrenia.

    PubMed

    Jelen, Luke A; King, Sinead; Mullins, Paul G; Stone, James M

    2018-05-01

    Abnormalities of the glutamate system are increasingly implicated in schizophrenia but their exact nature remains unknown. Proton magnetic resonance spectroscopy ( 1 H-MRS), while fundamental in revealing glutamatergic alterations in schizophrenia, has, until recently, been significantly limited and thought to only provide static measures. Functional magnetic resonance spectroscopy (fMRS), which uses sequential scans for dynamic measurement of a range of brain metabolites in activated brain areas, has lately been applied to a variety of task or stimulus conditions, producing interesting insights into neurometabolite responses to neural activation. Here, we summarise the existing 1 H-MRS studies of brain glutamate in schizophrenia. We then present a comprehensive review of research studies that have utilised fMRS, and lastly consider how fMRS methods might further the understanding of glutamatergic abnormalities in schizophrenia.

  12. Neural representations of close others in collectivistic brains

    PubMed Central

    Wang, Gang; Mao, Lihua; Ma, Yina; Yang, Xuedong; Cao, Jingqian; Liu, Xi; Wang, Jinzhao; Wang, Xiaoying

    2012-01-01

    Our recent work showed that close relationships result in shared cognitive and neural representations of the self and one’s mother in collectivistic individuals (Zhu et al., 2007, Neuroimage, 34, 1310–7). However, it remains unknown whether close others, such as mother, father and best friend, are differentially represented in collectivistic brains. Here, using functional magnetic resonance imaging and a trait judgment task, we showed evidence that, while trait judgments of the self and mother generated comparable activity in the medial prefrontal cortex (MPFC) and anterior cingulate (ACC) of Chinese adults, trait judgments of mother induced greater MPFC/ACC activity than trait judgments of father and best friend. Our results suggest that, while neural representations of the self and mother overlapped in the MPFC/ACC, close others such as mother, father and best friend are unequally represented in the MPFC/ACC of collectivistic brains. PMID:21382966

  13. Human Genomic Signatures of Brain Oscillations During Memory Encoding.

    PubMed

    Berto, Stefano; Wang, Guang-Zhong; Germi, James; Lega, Bradley C; Konopka, Genevieve

    2018-05-01

    Memory encoding is an essential step for all learning. However, the genetic and molecular mechanisms underlying human memory encoding remain poorly understood, and how this molecular framework permits the emergence of specific patterns of brain oscillations observed during mnemonic processing is unknown. Here, we directly compare intracranial electroencephalography recordings from the neocortex in individuals performing an episodic memory task with human gene expression from the same areas. We identify genes correlated with oscillatory memory effects across 6 frequency bands. These genes are enriched for autism-related genes and have preferential expression in neurons, in particular genes encoding synaptic proteins and ion channels, supporting the idea that the genes regulating voltage gradients are involved in the modulation of oscillatory patterns during successful memory encoding across brain areas. Memory-related genes are distinct from those correlated with other forms of cognitive processing and resting state fMRI. These data are the first to identify correlations between gene expression and active human brain states as well as provide a molecular window into memory encoding oscillations in the human brain.

  14. Obese individuals with more components of the metabolic syndrome and/or prediabetes demonstrate decreased activation of reward-related brain centers in response to food cues in both the fed and fasting states: A preliminary fMRI study

    PubMed Central

    Farr, Olivia M.; Mantzoros, Christos S.

    2016-01-01

    It remains unknown whether obese individuals with more components of the metabolic syndrome and/or prediabetes demonstrate altered activation of brain centers in response to food cues. We examined obese prediabetics (n=26) vs. obese nondiabetics (n=11) using fMRI. We also performed regression analyses on the basis of the number of MetS components per subject. Obese individuals with prediabetes have decreased activation of the reward-related putamen in the fasting state and decreased activation of the salience- and reward-related insula after eating. Obese individuals with more components of MetS demonstrate decreased activation of the putamen while fasting. All these activations remain significant when corrected for BMI, waist circumference (WC), HbA1c and gender. Decreased activation in reward-related brain areas between obese individuals is more pronounced in subjects with prediabetes and MetS. Prospective studies are needed to quantify their contributions to the development of prediabetes/MetS and to study whether these conditions may predispose to the exacerbation of obesity and the development of comorbidities over time. PMID:28017966

  15. Vasoactive intestinal peptide is a local mediator in a gut-brain neural axis activating intestinal gluconeogenesis.

    PubMed

    De Vadder, F; Plessier, F; Gautier-Stein, A; Mithieux, G

    2015-03-01

    Intestinal gluconeogenesis (IGN) promotes metabolic benefits through activation of a gut-brain neural axis. However, the local mediator activating gluconeogenic genes in the enterocytes remains unknown. We show that (i) vasoactive intestinal peptide (VIP) signaling through VPAC1 receptor activates the intestinal glucose-6-phosphatase gene in vivo, (ii) the activation of IGN by propionate is counteracted by VPAC1 antagonism, and (iii) VIP-positive intrinsic neurons in the submucosal plexus are increased under the action of propionate. These data support the role of VIP as a local neuromodulator released by intrinsic enteric neurons and responsible for the induction of IGN through a VPAC1 receptor-dependent mechanism in enterocytes. © 2015 John Wiley & Sons Ltd.

  16. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways

    NASA Astrophysics Data System (ADS)

    Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.

    2013-12-01

    To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.

  17. Brain tumor - children

    MedlinePlus

    ... children; Neuroglioma - children; Oligodendroglioma - children; Meningioma - children; Cancer - brain tumor (children) ... The cause of primary brain tumors is unknown. Primary brain tumors may ... (spread to nearby areas) Cancerous (malignant) Brain tumors ...

  18. Cerebral activations during viewing of food stimuli in adult patients with acquired structural hypothalamic damage: a functional neuroimaging study.

    PubMed

    Steele, C A; Powell, J L; Kemp, G J; Halford, J C G; Wilding, J P; Harrold, J A; Kumar, S V D; Cuthbertson, D J; Cross, A A; Javadpour, M; MacFarlane, I A; Stancak, A A; Daousi, C

    2015-09-01

    Obesity is common following hypothalamic damage due to tumours. Homeostatic and non-homeostatic brain centres control appetite and energy balance but their interaction in the presence of hypothalamic damage remains unknown. We hypothesized that abnormal appetite in obese patients with hypothalamic damage results from aberrant brain processing of food stimuli. We sought to establish differences in activation of brain food motivation and reward neurocircuitry in patients with hypothalamic obesity (HO) compared with patients with hypothalamic damage whose weight had remained stable. In a cross-sectional study at a University Clinical Research Centre, we studied 9 patients with HO, 10 age-matched obese controls, 7 patients who remained weight-stable following hypothalamic insult (HWS) and 10 non-obese controls. Functional magnetic resonance imaging was performed in the fasted state, 1 h and 3 h after a test meal, while subjects were presented with images of high-calorie foods, low-calorie foods and non-food objects. Insulin, glucagon-like peptide-1, Peptide YY and ghrelin were measured throughout the experiment, and appetite ratings were recorded. Mean neural activation in the posterior insula and lingual gyrus (brain areas linked to food motivation and reward value of food) in HWS were significantly lower than in the other three groups (P=0.001). A significant negative correlation was found between insulin levels and posterior insula activation (P=0.002). Neural pathways associated with food motivation and reward-related behaviour, and the influence of insulin on their activation may be involved in the pathophysiology of HO.

  19. Inducing task-relevant responses to speech in the sleeping brain.

    PubMed

    Kouider, Sid; Andrillon, Thomas; Barbosa, Leonardo S; Goupil, Louise; Bekinschtein, Tristan A

    2014-09-22

    Falling asleep leads to a loss of sensory awareness and to the inability to interact with the environment [1]. While this was traditionally thought as a consequence of the brain shutting down to external inputs, it is now acknowledged that incoming stimuli can still be processed, at least to some extent, during sleep [2]. For instance, sleeping participants can create novel sensory associations between tones and odors [3] or reactivate existing semantic associations, as evidenced by event-related potentials [4-7]. Yet, the extent to which the brain continues to process external stimuli remains largely unknown. In particular, it remains unclear whether sensory information can be processed in a flexible and task-dependent manner by the sleeping brain, all the way up to the preparation of relevant actions. Here, using semantic categorization and lexical decision tasks, we studied task-relevant responses triggered by spoken stimuli in the sleeping brain. Awake participants classified words as either animals or objects (experiment 1) or as either words or pseudowords (experiment 2) by pressing a button with their right or left hand, while transitioning toward sleep. The lateralized readiness potential (LRP), an electrophysiological index of response preparation, revealed that task-specific preparatory responses are preserved during sleep. These findings demonstrate that despite the absence of awareness and behavioral responsiveness, sleepers can still extract task-relevant information from external stimuli and covertly prepare for appropriate motor responses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Gene expression profiles help identify the tissue of origin for metastatic brain cancers.

    PubMed

    Wu, Alan H B; Drees, Julia C; Wang, Hangpin; VandenBerg, Scott R; Lal, Anita; Henner, William D; Pillai, Raji

    2010-04-26

    Metastatic brain cancers are the most common intracranial tumor and occur in about 15% of all cancer patients. In up to 10% of these patients, the primary tumor tissue remains unknown, even after a time consuming and costly workup. The Pathwork Tissue of Origin Test (Pathwork Diagnostics, Redwood City, CA, USA) is a gene expression test to aid in the diagnosis of metastatic, poorly differentiated and undifferentiated tumors. It measures the expression pattern of 1,550 genes in these tumors and compares it to the expression pattern of a panel of 15 known tumor types. The purpose of this study was to evaluate the performance of the Tissue of Origin Test in the diagnosis of primary sites for metastatic brain cancer patients. Fifteen fresh-frozen metastatic brain tumor specimens of known origins met specimen requirements. These specimens were entered into the study and processed using the Tissue of Origin Test. Results were compared to the known primary site and the agreement between the two results was assessed. Fourteen of the fifteen specimens produced microarray data files that passed all quality metrics. One originated from a tissue type that was off-panel. Among the remaining 13 cases, the Tissue of Origin Test accurately predicted the available diagnosis in 12/13 (92.3%) cases. This study demonstrates the accuracy of the Tissue of Origin Test when applied to predict the tissue of origin of metastatic brain tumors. This test could be a very useful tool for pathologists as they classify metastatic brain cancers.

  1. Gene expression profiles help identify the Tissue of Origin for metastatic brain cancers

    PubMed Central

    2010-01-01

    Background Metastatic brain cancers are the most common intracranial tumor and occur in about 15% of all cancer patients. In up to 10% of these patients, the primary tumor tissue remains unknown, even after a time consuming and costly workup. The Pathwork® Tissue of Origin Test (Pathwork Diagnostics, Redwood City, CA, USA) is a gene expression test to aid in the diagnosis of metastatic, poorly differentiated and undifferentiated tumors. It measures the expression pattern of 1,550 genes in these tumors and compares it to the expression pattern of a panel of 15 known tumor types. The purpose of this study was to evaluate the performance of the Tissue of Origin Test in the diagnosis of primary sites for metastatic brain cancer patients. Methods Fifteen fresh-frozen metastatic brain tumor specimens of known origins met specimen requirements. These specimens were entered into the study and processed using the Tissue of Origin Test. Results were compared to the known primary site and the agreement between the two results was assessed. Results Fourteen of the fifteen specimens produced microarray data files that passed all quality metrics. One originated from a tissue type that was off-panel. Among the remaining 13 cases, the Tissue of Origin Test accurately predicted the available diagnosis in 12/13 (92.3%) cases. Discussion This study demonstrates the accuracy of the Tissue of Origin Test when applied to predict the tissue of origin of metastatic brain tumors. This test could be a very useful tool for pathologists as they classify metastatic brain cancers. PMID:20420692

  2. Human Brain Organoids on a Chip Reveal the Physics of Folding.

    PubMed

    Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R; Hanna, Jacob H; Reiner, Orly

    2018-05-01

    Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo , it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.

  3. Human brain organoids on a chip reveal the physics of folding

    NASA Astrophysics Data System (ADS)

    Karzbrun, Eyal; Kshirsagar, Aditya; Cohen, Sidney R.; Hanna, Jacob H.; Reiner, Orly

    2018-05-01

    Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a microfabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.

  4. Lateralization of brain activation in fluent and non-fluent preschool children: a magnetoencephalographic study of picture-naming.

    PubMed

    Sowman, Paul F; Crain, Stephen; Harrison, Elisabeth; Johnson, Blake W

    2014-01-01

    The neural causes of stuttering remain unknown. One explanation comes from neuroimaging studies that have reported abnormal lateralization of activation in the brains of people who stutter. However, these findings are generally based on data from adults with a long history of stuttering, raising the possibility that the observed lateralization anomalies are compensatory rather than causal. The current study investigated lateralization of brain activity in language-related regions of interest in young children soon after the onset of stuttering. We tested 24 preschool-aged children, half of whom had a positive diagnosis of stuttering. All children participated in a picture-naming experiment whilst their brain activity was recorded by magnetoencephalography. Source analysis performed during an epoch prior to speech onset was used to assess lateralized activation in three regions of interest. Activation was significantly lateralized to the left hemisphere in both groups and not different between groups. This study shows for the first time that significant speech preparatory brain activation can be identified in young children during picture-naming and supports the contention that, in stutterers, aberrant lateralization of brain function may be the result of neuroplastic adaptation that occurs as the condition becomes chronic.

  5. Hyper-hippocampal glycogen induced by glycogen loading with exhaustive exercise.

    PubMed

    Soya, Mariko; Matsui, Takashi; Shima, Takeru; Jesmin, Subrina; Omi, Naomi; Soya, Hideaki

    2018-01-19

    Glycogen loading (GL), a well-known type of sports conditioning, in combination with exercise and a high carbohydrate diet (HCD) for 1 week enhances individual endurance capacity through muscle glycogen supercompensation. This exercise-diet combination is necessary for successful GL. Glycogen in the brain contributes to hippocampus-related memory functions and endurance capacity. Although the effect of HCD on the brain remains unknown, brain supercompensation occurs following exhaustive exercise (EE), a component of GL. We thus employed a rat model of GL and examined whether GL increases glycogen levels in the brain as well as in muscle, and found that GL increased glycogen levels in the hippocampus and hypothalamus, as well as in muscle. We further explored the essential components of GL (exercise and/or diet conditions) to establish a minimal model of GL focusing on the brain. Exercise, rather than a HCD, was found to be crucial for GL-induced hyper-glycogen in muscle, the hippocampus and the hypothalamus. Moreover, EE was essential for hyper-glycogen only in the hippocampus even without HCD. Here we propose the EE component of GL without HCD as a condition that enhances brain glycogen stores especially in the hippocampus, implicating a physiological strategy to enhance hippocampal functions.

  6. Proinflammatory cytokines: a link between chorioamnionitis and fetal brain injury.

    PubMed

    Patrick, Lindsay A; Smith, Graeme N

    2002-09-01

    To review the etiology of impaired fetal neurodevelopment - in particular, the relationship between chorioamnionitis, cytokines, and cerebral palsy. A MEDLINE search was performed for all clinical and basic science studies published in the English literature from 1966 to 2002. Key words or phrases used were chorioamnionitis, cerebral palsy, fetal brain damage, fetal CNS injury, infection in pregnancy, proinflammatory cytokines in pregnancy, proinflammatory cytokines in infection, and preterm labour or birth. All relevant human and animal studies were included. Fetal brain injury remains a major cause of lifelong morbidity, incurring significant societal and health care costs. It has been postulated that chorioamnionitis stimulates maternal/fetal proinflammatory cytokine release, which is damaging to the developing fetal nervous system. Elevated cytokine concentrations may interfere with glial cell development and proliferation in the late second trimester of pregnancy, when the central nervous system is most vulnerable. Increasing numbers of epidemiological and basic science studies found through MEDLINE searches support this hypothesis. Treatment options aimed at etiologic factors may lead to improved neurodevelopmental outcomes. Clearly, some relationship exists between chorioamnionitis, cytokines, and the development of cerebral palsy, but the severity and duration of exposure required to produce fetal damage remains unknown. Future research addressing these issues may aid in clinical decision-making. As well, the elucidation of mechanisms of cytokine action may aid in early treatment options to prevent or limit development of fetal brain injury.

  7. Blast-Induced Color Change in Photonic Crystals Corresponds with Brain Pathology

    PubMed Central

    Cullen, D. Kacy; Browne, Kevin D.; Xu, Yongan; Adeeb, Saleena; Wolf, John A.; McCarron, Richard M.; Yang, Shu; Chavko, Mikulas

    2011-01-01

    Abstract A high incidence of blast exposure is a 21st century reality in counter-insurgency warfare. However, thresholds for closed-head blast-induced traumatic brain injury (bTBI) remain unknown. Moreover, without objective information about relative blast exposure, warfighters with bTBI may not receive appropriate medical care and may remain in harm's way. Accordingly, we have engineered a blast injury dosimeter (BID) using a photonic crystalline material that changes color following blast exposure. The photonic crystals are fabricated using SU-8 via multi-beam interference laser lithography. The final BID is similar in appearance to an array of small colored stickers that may be affixed to uniforms or helmets in multiple locations. Although durable under normal conditions, the photonic crystalline micro- and nano-structure are precisely altered by blast to create a color change. These BIDs were evaluated using a rat model of bTBI, for which blast shockwave exposure was generated via a compressed air-driven shock tube. With prototype BID arrays affixed to the animals, we found that BID color changes corresponded with subtle brain pathologies, including neuronal degeneration and reactive astrocytosis. These subtle changes were most notable in the dentate gyrus of the hippocampus, cerebral cortex, and cerebellum. These data demonstrate the feasibility of using a materials-based, power-free colorimetric BID as the first self-contained blast sensor calibrated to correspond with brain pathology. PMID:22082449

  8. Reading skill and structural brain development

    PubMed Central

    Houston, S.M.; Lebel, C.; Katzir, T.; Manis, F.R.; Kan, E.; Rodriguez, G.R.; Sowell, E.R.

    2014-01-01

    Reading is a learned skill that is likely influenced by both brain maturation and experience. Functional imaging studies have identified brain regions important for skilled reading, but the structural brain changes that co-occur with reading acquisition remain largely unknown. We investigated maturational volume changes in brain reading regions and their association with performance on reading measures. Sixteen typically developing children (5-15 years old, 8 male, mean age of sample=10.06 ±3.29) received two magnetic resonance imaging (MRI) scans, (mean inter-scan interval =2.19 years), and were administered a battery of cognitive measures. Volume changes between time points in five bilateral cortical regions of interest were measured, and assessed for relationships to three measures of reading. Better baseline performances on measures of word reading, fluency and rapid naming, independent of age and total cortical gray matter volume change, were associated with volume decrease in the left inferior parietal cortex. Better baseline performance on a rapid naming measure was associated with volume decrease in the left inferior frontal region. These results suggest that children who are better readers, and who perhaps read more than less skilled readers, exhibit different development trajectories in brain reading regions. Understanding relationships between reading performance, reading experience and brain maturation trajectories may help with the development and evaluation of targeted interventions. PMID:24407200

  9. High-fat diet-induced downregulation of anorexic leukemia inhibitory factor in the brain stem.

    PubMed

    Licursi, Maria; Alberto, Christian O; Dias, Alex; Hirasawa, Kensuke; Hirasawa, Michiru

    2016-11-01

    High-fat diet (HFD) is known to induce low-grade hypothalamic inflammation. Whether inflammation occurs in other brain areas remains unknown. This study tested the effect of short-term HFD on cytokine gene expression and identified leukemia inhibitory factor (LIF) as a responsive cytokine in the brain stem. Thus, functional and cellular effects of LIF in the brain stem were investigated. Male rats were fed chow or HFD for 3 days, and then gene expression was analyzed in different brain regions for IL-1β, IL-6, TNF-α, and LIF. The effect of intracerebroventricular injection of LIF on chow intake and body weight was also tested. Patch clamp recording was performed in the nucleus tractus solitarius (NTS). HFD increased pontine TNF-α mRNA while downregulating LIF in all major parts of the brain stem, but not in the hypothalamus or hippocampus. LIF injection into the cerebral aqueduct suppressed food intake without conditioned taste aversion, suggesting that LIF can induce anorexia via lower brain regions without causing malaise. In the NTS, a key brain stem nucleus for food intake regulation, LIF induced acute changes in neuronal excitability. HFD-induced downregulation of anorexic LIF in the brain stem may provide a permissive condition for HFD overconsumption. This may be at least partially mediated by the NTS. © 2016 The Obesity Society.

  10. Deep brain stimulation of the anterior limb of the internal capsule for treatment of therapy-refractory obsessive compulsive disorder (OCD): a case study highlighting neurocognitive and psychiatric changes.

    PubMed

    Choudhury, Tabina K; Davidson, Joyce E; Viswanathan, Ashwin; Strutt, Adriana M

    2017-04-01

    Obsessive compulsive disorder (OCD) is an anxiety disorder characterized by repeated, unwanted thoughts and behaviors. Individuals with this condition often experience significant emotional distress secondary to their symptoms. Additionally, impairments in attention/concentration, processing speed, and executive functions are typically observed. The exact pathology of OCD remains unknown; consequently, it can be difficult to treat patients with severe symptomatology. Deep brain stimulation (DBS) may be a viable treatment option for individuals who do not respond to medication and/or cognitive behavioral therapy. The following case discusses DBS of the anterior limb of the internal capsule for a patient with severe, therapy-refractory OCD, including pre- to postoperative neurocognitive and psychiatric changes.

  11. Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights into Altered Brain Maturation

    PubMed Central

    Morton, Paul D.; Ishibashi, Nobuyuki; Jonas, Richard A.

    2017-01-01

    In the past two decades it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however the underlying etiologies remain largely unknown and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential in order to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. PMID:28302742

  12. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury

    PubMed Central

    Williams, Shawniqua T; Conte, Mary M; Goldfine, Andrew M; Noirhomme, Quentin; Gosseries, Olivia; Thonnard, Marie; Beattie, Bradley; Hersh, Jennifer; Katz, Douglas I; Victor, Jonathan D; Laureys, Steven; Schiff, Nicholas D

    2013-01-01

    Zolpidem produces paradoxical recovery of speech, cognitive and motor functions in select subjects with severe brain injury but underlying mechanisms remain unknown. In three diverse patients with known zolpidem responses we identify a distinctive pattern of EEG dynamics that suggests a mechanistic model. In the absence of zolpidem, all subjects show a strong low frequency oscillatory peak ∼6–10 Hz in the EEG power spectrum most prominent over frontocentral regions and with high coherence (∼0.7–0.8) within and between hemispheres. Zolpidem administration sharply reduces EEG power and coherence at these low frequencies. The ∼6–10 Hz activity is proposed to arise from intrinsic membrane properties of pyramidal neurons that are passively entrained across the cortex by locally-generated spontaneous activity. Activation by zolpidem is proposed to arise from a combination of initial direct drug effects on cortical, striatal, and thalamic populations and further activation of underactive brain regions induced by restoration of cognitively-mediated behaviors. DOI: http://dx.doi.org/10.7554/eLife.01157.001 PMID:24252875

  13. Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights Into Altered Brain Maturation.

    PubMed

    Morton, Paul D; Ishibashi, Nobuyuki; Jonas, Richard A

    2017-03-17

    In the past 2 decades, it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however, the underlying causes remain largely unknown, and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. © 2017 American Heart Association, Inc.

  14. Seizure Termination by Acidosis Depends on ASIC1a

    PubMed Central

    Ziemann, Adam E.; Schnizler, Mikael K.; Albert, Gregory W.; Severson, Meryl A.; Howard, Matthew A.; Welsh, Michael J.; Wemmie, John A.

    2008-01-01

    SUMMARY Most seizures stop spontaneously. However, the molecular mechanisms remain unknown. Earlier observations that seizures reduce brain pH and that acidosis inhibits seizures indicated that acidosis halts epileptic activity. Because acid–sensing ion channel–1a (ASIC1a) shows exquisite sensitivity to extracellular pH and regulates neuron excitability, we hypothesized that acidosis might activate ASIC1a to terminate seizures. Disrupting mouse ASIC1a increased the severity of chemoconvulsant–induced seizures, whereas overexpressing ASIC1a had the opposite effect. ASIC1a did not affect seizure threshold or onset, but shortened seizure duration and prevented progression. CO2 inhalation, long known to lower brain pH and inhibit seizures, also required ASIC1a to interrupt tonic–clonic seizures. Acidosis activated inhibitory interneurons through ASIC1a, suggesting that ASIC1a might limit seizures by increasing inhibitory tone. These findings identify ASIC1a as a key element in seizure termination when brain pH falls. The results suggest a molecular mechanism for how the brain stops seizures and suggest new therapeutic strategies. PMID:18536711

  15. Brain Structure Linking Delay Discounting and Academic Performance.

    PubMed

    Wang, Song; Kong, Feng; Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Gong, Qiyong

    2017-08-01

    As a component of self-discipline, delay discounting refers to the ability to wait longer for preferred rewards and plays a pivotal role in shaping students' academic performance. However, the neural basis of the association between delay discounting and academic performance remains largely unknown. Here, we examined the neuroanatomical substrates underlying delay discounting and academic performance in 214 adolescents via voxel-based morphometry (VBM) by performing structural magnetic resonance imaging (S-MRI). Behaviorally, we confirmed the significant correlation between delay discounting and academic performance. Neurally, whole-brain regression analyses indicated that regional gray matter volume (rGMV) of the left dorsolateral prefrontal cortex (DLPFC) was associated with both delay discounting and academic performance. Furthermore, delay discounting partly accounted for the association between academic performance and brain structure. Differences in the rGMV of the left DLPFC related to academic performance explained over one-third of the impact of delay discounting on academic performance. Overall, these results provide the first evidence for the common neural basis linking delay discounting and academic performance. Hum Brain Mapp 38:3917-3926, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Selenomethionine protects against neuronal degeneration by methylmercury in the developing rat cerebrum.

    PubMed

    Sakamoto, Mineshi; Yasutake, Akira; Kakita, Akiyoshi; Ryufuku, Masae; Chan, Hing Man; Yamamoto, Megumi; Oumi, Sanae; Kobayashi, Sayaka; Watanabe, Chiho

    2013-03-19

    Although many experimental studies have shown that selenium protects against methylmercury (MeHg) toxicity at different end points, the direct interactive effects of selenium and MeHg on neurons in the brain remain unknown. Our goal is to confirm the protective effects of selenium against neuronal degeneration induced by MeHg in the developing postnatal rat brain using a postnatal rat model that is suitable for extrapolating the effects of MeHg to the fetal brain of humans. As an exposure source of selenium, we used selenomethionine (SeMet), a food-originated selenium. Wistar rats of postnatal days 14 were orally administered with vehicle (control), MeHg (8 mg Hg/kg/day), SeMet (2 mg Se/kg/day), or MeHg plus SeMet coexposure for 10 consecutive days. Neuronal degeneration and reactive astrocytosis were observed in the cerebral cortex of the MeHg-group but the symptoms were prevented by coexposure to SeMet. These findings serve as a proof that dietary selenium can directly protect neurons against MeHg toxicity in the mammalian brain, especially in the developing cerebrum.

  17. Conscience and Consciousness: a definition

    PubMed Central

    Vithoulkas, G; Muresanu, DF

    2014-01-01

    While consciousness has been examined extensively in its different aspects, like in philosophy, psychiatry, neurophysiology, neuroplasticity, etc., conscience though it is an equal important aspect of the human existence, which remains an unknown to a great degree as an almost transcendental aspect of the human mind. It has not been examined as thoroughly as consciousness and largely remains a “terra incognita" for its neurophysiology, brain topography, etc. Conscience and consciousness are part of a system of information that governs our experience and decision making process. The intent of this paper is to define these terms, to discuss about consciousness from both neurological and quantum physics point of view, the relationship between the dynamics of consciousness and neuroplasticity and to highlight the relationship between conscience, stress and health. PMID:24653768

  18. Conscience and consciousness: a definition.

    PubMed

    Vithoulkas, G; Muresanu, D F

    2014-03-15

    While consciousness has been examined extensively in its different aspects, like in philosophy, psychiatry, neurophysiology, neuroplasticity, etc., conscience though it is an equal important aspect of the human existence, which remains an unknown to a great degree as an almost transcendental aspect of the human mind. It has not been examined as thoroughly as consciousness and largely remains a "terra incognita" for its neurophysiology, brain topography, etc. Conscience and consciousness are part of a system of information that governs our experience and decision making process. The intent of this paper is to define these terms, to discuss about consciousness from both neurological and quantum physics point of view, the relationship between the dynamics of consciousness and neuroplasticity and to highlight the relationship between conscience, stress and health.

  19. Regional homogeneity of the resting-state brain activity correlates with individual intelligence.

    PubMed

    Wang, Leiqiong; Song, Ming; Jiang, Tianzi; Zhang, Yunting; Yu, Chunshui

    2011-01-25

    Resting-state functional magnetic resonance imaging has confirmed that the strengths of the long distance functional connectivity between different brain areas are correlated with individual differences in intelligence. However, the association between the local connectivity within a specific brain region and intelligence during rest remains largely unknown. The aim of this study is to investigate the relationship between local connectivity and intelligence. Fifty-nine right-handed healthy adults participated in the study. The regional homogeneity (ReHo) was used to assess the strength of local connectivity. The associations between ReHo and full-scale intelligence quotient (FSIQ) scores were studied in a voxel-wise manner using partial correlation analysis controlling for age and sex. We found that the FSIQ scores were positively correlated with the ReHo values of the bilateral inferior parietal lobules, middle frontal, parahippocampal and inferior temporal gyri, the right thalamus, superior frontal and fusiform gyri, and the left superior parietal lobule. The main findings are consistent with the parieto-frontal integration theory (P-FIT) of intelligence, supporting the view that general intelligence involves multiple brain regions throughout the brain. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  20. Neocortex expansion is linked to size variations in gene families with chemotaxis, cell-cell signalling and immune response functions in mammals.

    PubMed

    Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; de Sousa, Alexandra A; Urrutia, Araxi O; Gutierrez, Humberto

    2016-10-01

    Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell-cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages. © 2016 The Authors.

  1. Neocortex expansion is linked to size variations in gene families with chemotaxis, cell–cell signalling and immune response functions in mammals

    PubMed Central

    Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; de Sousa, Alexandra A.

    2016-01-01

    Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell–cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages. PMID:27707894

  2. Changing Brain Networks Through Non-invasive Neuromodulation

    PubMed Central

    To, Wing Ting; De Ridder, Dirk; Hart Jr., John; Vanneste, Sven

    2018-01-01

    Background/Objective: Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method: This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion: Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks. PMID:29706876

  3. Changing Brain Networks Through Non-invasive Neuromodulation.

    PubMed

    To, Wing Ting; De Ridder, Dirk; Hart, John; Vanneste, Sven

    2018-01-01

    Background/Objective : Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method : This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion : Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks.

  4. Nootropic potential of Ashwagandha leaves: Beyond traditional root extracts.

    PubMed

    Wadhwa, Renu; Konar, Arpita; Kaul, Sunil C

    2016-05-01

    Rapidly increasing aging population and environmental stressors are the two main global concerns of the modern society. These have brought in light rapidly increasing incidence of a variety of pathological conditions including brain tumors, neurodegenerative & neuropsychiatric disorders, and new challenges for their treatment. The overlapping symptoms, complex etiology and lack of full understanding of the brain structure and function to-date further complicate these tasks. On the other hand, several herbal reagents with a long history of their use have been asserted to possess neurodifferentiation, neuroregenerative and neuroprotective potentials, and hence been recommended as supplement to enhance and maintain brain health and function. Although they have been claimed to function by holistic approach resulting in maintaining body homeostasis and brain health, there are not enough laboratory studies in support to these and mechanism(s) of such beneficial activities remain largely undefined. One such herb is Ashwagandha, also called "Queen of Ayurveda" for its popular use in Indian traditional home medicine because of its extensive benefits including anticancer, anti-stress and remedial potential for aging and neurodegenerative pathologies. However, active principles and underlying mechanism(s) of action remain largely unknown. Here we provide a review on the effects of Ashwagandha extracts and active principles, and underlying molecular mechanism(s) for brain pathologies. We highlight our findings on the nootropic potential of Ashwagandha leaves. The effects of Ashwagandha leaf extracts are multidimensional ranging from differentiation of neuroblastoma and glioma cells, reversal of Alzheimer and Parkinson's pathologies, protection against environmental neurotoxins and enhancement of memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths

    PubMed Central

    de Vries, Liv; Pfeiffer, Keram; Trebels, Björn; Adden, Andrea K.; Green, Ken; Warrant, Eric; Heinze, Stanley

    2017-01-01

    Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation—differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth. PMID:28928641

  6. Altered effective connectivity of default model brain network underlying amnestic MCI

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Wang, Yonghui; Tian, Jie

    2012-02-01

    Mild cognitive impairment (MCI) is the transitional, heterogeneous continuum from healthy elderly to Alzheimer's disease (AD). Previous studies have shown that brain functional activity in the default mode network (DMN) is impaired in MCI patients. However, the altered effective connectivity of the DMN in MCI patients remains largely unknown. The present study combined an independent component analysis (ICA) approach with Granger causality analysis (mGCA) to investigate the effective connectivity within the DMN in 12 amnestic MCI patients and 12 age-matched healthy elderly. Compared to the healthy control, the MCI exhibited decreased functional activity in the posterior DMN regions, as well as a trend towards activity increases in anterior DMN regions. Results from mGCA further supported this conclusion that the causal influence projecting to the precuneus/PCC became much weaker in MCI, while stronger interregional interactions emerged within the frontal-parietal cortices. These findings suggested that abnormal effective connectivity within the DMN may elucidate the dysfunctional and compensatory processes in MCI brain networks.

  7. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus.

    PubMed

    Hescham, Sarah; Jahanshahi, Ali; Schweimer, Judith V; Mitchell, Stephen N; Carter, Guy; Blokland, Arjan; Sharp, Trevor; Temel, Yasin

    2016-11-01

    Deep brain stimulation (DBS) of the fornix has gained interest as a potential therapy for advanced treatment-resistant dementia, yet the mechanism of action remains widely unknown. Previously, we have reported beneficial memory effects of fornix DBS in a scopolamine-induced rat model of dementia, which is dependent on various brain structures including hippocampus. To elucidate mechanisms of action of fornix DBS with regard to memory restoration, we performed c-Fos immunohistochemistry in the hippocampus. We found that fornix DBS induced a selective activation of cells in the CA1 and CA3 subfields of the dorsal hippocampus. In addition, hippocampal neurotransmitter levels were measured using microdialysis before, during and after 60 min of fornix DBS in a next experiment. We observed a substantial increase in the levels of extracellular hippocampal acetylcholine, which peaked 20 min after stimulus onset. Interestingly, hippocampal glutamate levels did not change compared to baseline. Therefore, our findings provide first experimental evidence that fornix DBS activates the hippocampus and induces the release of acetylcholine in this region.

  8. Formal Models of the Network Co-occurrence Underlying Mental Operations.

    PubMed

    Bzdok, Danilo; Varoquaux, Gaël; Grisel, Olivier; Eickenberg, Michael; Poupon, Cyril; Thirion, Bertrand

    2016-06-01

    Systems neuroscience has identified a set of canonical large-scale networks in humans. These have predominantly been characterized by resting-state analyses of the task-unconstrained, mind-wandering brain. Their explicit relationship to defined task performance is largely unknown and remains challenging. The present work contributes a multivariate statistical learning approach that can extract the major brain networks and quantify their configuration during various psychological tasks. The method is validated in two extensive datasets (n = 500 and n = 81) by model-based generation of synthetic activity maps from recombination of shared network topographies. To study a use case, we formally revisited the poorly understood difference between neural activity underlying idling versus goal-directed behavior. We demonstrate that task-specific neural activity patterns can be explained by plausible combinations of resting-state networks. The possibility of decomposing a mental task into the relative contributions of major brain networks, the "network co-occurrence architecture" of a given task, opens an alternative access to the neural substrates of human cognition.

  9. Formal Models of the Network Co-occurrence Underlying Mental Operations

    PubMed Central

    Bzdok, Danilo; Varoquaux, Gaël; Grisel, Olivier; Eickenberg, Michael; Poupon, Cyril; Thirion, Bertrand

    2016-01-01

    Systems neuroscience has identified a set of canonical large-scale networks in humans. These have predominantly been characterized by resting-state analyses of the task-unconstrained, mind-wandering brain. Their explicit relationship to defined task performance is largely unknown and remains challenging. The present work contributes a multivariate statistical learning approach that can extract the major brain networks and quantify their configuration during various psychological tasks. The method is validated in two extensive datasets (n = 500 and n = 81) by model-based generation of synthetic activity maps from recombination of shared network topographies. To study a use case, we formally revisited the poorly understood difference between neural activity underlying idling versus goal-directed behavior. We demonstrate that task-specific neural activity patterns can be explained by plausible combinations of resting-state networks. The possibility of decomposing a mental task into the relative contributions of major brain networks, the "network co-occurrence architecture" of a given task, opens an alternative access to the neural substrates of human cognition. PMID:27310288

  10. Neural mechanisms of mental schema: a triplet of delta, low beta/spindle and ripple oscillations.

    PubMed

    Ohki, Takefumi; Takei, Yuichi

    2018-02-06

    Schemas are higher-level knowledge structures that integrate and organise lower-level representations. As internal templates, schemas are formed according to how events are perceived, interpreted and remembered. Although these higher-level units are assumed to play a fundamental role in our daily life from an early age, the neuronal basis and mechanisms of schema formation and use remain largely unknown. It is important to elucidate how the brain constructs and maintains these higher-level units. In order to examine the possible neural underpinnings of schema, we recapitulate previous work and discuss their findings related to schemas as the brain template. We specifically focused on low beta/spindle oscillations, which are assumed to be the key components of schemas, and propose that the brain template is implemented with a triplet of neural oscillations, that is delta, low beta/spindle and ripple oscillations. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Disrupted topology of hippocampal connectivity is associated with short-term antidepressant response in major depressive disorder.

    PubMed

    Gong, Liang; Hou, Zhenghua; Wang, Zan; He, Cancan; Yin, Yingying; Yuan, Yonggui; Zhang, Haisan; Lv, Luxian; Zhang, Hongxing; Xie, Chunming; Zhang, Zhijun

    2018-01-01

    Graph theoretical analyses have identified disrupted functional topological organization across the brain in patients with major depressive disorder (MDD). However, the relationship between brain topology and short-term treatment responses in patients with MDD remains unknown. Sixty-eight patients with MDD and 63 cognitively normal (CN) subjects were recruited at baseline and underwent resting-state functional magnetic resonance imaging scans. Graph theory analysis was used to examine group differences in the whole-brain functional topological properties. The association between altered brain topology and the early antidepressant response was examined. Patients with MDD showed lower normalized clustering coefficients, lower small-worldness scalars and increased nodal efficiencies in the default mode network and decreased nodal efficiencies in basal ganglia and hippocampal networks. In addition, the decreased nodal efficiency in left hippocampus was negatively correlated with depressive severity at baseline and positively correlated with changes in the depressive scores after two weeks of antidepressant treatment. The patients in the present study received different medications. These findings indicated that the altered brain functional topological organization in patients with MDD is associated with the treatment response in the early phase of medication. Therefore, brain topology assessments might be considered a useful and convenient predictor of short-term antidepressant responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Influence of anxiety and alexithymia on brain activations associated with the perception of others' pain in autism.

    PubMed

    Lassalle, Amandine; Zürcher, Nicole R; Porro, Carlo A; Benuzzi, Francesca; Hippolyte, Loyse; Lemonnier, Eric; Åsberg Johnels, Jakob; Hadjikhani, Nouchine

    2018-05-07

    The circumstances under which empathy is altered in ASD remain unclear, as previous studies did not systematically find differences in brain activation between ASD and controls in empathy-eliciting paradigms, and did not always monitor whether differences were primarily due to ASD "per se", or to conditions overlapping with ASD, such as alexithymia and anxiety. Here, we collected fMRI data from 47 participants (22 ASD) viewing pictures depicting hands and feet of unknown others in painful, disgusting, or neutral situations. We computed brain activity for painful and disgusting stimuli (vs. neutral) in whole brain and in regions of interest among the brain areas typically activated during the perception of nociceptive stimuli. Group differences in brain activation disappeared when either alexithymia or anxiety - both elevated in the ASD group - were controlled for. Regression analyses indicated that the influence of symptoms was mainly shared between autistic symptomatology, alexithymia and anxiety or driven by unique contributions from alexithymia or anxiety. Our results suggest that affective empathy may be affected in ASD, but that this association is complex. The respective contribution of alexithymia and anxiety to decreased affective empathy of people with ASD may be due to the association of those psychiatric conditions with reduced motor resonance/Theory of Mind.

  13. Aging reduces the stimulating effect of blue light on cognitive brain functions.

    PubMed

    Daneault, Véronique; Hébert, Marc; Albouy, Geneviève; Doyon, Julien; Dumont, Marie; Carrier, Julie; Vandewalle, Gilles

    2014-01-01

    Light exposure, particularly blue light, is being recognized as a potent mean to stimulate alertness and cognition in young individuals. Aging is associated with changes in alertness regulation and cognition. Whether the effect of light on cognitive brain function changes with aging is unknown, however. Cross-sectional study. Functional Neuroimaging Unit, University of Montreal Geriatric Institute. Sixteen younger (23 ± 4.1 y) and 14 older (61 ± 4.5 y) healthy participants were recruited in the current study. Blue light administration. We used functional magnetic resonance imaging to record brain responses to an auditory working memory task in young and older healthy individuals, alternatively maintained in darkness or exposed to blue light. Results show that the older brain remains capable of showing sustained responses to light in several brain areas. However, compared to young individuals, the effect of blue light is decreased in the pulvinar, amygdala, and tegmentum as well as in the insular, prefrontal, and occipital cortices in elderly individuals. The effect of blue light on brain responses diminishes with aging in areas typically involved in visual functions and in key regions for alertness regulation and higher executive processes. Our findings provide the first indications that the effect of light on cognition may be reduced in healthy aging.

  14. Brain systems for assessing the affective value of faces

    PubMed Central

    Said, Christopher P.; Haxby, James V.; Todorov, Alexander

    2011-01-01

    Cognitive neuroscience research on facial expression recognition and face evaluation has proliferated over the past 15 years. Nevertheless, large questions remain unanswered. In this overview, we discuss the current understanding in the field, and describe what is known and what remains unknown. In §2, we describe three types of behavioural evidence that the perception of traits in neutral faces is related to the perception of facial expressions, and may rely on the same mechanisms. In §3, we discuss cortical systems for the perception of facial expressions, and argue for a partial segregation of function in the superior temporal sulcus and the fusiform gyrus. In §4, we describe the current understanding of how the brain responds to emotionally neutral faces. To resolve some of the inconsistencies in the literature, we perform a large group analysis across three different studies, and argue that one parsimonious explanation of prior findings is that faces are coded in terms of their typicality. In §5, we discuss how these two lines of research—perception of emotional expressions and face evaluation—could be integrated into a common, cognitive neuroscience framework. PMID:21536552

  15. The predictive roles of neural oscillations in speech motor adaptability.

    PubMed

    Sengupta, Ranit; Nasir, Sazzad M

    2016-06-01

    The human speech system exhibits a remarkable flexibility by adapting to alterations in speaking environments. While it is believed that speech motor adaptation under altered sensory feedback involves rapid reorganization of speech motor networks, the mechanisms by which different brain regions communicate and coordinate their activity to mediate adaptation remain unknown, and explanations of outcome differences in adaption remain largely elusive. In this study, under the paradigm of altered auditory feedback with continuous EEG recordings, the differential roles of oscillatory neural processes in motor speech adaptability were investigated. The predictive capacities of different EEG frequency bands were assessed, and it was found that theta-, beta-, and gamma-band activities during speech planning and production contained significant and reliable information about motor speech adaptability. It was further observed that these bands do not work independently but interact with each other suggesting an underlying brain network operating across hierarchically organized frequency bands to support motor speech adaptation. These results provide novel insights into both learning and disorders of speech using time frequency analysis of neural oscillations. Copyright © 2016 the American Physiological Society.

  16. The neural bases for valuing social equality.

    PubMed

    Aoki, Ryuta; Yomogida, Yukihito; Matsumoto, Kenji

    2015-01-01

    The neural basis of how humans value and pursue social equality has become a major topic in social neuroscience research. Although recent studies have identified a set of brain regions and possible mechanisms that are involved in the neural processing of equality of outcome between individuals, how the human brain processes equality of opportunity remains unknown. In this review article, first we describe the importance of the distinction between equality of outcome and equality of opportunity, which has been emphasized in philosophy and economics. Next, we discuss possible approaches for empirical characterization of human valuation of equality of opportunity vs. equality of outcome. Understanding how these two concepts are distinct and interact with each other may provide a better explanation of complex human behaviors concerning fairness and social equality. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  17. Effect of Resting-State fNIRS Scanning Duration on Functional Brain Connectivity and Graph Theory Metrics of Brain Network.

    PubMed

    Geng, Shujie; Liu, Xiangyu; Biswal, Bharat B; Niu, Haijing

    2017-01-01

    As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS) has attracted widespread attention for advancing resting-state functional connectivity (FC) and graph theoretical analyses of brain networks. However, it remains largely unknown how the duration of the fNIRS signal scanning is related to stable and reproducible functional brain network features. To answer this question, we collected resting-state fNIRS signals (10-min duration, two runs) from 18 participants and then truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10 min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global efficiency, and clustering coefficient were computed for each subject at each fNIRS signal acquisition duration. Analyses of the stability and between-run reproducibility were performed to identify optimal time length for each measure. We found that the FC, nodal efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS signal acquisition, whereas network clustering coefficient, local and global efficiencies stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only local and global efficiencies. These quantitative results provide direct evidence regarding the choice of the resting-state fNIRS scanning duration for functional brain connectivity and topological metric stability of brain network connectivity.

  18. Intrapartum fetal heart rate patterns preceding terminal bradycardia in infants (>34 weeks) with poor neurological outcome: A regional population-based study in Japan.

    PubMed

    Kodama, Yuki; Sameshima, Hiroshi; Yamashita, Rie; Oohashi, Masanao; Ikenoue, Tsuyomu

    2015-11-01

    Intrapartum fetal bradycardia necessitates immediate operative delivery. Our aim was to investigate the hypothesis that some non-reassuring fetal heart rate (FHR) patterns were present before the onset of terminal bradycardia in infants who developed subsequent brain damage. From a population-based study of 65,197 deliveries, 190 stillbirths, 115 neonatal deaths, and 136 neurologically high-risk infants were registered by the Miyazaki Perinatal Conference. There were 15 cases of neurologically high-risk infants born at >34 weeks of gestation exhibiting intrapartum terminal bradycardia. Focusing on the brain-damaged infants, we retrospectively analyzed FHR patterns for at least 1 h prior to the bradycardia. Brain damage (cerebral palsy [n = 11] and mental retardation [n = 2]) was diagnosed at 2 years old in 13 out of 15 neurologically high-risk infants. Two infants had bradycardia on admission. In the remaining 11 infants, FHR patterns were reassuring in six (55%) and non-reassuring in five (45%), including late decelerations (n = 4) and variable decelerations (n = 2). Clinically relevant factors in the non-reassuring group included intrauterine infection (n = 3), malpresentation with umbilical cord coiling (n = 1), and unknown causes (n = 1). Clinically relevant features in the reassuring group included cord prolapse (n = 1), vaginal breech delivery (n = 1), shoulder dystocia (n = 1), rupture of membranes (n = 1), and unknown causes (n = 2). More than half of the brain-damaged infants born at >34 weeks of gestation who exhibited intrapartum terminal bradycardia had unremarkable FHR patterns before abrupt-onset bradycardia. For those with non-reassuring patterns preceding bradycardia, intrauterine infection was the major sentinel event. © 2015 Japan Society of Obstetrics and Gynecology.

  19. Pathogenesis of amyotrophic lateral sclerosis.

    PubMed

    Morgan, Sarah; Orrell, Richard W

    2016-09-01

    Amyotrophic lateral sclerosis (ALS) or motor neuron disease is a rapidly progressive neurodegenerative disorder. The primary involvement is of motor neurons in the brain, spinal cord and peripherally. There is secondary weakness of muscles and primary involvement of other brain regions, especially involving cognition. Peer-reviewed journal articles and reviews. PubMed.gov The pathogenesis of ALS remains largely unknown. There are a wide range of potential mechanisms related to neurodegeneration. An increasing number of genetic factors are recognized. There remains controversy, or lack of knowledge, in explaining how cellular events manifest as the complex human disease. There is controversy as to how well cellular and animal models of disease relate to the human disease. Large-scale international collaborative genetic epidemiological studies are replacing local studies. Therapies related to pathogenesis remain elusive, with the greatest advances to date relating to provision of care (including multidisciplinary management) and supportive care (nutrition and respiratory support). The identification of C9orf72 hexanucleotide repeats as the most frequent genetic background to ALS, and the association with frontotemporal dementia, gives the potential of a genetic background against which to study other risk factors, triggers and pathogenic mechanisms, and to develop potential therapies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology

    PubMed Central

    Michael, Benedict D.; Griffiths, Michael J.; Granerod, Julia; Brown, David; Davies, Nicholas W. S.; Borrow, Ray; Solomon, Tom

    2016-01-01

    Background Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15–60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. Methods We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Results Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Conclusions Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation. PMID:26808276

  1. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology.

    PubMed

    Michael, Benedict D; Griffiths, Michael J; Granerod, Julia; Brown, David; Davies, Nicholas W S; Borrow, Ray; Solomon, Tom

    2016-01-01

    Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15-60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation.

  2. Identification of a motor to auditory pathway important for vocal learning

    PubMed Central

    Roberts, Todd F.; Hisey, Erin; Tanaka, Masashi; Kearney, Matthew; Chattree, Gaurav; Yang, Cindy F.; Shah, Nirao M.; Mooney, Richard

    2017-01-01

    Summary Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor’s song. Ablating these neurons in adults had little effect on previously learned songs, but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of song’s temporal features normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing. PMID:28504672

  3. Boxing-related head injuries.

    PubMed

    Jayarao, Mayur; Chin, Lawrence S; Cantu, Robert C

    2010-10-01

    Fatalities in boxing are most often due to traumatic brain injury that occurs in the ring. In the past 30 years, significant improvements in ringside and medical equipment, safety, and regulations have resulted in a dramatic reduction in the fatality rate. Nonetheless, the rate of boxing-related head injuries, particularly concussions, remains unknown, due in large part to its variability in clinical presentation. Furthermore, the significance of repeat concussions sustained when boxing is just now being understood. In this article, we identify the clinical manifestations, pathophysiology, and management of boxing-related head injuries, and discuss preventive strategies to reduce head injuries sustained by boxers.

  4. Maintaining brain health by monitoring inflammatory processes: a mechanism to promote successful aging.

    PubMed

    Rosano, Caterina; Marsland, Anna L; Gianaros, Peter J

    2012-02-01

    Maintaining brain health promotes successful aging. The main determinants of brain health are the preservation of cognitive function and remaining free from structural and metabolic abnormalities, including loss of neuronal synapses, atrophy, small vessel disease and focal amyloid deposits visible by neuroimaging. Promising studies indicate that these determinants are to some extent modifiable, even among adults seventy years and older. Converging animal and human evidence further suggests that inflammation is a shared mechanism, contributing to both cognitive decline and abnormalities in brain structure and metabolism. Thus, inflammation may provide a target for intervention. Specifically, circulating inflammatory markers have been associated with declines in cognitive function and worsening of brain structural and metabolic characteristics. Additionally, it has been proposed that older brains are characterized by a sensitization to neuroinflammatory responses, even in the absence of overt disease. This increased propensity to central inflammation may contribute to poor brain health and premature brain aging. Still unknown is whether and how peripheral inflammatory factors directly contribute to decline of brain health. Human research is limited by the challenges of directly measuring neuroinflammation in vivo. This review assesses the role that inflammation may play in the brain changes that often accompany aging, focusing on relationships between peripheral inflammatory markers and brain health among well-functioning, community-dwelling adults seventy years and older. We propose that monitoring and maintaining lower levels of systemic and central inflammation among older adults could help preserve brain health and support successful aging. Hence, we also identify plausible ways and novel experimental study designs of maintaining brain health late in age through interventions that target the immune system.

  5. Brains studying brains: look before you think in vision

    NASA Astrophysics Data System (ADS)

    Zhaoping, Li

    2016-06-01

    Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its ‘conscious’ part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many ‘subconscious’ brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights.

  6. Brains studying brains: look before you think in vision.

    PubMed

    Zhaoping, Li

    2016-05-11

    Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its 'conscious' part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many 'subconscious' brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights.

  7. MR elastography of hydrocephalus

    NASA Astrophysics Data System (ADS)

    Pattison, Adam J.; Lollis, S. Scott; Perrinez, Phillip R.; Weaver, John B.; Paulsen, Keith D.

    2009-02-01

    Hydrocephalus occurs due to a blockage in the transmission of cerebrospinal fluid (CSF) in either the ventricles or subarachnoid space. Characteristics of this condition include increased intracranial pressure, which can result in neurologic deterioration [1]. Magnetic resonance elastography (MRE) is an imaging technique that estimates the mechanical properties of tissue in vivo. While some investigations of brain tissue have been performed using MRE [2,3,4,5], the effects due to changes in interstitial pressure and fluid content on the mechanical properties of the brain remain unknown. The purpose of this work is to assess the potential of MRE to differentiate between the reconstructed properties of normal and hydrocephalic brains. MRE data was acquired in 18 female feline subjects, 12 of which received kaolin injections resulting in an acute form of hydrocephalus. In each animal, four MRE scans were performed during the process including one pre-injection and three post-injection scans. The elastic parameters were obtained using a subzone-based reconstruction algorithm that solves Navier's equations for linearly elastic materials [6]. The remaining cats were used as controls, injected with saline instead of kaolin. To determine the state of hydrocephalus, ventricular volume was estimated from segmenting anatomical images. The mean ventricular volume of hydrocephalic cats significantly increased (P <~ 0.0001) between the first and second scans. The mean volume was not observed to increase (P >~ 0.5) for the control cats. Also, there was an observable increase in the recorded elastic shear modulus of brain tissue in the normal and hydrocephalic acquisitions. Results suggest that MRE is able to detect changes in the mechanical properties of brain tissue resulting from kaolin-induced hydrocephalus, indicating the need for further study.

  8. Unique Dental Morphology of Homo floresiensis and Its Evolutionary Implications

    PubMed Central

    Kaifu, Yousuke; Kono, Reiko T.; Sutikna, Thomas; Saptomo, Emanuel Wahyu; Jatmiko

    2015-01-01

    Homo floresiensis is an extinct, diminutive hominin species discovered in the Late Pleistocene deposits of Liang Bua cave, Flores, eastern Indonesia. The nature and evolutionary origins of H. floresiensis’ unique physical characters have been intensively debated. Based on extensive comparisons using linear metric analyses, crown contour analyses, and other trait-by-trait morphological comparisons, we report here that the dental remains from multiple individuals indicate that H. floresiensis had primitive canine-premolar and advanced molar morphologies, a combination of dental traits unknown in any other hominin species. The primitive aspects are comparable to H. erectus from the Early Pleistocene, whereas some of the molar morphologies are more progressive even compared to those of modern humans. This evidence contradicts the earlier claim of an entirely modern human-like dental morphology of H. floresiensis, while at the same time does not support the hypothesis that H. floresiensis originated from a much older H. habilis or Australopithecus-like small-brained hominin species currently unknown in the Asian fossil record. These results are however consistent with the alternative hypothesis that H. floresiensis derived from an earlier Asian Homo erectus population and experienced substantial body and brain size dwarfism in an isolated insular setting. The dentition of H. floresiensis is not a simple, scaled-down version of earlier hominins. PMID:26624612

  9. Oxytocin receptor gene and racial ingroup bias in empathy-related brain activity.

    PubMed

    Luo, Siyang; Li, Bingfeng; Ma, Yina; Zhang, Wenxia; Rao, Yi; Han, Shihui

    2015-04-15

    The human brain responds more strongly to racial ingroup than outgroup individuals' pain. This racial ingroup bias varies across individuals and has been attributed to social experiences. What remains unknown is whether the racial ingroup bias in brain activity is associated with a genetic polymorphism. We investigated genetic associations of racial ingroup bias in the brain activity to racial ingroup and outgroup faces that received painful or non-painful stimulations by scanning A/A and G/G homozygous of the oxytocin receptor gene polymorphism (OXTR rs53576) using functional MRI. We found that G/G compared to A/A individuals showed stronger activity in the anterior cingulate and supplementary motor area (ACC/SMA) in response to racial ingroup members' pain, whereas A/A relative to G/G individuals exhibited greater activity in the nucleus accumbens (NAcc) in response to racial outgroup members' pain. Moreover, the racial ingroup bias in ACC/SMA activity positively predicted participants' racial ingroup bias in implicit attitudes and NAcc activity to racial outgroup individuals' pain negatively predicted participants' motivations to reduce racial outgroup members' pain. Our results suggest that the two variants of OXTR rs53576 are associated with racial ingroup bias in brain activities that are linked to implicit attitude and altruistic motivation, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice.

    PubMed

    Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J; Gibson, Elizabeth L; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T; Marambaud, Philippe

    2016-04-12

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1(-/-)) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1(-/-) brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1(-/-) mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.

  11. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  12. 3D virtual histology at the host/parasite interface: visualisation of the master manipulator, Dicrocoelium dendriticum, in the brain of its ant host.

    PubMed

    Martín-Vega, Daniel; Garbout, Amin; Ahmed, Farah; Wicklein, Martina; Goater, Cameron P; Colwell, Douglas D; Hall, Martin J R

    2018-06-05

    Some parasites are able to manipulate the behaviour of their hosts to their own advantage. One of the most well-established textbook examples of host manipulation is that of the trematode Dicrocoelium dendriticum on ants, its second intermediate host. Infected ants harbour encysted metacercariae in the gaster and a non-encysted metacercaria in the suboesophageal ganglion (SOG); however, the mechanisms that D. dendriticum uses to manipulate the ant behaviour remain unknown, partly because of a lack of a proper and direct visualisation of the physical interface between the parasite and the ant brain tissue. Here we provide new insights into the potential mechanisms that this iconic manipulator uses to alter its host's behaviour by characterising the interface between D. dendriticum and the ant tissues with the use of non-invasive micro-CT scanning. For the first time, we show that there is a physical contact between the parasite and the ant brain tissue at the anteriormost part of the SOG, including in a case of multiple brain infection where only the parasite lodged in the most anterior part of the SOG was in contact with the ant brain tissue. We demonstrate the potential of micro-CT to further understand other parasite/host systems in parasitological research.

  13. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation.

    PubMed Central

    Liu, Bin; Gao, Hui-Ming; Hong, Jau-Shyong

    2003-01-01

    Idiopathic Parkinson's disease (PD) is a devastating movement disorder characterized by selective degeneration of the nigrostriatal dopaminergic pathway. Neurodegeneration usually starts in the fifth decade of life and progresses over 5-10 years before reaching the fully symptomatic disease state. Despite decades of intense research, the etiology of sporadic PD and the mechanism underlying the selective neuronal loss remain unknown. However, the late onset and slow-progressing nature of the disease has prompted the consideration of environmental exposure to agrochemicals, including pesticides, as a risk factor. Moreover, increasing evidence suggests that early-life occurrence of inflammation in the brain, as a consequence of either brain injury or exposure to infectious agents, may play a role in the pathogenesis of PD. Most important, there may be a self-propelling cycle of inflammatory process involving brain immune cells (microglia and astrocytes) that drives the slow yet progressive neurodegenerative process. Deciphering the molecular and cellular mechanisms governing those intricate interactions would significantly advance our understanding of the etiology and pathogenesis of PD and aid the development of therapeutic strategies for the treatment of the disease. PMID:12826478

  14. Microwaves and Alzheimer's disease

    PubMed Central

    Zhang, Xia; Huang, Wen-Juan; Chen, Wei-Wei

    2016-01-01

    Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review. PMID:27698682

  15. Altered brain response for semantic knowledge in Alzheimer's disease.

    PubMed

    Wierenga, Christina E; Stricker, Nikki H; McCauley, Ashley; Simmons, Alan; Jak, Amy J; Chang, Yu-Ling; Nation, Daniel A; Bangen, Katherine J; Salmon, David P; Bondi, Mark W

    2011-02-01

    Word retrieval deficits are common in Alzheimer's disease (AD) and are thought to reflect a degradation of semantic memory. Yet, the nature of semantic deterioration in AD and the underlying neural correlates of these semantic memory changes remain largely unknown. We examined the semantic memory impairment in AD by investigating the neural correlates of category knowledge (e.g., living vs. nonliving) and featural processing (global vs. local visual information). During event-related fMRI, 10 adults diagnosed with mild AD and 22 cognitively normal (CN) older adults named aloud items from three categories for which processing of specific visual features has previously been dissociated from categorical features. Results showed widespread group differences in the categorical representation of semantic knowledge in several language-related brain areas. For example, the right inferior frontal gyrus showed selective brain response for nonliving items in the CN group but living items in the AD group. Additionally, the AD group showed increased brain response for word retrieval irrespective of category in Broca's homologue in the right hemisphere and rostral cingulate cortex bilaterally, which suggests greater recruitment of frontally mediated neural compensatory mechanisms in the face of semantic alteration. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Glutamate and Brain Glutaminases in Drug Addiction.

    PubMed

    Márquez, Javier; Campos-Sandoval, José A; Peñalver, Ana; Matés, José M; Segura, Juan A; Blanco, Eduardo; Alonso, Francisco J; de Fonseca, Fernando Rodríguez

    2017-03-01

    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.

  17. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood–brain barrier integrity?

    PubMed Central

    2014-01-01

    Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM. PMID:24467887

  18. Endocranial Morphology of the Extinct North American Lion (Panthera atrox).

    PubMed

    Cuff, Andrew R; Stockey, Christopher; Goswami, Anjali

    2016-01-01

    The extinct North American lion (Panthera atrox) is one of the largest felids (Mammalia, Carnivora) to have ever lived, and it is known from a plethora of incredibly well-preserved remains. Despite this abundance of material, there has been little research into its endocranial anatomy. CT scans of a skull of P. atrox from the Pleistocene La Brea Tar pits were used to generate the first virtual endocranium for this species and to elucidate previously unknown details of its brain size and gross structure, cranial nerves, and inner-ear morphology. Results show that its gross brain anatomy is broadly similar to that of other pantherines, although P. atrox displays less cephalic flexure than either extant lions or tigers, instead showing a brain shape that is reminiscent of earlier felids. Despite this unusual reduction in flexure, the estimated absolute brain size for this specimen is one of the largest reported for any felid, living or extinct. Its encephalization quotient (brain size as a fraction of the expected brain mass for a given body mass) is also larger than that of extant lions but similar to that of the other pantherines. The advent of CT scans has allowed nondestructive sampling of anatomy that cannot otherwise be studied in these extinct lions, leading to a more accurate reconstruction of endocranial morphology and its evolution. © 2017 S. Karger AG, Basel.

  19. Sex Differences in Brain Thyroid Hormone Levels during Early Post-Hatching Development in Zebra Finch (Taeniopygia guttata).

    PubMed

    Yamaguchi, Shinji; Hayase, Shin; Aoki, Naoya; Takehara, Akihiko; Ishigohoka, Jun; Matsushima, Toshiya; Wada, Kazuhiro; Homma, Koichi J

    2017-01-01

    Thyroid hormones are closely linked to the hatching process in precocial birds. Previously, we showed that thyroid hormones in brain had a strong impact on filial imprinting, an early learning behavior in newly hatched chicks; brain 3,5,3'-triiodothyronine (T3) peaks around hatching and imprinting training induces additional T3 release, thus, extending the sensitive period for imprinting and enabling subsequent other learning. On the other hand, blood thyroid hormone levels have been reported to increase gradually after hatching in altricial species, but it remains unknown how the brain thyroid hormone levels change during post-hatching development of altricial birds. Here, we determined the changes in serum and brain thyroid hormone levels of a passerine songbird species, the zebra finch using radioimmunoassay. In the serum, we found a gradual increase in thyroid hormone levels during post-hatching development, as well as differences between male and female finches. In the brain, there was clear surge in the hormone levels during development in males and females coinciding with the time of fledging, but the onset of the surge of thyroxine (T4) in males preceded that of females, whereas the onset of the surge of T3 in males succeeded that of females. These findings provide a basis for understanding the functions of thyroid hormones during early development and learning in altricial birds.

  20. Developmental Changes in Topological Asymmetry Between Hemispheric Brain White Matter Networks from Adolescence to Young Adulthood.

    PubMed

    Zhong, Suyu; He, Yong; Shu, Hua; Gong, Gaolang

    2017-04-01

    Human brain asymmetries have been well described. Intriguingly, a number of asymmetries in brain phenotypes have been shown to change throughout the lifespan. Recent studies have revealed topological asymmetries between hemispheric white matter networks in the human brain. However, it remains unknown whether and how these topological asymmetries evolve from adolescence to young adulthood, a critical period that constitutes the second peak of human brain and cognitive development. To address this question, the present study included a large cohort of healthy adolescents and young adults. Diffusion and structural magnetic resonance imaging were acquired to construct hemispheric white matter networks, and graph-theory was applied to quantify topological parameters of the hemispheric networks. In both adolescents and young adults, rightward asymmetry in both global and local network efficiencies was consistently observed between the 2 hemispheres, but the degree of the asymmetry was significantly decreased in young adults. At the nodal level, the young adults exhibited less rightward asymmetry of nodal efficiency mainly around the parasylvian area, posterior tempo-parietal cortex, and fusiform gyrus. These developmental patterns of network asymmetry provide novel insight into the human brain structural development from adolescence to young adulthood and also likely relate to the maturation of language and social cognition that takes place during this period. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases

    PubMed Central

    Fox, Michael D.; Buckner, Randy L.; Liu, Hesheng; Chakravarty, M. Mallar; Lozano, Andres M.; Pascual-Leone, Alvaro

    2014-01-01

    Brain stimulation, a therapy increasingly used for neurological and psychiatric disease, traditionally is divided into invasive approaches, such as deep brain stimulation (DBS), and noninvasive approaches, such as transcranial magnetic stimulation. The relationship between these approaches is unknown, therapeutic mechanisms remain unclear, and the ideal stimulation site for a given technique is often ambiguous, limiting optimization of the stimulation and its application in further disorders. In this article, we identify diseases treated with both types of stimulation, list the stimulation sites thought to be most effective in each disease, and test the hypothesis that these sites are different nodes within the same brain network as defined by resting-state functional-connectivity MRI. Sites where DBS was effective were functionally connected to sites where noninvasive brain stimulation was effective across diseases including depression, Parkinson's disease, obsessive-compulsive disorder, essential tremor, addiction, pain, minimally conscious states, and Alzheimer’s disease. A lack of functional connectivity identified sites where stimulation was ineffective, and the sign of the correlation related to whether excitatory or inhibitory noninvasive stimulation was found clinically effective. These results suggest that resting-state functional connectivity may be useful for translating therapy between stimulation modalities, optimizing treatment, and identifying new stimulation targets. More broadly, this work supports a network perspective toward understanding and treating neuropsychiatric disease, highlighting the therapeutic potential of targeted brain network modulation. PMID:25267639

  2. Lysosomal Storage of Subunit c of Mitochondrial ATP Synthase in Brain-Specific Atp13a2-Deficient Mice.

    PubMed

    Sato, Shigeto; Koike, Masato; Funayama, Manabu; Ezaki, Junji; Fukuda, Takahiro; Ueno, Takashi; Uchiyama, Yasuo; Hattori, Nobutaka

    2016-12-01

    Kufor-Rakeb syndrome (KRS) is an autosomal recessive form of early-onset parkinsonism linked to the PARK9 locus. The causative gene for KRS is Atp13a2, which encodes a lysosomal type 5 P-type ATPase. We recently showed that KRS/PARK9-linked mutations lead to several lysosomal alterations, including reduced proteolytic processing of cathepsin D in vitro. However, it remains unknown how deficiency of Atp13a2 is connected to lysosomal impairments. To address this issue, we analyzed brain tissues of Atp13a2 conditional-knockout mice, which exhibited characteristic features of neuronal ceroid lipofuscinosis, including accumulation of lipofuscin positive for subunit c of mitochondrial ATP synthase, suggesting that a common pathogenic mechanism underlies both neuronal ceroid lipofuscinosis and Parkinson disease. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Cadherin genes and evolutionary novelties in the octopus.

    PubMed

    Wang, Z Yan; Ragsdale, Clifton W

    2017-09-01

    All animals with large brains must have molecular mechanisms to regulate neuronal process outgrowth and prevent neurite self-entanglement. In vertebrates, two major gene families implicated in these mechanisms are the clustered protocadherins and the atypical cadherins. However, the molecular mechanisms utilized in complex invertebrate brains, such as those of the cephalopods, remain largely unknown. Recently, we identified protocadherins and atypical cadherins in the octopus. The octopus protocadherin expansion shares features with the mammalian clustered protocadherins, including enrichment in neural tissues, clustered head-to-tail orientations in the genome, and a large first exon encoding all cadherin domains. Other octopus cadherins, including a newly-identified cadherin with 77 extracellular cadherin domains, are elevated in the suckers, a striking cephalopod novelty. Future study of these octopus genes may yield insights into the general functions of protocadherins in neural wiring and cadherin-related proteins in complex morphogenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Neurobiologically based interventions for autism spectrum disorders-rationale and new directions.

    PubMed

    Poustka, Luise; Brandeis, Daniel; Hohmann, Sarah; Holtmann, Martin; Bölte, Sven; Banaschewski, Tobias

    2014-01-01

    Autism spectrum disorders (ASD) are heterogeneous, neurodevelopmental disorders with early onset, characterized by a triad of impairments in reciprocal interaction and communication as well as repetitive and restricted interests and activities. Though underlying causes still remain largely unknown, there is now evidence for abnormal growth trajectories in the early brain development in ASD during vulnerable periods and subsequent impairment of neuronal organization and differentiation of neuronal networks. A growing number of studies over the last 10 years support the efficacy of behaviorally based interventions in ASD for the improvement of social communication and behavioral functioning. In contrast, research on neurobiologically based therapies for ASD is still at its beginnings. In this article, we will provide a selective overview of novel interventions and trainings based on neurobiological principles. Directions and options for future research on treatment aiming at restoration of normal plasticity in disrupted brain circuits in ASD are discussed.

  5. Shared neural coding for social hierarchy and reward value in primate amygdala.

    PubMed

    Munuera, Jérôme; Rigotti, Mattia; Salzman, C Daniel

    2018-03-01

    The social brain hypothesis posits that dedicated neural systems process social information. In support of this, neurophysiological data have shown that some brain regions are specialized for representing faces. It remains unknown, however, whether distinct anatomical substrates also represent more complex social variables, such as the hierarchical rank of individuals within a social group. Here we show that the primate amygdala encodes the hierarchical rank of individuals in the same neuronal ensembles that encode the rewards associated with nonsocial stimuli. By contrast, orbitofrontal and anterior cingulate cortices lack strong representations of hierarchical rank while still representing reward values. These results challenge the conventional view that dedicated neural systems process social information. Instead, information about hierarchical rank-which contributes to the assessment of the social value of individuals within a group-is linked in the amygdala to representations of rewards associated with nonsocial stimuli.

  6. Dynamic functional connectivity using state-based dynamic community structure: method and application to opioid analgesia.

    PubMed

    Robinson, Lucy F; Atlas, Lauren Y; Wager, Tor D

    2015-03-01

    We present a new method, State-based Dynamic Community Structure, that detects time-dependent community structure in networks of brain regions. Most analyses of functional connectivity assume that network behavior is static in time, or differs between task conditions with known timing. Our goal is to determine whether brain network topology remains stationary over time, or if changes in network organization occur at unknown time points. Changes in network organization may be related to shifts in neurological state, such as those associated with learning, drug uptake or experimental conditions. Using a hidden Markov stochastic blockmodel, we define a time-dependent community structure. We apply this approach to data from a functional magnetic resonance imaging experiment examining how contextual factors influence drug-induced analgesia. Results reveal that networks involved in pain, working memory, and emotion show distinct profiles of time-varying connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Chronic neuropathologies of single and repetitive TBI: substrates of dementia?

    PubMed Central

    Smith, Douglas H.; Johnson, Victoria E.; Stewart, William

    2014-01-01

    Traumatic brain injury (TBI) has long been recognized to be a risk factor for dementia. This association has, however, only recently gained widespread attention through the increased awareness of ‘chronic traumatic encephalopathy’ (CTE) in athletes exposed to repetitive head injury. Originally termed ‘dementia pugilistica’ and linked to a career in boxing, descriptions of the neuropathological features of CTE include brain atrophy, cavum septum pellucidum, and amyloid-β, tau and TDP-43 pathologies, many of which might contribute to clinical syndromes of cognitive impairment. Similar chronic pathologies are also commonly found years after just a single moderate to severe TBI. However, little consensus currently exists on specific features of these post-TBI syndromes that might permit their confident clinical and/or pathological diagnosis. Moreover, the mechanisms contributing to neurodegeneration following TBI largely remain unknown. Here, we review the current literature and controversies in the study of chronic neuropathological changes after TBI. PMID:23458973

  8. Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinus carpio.

    PubMed

    Galar-Martínez, M; García-Medina, S; Gómez-Olivan, L M; Pérez-Coyotl, I; Mendoza-Monroy, D J; Arrazola-Morgain, R E

    2016-09-01

    The nonsteroidal anti-inflammatory drug ketorolac is extensively used in the treatment of acute postoperative pain. This pharmaceutical has been found at concentrations of 0.2-60 µg/L in diverse water bodies around the world; however, its effects on aquatic organisms remain unknown. The present study, evaluated the oxidative stress and genotoxicity induced by sublethal concentrations of ketorolac (1 and 60 µg/L) on liver, brain, and blood of the common carp Cyprinus carpio. This toxicant induced oxidative damage (increased lipid peroxidation, hydroperoxide content, and protein carbonyl content) as well as changes in antioxidant status (superoxide dismutase, catalase, and glutathione peroxidase activity) in liver and brain of carp. In blood, ketorolac increased the frequency of micronuclei and is therefore genotoxic for the test species. The effects observed were time and concentration dependent. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1035-1043, 2016. © 2015 Wiley Periodicals, Inc.

  9. Brain Information Sharing During Visual Short-Term Memory Binding Yields a Memory Biomarker for Familial Alzheimer's Disease.

    PubMed

    Parra, Mario A; Mikulan, Ezequiel; Trujillo, Natalia; Sala, Sergio Della; Lopera, Francisco; Manes, Facundo; Starr, John; Ibanez, Agustin

    2017-01-01

    Alzheimer's disease (AD) as a disconnection syndrome which disrupts both brain information sharing and memory binding functions. The extent to which these two phenotypic expressions share pathophysiological mechanisms remains unknown. To unveil the electrophysiological correlates of integrative memory impairments in AD towards new memory biomarkers for its prodromal stages. Patients with 100% risk of familial AD (FAD) and healthy controls underwent assessment with the Visual Short-Term Memory binding test (VSTMBT) while we recorded their EEG. We applied a novel brain connectivity method (Weighted Symbolic Mutual Information) to EEG data. Patients showed significant deficits during the VSTMBT. A reduction of brain connectivity was observed during resting as well as during correct VSTM binding, particularly over frontal and posterior regions. An increase of connectivity was found during VSTM binding performance over central regions. While decreased connectivity was found in cases in more advanced stages of FAD, increased brain connectivity appeared in cases in earlier stages. Such altered patterns of task-related connectivity were found in 89% of the assessed patients. VSTM binding in the prodromal stages of FAD are associated to altered patterns of brain connectivity thus confirming the link between integrative memory deficits and impaired brain information sharing in prodromal FAD. While significant loss of brain connectivity seems to be a feature of the advanced stages of FAD increased brain connectivity characterizes its earlier stages. These findings are discussed in the light of recent proposals about the earliest pathophysiological mechanisms of AD and their clinical expression. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Brain Perfusion and Arterial Blood Flow Velocity During Prolonged Body Tilting.

    PubMed

    Montero, David; Rauber, Sven

    2016-08-01

    It remains unknown whether brain perfusion is preserved and mirrored by middle cerebral blood flow velocity (MCA BFV) during prolonged changes in body posture. Herein, we examined the impact of sustained (180 min) 30° head-up (HUT) and head-down (HDT) tilt on brain perfusion, as determined by MCA BFV and blood flow in the extracranial arteries. In 10 healthy male subjects, arterial diameters, BFVs, and blood flows were determined in the left internal carotid (ICA) and vertebral (VA) arteries using duplex Doppler ultrasound in supine rest, and 5, 20, 60, 120, and 180 min following 30° HUT and HDT. MCA BFV was recorded throughout with transcranial Doppler ultrasound. ICA as well as VA diameters and blood flows were unaltered during HUT. Likewise, brain blood flow and MCA BFV were preserved with HUT. In the HDT protocol, ICA and VA diameters were gradually increased, although ICA, VA, and brain blood flows were preserved. MCA BFV was progressively reduced during HDT. In addition, MCA BFV was positively associated with ICA BFV (β = 0.9) and negatively associated with ICA diameter (β = -125.5). MCA BFV was positively associated with brain blood flow during HUT (β = 0.2) but not HDT. Brain perfusion is preserved whereas MCA BFV is progressively decreased and associated with extracranial arterial BFV during sustained 30° HDT. Therefore, MCA BFV may not be a surrogate of brain perfusion in conditions including prolonged HDT. Montero D, Rauber S. Brain perfusion and arterial blood flow velocity during prolonged body tilting. Aerosp Med Hum Perform. 2016; 87(8):682-687.

  11. Consumption of Alcopops During Brain Maturation Period: Higher Impact of Fructose Than Ethanol on Brain Metabolism.

    PubMed

    El Hamrani, Dounia; Gin, Henri; Gallis, Jean-Louis; Bouzier-Sore, Anne-Karine; Beauvieux, Marie-Christine

    2018-01-01

    Alcopops are flavored alcoholic beverages sweetened by sodas, known to contain fructose. These drinks have the goal of democratizing alcohol among young consumers (12-17 years old) and in the past few years have been considered as fashionable amongst teenagers. Adolescence, however, is a key period for brain maturation, occurring in the prefrontal cortex and limbic system until 21 years old. Therefore, this drinking behavior has become a public health concern. Despite the extensive literature concerning the respective impacts of either fructose or ethanol on brain, the effects following joint consumption of these substrates remains unknown. Our objective was to study the early brain modifications induced by a combined diet of high fructose (20%) and moderate amount of alcohol in young rats by 13 C Nuclear Magnetic Resonance (NMR) spectroscopy. Wistar rats had isocaloric pair-fed diets containing fructose (HF, 20%), ethanol (Et, 0.5 g/day/kg) or both substrates at the same time (HFEt). After 6 weeks of diet, the rats were infused with 13 C-glucose and brain perchloric acid extracts were analyzed by NMR spectroscopy ( 1 H and 13 C). Surprisingly, the most important modifications of brain metabolism were observed under fructose diet. Alterations, observed after only 6 weeks of diet, show that the brain is vulnerable at the metabolic level to fructose consumption during late-adolescence throughout adulthood in rats. The main result was an increase in oxidative metabolism compared to glycolysis, which may impact lactate levels in the brain and may, at least partially, explain memory impairment in teenagers consuming alcopops.

  12. Brain Structure and Function Associated with Younger Adults in Growth Hormone Receptor-Deficient Humans

    PubMed Central

    Nashiro, Kaoru; Braskie, Meredith N.; Velasco, Rico; Balasubramanian, Priya; Wei, Min; Thompson, Paul M.; Nelson, Marvin D.; Guevara, Alexandra

    2017-01-01

    Growth hormone receptor deficiency (GHRD) results in short stature, enhanced insulin sensitivity, and low circulating levels of insulin and insulin-like growth factor 1 (IGF-1). Previous studies in mice and humans suggested that GHRD has protective effects against age-related diseases, including cancer and diabetes. Whereas GHRD mice show improved age-dependent cognitive performance, the effect of GHRD on human cognition remains unknown. Using MRI, we compared brain structure, function, and connectivity between 13 people with GHRD and 12 unaffected relatives. We assessed differences in white matter microstructural integrity, hippocampal volume, subregional volumes, and cortical thickness and surface area of selected regions. We also evaluated brain activity at rest and during a hippocampal-dependent pattern separation task. The GHRD group had larger surface areas in several frontal and cingulate regions and showed trends toward larger dentate gyrus and CA1 regions of the hippocampus. They had lower mean diffusivity in the genu of the corpus callosum and the anterior thalamic tracts. The GHRD group showed enhanced cognitive performance and greater task-related activation in frontal, parietal, and hippocampal regions compared with controls. Furthermore, they had greater functional synchronicity of activity between the precuneus and the rest of the default mode network at rest. The results suggest that, compared with controls, GHRD subjects have brain structure and function that are more consistent with those observed in younger adults reported in previous studies. Further investigation may lead to improved understanding of underlying mechanisms and could contribute to the identification of treatments for age-related cognitive deficits. SIGNIFICANCE STATEMENT People and mice with growth hormone receptor deficiency (GHRD or Laron syndrome) are protected against age-related diseases including cancer and diabetes. However, in humans, it is unknown whether cognitive function and brain structure are affected by GHRD. Using MRI, we examined cognition in an Ecuadorian population with GHRD and their unaffected relatives. The GHRD group showed better memory performance than their relatives. The differences in brain structure and function that we saw between the two groups were not consistent with variations typically associated with brain deficits. This study contributes to our understanding of the connection between growth genes and brain aging in humans and provides data indicating that GHR inhibition has the potential to protect against age-dependent cognitive decline. PMID:28073935

  13. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer.

    PubMed

    Lockman, Paul R; Mittapalli, Rajendar K; Taskar, Kunal S; Rudraraju, Vinay; Gril, Brunilde; Bohn, Kaci A; Adkins, Chris E; Roberts, Amanda; Thorsheim, Helen R; Gaasch, Julie A; Huang, Suyun; Palmieri, Diane; Steeg, Patricia S; Smith, Quentin R

    2010-12-01

    Brain metastases of breast cancer appear to be increasing in incidence, confer significant morbidity, and threaten to compromise gains made in systemic chemotherapy. The blood-tumor barrier (BTB) is compromised in many brain metastases; however, the extent to which this influences chemotherapeutic delivery and efficacy is unknown. Herein, we answer this question by measuring BTB passive integrity, chemotherapeutic drug uptake, and anticancer efficacy in vivo in two breast cancer models that metastasize preferentially to brain. Experimental brain metastasis drug uptake and BTB permeability were simultaneously measured using novel fluorescent and phosphorescent imaging techniques in immune-compromised mice. Drug-induced apoptosis and vascular characteristics were assessed using immunofluorescent microscopy. Analysis of over 2,000 brain metastases from two models (human 231-BR-Her2 and murine 4T1-BR5) showed partial BTB permeability compromise in greater than 89% of lesions, varying in magnitude within and between metastases. Brain metastasis uptake of ¹⁴C-paclitaxel and ¹⁴C-doxorubicin was generally greater than normal brain but less than 15% of that of other tissues or peripheral metastases, and only reached cytotoxic concentrations in a small subset (∼10%) of the most permeable metastases. Neither drug significantly decreased the experimental brain metastatic ability of 231-BR-Her2 tumor cells. BTB permeability was associated with vascular remodeling and correlated with overexpression of the pericyte protein desmin. This work shows that the BTB remains a significant impediment to standard chemotherapeutic delivery and efficacy in experimental brain metastases of breast cancer. New brain permeable drugs will be needed. Evidence is presented for vascular remodeling in BTB permeability alterations. ©2010 AACR.

  14. Heterogeneous Blood-Tumor Barrier Permeability Determines Drug Efficacy in Experimental Brain Metastases of Breast Cancer

    PubMed Central

    Lockman, Paul R.; Mittapalli, Rajendar K.; Taskar, Kunal S.; Rudraraju, Vinay; Gril, Brunilde; Bohn, Kaci A.; Adkins, Chris E.; Roberts, Amanda; Thorsheim, Helen R.; Gaasch, Julie A.; Huang, Suyun; Palmieri, Diane; Steeg, Patricia S.; Smith, Quentin R.

    2010-01-01

    Purpose Brain metastases of breast cancer appear to be increasing in incidence, confer significant morbidity, and threaten to compromise gains made in systemic chemotherapy. The blood-tumor barrier (BTB) is compromised in many brain metastases, however, the extent to which this influences chemotherapeutic delivery and efficacy is unknown. Herein, we answer this question by measuring BTB passive integrity, chemotherapeutic drug uptake, and anticancer efficacy in vivo in two breast cancer models that metastasize preferentially to brain. Experimental Design Experimental brain metastasis drug uptake and BTB permeability were simultaneously measured using novel fluorescent and phosphorescent imaging techniques in immune compromised mice. Drug-induced apoptosis and vascular characteristics were assessed using immunofluorescent microscopy. Results Analysis of >2000 brain metastases from two models (human 231-BR-Her2 and murine 4T1-BR5) demonstrated partial BTB permeability compromise in >89% lesions, varying in magnitude within and between metastases. Brain metastasis uptake of 14C- paclitaxel and 14C- doxorubicin was generally greater than normal brain but <15% of that of other tissues or peripheral metastases, and only reached cytotoxic concentrations in a small subset (~10%) of the most permeable metastases. Neither drug significantly decreased the experimental brain metastatic ability of 231-BR-Her2 tumor cells. BTB permeability was associated with vascular remodeling and correlated with over expression of the pericyte protein, desmin. Conclusions This work demonstrates that the BTB remains a significant impediment to standard chemotherapeutic delivery and efficacy in experimental brain metastases of breast cancer. New brain permeable drugs will be needed. Evidence is presented for vascular remodeling in BTB permeability alterations. PMID:20829328

  15. Transcriptomic analyses of tributyltin-induced sexual dimorphisms in rare minnow (Gobiocypris rarus) brains.

    PubMed

    Zhang, Ji-Liang; Liu, Min; Zhang, Chun-Nuan; Li, Er-Chao; Fan, Ming-Zhen; Huang, Mao-Xian

    2018-07-30

    The brain of fish displays sexual dimorphisms and exhibits remarkable sexual plasticity throughout their life span. Although reproductive toxicity of tributyltin (TBT) in fish is well documented in fish, it remains unknown whether TBT interrupts sexual dimorphisms of fish brains. In this work, brain transcriptomic profiles of rare minnow (Gobiocypris rarus) was characterized and sex-biased genes were identified using RNA sequencing. Functional annotation and enrichment analysis were performed to reveal differences of gene products and pathways between the brains of male and female fish. Furthermore, transcriptomic responses of male and female brains to TBT at 10 ng/L were also investigated to understand effects of TBT on brain sexual dimorphisms. Only 345 male-biased and 273 female-biased genes were found in the brains. However, significant female-biased pathways of circadian rhythm and phototransduction were identified in the brains by enrichment analysis. Interestingly, following TBT exposure in the female fish, the circadian rhythm pathway was significantly disrupted based on enrichment analysis, while in the male fish, the phototransduction pathway was significantly disrupted. In the female fish, expression of genes (Per, Cry, Rev-Erb α, Ror, Dec and CK1δ/ε) in the circadian rhythm pathway was down-regulated after TBT exposure; while in the male fish, expression of genes (Rec, GNAT1_2, GNGT1, Rh/opsin, PDE and Arr) in the phototransduction pathway was up-regulated after TBT exposure. Overall, our results not only provide key data on the molecular basis of brain sexual dimorphisms in fish, but also offer valuable resources for investigating molecular mechanisms by which environmental chemicals might influence brain sexual plasticity. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology and impairs cognition in adult mice

    PubMed Central

    Jurgens, Heidi A.; Amancherla, Kaushik; Johnson, Rodney W.

    2012-01-01

    Influenza is a common and highly contagious viral pathogen yet its effects on the structure and function of the central nervous system remain largely unknown. Although there is evidence that influenza strains that infect the brain can lead to altered cognitive and emotional behaviors, it is unknown if a viral strain that is not neurotropic (A/PR/8/34) can result in a central inflammatory response, neuronal damage and neurobehavioral effects. We hypothesized that neuroinflammation and alterations in hippocampal neuron morphology may parallel cognitive dysfunction following peripheral infection with live influenza virus. Here we show that influenza-infected mice exhibited cognitive deficits in a reversal learning version of the Morris water maze. At the same timepoint in which cognitive impairment was evident, proinflammatory cytokines (IL-1β, IL-6, TNF-α, IFN-α) and microglial reactivity were increased, while neurotrophic (BDNF, NGF) and immunomodulatory (CD200, CX3CL1) factors were decreased in the hippocampus of infected mice. In addition, influenza induced architectural changes to hippocampal neurons in the CA1 and dentate gyrus, with the most profound effects on dentate granule cells in the innermost portion of the granule cell layer. Overall these data provide the first evidence that neuroinflammation and changes in hippocampal structural plasticity may underlie cognitive dysfunction associated with influenza infection. In addition, the heightened inflammatory state concurrent with reduced neurotrophic support could leave the brain vulnerable to subsequent insult following influenza infection. A better understanding of how influenza impacts the brain and behavior may provide insight for preventing inflammation and neuronal damage during peripheral viral infection. PMID:22442063

  17. Brain functional network abnormality extends beyond the sensorimotor network in brachial plexus injury patients.

    PubMed

    Feng, Jun-Tao; Liu, Han-Qiu; Hua, Xu-Yun; Gu, Yu-Dong; Xu, Jian-Guang; Xu, Wen-Dong

    2016-12-01

    Brachial plexus injury (BPI) is a type of severe peripheral nerve trauma that leads to central remodeling in the brain, as revealed by functional MRI analysis. However, previously reported remodeling is mostly restricted to sensorimotor areas of the brain. Whether this disturbance in the sensorimotor network leads to larger-scale functional remodeling remains unknown. We sought to explore the higher-level brain functional abnormality pattern of BPI patients from a large-scale network function connectivity dimension in 15 right-handed BPI patients. Resting-state functional MRI data were collected and analyzed using independent component analysis methods. Five components of interest were recognized and compared between patients and healthy subjects. Patients showed significantly altered brain local functional activities in the bilateral fronto-parietal network (FPN), sensorimotor network (SMN), and executive-control network (ECN) compared with healthy subjects. Moreover, functional connectivity between SMN and ECN were significantly less in patients compared with healthy subjects, and connectivity strength between ECN and SMN was negatively correlated with patients' residual function of the affected limb. Functional connectivity between SMN and right FPN were also significantly less than in controls, although connectivity between ECN and default mode network (DMN) was greater than in controls. These data suggested that brain functional disturbance in BPI patients extends beyond the sensorimotor network and cascades serial remodeling in the brain, which significantly correlates with residual hand function of the paralyzed limb. Furthermore, functional remodeling in these higher-level functional networks may lead to cognitive alterations in complex tasks.

  18. Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study

    PubMed Central

    Sun, D; Stuart, GW; Jenkinson, M; Wood, SJ; McGorry, PD; Velakoulis, D; van Erp, TGM; Thompson, PM; Toga, AW; Smith, DJ; Cannon, TD; Pantelis, C

    2009-01-01

    Schizophrenia is associated with structural brain abnormalities, but the timing of onset and course of these changes remains unclear. Longitudinal magnetic resonance imaging (MRI) studies have demonstrated progressive brain volume decreases in patients around and after the onset of illness, although considerable discrepancies exist regarding which brain regions are affected. The anatomical pattern of these progressive changes in schizophrenia is largely unknown. In this study, MRI scans were acquired repeatedly from 16 schizophrenia patients approximately 2 years apart following their first episode of illness, and also from 14 age-matched healthy subjects. Cortical Pattern Matching, in combination with Structural Image Evaluation, using Normalisation, of Atrophy, was applied to compare the rates of cortical surface contraction between patients and controls. Surface contraction in the dorsal surfaces of the frontal lobe was significantly greater in patients with first-episode schizophrenia (FESZ) compared with healthy controls. Overall, brain surface contraction in patients and healthy controls showed similar anatomical patterns, with that of the former group exaggerated in magnitude across the entire brain surface. That the pattern of structural change in the early course of schizophrenia corresponds so closely to that associated with normal development is consistent with the hypothesis that a schizophrenia-related factor interacts with normal adolescent brain developmental processes in the pathophysiology of schizophrenia. The exaggerated progressive changes seen in patients with schizophrenia may reflect an increased rate of synaptic pruning, resulting in excessive loss of neuronal connectivity, as predicted by the late neurodevelopmental hypothesis of the illness. PMID:18607377

  19. Pyogenic brain abscess, a 15 year survey

    PubMed Central

    2012-01-01

    Background Brain abscess is a potentially fatal disease. This study assesses clinical aspects of brain abscess in a large hospital cohort. Methods Retrospective review of adult patients with pyogenic brain abscess at Rigshospitalet University Hospital, Denmark between 1994 and 2009. Prognostic factors associated with Glasgow Outcome Score (GOS) (death, severe disability or vegetative state) were assessed by logistic regression. Results 102 patients were included. On admission, only 20% of patients had a triad of fever, headache and nausea, 39% had no fever, 26% had normal CRP and 49% had no leucocytosis. Median delay from symptom onset to antibiotic treatment was 7 days (range 0–97 days). Source of infection was contiguous in 36%, haematogenous in 28%, surgical or traumatic in 9% and unknown in 27% of cases. Abscess location did not accurately predict the portal of entry. 67% were treated by burr hole aspiration, 20% by craniotomy and 13% by antibiotics alone. Median duration of antibiotic treatment was 62 days. No cases of recurrent abscess were observed. At discharge 23% had GOS ≤3. The 1-, 3- and 12-month mortality was 11%, 17% and 19%. Adverse outcome was associated with a low GCS at admission, presence of comorbidities and intraventricular rupture of abscess. Conclusions The clinical signs of brain abscess are unspecific, many patients presented without clear signs of infection and diagnosis and treatment were often delayed. Decreased GCS, presence of comorbidities and intraventricular rupture of brain abscess were associated with poor outcome. Brain abscess remains associated with considerable morbidity and mortality. PMID:23193986

  20. NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes

    PubMed Central

    2012-01-01

    Background Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Moreover, bradykinin (BK) induces the expression of several inflammatory proteins in brain astrocytes. Recent studies have suggested that increased oxidative stress is implicated in the brain inflammation and injury. However, whether BK induced MMP-9 expression mediated through oxidative stress remains virtually unknown. Herein we investigated the role of redox signals in BK-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells). Results In the study, we first demonstrated that reactive oxygen species (ROS) plays a crucial role in BK-induced MMP-9 expression in cultured brain astrocytes (in vitro) and animal brain tissue (in vivo) models. Next, BK-induced MMP-9 expression is mediated through a Ca2+-mediated PKC-α linking to p47phox/NADPH oxidase 2 (Nox2)/ROS signaling pathway. Nox2-dependent ROS generation led to activation and up-regulation of the downstream transcriptional factor AP-1 (i.e. c-Fos and c-Jun), which bound to MMP-9 promoter region, and thereby turned on transcription of MMP-9 gene. Functionally, BK-induced MMP-9 expression enhanced astrocytic migration. Conclusions These results demonstrated that in RBA-1 cells, activation of AP-1 (c-Fos/c-Jun) by the PKC-α-mediated Nox2/ROS signals is essential for up-regulation of MMP-9 and cell migration enhanced by BK. PMID:23176293

  1. Where are we now? And where are we going? A report from the Accelerate Brain Cancer Cure (ABC2) Low-grade Glioma Research Workshop

    PubMed Central

    Huse, Jason T.; Wallace, Max; Aldape, Kenneth D.; Berger, Mitchel S.; Bettegowda, Chetan; Brat, Daniel J.; Cahill, Daniel P.; Cloughesy, Timothy; Haas-Kogan, Daphne A.; Marra, Marco; Miller, C. Ryan; Nelson, Sarah J.; Salama, Sofie R.; Soffietti, Riccardo; Wen, Patrick Y.; Yip, Stephen; Yen, Katharine; Costello, Joseph F.; Chang, Susan

    2014-01-01

    Diffuse gliomas consist of both low- and high-grade varieties, each with distinct morphological and biological features. The often extended periods of relative indolence exhibited by low-grade gliomas (LGG; WHO grade II) differ sharply from the aggressive, rapidly fatal clinical course of primary glioblastoma (GBM; WHO grade IV). Nevertheless, until recently, the molecular foundations underlying this stark biological contrast between glioma variants remained largely unknown. The discoveries of distinctive and highly recurrent genomic and epigenomic abnormalities in LGG have both informed a more accurate classification scheme and pointed to viable avenues for therapeutic development. As such, the field of neuro-oncology now seems poised to capitalize on these gains to achieve significant benefit for LGG patients. This report will briefly recount the proceedings of a workshop held in January 2013 and hosted by Accelerate Brain Cancer Cure (ABC2) on the subject of LGG. While much of the meeting covered recent insights into LGG biology, its focus remained on how best to advance the clinical management, whether by improved preclinical modeling, more effective targeted therapeutics and clinical trial design, or innovative imaging technology. PMID:24305708

  2. Choosing Money over Drugs: The Neural Underpinnings of Difficult Choice in Chronic Cocaine Users.

    PubMed

    Wesley, Michael J; Lohrenz, Terry; Koffarnus, Mikhail N; McClure, Samuel M; De La Garza, Richard; Salas, Ramiro; Thompson-Lake, Daisy G Y; Newton, Thomas F; Bickel, Warren K; Montague, P Read

    2014-01-01

    Addiction is considered a disorder that drives individuals to choose drugs at the expense of healthier alternatives. However, chronic cocaine users (CCUs) who meet addiction criteria retain the ability to choose money in the presence of the opportunity to choose cocaine. The neural mechanisms that differentiate CCUs from non-cocaine using controls (Controls) while executing these preferred choices remain unknown. Thus, therapeutic strategies aimed at shifting preferences towards healthier alternatives remain somewhat uninformed. This study used BOLD neuroimaging to examine brain activity as fifty CCUs and Controls performed single- and cross-commodity intertemporal choice tasks for money and/or cocaine. Behavioral analyses revealed preferences for each commodity type. Imaging analyses revealed the brain activity that differentiated CCUs from Controls while choosing money over cocaine. We observed that CCUs devalued future commodities more than Controls. Choices for money as opposed to cocaine correlated with greater activity in dorsal striatum of CCUs, compared to Controls. In addition, choices for future money as opposed to immediate cocaine engaged the left dorsolateral prefrontal cortex (DLPFC) of CCUs more than Controls. These data suggest that the ability of CCUs to execute choices away from cocaine relies on activity in the dorsal striatum and left DLPFC.

  3. Elimination of GRK2 from cholinergic neurons reduces behavioral sensitivity to muscarinic receptor activation.

    PubMed

    Daigle, Tanya L; Caron, Marc G

    2012-08-15

    Although G-protein-coupled receptor kinase 2 (GRK2) is the most widely studied member of a family of kinases that has been shown to exert powerful influences on a variety of G-protein-coupled receptors, its role in the brain remains largely unknown. Here we report the localization of GRK2 in the mouse brain and generate novel conditional knock-out (KO) mice to assess the physiological importance of this kinase in cholinergic neurons. Mice with the selective deletion of GRK2 in this cell population (ChAT(IRES-cre)Grk2(f/f) KO mice) exhibit reduced behavioral responsiveness to challenge with oxotremorine-M (Oxo-M), a nonselective muscarinic acetylcholine receptor agonist. Specifically, Oxo-M-induced hypothermia, hypolocomotion, and salivation were markedly reduced in these animals, while analgesic responses were unaltered. In contrast, we found that GRK2 deficiency in cholinergic neurons does not alter cocaine-induced psychomotor activation, behavioral sensitization, or conditioned place preference. These results demonstrate that the elimination of GRK2 in cholinergic neurons reduces sensitivity to select muscarinic-mediated behaviors, while dopaminergic effects remain intact and further suggests that GRK2 may selectively impair muscarinic acetylcholine receptor-mediated function in vivo.

  4. Expression profile of Lgi1 gene in mouse brain during development.

    PubMed

    Ribeiro, Patrícia A O; Sbragia, Lourenço; Gilioli, Rovilson; Langone, Francesco; Conte, Fábio F; Lopes-Cendes, Iscia

    2008-07-01

    Mutations in LGI1 were described in patients with autosomal dominant partial epilepsy with auditory features (ADPEAF), and recent clinical findings have implicated LGI1 in human brain development. However, the precise role of LGI1 in epileptogenesis remains largely unknown. The objective of this study was to determine the expression pattern of Lgi1 in mice brain during development and in adult animals. Real-time polymerase chain reaction (PCR) quantification and Western blot experiments showed a relative low expression during intrauterine stages, increasing until adulthood. In addition, we did not find significant differences between left and right hemispheres. The hippocampus presented higher levels of Lgi1 expression when compared to the neocortex and the cerebellum of adult animals; however, these results did not reach statistical significance. This study was the first to determine a specific profile of Lgi1 gene expression during central nervous system development, which suggests a possible inhibitory function in latter stages of development. In addition, we did not find differences in hemispheric expression that could explain the predominance of left-sided abnormalities in patients with ADPEAF.

  5. Brain Bases of Morphological Processing in Young Children

    PubMed Central

    Arredondo, Maria M.; Ip, Ka I; Hsu, Lucy Shih-Ju; Tardif, Twila; Kovelman, Ioulia

    2017-01-01

    How does the developing brain support the transition from spoken language to print? Two spoken language abilities form the initial base of child literacy across languages: knowledge of language sounds (phonology) and knowledge of the smallest units that carry meaning (morphology). While phonology has received much attention from the field, the brain mechanisms that support morphological competence for learning to read remain largely unknown. In the present study, young English-speaking children completed an auditory morphological awareness task behaviorally (n = 69, ages 6–12) and in fMRI (n = 16). The data revealed two findings: First, children with better morphological abilities showed greater activation in left temporo-parietal regions previously thought to be important for supporting phonological reading skills, suggesting that this region supports multiple language abilities for successful reading acquisition. Second, children showed activation in left frontal regions previously found active in young Chinese readers, suggesting morphological processes for reading acquisition might be similar across languages. These findings offer new insights for developing a comprehensive model of how spoken language abilities support children’s reading acquisition across languages. PMID:25930011

  6. Synchronized delta oscillations correlate with the resting-state functional MRI signal

    PubMed Central

    Lu, Hanbing; Zuo, Yantao; Gu, Hong; Waltz, James A.; Zhan, Wang; Scholl, Clara A.; Rea, William; Yang, Yihong; Stein, Elliot A.

    2007-01-01

    Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain. PMID:17991778

  7. The Motivational Hierarchy between the Personal Self and Close Others in the Chinese Brain: an ERP Study.

    PubMed

    Zhu, Xiangru; Wang, Lili; Yang, Suyong; Gu, Ruolei; Wu, Haiyan; Luo, Yuejia

    2016-01-01

    People base their decisions not only on their own self-interest but also on the interests of close others. Generally, the personal self has primacy in the motivational hierarchy in the Western culture. A recent study found that friends have the same motivational hierarchy as the personal self in the Eastern collectivist culture. Remaining unknown is whether the motivational hierarchy of the personal self and close others can be manifested in the collectivist brain. In the present study, we asked participants to gamble for the personal self, close others (i.e., mother, father, and close friend), and strangers. The positive-going deflection of event-related potentials (ERPs) in response to positive feedback showed the following pattern: personal self = mother = father > friend > stranger. In the loss condition, no significant beneficiary effect was observed. The present results indicate that the personal self and parents are intertwined in the motivational system in the Chinese undergraduate student brain, supporting the view that the personal self and parents have the same motivational primacy at the electrocortical level.

  8. COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans.

    PubMed

    Sannino, Sara; Gozzi, Alessandro; Cerasa, Antonio; Piras, Fabrizio; Scheggia, Diego; Managò, Francesca; Damiano, Mario; Galbusera, Alberto; Erickson, Lucy C; De Pietri Tonelli, Davide; Bifone, Angelo; Tsaftaris, Sotirios A; Caltagirone, Carlo; Weinberger, Daniel R; Spalletta, Gianfranco; Papaleo, Francesco

    2015-09-01

    Genetic variations in catechol-O-methyltransferase (COMT) that modulate cortical dopamine have been associated with pleiotropic behavioral effects in humans and mice. Recent data suggest that some of these effects may vary among sexes. However, the specific brain substrates underlying COMT sexual dimorphisms remain unknown. Here, we report that genetically driven reduction in COMT enzyme activity increased cortical thickness in the prefrontal cortex (PFC) and postero-parieto-temporal cortex of male, but not female adult mice and humans. Dichotomous changes in PFC cytoarchitecture were also observed: reduced COMT increased a measure of neuronal density in males, while reducing it in female mice. Consistent with the neuroanatomical findings, COMT-dependent sex-specific morphological brain changes were paralleled by divergent effects on PFC-dependent working memory in both mice and humans. These findings emphasize a specific sex-gene interaction that can modulate brain morphological substrates with influence on behavioral outcomes in healthy subjects and, potentially, in neuropsychiatric populations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Examining gray matter structure associated with academic performance in a large sample of Chinese high school students.

    PubMed

    Wang, Song; Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Wang, Meiyun; Gong, Qiyong

    2017-04-18

    Achievement in school is crucial for students to be able to pursue successful careers and lead happy lives in the future. Although many psychological attributes have been found to be associated with academic performance, the neural substrates of academic performance remain largely unknown. Here, we investigated the relationship between brain structure and academic performance in a large sample of high school students via structural magnetic resonance imaging (S-MRI) using voxel-based morphometry (VBM) approach. The whole-brain regression analyses showed that higher academic performance was related to greater regional gray matter density (rGMD) of the left dorsolateral prefrontal cortex (DLPFC), which is considered a neural center at the intersection of cognitive and non-cognitive functions. Furthermore, mediation analyses suggested that general intelligence partially mediated the impact of the left DLPFC density on academic performance. These results persisted even after adjusting for the effect of family socioeconomic status (SES). In short, our findings reveal a potential neuroanatomical marker for academic performance and highlight the role of general intelligence in explaining the relationship between brain structure and academic performance.

  10. Graded Encoding of Food Odor Value in the Drosophila Brain

    PubMed Central

    Beshel, Jennifer

    2013-01-01

    Odors are highly evocative, yet how and where in the brain odors derive meaning remains unknown. Our analysis of the Drosophila brain extends the role of a small number of hunger-sensing neurons to include food-odor value representation. In vivo two-photon calcium imaging shows the amplitude of food odor-evoked activity in neurons expressing Drosophila neuropeptide F (dNPF), the neuropeptide Y homolog, strongly correlates with food-odor attractiveness. Hunger elevates neural and behavioral responses to food odors only, although food odors that elicit attraction in the fed state also evoke heightened dNPF activity in fed flies. Inactivation of a subset of dNPF-expressing neurons or silencing dNPF receptors abolishes food-odor attractiveness, whereas genetically enhanced dNPF activity not only increases food-odor attractiveness but promotes attraction to aversive odors. Varying the amount of presented odor produces matching graded neural and behavioral curves, which can function to predict preference between odors. We thus demonstrate a possible motivationally scaled neural “value signal” accessible from uniquely identifiable cells. PMID:24089477

  11. Genetically increased cell-intrinsic excitability enhances neuronal integration into adult brain circuits

    PubMed Central

    Lin, Chia-Wei; Sim, Shuyin; Ainsworth, Alice; Okada, Masayoshi; Kelsch, Wolfgang; Lois, Carlos

    2009-01-01

    New neurons are added to the adult brain throughout life, but only half ultimately integrate into existing circuits. Sensory experience is an important regulator of the selection of new neurons but it remains unknown whether experience provides specific patterns of synaptic input, or simply a minimum level of overall membrane depolarization critical for integration. To investigate this issue, we genetically modified intrinsic electrical properties of adult-generated neurons in the mammalian olfactory bulb. First, we observed that suppressing levels of cell-intrinsic neuronal activity via expression of ESKir2.1 potassium channels decreases, whereas enhancing activity via expression of NaChBac sodium channels increases survival of new neurons. Neither of these modulations affects synaptic formation. Furthermore, even when neurons are induced to fire dramatically altered patterns of action potentials, increased levels of cell-intrinsic activity completely blocks cell death triggered by NMDA receptor deletion. These findings demonstrate that overall levels of cell-intrinsic activity govern survival of new neurons and precise firing patterns are not essential for neuronal integration into existing brain circuits. PMID:20152111

  12. The effect of repetitive subconcussive collisions on brain integrity in collegiate football players over a single football season: A multi-modal neuroimaging study.

    PubMed

    Slobounov, Semyon M; Walter, Alexa; Breiter, Hans C; Zhu, David C; Bai, Xiaoxiao; Bream, Tim; Seidenberg, Peter; Mao, Xianglun; Johnson, Brian; Talavage, Thomas M

    2017-01-01

    The cumulative effect of repetitive subconcussive collisions on the structural and functional integrity of the brain remains largely unknown. Athletes in collision sports, like football, experience a large number of impacts across a single season of play. The majority of these impacts, however, are generally overlooked, and their long-term consequences remain poorly understood. This study sought to examine the effects of repetitive collisions across a single competitive season in NCAA Football Bowl Subdivision athletes using advanced neuroimaging approaches. Players were evaluated before and after the season using multiple MRI sequences, including T 1 -weighted imaging, diffusion tensor imaging (DTI), arterial spin labeling (ASL), resting-state functional MRI (rs-fMRI), and susceptibility weighted imaging (SWI). While no significant differences were found between pre- and post-season for DTI metrics or cortical volumes, seed-based analysis of rs-fMRI revealed significant ( p  < 0.05) changes in functional connections to right isthmus of the cingulate cortex (ICC), left ICC, and left hippocampus. ASL data revealed significant ( p  < 0.05) increases in global cerebral blood flow (CBF), with a specific regional increase in right postcentral gyrus. SWI data revealed that 44% of the players exhibited outlier rates ( p  < 0.05) of regional decreases in SWI signal. Of key interest, athletes in whom changes in rs-fMRI, CBF and SWI were observed were more likely to have experienced high G impacts on a daily basis. These findings are indicative of potential pathophysiological changes in brain integrity arising from only a single season of participation in the NCAA Football Bowl Subdivision, even in the absence of clinical symptoms or a diagnosis of concussion. Whether these changes reflect compensatory adaptation to cumulative head impacts or more lasting alteration of brain integrity remains to be further explored.

  13. A multicenter study of primary brain tumor incidence in Australia (2000–2008)

    PubMed Central

    Dobes, Martin; Shadbolt, Bruce; Khurana, Vini G.; Jain, Sanjiv; Smith, Sarah F.; Smee, Robert; Dexter, Mark; Cook, Raymond

    2011-01-01

    There are conflicting reports from Europe and North America regarding trends in the incidence of primary brain tumor, whereas the incidence of primary brain tumors in Australia is currently unknown. We aimed to determine the incidence in Australia with age-, sex-, and benign-versus-malignant histology-specific analyses. A multicenter study was performed in the state of New South Wales (NSW) and the Australian Capital Territory (ACT), which has a combined population of >7 million with >97% rate of population retention for medical care. We retrospectively mined pathology databases servicing neurosurgical centers in NSW and ACT for histologically confirmed primary brain tumors diagnosed from January 2000 through December 2008. Data were weighted for patient outflow and data completeness. Incidence rates were age standardized and trends analyzed using joinpoint analysis. A weighted total of 7651 primary brain tumors were analyzed. The overall US-standardized incidence of primary brain tumors was 11.3 cases 100 000 person-years (±0.13; 95% confidence interval, 9.8–12.3) during the study period with no significant linear increase. A significant increase in primary malignant brain tumors from 2000 to 2008 was observed; this appears to be largely due to an increase in malignant tumor incidence in the ≥65-year age group. This collection represents the most contemporary data on primary brain tumor incidence in Australia. Whether the observed increase in malignant primary brain tumors, particularly in persons aged ≥65 years, is due to improved detection, diagnosis, and care delivery or a true change in incidence remains undetermined. We recommend a direct, uniform, and centralized approach to monitoring primary brain tumor incidence that can be independent of multiple interstate cancer registries. PMID:21727214

  14. Brain responses to sexual images in 46,XY women with complete androgen insensitivity syndrome are female-typical.

    PubMed

    Hamann, Stephan; Stevens, Jennifer; Vick, Janice Hassett; Bryk, Kristina; Quigley, Charmian A; Berenbaum, Sheri A; Wallen, Kim

    2014-11-01

    Androgens, estrogens, and sex chromosomes are the major influences guiding sex differences in brain development, yet their relative roles and importance remain unclear. Individuals with complete androgen insensitivity syndrome (CAIS) offer a unique opportunity to address these issues. Although women with CAIS have a Y chromosome, testes, and produce male-typical levels of androgens, they lack functional androgen receptors preventing responding to their androgens. Thus, they develop a female physical phenotype, are reared as girls, and develop into women. Because sexually differentiated brain development in primates is determined primarily by androgens, but may be affected by sex chromosome complement, it is currently unknown whether brain structure and function in women with CAIS is more like that of women or men. In the first functional neuroimaging study of (46,XY) women with CAIS, typical (46,XX) women, and typical (46, XY) men, we found that men showed greater amygdala activation to sexual images than did either typical women or women with CAIS. Typical women and women with CAIS had highly similar patterns of brain activation, indicating that a Y chromosome is insufficient for male-typical human brain responses. Because women with CAIS produce male-typical or elevated levels of testosterone which is aromatized to estradiol these results rule out aromatization of testosterone to estradiol as a determinate of sex differences in patterns of brain activation to sexual images. We cannot, however, rule out an effect of social experience on the brain responses of women with CAIS as all were raised as girls. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Intravenous Heroin Induces Rapid Brain Hypoxia and Hyperglycemia that Precede Brain Metabolic Response.

    PubMed

    Solis, Ernesto; Cameron-Burr, Keaton T; Shaham, Yavin; Kiyatkin, Eugene A

    2017-01-01

    Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100-200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO 2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity.

  16. Brain swelling and death in children with cerebral malaria.

    PubMed

    Seydel, Karl B; Kampondeni, Samuel D; Valim, Clarissa; Potchen, Michael J; Milner, Danny A; Muwalo, Francis W; Birbeck, Gretchen L; Bradley, William G; Fox, Lindsay L; Glover, Simon J; Hammond, Colleen A; Heyderman, Robert S; Chilingulo, Cowles A; Molyneux, Malcolm E; Taylor, Terrie E

    2015-03-19

    Case fatality rates among African children with cerebral malaria remain in the range of 15 to 25%. The key pathogenetic processes and causes of death are unknown, but a combination of clinical observations and pathological findings suggests that increased brain volume leading to raised intracranial pressure may play a role. Magnetic resonance imaging (MRI) became available in Malawi in 2009, and we used it to investigate the role of brain swelling in the pathogenesis of fatal cerebral malaria in African children. We enrolled children who met a stringent definition of cerebral malaria (one that included the presence of retinopathy), characterized them in detail clinically, and obtained MRI scans on admission and daily thereafter while coma persisted. Of 348 children admitted with cerebral malaria (as defined by the World Health Organization), 168 met the inclusion criteria, underwent all investigations, and were included in the analysis. A total of 25 children (15%) died, 21 of whom (84%) had evidence of severe brain swelling on MRI at admission. In contrast, evidence of severe brain swelling was seen on MRI in 39 of 143 survivors (27%). Serial MRI scans showed evidence of decreasing brain volume in the survivors who had had brain swelling initially. Increased brain volume was seen in children who died from cerebral malaria but was uncommon in those who did not die from the disease, a finding that suggests that raised intracranial pressure may contribute to a fatal outcome. The natural history indicates that increased intracranial pressure is transient in survivors. (Funded by the National Institutes of Health and Wellcome Trust U.K.).

  17. Altered Sleep Spindles in Delayed Encephalopathy after Acute Carbon Monoxide Poisoning.

    PubMed

    Yoshiike, Takuya; Nishida, Masaki; Yagishita, Kazuyoshi; Nariai, Tadashi; Ishii, Kenji; Nishikawa, Toru

    2016-06-15

    Delayed encephalopathy (DE) affects not only the cerebral white matter and globus pallidus but also the cortex and thalamus. However, it remains unknown whether these brain lesions alter sleep along with clinical manifestations of DE. A 46-year-old man with DE underwent repetitive hyperbaric oxygen therapy. The patient was evaluated by not only neuropsychological and neuroimaging testing but polysomnography over the clinical course. Neurological symptoms improved markedly; however, profound frontal cognitive deficits continued. The polysomnography revealed prolonged absence and delayed recovery of sleep spindles across recordings. Alterations in spindle oscillations in DE could provide further insight into sleep regulatory networks. © 2016 American Academy of Sleep Medicine.

  18. Novel genetic loci underlying human intracranial volume identified through genome-wide association.

    PubMed

    Adams, Hieab H H; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura M E; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; Braber, Anouk Den; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco J C; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, W T; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic J A; Van Duijn, Cornelia M; Van Haren, Neeltje E M; Van T Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton J M; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-12-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρ genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.

  19. EF1A1/HSC70 Cooperatively Suppress Brain Endothelial Cell Apoptosis via Regulating JNK Activity.

    PubMed

    Liu, Ying; Jiang, Shu; Yang, Peng-Yuan; Zhang, Yue-Fan; Li, Tie-Jun; Rui, Yao-Cheng

    2016-10-01

    In our previous study, eEF1A1 was identified to be a new target for protecting brain ischemia injury, but the mechanism remains largely unknown. In this study, we screened the downstream cellular protein molecules interacted with eEF1A1 and found mechanism of eEF1A1 in brain ischemia protection. Through co-immunoprecipitation and mass spectrometry for searching the interaction of proteins with eEF1A1 in bEnd3 cells, HSC70 was identified to be a binding protein of eEF1A1, which was further validated by Western blot and immunofluorescence. eEF1A1 or HSC70 knockdown, respectively, increased OGD-induced apoptosis of brain vascular endothelial cells, which was detected by Annexin V-FITC/PI staining. HSC70 or eEF1A1 knockdown enhances phosphorylated JNK, phosphorylation of c-JUN (Ser63, Ser73), cleaved caspase-9, and cleaved caspase-3 expression, which could be rescued by JNK inhibitor. In summary, our data suggest that the presence of chaperone forms of interaction between eEF1A1 and HSC70 in brain vascular endothelial cells, eEF1A1 and HSC70 can play a protective role in the process of ischemic stroke by inhibiting the JNK signaling pathway activation. © 2016 John Wiley & Sons Ltd.

  20. Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice

    PubMed Central

    Sidor, Michelle M.; Sakic, Boris; Malinowski, Paul M.; Ballok, David A.; Oleschuk, Curtis J.; Macri, Joseph

    2006-01-01

    The systemic autoimmune disease lupus erythematosus (SLE) is frequently accompanied by neuropsychiatric manifestations and brain lesions of unknown etiology. The MRL-lpr mice show behavioral dysfunction concurrent with progression of a lupus-like disease, thus providing a valuable model in understanding the pathogenesis of autoimmunity-induced CNS damage. Profound neurodegeneration in the limbic system of MRL-lpr mice is associated with cytotoxicity of their cerebrospinal fluid (CSF) to mature and immature neurons. We have recently shown that IgG-rich CSF fraction largely accounts for this effect. The present study examines IgG levels in serum and CSF, as well as the permeability of the blood–brain barrier in mice that differ in immune status, age, and brain morphology. In comparison to young MRL-lpr mice and age-matched congenic controls, a significant elevation of IgG and albumin levels were detected in the CSF of aged autoimmune MRL-lpr mice. Two-dimensional gel electrophoresis and MALDI-TOF MS confirmed elevation in IgG heavy and Ig light chain isoforms in the CSF. Increased permeability of the blood–brain barrier correlated with neurodegeneration (as revealed by Fluoro Jade B staining) in periventricular areas. Although the source and specificity of neuropathogenic antibodies remain to be determined, these results support the hypothesis that a breached blood–brain barrier and IgG molecules are involved in the etiology of CNS damage during SLE-like disease. PMID:15972238

  1. Fear across the senses: brain responses to music, vocalizations and facial expressions

    PubMed Central

    Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis; Armony, Jorge L.

    2015-01-01

    Intrinsic emotional expressions such as those communicated by faces and vocalizations have been shown to engage specific brain regions, such as the amygdala. Although music constitutes another powerful means to express emotions, the neural substrates involved in its processing remain poorly understood. In particular, it is unknown whether brain regions typically associated with processing ‘biologically relevant’ emotional expressions are also recruited by emotional music. To address this question, we conducted an event-related functional magnetic resonance imaging study in 47 healthy volunteers in which we directly compared responses to basic emotions (fear, sadness and happiness, as well as neutral) expressed through faces, non-linguistic vocalizations and short novel musical excerpts. Our results confirmed the importance of fear in emotional communication, as revealed by significant blood oxygen level-dependent signal increased in a cluster within the posterior amygdala and anterior hippocampus, as well as in the posterior insula across all three domains. Moreover, subject-specific amygdala responses to fearful music and vocalizations were correlated, consistent with the proposal that the brain circuitry involved in the processing of musical emotions might be shared with the one that have evolved for vocalizations. Overall, our results show that processing of fear expressed through music, engages some of the same brain areas known to be crucial for detecting and evaluating threat-related information. PMID:24795437

  2. Fear across the senses: brain responses to music, vocalizations and facial expressions.

    PubMed

    Aubé, William; Angulo-Perkins, Arafat; Peretz, Isabelle; Concha, Luis; Armony, Jorge L

    2015-03-01

    Intrinsic emotional expressions such as those communicated by faces and vocalizations have been shown to engage specific brain regions, such as the amygdala. Although music constitutes another powerful means to express emotions, the neural substrates involved in its processing remain poorly understood. In particular, it is unknown whether brain regions typically associated with processing 'biologically relevant' emotional expressions are also recruited by emotional music. To address this question, we conducted an event-related functional magnetic resonance imaging study in 47 healthy volunteers in which we directly compared responses to basic emotions (fear, sadness and happiness, as well as neutral) expressed through faces, non-linguistic vocalizations and short novel musical excerpts. Our results confirmed the importance of fear in emotional communication, as revealed by significant blood oxygen level-dependent signal increased in a cluster within the posterior amygdala and anterior hippocampus, as well as in the posterior insula across all three domains. Moreover, subject-specific amygdala responses to fearful music and vocalizations were correlated, consistent with the proposal that the brain circuitry involved in the processing of musical emotions might be shared with the one that have evolved for vocalizations. Overall, our results show that processing of fear expressed through music, engages some of the same brain areas known to be crucial for detecting and evaluating threat-related information. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Tired and misconnected: A breakdown of brain modularity following sleep deprivation.

    PubMed

    Ben Simon, Eti; Maron-Katz, Adi; Lahav, Nir; Shamir, Ron; Hendler, Talma

    2017-06-01

    Sleep deprivation (SD) critically affects a range of cognitive and affective functions, typically assessed during task performance. Whether such impairments stem from changes to the brain's intrinsic functional connectivity remain largely unknown. To examine this hypothesis, we applied graph theoretical analysis on resting-state fMRI data derived from 18 healthy participants, acquired during both sleep-rested and sleep-deprived states. We hypothesized that parameters indicative of graph connectivity, such as modularity, will be impaired by sleep deprivation and that these changes will correlate with behavioral outcomes elicited by sleep loss. As expected, our findings point to a profound reduction in network modularity without sleep, evident in the limbic, default-mode, salience and executive modules. These changes were further associated with behavioral impairments elicited by SD: a decrease in salience module density was associated with worse task performance, an increase in limbic module density was predictive of stronger amygdala activation in a subsequent emotional-distraction task and a shift in frontal hub lateralization (from left to right) was associated with increased negative mood. Altogether, these results portray a loss of functional segregation within the brain and a shift towards a more random-like network without sleep, already detected in the spontaneous activity of the sleep-deprived brain. Hum Brain Mapp 38:3300-3314, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however,more » neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.« less

  5. Theiler's virus infection induces the expression of cyclooxygenase-2 in murine astrocytes: inhibition by the anti-inflammatory cytokines interleukin-4 and interleukin-10.

    PubMed

    Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Ortiz, Sergio; Vela, José M; Guaza, Carmen

    2002-05-24

    Theiler's murine encephalomyelitis virus (TMEV) causes an acute encephalomyelitis followed by a persistent infection of the central nervous system (CNS) resulting in a chronic inflammation and axonal demyelination in susceptible strains of mice. The pathogenesis of TMEV-induced demyelinating disease remains unknown, but infection of brain glial cells is a critical factor for virus persistence in the CNS. In the present study we investigated the effects of the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) on the production of inflammatory mediators, such as prostaglandins, after infection of primary astroglial SJL/J murine cultures with TMEV. This infection resulted in a time-dependent transcription of the gene encoding cyclooxygenase-2 (COX-2) and an increased production of prostaglandin E2 (PGE(2)). Both, IL-4 but mainly, IL-10 (1 and 10 ng/ml) decreased the TMEV-induced expression of COX-2 as well as the synthesis of PGE(2). Interestingly, treatment with IL-10 completely abrogated COX-2 induction. The molecular mechanisms involved in the regulation of COX-2 expression by TMEV are unknown, but the effects of anti-inflammatory cytokines may involve the inhibition of the transcription factor nuclear factor B activity and lead to strategies capable of interrupting the inflammatory cascade triggered by TMEV in brain glial cells.

  6. Lateralized Feeding Behavior is Associated with Asymmetrical Neuroanatomy and Lateralized Gene Expressions in the Brain in Scale-Eating Cichlid Fish

    PubMed Central

    Lee, Hyuk Je; Schneider, Ralf F; Manousaki, Tereza; Kang, Ji Hyoun; Lein, Etienne; Franchini, Paolo

    2017-01-01

    Abstract Lateralized behavior (“handedness”) is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior—biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain. PMID:29069363

  7. Lateralized Feeding Behavior is Associated with Asymmetrical Neuroanatomy and Lateralized Gene Expressions in the Brain in Scale-Eating Cichlid Fish.

    PubMed

    Lee, Hyuk Je; Schneider, Ralf F; Manousaki, Tereza; Kang, Ji Hyoun; Lein, Etienne; Franchini, Paolo; Meyer, Axel

    2017-11-01

    Lateralized behavior ("handedness") is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior-biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development

    PubMed Central

    Garay, Paula A.; Hsiao, Elaine Y.; Patterson, Paul H.; McAllister, A. Kimberley

    2012-01-01

    Maternal infection is a risk factor for autism spectrum disorder (ASD) and schizophrenia (SZ). Indeed, modeling this risk factor in mice through maternal immune activation (MIA) causes ASD- and SZ-like neuropathologies and behaviors in the offspring. Although MIA upregulates pro-inflammatory cytokines in the fetal brain, whether MIA leads to long-lasting changes in brain cytokines during postnatal development remains unknown. Here, we tested this possibility by measuring protein levels of 23 cytokines in the blood and three brain regions from offspring of poly(I:C)- and saline-injected mice at five postnatal ages using multiplex arrays. Most cytokines examined are present in sera and brains throughout development. MIA induces changes in the levels of many cytokines in the brains and sera of offspring in a region- and age-specific manner. These MIA-induced changes follow a few, unexpected and distinct patterns. In frontal and cingulate cortices, several, mostly pro-inflammatory, cytokines are elevated at birth, followed by decreases during periods of synaptogenesis and plasticity, and increases again in the adult. Cytokines are also altered in postnatal hippocampus, but in a pattern distinct from the other regions. The MIA-induced changes in brain cytokines do not correlate with changes in serum cytokines from the same animals. Finally, these MIA-induced cytokine changes are not accompanied by breaches in the blood-brain barrier, immune cell infiltration or increases in microglial density. Together, these data indicate that MIA leads to long-lasting, region-specific changes in brain cytokines in offspring—similar to those reported for ASD and SZ—that may alter CNS development and behavior. PMID:22841693

  9. Brain morphology in children with nevoid basal cell carcinoma syndrome.

    PubMed

    Shiohama, Tadashi; Fujii, Katsunori; Miyashita, Toshiyuki; Mizuochi, Hiromi; Uchikawa, Hideki; Shimojo, Naoki

    2017-04-01

    Brain morphology is tightly regulated by diverse signaling pathways. Hedgehog signaling is a candidate pathway considered responsible for regulating brain morphology. Nevoid basal cell carcinoma syndrome (NBCCS), caused by a PTCH1 mutation in the hedgehog signaling pathway, occasionally exhibits macrocephaly and medulloblastoma. Although cerebellar enlargement occurs in ptch1 heterozygous-deficient mice, its impact on human brain development remains unknown. We investigated the brain morphological characteristics of children with NBCCS. We evaluated brain T1-weighted images from nine children with NBCCS and 15 age-matched normal control (NC) children (mean [standard deviation], 12.2 [2.8] vs. 11.6 [2.3] years old). The diameters of the cerebrum, corpus callosum, and brain stem and the cerebellar volume were compared using two-tailed t-tests with Welch's correction. The transverse diameters (150.4 [9.9] vs. 136.0 [5.5] mm, P = 0.002) and longitudinal diameters (165.4 [8.0] vs. 151.3 [8.7] mm, P = 0.0007) of the cerebrum, cross-sectional area of the cerebellar vermis (18.7 [2.6] vs. 11.8 [1.7] cm 2 , P = 0.0001), and total volume of the cerebellar hemispheres (185.1 [13.0] vs. 131.9 [10.4] cm 3 , P = 0.0001) were significantly larger in the children with NBCCS than in NC children. Thinning of the corpus callosum and ventricular enlargement were also confirmed in children with NBCCS. We demonstrate that, on examination of the brain morphology, an increase in the size of the cerebrum, cerebellum, and cerebral ventricles is revealed in children with NBCCS compared to NC children. This suggests that constitutively active hedgehog signaling affects human brain morphology and the PI3K/AKT and RAS/MAPK pathways. © 2017 Wiley Periodicals, Inc.

  10. Enhanced microglial pro-inflammatory response to lipopolysaccharide correlates with brain infiltration and blood-brain barrier dysregulation in a mouse model of telomere shortening.

    PubMed

    Raj, Divya D A; Moser, Jill; van der Pol, Susanne M A; van Os, Ronald P; Holtman, Inge R; Brouwer, Nieske; Oeseburg, Hisko; Schaafsma, Wandert; Wesseling, Evelyn M; den Dunnen, Wilfred; Biber, Knut P H; de Vries, Helga E; Eggen, Bart J L; Boddeke, Hendrikus W G M

    2015-12-01

    Microglia are a proliferative population of resident brain macrophages that under physiological conditions self-renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as 'priming'. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first-generation G1 mTerc(-/-) )- and late-generation (third-generation G3 and G4 mTerc(-/-) ) telomerase-deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late-generation mTerc(-/-) microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc(-/-) microglia are comparable with microglia derived from G1 mTerc(-/-) mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc(-/-) microglia mice show an enhanced pro-inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age-associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood-brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  11. Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory.

    PubMed

    Gould, Joanna M; Smith, Phoebe J; Airey, Chris J; Mort, Emily J; Airey, Lauren E; Warricker, Frazer D M; Pearson-Farr, Jennifer E; Weston, Eleanor C; Gould, Philippa J W; Semmence, Oliver G; Restall, Katie L; Watts, Jennifer A; McHugh, Patrick C; Smith, Stephanie J; Dewing, Jennifer M; Fleming, Tom P; Willaime-Morawek, Sandrine

    2018-06-25

    Maternal protein malnutrition throughout pregnancy and lactation compromises brain development in late gestation and after birth, affecting structural, biochemical, and pathway dynamics with lasting consequences for motor and cognitive function. However, the importance of nutrition during the preimplantation period for brain development is unknown. We have previously shown that maternal low-protein diet (LPD) confined to the preimplantation period (Emb-LPD) in mice, with normal nutrition thereafter, is sufficient to induce cardiometabolic and locomotory behavioral abnormalities in adult offspring. Here, using a range of in vivo and in vitro techniques, we report that Emb-LPD and sustained LPD reduce neural stem cell (NSC) and progenitor cell numbers at E12.5, E14.5, and E17.5 through suppressed proliferation rates in both ganglionic eminences and cortex of the fetal brain. Moreover, Emb-LPD causes remaining NSCs to up-regulate the neuronal differentiation rate beyond control levels, whereas in LPD, apoptosis increases to possibly temper neuron formation. Furthermore, Emb-LPD adult offspring maintain the increase in neuron proportion in the cortex, display increased cortex thickness, and exhibit short-term memory deficit analyzed by the novel-object recognition assay. Last, we identify altered expression of fragile X family genes as a potential molecular mechanism for adverse programming of brain development. Collectively, these data demonstrate that poor maternal nutrition from conception is sufficient to cause abnormal brain development and adult memory loss.

  12. Brain aging and Aβ₁₋₄₂ neurotoxicity converge via deterioration in autophagy-lysosomal system: a conditional Drosophila model linking Alzheimer's neurodegeneration with aging.

    PubMed

    Ling, Daijun; Salvaterra, Paul M

    2011-02-01

    Aging is known to be the most prominent risk factor for Alzheimer's disease (AD); however, the underlying mechanism linking brain aging with AD pathogenesis remains unknown. The expression of human amyloid beta 42 peptide (Aβ₁₋₄₂), but not Aβ₁₋₄₀ in Drosophila brain induces an early onset and progressive autophagy-lysosomal neuropathology. Here we show that the natural process of brain aging also accompanies a chronic and late-onset deterioration of neuronal autophagy-lysosomal system. This process is characterized by accumulation of dysfunctional autophagy-lysosomal vesicles, a compromise of these vesicles leading to damage of intracellular membranes and organelles, necrotic-like intraneuronal destruction and neurodegeneration. In addition, conditional activation of neuronal autophagy in young animals is protective while late activation is deleterious for survival. Intriguingly, conditional Aβ₁₋₄₂ expression limited to young animals exacerbates the aging process to a greater extent than Aβ₁₋₄₂ expression in old animals. These data suggest that the neuronal autophagy-lysosomal system may shift from a functional and protective state to a pathological and deleterious state either during brain aging or via Aβ₁₋₄₂ neurotoxicity. A chronic deterioration of the neuronal autophagy-lysosomal system is likely to be a key event in transitioning from normal brain aging to pathological aging leading to Alzheimer's neurodegeneration.

  13. Species-Specific 5 mC and 5 hmC Genomic Landscapes Indicate Epigenetic Contribution to Human Brain Evolution

    PubMed Central

    Madrid, Andy; Chopra, Pankaj; Alisch, Reid S.

    2018-01-01

    Human evolution from non-human primates has seen substantial change in the central nervous system, with the molecular mechanisms underlying human brain evolution remaining largely unknown. Methylation of cytosine at the fifth carbon (5-methylcytosine; 5 mC) is an essential epigenetic mark linked to neurodevelopment, as well as neurological disease. The emergence of another modified form of cytosine (5-hydroxymethylcytosine; 5 hmC) that is enriched in the brain further substantiates a role for these epigenetic marks in neurodevelopment, yet little is known about the evolutionary importance of these marks in brain development. Here, human and monkey brain tissue were profiled, identifying 5,516 and 4,070 loci that were differentially methylated and hydroxymethylated, respectively, between the species. Annotation of these loci to the human genome revealed genes critical for the development of the nervous system and that are associated with intelligence and higher cognitive functioning, such as RELN and GNAS. Moreover, ontological analyses of these differentially methylated and hydroxymethylated genes revealed a significant enrichment of neuronal/immunological–related processes, including neurogenesis and axon development. Finally, the sequences flanking the differentially methylated/hydroxymethylated loci contained a significant enrichment of binding sites for neurodevelopmentally important transcription factors (e.g., OTX1 and PITX1), suggesting that DNA methylation may regulate gene expression by mediating transcription factor binding on these transcripts. Together, these data support dynamic species-specific epigenetic contributions in the evolution and development of the human brain from non-human primates. PMID:29491831

  14. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    PubMed

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  15. Infectious Causes of Encephalitis and Meningoencephalitis in Thailand, 2003–2005

    PubMed Central

    Campbell, Angela P.; Supawat, Krongkaew; Liamsuwan, Sahas; Chotpitayasunondh, Tawee; Laptikulthum, Somsak; Viriyavejakul, Akravudh; Tantirittisak, Tasanee; Tunlayadechanont, Supoch; Visudtibhan, Anannit; Vasiknanonte, Punnee; Janjindamai, Supachai; Boonluksiri, Pairoj; Rajborirug, Kiatsak; Watanaveeradej, Veerachai; Khetsuriani, Nino; Dowell, Scott F.

    2015-01-01

    Acute encephalitis is a severe neurologic syndrome. Determining etiology from among ≈100 possible agents is difficult. To identify infectious etiologies of encephalitis in Thailand, we conducted surveillance in 7 hospitals during July 2003–August 2005 and selected patients with acute onset of brain dysfunction with fever or hypothermia and with abnormalities seen on neuroimages or electroencephalograms or with cerebrospinal fluid pleocytosis. Blood and cerebrospinal fluid were tested for >30 pathogens. Among 149 case-patients, median age was 12 (range 0–83) years, 84 (56%) were male, and 15 (10%) died. Etiology was confirmed or probable for 54 (36%) and possible or unknown for 95 (64%). Among confirmed or probable etiologies, the leading pathogens were Japanese encephalitis virus, enteroviruses, and Orientia tsutsugamushi. No samples were positive for chikungunya, Nipah, or West Nile viruses; Bartonella henselae; or malaria parasites. Although a broad range of infectious agents was identified, the etiology of most cases remains unknown. PMID:25627940

  16. Profilin1 activity in cerebellar granule neurons is required for radial migration in vivo

    PubMed Central

    Kullmann, Jan A; Wickertsheim, Ines; Minnerup, Lara; Costell, Mercedes; Friauf, Eckhard; Rust, Marco B

    2015-01-01

    Neuron migration defects are an important aspect of human neuropathies. The underlying molecular mechanisms of such migration defects are largely unknown. Actin dynamics has been recognized as an important determinant of neuronal migration, and we recently found that the actin-binding protein profilin1 is relevant for radial migration of cerebellar granule neurons (CGN). As the exploited brain-specific mutants lacked profilin1 in both neurons and glial cells, it remained unknown whether profilin1 activity in CGN is relevant for CGN migration in vivo. To test this, we capitalized on a transgenic mouse line that expresses a tamoxifen-inducible Cre variant in CGN, but no other cerebellar cell type. In these profilin1 mutants, the cell density was elevated in the molecular layer, and ectopic CGN occurred. Moreover, 5-bromo-2′-deoxyuridine tracing experiments revealed impaired CGN radial migration. Hence, our data demonstrate the cell autonomous role of profilin1 activity in CGN for radial migration. PMID:25495756

  17. The planarian TCF/LEF factor Smed-tcf1 is required for the regeneration of dorsal-lateral neuronal subtypes.

    PubMed

    Brown, David D R; Molinaro, Alyssa M; Pearson, Bret J

    2018-01-15

    The adult brain of the planarian Schmidtea mediterranea (a freshwater flatworm) is a dynamic structure with constant cell turnover as well as the ability to completely regenerate de novo. Despite this, function and pattern is achieved in a reproducible manner from individual to individual in terms of the correct spatial and temporal production of specific neuronal subtypes. Although several signaling molecules have been found to be key to scaling and cell turnover, the mechanisms by which specific neural subtypes are specified remain largely unknown. Here we performed a 6 day RNAseq time course on planarians that were regenerating either 0, 1, or 2 heads in order to identify novel regulators of brain regeneration. Focusing on transcription factors, we identified a TCF/LEF factor, Smed-tcf1, which was required to correctly pattern the dorsal-lateral cell types of the regenerating brain. The most severely affected neurons in Smed-tcf1(RNAi) animals were the dorsal GABAergic neurons, which failed to regenerate, leading to an inability of the animals to phototaxis away from light. Together, Smed-tcf1 is a critical regulator, required to pattern the dorsal-lateral region of the regenerating planarian brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Rich Get Richer: Brain Injury Elicits Hyperconnectivity in Core Subnetworks

    PubMed Central

    Hillary, Frank G.; Rajtmajer, Sarah M.; Roman, Cristina A.; Medaglia, John D.; Slocomb-Dluzen, Julia E.; Calhoun, Vincent D.; Good, David C.; Wylie, Glenn R.

    2014-01-01

    There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the “rich club”. The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury. PMID:25121760

  19. The rich get richer: brain injury elicits hyperconnectivity in core subnetworks.

    PubMed

    Hillary, Frank G; Rajtmajer, Sarah M; Roman, Cristina A; Medaglia, John D; Slocomb-Dluzen, Julia E; Calhoun, Vincent D; Good, David C; Wylie, Glenn R

    2014-01-01

    There remains much unknown about how large-scale neural networks accommodate neurological disruption, such as moderate and severe traumatic brain injury (TBI). A primary goal in this study was to examine the alterations in network topology occurring during the first year of recovery following TBI. To do so we examined 21 individuals with moderate and severe TBI at 3 and 6 months after resolution of posttraumatic amnesia and 15 age- and education-matched healthy adults using functional MRI and graph theoretical analyses. There were two central hypotheses in this study: 1) physical disruption results in increased functional connectivity, or hyperconnectivity, and 2) hyperconnectivity occurs in regions typically observed to be the most highly connected cortical hubs, or the "rich club". The current findings generally support the hyperconnectivity hypothesis showing that during the first year of recovery after TBI, neural networks show increased connectivity, and this change is disproportionately represented in brain regions belonging to the brain's core subnetworks. The selective increases in connectivity observed here are consistent with the preferential attachment model underlying scale-free network development. This study is the largest of its kind and provides the unique opportunity to examine how neural systems adapt to significant neurological disruption during the first year after injury.

  20. Learning-dependent plasticity with and without training in the human brain.

    PubMed

    Zhang, Jiaxiang; Kourtzi, Zoe

    2010-07-27

    Long-term experience through development and evolution and shorter-term training in adulthood have both been suggested to contribute to the optimization of visual functions that mediate our ability to interpret complex scenes. However, the brain plasticity mechanisms that mediate the detection of objects in cluttered scenes remain largely unknown. Here, we combine behavioral and functional MRI (fMRI) measurements to investigate the human-brain mechanisms that mediate our ability to learn statistical regularities and detect targets in clutter. We show two different routes to visual learning in clutter with discrete brain plasticity signatures. Specifically, opportunistic learning of regularities typical in natural contours (i.e., collinearity) can occur simply through frequent exposure, generalize across untrained stimulus features, and shape processing in occipitotemporal regions implicated in the representation of global forms. In contrast, learning to integrate discontinuities (i.e., elements orthogonal to contour paths) requires task-specific training (bootstrap-based learning), is stimulus-dependent, and enhances processing in intraparietal regions implicated in attention-gated learning. We propose that long-term experience with statistical regularities may facilitate opportunistic learning of collinear contours, whereas learning to integrate discontinuities entails bootstrap-based training for the detection of contours in clutter. These findings provide insights in understanding how long-term experience and short-term training interact to shape the optimization of visual recognition processes.

  1. The Disrupted-in-Schizophrenia-1 Ser704Cys polymorphism and brain neurodevelopmental markers in schizophrenia and healthy subjects.

    PubMed

    Takahashi, Tsutomu; Nakamura, Mihoko; Nakamura, Yukako; Aleksic, Branko; Kido, Mikio; Sasabayashi, Daiki; Takayanagi, Yoichiro; Furuichi, Atsushi; Nishikawa, Yumiko; Noguchi, Kyo; Ozaki, Norio; Suzuki, Michio

    2015-01-02

    Increasing evidence has implicated the role of Disrupted-in-Schizophrenia-1 (DISC1), a potential susceptibility gene for schizophrenia, in early neurodevelopmental processes. However, the effect of its genotype variation on brain morphologic changes related to neurodevelopmental abnormalities in schizophrenia remains largely unknown. This magnetic resonance imaging study examined the association between DISC1 Ser704Cys polymorphism and a range of brain neurodevelopmental markers [cavum septi pellucidi (CSP), adhesio interthalamica (AI), olfactory sulcus depth, and sulcogyral pattern (Types I, II, III, and IV) in the orbitofrontal cortex (OFC)] in an all Japanese sample of 75 schizophrenia patients and 87 healthy controls. The Cys carriers had significantly larger CSP than the Ser homozygotes for both schizophrenia patients and healthy controls. The Cys carriers also exhibited a reduction in the Type I pattern of the right OFC in the healthy controls, but not in the schizophrenia patients. The DISC1 Ser704Cys polymorphism did not affect the AI and olfactory sulcus depth in either group. These results suggested a possible role of the DISC1 genotype in the early neurodevelopment of human brains, but failed to show its specific role in the neurodevelopmental pathology of schizophrenia. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Thyroid hormones: Possible roles in epilepsy pathology.

    PubMed

    Tamijani, Seyedeh Masoumeh Seyedhoseini; Karimi, Benyamin; Amini, Elham; Golpich, Mojtaba; Dargahi, Leila; Ali, Raymond Azman; Ibrahim, Norlinah Mohamed; Mohamed, Zahurin; Ghasemi, Rasoul; Ahmadiani, Abolhassan

    2015-09-01

    Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. Behavioral and Neurobiological Effects of Deep Brain Stimulation in a Mouse Model of High Anxiety- and Depression-Like Behavior

    PubMed Central

    Schmuckermair, Claudia; Gaburro, Stefano; Sah, Anupam; Landgraf, Rainer; Sartori, Simone B; Singewald, Nicolas

    2013-01-01

    Increasing evidence suggests that high-frequency deep brain stimulation of the nucleus accumbens (NAcb-DBS) may represent a novel therapeutic strategy for individuals suffering from treatment-resistant depression, although the underlying mechanisms of action remain largely unknown. In this study, using a unique mouse model of enhanced depression- and anxiety-like behavior (HAB), we investigated behavioral and neurobiological effects of NAcb-DBS. HAB mice either underwent chronic treatment with one of three different selective serotonin reuptake inhibitors (SSRIs) or received NAcb-DBS for 1 h per day for 7 consecutive days. Animals were tested in established paradigms revealing depression- and anxiety-related behaviors. The enhanced depression-like behavior of HAB mice was not influenced by chronic SSRI treatment. In contrast, repeated, but not single, NAcb-DBS induced robust antidepressant and anxiolytic responses in HAB animals, while these behaviors remained unaffected in normal depression/anxiety animals (NAB), suggesting a preferential effect of NAcb-DBS on pathophysiologically deranged systems. NAcb-DBS caused a modulation of challenge-induced activity in various stress- and depression-related brain regions, including an increase in c-Fos expression in the dentate gyrus of the hippocampus and enhanced hippocampal neurogenesis in HABs. Taken together, these findings show that the normalization of the pathophysiologically enhanced, SSRI-insensitive depression-like behavior by repeated NAcb-DBS was associated with the reversal of reported aberrant brain activity and impaired adult neurogenesis in HAB mice, indicating that NAcb-DBS affects neuronal activity as well as plasticity in a defined, mood-associated network. Thus, HAB mice may represent a clinically relevant model for elucidating the neurobiological correlates of NAcb-DBS. PMID:23325324

  4. Metastatic brain tumor

    MedlinePlus

    ... the brain, the type of tissue involved, the original location of the tumor, and other factors. In rare cases, doctors do not know the original location. This is called cancer of unknown primary ( ...

  5. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice

    PubMed Central

    Castellano, Joseph M.; Mosher, Kira I.; Abbey, Rachelle J.; McBride, Alisha A.; James, Michelle L.; Berdnik, Daniela; Shen, Jadon C.; Zou, Bende; Xie, Xinmin S.; Tingle, Martha; Hinkson, Izumi V.; Angst, Martin S.; Wyss-Coray, Tony

    2017-01-01

    Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation1, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation2, 3, 4 and downregulated in the aged brain5, 6, 7, 8. In addition to revitalizing other aged tissues9, 10, 11, 12, 13, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters14, 15, 16, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown17. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high translational value for targeting ageing- or disease-associated hippocampal dysfunction. PMID:28424512

  6. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain.

    PubMed

    Rao, Jia-Sheng; Liu, Zuxiang; Zhao, Can; Wei, Rui-Han; Zhao, Wen; Tian, Peng-Yu; Zhou, Xia; Yang, Zhao-Yang; Li, Xiao-Guang

    2017-11-01

    Ketamine is a well-known anesthetic. 'Recreational' use of ketamine common induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties. We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions. Results showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (p<0.05). These findings demonstrated that single-dose ketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status. Copyright © 2017. Published by Elsevier Inc.

  7. Individual differences and time-varying features of modular brain architecture.

    PubMed

    Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong

    2017-05-15

    Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Pathogenesis, Experimental Models and Contemporary Pharmacotherapy of Irritable Bowel Syndrome: Story About the Brain-Gut Axis

    PubMed Central

    Tsang, S.W.; Auyeung, K.K.W.; Bian, Z.X.; Ko, J.K.S.

    2016-01-01

    Background Although the precise pathophysiology of irritable bowel syndrome (IBS) remains unknown, it is generally considered to be a disorder of the brain-gut axis, representing the disruption of communication between the brain and the digestive system. The present review describes advances in understanding the pathophysiology and experimental approaches in studying IBS, as well as providing an update of the therapies targeting brain-gut axis in the treatment of the disease. Methods Causal factors of IBS are reviewed. Following this, the preclinical experimental models of IBS will be introduced. Besides, both current and future therapeutic approaches of IBS will be discussed. Results When signal of the brain-gut axis becomes misinterpreted, it may lead to dysregulation of both central and enteric nervous systems, altered intestinal motility, increased visceral sensitivity and consequently contributing to the development of IBS. Interference of the brain-gut axis can be modulated by various psychological and environmental factors. Although there is no existing animal experiment that can represent this complex multifactorial disease, these in vivo models are clinically relevant readouts of gastrointestinal functions being essential to the identification of effective treatments of IBS symptoms as well as their molecular targets. Understanding the brain-gut axis is essential in developing the effective therapy for IBS. Therapies include improvement of GI motor functions, relief of visceral hypersensitivity and pain, attenuation of autonomic dysfunctions and suppression of mucosal immune activation. Conclusion Target-oriented therapies that provide symptomatic, psychological and physiological benefits could surely help to improve the quality of life of IBS patients. PMID:27009115

  9. Human Hippocampal Structure: A Novel Biomarker Predicting Mnemonic Vulnerability to, and Recovery from, Sleep Deprivation

    PubMed Central

    Goldstein-Piekarski, Andrea N.; Greer, Stephanie M.; Stark, Shauna; Stark, Craig E.

    2016-01-01

    Sleep deprivation impairs the formation of new memories. However, marked interindividual variability exists in the degree to which sleep loss compromises learning, the mechanistic reasons for which are unclear. Furthermore, which physiological sleep processes restore learning ability following sleep deprivation are similarly unknown. Here, we demonstrate that the structural morphology of human hippocampal subfields represents one factor determining vulnerability (and conversely, resilience) to the impact of sleep deprivation on memory formation. Moreover, this same measure of brain morphology was further associated with the quality of nonrapid eye movement slow wave oscillations during recovery sleep, and by way of such activity, determined the success of memory restoration. Such findings provide a novel human biomarker of cognitive susceptibility to, and recovery from, sleep deprivation. Moreover, this metric may be of special predictive utility for professions in which memory function is paramount yet insufficient sleep is pervasive (e.g., aviation, military, and medicine). SIGNIFICANCE STATEMENT Sleep deprivation does not impact all people equally. Some individuals show cognitive resilience to the effects of sleep loss, whereas others express striking vulnerability, the reasons for which remain largely unknown. Here, we demonstrate that structural features of the human brain, specifically those within the hippocampus, accurately predict which individuals are susceptible (or conversely, resilient) to memory impairments caused by sleep deprivation. Moreover, this same structural feature determines the success of memory restoration following subsequent recovery sleep. Therefore, structural properties of the human brain represent a novel biomarker predicting individual vulnerability to (and recovery from) the effects of sleep loss, one with occupational relevance in professions where insufficient sleep is pervasive yet memory function is paramount. PMID:26911684

  10. Evaluation of liver and brain esterases in the spotted gar fish (Lepisosteus oculatus) as biomarkers of effect in the lower Mississippi River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, T.L.; Obih, P.O.; Jaiswal, R.

    1997-05-01

    The responses of various xenobiotic metabolizing enzymes in fish models are rapidly evolving as important biomarkers for monitoring unacceptable levels of environmental contaminants. Ethoxyresorufin O-deethylase, a specific cytochrome P450-dependent monooxygenase, is often used as an indicator of polycyclic aromatic hydrocarbon pollution. Another class of enzymes which are potential biomarkers are the B-type esterases. These enzymes are sensitive to inhibition by organophosphates, and include the cholinesterases (ChE) and carboxylesterases. ChEs are further subdivided into acetylcholinesterase and butyryl cholinesterase. Among fish, AChE is predominantly localized in the brain and muscle, whereas, BuChE activity is found mainly in liver and plasma. The precisemore » physiological role of BuChE is unknown, although it has been regarded as a marker enzyme for glial or supportive cells or other non-neuronal elements. Inhibition of ChE activity has often been associated with exposure to organophosphate and carbamate insecticides and other neurotoxic xenobiotics. Chemicals other than carbarnates and organophosphates that are environmental contaminants can also affect the activity of ChEs. Carboxylesterases represent a heterogenous group of isozymes that can catalyze the hydrolysis of a wide range of xenobiotic esters, amides and thioesters. For most CaE, their natural substrates are unknown, therefore, their physiological functions remain to be elucidated. These enzymes (CaE) occur widely in most tissues and are generally found in high levels in the liver. The purpose of this research was to evaluate the liver and brain esterases in the spotted gar fish as biomarkers of effect to multiple contaminants in the lower Mississippi River basin. 15 refs., 3 figs., 2 tabs.« less

  11. 77 FR 40901 - Notice of Inventory Completion: Gregg County Historical Museum, Longview, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... adult, one adult of unknown sex, and one juvenile of unknown sex. The human remains from Burial 6 include an occipital cranial bone fragment of one adult of unknown sex. The human remains from Burial 7 include one adult of unknown sex. No known individuals were identified. The 11 associated funerary objects...

  12. Driving and driven architectures of directed small-world human brain functional networks.

    PubMed

    Yan, Chaogan; He, Yong

    2011-01-01

    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.

  13. Circadian rhythmicity and light sensitivity of the zebrafish brain.

    PubMed

    Moore, Helen A; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated.

  14. Circadian Rhythmicity and Light Sensitivity of the Zebrafish Brain

    PubMed Central

    Moore, Helen A.; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker complexity that was not previously appreciated. PMID:24465943

  15. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice.

    PubMed

    Zielinski, Mark R; Dunbrasky, Danielle L; Taishi, Ping; Souza, Gianne; Krueger, James M

    2013-08-01

    Systemic tumor necrosis factor-α (TNF-α) is linked to sleep and sleep altering pathologies in humans. Evidence from animals indicates that systemic and brain TNF-α have a role in regulating sleep. In animals, TNF-α or lipopolysaccharide (LPS) enhance brain pro-inflammatory cytokine expression and sleep after central or peripheral administration. Vagotomy blocks enhanced sleep induced by systemic TNF-α and LPS in rats, suggesting that vagal afferent stimulation by TNF-α enhances pro-inflammatory cytokines in sleep-related brain areas. However, the effects of systemic TNF-α on brain cytokine expression and mouse sleep remain unknown. We investigated the role of vagal afferents on brain cytokines and sleep after systemically applied TNF-α or LPS in mice. Spontaneous sleep was similar in vagotomized and sham-operated controls. Vagotomy attenuated TNF-α- and LPS-enhanced non-rapid eye movement sleep (NREMS); these effects were more evident after lower doses of these substances. Vagotomy did not affect rapid eye movement sleep responses to these substances. NREMS electroencephalogram delta power (0.5-4 Hz range) was suppressed after peripheral TNF-α or LPS injections, although vagotomy did not affect these responses. Compared to sham-operated controls, vagotomy did not affect liver cytokines. However, vagotomy attenuated interleukin-1 beta (IL-1β) and TNF-α mRNA brain levels after TNF-α, but not after LPS, compared to the sham-operated controls. We conclude that vagal afferents mediate peripheral TNF-α-induced brain TNF-α and IL-1β mRNA expressions to affect sleep. We also conclude that vagal afferents alter sleep induced by peripheral pro-inflammatory stimuli in mice similar to those occurring in other species.

  16. Intravenous Heroin Induces Rapid Brain Hypoxia and Hyperglycemia that Precede Brain Metabolic Response

    PubMed Central

    Cameron-Burr, Keaton T.; Shaham, Yavin

    2017-01-01

    Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100–200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity. PMID:28593192

  17. Proteomic profiling of the brain of mice with experimental cerebral malaria.

    PubMed

    Moussa, Ehab; Huang, Honglei; Ahras, Malika; Lall, Amar; Thezenas, Marie L; Fischer, Roman; Kessler, Benedikt M; Pain, Arnab; Billker, Oliver; Casals-Pascual, Climent

    2018-05-30

    Cerebral malaria (CM) is a severe neurological complication of malaria infection in both adults and children. In pursuit of effective treatment of CM, clinical studies, postmortem analysis and animal models have been employed to understand the pathology and identify effective interventions. In this study, a shotgun proteomics analysis was conducted to profile the proteomic signature of the brain tissue of mice with experimental cerebral malaria (ECM) in order to further understand the underlying pathology. To identify CM-associated response, proteomic signatures of the brains of C57/Bl6N mice infected with P. berghei ANKA that developed neurological syndrome were compared to those of mice infected with P. berghei NK65 that developed equally high parasite burdens without neurological signs, and to those of non-infected mice. The results show that the CM-associated response in mice that developed neurological signs comprise mainly acute-phase reaction and coagulation cascade activation, and indicate the leakage of plasma proteins into the brain parenchyma. Cerebral malaria (CM) remains a major cause of death in children. The majority of these deaths occur in sub-Saharan Africa. Even with adequate access to treatment, mortality remains high and neurological sequelae can be found in up to 20% of survivors. No adjuvant treatment to date has been shown to reduce mortality and the pathophysiology of CM is largely unknown. Experimental cerebral malaria (ECM) is a well-established model that may contribute to identify and test druggable targets. In this study we have identified the disruption of the blood-brain barrier following inflammatory and vascular injury as a mechanism of disease. In this study we report a number of proteins that could be validated as potential biomarkers of ECM. Further studies, will be required to validate the clinical relevance of these biomarkers in human CM. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Brain-derived neurotrophic factor Val66Met genotype modulates amygdala habituation.

    PubMed

    Perez-Rodriguez, M Mercedes; New, Antonia S; Goldstein, Kim E; Rosell, Daniel; Yuan, Qiaoping; Zhou, Zhifeng; Hodgkinson, Colin; Goldman, David; Siever, Larry J; Hazlett, Erin A

    2017-05-30

    A deficit in amygdala habituation to repeated emotional stimuli may be an endophenotype of disorders characterized by emotion dysregulation, such as borderline personality disorder (BPD). Amygdala reactivity to emotional stimuli is genetically modulated by brain-derived neurotrophic factor (BDNF) variants. Whether amygdala habituation itself is also modulated by BDNF genotypes remains unknown. We used imaging-genetics to examine the effect of BDNF Val66Met genotypes on amygdala habituation to repeated emotional stimuli. We used functional magnetic resonance imaging (fMRI) in 57 subjects (19 BPD patients, 18 patients with schizotypal personality disorder [SPD] and 20 healthy controls [HC]) during a task involving viewing of unpleasant, neutral, and pleasant pictures, each presented twice to measure habituation. Amygdala responses across genotypes (Val66Met SNP Met allele-carriers vs. Non-Met carriers) and diagnoses (HC, BPD, SPD) were examined with ANOVA. The BDNF 66Met allele was significantly associated with a deficit in amygdala habituation, particularly for emotional pictures. The association of the 66Met allele with a deficit in habituation to unpleasant emotional pictures remained significant in the subsample of BPD patients. Using imaging-genetics, we found preliminary evidence that deficient amygdala habituation may be modulated by BDNF genotype. Copyright © 2017. Published by Elsevier B.V.

  19. Choosing Money over Drugs: The Neural Underpinnings of Difficult Choice in Chronic Cocaine Users

    PubMed Central

    Wesley, Michael J.; Lohrenz, Terry; Koffarnus, Mikhail N.; McClure, Samuel M.; De La Garza, Richard; Salas, Ramiro; Thompson-Lake, Daisy G. Y.; Newton, Thomas F.; Bickel, Warren K.; Montague, P. Read

    2014-01-01

    Addiction is considered a disorder that drives individuals to choose drugs at the expense of healthier alternatives. However, chronic cocaine users (CCUs) who meet addiction criteria retain the ability to choose money in the presence of the opportunity to choose cocaine. The neural mechanisms that differentiate CCUs from non-cocaine using controls (Controls) while executing these preferred choices remain unknown. Thus, therapeutic strategies aimed at shifting preferences towards healthier alternatives remain somewhat uninformed. This study used BOLD neuroimaging to examine brain activity as fifty CCUs and Controls performed single- and cross-commodity intertemporal choice tasks for money and/or cocaine. Behavioral analyses revealed preferences for each commodity type. Imaging analyses revealed the brain activity that differentiated CCUs from Controls while choosing money over cocaine. We observed that CCUs devalued future commodities more than Controls. Choices for money as opposed to cocaine correlated with greater activity in dorsal striatum of CCUs, compared to Controls. In addition, choices for future money as opposed to immediate cocaine engaged the left dorsolateral prefrontal cortex (DLPFC) of CCUs more than Controls. These data suggest that the ability of CCUs to execute choices away from cocaine relies on activity in the dorsal striatum and left DLPFC. PMID:25197609

  20. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics.

    PubMed

    Wada, Akihiko; Yokoo, Hiroki; Yanagita, Toshihiko; Kobayashi, Hideyuki

    2005-10-01

    Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.

  1. Obese individuals with more components of the metabolic syndrome and/or prediabetes demonstrate decreased activation of reward-related brain centers in response to food cues in both the fed and fasting states: a preliminary fMRI study.

    PubMed

    Farr, O M; Mantzoros, C S

    2017-03-01

    It remains unknown whether obese individuals with more components of the metabolic syndrome and/or prediabetes demonstrate altered activation of brain centers in response to food cues. We examined obese individuals with prediabetes (n=26) vs obese individuals without prediabetes (n=11) using fMRI. We also performed regression analyses on the basis of the number of MetS components per subject. Obese individuals with prediabetes have decreased activation of the reward-related putamen in the fasting state and decreased activation of the salience- and reward-related insula after eating. Obese individuals with more components of MetS demonstrate decreased activation of the putamen while fasting. All these activations remain significant when corrected for BMI, waist circumference (WC), HbA1c and gender. Decreased activation in the reward-related central nervous system areas among the obese is more pronounced in subjects with prediabetes and MetS. Prospective studies are needed to quantify their contributions to the development of prediabetes/MetS and to study whether they may predispose to the exacerbation of obesity and the development of comorbidities over time.

  2. Anterior prefrontal cortex contributes to action selection through tracking of recent reward trends

    PubMed Central

    Kovach, Christopher K.; Daw, Nathaniel; Rudrauf, David; Tranel, Daniel; O’Doherty, John P.; Adolphs, Ralph

    2012-01-01

    The functions of prefrontal cortex remain enigmatic, especially so for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task-switching and memory. A predominant current theory regarding the most anterior sector, frontopolar cortex (FPC), is that it is involved in exploring alternate courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a 4-armed bandit task known from neuroimaging studies to activate FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments. PMID:22723683

  3. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    NASA Astrophysics Data System (ADS)

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-03-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future.

  4. Separate neural mechanisms underlie choices and strategic preferences in risky decision making.

    PubMed

    Venkatraman, Vinod; Payne, John W; Bettman, James R; Luce, Mary Frances; Huettel, Scott A

    2009-05-28

    Adaptive decision making in real-world contexts often relies on strategic simplifications of decision problems. Yet, the neural mechanisms that shape these strategies and their implementation remain largely unknown. Using an economic decision-making task, we dissociate brain regions that predict specific choices from those predicting an individual's preferred strategy. Choices that maximized gains or minimized losses were predicted by functional magnetic resonance imaging activation in ventromedial prefrontal cortex or anterior insula, respectively. However, choices that followed a simplifying strategy (i.e., attending to overall probability of winning) were associated with activation in parietal and lateral prefrontal cortices. Dorsomedial prefrontal cortex, through differential functional connectivity with parietal and insular cortex, predicted individual variability in strategic preferences. Finally, we demonstrate that robust decision strategies follow from neural sensitivity to rewards. We conclude that decision making reflects more than compensatory interaction of choice-related regions; in addition, specific brain systems potentiate choices depending on strategies, traits, and context.

  5. Cylindromatosis mediates neuronal cell death in vitro and in vivo.

    PubMed

    Ganjam, Goutham K; Terpolilli, Nicole Angela; Diemert, Sebastian; Eisenbach, Ina; Hoffmann, Lena; Reuther, Christina; Herden, Christiane; Roth, Joachim; Plesnila, Nikolaus; Culmsee, Carsten

    2018-01-19

    The tumor-suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme and key regulator of cell proliferation and inflammation. A genome-wide siRNA screen linked CYLD to receptor interacting protein-1 (RIP1) kinase-mediated necroptosis; however, the exact mechanisms of CYLD-mediated cell death remain unknown. Therefore, we investigated the precise role of CYLD in models of neuronal cell death in vitro and evaluated whether CYLD deletion affects brain injury in vivo. In vitro, downregulation of CYLD increased RIP1 ubiquitination, prevented RIP1/RIP3 complex formation, and protected neuronal cells from oxidative death. Similar protective effects were achieved by siRNA silencing of RIP1 or RIP3 or by pharmacological inhibition of RIP1 with necrostatin-1. In vivo, CYLD knockout mice were protected from trauma-induced brain damage compared to wild-type littermate controls. These findings unravel the mechanisms of CYLD-mediated cell death signaling in damaged neurons in vitro and suggest a cell death-mediating role of CYLD in vivo.

  6. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    PubMed

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Separate neural mechanisms underlie choices and strategic preferences in risky decision making

    PubMed Central

    Venkatraman, Vinod; Payne, John W.; Bettman, James R.; Luce, Mary Frances; Huettel, Scott A.

    2011-01-01

    Adaptive decision making in real-world contexts often relies on strategic simplifications of decision problems. Yet, the neural mechanisms that shape these strategies and their implementation remain largely unknown. Using a novel economic decision-making task, we dissociate brain regions that predict specific choices from those predicting an individual’s preferred strategy. Choices that maximized gains or minimized losses were predicted by fMRI activation in ventromedial prefrontal cortex or anterior insula, respectively. However, choices that followed a simplifying strategy (i.e., attending to overall probability of winning) were associated with activation in parietal and lateral prefrontal cortices. Dorsomedial prefrontal cortex, through differential functional connectivity with parietal and insular cortex, predicted individual variability in strategic preferences. Finally, we demonstrate that robust decision strategies follow from neural sensitivity to rewards. We conclude that decision making reflects more than compensatory interaction of choice-related regions; in addition, specific brain systems potentiate choices depending upon strategies, traits, and context. PMID:19477159

  8. Cerebral blood flow is reduced in patients with sepsis syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowton, D.L.; Bertels, N.H.; Prough, D.S.

    The relationship between sepsis-induced CNS dysfunction and changes in brain blood flow remains unknown, and animal studies examining the influence of sepsis on cerebral blood flow (CBF) do not satisfactorily address that relationship. We measured CBF and cerebrovascular reactivity to CO/sub 2/ in nine patients with sepsis syndrome using the /sup 133/Xe clearance technique. Mean CBF was 29.6 +/- 15.8 (SD) ml/100 g.min, significantly lower than the normal age-matched value in this laboratory of 44.9 +/- 6.2 ml/100 g.min (p less than .02). This depression did not correlate with changes in mean arterial pressure. Despite the reduction in CBF, themore » specific reactivity of the cerebral vasculature to changes in CO/sub 2/ was normal, 1.3 +/- 0.9 ml/100 g.min/mm Hg. Brain blood flow is reduced in septic humans; the contribution of this reduction to the metabolic and functional changes observed in sepsis requires further study.« less

  9. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging.

    PubMed

    Shafer, Orie T; Kim, Dong Jo; Dunbar-Yaffe, Richard; Nikolaev, Viacheslav O; Lohse, Martin J; Taghert, Paul H

    2008-04-24

    The neuropeptide PDF is released by sixteen clock neurons in Drosophila and helps maintain circadian activity rhythms by coordinating a network of approximately 150 neuronal clocks. Whether PDF acts directly on elements of this neural network remains unknown. We address this question by adapting Epac1-camps, a genetically encoded cAMP FRET sensor, for use in the living brain. We find that a subset of the PDF-expressing neurons respond to PDF with long-lasting cAMP increases and confirm that such responses require the PDF receptor. In contrast, an unrelated Drosophila neuropeptide, DH31, stimulates large cAMP increases in all PDF-expressing clock neurons. Thus, the network of approximately 150 clock neurons displays widespread, though not uniform, PDF receptivity. This work introduces a sensitive means of measuring cAMP changes in a living brain with subcellular resolution. Specifically, it experimentally confirms the longstanding hypothesis that PDF is a direct modulator of most neurons in the Drosophila clock network.

  10. Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration.

    PubMed

    Tabuchi, Katsuhiko; Chen, Guiquan; Südhof, Thomas C; Shen, Jie

    2009-06-03

    Loss of presenilin function in adult mouse brains causes memory loss and age-related neurodegeneration. Since presenilin possesses gamma-secretase-dependent and -independent activities, it remains unknown which activity is required for presenilin-dependent memory formation and neuronal survival. To address this question, we generated postnatal forebrain-specific nicastrin conditional knock-out (cKO) mice, in which nicastrin, a subunit of gamma-secretase, is inactivated selectively in mature excitatory neurons of the cerebral cortex. nicastrin cKO mice display progressive impairment in learning and memory and exhibit age-dependent cortical neuronal loss, accompanied by astrocytosis, microgliosis, and hyperphosphorylation of the microtubule-associated protein Tau. The neurodegeneration observed in nicastrin cKO mice likely occurs via apoptosis, as evidenced by increased numbers of apoptotic neurons. These findings demonstrate an essential role of nicastrin in the execution of learning and memory and the maintenance of neuronal survival in the brain and suggest that presenilin functions in memory and neuronal survival via its role as a gamma-secretase subunit.

  11. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation.

    PubMed

    Fogel, Stuart; Vien, Catherine; Karni, Avi; Benali, Habib; Carrier, Julie; Doyon, Julien

    2017-01-01

    Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Lateralized responses during covert attention are modulated by target eccentricity.

    PubMed

    Bahramisharif, Ali; Heskes, Tom; Jensen, Ole; van Gerven, Marcel A J

    2011-03-10

    Various studies have demonstrated that covert attention to different locations in the visual field can be used as a control signal for brain computer interfacing. It is well known that when covert attention is directed to the left visual hemifield, posterior alpha activity decreases in the right hemisphere while simultaneously increasing in the left hemisphere and vice versa. However, it remains unknown if and how the classical lateralization pattern depends on the eccentricity of the locations to which one attends. In this paper we study the effect of target eccentricity on the performance of a brain computer interface system that is driven by covert attention. Results show that the lateralization pattern becomes more pronounced as target eccentricity increases and suggest that in the current design the minimum eccentricity for having an acceptable classification performance for two targets at equal distance from fixation in opposite hemifields is about 6° of visual angle. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Prefrontal atrophy, disrupted NREM slow waves, and impaired hippocampal-dependent memory in aging

    PubMed Central

    Mander, Bryce A.; Rao, Vikram; Lu, Brandon; Saletin, Jared M.; Lindquist, John R.; Ancoli-Israel, Sonia; Jagust, William; Walker, Matthew P.

    2014-01-01

    Aging has independently been associated with regional brain atrophy, reduced non-rapid eye movement (NREM) slow-wave activity (SWA), and impaired long-term retention of episodic memories. However, that the interaction of these factors represents a neuropatholgical pathway associated with cognitive decline in later life remains unknown. Here, we show that age-related medial prefrontal cortex (mPFC) grey-matter atrophy is associated with reduced NREM SWA activity in older adults, the extent to which statistically mediates the impairment of overnight sleep-dependent memory retention. Moreover, this memory impairment was further associated with persistent hippocampal activation and reduced task-related hippocampal-prefrontal cortex connectivity, potentially representing impoverished hippocampal-neocortical memory transformation. Together, these data support a model in which age-related mPFC atrophy diminishes SWA, the functional consequence of which is impaired long-term memory. Such findings suggest that sleep disruption in the elderly, mediated by structural brain changes, represent a novel contributing factor to age-related cognitive decline in later life. PMID:23354332

  14. Pediatric traumatic brain injury: language outcomes and their relationship to the arcuate fasciculus.

    PubMed

    Liégeois, Frédérique J; Mahony, Kate; Connelly, Alan; Pigdon, Lauren; Tournier, Jacques-Donald; Morgan, Angela T

    2013-12-01

    Pediatric traumatic brain injury (TBI) may result in long-lasting language impairments alongside dysarthria, a motor-speech disorder. Whether this co-morbidity is due to the functional links between speech and language networks, or to widespread damage affecting both motor and language tracts, remains unknown. Here we investigated language function and diffusion metrics (using diffusion-weighted tractography) within the arcuate fasciculus, the uncinate fasciculus, and the corpus callosum in 32 young people after TBI (approximately half with dysarthria) and age-matched healthy controls (n=17). Only participants with dysarthria showed impairments in language, affecting sentence formulation and semantic association. In the whole TBI group, sentence formulation was best predicted by combined corpus callosum and left arcuate volumes, suggesting this "dual blow" seriously reduces the potential for functional reorganisation. Word comprehension was predicted by fractional anisotropy in the right arcuate. The co-morbidity between dysarthria and language deficits therefore seems to be the consequence of multiple tract damage. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Sleep confers a benefit for retention of statistical language learning in 6.5month old infants.

    PubMed

    Simon, Katharine N S; Werchan, Denise; Goldstein, Michael R; Sweeney, Lucia; Bootzin, Richard R; Nadel, Lynn; Gómez, Rebecca L

    2017-04-01

    Infants show robust ability to track transitional probabilities within language and can use this information to extract words from continuous speech. The degree to which infants remember these words across a delay is unknown. Given well-established benefits of sleep on long-term memory retention in adults, we examine whether sleep similarly facilitates memory in 6.5month olds. Infants listened to an artificial language for 7minutes, followed by a period of sleep or wakefulness. After a time-matched delay for sleep and wakefulness dyads, we measured retention using the head-turn-preference procedure. Infants who slept retained memory for the extracted words that was prone to interference during the test. Infants who remained awake showed no retention. Within the nap group, retention correlated with three electrophysiological measures (1) absolute theta across the brain, (2) absolute alpha across the brain, and (3) greater fronto-central slow wave activity (SWA). Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Invited Commentary on "Centers for Disease Control and Prevention Report to Congress: Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation".

    PubMed

    Flanagan, Steven R

    2015-10-01

    Traumatic brain injury (TBI) is a significant health problem, afflicting millions of people worldwide. Despite increasing awareness of its burden on patients, families, and society, much remains unknown regarding TBI incidence, how best to assess outcomes post-injury, and the most effective means of providing rehabilitation services. The Centers for Disease Control and Prevention recently published recommendations to Congress that address these critical knowledge gaps. The report is the end product of work completed by a notable panel of experts and stakeholders that makes overarching recommendations aimed at addressing knowledge gaps in TBI, with the ultimate goal of decreasing injury occurrence and improving outcomes. It is a succinct and powerful report that should serve as a call to action to fund innovative research and reverse a trend in health care that restricts access to rehabilitation services. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. A nap to recap or how reward regulates hippocampal-prefrontal memory networks during daytime sleep in humans

    PubMed Central

    Igloi, Kinga; Gaggioni, Giulia; Sterpenich, Virginie; Schwartz, Sophie

    2015-01-01

    Sleep plays a crucial role in the consolidation of newly acquired memories. Yet, how our brain selects the noteworthy information that will be consolidated during sleep remains largely unknown. Here we show that post-learning sleep favors the selectivity of long-term consolidation: when tested three months after initial encoding, the most important (i.e., rewarded, strongly encoded) memories are better retained, and also remembered with higher subjective confidence. Our brain imaging data reveals that the functional interplay between dopaminergic reward regions, the prefrontal cortex and the hippocampus contributes to the integration of rewarded associative memories. We further show that sleep spindles strengthen memory representations based on reward values, suggesting a privileged replay of information yielding positive outcomes. These findings demonstrate that post-learning sleep determines the neural fate of motivationally-relevant memories and promotes a value-based stratification of long-term memory stores. DOI: http://dx.doi.org/10.7554/eLife.07903.001 PMID:26473618

  18. The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.

    PubMed

    Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao

    2015-09-01

    Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.

  19. A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center.

    PubMed

    Suzuki, Daichi G; Murakami, Yasunori; Escriva, Hector; Wada, Hiroshi

    2015-02-01

    Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions. © 2014 Wiley Periodicals, Inc.

  20. Cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactivity in the brain of the CCK-1 receptor deficient obese OLETF rat

    PubMed Central

    Abraham, Hajnalka; Covasa, Mihai; Hajnal, Andras

    2013-01-01

    Cocaine- and amphetamine regulated transcript (CART) peptide is expressed in brain areas involved in homeostatic regulation and reward. CART has been shown to reduce food intake but the underlying mechanisms and the relevance of this effect to obesity yet remain unknown. Therefore, we used immunohistochemistry to investigate expression of CART peptide in various brain regions of the obese Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking the CCK-1 receptor. Analysis revealed that whereas the distribution of CART peptide-immunoreactive neurons and axonal networks was identical in OLETF rats and lean controls, intensity of CART immunoreactivity was significantly reduced in the rostral part of the nucleus accumbens (p<0.01), the basolateral complex of the amygdala (p<0.05), and the rostro-medial nucleus of solitary tract (p<0.001) of the OLETF rats. These areas are involved in reward and integration of taste and viscerosensory information and have been previously associated with altered functions in this strain. The findings suggest that in addition to previously described deficits in peripheral satiety signals and augmented orexigenic regulation, the anorectic effect of CART peptide may also be diminished in OLETF rats. PMID:19533109

  1. Infiltration of the basal ganglia by brain tumors is associated with the development of co-dominant language function on fMRI.

    PubMed

    Shaw, Katharina; Brennan, Nicole; Woo, Kaitlin; Zhang, Zhigang; Young, Robert; Peck, Kyung K; Holodny, Andrei

    2016-01-01

    Studies have shown that some patients with left-hemispheric brain tumors have an increased propensity for developing right-sided language support. However, the precise trigger for establishing co-dominant language function in brain tumor patients remains unknown. We analyzed the MR scans of patients with left-hemispheric tumors and either co-dominant (n=35) or left-hemisphere dominant (n=35) language function on fMRI to investigate anatomical factors influencing hemispheric language dominance. Of eleven neuroanatomical areas evaluated for tumor involvement, the basal ganglia was significantly correlated with co-dominant language function (p<0.001). Moreover, among patients whose tumors invaded the basal ganglia, those with language co-dominance performed significantly better on the Boston Naming Test, a clinical measure of aphasia, compared to their left-lateralized counterparts (56.5 versus 36.5, p=0.025). While further studies are needed to elucidate the role of the basal ganglia in establishing co-dominance, our results suggest that reactive co-dominance may afford a behavioral advantage to patients with left-hemispheric tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Fragile X Protein binds mRNAs involved in cancer progression and modulates metastasis formation

    PubMed Central

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; Fata, Giorgio La; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-01-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. PMID:24092663

  3. Progranulin Is a Chemoattractant for Microglia and Stimulates Their Endocytic Activity

    PubMed Central

    Pickford, Fiona; Marcus, Jacob; Camargo, Luiz Miguel; Xiao, Qiurong; Graham, Danielle; Mo, Jan-Rung; Burkhardt, Matthew; Kulkarni, Vinayak; Crispino, Jamie; Hering, Heike; Hutton, Michael

    2011-01-01

    Mutations resulting in progranulin haploinsufficiency cause disease in patients with a subset of frontotemporal lobar degeneration; however, the biological functions of progranulin in the brain remain unknown. To address this subject, the present study initially assessed changes in gene expression and cytokine secretion in rat primary cortical neurons treated with progranulin. Molecular pathways enriched in the progranulin gene set included cell adhesion and cell motility pathways and pathways involved in growth and development. Secretion of cytokines and several chemokines linked to chemoattraction but not inflammation were also increased from progranulin-treated primary neurons. Therefore, whether progranulin is involved in recruitment of immune cells in the brain was investigated. Localized lentiviral expression of progranulin in C57BL/6 mice resulted in an increase of Iba1-positive microglia around the injection site. Moreover, progranulin alone was sufficient to promote migration of primary mouse microglia in vitro. Primary microglia and C4B8 cells demonstrated more endocytosis of amyloid β1-42 when treated with progranulin. These data demonstrate that progranulin acts as a chemoattractant in the brain to recruit or activate microglia and can increase endocytosis of extracellular peptides such as amyloid β. PMID:21224065

  4. Neural correlates of post-conventional moral reasoning: a voxel-based morphometry study.

    PubMed

    Prehn, Kristin; Korczykowski, Marc; Rao, Hengyi; Fang, Zhuo; Detre, John A; Robertson, Diana C

    2015-01-01

    Going back to Kohlberg, moral development research affirms that people progress through different stages of moral reasoning as cognitive abilities mature. Individuals at a lower level of moral reasoning judge moral issues mainly based on self-interest (personal interests schema) or based on adherence to laws and rules (maintaining norms schema), whereas individuals at the post-conventional level judge moral issues based on deeper principles and shared ideals. However, the extent to which moral development is reflected in structural brain architecture remains unknown. To investigate this question, we used voxel-based morphometry and examined the brain structure in a sample of 67 Master of Business Administration (MBA) students. Subjects completed the Defining Issues Test (DIT-2) which measures moral development in terms of cognitive schema preference. Results demonstrate that subjects at the post-conventional level of moral reasoning were characterized by increased gray matter volume in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex, compared with subjects at a lower level of moral reasoning. Our findings support an important role for both cognitive and emotional processes in moral reasoning and provide first evidence for individual differences in brain structure according to the stages of moral reasoning first proposed by Kohlberg decades ago.

  5. Changes in Regional Brain Homogeneity Induced by Electro-Acupuncture Stimulation at the Baihui Acupoint in Healthy Subjects: A Functional Magnetic Resonance Imaging Study.

    PubMed

    Deng, Demao; Duan, Gaoxiong; Liao, Hai; Liu, Yanfei; Wang, Geliang; Liu, Huimei; Tang, Lijun; Pang, Yong; Tao, Jien; He, Xin; Yuan, Wenzhao; Liu, Peng

    2016-10-01

    According to the Traditional Chinese Medicine theory of acupuncture, Baihui (GV20) is applied to treat neurological and psychiatric disorders. However, the relationships between neural responses and GV20 remain unknown. Thus, the main aim of this study was to examine the brain responses induced by electro-acupuncture stimulation (EAS) at GV20. Functional magnetic resonance imaging (fMRI) was performed in 33 healthy subjects. Based on the non-repeated event-related (NRER) paradigm, group differences were examined between GV20 and a sham acupoint using the regional homogeneity (ReHo) method. Compared with the sham acupoint, EAS at GV20 induced increased ReHo in regions including the orbital frontal cortex (OFC), middle cingulate cortex (MCC), precentral cortex, and precuneus (preCUN). Decreased ReHo was found in the anterior cingulate cortex (ACC), supplementary motor area (SMA), thalamus, putamen, and cerebellum. The current findings provide preliminary neuroimaging evidence to indicate that EAS at GV20 could induce a specific pattern of neural responses by analysis of ReHo of brain activity. These findings might improve the understanding of mechanisms of acupuncture stimulation at GV20.

  6. Function and regulation of AUTS2, a gene implicated in autism and human evolution.

    PubMed

    Oksenberg, Nir; Stevison, Laurie; Wall, Jeffrey D; Ahituv, Nadav

    2013-01-01

    Nucleotide changes in the AUTS2 locus, some of which affect only noncoding regions, are associated with autism and other neurological disorders, including attention deficit hyperactivity disorder, epilepsy, dyslexia, motor delay, language delay, visual impairment, microcephaly, and alcohol consumption. In addition, AUTS2 contains the most significantly accelerated genomic region differentiating humans from Neanderthals, which is primarily composed of noncoding variants. However, the function and regulation of this gene remain largely unknown. To characterize auts2 function, we knocked it down in zebrafish, leading to a smaller head size, neuronal reduction, and decreased mobility. To characterize AUTS2 regulatory elements, we tested sequences for enhancer activity in zebrafish and mice. We identified 23 functional zebrafish enhancers, 10 of which were active in the brain. Our mouse enhancer assays characterized three mouse brain enhancers that overlap an ASD-associated deletion and four mouse enhancers that reside in regions implicated in human evolution, two of which are active in the brain. Combined, our results show that AUTS2 is important for neurodevelopment and expose candidate enhancer sequences in which nucleotide variation could lead to neurological disease and human-specific traits.

  7. Reason, emotion and decision-making: risk and reward computation with feeling.

    PubMed

    Quartz, Steven R

    2009-05-01

    Many models of judgment and decision-making posit distinct cognitive and emotional contributions to decision-making under uncertainty. Cognitive processes typically involve exact computations according to a cost-benefit calculus, whereas emotional processes typically involve approximate, heuristic processes that deliver rapid evaluations without mental effort. However, it remains largely unknown what specific parameters of uncertain decision the brain encodes, the extent to which these parameters correspond to various decision-making frameworks, and their correspondence to emotional and rational processes. Here, I review research suggesting that emotional processes encode in a precise quantitative manner the basic parameters of financial decision theory, indicating a reorientation of emotional and cognitive contributions to risky choice.

  8. Gliomatosis cerebri: A consensus summary report from the First International Gliomatosis cerebri Group Meeting, March 26-27, 2015, Paris, France.

    PubMed

    Greenfield, Jeffrey P; Castañeda Heredia, Alicia; George, Emilie; Kieran, Mark W; Morales La Madrid, Andres

    2016-12-01

    Gliomatosis cerebri (GC) is a universally fatal extensive and diffuse infiltration of brain parenchyma by a glial tumor. Many aspects of this phenomenon remain unknown. The First International Gliomatosis cerebri Group Meeting had the following goals: refine the clinical and radiologic diagnostic criteria for GC, suggest appropriate diagnostic procedures, standardize tissue manipulation for histologic and molecular characterization, and prioritize relevant preclinical projects. Also, general treatment recommendations were outlined for the pediatric population. Importantly, this meeting was the starting point for meaningful collaborative international research projects. This review is a consensus summary of discussions shared and conclusions derived from this meeting. © 2016 Wiley Periodicals, Inc.

  9. Effects of Chronic Consumption of Sugar-Enriched Diets on Brain Metabolism and Insulin Sensitivity in Adult Yucatan Minipigs.

    PubMed

    Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David

    2016-01-01

    Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these brain functional characteristics.

  10. Why musical memory can be preserved in advanced Alzheimer's disease.

    PubMed

    Jacobsen, Jörn-Henrik; Stelzer, Johannes; Fritz, Thomas Hans; Chételat, Gael; La Joie, Renaud; Turner, Robert

    2015-08-01

    Musical memory is considered to be partly independent from other memory systems. In Alzheimer's disease and different types of dementia, musical memory is surprisingly robust, and likewise for brain lesions affecting other kinds of memory. However, the mechanisms and neural substrates of musical memory remain poorly understood. In a group of 32 normal young human subjects (16 male and 16 female, mean age of 28.0 ± 2.2 years), we performed a 7 T functional magnetic resonance imaging study of brain responses to music excerpts that were unknown, recently known (heard an hour before scanning), and long-known. We used multivariate pattern classification to identify brain regions that encode long-term musical memory. The results showed a crucial role for the caudal anterior cingulate and the ventral pre-supplementary motor area in the neural encoding of long-known as compared with recently known and unknown music. In the second part of the study, we analysed data of three essential Alzheimer's disease biomarkers in a region of interest derived from our musical memory findings (caudal anterior cingulate cortex and ventral pre-supplementary motor area) in 20 patients with Alzheimer's disease (10 male and 10 female, mean age of 68.9 ± 9.0 years) and 34 healthy control subjects (14 male and 20 female, mean age of 68.1 ± 7.2 years). Interestingly, the regions identified to encode musical memory corresponded to areas that showed substantially minimal cortical atrophy (as measured with magnetic resonance imaging), and minimal disruption of glucose-metabolism (as measured with (18)F-fluorodeoxyglucose positron emission tomography), as compared to the rest of the brain. However, amyloid-β deposition (as measured with (18)F-flobetapir positron emission tomography) within the currently observed regions of interest was not substantially less than in the rest of the brain, which suggests that the regions of interest were still in a very early stage of the expected course of biomarker development in these regions (amyloid accumulation → hypometabolism → cortical atrophy) and therefore relatively well preserved. Given the observed overlap of musical memory regions with areas that are relatively spared in Alzheimer's disease, the current findings may thus explain the surprising preservation of musical memory in this neurodegenerative disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Associations Between White Matter Microstructure and Infants’ Working Memory

    PubMed Central

    Short, Sarah J.; Elison, Jed T.; Goldman, Barbara Davis; Styner, Martin; Gu, Hongbin; Connelly, Mark; Maltbie, Eric; Woolson, Sandra; Lin, Weili; Gerig, Guido; Reznick, J. Steven; Gilmore, John H.

    2013-01-01

    Working memory emerges in infancy and plays a privileged role in subsequent adaptive cognitive development. The neural networks important for the development of working memory during infancy remain unknown. We used diffusion tensor imaging (DTI) and deterministic fiber tracking to characterize the microstructure of white matter fiber bundles hypothesized to support working memory in 12-month-old infants (n=73). Here we show robust associations between infants’ visuospatial working memory performance and microstructural characteristics of widespread white matter. Significant associations were found for white matter tracts that connect brain regions known to support working memory in older children and adults (genu, anterior and superior thalamic radiations, anterior cingulum, arcuate fasciculus, and the temporal-parietal segment). Better working memory scores were associated with higher FA and lower RD values in these selected white matter tracts. These tract-specific brain-behavior relationships accounted for a significant amount of individual variation above and beyond infants’ gestational age and developmental level, as measured with the Mullen Scales of Early Learning. Working memory was not associated with global measures of brain volume, as expected, and few associations were found between working memory and control white matter tracts. To our knowledge, this study is among the first demonstrations of brain-behavior associations in infants using quantitative tractography. The ability to characterize subtle individual differences in infant brain development associated with complex cognitive functions holds promise for improving our understanding of normative development, biomarkers of risk, experience-dependent learning and neuro-cognitive periods of developmental plasticity. PMID:22989623

  12. Microglial priming through the lung–brain axis: the role of air pollution–induced circulating factors

    PubMed Central

    Mumaw, Christen L.; Levesque, Shannon; McGraw, Constance; Robertson, Sarah; Lucas, Selita; Stafflinger, Jillian E; Campen, Matthew J.; Hall, Pamela; Norenberg, Jeffrey P.; Anderson, Tamara; Lund, Amie K.; McDonald, Jacob D.; Ottens, Andrew K.; Block, Michelle L.

    2016-01-01

    Air pollution is implicated in neurodegenerative disease risk and progression and in microglial activation, but the mechanisms are unknown. In this study, microglia remained activated 24 h after ozone (O3) exposure in rats, suggesting a persistent signal from lung to brain. Ex vivo analysis of serum from O3-treated rats revealed an augmented microglial proinflammatory response and β-amyloid 42 (Aβ42) neurotoxicity independent of traditional circulating cytokines, where macrophage-1 antigen-mediated microglia proinflammatory priming. Aged mice exhibited reduced pulmonary immune profiles and the most pronounced neuroinflammation and microglial activation in response to mixed vehicle emissions. Consistent with this premise, cluster of differentiation 36 (CD36)−/− mice exhibited impaired pulmonary immune responses concurrent with augmented neuroinflammation and microglial activation in response to O3. Further, aging glia were more sensitive to the proinflammatory effects of O3 serum. Together, these findings outline the lung–brain axis, where air pollutant exposures result in circulating, cytokine-independent signals present in serum that elevate the brain proinflammatory milieu, which is linked to the pulmonary response and is further augmented with age.—Mumaw, C. L., Levesque, S., McGraw, C., Robertson, S., Lucas, S., Stafflinger, J. E., Campen, M. J., Hall, P., Norenberg, J. P., Anderson, T., Lund, A. K., McDonald, J. D., Ottens, A. K., Block, M. L. Microglial priming through the lung–brain axis: the role of air pollution–induced circulating factors. PMID:26864854

  13. Ownership of an artificial limb induced by electrical brain stimulation

    PubMed Central

    Collins, Kelly L.; Cronin, Jeneva; Olson, Jared D.; Ehrsson, H. Henrik; Ojemann, Jeffrey G.

    2017-01-01

    Replacing the function of a missing or paralyzed limb with a prosthetic device that acts and feels like one’s own limb is a major goal in applied neuroscience. Recent studies in nonhuman primates have shown that motor control and sensory feedback can be achieved by connecting sensors in a robotic arm to electrodes implanted in the brain. However, it remains unknown whether electrical brain stimulation can be used to create a sense of ownership of an artificial limb. In this study on two human subjects, we show that ownership of an artificial hand can be induced via the electrical stimulation of the hand section of the somatosensory (SI) cortex in synchrony with touches applied to a rubber hand. Importantly, the illusion was not elicited when the electrical stimulation was delivered asynchronously or to a portion of the SI cortex representing a body part other than the hand, suggesting that multisensory integration according to basic spatial and temporal congruence rules is the underlying mechanism of the illusion. These findings show that the brain is capable of integrating “natural” visual input and direct cortical-somatosensory stimulation to create the multisensory perception that an artificial limb belongs to one’s own body. Thus, they serve as a proof of concept that electrical brain stimulation can be used to “bypass” the peripheral nervous system to induce multisensory illusions and ownership of artificial body parts, which has important implications for patients who lack peripheral sensory input due to spinal cord or nerve lesions. PMID:27994147

  14. Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism

    NASA Astrophysics Data System (ADS)

    Shou, Guofa; Mosconi, Matthew W.; Wang, Jun; Ethridge, Lauren E.; Sweeney, John A.; Ding, Lei

    2017-08-01

    Objective. Abnormal local and long-range brain connectivity have been widely reported in autism spectrum disorder (ASD), yet the nature of these abnormalities and their functional relevance at distinct cortical rhythms remains unknown. Investigations of intrinsic connectivity networks (ICNs) and their coherence across whole brain networks hold promise for determining whether patterns of functional connectivity abnormalities vary across frequencies and networks in ASD. In the present study, we aimed to probe atypical intrinsic brain connectivity networks in ASD from resting-state electroencephalography (EEG) data via characterizing the whole brain network. Approach. Connectivity within individual ICNs (measured by spectral power) and between ICNs (measured by coherence) were examined at four canonical frequency bands via a time-frequency independent component analysis on high-density EEG, which were recorded from 20 ASD and 20 typical developing (TD) subjects during an eyes-closed resting state. Main results. Among twelve identified electrophysiological ICNs, individuals with ASD showed hyper-connectivity in individual ICNs and hypo-connectivity between ICNs. Functional connectivity alterations in ASD were more severe in the frontal lobe and the default mode network (DMN) and at low frequency bands. These functional connectivity measures also showed abnormal age-related associations in ICNs related to frontal, temporal and motor regions in ASD. Significance. Our findings suggest that ASD is characterized by the opposite directions of abnormalities (i.e. hypo- and hyper-connectivity) in the hierarchical structure of the whole brain network, with more impairments in the frontal lobe and the DMN at low frequency bands, which are critical for top-down control of sensory systems, as well as for both cognition and social skills.

  15. 'Stealth' nanoparticles evade neural immune cells but also evade major brain cell populations: Implications for PEG-based neurotherapeutics.

    PubMed

    Jenkins, Stuart I; Weinberg, Daniel; Al-Shakli, Arwa F; Fernandes, Alinda R; Yiu, Humphrey H P; Telling, Neil D; Roach, Paul; Chari, Divya M

    2016-02-28

    Surface engineering to control cell behavior is of high interest across the chemical engineering, drug delivery and biomaterial communities. Defined chemical strategies are necessary to tailor nanoscale protein interactions/adsorption, enabling control of cell behaviors for development of novel therapeutic strategies. Nanoparticle-based therapies benefit from such strategies but particle targeting to sites of neurological injury remains challenging due to circulatory immune clearance. As a strategy to overcome this barrier, the use of stealth coatings can reduce immune clearance and prolong circulatory times, thereby enhancing therapeutic capacity. Polyethylene glycol (PEG) is the most widely-used stealth coating and facilitates particle accumulation in the brain. However, once within the brain, the mode of handling of PEGylated particles by the resident immune cells of the brain itself (the 'microglia') is unknown. This is a critical question as it is well established that microglia avidly sequester nanoparticles, limiting their bioavailability and posing a major translational barrier. If PEGylation can be proved to promote evasion of microglia, then this information will be of high value in developing tailored nanoparticle-based therapies for neurological applications. Here, we have conducted the first comparative study of uptake of PEGylated particles by all the major (immune and non-immune) brain cell types. We prove for the first time that PEGylated nanoparticles evade major brain cell populations - a phenomenon which will enhance extracellular bioavailability. We demonstrate changes in protein coronas around these particles within biological media, and discuss how surface chemistry presentation may affect this process and subsequent cellular interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Brain temperature in volunteers subjected to intranasal cooling.

    PubMed

    Covaciu, L; Weis, J; Bengtsson, C; Allers, M; Lunderquist, A; Ahlström, H; Rubertsson, S

    2011-08-01

    Intranasal cooling can be used to initiate therapeutic hypothermia. However, direct measurement of brain temperature is difficult and the intra-cerebral distribution of temperature changes with cooling is unknown. The purpose of this study was to measure the brain temperature of human volunteers subjected to intranasal cooling using non-invasive magnetic resonance (MR) methods. Intranasal balloons catheters circulated with saline at 20°C were applied for 60 min in ten awake volunteers. No sedation was used. Brain temperature changes were measured and mapped using MR spectroscopic imaging (MRSI) and phase-mapping techniques. Heart rate and blood pressure were monitored throughout the experiment. Rectal temperature was measured before and after the cooling. Mini Mental State Examination (MMSE) test and nasal inspection were done before and after the cooling. Questionnaires about the subjects' personal experience were completed after the experiment. Brain temperature decrease measured by MRSI was -1.7 ± 0.8°C and by phase-mapping -1.8 ± 0.9°C (n = 9) at the end of cooling. Spatial distribution of temperature changes was relatively uniform. Rectal temperature decreased by -0.5 ± 0.3°C (n = 5). The physiological parameters were stable and no shivering was reported. The volunteers remained alert during cooling and no cognitive dysfunctions were apparent in the MMSE test. Postcooling nasal examination detected increased nasal secretion in nine of the ten volunteers. Volunteers' acceptance of the method was good. Both MR techniques revealed brain temperature reductions after 60 min of intranasal cooling with balloons circulated with saline at 20°C in awake, unsedated volunteers.

  17. Source Space Estimation of Oscillatory Power and Brain Connectivity in Tinnitus

    PubMed Central

    Zobay, Oliver; Palmer, Alan R.; Hall, Deborah A.; Sereda, Magdalena; Adjamian, Peyman

    2015-01-01

    Tinnitus is the perception of an internally generated sound that is postulated to emerge as a result of structural and functional changes in the brain. However, the precise pathophysiology of tinnitus remains unknown. Llinas’ thalamocortical dysrhythmia model suggests that neural deafferentation due to hearing loss causes a dysregulation of coherent activity between thalamus and auditory cortex. This leads to a pathological coupling of theta and gamma oscillatory activity in the resting state, localised to the auditory cortex where normally alpha oscillations should occur. Numerous studies also suggest that tinnitus perception relies on the interplay between auditory and non-auditory brain areas. According to the Global Brain Model, a network of global fronto—parietal—cingulate areas is important in the generation and maintenance of the conscious perception of tinnitus. Thus, the distress experienced by many individuals with tinnitus is related to the top—down influence of this global network on auditory areas. In this magnetoencephalographic study, we compare resting-state oscillatory activity of tinnitus participants and normal-hearing controls to examine effects on spectral power as well as functional and effective connectivity. The analysis is based on beamformer source projection and an atlas-based region-of-interest approach. We find increased functional connectivity within the auditory cortices in the alpha band. A significant increase is also found for the effective connectivity from a global brain network to the auditory cortices in the alpha and beta bands. We do not find evidence of effects on spectral power. Overall, our results provide only limited support for the thalamocortical dysrhythmia and Global Brain models of tinnitus. PMID:25799178

  18. Decomposing Gratitude: Representation and Integration of Cognitive Antecedents of Gratitude in the Brain.

    PubMed

    Yu, Hongbo; Gao, Xiaoxue; Zhou, Yuanyuan; Zhou, Xiaolin

    2018-05-23

    Gratitude is a typical social-moral emotion that plays a crucial role in maintaining human cooperative interpersonal relationship. Although neural correlates of gratitude have been investigated, the neurocognitive processes that lead to gratitude, namely, the representation and integration of its cognitive antecedents, remain largely unknown. Here, we combined fMRI and a human social interactive task to investigate how benefactor's cost and beneficiary's benefit, two critical antecedents of gratitude, are encoded and integrated in beneficiary's brain, and how the neural processing of gratitude is converted to reciprocity. A coplayer decided whether to help a human participant (either male or female) avoid pain at his/her own monetary cost; the participants could transfer monetary points to the benefactor with the knowledge that the benefactor was unaware of this transfer. By independently manipulating monetary cost and the degree of pain reduction, we could identify the neural signatures of benefactor's cost and recipient's benefit and examine how they were integrated. Recipient's self-benefit was encoded in reward-sensitive regions (e.g., ventral striatum), whereas benefactor-cost was encoded in regions associated with mentalizing (e.g., temporoparietal junction). Gratitude was represented in perigenual anterior cingulate cortex (pgACC), the strength of which correlated with trait gratitude. Dynamic causal modeling showed that the neural signals representing benefactor-cost and self-benefit passed to pgACC via effective connectivities, suggesting an integrative role of pgACC in generating gratitude. Moreover, gyral ACC plays an intermediary role in converting gratitude representation into reciprocal behaviors. Our findings provide a neural mechanistic account of gratitude and its role in social-moral life. SIGNIFICANCE STATEMENT Gratitude plays an integral role in subjective well-being and harmonious interpersonal relationships. However, the neurocognitive processes through which various components and antecedents of gratitude are integrated remain largely unknown. We developed a new interpersonal paradigm to independently and parametrically manipulate two antecedents of gratitude in a helping context, namely, the benefit to beneficiary and the cost to benefactor, to examine their representation and integration in the beneficiary's brain using fMRI. We found the neural encoding of self-benefit and benefactor-cost in reward- and mentalizing-related brain areas, respectively. More importantly, by examining effective connectivity, we showed that these componential signals are passed to perigenual anterior cingulate cortex, which tracks trial-by-trial gratitude levels. Our study thus provides a neural mechanistic account of gratitude. Copyright © 2018 the authors 0270-6474/18/384887-13$15.00/0.

  19. Spatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy

    PubMed Central

    Truccolo, Wilson; Wang, Jing; Nurmikko, Arto V.

    2014-01-01

    Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger absence seizures. Most previous studies have been purely correlational, and it remains unclear whether epileptiform events induced by rhythmic stimulation (e.g., sensory/electrical) mimic actual spontaneous seizures, especially regarding their spatiotemporal dynamics. In this study, we used a novel combination of intracortical optogenetic stimulation and microelectrode array recordings in freely moving WAG/Rij rats, a model of absence epilepsy with a cortical focus in the somatosensory cortex (SI). We report three main findings: 1) Brief rhythmic bursting, evoked by optical stimulation of neocortical excitatory neurons at frequencies around 10 Hz, induced seizures consisting of self-sustained spike-wave discharges (SWDs) for about 10% of stimulation trials. The probability of inducing seizures was frequency-dependent, reaching a maximum at 10 Hz. 2) Local field potential power before stimulation and response amplitudes during stimulation both predicted seizure induction, demonstrating a modulatory effect of brain states and neural excitation levels. 3) Evoked responses during stimulation propagated as cortical waves, likely reaching the cortical focus, which in turn generated self-sustained SWDs after stimulation was terminated. Importantly, SWDs during induced and spontaneous seizures propagated with the same spatiotemporal dynamics. Our findings demonstrate that local rhythmic bursting of excitatory neurons in neocortex at particular frequencies, under susceptible ongoing brain states, is sufficient to trigger primary generalized seizures with stereotypical spatiotemporal dynamics. PMID:25552645

  20. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders*

    PubMed Central

    Li, Min; Quan, Chao; Toth, Rachel; Campbell, David G.; MacKintosh, Carol; Wang, Hong Yu; Chen, Shuai

    2015-01-01

    Diabetes is strongly associated with cognitive decline, but the molecular reasons are unknown. We found that fasting and peripheral insulin promote phosphorylation and dephosphorylation, respectively, of specific residues on brain proteins including cytoskeletal regulators such as slit-robo GTPase-activating protein 3 (srGAP3) and microtubule affinity-regulating protein kinases (MARKs), in which deficiency or dysregulation is linked to neurological disorders. Fasting activates protein kinase A (PKA) but not PKB/Akt signaling in the brain, and PKA can phosphorylate the purified srGAP3. The phosphorylation of srGAP3 and MARKs were increased when PKA signaling was activated in primary neurons. Knockdown of PKA decreased the phosphorylation of srGAP3. Furthermore, WAVE1, a protein kinase A-anchoring protein, formed a complex with srGAP3 and PKA in the brain of fasted mice to facilitate the phosphorylation of srGAP3 by PKA. Although brain cells have insulin receptors, our findings are inconsistent with the down-regulation of phosphorylation of target proteins being mediated by insulin signaling within the brain. Rather, our findings infer that systemic insulin, through a yet unknown mechanism, inhibits PKA or protein kinase(s) with similar specificity and/or activates an unknown phosphatase in the brain. Ser858 of srGAP3 was identified as a key regulatory residue in which phosphorylation by PKA enhanced the GAP activity of srGAP3 toward its substrate, Rac1, in cells, thereby inhibiting the action of this GTPase in cytoskeletal regulation. Our findings reveal novel mechanisms linking peripheral insulin sensitivity with cytoskeletal remodeling in neurons, which may help to explain the association of diabetes with neurological disorders such as Alzheimer disease. PMID:26499801

  1. The proteins interacting with C-terminal of μ receptor are identified by bacterial two-hybrid system from brain cDNA library in morphine-dependent rats.

    PubMed

    Zhou, Peilan; Jiang, Jiebing; Dong, Zhaoqi; Yan, Hui; You, Zhendong; Su, Ruibin; Gong, Zehui

    2015-12-15

    Opioid addiction is associated with long-term adaptive changes in the brain that involve protein expression. The carboxyl-terminal of the μ opioid receptor (MOR-C) is important for receptor signal transduction under opioid treatment. However, the proteins that interact with MOR-C after chronic morphine exposure remain unknown. The brain cDNA library of chronic morphine treatment rats was screened using rat MOR-C to investigate the regulator of opioids dependence in the present study. The brain cDNA library from chronic morphine-dependent rats was constructed using the SMART (Switching Mechanism At 5' end of RNA Transcript) technique. Bacterial two-hybrid system was used to screening the rat MOR-C interacting proteins from the cDNA library. RT-qPCR and immunoblotting were used to determine the variation of MOR-C interacting proteins in rat brain after chronic morphine treatment. Column overlay assays, immunocytochemistry and coimmunoprecipitation were used to demonstrate the interaction of MOR-C and p75NTR-associated cell death executor (NADE). 21 positive proteins, including 19 known proteins were screened to interact with rat MOR-C. Expression of several of these proteins was altered in specific rat brain regions after chronic morphine treatment. Among these proteins, NADE was confirmed to interact with rat MOR-C by in vitro protein-protein binding and coimmunoprecipitation in Chinese hamster ovary (CHO) cells and rat brain with or without chronic morphine treatment. Understanding the rat MOR-C interacting proteins and the proteins variation under chronic morphine treatment may be critical for determining the pathophysiological basis of opioid tolerance and addiction. Copyright © 2015. Published by Elsevier Inc.

  2. Inhibition of CD147 (Cluster of Differentiation 147) Ameliorates Acute Ischemic Stroke in Mice by Reducing Thromboinflammation.

    PubMed

    Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong

    2017-12-01

    Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart Association, Inc.

  3. A pentapeptide monocyte locomotion inhibitory factor protects brain ischemia injury by targeting the eEF1A1/endothelial nitric oxide synthase pathway.

    PubMed

    Zhang, Yuefan; Chen, Jun; Li, Fan; Li, Dong; Xiong, Qinhui; Lin, Yang; Zhang, Dazhi; Wang, Xiao-Fan; Yang, Pengyuan; Rui, Yao-Cheng

    2012-10-01

    Ischemic stroke is a major cause of death worldwide but lacks viable treatment or treatment targets. Monocyte locomotion inhibitory factor (MLIF) is a small heat-stable pentapeptide produced by Entamoeba histolytica in axenic culture, which is supposed to protect the brain from ischemic injury; the mechanism, however, remains unknown. In this study, we further investigated the mechanism underlying the protective role of MLIF in brain ischemia. A middle cerebral artery occlusion model in rats was used for detecting the effect of MLIF in the brain ischemia in vivo. To identify targets of MLIF in brain endothelial cells, we performed immunoprecipitation of biotin-conjugated MLIF and mass spectrometry. MLIF can protect the brain from ischemic injury in vivo, yielding decreased ischemic volume, prolonged survival, and improved neurological outcome. In vitro studies showed that MLIF displayed protective effects through inhibition of expression of pathological inflammatory adhesion molecules and enhancing endothelial nitric oxide synthase expression and nitric oxide release in the cerebrovascular endothelium. The target screening experiments demonstrated binding of MLIF to the ribosomal protein translation elongation factor eEF1A1. MLIF enhanced endothelial nitric oxide synthase expression through stabilization of endothelial nitric oxide synthase mRNA, and eEF1A1 was shown to be necessary for this enhanced expression. Knockdown of eEF1A1 or inhibition of endothelial nitric oxide synthase attenuated MLIF-mediated inhibition of adhesion molecule expression. In this study, we identified a new potential pharmacologically targetable mechanism underlying MLIF's protective effects in brain ischemia through the eEF1A1/endothelial nitric oxide synthase pathway.

  4. Impact of dietary induced precocious gut maturation on cecal microbiota and its relation to the blood-brain barrier during the postnatal period in rats.

    PubMed

    Marungruang, N; Arévalo Sureda, E; Lefrançoise, A; Weström, B; Nyman, M; Prykhodko, O; Fåk Hållenius, F

    2018-06-01

    Precocious maturation of the gastrointestinal barrier (GIB) in newborn mammals can be induced by dietary provocation, but how this affects the gut microbiota and the gut-brain axis remains unknown. The objective of this study was to investigate effects of induced GIB maturation on gut microbiota composition and blood-brain barrier (BBB) permeability. Suckling rats were studied at 72 h after gavage with phytohemagglutinin (PHA) or microbial protease (PT) to induce maturation of GIB. For comparison, untreated suckling and weaned rats were included (n = 10). Human serum albumin (HSA) was administered orally and analyzed in blood to assess permeability of the GIB, while intraperitoneally injected bovine serum albumin (BSA) was measured in the brain tissue for BBB permeability. The cecal microbial composition, plasma lipopolysaccharide-binding protein (LBP) levels and short-chain fatty acids in serum and brain were analyzed. Cessation of HSA passage to blood after PHA or PT treatment was similar to that seen in weaned rats. Interestingly, concomitant increases in cecal Bacteroidetes and plasma LBP levels were observed after both PHA and PT treatments. The BBB passage of BSA was surprisingly elevated after weaning, coinciding with lower plasma LBP levels and specific microbial taxa and increased acetate uptake into the brain. This study provides evidence that the gut microbiota alteration following induced precocious GIB maturation may induce low-grade systemic inflammation and alter SCFAs utilization in the brain which may also play a potential role in GIB-BBB dysfunction disorders in neonates. © 2018 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  5. Gene co-expression networks shed light into diseases of brain iron accumulation

    PubMed Central

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M.; Botía, Juan A.; Collingwood, Joanna F.; Hardy, John; Milward, Elizabeth A.; Ryten, Mina; Houlden, Henry

    2016-01-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700

  6. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    PubMed

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. © 2013 The Anatomical Society and John Wiley & Sons Ltd.

  7. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension.

    PubMed

    Shinohara, Keisuke; Liu, Xuebo; Morgan, Donald A; Davis, Deborah R; Sequeira-Lopez, Maria Luisa S; Cassell, Martin D; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D

    2016-12-01

    The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension. © 2016 American Heart Association, Inc.

  8. Aflatoxin B1-contaminated diet disrupts the blood-brain barrier and affects fish behavior: Involvement of neurotransmitters in brain synaptosomes.

    PubMed

    Baldissera, Matheus D; Souza, Carine F; Zeppenfeld, Carla Cristina; Descovi, Sharine N; Moreira, Karen Luise S; da Rocha, Maria Izabel U M; da Veiga, Marcelo L; da Silva, Aleksandro S; Baldisserotto, Bernardo

    2018-06-01

    It is known that the cytotoxic effects of aflatoxin B 1 (AFB 1 ) in endothelial cells of the blood-brain barrier (BBB) are associated with behavioral dysfunction. However, the effects of a diet contaminated with AFB 1 on the behavior of silver catfish remain unknown. Thus, the aim of this study was to evaluate whether an AFB 1 -contaminated diet (1177 ppb kg feed -1 ) impaired silver catfish behavior, as well as whether disruption of the BBB and alteration of neurotransmitters in brain synaptosomes are involved. Fish fed a diet contaminated with AFB 1 presented a behavioral impairment linked with hyperlocomotion on days 14 and 21 compared with the control group (basal diet). Neurotransmitter levels were also affected on days 14 and 21. The permeability of the BBB to Evans blue dye increased in the intoxicated animals compared with the control group, which suggests that the BBB was disrupted. Moreover, acetylcholinesterase (AChE) activity in brain synaptosomes was increased in fish fed a diet contaminated with AFB 1 , while activity of the sodium-potassium pump (Na + , K + -ATPase) was decreased. Based on this evidence, the present study shows that silver catfish fed a diet containing AFB 1 exhibit behavioral impairments related to hyperlocomotion. This diet caused a disruption of the BBB and brain lesions, which may contribute to the behavioral changes. Also, the alterations in the activities of AChE and Na + , K + -ATPase in brain synaptosomes may directly contribute to this behavior, since they may promote synapse dysfunction. In addition, the hyperlocomotion may be considered an important macroscopic marker indicating possible AFB 1 intoxication. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Temporal requirement of dystroglycan glycosylation during brain development and rescue of severe cortical dysplasia via gene delivery in the fetal stage.

    PubMed

    Sudo, Atsushi; Kanagawa, Motoi; Kondo, Mai; Ito, Chiyomi; Kobayashi, Kazuhiro; Endo, Mitsuharu; Minami, Yasuhiro; Aiba, Atsu; Toda, Tatsushi

    2018-04-01

    Congenital muscular dystrophies (CMDs) are characterized by progressive weakness and degeneration of skeletal muscle. In several forms of CMD, abnormal glycosylation of α-dystroglycan (α-DG) results in conditions collectively known as dystroglycanopathies, which are associated with central nervous system involvement. We recently demonstrated that fukutin, the gene responsible for Fukuyama congenital muscular dystrophy, encodes the ribitol-phosphate transferase essential for dystroglycan function. Brain pathology in patients with dystroglycanopathy typically includes cobblestone lissencephaly, mental retardation, and refractory epilepsy; however, some patients exhibit average intelligence, with few or almost no structural defects. Currently, there is no effective treatment for dystroglycanopathy, and the mechanisms underlying the generation of this broad clinical spectrum remain unknown. Here, we analysed four distinct mouse models of dystroglycanopathy: two brain-selective fukutin conditional knockout strains (neuronal stem cell-selective Nestin-fukutin-cKO and forebrain-selective Emx1-fukutin-cKO), a FukutinHp strain with the founder retrotransposal insertion in the fukutin gene, and a spontaneous Large-mutant Largemyd strain. These models exhibit variations in the severity of brain pathology, replicating the clinical heterogeneity of dystroglycanopathy. Immunofluorescence analysis of the developing cortex suggested that residual glycosylation of α-DG at embryonic day 13.5 (E13.5), when cortical dysplasia is not yet apparent, may contribute to subsequent phenotypic heterogeneity. Surprisingly, delivery of fukutin or Large into the brains of mice at E12.5 prevented severe brain malformation in Emx1-fukutin-cKO and Largemyd/myd mice, respectively. These findings indicate that spatiotemporal persistence of functionally glycosylated α-DG may be crucial for brain development and modulation of glycosylation during the fetal stage could be a potential therapeutic strategy for dystroglycanopathy.

  10. Gene co-expression networks shed light into diseases of brain iron accumulation.

    PubMed

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry

    2016-03-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Linking vascular disorders and Alzheimer’s disease: Potential involvement of BACE1

    PubMed Central

    Cole, Sarah L.; Vassar, Robert

    2012-01-01

    The etiology of Alzheimer’s disease (AD) remains unknown. However, specific risk factors have been identified, and aging is the strongest AD risk factor. The majority of cardiovascular events occur in older people and a close relationship between vascular disorders and AD exists. Amyloid plaques, composed of the beta amyloid peptide (Aβ), are hallmark lesions in AD and evidence indicates that Aβ plays a central role in AD pathophysiology. The BACE1 enzyme is essential for Aβ generation, and BACE1 levels are elevated in AD brain. The cause(s) of this BACE1 elevation remains undetermined. Here we review the potential contribution of vascular disease to AD pathogenesis. We examine the putative vasoactive properties of Aβ and how the cellular changes associated with vascular disease may elevate BACE1 levels. Despite increasing evidence, the exact role(s) vascular disorders play in AD remains to be determined. However, given that vascular diseases can be addressed by lifestyle and pharmacologic interventions, the potential benefits of these therapies in delaying the clinical appearance and progression of AD may warrant investigation. PMID:18289733

  12. Reproductive endocrinology in chondrichthyans: the present and the future.

    PubMed

    Awruch, C A

    2013-10-01

    The class Chondrichthyes, that includes Elasmobranchii and Holocephali, is a diverse group of fish occupying a key position at the base of vertebrate evolution. Their evolutionary success is greatly attributed to their wide range of reproductive strategies controlled by different endocrine mechanics. As in other vertebrates, hormonal control of reproduction in chondrichthyans is mediated by the neuropeptide gonadotropin-releasing hormone (GnRH) that regulates the brain control of gonadal activity via a hypothalamus-pituitary-gonadal (HPG) axis. Chondrichthyans lack of a direct vascular supply from the hypothalamus to the zone of the pituitary where the gonadotropic activity resides, thus transport between these two zones likely occurs via the general circulation. In the brain of elasmobranchs, two groups of GnRH, GnRH-I and GnRH-II were identified, and the presence of two immunoreactive gonadotropins similar to the luteinising (LH) and follicle stimulating (FSH) hormones was identified in the pituitary. In holocephalans, only GnRH-II has been confirmed, and while gonadotropin activity has been found in the buccal pituitary lobe, the presence of gonadotropin receptors in the gonads remains unknowns. The diversity of reproductive strategies display by chondrichthyans makes it difficult to generalize the control of gametogenesis and steroidogenesis; however, some general patterns emerge. In both sexes, androgens and estrogens are the main steroids during gonadal growth; while progestins have maturational activity. Androgens also form the precursors for estrogen steroid production. Estrogens stimulate the hepatic synthesis of yolk and stimulate the development of different part of the reproductive tract in females. The role of other gonadal steroids may play in chondrichthyan reproduction remains largely unknown. Future work should concentrate in filling the gaps into the current knowledge of the HPG axis regulation, and the use of reproductive endocrinology as a non-lethal technique for management of chondrichthyan populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Brain glucose metabolism in diffuse large B-cell lymphoma patients as assessed with FDG-PET: impact on outcome and chemotherapy effects.

    PubMed

    Adams, Hugo Ja; de Klerk, John Mh; Fijnheer, Rob; Heggelman, Ben Gf; Dubois, Stefan V; Nievelstein, Rutger Aj; Kwee, Thomas C

    2016-06-01

    There is a lack of data on the effect of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy on brain glucose metabolism of diffuse large B-cell lymphoma (DLBCL) patients, as measured by 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). Moreover, the prognostic value of brain glucose metabolism measurements is currently unknown. To investigate the use of FDG-PET for measurement of brain glucose metabolism in R-CHOP-treated DLBCL patients, and to assess its prognostic value. This retrospective study included DLBCL patients who underwent FDG-PET including the brain. FDG-PET metabolic volume products (MVPs) of the entire brain, cerebral cortex, basal ganglia, and cerebellum were measured, before and after R-CHOP therapy. Whole-body total lesion glycolysis (TLG) was also measured. Thirty-eight patients were included, of whom 18 had an appropriate end-of-treatment FDG-PET scan. There were no significant differences (P > 0.199) between pre- and post-treatment brain glucose metabolism metrics. Low basal ganglia MVP was associated with a significantly worse progression-free survival (PFS) and overall survival (OS) (P = 0.020 and P = 0.032), and low cerebellar MVP was associated with a significantly worse OS (P = 0.034). There were non-significant very weak correlations between pretreatment brain glucose metabolism metrics and TLG. In the multivariate Cox regression, only the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) remained an independent predictor of PFS (hazard ratio 3.787, P = 0.007) and OS (hazard ratio 2.903, P = 0.0345). Brain glucose metabolism was not affected by R-CHOP therapy. Low pretreatment brain glucose metabolism was associated with a worse outcome, but did not surpass the predictive value of the NCCN-IPI. © The Foundation Acta Radiologica 2015.

  14. Strain differences in the susceptibility to the gut-brain axis and neurobehavioural alterations induced by maternal immune activation in mice.

    PubMed

    Morais, Livia H; Felice, Daniela; Golubeva, Anna V; Moloney, Gerard; Dinan, Timothy G; Cryan, John F

    2018-04-01

    There is a growing realization that the severity of the core symptoms of autism spectrum disorders and schizophrenia is associated with gastrointestinal dysfunction. Nonetheless, the mechanisms underlying such comorbidities remain unknown. Several genetic and environmental factors have been linked to a higher susceptibility to neurodevelopmental abnormalities. The maternal immune activation (MIA) rodent model is a valuable tool for elucidating the basis of this interaction. We induced MIA with polyinosinic-polycytidylic acid (poly I:C) at gestational day 12.5 and assessed behavioural, physiological and molecular aspects relevant to the gut-brain axis in the offspring of an outbred (NIH Swiss) and an inbred (C57BL6/J) mouse strain. Our results showed that the specific MIA protocol employed induces social deficits in both strains. However, alterations in anxiety and depression-like behaviours were more pronounced in NIH Swiss mice. These strain-specific behavioural effects in the NIH Swiss mice were associated with marked changes in important components of gut-brain axis communication: the endocrine response to stress and gut permeability. In addition, MIA-induced changes in vasopressin receptor 1a mRNA expression in the hypothalamus were observed in NIH Swiss mice only. Taken together, these data suggest that genetic background is a critical factor in susceptibility to the gut-brain axis effects induced by MIA.

  15. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain.

    PubMed

    Moussaieff, Arieh; Rimmerman, Neta; Bregman, Tatiana; Straiker, Alex; Felder, Christian C; Shoham, Shai; Kashman, Yoel; Huang, Susan M; Lee, Hyosang; Shohami, Esther; Mackie, Ken; Caterina, Michael J; Walker, J Michael; Fride, Ester; Mechoulam, Raphael

    2008-08-01

    Burning of Boswellia resin as incense has been part of religious and cultural ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with such events. Transient receptor potential vanilloid (TRPV) 3 is an ion channel implicated in the perception of warmth in the skin. TRPV3 mRNA has also been found in neurons throughout the brain; however, the role of TRPV3 channels there remains unknown. Here we show that incensole acetate (IA), a Boswellia resin constituent, is a potent TRPV3 agonist that causes anxiolytic-like and antidepressive-like behavioral effects in wild-type (WT) mice with concomitant changes in c-Fos activation in the brain. These behavioral effects were not noted in TRPV3(-/-) mice, suggesting that they are mediated via TRPV3 channels. IA activated TRPV3 channels stably expressed in HEK293 cells and in keratinocytes from TRPV3(+/+) mice. It had no effect on keratinocytes from TRPV3(-/-) mice and showed modest or no effect on TRPV1, TRPV2, and TRPV4, as well as on 24 other receptors, ion channels, and transport proteins. Our results imply that TRPV3 channels in the brain may play a role in emotional regulation. Furthermore, the biochemical and pharmacological effects of IA may provide a biological basis for deeply rooted cultural and religious traditions.

  16. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy.

    PubMed

    Ribierre, Théo; Deleuze, Charlotte; Bacq, Alexandre; Baldassari, Sara; Marsan, Elise; Chipaux, Mathilde; Muraca, Giuseppe; Roussel, Delphine; Navarro, Vincent; Leguern, Eric; Miles, Richard; Baulac, Stéphanie

    2018-04-30

    DEP domain-containing 5 protein (DEPDC5) is a repressor of the recently recognized amino acid-sensing branch of the mTORC1 pathway. So far, its function in the brain remains largely unknown. Germline loss-of-function mutations in DEPDC5 have emerged as a major cause of familial refractory focal epilepsies, with case reports of sudden unexpected death in epilepsy (SUDEP). Remarkably, a fraction of patients also develop focal cortical dysplasia (FCD), a neurodevelopmental cortical malformation. We therefore hypothesized that a somatic second-hit mutation arising during brain development may support the focal nature of the dysplasia. Here, using postoperative human tissue, we provide the proof of concept that a biallelic 2-hit - brain somatic and germline - mutational mechanism in DEPDC5 causes focal epilepsy with FCD. We discovered a mutation gradient with a higher rate of mosaicism in the seizure-onset zone than in the surrounding epileptogenic zone. Furthermore, we demonstrate the causality of a Depdc5 brain mosaic inactivation using CRISPR-Cas9 editing and in utero electroporation in a mouse model recapitulating focal epilepsy with FCD and SUDEP-like events. We further unveil a key role of Depdc5 in shaping dendrite and spine morphology of excitatory neurons. This study reveals promising therapeutic avenues for treating drug-resistant focal epilepsies with mTORC1-targeting molecules.

  17. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  18. Genetics Home Reference: megalencephalic leukoencephalopathy with subcortical cysts

    MedlinePlus

    ... is unable to correctly transport GlialCAM and MLC1 proteins to cell junctions. It is unknown how a lack of functional MLC1 or GlialCAM protein at cell junctions in the brain impairs brain development and ...

  19. Induction of Migraine-Like Photophobic Behavior in Mice by Both Peripheral and Central CGRP Mechanisms

    PubMed Central

    Mason, Bianca N.; Kaiser, Eric A.; Kuburas, Adisa; Loomis, Maria-Cristina M.; Latham, John A.; Garcia-Martinez, Leon F.

    2017-01-01

    The neuropeptide calcitonin gene-related peptide (CGRP) is a key player in migraine. Although migraine can be treated using CGRP antagonists that act peripherally, the relevant sites of CGRP action remain unknown. To address the role of CGRP both within and outside the CNS, we used CGRP-induced light-aversive behavior in mice as a measure of migraine-associated photophobia. Peripheral (intraperitoneal) injection of CGRP resulted in light-aversive behavior in wild-type CD1 mice similar to aversion seen previously after central (intracerebroventricular) injection. The phenotype was also observed in C57BL/6J mice, although to a lesser degree and with more variability. After intraperitoneal CGRP, motility was decreased in the dark only, similar to motility changes after intracerebroventricular CGRP. In addition, as with intracerebroventricular CGRP, there was no general increase in anxiety as measured in an open-field assay after intraperitoneal CGRP. Importantly, two clinically effective migraine drugs, the 5-HT1B/D agonist sumatriptan and a CGRP-blocking monoclonal antibody, attenuated the peripheral CGRP-induced light aversion and motility behaviors. To begin to address the mechanism of peripheral CGRP action, we used transgenic CGRP-sensitized mice that have elevated levels of the CGRP receptor hRAMP1 subunit in nervous tissue (nestin/hRAMP1). Surprisingly, sensitivity to low light was not seen after intraperitoneal CGRP injection, but was seen after intracerebroventricular CGRP injection. These results suggest that CGRP can act in both the periphery and the brain by distinct mechanisms and that CGRP actions may be transmitted to the CNS via indirect sensitization of peripheral nerves. SIGNIFICANCE STATEMENT The neuropeptide calcitonin gene-related peptide (CGRP) is a central player in migraine pathogenesis, yet its site(s) of action remains unknown. Some preclinical studies have pointed to central sites in the brain and brainstem. However, a peripheral site of action is indicated by the ability of intravenous CGRP to trigger migraine in humans and the efficacy of CGRP receptor antagonists that evidently do no penetrate the CNS in effective amounts. Resolving this issue is particularly important given recent clinical trials showing that anti-CGRP monoclonal antibodies can reduce and even prevent migraine attacks. In this study, we report that CGRP can act in both the brain and the periphery of the mouse to cause migraine-like photophobia by apparently distinct mechanisms. PMID:28053042

  20. Combined brain Fe, Cu, Zn and neurometabolite analysis - a new methodology for unraveling the efficacy of transcranial direct current stimulation (tDCS) in appetite control.

    PubMed

    Ziomber, Agata; Surowka, Artur Dawid; Antkiewicz-Michaluk, Lucyna; Romanska, Irena; Wrobel, Pawel; Szczerbowska-Boruchowska, Magdalena

    2018-03-01

    Obesity is a chronic, multifactorial origin disease that has recently become one of the most frequent lifestyle disorders. Unfortunately, current obesity treatments seem to be ineffective. At present, transcranial direct current brain stimulation (tDCS) represents a promising novel treatment methodology that seems to be efficient, well-tolerated and safe for a patient. Unfortunately, the biochemical action of tDCS remains unknown, which prevents its widespread use in the clinical arena, although neurobiochemical changes in brain signaling and metal metabolism are frequently reported. Therefore, our research aimed at exploring the biochemical response to tDCS in situ, in the brain areas triggering feeding behavior in obese animals. The objective was to propose a novel neurochemical (serotoninergic and dopaminergic signaling) and trace metal analysis of Fe, Cu and Zn. In doing so, we used energy-dispersive X-ray fluorescence (EDXRF) and high-performance liquid chromatography (HPLC). Anodal-type stimulation (atDCS) of the right frontal cortex was utilized to down-regulate food intake and body weight gain in obese rats. EDXRF was coupled with the external standard method in order to quantify the chemical elements within appetite-triggering brain areas. Major dopamine metabolites were assessed in the brains, based on the HPLC assay utilizing the external standard assay. Our study confirms that elemental analysis by EDXRF and brain metabolite assay by HPLC can be considered as a useful tool for the in situ investigation of the interplay between neurochemical and Fe/Cu/Zn metabolism in the brain upon atDCS. With this methodology, an increase in both Cu and Zn in the satiety center of the stimulated group could be reported. In turn, the most significant neurochemical changes involved dopaminergic and serotoninergic signaling in the brain reward system.

  1. Supernumerary impacted teeth in a patient with SOX2 anophthalmia syndrome.

    PubMed

    Numakura, Chikahiko; Kitanaka, Sachiko; Kato, Mitsuhiro; Ishikawa, Shigeo; Hamamoto, Yoshioki; Katsushima, Yuriko; Kimura, Toshiyuki; Hayasaka, Kiyoshi

    2010-09-01

    SOX2 anophthalmia syndrome characteristically presents as anophthalmia or microphthalmia, with various extraocular symptoms, such as hypogonadotropic hypogonadism, brain anomaly, and esophageal abnormalities. In this report, we describe a patient with SOX2 anophthalmia syndrome complicated with a dental anomaly, multiple supernumerary impacted teeth, and persistence of deciduous teeth. Multiple supernumerary teeth are usually not solitary symptoms, but indicate systemic syndrome such as cleidocranial dysplasia. In odontogenesis, many transcriptional factors, such as BMPs, FGFs, and Wnts, play significant roles and SOX2 is known to interact with some of them. The role of SOX2 in dental development remains unknown, however, multiple supernumerary teeth can be considered as extraocular symptoms of SOX2 anophthalmia syndrome, rather than the coincidence of two rare diseases.

  2. Neuroglial heterotopia of the scalp.

    PubMed

    Attafi, S; Lahmar-Boufaroua, A; Rekik, W; Fraoua, F; Fadhel, C B; Bouraoui, S; Mzabi-Rgaya, S

    2016-03-01

    Heterotopic glial nodules of the scalp are non hereditary congenital malformations composed of mature brain tissue isolated from the cranial cavity. The majority of these lesions are found in the nasal region and occur rarely on the scalp. They are frequently diagnosed in newborn infants. However, they may rarely be found in adults. The pathogenesis of these lesions remains unknown. We describe the case of a temporal scalp nodule in a 50 year-old man. At the time of the excision, the mass was not associated with intracranial connection. Histological examination revealed neural tissue staining with S100-protein and the glial fibrillary acidic protein (GFAP). © Copyright Società Italiana di Anatomia Patologica e Citopatologia Diagnostica, Divisione Italiana della International Academy of Pathology.

  3. Suppression of NMDA receptor function in mice prenatally exposed to valproic acid improves social deficits and repetitive behaviors.

    PubMed

    Kang, Jaeseung; Kim, Eunjoon

    2015-01-01

    Animals prenatally exposed to valproic acid (VPA), an antiepileptic agent, have been used as a model for autism spectrum disorders (ASDs). Previous studies have identified enhanced NMDA receptor (NMDAR) function in the brain of VPA rats, and demonstrated that pharmacological suppression of NMDAR function normalizes social deficits in these animals. However, whether repetitive behavior, another key feature of ASDs, can be rescued by NMDAR inhibition remains unknown. We report here that memantine, an NMDAR antagonist, administered to VPA mice rescues both social deficits and repetitive behaviors such as self-grooming and jumping. These results suggest that suppression of elevated NMDAR function in VPA animals normalizes repetitive behaviors in addition to social deficits.

  4. Downregulation of the posterior medial frontal cortex prevents social conformity.

    PubMed

    Klucharev, Vasily; Munneke, Moniek A M; Smidts, Ale; Fernández, Guillén

    2011-08-17

    We often change our behavior to conform to real or imagined group pressure. Social influence on our behavior has been extensively studied in social psychology, but its neural mechanisms have remained largely unknown. Here we demonstrate that the transient downregulation of the posterior medial frontal cortex by theta-burst transcranial magnetic stimulation reduces conformity, as indicated by reduced conformal adjustments in line with group opinion. Both the extent and probability of conformal behavioral adjustments decreased significantly relative to a sham and a control stimulation over another brain area. The posterior part of the medial frontal cortex has previously been implicated in behavioral and attitudinal adjustments. Here, we provide the first interventional evidence of its critical role in social influence on human behavior.

  5. Expression of the ADHD candidate gene Diras2 in the brain.

    PubMed

    Grünewald, Lena; Becker, Nils; Camphausen, Annika; O'Leary, Aet; Lesch, Klaus-Peter; Freudenberg, Florian; Reif, Andreas

    2018-06-01

    The distinct subgroup of the Ras family member 2 (DIRAS2) gene has been found to be associated with attention-deficit/hyperactivity disorder (ADHD) in one of our previous studies. This gene is coding for a small Ras GTPase with unknown function. DIRAS2 is highly expressed in the brain. However, the exact neural expression pattern of this gene was unknown so far. Therefore, we investigated the expressional profile of DIRAS2 in the human and murine brain. In the present study, qPCR analyses in the human and in the developing mouse brain, immunocytological double staining on murine hippocampal primary cells and RNA in situ hybridization (ISH) on brain sections of C57BL/6J wild-type mice, have been used to reveal the expression pattern of DIRAS2 in the brain. We could show that DIRAS2 expression in the human brain is the highest in the hippocampus and the cerebral cortex, which is in line with the ISH results in the mouse brain. During mouse brain development, Diras2 levels strongly increase from prenatal to late postnatal stages. Co-expression studies indicate Diras2 expression in glutamatergic and catecholaminergic neurons. Our findings support the idea of DIRAS2 as a candidate gene for ADHD as the timeline of its expression as well as the brain regions and cell types that show Diras2 expression correspond to those assumed to underlie the pathomechanisms of the disease.

  6. DNA Misfolding Found to Cause Cancer in IDH-mutant Gliomas

    Cancer.gov

    Researchers studying IDH-mutant brain tumors have identified a previously unknown genetic mechanism that may contribute to cancer. A change in how DNA is arranged, or packaged, in the cell nucleus may inappropriately activate a gene associated with brain cancer.

  7. Optic neuritis

    MedlinePlus

    ... optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when it becomes suddenly ... may include: Color vision testing MRI of the brain , including special images of the optic nerve Visual acuity testing Visual field testing Examination of the ...

  8. Early uneven ear input induces long-lasting differences in left-right motor function.

    PubMed

    Antoine, Michelle W; Zhu, Xiaoxia; Dieterich, Marianne; Brandt, Thomas; Vijayakumar, Sarath; McKeehan, Nicholas; Arezzo, Joseph C; Zukin, R Suzanne; Borkholder, David A; Jones, Sherri M; Frisina, Robert D; Hébert, Jean M

    2018-03-01

    How asymmetries in motor behavior become established normally or atypically in mammals remains unclear. An established model for motor asymmetry that is conserved across mammals can be obtained by experimentally inducing asymmetric striatal dopamine activity. However, the factors that can cause motor asymmetries in the absence of experimental manipulations to the brain remain unknown. Here, we show that mice with inner ear dysfunction display a robust left or right rotational preference, and this motor preference reflects an atypical asymmetry in cortico-striatal neurotransmission. By unilaterally targeting striatal activity with an antagonist of extracellular signal-regulated kinase (ERK), a downstream integrator of striatal neurotransmitter signaling, we can reverse or exaggerate rotational preference in these mice. By surgically biasing vestibular failure to one ear, we can dictate the direction of motor preference, illustrating the influence of uneven vestibular failure in establishing the outward asymmetries in motor preference. The inner ear-induced striatal asymmetries identified here intersect with non-ear-induced asymmetries previously linked to lateralized motor behavior across species and suggest that aspects of left-right brain function in mammals can be ontogenetically influenced by inner ear input. Consistent with inner ear input contributing to motor asymmetry, we also show that, in humans with normal ear function, the motor-dominant hemisphere, measured as handedness, is ipsilateral to the ear with weaker vestibular input.

  9. The effect of copper on eumelanin photophysics and morphology

    NASA Astrophysics Data System (ADS)

    Birch, David J. S.; Sutter, Jens U.

    2013-02-01

    Despite being an important pigment in skin, hair, the eye and the brain, melanin remains one of the most enigmatic of pigments. Although the main constituents of melanin are known to be dihydroxyindoles, its photophysics is complex and its detailed structure remains unknown. In this work we have arrested prior to completion the usual synthesis of eumelanin formed via auto-oxidation of 3, 4-dihydroxy-L-phenylalanine (L-DOPA), by the addition of copper ions. Using fluorescence techniques we report how copper modifies the self assembly of eumelanin by reducing the time to the onset of aggregation at pH 10 and yet produces simplified photophysics in terms of a clearly-defined fluorescence spectrum and a fluorescence decay that is described well by a dominant single lifetime of ~ 6ns. This behavior is consistent with copper inducing an enhanced abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). Metal ion binding to melanin is of particular importance to neurology and has potential applications in optoelectronics.

  10. Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides

    PubMed Central

    McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin

    2014-01-01

    Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain. PMID:24169853

  11. Hearing, Cognition, and Healthy Aging: Social and Public Health Implications of the Links between Age-Related Declines in Hearing and Cognition

    PubMed Central

    Pichora-Fuller, M. Kathleen; Mick, Paul; Reed, Marilyn

    2015-01-01

    Sensory input provides the signals used by the brain when listeners understand speech and participate in social activities with other people in a range of everyday situations. When sensory inputs are diminished, there can be short-term consequences to brain functioning, and long-term deprivation can affect brain neuroplasticity. Indeed, the association between hearing loss and cognitive declines in older adults is supported by experimental and epidemiologic evidence, although the causal mechanisms remain unknown. These interactions of auditory and cognitive aging play out in the challenges confronted by people with age-related hearing problems when understanding speech and engaging in social interactions. In the present article, we use the World Health Organization's International Classification of Functioning, Disability and Health and the Selective Optimization with Compensation models to highlight the importance of adopting a healthy aging perspective that focuses on facilitating active social participation by older adults. First, we examine epidemiologic evidence linking ARHL to cognitive declines and other health issues. Next, we examine how social factors influence and are influenced by auditory and cognitive aging and if they may provide a possible explanation for the association between ARHL and cognitive decline. Finally, we outline how audiologists could reposition hearing health care within the broader context of healthy aging. PMID:27516713

  12. Anesthetics act in quantum channels in brain microtubules to prevent consciousness.

    PubMed

    Craddock, Travis J A; Hameroff, Stuart R; Ayoub, Ahmed T; Klobukowski, Mariusz; Tuszynski, Jack A

    2015-01-01

    The mechanism by which anesthetic gases selectively prevent consciousness and memory (sparing non-conscious brain functions) remains unknown. At the turn of the 20(th) century Meyer and Overton showed that potency of structurally dissimilar anesthetic gas molecules correlated precisely over many orders of magnitude with one factor, solubility in a non-polar, 'hydrophobic' medium akin to olive oil. In the 1980s Franks and Lieb showed anesthetics acted in such a medium within proteins, suggesting post-synaptic membrane receptors. But anesthetic studies on such proteins yielded only confusing results. In recent years Eckenhoff and colleagues have found anesthetic action in microtubules, cytoskeletal polymers of the protein tubulin inside brain neurons. 'Quantum mobility' in microtubules has been proposed to mediate consciousness. Through molecular modeling we have previously shown: (1) olive oil-like non-polar, hydrophobic quantum mobility pathways ('quantum channels') of tryptophan rings in tubulin, (2) binding of anesthetic gas molecules in these channels, and (3) capabilities for π-electron resonant energy transfer, or exciton hopping, among tryptophan aromatic rings in quantum channels, similar to photosynthesis protein quantum coherence. Here, we show anesthetic molecules can impair π-resonance energy transfer and exciton hopping in tubulin quantum channels, and thus account for selective action of anesthetics on consciousness and memory.

  13. Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides.

    PubMed

    McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin

    2014-01-01

    Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain.

  14. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation.

    PubMed

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; La Fata, Giorgio; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-10-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  15. Amigo adhesion protein regulates development of neural circuits in zebrafish brain.

    PubMed

    Zhao, Xiang; Kuja-Panula, Juha; Sundvik, Maria; Chen, Yu-Chia; Aho, Vilma; Peltola, Marjaana A; Porkka-Heiskanen, Tarja; Panula, Pertti; Rauvala, Heikki

    2014-07-18

    The Amigo protein family consists of three transmembrane proteins characterized by six leucine-rich repeat domains and one immunoglobulin-like domain in their extracellular moieties. Previous in vitro studies have suggested a role as homophilic adhesion molecules in brain neurons, but the in vivo functions remain unknown. Here we have cloned all three zebrafish amigos and show that amigo1 is the predominant family member expressed during nervous system development in zebrafish. Knockdown of amigo1 expression using morpholino oligonucleotides impairs the formation of fasciculated tracts in early fiber scaffolds of brain. A similar defect in fiber tract development is caused by mRNA-mediated expression of the Amigo1 ectodomain that inhibits adhesion mediated by the full-length protein. Analysis of differentiated neural circuits reveals defects in the catecholaminergic system. At the behavioral level, the disturbed formation of neural circuitry is reflected in enhanced locomotor activity and in the inability of the larvae to perform normal escape responses. We suggest that Amigo1 is essential for the development of neural circuits of zebrafish, where its mechanism involves homophilic interactions within the developing fiber tracts and regulation of the Kv2.1 potassium channel to form functional neural circuitry that controls locomotion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Large-scale Cortical Network Properties Predict Future Sound-to-Word Learning Success

    PubMed Central

    Sheppard, John Patrick; Wang, Ji-Ping; Wong, Patrick C. M.

    2013-01-01

    The human brain possesses a remarkable capacity to interpret and recall novel sounds as spoken language. These linguistic abilities arise from complex processing spanning a widely distributed cortical network and are characterized by marked individual variation. Recently, graph theoretical analysis has facilitated the exploration of how such aspects of large-scale brain functional organization may underlie cognitive performance. Brain functional networks are known to possess small-world topologies characterized by efficient global and local information transfer, but whether these properties relate to language learning abilities remains unknown. Here we applied graph theory to construct large-scale cortical functional networks from cerebral hemodynamic (fMRI) responses acquired during an auditory pitch discrimination task and found that such network properties were associated with participants’ future success in learning words of an artificial spoken language. Successful learners possessed networks with reduced local efficiency but increased global efficiency relative to less successful learners and had a more cost-efficient network organization. Regionally, successful and less successful learners exhibited differences in these network properties spanning bilateral prefrontal, parietal, and right temporal cortex, overlapping a core network of auditory language areas. These results suggest that efficient cortical network organization is associated with sound-to-word learning abilities among healthy, younger adults. PMID:22360625

  17. Brain neurodevelopmental markers related to the deficit subtype of schizophrenia.

    PubMed

    Takahashi, Tsutomu; Takayanagi, Yoichiro; Nishikawa, Yumiko; Nakamura, Mihoko; Komori, Yuko; Furuichi, Atsushi; Kido, Mikio; Sasabayashi, Daiki; Noguchi, Kyo; Suzuki, Michio

    2017-08-30

    Deficit schizophrenia is a homogeneous subtype characterized by a trait-like feature of primary and prominent negative symptoms, but the etiologic factors related to this specific subtype remain largely unknown. This magnetic resonance imaging study aimed to examine gross brain morphology that probably reflects early neurodevelopment in 38 patients with deficit schizophrenia, 37 patients with non-deficit schizophrenia, and 59 healthy controls. Potential brain neurodevelopmental markers investigated in this study were the adhesio interthalamica (AI), cavum septi pellucidi (CSP), and surface morphology (i.e., olfactory sulcus depth, sulcogyral pattern, and number of orbital sulci) of the orbitofrontal cortex (OFC). The subtype classification of schizophrenia patients was based on the score of Proxy for the Deficit Syndrome. The deficit schizophrenia group had a significantly shorter AI compared with the non-deficit group and controls. The deficit group, but not the non-deficit group, was also characterized by an altered distribution of the OFC sulcogyral pattern, as well as fewer posterior orbital sulcus compared with controls. Other neurodevelopmental markers did not differentiate the deficit and non-deficit subgroups. These results suggest that the deficit subtype of schizophrenia and its clinical manifestation may be at least partly related to prominent neurodevelopmental pathology. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic

    PubMed Central

    Arduíno, Daniela M.; Raquel Esteves, A.; Cortes, Luísa; Silva, Diana F.; Patel, Bindi; Grazina, Manuela; Swerdlow, Russell H.; Oliveira, Catarina R.; Cardoso, Sandra M.

    2012-01-01

    Abnormal presence of autophagic vacuoles is evident in brains of patients with Parkinson's disease (PD), in contrast to the rare detection of autophagosomes in a normal brain. However, the actual cause and pathological significance of these observations remain unknown. Here, we demonstrate a role for mitochondrial metabolism in the regulation of the autophagy-lysosomal pathway in ex vivo and in vitro models of PD. We show that transferring mitochondria from PD patients into cells previously depleted of mitochondrial DNA is sufficient to reproduce the alterations in the autophagic system observed in PD patient brains. Although the initial steps of this pathway are not compromised, there is an increased accumulation of autophagosomes associated with a defective autophagic activity. We prove that this functional decline was originated from a deficient mobilization of autophagosomes from their site of formation toward lysosomes due to disruption in microtubule-dependent trafficking. This contributed directly to a decreased proteolytic flux of α-synuclein and other autophagic substrates. Our results lend strong support for a direct impact of mitochondria in autophagy as defective autophagic clearance ability secondary to impaired microtubule trafficking is driven by dysfunctional mitochondria. We uncover mitochondria and mitochondria-dependent intracellular traffic as main players in the regulation of autophagy in PD. PMID:22843496

  19. Mitochondrial metabolism in Parkinson's disease impairs quality control autophagy by hampering microtubule-dependent traffic.

    PubMed

    Arduíno, Daniela M; Esteves, A Raquel; Cortes, Luísa; Silva, Diana F; Patel, Bindi; Grazina, Manuela; Swerdlow, Russell H; Oliveira, Catarina R; Cardoso, Sandra M

    2012-11-01

    Abnormal presence of autophagic vacuoles is evident in brains of patients with Parkinson's disease (PD), in contrast to the rare detection of autophagosomes in a normal brain. However, the actual cause and pathological significance of these observations remain unknown. Here, we demonstrate a role for mitochondrial metabolism in the regulation of the autophagy-lysosomal pathway in ex vivo and in vitro models of PD. We show that transferring mitochondria from PD patients into cells previously depleted of mitochondrial DNA is sufficient to reproduce the alterations in the autophagic system observed in PD patient brains. Although the initial steps of this pathway are not compromised, there is an increased accumulation of autophagosomes associated with a defective autophagic activity. We prove that this functional decline was originated from a deficient mobilization of autophagosomes from their site of formation toward lysosomes due to disruption in microtubule-dependent trafficking. This contributed directly to a decreased proteolytic flux of α-synuclein and other autophagic substrates. Our results lend strong support for a direct impact of mitochondria in autophagy as defective autophagic clearance ability secondary to impaired microtubule trafficking is driven by dysfunctional mitochondria. We uncover mitochondria and mitochondria-dependent intracellular traffic as main players in the regulation of autophagy in PD.

  20. Sigma receptors: biology and therapeutic potential.

    PubMed

    Guitart, Xavier; Codony, Xavier; Monroy, Xavier

    2004-07-01

    More than 20 years after the identification of the sigma receptors as a unique binding site in the brain and in the peripheral organs, several questions regarding this receptor are still open. Only one of the subtypes of the receptor has been cloned to date, but the endogenous ligand still remains unknown, and the possible association of the receptor with a conventional second messenger system is controversial. From the very beginning, the sigma receptors were associated with various central nervous system disorders such as schizophrenia or movement disorders. Today, after hundreds of papers dealing with the importance of sigma receptors in brain function, it is widely accepted that sigma receptors represent a new and different avenue in the possible pharmacological treatment of several brain-related disorders. In this review, what is known about the biology of the sigma receptor regarding its putative structure and its distribution in the central nervous system is summarized first. The role of sigma receptors regulating cellular functions and other neurotransmitter systems is also addressed, as well as a short overview of the possible endogenous ligands. Finally, although no specific sigma ligand has reached the market, different pharmacological approaches to the alleviation and treatment of several central nervous system disorders and deficits, including schizophrenia, pain, memory deficits, etc., are discussed, with an overview of different compounds and their potential therapeutic use.

  1. Dynamic changes of Foxp3(+) regulatory T cells in spleen and brain of canine distemper virus-infected dogs.

    PubMed

    Qeska, V; Barthel, Y; Iseringhausen, M; Tipold, A; Stein, V M; Khan, M A; Baumgärtner, W; Beineke, A

    2013-12-15

    Canine distemper virus (CDV) infection causes immunosuppression and demyelinating leukoencephalitis in dogs. In viral diseases, an ambiguous function of regulatory T cells (Treg), with both beneficial effects by reducing immunopathology and detrimental effects by inhibiting antiviral immunity, has been described. However, the role of Treg in the pathogenesis of canine distemper remains unknown. In order to determine the effect of CDV upon immune homeostasis, the amount of Foxp3(+) Treg in spleen and brain of naturally infected dogs has been determined by immunohistochemistry. In addition, splenic cytokine expression has been quantified by reverse transcriptase polymerase chain reaction. Splenic depletion of Foxp3(+) Treg was associated with an increased mRNA-expression of tumor necrosis factor and decreased transcription of interleukin-2 in the acute disease phase, indicative of disturbed immunological counter regulation in peripheral lymphoid organs. In the brain, a lack of Foxp3(+) Treg in predemyelinating and early demyelinating lesions and significantly increased infiltrations of Foxp3(+) Treg in chronic demyelinating lesions were observed. In conclusion, disturbed peripheral and CNS immune regulation associated with a reduction of Treg represents a potential prerequisite for excessive neuroinflammation and early lesion development in canine distemper leukoencephalitis. © 2013 Elsevier B.V. All rights reserved.

  2. Post-conventional moral reasoning is associated with increased ventral striatal activity at rest and during task.

    PubMed

    Fang, Zhuo; Jung, Wi Hoon; Korczykowski, Marc; Luo, Lijuan; Prehn, Kristin; Xu, Sihua; Detre, John A; Kable, Joseph W; Robertson, Diana C; Rao, Hengyi

    2017-08-02

    People vary considerably in moral reasoning. According to Kohlberg's theory, individuals who reach the highest level of post-conventional moral reasoning judge moral issues based on deeper principles and shared ideals rather than self-interest or adherence to laws and rules. Recent research has suggested the involvement of the brain's frontostriatal reward system in moral judgments and prosocial behaviors. However, it remains unknown whether moral reasoning level is associated with differences in reward system function. Here, we combined arterial spin labeling perfusion and blood oxygen level-dependent functional magnetic resonance imaging and measured frontostriatal reward system activity both at rest and during a sequential risky decision making task in a sample of 64 participants at different levels of moral reasoning. Compared to individuals at the pre-conventional and conventional level of moral reasoning, post-conventional individuals showed increased resting cerebral blood flow in the ventral striatum and ventromedial prefrontal cortex. Cerebral blood flow in these brain regions correlated with the degree of post-conventional thinking across groups. Post-conventional individuals also showed greater task-induced activation in the ventral striatum during risky decision making. These findings suggest that high-level post-conventional moral reasoning is associated with increased activity in the brain's frontostriatal system, regardless of task-dependent or task-independent states.

  3. Neural Correlates of Post-Conventional Moral Reasoning: A Voxel-Based Morphometry Study

    PubMed Central

    Prehn, Kristin; Korczykowski, Marc; Rao, Hengyi; Fang, Zhuo; Detre, John A.; Robertson, Diana C.

    2015-01-01

    Going back to Kohlberg, moral development research affirms that people progress through different stages of moral reasoning as cognitive abilities mature. Individuals at a lower level of moral reasoning judge moral issues mainly based on self-interest (personal interests schema) or based on adherence to laws and rules (maintaining norms schema), whereas individuals at the post-conventional level judge moral issues based on deeper principles and shared ideals. However, the extent to which moral development is reflected in structural brain architecture remains unknown. To investigate this question, we used voxel-based morphometry and examined the brain structure in a sample of 67 Master of Business Administration (MBA) students. Subjects completed the Defining Issues Test (DIT-2) which measures moral development in terms of cognitive schema preference. Results demonstrate that subjects at the post-conventional level of moral reasoning were characterized by increased gray matter volume in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex, compared with subjects at a lower level of moral reasoning. Our findings support an important role for both cognitive and emotional processes in moral reasoning and provide first evidence for individual differences in brain structure according to the stages of moral reasoning first proposed by Kohlberg decades ago. PMID:26039547

  4. Inflaming the diseased brain: a role for tainted melanins.

    PubMed

    Jeitner, T M; Kalogiannis, M; Patrick, P A; Gomolin, I; Palaia, T; Ragolia, L; Brand, D; Delikatny, E J

    2015-05-01

    Inflammation plays a crucial role in neurodegenerative diseases, but the irritants responsible for this response remain largely unknown. This report addressed the hypothesis that hypochlorous acid reacts with dopamine to produce melanic precipitates that promote cerebral inflammation. Spectrophotometric studies demonstrated that nM amounts of HOCl and dopamine react within seconds. A second-order rate constant for the reaction of HOCl and dopamine of 2.5 × 10(4)M(-1)s(-1) was obtained by measuring loss of dopaminergic fluorescence due to HOCl. Gravimetric measurements, electron microscopy, elemental analysis, and a novel use of flow cytometry confirmed that the major product of this reaction is a precipitate with an average diameter of 1.5 μm. Flow cytometry was also used to demonstrate the preferential reaction of HOCl with dopamine rather than albumin. Engulfment of the chlorodopamine particulates by phagocytes in vitro caused these cells to release TNFα and die. Intrastriatal administration of 10(6) particles also increased the content of TNFα in the brain and led to a 50% loss of the dopaminergic neurons in the nigra. These studies indicate that HOCl and dopamine react quickly and preferentially with each other to produce particles that promote inflammation and neuronal death in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically?

    PubMed

    Song, Cai; Shieh, Chu-Hsin; Wu, Yi-Shyuan; Kalueff, Allan; Gaikwad, Siddharth; Su, Kuan-Pin

    2016-04-01

    Omega-3 polyunsaturated fatty acids (n-3-PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may improve or prevent some psychiatric and neurodegenerative diseases in both experimental and clinical studies. As important membrane components, these PUFAs benefit brain health by modulating neuroimmune and apoptotic pathways, changing membrane function and/or competing with n-6 PUFAs, the precursors of inflammatory mediators. However, the exact role of each fatty acid in neuroimmune modulation and neurogenesis, the interaction between EPA and DHA, and the best EPA:DHA ratios for improving brain disorders, remain unclear. It is also unknown whether EPA, as a DHA precursor, acts directly or via DHA. Here, we discuss recent evidence of EPA and DHA effects in the treatment of major depression and Alzheimer's disease, as well as their potential synergistic action on anti-inflammatory, antioxidant and neurotrophic processes in the brain. We further analyze the cellular and molecular mechanisms by which EPA, DHA or their combination may benefit these diseases. We also outline the limitations of current studies and suggest new genetic models and novel approaches to overcome these limitations. Finally, we summarize future strategies for translational research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Neuroeconomics of Tobacco Demand: An Initial Investigation of the Neural Correlates of Cigarette Cost-Benefit Decision Making in Male Smokers

    PubMed Central

    Gray, Joshua C.; Amlung, Michael T.; Owens, Max; Acker, John; Brown, Courtney L.; Brody, Gene H.; Sweet, Lawrence H.; MacKillop, James

    2017-01-01

    How the brain processes cigarette cost-benefit decision making remains largely unknown. Using functional magnetic resonance imaging (fMRI), this study investigated the neural correlates of decisions for cigarettes (0–10 cigarettes) at varying levels of price during a Cigarette Purchase Task (CPT) in male regular smokers (N = 35). Differential neural activity was examined between choices classified as inelastic, elastic, and suppressed demand, operationalized as consumption unaffected by cost, partially suppressed by cost, and entirely suppressed by cost, respectively. Decisions reflecting elastic demand, putatively the most effortful decisions, elicited greater activation in regions associated with inhibition and planning (e.g., middle frontal gyrus and inferior frontal gyrus), craving and interoceptive processing (anterior insula), and conflict monitoring (e.g., anterior cingulate cortex). Exploratory examination in a harmonized dataset of both cigarette and alcohol demand (N = 59) suggested common neural activation patterns across commodities, particularly in the anterior insula, caudate, anterior cingulate, medial frontal gyrus, and dorsolateral prefrontal cortex. Collectively, these findings provide initial validation of a CPT fMRI paradigm; reveal the interplay of brain regions associated with executive functioning, incentive salience, and interoceptive processing in cigarette decision making; and add to the literature implicating the insula as a key brain region in addiction. PMID:28157228

  7. The Neuroeconomics of Tobacco Demand: An Initial Investigation of the Neural Correlates of Cigarette Cost-Benefit Decision Making in Male Smokers.

    PubMed

    Gray, Joshua C; Amlung, Michael T; Owens, Max; Acker, John; Brown, Courtney L; Brody, Gene H; Sweet, Lawrence H; MacKillop, James

    2017-02-03

    How the brain processes cigarette cost-benefit decision making remains largely unknown. Using functional magnetic resonance imaging (fMRI), this study investigated the neural correlates of decisions for cigarettes (0-10 cigarettes) at varying levels of price during a Cigarette Purchase Task (CPT) in male regular smokers (N = 35). Differential neural activity was examined between choices classified as inelastic, elastic, and suppressed demand, operationalized as consumption unaffected by cost, partially suppressed by cost, and entirely suppressed by cost, respectively. Decisions reflecting elastic demand, putatively the most effortful decisions, elicited greater activation in regions associated with inhibition and planning (e.g., middle frontal gyrus and inferior frontal gyrus), craving and interoceptive processing (anterior insula), and conflict monitoring (e.g., anterior cingulate cortex). Exploratory examination in a harmonized dataset of both cigarette and alcohol demand (N = 59) suggested common neural activation patterns across commodities, particularly in the anterior insula, caudate, anterior cingulate, medial frontal gyrus, and dorsolateral prefrontal cortex. Collectively, these findings provide initial validation of a CPT fMRI paradigm; reveal the interplay of brain regions associated with executive functioning, incentive salience, and interoceptive processing in cigarette decision making; and add to the literature implicating the insula as a key brain region in addiction.

  8. Conservative nature of oestradiol signalling pathways in the brain lobes of octopus vulgaris involved in reproduction, learning and motor coordination.

    PubMed

    De Lisa, E; Paolucci, M; Di Cosmo, A

    2012-02-01

    Oestradiol plays crucial roles in the mammalian brain by modulating reproductive behaviour, neural plasticity and pain perception. The cephalopod Octopus vulgaris is considered, along with its relatives, to be the most behaviourally advanced invertebrate, although the neurophysiological basis of its behaviours, including pain perception, remain largely unknown. In the present study, using a combination of molecular and imaging techniques, we found that oestradiol up-regulated O. vulgaris gonadotrophin-releasing hormone (Oct-GnRH) and O. vulgaris oestrogen receptor (Oct-ER) mRNA levels in the olfactory lobes; in turn, Oct-ER mRNA was regulated by NMDA in lobes involved in learning and motor coordination. Fluorescence resonance energy transfer analysis revealed that oestradiol binds Oct-ER causing conformational modifications and nuclear translocation consistent with the classical genomic mechanism of the oestrogen receptor. Moreover, oestradiol triggered a calcium influx and cyclic AMP response element binding protein phosphorylation via membrane receptors, providing evidence for a rapid nongenomic action of oestradiol in O. vulgaris. In the present study, we demonstrate, for the first time, the physiological role of oestradiol in the brain lobes of O. vulgaris involved in reproduction, learning and motor coordination. © 2011 The Authors. Journal of Neuroendocrinology © 2011 Blackwell Publishing Ltd.

  9. Neural conduction abnormality in the brain stem and prevalence of the abnormality in late preterm infants with perinatal problems.

    PubMed

    Jiang, Ze Dong

    2013-08-01

    Neurodevelopment in late preterm infants has recently attracted considerable interest. The prevalence of brain stem conduction abnormality remains unknown. We examined maximum length sequence brain stem auditory evoked response in 163 infants, born at 33-36 weeks gestation, who had various perinatal problems. Compared with 49 normal term infants without problems, the late preterm infants showed a significant increase in III-V and I-V interpeak intervals at all 91-910/s clicks, particularly at 455 and 910/s (p < 0.01-0.001). The I-III interval was slightly increased, without statistically significant difference from the controls at any click rates. These results suggest that neural conduction along the, mainly more central or rostral part of, auditory brain stem is abnormal in late preterm infants with perinatal problems. Of the 163 late preterm infant, the number (and percentage rate) of infants with abnormal I-V interval at 91, 227, 455, and 910/s clicks was, respectively, 11 (6.5%), 17 (10.2%), 37 (22.3%), and 31 (18.7%). The number (and percentage rate) of infants with abnormal III-V interval at these rates was, respectively, 10 (6.0%), 17 (10.2%), 28 (16.9), and 36 (21.2%). Apparently, the abnormal rates were much higher at 455 and 910/s clicks than at lower rates 91 and 227/s. In total, 42 (25.8%) infants showed abnormal I-V and/or III-V intervals. Conduction in, mainly in the more central part, the brain stem is abnormal in late preterm infants with perinatal problems. The abnormality is more detectable at high- than at low-rate sensory stimulation. A quarter of late preterm infants with perinatal problems have brain stem conduction abnormality.

  10. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain.

    PubMed

    Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela; Wedekind, Franziska; Kroll, Tina; McCarley, Robert W; Strecker, Robert E; Bauer, Andreas

    2015-10-01

    Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. © 2015 European Sleep Research Society.

  11. Long-term use of psychedelic drugs is associated with differences in brain structure and personality in humans.

    PubMed

    Bouso, José Carlos; Palhano-Fontes, Fernanda; Rodríguez-Fornells, Antoni; Ribeiro, Sidarta; Sanches, Rafael; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Riba, Jordi

    2015-04-01

    Psychedelic agents have a long history of use by humans for their capacity to induce profound modifications in perception, emotion and cognitive processes. Despite increasing knowledge of the neural mechanisms involved in the acute effects of these drugs, the impact of sustained psychedelic use on the human brain remains largely unknown. Molecular pharmacology studies have shown that psychedelic 5-hydroxytryptamine (5HT)2A agonists stimulate neurotrophic and transcription factors associated with synaptic plasticity. These data suggest that psychedelics could potentially induce structural changes in brain tissue. Here we looked for differences in cortical thickness (CT) in regular users of psychedelics. We obtained magnetic resonance imaging (MRI) images of the brains of 22 regular users of ayahuasca (a preparation whose active principle is the psychedelic 5HT2A agonist N,N-dimethyltryptamine (DMT)) and 22 controls matched for age, sex, years of education, verbal IQ and fluid IQ. Ayahuasca users showed significant CT differences in midline structures of the brain, with thinning in the posterior cingulate cortex (PCC), a key node of the default mode network. CT values in the PCC were inversely correlated with the intensity and duration of prior use of ayahuasca and with scores on self-transcendence, a personality trait measuring religiousness, transpersonal feelings and spirituality. Although direct causation cannot be established, these data suggest that regular use of psychedelic drugs could potentially lead to structural changes in brain areas supporting attentional processes, self-referential thought, and internal mentation. These changes could underlie the previously reported personality changes in long-term users and highlight the involvement of the PCC in the effects of psychedelics. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  12. Neurologic Injury and Cerebral Blood Flow In Single Ventricles Throughout Staged Surgical Reconstruction

    PubMed Central

    Fogel, Mark A.; Li, Christine; Elci, Okan U.; Pawlowski, Tom; Schwab, Peter J.; Wilson, Felice; Nicolson, Susan C.; Montenegro, Lisa M.; Diaz, Laura; Spray, Thomas L.; Gaynor, J William; Fuller, Stephanie; Mascio, Christopher; Keller, Marc S.; Harris, Matthew A.; Whitehead, Kevin K.; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J.

    2017-01-01

    Background Single ventricle patients experience a high rate of brain injury and adverse neurodevelopmental outcome, however, the incidence of brain abnormalities throughout surgical reconstruction and its relationship with cerebral blood flow, oxygen delivery and carbon dioxide reactivity remains unknown. Methods Single ventricle patients were studied with MRI scans immediately prior to bidirectional Glenn (pre-BDG), prior to Fontan and then 3–9 months after Fontan reconstruction. Results One hundred and sixty eight consecutive subjects recruited into the project underwent 235 scans: 63 pre-BDG (mean age 4.8+1.7 months), 118 BDG (2.9+1.4 years) and 54 after Fontan (2.4+1.0 years). Non-acute ischemic white matter changes on T2 weighted imaging, focal tissue loss, and ventriculomegaly were all more commonly detected in BDG and Fontans compared to pre-BDG (P<0.05). BDG patients has significantly higher CBF than Fontan patients. The odds of discovering brain injury adjusting for surgical stage as well as 2 or more co-existing lesions within a patient all decreased (63–75% and 44% respectively) with increasing amount of cerebral blood flow (P<0.05). In general, there was no association of oxygen delivery (with the exception of ventriculomegaly in the BDG group) or carbon dioxide reactivity with neurological injury. Conclusion Significant brain abnormalities are commonly present in single ventricle patients and detection of these lesions increase as children progress through staged surgical reconstruction with multiple co-existing lesions more common earlier than later. In addition, this study demonstrated that BDG patients had greater CBF than Fontan patients and that there exists an inverse association of various indices of CBF with these brain lesions, however, CO2 reactivity, oxygen delivery (with one exception) were not associated with brain lesion development. PMID:28031423

  13. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats.

    PubMed

    Hankir, Mohammed K; Patt, Marianne; Patt, Jörg T W; Becker, Georg A; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K

    2016-01-01

    Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [ 11 C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [ 11 C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.

  14. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats

    PubMed Central

    Hankir, Mohammed K.; Patt, Marianne; Patt, Jörg T. W.; Becker, Georg A.; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K.

    2017-01-01

    Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [11C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [11C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting. PMID:28133443

  15. Acid Sphingomyelinase-Derived Ceramide Regulates ICAM-1 Function during T Cell Transmigration across Brain Endothelial Cells.

    PubMed

    Lopes Pinheiro, Melissa A; Kroon, Jeffrey; Hoogenboezem, Mark; Geerts, Dirk; van Het Hof, Bert; van der Pol, Susanne M A; van Buul, Jaap D; de Vries, Helga E

    2016-01-01

    Multiple sclerosis (MS) is a chronic demyelinating disorder of the CNS characterized by immune cell infiltration across the brain vasculature into the brain, a process not yet fully understood. We previously demonstrated that the sphingolipid metabolism is altered in MS lesions. In particular, acid sphingomyelinase (ASM), a critical enzyme in the production of the bioactive lipid ceramide, is involved in the pathogenesis of MS; however, its role in the brain vasculature remains unknown. Transmigration of T lymphocytes is highly dependent on adhesion molecules in the vasculature such as intercellular adhesion molecule-1 (ICAM-1). In this article, we hypothesize that ASM controls T cell migration by regulating ICAM-1 function. To study the role of endothelial ASM in transmigration, we generated brain endothelial cells lacking ASM activity using a lentiviral shRNA approach. Interestingly, although ICAM-1 expression was increased in cells lacking ASM activity, we measured a significant decrease in T lymphocyte adhesion and consequently transmigration both in static and under flow conditions. As an underlying mechanism, we revealed that upon lack of endothelial ASM activity, the phosphorylation of ezrin was perturbed as well as the interaction between filamin and ICAM-1 upon ICAM-1 clustering. Functionally this resulted in reduced microvilli formation and impaired transendothelial migration of T cells. In conclusion, in this article, we show that ASM coordinates ICAM-1 function in brain endothelial cells by regulating its interaction with filamin and phosphorylation of ezrin. The understanding of these underlying mechanisms of T lymphocyte transmigration is of great value to develop new strategies against MS lesion formation. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. Functional correlates of brain aging: beta and gamma frequency band responses to age-related cortical changes.

    PubMed

    Christov, Mario; Dushanova, Juliana

    2016-01-01

    The brain as a system with gradually declined resources by age maximizes its performance by neural network reorganization for greater efficiency of neuronal oscillations in a given frequency band. Whether event-related high-frequency band responses are related to plasticity in neural recruitment contributed to the stability of sensory/cognitive mechanisms accompanying aging or are underlined pathological changes seen in aging brain remains unknown. Aged effect on brain electrical activity was studied in auditory discrimination task (low-frequency and high-frequency tone) at particular cortical locations in beta (β1: 12.5-20; β2: 20.5-30 Hz) and gamma frequency bands (γ1: 30.5-49; γ2: 52-69 Hz) during sensory (post-stimulus interval 0-250 ms) and cognitive processing (250-600 ms). Beta1 activity less affected by age during sensory processing. Reduced beta1 activity was more widespread during cognitive processing. This difference increased in fronto-parietal direction more expressed after high-frequency tone stimulation. Beta2 and gamma activity were more pronounced with progressive age during sensory processing. Reducing regional-process specificity with progressing age characterized age-related and tone-dependent beta2 changes during sensory, but not during cognitive processing. Beta2 and gamma activity diminished with age on cognitive processes, except the higher frontal tone-dependent gamma activity during cognitive processing. With increasing age, larger gamma2 activity was more expressed over the frontal brain areas to high tone discrimination and hand reaction choice. These gamma2 differences were shifted from posterior to anterior brain regions with advancing age. The aged influence was higher on cognitive processes than on perceptual ones.

  17. Cumulative Effects of Foraging Behavior and Social Dominance on Brain Development in a Facultatively Social Bee (Ceratina australensis).

    PubMed

    Rehan, Sandra M; Bulova, Susan J; O'Donnell, Sean

    2015-01-01

    In social insects, both task performance (foraging) and dominance are associated with increased brain investment, particularly in the mushroom bodies. Whether and how these factors interact is unknown. Here we present data on a system where task performance and social behavior can be analyzed simultaneously: the small carpenter bee Ceratina australensis. We show that foraging and dominance have separate and combined cumulative effects on mushroom body calyx investment. Female C. australensis nest solitarily and socially in the same populations at the same time. Social colonies comprise two sisters: the social primary, which monopolizes foraging and reproduction, and the social secondary, which is neither a forager nor reproductive but rather remains at the nest as a guard. We compare the brains of solitary females that forage and reproduce but do not engage in social interactions with those of social individuals while controlling for age, reproductive status, and foraging experience. Mushroom body calyx volume was positively correlated with wing wear, a proxy for foraging experience. We also found that, although total brain volume did not vary among reproductive strategies (solitary vs. social nesters), socially dominant primaries had larger mushroom body calyx volumes (corrected for both brain and body size variation) than solitary females; socially subordinate secondaries (that are neither dominant nor foragers) had the least-developed mushroom body calyces. These data demonstrate that sociality itself does not explain mushroom body volume; however, achieving and maintaining dominance status in a group was associated with mushroom body calyx enlargement. Dominance and foraging effects were cumulative; dominant social primary foragers had larger mushroom body volumes than solitary foragers, and solitary foragers had larger mushroom body volumes than nonforaging social secondary guards. This is the first evidence for cumulative effects on brain development by dominance and task performance.

  18. Chronic vitamin E deficiency impairs cognitive function in adult zebrafish via dysregulation of brain lipids and energy metabolism.

    PubMed

    McDougall, Melissa; Choi, Jaewoo; Magnusson, Kathy; Truong, Lisa; Tanguay, Robert; Traber, Maret G

    2017-11-01

    Zebrafish (Danio rerio) are a recognized model for studying the pathogenesis of cognitive deficits and the mechanisms underlying behavioral impairments, including the consequences of increased oxidative stress within the brain. The lipophilic antioxidant vitamin E (α-tocopherol; VitE) has an established role in neurological health and cognitive function, but the biological rationale for this action remains unknown. In the present study, we investigated behavioral perturbations due to chronic VitE deficiency in adult zebrafish fed from 45 days to 18-months of age diets that were either VitE-deficient (E-) or VitE-sufficient (E+). We hypothesized that E- zebrafish would display cognitive impairments associated with elevated lipid peroxidation and metabolic disruptions in the brain. Quantified VitE levels at 18-months in E- brains (5.7 ± 0.1 nmol/g tissue) were ~20-times lower than in E+ (122.8 ± 1.1; n = 10/group). Using assays of both associative (avoidance conditioning) and non-associative (habituation) learning, we found E- vs E+ fish were learning impaired. These functional deficits occurred concomitantly with the following observations in adult E- brains: decreased concentrations of and increased peroxidation of polyunsaturated fatty acids (especially docosahexaenoic acid, DHA), altered brain phospholipid and lysophospholipid composition, as well as perturbed energy (glucose/ketone), phosphatidylcholine and choline/methyl-donor metabolism. Collectively, these data suggest that chronic VitE deficiency leads to neurological dysfunction through multiple mechanisms that become dysregulated secondary to VitE deficiency. Apparently, the E- animals alter their metabolism to compensate for the VitE deficiency, but these compensatory mechanisms are insufficient to maintain cognitive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Functional disorganization of small-world brain networks in mild Alzheimer's Disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE).

    PubMed

    Frantzidis, Christos A; Vivas, Ana B; Tsolaki, Anthoula; Klados, Manousos A; Tsolaki, Magda; Bamidis, Panagiotis D

    2014-01-01

    Previous neuroscientific findings have linked Alzheimer's Disease (AD) with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI) remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD). Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG) data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT), and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N = 500, 600, 700, 800 edges) across all participants and groups (fixed density values). All groups exhibited a small-world (SW) brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant's generic cognitive status. The deterioration of the network's organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.

  20. The Effects of Tai Chi Intervention on Healthy Elderly by Means of Neuroimaging and EEG: A Systematic Review.

    PubMed

    Pan, Zhujun; Su, Xiwen; Fang, Qun; Hou, Lijuan; Lee, Younghan; Chen, Chih C; Lamberth, John; Kim, Mi-Lyang

    2018-01-01

    Aging is a process associated with a decline in cognitive and motor functions, which can be attributed to neurological changes in the brain. Tai Chi, a multimodal mind-body exercise, can be practiced by people across all ages. Previous research identified effects of Tai Chi practice on delaying cognitive and motor degeneration. Benefits in behavioral performance included improved fine and gross motor skills, postural control, muscle strength, and so forth. Neural plasticity remained in the aging brain implies that Tai Chi-associated benefits may not be limited to the behavioral level. Instead, neurological changes in the human brain play a significant role in corresponding to the behavioral improvement. However, previous studies mainly focused on the effects of behavioral performance, leaving neurological changes largely unknown. This systematic review summarized extant studies that used brain imaging techniques and EEG to examine the effects of Tai Chi on older adults. Eleven articles were eligible for the final review. Three neuroimaging techniques including fMRI ( N = 6), EEG ( N = 4), and MRI ( N = 1), were employed for different study interests. Significant changes were reported on subjects' cortical thickness, functional connectivity and homogeneity of the brain, and executive network neural function after Tai Chi intervention. The findings suggested that Tai Chi intervention give rise to beneficial neurological changes in the human brain. Future research should develop valid and convincing study design by applying neuroimaging techniques to detect effects of Tai Chi intervention on the central nervous system of older adults. By integrating neuroimaging techniques into randomized controlled trials involved with Tai Chi intervention, researchers can extend the current research focus from behavioral domain to neurological level.

  1. Age-related cognitive decline in hypercholesterolemic LDL receptor knockout mice (LDLr-/-): evidence of antioxidant imbalance and increased acetylcholinesterase activity in the prefrontal cortex.

    PubMed

    Moreira, Eduardo Luiz Gasnhar; de Oliveira, Jade; Nunes, Jean Costa; Santos, Danúbia Bonfanti; Nunes, Fernanda Costa; Vieira, Daniella Serafim Couto; Ribeiro-do-Valle, Rosa Maria; Pamplona, Fabrício Alano; de Bem, Andreza Fabro; Farina, Marcelo; Walz, Roger; Prediger, Rui Daniel

    2012-01-01

    There is increasing evidence that hypercholesterolemia during midlife may represent a predictor of subsequent mild cognitive impairments and dementia decades later. However, the exact mechanism underlying this phenomenon remains unknown since plasmatic cholesterol is not able to cross the blood-brain barrier. In the present study, we evaluated the hypothesis that cognitive impairments triggered by hypercholesterolemia during aging may be related to brain oxidative stress and altered brain acetylcholinesterase (AChE) activity. We also performed a neuropathological investigation in order to analyze whether the cognitive impairments may be associated with stroke-related features. To address these questions we used three- and fourteen-month-old low-density lipoprotein receptor-deficient mice (LDLr-/-). The current findings provide new evidence that aged LDLr-/- mice, exposed to over three-fold cholesterol levels from early life, show working, spatial reference, and procedural memory impairments, without alterations in motor function. Antioxidant imbalance and oxidative damage were evidenced by a marked increase in lipid peroxidation (thiobarbituric acid reactive substances levels) and glutathione metabolism (increase in glutathione levels, glutathione reductase, and glutathione peroxidase activities) together with a significant increase in the AChE activity in the prefrontal cortex of aged hypercholesterolemic LDLr-/- mice. Notably, hypercholesterolemia was not related to brain infarcts and neurodegeneration in mice, independent of their age. These observations provide new evidence that hypercholesterolemia during aging triggers cognitive impairments on different types of learning and memory, accompanied by antioxidant imbalance, oxidative damage, and alterations of cholinergic signaling in brain areas associated with learning and memory processes, particularly in the prefrontal cortex.

  2. Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with 99mTc BN1.1

    NASA Astrophysics Data System (ADS)

    Scopinaro, F.; Paschali, E.; Di Santo, G.; Antonellis, T.; Massari, R.; Trotta, C.; Gourni, H.; Bouziotis, P.; David, V.; Soluri, A.; Varvarigou, A. D.

    2006-12-01

    The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. 99mTc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, 99mTc HMPAO and the new 99mTc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of 99mTc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of 99mTc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only 99mTc BN1.1 HR scan showed viability of transplanted TSC but also the "background brain" was the still now unknown map of BNR in mammalian brain.

  3. A New Pain Regulatory System via the Brain Long Chain Fatty Acid Receptor GPR40/FFA1 Signal.

    PubMed

    Nakamoto, Kazuo

    2017-01-01

    An increasingly large number of pharmacological and physiological works on fatty acids have shown that the functional properties of fatty acids are regulated by the amount of individual fatty acid intake and the distribution of fatty acids among organs. Recently, it has been determined that G-protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFA1) is activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). GPR40/FFA1 is mainly expressed in the β cell of the pancreas, spinal cord and brain. It is reported that this receptor has a functional role in controlling blood glucose levels via the modulation of insulin secretion. However, its physiological function in the brain remains unknown. Our previous studies have shown that GPR40/FFA1 is expressed in pro-opiomelanocortin (POMC)-positive neurons of the arcuate nucleus, serotonergic neurons in the nucleus raphe magnus, and in noradrenergic neurons in the locus coeruleus. Furthermore, the intracerebroventricular injection of DHA or GW9508, which is a selective GPR40/FFA1 agonist, attenuates formalin-induced inflammatory pain behavior through increasing β-endorphin release in the hypothalamus. It also suppresses complete Freund's adjuvant-induced mechanical allodynia and thermal hyperalgesia. Our findings suggest that brain free long-chain fatty acids-GPR40/FFA1 signaling might have an important role in the modulation of endogenous pain control systems. In this review, I discuss the current status and our recent study regarding a new pain regulatory system via the brain long chain fatty acid receptor GPR40/FFA1 signal.

  4. Effect of type of cue, type of response, time delay and two different ongoing tasks on prospective memory functioning after acquired brain injury.

    PubMed

    Raskin, Sarah A; Buckheit, Carol A; Waxman, Amanda

    2012-01-01

    Failures of prospective memory (PM) are one of the most frequent, and least studied, sequelae of brain injury. PM, also referred to as memory for intentions, is the ability to remember to carry out a future task. Successful completion of a PM task requires the ability to monitor time, keep the action to be performed periodically in awareness, remember the task to be performed, and initiate the action. Although PM has been shown to be a common difficulty after brain injury, it remains unknown which aspects of performance are impaired. In this study, the performance of 25 individuals with brain injury and that of 25 healthy participants were measured separately on the following variables: time until completion of the task, difficulty of the ongoing task being performed while waiting, whether the task to be performed is an action or is verbal, and whether the cue to perform the task is the passing of a particular amount of time (e.g., 10 minutes) or is an external cue (e.g., an alarm sounding). Individuals with brain injury demonstrated impairment compared to healthy adults on virtually all variables. PM performance was also compared to a battery of standard neuropsychological measures of attention, memory, and executive functions, and to self-report measures of PM functioning, in order to determine the underlying cognitive deficits responsible for poor PM performance, if any. PM performance was correlated with measures of executive functioning but not to self-report measures of PM functioning. Implications are discussed in terms of cognitive rehabilitation recommendations.

  5. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    PubMed Central

    Umemura, Mariko; Ogura, Tae; Matsuzaki, Ayako; Nakano, Haruo; Takao, Keizo; Miyakawa, Tsuyoshi; Takahashi, Yuji

    2017-01-01

    Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/-) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders. PMID:28744205

  6. Hippocampal Context Processing during Acquisition of a Predictive Learning Task Is Associated with Renewal in Extinction Recall.

    PubMed

    Lissek, Silke; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Tegenthoff, Martin

    2016-05-01

    Renewal is defined as the recovery of an extinguished response if extinction and retrieval contexts differ. The context dependency of extinction, as demonstrated by renewal, has important implications for extinction-based therapies. Persons showing renewal (REN) exhibit higher hippocampal activation during extinction in associative learning than those without renewal (NOREN), demonstrating hippocampal context processing, and recruit ventromedial pFC in retrieval. Apart from these findings, brain processes generating renewal remain largely unknown. Conceivably, processing differences in task-relevant brain regions that ultimately lead to renewal may occur already in initial acquisition of associations. Therefore, in two fMRI studies, we investigated overall brain activation and hippocampal activation in REN and NOREN during acquisition of an associative learning task in response to presentation of a context alone or combined with a cue. Results of two studies demonstrated significant activation differences between the groups: In Study 1, a support vector machine classifier correctly assigned participants' brain activation patterns to REN and NOREN groups, respectively. In Study 2, REN and NOREN showed similar hippocampal involvement during context-only presentation, suggesting processing of novelty, whereas overall hippocampal activation to the context-cue compound, suggesting compound encoding, was higher in REN. Positive correlations between hippocampal activation and renewal level indicated more prominent hippocampal processing in REN. Results suggest that hippocampal processing of the context-cue compound rather than of context only during initial learning is related to a subsequent renewal effect. Presumably, REN participants use distinct encoding strategies during acquisition of context-related tasks, which reflect in their brain activation patterns and contribute to a renewal effect.

  7. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity

    PubMed Central

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623

  8. A review of presented mathematical models in Parkinson's disease: black- and gray-box models.

    PubMed

    Sarbaz, Yashar; Pourakbari, Hakimeh

    2016-06-01

    Parkinson's disease (PD), one of the most common movement disorders, is caused by damage to the central nervous system. Despite all of the studies on PD, the formation mechanism of its symptoms remained unknown. It is still not obvious why damage only to the substantia nigra pars compacta, a small part of the brain, causes a wide range of symptoms. Moreover, the causes of brain damages remain to be fully elucidated. Exact understanding of the brain function seems to be impossible. On the other hand, some engineering tools are trying to understand the behavior and performance of complex systems. Modeling is one of the most important tools in this regard. Developing quantitative models for this disease has begun in recent decades. They are very effective not only in better understanding of the disease, offering new therapies, and its prediction and control, but also in its early diagnosis. Modeling studies include two main groups: black-box models and gray-box models. Generally, in the black-box modeling, regardless of the system information, the symptom is only considered as the output. Such models, besides the quantitative analysis studies, increase our knowledge of the disorders behavior and the disease symptoms. The gray-box models consider the involved structures in the symptoms appearance as well as the final disease symptoms. These models can effectively save time and be cost-effective for the researchers and help them select appropriate treatment mechanisms among all possible options. In this review paper, first, efforts are made to investigate some studies on PD quantitative analysis. Then, PD quantitative models will be reviewed. Finally, the results of using such models are presented to some extent.

  9. Selective Neuronal Activation by Cochlear Implant Stimulation in Auditory Cortex of Awake Primate

    PubMed Central

    Johnson, Luke A.; Della Santina, Charles C.

    2016-01-01

    Despite the success of cochlear implants (CIs) in human populations, most users perform poorly in noisy environments and music and tonal language perception. How CI devices engage the brain at the single neuron level has remained largely unknown, in particular in the primate brain. By comparing neuronal responses with acoustic and CI stimulation in marmoset monkeys unilaterally implanted with a CI electrode array, we discovered that CI stimulation was surprisingly ineffective at activating many neurons in auditory cortex, particularly in the hemisphere ipsilateral to the CI. Further analyses revealed that the CI-nonresponsive neurons were narrowly tuned to frequency and sound level when probed with acoustic stimuli; such neurons likely play a role in perceptual behaviors requiring fine frequency and level discrimination, tasks that CI users find especially challenging. These findings suggest potential deficits in central auditory processing of CI stimulation and provide important insights into factors responsible for poor CI user performance in a wide range of perceptual tasks. SIGNIFICANCE STATEMENT The cochlear implant (CI) is the most successful neural prosthetic device to date and has restored hearing in hundreds of thousands of deaf individuals worldwide. However, despite its huge successes, CI users still face many perceptual limitations, and the brain mechanisms involved in hearing through CI devices remain poorly understood. By directly comparing single-neuron responses to acoustic and CI stimulation in auditory cortex of awake marmoset monkeys, we discovered that neurons unresponsive to CI stimulation were sharply tuned to frequency and sound level. Our results point out a major deficit in central auditory processing of CI stimulation and provide important insights into mechanisms underlying the poor CI user performance in a wide range of perceptual tasks. PMID:27927962

  10. Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson's disease.

    PubMed

    Pienaar, Ilse S; Gartside, Sarah E; Sharma, Puneet; De Paola, Vincenzo; Gretenkord, Sabine; Withers, Dominic; Elson, Joanna L; Dexter, David T

    2015-09-23

    Patients with advanced Parkinson's disease (PD) often present with axial symptoms, including postural- and gait difficulties that respond poorly to dopaminergic agents. Although deep brain stimulation (DBS) of a highly heterogeneous brain structure, the pedunculopontine nucleus (PPN), improves such symptoms, the underlying neuronal substrate responsible for the clinical benefits remains largely unknown, thus hampering optimization of DBS interventions. Choline acetyltransferase (ChAT)::Cre(+) transgenic rats were sham-lesioned or rendered parkinsonian through intranigral, unihemispheric stereotaxic administration of the ubiquitin-proteasomal system inhibitor, lactacystin, combined with designer receptors exclusively activated by designer drugs (DREADD), to activate the cholinergic neurons of the nucleus tegmenti pedunculopontine (PPTg), the rat equivalent of the human PPN. We have previously shown that the lactacystin rat model accurately reflects aspects of PD, including a partial loss of PPTg cholinergic neurons, similar to what is seen in the post-mortem brains of advanced PD patients. In this manuscript, we show that transient activation of the remaining PPTg cholinergic neurons in the lactacystin rat model of PD, via peripheral administration of the cognate DREADD ligand, clozapine-N-oxide (CNO), dramatically improved motor symptoms, as was assessed by behavioral tests that measured postural instability, gait, sensorimotor integration, forelimb akinesia and general motor activity. In vivo electrophysiological recordings revealed increased spiking activity of PPTg putative cholinergic neurons during CNO-induced activation. c-Fos expression in DREADD overexpressed ChAT-immunopositive (ChAT+) neurons of the PPTg was also increased by CNO administration, consistent with upregulated neuronal activation in this defined neuronal population. Overall, these findings provide evidence that functional modulation of PPN cholinergic neurons alleviates parkinsonian motor symptoms.

  11. Model-based iterative learning control of Parkinsonian state in thalamic relay neuron

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Jiang; Li, Huiyan; Xue, Zhiqin; Deng, Bin; Wei, Xile

    2014-09-01

    Although the beneficial effects of chronic deep brain stimulation on Parkinson's disease motor symptoms are now largely confirmed, the underlying mechanisms behind deep brain stimulation remain unclear and under debate. Hence, the selection of stimulation parameters is full of challenges. Additionally, due to the complexity of neural system, together with omnipresent noises, the accurate model of thalamic relay neuron is unknown. Thus, the iterative learning control of the thalamic relay neuron's Parkinsonian state based on various variables is presented. Combining the iterative learning control with typical proportional-integral control algorithm, a novel and efficient control strategy is proposed, which does not require any particular knowledge on the detailed physiological characteristics of cortico-basal ganglia-thalamocortical loop and can automatically adjust the stimulation parameters. Simulation results demonstrate the feasibility of the proposed control strategy to restore the fidelity of thalamic relay in the Parkinsonian condition. Furthermore, through changing the important parameter—the maximum ionic conductance densities of low-threshold calcium current, the dominant characteristic of the proposed method which is independent of the accurate model can be further verified.

  12. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells

    PubMed Central

    Sun, GuoQiang; Ye, Peng; Murai, Kiyohito; Lang, Ming-Fei; Li, Shengxiu; Zhang, Heying; Li, Wendong; Fu, Chelsea; Yin, Jason; Wang, Allen; Ma, Xiaoxiao; Shi, Yanhong

    2012-01-01

    miR-137 is a brain-enriched microRNA. Its role in neural development remains unknown. Here we show that miR-137 plays an essential role in controlling embryonic neural stem cell fate determination. miR-137 negatively regulates cell proliferation and accelerates neural differentiation of embryonic neural stem cells. In addition, we show that histone demethylase LSD1, a transcriptional co-repressor of nuclear receptor TLX, is a downstream target of miR-137. In utero electroporation of miR-137 in embryonic mouse brains led to premature differentiation and outward migration of the transfected cells. Introducing a LSD1 expression vector lacking the miR-137 recognition site rescued miR-137-induced precocious differentiation. Furthermore, we demonstrate that TLX, an essential regulator of neural stem cell self-renewal, represses the expression of miR-137 by recruiting LSD1 to the genomic regions of miR-137. Thus, miR-137 forms a feedback regulatory loop with TLX and LSD1 to control the dynamics between neural stem cell proliferation and differentiation during neural development. PMID:22068596

  13. SDF1 regulates leading process branching and speed of migrating interneurons

    PubMed Central

    Lysko, Daniel E.; Putt, Mary; Golden, Jeffrey A.

    2011-01-01

    Cell migration is required for normal embryonic development, yet how cells navigate complex paths while integrating multiple guidance cues remains poorly understood. During brain development, interneurons migrate from the ventral ganglionic eminence to the cerebral cortex within several migratory streams. They must exit these streams to invade the cortical plate. While SDF1-signaling is necessary for normal interneuron stream migration, how they switch from tangential stream migration to invade the cortical plate is unknown. Here we demonstrate that SDF1-signaling reduces interneuron branching frequency by reducing cAMP levels via a Gi-signaling pathway using an in vitro mouse explant system, resulting in the maintenance of stream migration. Blocking SDF1-signaling, or increasing branching frequency, results in stream exit and cortical plate invasion in mouse brain slices. These data support a novel model to understand how migrating interneurons switch from tangential migration to invade the cortical plate in which reducing SDF1-signaling increases leading process branching and slows the migration rate, permitting migrating interneurons to sense cortically directed guidance cues. PMID:21289183

  14. The neural correlates of beauty comparison

    PubMed Central

    Mussweiler, Thomas; Mullins, Paul; Linden, David E. J.

    2014-01-01

    Beauty is in the eye of the beholder. How attractive someone is perceived to be depends on the individual or cultural standards to which this person is compared. But although comparisons play a central role in the way people judge the appearance of others, the brain processes underlying attractiveness comparisons remain unknown. In the present experiment, we tested the hypothesis that attractiveness comparisons rely on the same cognitive and neural mechanisms as comparisons of simple nonsocial magnitudes such as size. We recorded brain activity with functional magnetic resonance imaging (fMRI) while participants compared the beauty or height of two women or two dogs. Our data support the hypothesis of a common process underlying these different types of comparisons. First, we demonstrate that the distance effect characteristic of nonsocial comparisons also holds for attractiveness comparisons. Behavioral results indicated, for all our comparisons, longer response times for near than far distances. Second, the neural correlates of these distance effects overlapped in a frontoparietal network known for its involvement in processing simple nonsocial quantities. These results provide evidence for overlapping processes in the comparison of physical attractiveness and nonsocial magnitudes. PMID:23508477

  15. The neural correlates of beauty comparison.

    PubMed

    Kedia, Gayannée; Mussweiler, Thomas; Mullins, Paul; Linden, David E J

    2014-05-01

    Beauty is in the eye of the beholder. How attractive someone is perceived to be depends on the individual or cultural standards to which this person is compared. But although comparisons play a central role in the way people judge the appearance of others, the brain processes underlying attractiveness comparisons remain unknown. In the present experiment, we tested the hypothesis that attractiveness comparisons rely on the same cognitive and neural mechanisms as comparisons of simple nonsocial magnitudes such as size. We recorded brain activity with functional magnetic resonance imaging (fMRI) while participants compared the beauty or height of two women or two dogs. Our data support the hypothesis of a common process underlying these different types of comparisons. First, we demonstrate that the distance effect characteristic of nonsocial comparisons also holds for attractiveness comparisons. Behavioral results indicated, for all our comparisons, longer response times for near than far distances. Second, the neural correlates of these distance effects overlapped in a frontoparietal network known for its involvement in processing simple nonsocial quantities. These results provide evidence for overlapping processes in the comparison of physical attractiveness and nonsocial magnitudes.

  16. Understanding the mechanisms of cognitive impairments in developmental coordination disorder.

    PubMed

    Deng, Shining; Li, Wei-Guang; Ding, Jing; Wu, Jinlin; Zhang, Yuanyuan; Li, Fei; Shen, Xiaoming

    2014-01-01

    Developmental coordination disorder (DCD), a neurodevelopmental disability in which a child's motor coordination difficulties significantly interfere with activities of daily life or academic achievement, together with additional symptoms of diseases with childhood sensorimotor impairments, increases the risk of many cognitive problems. This exhibits the dynamic interplay between sensorimotor and cognition systems. However, the brain structures and pathways involved have remained unknown over the past decades. Here, we review developments in recent years that elucidate the neural mechanisms involved in the sensorimotor-cognitive difficulties. First, we briefly address the clinical and epidemiological discoveries in DCD as well as its comorbidities. Subsequently, we group the growing evidence including our findings that support the notion that sensorimotor manipulation indeed affects the cognition development at systematic, circuitry, cellular, and molecular levels. This corresponds to changes in diverse brain regions, synaptic plasticity, and neurotransmitter and receptor activity during development under these effects. Finally, we address the treatment potentials of task-oriented sensorimotor enhancement, as a new therapeutic strategy for cognitive rehabilitation, based on our current understanding of the neurobiology of cognitive-sensorimotor interaction.

  17. Psychedelics Recruit Multiple Cellular Types and Produce Complex Transcriptional Responses Within the Brain.

    PubMed

    Martin, David A; Nichols, Charles D

    2016-09-01

    There has recently been a resurgence of interest in psychedelics, substances that profoundly alter perception and cognition and have recently demonstrated therapeutic efficacy to treat anxiety, depression, and addiction in the clinic. The receptor mechanisms that drive their molecular and behavioral effects involve activation of cortical serotonin 5-HT 2A receptors, but the responses of specific cellular populations remain unknown. Here, we provide evidence that a small subset of 5-HT 2A -expressing excitatory neurons is directly activated by psychedelics and subsequently recruits other select cell types including subpopulations of inhibitory somatostatin and parvalbumin GABAergic interneurons, as well as astrocytes, to produce distinct and regional responses. To gather data regarding the response of specific neuronal populations, we developed methodology for fluorescence-activated cell sorting (FACS) to segregate and enrich specific cellular subtypes in the brain. These methods allow for robust neuronal sorting based on cytoplasmic epitopes followed by downstream nucleic acid analysis, expanding the utility of FACS in neuroscience research. Copyright © 2016 Forschungsgesellschaft für Arbeitsphysiologie und Arbeitschutz e.V. Published by Elsevier B.V. All rights reserved.

  18. Congruent and Opposite Neurons as Partners in Multisensory Integration and Segregation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hao; Wong, K. Y. Michael; Wang, He; Wu, Si

    Experiments revealed that where visual and vestibular cues are integrated to infer heading direction in the brain, there are two types of neurons with roughly the same number. Respectively, congruent and opposite cells respond similarly and oppositely to visual and vestibular cues. Congruent neurons are known to be responsible for cue integration, but the computational role of opposite neurons remains largely unknown. We propose that opposite neurons may serve to encode the disparity information between cues necessary for multisensory segregation. We build a computational model composed of two reciprocally coupled modules, each consisting of groups of congruent and opposite neurons. Our model reproduces the characteristics of congruent and opposite neurons, and demonstrates that in each module, congruent and opposite neurons can jointly achieve optimal multisensory information integration and segregation. This study sheds light on our understanding of how the brain implements optimal multisensory integration and segregation concurrently in a distributed manner. This work is supported by the Research Grants Council of Hong Kong (N _HKUST606/12, 605813, and 16322616) and National Basic Research Program of China (2014CB846101) and the Natural Science Foundation of China (31261160495).

  19. Altered Functional Connectivity of the Primary Visual Cortex in Subjects with Amblyopia

    PubMed Central

    Ding, Kun; Liu, Yong; Yan, Xiaohe; Lin, Xiaoming; Jiang, Tianzi

    2013-01-01

    Amblyopia, which usually occurs during early childhood and results in poor or blurred vision, is a disorder of the visual system that is characterized by a deficiency in an otherwise physically normal eye or by a deficiency that is out of proportion with the structural or functional abnormalities of the eye. Our previous study demonstrated alterations in the spontaneous activity patterns of some brain regions in individuals with anisometropic amblyopia compared to subjects with normal vision. To date, it remains unknown whether patients with amblyopia show characteristic alterations in the functional connectivity patterns in the visual areas of the brain, particularly the primary visual area. In the present study, we investigated the differences in the functional connectivity of the primary visual area between individuals with amblyopia and normal-sighted subjects using resting functional magnetic resonance imaging. Our findings demonstrated that the cerebellum and the inferior parietal lobule showed altered functional connectivity with the primary visual area in individuals with amblyopia, and this finding provides further evidence for the disruption of the dorsal visual pathway in amblyopic subjects. PMID:23844297

  20. Anterior Temporal Lobe Morphometry Predicts Categorization Ability.

    PubMed

    Garcin, Béatrice; Urbanski, Marika; Thiebaut de Schotten, Michel; Levy, Richard; Volle, Emmanuelle

    2018-01-01

    Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.

  1. Traumatic asphyxia due to blunt chest trauma: a case report and literature review

    PubMed Central

    2012-01-01

    Introduction Crush asphyxia is different from positional asphyxia, as respiratory compromise in the latter is caused by splinting of the chest and/or diaphragm, thus preventing normal chest expansion. There are only a few cases or small case series of crush asphyxia in the literature, reporting usually poor outcomes. Case presentation We present the case of a 44-year-old Caucasian man who developed traumatic asphyxia with severe thoracic injury and mild brain edema after being crushed under heavy auto vehicle mechanical parts. He remained unconscious for an unknown time. The treatment included oropharyngeal intubation and mechanical ventilation, bilateral chest tube thoracostomies, treatment of brain edema and other supportive measures. Our patient’s outcome was good. Traumatic asphyxia is generally under-reported and most authors apply supportive measures, while the final outcome seems to be dependent on the length of time of the chest compression and on the associated injuries. Conclusion Treatment for traumatic asphyxia is mainly supportive with special attention to the re-establishment of adequate oxygenation and perfusion; treatment of the concomitant injuries might also affect the final outcome. PMID:22935547

  2. Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer's disease.

    PubMed

    Kovacech, B; Novak, M

    2010-12-01

    Deposits of the misfolded neuronal protein tau are major hallmarks of neurodegeneration in Alzheimer's disease (AD) and other tauopathies. The etiology of the transformation process of the intrinsically disordered soluble protein tau into the insoluble misordered aggregate has attracted much attention. Tau undergoes multiple modifications in AD, most notably hyperphosphorylation and truncation. Hyperphosphorylation is widely regarded as the hottest candidate for the inducer of the neurofibrillary pathology. However, the true nature of the impetus that initiates the whole process in the human brains remains unknown. In AD, several site-specific tau cleavages were identified and became connected to the progression of the disease. In addition, western blot analyses of tau species in AD brains reveal multitudes of various truncated forms. In this review we summarize evidence showing that tau truncation alone is sufficient to induce the complete cascade of neurofibrillary pathology, including hyperphosphorylation and accumulation of misfolded insoluble forms of tau. Therefore, proteolytical abnormalities in the stressed neurons and production of aberrant tau cleavage products deserve closer attention and should be considered as early therapeutic targets for Alzheimer's disease.

  3. Working memory training improves emotional states of healthy individuals

    PubMed Central

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Hashizume, Hiroshi; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Sassa, Yuko; Kawashima, Ryuta

    2014-01-01

    Working memory (WM) capacity is associated with various emotional aspects, including states of depression and stress, reactions to emotional stimuli, and regulatory behaviors. We have previously investigated the effects of WM training (WMT) on cognitive functions and brain structures. However, the effects of WMT on emotional states and related neural mechanisms among healthy young adults remain unknown. In the present study, we investigated these effects in young adults who underwent WMT or received no intervention for 4 weeks. Before and after the intervention, subjects completed self-report questionnaires related to their emotional states and underwent scanning sessions in which brain activities related to negative emotions were measured. Compared with controls, subjects who underwent WMT showed reduced anger, fatigue, and depression. Furthermore, WMT reduced activity in the left posterior insula during tasks evoking negative emotion, which was related to anger. It also reduced activity in the left frontoparietal area. These findings show that WMT can reduce negative mood and provide new insight into the clinical applications of WMT, at least among subjects with preclinical-level conditions. PMID:25360090

  4. α–Synuclein and PolyUnsaturated Fatty Acids Promote Clathrin Mediated Endocytosis and Synaptic Vesicle Recycling

    PubMed Central

    Ben Gedalya, Tziona; Loeb, Virginie; Israeli, Eitan; Altschuler, Yoram; Selkoe, Dennis J.; Sharon, Ronit

    2009-01-01

    α-Synuclein (αS) is an abundant neuronal cytoplasmic protein implicated in Parkinson’s disease (PD), but its physiological function remains unknown. Consistent with its having structural motifs shared with class A1 apolipoproteins, αS can reversibly associate with membranes and help regulate membrane fatty acid (FA) composition. We previously observed that variations in αS expression level in dopaminergic cultured cells or brains are associated with changes in polyunsaturated fatty acid (PUFA) levels and altered membrane fluidity. We now report that αS acts with PUFAs to enhance the internalization of the membrane-binding dye, FM 1-43. Specifically, αS expression coupled with exposure to physiological levels of certain PUFAs enhanced clathrin-mediated endocytosis in neuronal and non-neuronal cultured cells. Moreover, αS expression and PUFA enhanced basal and evoked synaptic vesicle endocytosis in primary hippocampal cultures of wt and genetically depleted αS mouse brains. We suggest that αS, and PUFAs normally functions in endocytic mechanisms and are specifically involved in synaptic vesicle recycling upon neuronal stimulation. PMID:18980610

  5. Steroid and sterol 7-hydroxylation: ancient pathways.

    PubMed

    Lathe, Richard

    2002-11-01

    B-ring hydroxylation is a major metabolic pathway for cholesterols and some steroids. In liver, 7 alpha-hydroxylation of cholesterols, mediated by CYP7A and CYP39A1, is the rate-limiting step of bile acid synthesis and metabolic elimination. In brain and other tissues, both sterols and some steroids including dehydroepiandrosterone (DHEA) are prominently 7 alpha-hydroxylated by CYP7B. The function of extra-hepatic steroid and sterol 7-hydroxylation is unknown. Nevertheless, 7-oxygenated cholesterols are potent regulators of cell proliferation and apoptosis; 7-oxygenated derivatives of DHEA, pregnenolone, and androstenediol can have major effects in the brain and in the immune system. The receptor targets involved remain obscure. It is argued that B-ring modification predated steroid evolution: non-enzymatic oxidation of membrane sterols primarily results in 7-oxygenation. Such molecules may have provided early growth and stress signals; a relic may be found in hydroxylation at the symmetrical 11-position of glucocorticoids. Early receptor targets probably included intracellular sterol sites, some modern steroids may continue to act at these targets. 7-Hydroxylation of DHEA may reflect conservation of an early signaling pathway.

  6. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus.

    PubMed

    Zhou, Li; Liu, Ming-Zhe; Li, Qing; Deng, Juan; Mu, Di; Sun, Yan-Gang

    2017-03-21

    Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Exercise, learned helplessness, and the stress-resistant brain.

    PubMed

    Greenwood, Benjamin N; Fleshner, Monika

    2008-01-01

    Exercise can prevent the development of stress-related mood disorders, such as depression and anxiety. The underlying neurobiological mechanisms of this effect, however, remain unknown. Recently, researchers have used animal models to begin to elucidate the potential mechanisms underlying the protective effects of physical activity. Using the behavioral consequences of uncontrollable stress or "learned helplessness" as an animal analog of depression- and anxiety-like behaviors in rats, we are investigating factors that could be important for the antidepressant and anxiolytic properties of exercise (i.e., wheel running). The current review focuses on the following: (1) the effect of exercise on the behavioral consequences of uncontrollable stress and the implications of these effects on the specificity of the "learned helplessness" animal model; (2) the neurocircuitry of learned helplessness and the role of serotonin; and (3) exercise-associated neural adaptations and neural plasticity that may contribute to the stress-resistant brain. Identifying the mechanisms by which exercise prevents learned helplessness could shed light on the complex neurobiology of depression and anxiety and potentially lead to novel strategies for the prevention of stress-related mood disorders.

  8. Axon growth regulation by a bistable molecular switch.

    PubMed

    Padmanabhan, Pranesh; Goodhill, Geoffrey J

    2018-04-25

    For the brain to function properly, its neurons must make the right connections during neural development. A key aspect of this process is the tight regulation of axon growth as axons navigate towards their targets. Neuronal growth cones at the tips of developing axons switch between growth and paused states during axonal pathfinding, and this switching behaviour determines the heterogeneous axon growth rates observed during brain development. The mechanisms controlling this switching behaviour, however, remain largely unknown. Here, using mathematical modelling, we predict that the molecular interaction network involved in axon growth can exhibit bistability, with one state representing a fast-growing growth cone state and the other a paused growth cone state. Owing to stochastic effects, even in an unchanging environment, model growth cones reversibly switch between growth and paused states. Our model further predicts that environmental signals could regulate axon growth rate by controlling the rates of switching between the two states. Our study presents a new conceptual understanding of growth cone switching behaviour, and suggests that axon guidance may be controlled by both cell-extrinsic factors and cell-intrinsic growth regulatory mechanisms. © 2018 The Author(s).

  9. Cellular Senescence, Neurological Function, and Redox State.

    PubMed

    Maciel-Barón, Luis Ángel; Moreno-Blas, Daniel; Morales-Rosales, Sandra Lizbeth; González-Puertos, Viridiana Yazmín; López-Díazguerrero, Norma Edith; Torres, Claudio; Castro-Obregón, Susana; Königsberg, Mina

    2018-06-20

    Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events. Recent Advances: Recent findings have shown that during prolonged inflammatory and pathologic events, the blood-brain barrier could be compromised and immune cells might enter the brain; this fact along with the brain's high oxygen dependence might result in oxidative damage to macromolecules and therefore senescence induction. Thus, cellular senescence in different brain cell types is revised here. Most information related to cellular senescence in the brain has been obtained from research in glial cells since it has been assumed that the senescent phenotype is a feature exclusive to mitotic cells. Nevertheless, neurons with senescence hallmarks have been observed in old mouse brains. Therefore, although this is a controversial topic in the field, here we summarize and integrate the observations from several studies and propose that neurons indeed senesce. It is still unknown which alterations in the overall metabolism can stimulate senescence induction in the aged brain, what are the mechanisms and signaling pathways, and what is their relationship to NDD development. The understanding of these processes will expose new targets to intervene age-associated pathologies.-Antioxid. Redox Signal. 28, 1704-1723.

  10. EGFR TKIs plus WBRT Demonstrated No Survival Benefit Other Than That of TKIs Alone in Patients with NSCLC and EGFR Mutation and Brain Metastases.

    PubMed

    Jiang, Tao; Su, Chunxia; Li, Xuefei; Zhao, Chao; Zhou, Fei; Ren, Shengxiang; Zhou, Caicun; Zhang, Jun

    2016-10-01

    Whether EGFR tyrosine kinase inhibitors (TKIs) plus whole brain radiation therapy (WBRT) provide a better survival benefit than EGFR TKIs alone remains undetermined in patients with NSCLC with EGFR mutation and brain metastases (BMs). A total of 230 patients with NSCLC with EGFR mutation and BM were identified. Within this group, 116 patients received EGFR TKIs alone (as first-line therapy in 91 cases) and 51 patients received EGFR TKIs plus WBRT therapy (as first-line treatment in 30 cases). Compared with TKIs alone, EGFR TKIs plus WBRT had no superior intracranial progression-free survival (PFS) (6.9 versus 7.4 months [p = 0.232]) and systemic PFS (7.5 versus 7.9 months [p = 0.546]) but were associated with worse overall survival (OS) (21.6 versus 26.4 months [p = 0.049]) in NSCLC with EGFR mutation and BM. Chemotherapy plus WBRT was shown to have an intracranial PFS (5.2 versus 5.9 months [p = 0.339]) and OS (10.5 versus 11.0 months [p = 0.977]) similar to those with chemotherapy alone in patients with EGFR of unknown or wild-type status. In multivariate analysis, EGFR mutation was found to be an independent risk factor for BM (hazard ratio = 1.476, p = 0.039) and also a significant independent prognostic factor for OS in patients with NSCLC with BM (hazard ratio = 0.601, p = 0.028). The addition of WBRT to EGFR TKIs did not appear to have survival benefit superior to that of EGFR TKIs alone in with EGFR-mutant NSCLC with BM. WBRT also did not bring additional benefit to chemotherapy in patients with BM and EGFR of wild-type or unknown status. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. Neuroprotection of Osthole against Cerebral Ischemia/Reperfusion Injury through an Anti-apoptotic Pathway in Rats.

    PubMed

    Li, Kang; Ding, Dun; Zhang, Ming

    2016-01-01

    Cerebral ischemia/reperfusion (I/R) injury is a major cause of acute brain injury. The pathogenetic mechanisms underlying I/R injury involve apoptosis, inflammation and oxidative stress. Osthole-a plant coumarin compound-has been reported to protect against focal cerebral I/R-induced injury in rats. However, the mechanism remains unknown. Here we hypothesize that osthole acts through inhibition of apoptosis during focal cerebral I/R injury in rats. We induced cerebral I/R injury by middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion. We randomly assigned 60 rats to three groups (20 rats per group): sham-operated, vehicle-treated I/R, and osthole-treated I/R. We treated rats intraperitoneally with osthole (40 mg/kg) or vehicle 30 min before cerebral ischemia. We harvested the brains for infarct volume, brain water content, histological changes and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining as well as cleaved caspase-3, bax, and bcl-2 levels 24 h after reperfusion. Osthole treatment significantly attenuated cerebral dysfunction and histologic damage induced by I/R injury. Moreover, osthole-treated rats had a dramatic decrease in apoptotic neuronal cells along with a decrease in bax and cleaved caspase-3. The bcl-2 levels increased. Osthole treatment protects the brain from cerebral I/R injury by suppressing cell apoptosis. Thus, osthole may represent a novel practical strategy to prevent cerebral I/R injury.

  12. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat

    PubMed Central

    Goldstein-Piekarski, Andrea N.; Greer, Stephanie M.; Saletin, Jared M.

    2015-01-01

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the “embodied” reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive. PMID:26180190

  13. Addressing the Complexity of Tourette's Syndrome through the Use of Animal Models

    PubMed Central

    Nespoli, Ester; Rizzo, Francesca; Boeckers, Tobias M.; Hengerer, Bastian; Ludolph, Andrea G.

    2016-01-01

    Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by fluctuating motor and vocal tics, usually preceded by sensory premonitions, called premonitory urges. Besides tics, the vast majority—up to 90%—of TS patients suffer from psychiatric comorbidities, mainly attention deficit/hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD). The etiology of TS remains elusive. Genetics is believed to play an important role, but it is clear that other factors contribute to TS, possibly altering brain functioning and architecture during a sensitive phase of neural development. Clinical brain imaging and genetic studies have contributed to elucidate TS pathophysiology and disease mechanisms; however, TS disease etiology still is poorly understood. Findings from genetic studies led to the development of genetic animal models, but they poorly reflect the pathophysiology of TS. Addressing the role of neurotransmission, brain regions, and brain circuits in TS disease pathomechanisms is another focus area for preclinical TS model development. We are now in an interesting moment in time when numerous innovative animal models are continuously brought to the attention of the public. Due to the diverse and largely unknown etiology of TS, there is no single preclinical model featuring all different aspects of TS symptomatology. TS has been dissected into its key symptomst hat have been investigated separately, in line with the Research Domain Criteria concept. The different rationales used to develop the respective animal models are critically reviewed, to discuss the potential of the contribution of animal models to elucidate TS disease mechanisms. PMID:27092043

  14. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  15. Sleep Deprivation Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat.

    PubMed

    Goldstein-Piekarski, Andrea N; Greer, Stephanie M; Saletin, Jared M; Walker, Matthew P

    2015-07-15

    Facial expressions represent one of the most salient cues in our environment. They communicate the affective state and intent of an individual and, if interpreted correctly, adaptively influence the behavior of others in return. Processing of such affective stimuli is known to require reciprocal signaling between central viscerosensory brain regions and peripheral-autonomic body systems, culminating in accurate emotion discrimination. Despite emerging links between sleep and affective regulation, the impact of sleep loss on the discrimination of complex social emotions within and between the CNS and PNS remains unknown. Here, we demonstrate in humans that sleep deprivation impairs both viscerosensory brain (anterior insula, anterior cingulate cortex, amygdala) and autonomic-cardiac discrimination of threatening from affiliative facial cues. Moreover, sleep deprivation significantly degrades the normally reciprocal associations between these central and peripheral emotion-signaling systems, most prominent at the level of cardiac-amygdala coupling. In addition, REM sleep physiology across the sleep-rested night significantly predicts the next-day success of emotional discrimination within this viscerosensory network across individuals, suggesting a role for REM sleep in affective brain recalibration. Together, these findings establish that sleep deprivation compromises the faithful signaling of, and the "embodied" reciprocity between, viscerosensory brain and peripheral autonomic body processing of complex social signals. Such impairments hold ecological relevance in professional contexts in which the need for accurate interpretation of social cues is paramount yet insufficient sleep is pervasive. Copyright © 2015 the authors 0270-6474/15/3510135-11$15.00/0.

  16. Alter spontaneous activity in amygdala and vmPFC during fear consolidation following 24 h sleep deprivation.

    PubMed

    Feng, Pan; Becker, Benjamin; Feng, Tingyong; Zheng, Yong

    2018-05-15

    Sleep deprivation (SD) has been associated with cognitive and emotional disruptions, however its impact on the acquisition of fear and subsequent fear memory consolidation remain unknown. To address this question, we measured human brain activity before and after fear acquisition under conditions of 24 h sleep deprivation versus normal sleep using resting-state functional magnetic resonance imaging (rs-fMRI). Additionally, we explored whether the fear acquisition-induced change of brain activity during the fear memory consolidation window can be predicted by subjective fear ratings and autonomic fear response, assessed by skin conductance responses (SCR) during acquisition. Behaviorally, the SD group demonstrated increased subjective and autonomic fear responses compared to controls at the stage of fear acquisition. During the stage of fear consolidation, the SD group displayed decreased ventromedial prefrontal cortex (vmPFC) activity and concomitantly increased amygdala activity. Moreover, in the SD group fear acquisition-induced brain activity changes in amygdala were positively correlated with both, subjective and autonomic fear indices during acquisition, whereas in controls changes vmPFC activity were positively correlated with fear indices during acquisition. Together, the present findings suggested that SD may weaken the top-down ability of the vmPFC to regulate amygdala activity during fear memory consolidation. Moreover, subjective and objective fear at fear acquisition stage can predict the change of brain activity in amygdala in fear memory consolidation following SD. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Distribution of vasotocin- and vasoactive intestinal peptide-like immunoreactivity in the brain of blue tit (Cyanistes coeruleus)

    PubMed Central

    Montagnese, Catherine M.; Székely, Tamás; Csillag, András; Zachar, Gergely

    2015-01-01

    Blue tits (Cyanistes coeruleus) are songbirds, used as model animals in numerous studies covering a wide field of research. Nevertheless, the distribution of neuropeptides in the brain of this avian species remains largely unknown. Here we present some of the first results on distribution of Vasotocine (AVT) and Vasoactive intestinal peptide (VIP) in the brain of males and females of this songbird species, using immunohistochemistry mapping. The bulk of AVT-like cells are found in the hypothalamic supraoptic, paraventricular and suprachiasmatic nuclei, bed nucleus of the stria terminalis, and along the lateral forebrain bundle. Most AVT-like fibers course toward the median eminence, some reaching the arcopallium, and lateral septum. Further terminal fields occur in the dorsal thalamus, ventral tegmental area and pretectal area. Most VIP-like cells are in the lateral septal organ and arcuate nucleus. VIP-like fibers are distributed extensively in the hypothalamus, preoptic area, lateral septum, diagonal band of Broca. They are also found in the bed nucleus of the stria terminalis, amygdaloid nucleus of taenia, robust nucleus of the arcopallium, caudo-ventral hyperpallium, nucleus accumbens and the brainstem. Taken together, these results suggest that both AVT and VIP immunoreactive structures show similar distribution to other avian species, emphasizing evolutionary conservatism in the history of vertebrates. The current study may enable future investigation into the localization of AVT and VIP, in relation to behavioral and ecological traits in the brain of tit species. PMID:26236200

  18. Speech acquisition predicts regions of enhanced cortical response to auditory stimulation in autism spectrum individuals.

    PubMed

    Samson, F; Zeffiro, T A; Doyon, J; Benali, H; Mottron, L

    2015-09-01

    A continuum of phenotypes makes up the autism spectrum (AS). In particular, individuals show large differences in language acquisition, ranging from precocious speech to severe speech onset delay. However, the neurological origin of this heterogeneity remains unknown. Here, we sought to determine whether AS individuals differing in speech acquisition show different cortical responses to auditory stimulation and morphometric brain differences. Whole-brain activity following exposure to non-social sounds was investigated. Individuals in the AS were classified according to the presence or absence of Speech Onset Delay (AS-SOD and AS-NoSOD, respectively) and were compared with IQ-matched typically developing individuals (TYP). AS-NoSOD participants displayed greater task-related activity than TYP in the inferior frontal gyrus and peri-auditory middle and superior temporal gyri, which are associated with language processing. Conversely, the AS-SOD group only showed enhanced activity in the vicinity of the auditory cortex. We detected no differences in brain structure between groups. This is the first study to demonstrate the existence of differences in functional brain activity between AS individuals divided according to their pattern of speech development. These findings support the Trigger-threshold-target model and indicate that the occurrence of speech onset delay in AS individuals depends on the location of cortical functional reallocation, which favors perception in AS-SOD and language in AS-NoSOD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Simultaneous Brain-Cervical Cord fMRI Reveals Intrinsic Spinal Cord Plasticity during Motor Sequence Learning.

    PubMed

    Vahdat, Shahabeddin; Lungu, Ovidiu; Cohen-Adad, Julien; Marchand-Pauvert, Veronique; Benali, Habib; Doyon, Julien

    2015-06-01

    The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods. Here, for the first time, we provide evidence for local learning-induced plasticity in intact human spinal cord through simultaneous functional magnetic resonance imaging of the brain and spinal cord during motor sequence learning. Specifically, we show learning-related modulation of activity in the C6-C8 spinal region, which is independent from that of related supraspinal sensorimotor structures. Moreover, a brain-spinal cord functional connectivity analysis demonstrates that the initial linear relationship between the spinal cord and sensorimotor cortex gradually fades away over the course of motor sequence learning, while the connectivity between spinal activity and cerebellum gains strength. These data suggest that the spinal cord not only constitutes an active functional component of the human motor learning network but also contributes distinctively from the brain to the learning process. The present findings open new avenues for rehabilitation of patients with spinal cord injuries, as they demonstrate that this part of the central nervous system is much more plastic than assumed before. Yet, the neurophysiological mechanisms underlying this intrinsic functional plasticity in the spinal cord warrant further investigations.

  20. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats

    PubMed Central

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics. PMID:26248340

  1. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats.

    PubMed

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics.

  2. Mitochondrial damage and ageing using skin as a model organ.

    PubMed

    Hudson, Laura; Bowman, Amy; Rashdan, Eyman; Birch-Machin, Mark A

    2016-11-01

    Ageing describes the progressive functional decline of an organism over time, leading to an increase in susceptibility to age-related diseases and eventually to death, and it is a phenomenon observed across a wide range of organisms. Despite a vast repertoire of ageing studies performed over the past century, the exact causes of ageing remain unknown. For over 50 years it has been speculated that mitochondria play a key role in the ageing process, due mainly to correlative data showing an increase in mitochondrial dysfunction, mitochondrial DNA (mtDNA) damage, and reactive oxygen species (ROS) with age. However, the exact role of the mitochondria in the ageing process remains unknown. The skin is often used to study human ageing, due to its easy accessibility, and the observation that the ageing process is able to be accelerated in this organ via environmental insults, such as ultra violet radiation (UVR). This provides a useful tool to investigate the mechanisms regulating ageing and, in particular, the role of the mitochondria. Observations from dermatological and photoageing studies can provide useful insights into chronological ageing of the skin and other organs such as the brain and liver. Moreover, a wide range of diseases are associated with ageing; therefore, understanding the cause of the ageing process as well as regulatory mechanisms involved could provide potentially advantageous therapeutic targets for the prevention or treatment of such diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Epidemiology and pathogenesis of posttraumatic headache.

    PubMed

    Packard, R C

    1999-02-01

    This article presents an overview of the epidemiology and pathophysiology of posttraumatic headache. It reviews definitions of mild head injury (MHI), mild traumatic brain injury (MTBI), and concussion, and discusses the confusion that often occurs with these terms. Headache types and their pathophysiology are examined in detail. Just as the exact pathophysiology is unknown for migraine and other types of headache, the exact pathophysiology of headache after trauma is also still unknown in many cases. Possible connections between head or neck injuries and headache are reviewed, as well as hypothesized neurochemical changes that may occur in both migraine and traumatic brain injury (TBI). Psychological and legal factors are also considered.

  4. Arithmetic and Brain Connectivity: Mental Calculation in Adolescents with Periventricular Lesions

    ERIC Educational Resources Information Center

    Pavlova, Marina; Sokolov, Alexander N.; Krageloh-Mann, Ingeborg

    2009-01-01

    The ability for mental calculation represents a fundamental prerequisite for development of intelligence, which is predictive for educational and professional success in life. Many individuals with calculation difficulties are survivors of premature birth. The brain mechanisms of these deficits are, however, largely unknown. In this work, we…

  5. Brain-Wide Maps of "Fos" Expression during Fear Learning and Recall

    ERIC Educational Resources Information Center

    Cho, Jin-Hyung; Rendall, Sam D.; Gray, Jesse M.

    2017-01-01

    "Fos" induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which "Fos" induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide…

  6. The spinocerebellar ataxias.

    PubMed

    Gilman, S

    2000-01-01

    The spinocerebellar ataxias (SCAs) are diseases characterized by the progressive degeneration and subsequent loss of neurons accompanied by reactive gliosis, degeneration of fibers from the deteriorating neurons, and clinical symptoms reflecting the locations of the lost neurons. The degenerative changes affect specific neuronal groups while others remain preserved, and these diseases can therefore be viewed as system degenerations. The SCAs result from either genetically transmitted diseases with dominant inheritance or unknown causes with sporadic occurrence. Most of these disorders affect the cerebellum and its pathways, resulting in progressive deterioration of cerebellar function manifested by increasing unsteadiness of gait, incoordination of limb movements with impairment of skilled movements such as handwriting, and a distinctive dysarthria. Other neuronal systems are affected in some of these disorders, notably the corticospinal pathway, basal ganglia, and autonomic nuclei of the brain stem and spinal cord.

  7. Metabolic Control of Vesicular Glutamate Transport and Release

    PubMed Central

    Juge, Narinobu; Gray, John A.; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H.; Nicoll, Roger A.; Moriyama, Yoshinori

    2010-01-01

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl−. Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl− acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl− at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses, and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. PMID:20920794

  8. Serotonin rebalances cortical tuning and behavior linked to autism symptoms in 15q11-13 CNV mice

    PubMed Central

    Nakai, Nobuhiro; Nagano, Masatoshi; Saitow, Fumihito; Watanabe, Yasuhito; Kawamura, Yoshinobu; Kawamoto, Akiko; Tamada, Kota; Mizuma, Hiroshi; Onoe, Hirotaka; Watanabe, Yasuyoshi; Monai, Hiromu; Hirase, Hajime; Nakatani, Jin; Inagaki, Hirofumi; Kawada, Tomoyuki; Miyazaki, Taisuke; Watanabe, Masahiko; Sato, Yuka; Okabe, Shigeo; Kitamura, Kazuo; Kano, Masanobu; Hashimoto, Kouichi; Suzuki, Hidenori; Takumi, Toru

    2017-01-01

    Serotonin is a critical modulator of cortical function, and its metabolism is defective in autism spectrum disorder (ASD) brain. How serotonin metabolism regulates cortical physiology and contributes to the pathological and behavioral symptoms of ASD remains unknown. We show that normal serotonin levels are essential for the maintenance of neocortical excitation/inhibition balance, correct sensory stimulus tuning, and social behavior. Conversely, low serotonin levels in 15q dup mice (a model for ASD with the human 15q11-13 duplication) result in impairment of the same phenotypes. Restoration of normal serotonin levels in 15q dup mice revealed the reversibility of a subset of ASD-related symptoms in the adult. These findings suggest that serotonin may have therapeutic potential for discrete ASD symptoms. PMID:28691086

  9. Associative DNA methylation changes in children with prenatal alcohol exposure.

    PubMed

    Laufer, Benjamin I; Kapalanga, Joachim; Castellani, Christina A; Diehl, Eric J; Yan, Liying; Singh, Shiva M

    2015-01-01

    Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD). Previously, we assessed PAE in brain tissue from mouse models, however whether these changes are present in humans remains unknown. In this report, we show some identical changes in DNA methylation in the buccal swabs of six children with FASD using the 450K array. The changes occur in genes related to protocadherins, glutamatergic synapses, and hippo signaling. The results were found to be similar in another heterogeneous replication group of six FASD children. The replicated results suggest that children born with FASD have unique DNA methylation defects that can be influenced by sex and medication exposure. Ultimately, with future clinical development, assessment of DNA methylation from buccal swabs can provide a novel strategy for the diagnosis of FASD.

  10. Oxytocin during Development: Possible Organizational Effects on Behavior.

    PubMed

    Miller, Travis V; Caldwell, Heather K

    2015-01-01

    Oxytocin (Oxt) is a neurohormone known for its physiological roles associated with lactation and parturition in mammals. Oxt can also profoundly influence mammalian social behaviors such as affiliative, parental, and aggressive behaviors. While the acute effects of Oxt signaling on adult behavior have been heavily researched in many species, including humans, the developmental effects of Oxt on the brain and behavior are just beginning to be explored. There is evidence that Oxt in early postnatal and peripubertal development, and perhaps during prenatal life, affects adult behavior by altering neural structure and function. However, the specific mechanisms by which this occurs remain unknown. Thus, this review will detail what is known about how developmental Oxt impacts behavior as well as explore the specific neurochemicals and neural substrates that are important to these behaviors.

  11. The Treatment of Brain Arteriovenous Malformation Study (TOBAS): A preliminary inter- and intra-rater agreement study on patient management.

    PubMed

    Fahed, Robert; Batista, André L; Darsaut, Tim E; Gentric, Jean-Christophe; Ducroux, Célina; Chaalala, Chiraz; Roberge, David; Bojanowski, Michel W; Weill, Alain; Roy, Daniel; Magro, Elsa; Raymond, Jean

    2017-07-01

    The best management of brain arteriovenous malformation (bAVM) patients remains unknown. Randomized allocation may be more readily accepted when there is uncertainty and disagreement regarding the management of potential participants. In planning for a trial, we aimed to assess variability and agreement among physicians managing bAVM patients. A portfolio composed of 35 patients was sent to 47 clinicians of various specialties managing bAVM patients. For each patient, physicians were asked their best management decision (surgery/embolization/radiosurgery/conservative), their confidence level, and whether they would include the patient in a randomized trial comparing conservative and curative management. Seven physicians, who had access to all images of each patient, independently responded twice, to assess inter and intra-rater agreement using kappa statistics. The inter-rater agreement (30 raters, including 16 neuroradiologists) for best management decision was only "fair" (κ [95%CI]=0.210[0.157; 0.295]). Agreement remained below 'substantial' (κ<.6) between physicians of the same specialty, and when no distinctions were made between various treatments (when responses were dichotomized as conservative versus curative). With access to all images the inter-rater agreement remained fair. The intra-rater agreement reached "substantial" only for the dichotomized decisions. Responding clinicians were willing to include 54.4% of patients (mainly unruptured bAVMs) in a randomized trial. There is a lack of agreement among clinicians involved in the management of bAVM patients. In this study a substantial proportion of clinicians were willing to offer randomized allocation of management options to a substantial number of patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Trafficking of adeno-associated virus vectors across a model of the blood-brain barrier; a comparative study of transcytosis and transduction using primary human brain endothelial cells.

    PubMed

    Merkel, Steven F; Andrews, Allison M; Lutton, Evan M; Mu, Dakai; Hudry, Eloise; Hyman, Bradley T; Maguire, Casey A; Ramirez, Servio H

    2017-01-01

    Developing therapies for central nervous system (CNS) diseases is exceedingly difficult because of the blood-brain barrier (BBB). Notably, emerging technologies may provide promising new options for the treatment of CNS disorders. Adeno-associated virus serotype 9 (AAV9) has been shown to transduce cells in the CNS following intravascular administration in rodents, cats, pigs, and non-human primates. These results suggest that AAV9 is capable of crossing the BBB. However, mechanisms that govern AAV9 transendothelial trafficking at the BBB remain unknown. Furthermore, possibilities that AAV9 may transduce brain endothelial cells or affect BBB integrity still require investigation. Using primary human brain microvascular endothelial cells as a model of the human BBB, we performed transduction and transendothelial trafficking assays comparing AAV9 to AAV2, a serotype that does not cross the BBB or transduce endothelial cells effectively in vivo. Results of our in vitro studies indicate that AAV9 penetrates brain microvascular endothelial cells barriers more effectively than AAV2, but has reduced transduction efficiency. In addition, our data suggest that (i) AAV9 penetrates endothelial barriers through an active, cell-mediated process, and (ii) AAV9 fails to disrupt indicators of BBB integrity such as transendothelial electrical resistance, tight junction protein expression/localization, and inflammatory activation status. Overall, this report shows how human brain endothelial cells configured in BBB models can be utilized for evaluating transendothelial movement and transduction kinetics of various AAV capsids. Importantly, the use of a human in vitro BBB model can provide import insight into the possible effects that candidate AVV gene therapy vectors may have on the status of BBB integrity. Read the Editorial Highlight for this article on page 192. © 2016 International Society for Neurochemistry.

  13. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    PubMed

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory.

    PubMed

    Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H; Gu, Xianfeng

    2015-01-01

    Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing the distal part of the upper limb.

  15. Modality-specific spectral dynamics in response to visual and tactile sequential shape information processing tasks: An MEG study using multivariate pattern classification analysis.

    PubMed

    Gohel, Bakul; Lee, Peter; Jeong, Yong

    2016-08-01

    Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training.

    PubMed

    Valk, Sofie L; Bernhardt, Boris C; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D Louis; Singer, Tania

    2017-10-01

    Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation.

  17. Fisetin alleviates early brain injury following experimental subarachnoid hemorrhage in rats possibly by suppressing TLR 4/NF-κB signaling pathway.

    PubMed

    Zhou, Chen-hui; Wang, Chun-xi; Xie, Guang-bin; Wu, Ling-yun; Wei, Yong-xiang; Wang, Qiang; Zhang, Hua-sheng; Hang, Chun-hua; Zhou, Meng-liang; Shi, Ji-xin

    2015-12-10

    Early brain injury (EBI) determines the unfavorable outcomes after subarachnoid hemorrhage (SAH). Fisetin, a natural flavonoid, has anti-inflammatory and neuroprotection properties in several brain injury models, but the role of fisetin on EBI following SAH remains unknown. Our study aimed to explore the effects of fisetin on EBI after SAH in rats. Adult male Sprague-Dawley rats were randomly divided into the sham and SAH groups, fisetin (25mg/kg or 50mg/kg) or equal volume of vehicle was given at 30min after SAH. Neurological scores and brain edema were assayed. The protein expression of toll-like receptor 4 (TLR 4), p65, ZO-1 and bcl-2 was examined by Western blot. TLR 4 and p65 were also assessed by immunohistochemistry (IHC). Enzyme-linked immunosorbent assay (ELISA) was performed to detect the production of pro-inflammatory cytokines. Terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling (TUNEL) was perform to assess neural cell apoptosis. High-dose (50mg/kg) fisetin significantly improved neurological function and reduced brain edema at both 24h and 72h after SAH. Remarkable reductions of TLR 4 expression and nuclear factor κB (NF-κB) translocation to nucleus were detected after fisetin treatment. In addition, fisetin significantly reduced the productions of pro-inflammatory cytokines, decreased neural cell apoptosis and increased the protein expression of ZO-1 and bcl-2. Our data provides the evidence for the first time that fisetin plays a protective role in EBI following SAH possibly by suppressing TLR 4/NF-κB mediated inflammatory pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Increased Sleep Depth in Developing Neural Networks: New Insights from Sleep Restriction in Children

    PubMed Central

    Kurth, Salome; Dean, Douglas C.; Achermann, Peter; O’Muircheartaigh, Jonathan; Huber, Reto; Deoni, Sean C. L.; LeBourgeois, Monique K.

    2016-01-01

    Brain networks respond to sleep deprivation or restriction with increased sleep depth, which is quantified as slow-wave activity (SWA) in the sleep electroencephalogram (EEG). When adults are sleep deprived, this homeostatic response is most pronounced over prefrontal brain regions. However, it is unknown how children’s developing brain networks respond to acute sleep restriction, and whether this response is linked to myelination, an ongoing process in childhood that is critical for brain development and cortical integration. We implemented a bedtime delay protocol in 5- to 12-year-old children to obtain partial sleep restriction (1-night; 50% of their habitual sleep). High-density sleep EEG was assessed during habitual and restricted sleep and brain myelin content was obtained using mcDESPOT magnetic resonance imaging. The effect of sleep restriction was analyzed using statistical non-parametric mapping with supra-threshold cluster analysis. We observed a localized homeostatic SWA response following sleep restriction in a specific parieto-occipital region. The restricted/habitual SWA ratio was negatively associated with myelin water fraction in the optic radiation, a developing fiber bundle. This relationship occurred bilaterally over parieto-temporal areas and was adjacent to, but did not overlap with the parieto-occipital region showing the most pronounced homeostatic SWA response. These results provide evidence for increased sleep need in posterior neural networks in children. Sleep need in parieto-temporal areas is related to myelin content, yet it remains speculative whether age-related myelin growth drives the fading of the posterior homeostatic SWA response during the transition to adulthood. Whether chronic insufficient sleep in the sensitive period of early life alters the anatomical generators of deep sleep slow-waves is an important unanswered question. PMID:27708567

  19. Levodopa modulates small-world architecture of functional brain networks in Parkinson's disease.

    PubMed

    Berman, Brian D; Smucny, Jason; Wylie, Korey P; Shelton, Erika; Kronberg, Eugene; Leehey, Maureen; Tregellas, Jason R

    2016-11-01

    PD is associated with disrupted connectivity to a large number of distributed brain regions. How the disease alters the functional topological organization of the brain, however, remains poorly understood. Furthermore, how levodopa modulates network topology in PD is largely unknown. The objective of this study was to use resting-state functional MRI and graph theory to determine how small-world architecture is altered in PD and affected by levodopa administration. Twenty-one PD patients and 20 controls underwent functional MRI scanning. PD patients were scanned off medication and 1 hour after 200 mg levodopa. Imaging data were analyzed using 226 nodes comprising 10 intrinsic brain networks. Correlation matrices were generated for each subject and converted into cost-thresholded, binarized adjacency matrices. Cost-integrated whole-brain global and local efficiencies were compared across groups and tested for relationships with disease duration and severity. Data from 2 patients and 4 controls were excluded because of excess motion. Patients off medication showed no significant changes in global efficiency and overall local efficiency, but in a subnetwork analysis did show increased local efficiency in executive (P = 0.006) and salience (P = 0.018) networks. Levodopa significantly decreased local efficiency (P = 0.039) in patients except within the subcortical network, in which it significantly increased local efficiency (P = 0.007). Levodopa modulates global and local efficiency measures of small-world topology in PD, suggesting that degeneration of nigrostriatal neurons in PD may be associated with a large-scale network reorganization and that levodopa tends to normalize the disrupted network topology in PD. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  20. Neuron-astrocyte signaling is preserved in the aging brain.

    PubMed

    Gómez-Gonzalo, Marta; Martin-Fernandez, Mario; Martínez-Murillo, Ricardo; Mederos, Sara; Hernández-Vivanco, Alicia; Jamison, Stephanie; Fernandez, Ana P; Serrano, Julia; Calero, Pilar; Futch, Hunter S; Corpas, Rubén; Sanfeliu, Coral; Perea, Gertrudis; Araque, Alfonso

    2017-04-01

    Astrocytes play crucial roles in brain homeostasis and are emerging as regulatory elements of neuronal and synaptic physiology by responding to neurotransmitters with Ca 2+ elevations and releasing gliotransmitters that activate neuronal receptors. Aging involves neuronal and astrocytic alterations, being considered risk factor for neurodegenerative diseases. Most evidence of the astrocyte-neuron signaling is derived from studies with young animals; however, the features of astrocyte-neuron signaling in adult and aging brain remain largely unknown. We have investigated the existence and properties of astrocyte-neuron signaling in physiologically and pathologically aging mouse hippocampal and cortical slices at different lifetime points (0.5 to 20 month-old animals). We found that astrocytes preserved their ability to express spontaneous and neurotransmitter-dependent intracellular Ca 2+ signals from juvenile to aging brains. Likewise, resting levels of gliotransmission, assessed by neuronal NMDAR activation by glutamate released from astrocytes, were largely preserved with similar properties in all tested age groups, but DHPG-induced gliotransmission was reduced in aged mice. In contrast, gliotransmission was enhanced in the APP/PS1 mouse model of Alzheimer's disease, indicating a dysregulation of astrocyte-neuron signaling in pathological conditions. Disruption of the astrocytic IP 3 R2 mediated-signaling, which is required for neurotransmitter-induced astrocyte Ca 2+ signals and gliotransmission, boosted the progression of amyloid plaque deposits and synaptic plasticity impairments in APP/PS1 mice at early stages of the disease. Therefore, astrocyte-neuron interaction is a fundamental signaling, largely conserved in the adult and aging brain of healthy animals, but it is altered in Alzheimer's disease, suggesting that dysfunctions of astrocyte Ca 2+ physiology may contribute to this neurodegenerative disease. GLIA 2017 GLIA 2017;65:569-580. © 2017 Wiley Periodicals, Inc.

  1. The modulatory effect of semantic familiarity on the audiovisual integration of face-name pairs.

    PubMed

    Li, Yuanqing; Wang, Fangyi; Huang, Biao; Yang, Wanqun; Yu, Tianyou; Talsma, Durk

    2016-12-01

    To recognize individuals, the brain often integrates audiovisual information from familiar or unfamiliar faces, voices, and auditory names. To date, the effects of the semantic familiarity of stimuli on audiovisual integration remain unknown. In this functional magnetic resonance imaging (fMRI) study, we used familiar/unfamiliar facial images, auditory names, and audiovisual face-name pairs as stimuli to determine the influence of semantic familiarity on audiovisual integration. First, we performed a general linear model analysis using fMRI data and found that audiovisual integration occurred for familiar congruent and unfamiliar face-name pairs but not for familiar incongruent pairs. Second, we decoded the familiarity categories of the stimuli (familiar vs. unfamiliar) from the fMRI data and calculated the reproducibility indices of the brain patterns that corresponded to familiar and unfamiliar stimuli. The decoding accuracy rate was significantly higher for familiar congruent versus unfamiliar face-name pairs (83.2%) than for familiar versus unfamiliar faces (63.9%) and for familiar versus unfamiliar names (60.4%). This increase in decoding accuracy was not observed for familiar incongruent versus unfamiliar pairs. Furthermore, compared with the brain patterns associated with facial images or auditory names, the reproducibility index was significantly improved for the brain patterns of familiar congruent face-name pairs but not those of familiar incongruent or unfamiliar pairs. Our results indicate the modulatory effect that semantic familiarity has on audiovisual integration. Specifically, neural representations were enhanced for familiar congruent face-name pairs compared with visual-only faces and auditory-only names, whereas this enhancement effect was not observed for familiar incongruent or unfamiliar pairs. Hum Brain Mapp 37:4333-4348, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Brain serotonin transporter density and aggression in abstinent methamphetamine abusers.

    PubMed

    Sekine, Yoshimoto; Ouchi, Yasuomi; Takei, Nori; Yoshikawa, Etsuji; Nakamura, Kazuhiko; Futatsubashi, Masami; Okada, Hiroyuki; Minabe, Yoshio; Suzuki, Katsuaki; Iwata, Yasuhide; Tsuchiya, Kenji J; Tsukada, Hideo; Iyo, Masaomi; Mori, Norio

    2006-01-01

    In animals, methamphetamine is known to have a neurotoxic effect on serotonin neurons, which have been implicated in the regulation of mood, anxiety, and aggression. It remains unknown whether methamphetamine damages serotonin neurons in humans. To investigate the status of brain serotonin neurons and their possible relationship with clinical characteristics in currently abstinent methamphetamine abusers. Case-control analysis. A hospital research center. Twelve currently abstinent former methamphetamine abusers (5 women and 7 men) and 12 age-, sex-, and education-matched control subjects recruited from the community. The brain regional density of the serotonin transporter, a structural component of serotonin neurons, was estimated using positron emission tomography and trans-1,2,3,5,6,10-beta-hexahydro-6-[4-(methylthio)phenyl]pyrrolo-[2,1-a]isoquinoline ([(11)C](+)McN-5652). Estimates were derived from region-of-interest and statistical parametric mapping methods, followed by within-case analysis using the measures of clinical variables. The duration of methamphetamine use, the magnitude of aggression and depressive symptoms, and changes in serotonin transporter density represented by the [(11)C](+)McN-5652 distribution volume. Methamphetamine abusers showed increased levels of aggression compared with controls. Region-of-interest and statistical parametric mapping analyses revealed that the serotonin transporter density in global brain regions (eg, the midbrain, thalamus, caudate, putamen, cerebral cortex, and cerebellum) was significantly lower in methamphetamine abusers than in control subjects, and this reduction was significantly inversely correlated with the duration of methamphetamine use. Furthermore, statistical parametric mapping analyses indicated that the density in the orbitofrontal, temporal, and anterior cingulate areas was closely associated with the magnitude of aggression in methamphetamine abusers. Protracted abuse of methamphetamine may reduce the density of the serotonin transporter in the brain, leading to elevated aggression, even in currently abstinent abusers.

  3. The Polymorphism of YWHAE, a Gene Encoding 14-3-3Epsilon, and Brain Morphology in Schizophrenia: A Voxel-Based Morphometric Study

    PubMed Central

    Nemoto, Kiyotaka; Takahashi, Tsutomu; Aleksic, Branko; Furuichi, Atsushi; Nakamura, Yumiko; Ikeda, Masashi; Noguchi, Kyo; Kaibuchi, Kozo; Iwata, Nakao; Ozaki, Norio; Suzuki, Michio

    2014-01-01

    Background YWHAE is a possible susceptibility gene for schizophrenia that encodes 14-3-3epsilon, a Disrupted-in-Schizophrenia 1 (DISC1)-interacting molecule, but the effect of variation in its genotype on brain morphology remains largely unknown. Methods In this voxel-based morphometric magnetic resonance imaging study, we conducted whole-brain analyses regarding the effects of YWHAE single-nucleotide polymorphisms (SNPs) (rs28365859, rs11655548, and rs9393) and DISC1 SNP (rs821616) on gray matter volume in a Japanese sample of 72 schizophrenia patients and 86 healthy controls. On the basis of a previous animal study, we also examined the effect of rs28365859 genotype specifically on hippocampal volume. Results Whole-brain analyses showed no significant genotype effect of these SNPs on gray matter volume in all subjects, but we found significant genotype-by-diagnosis interaction for rs28365859 in the left insula and right putamen. The protective C allele carriers of rs28365859 had a significantly larger left insula than the G homozygotes only for schizophrenia patients, while the controls with G allele homozygosity had a significantly larger right putamen than the C allele carriers. The C allele carriers had a larger right hippocampus than the G allele homozygotes in schizophrenia patients, but not in healthy controls. No significant interaction was found between rs28365859 and DISC1 SNP on gray matter volume. Conclusions These different effects of the YWHAE (rs28365859) genotype on brain morphology in schizophrenia and healthy controls suggest that variation in its genotype might be, at least partly, related to the abnormal neurodevelopment, including in the limbic regions, reported in schizophrenia. Our results also suggest its specific role among YWHAE SNPs in the pathophysiology of schizophrenia. PMID:25105667

  4. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development.

    PubMed

    Ohta, Ken-Ichi; Suzuki, Shingo; Warita, Katsuhiko; Kaji, Tomohiro; Kusaka, Takashi; Miki, Takanori

    2017-04-01

    Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood. © 2017 International Society for Neurochemistry.

  5. Evidence for brain glial activation in chronic pain patients.

    PubMed

    Loggia, Marco L; Chonde, Daniel B; Akeju, Oluwaseun; Arabasz, Grae; Catana, Ciprian; Edwards, Robert R; Hill, Elena; Hsu, Shirley; Izquierdo-Garcia, David; Ji, Ru-Rong; Riley, Misha; Wasan, Ajay D; Zürcher, Nicole R; Albrecht, Daniel S; Vangel, Mark G; Rosen, Bruce R; Napadow, Vitaly; Hooker, Jacob M

    2015-03-01

    Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Age-related differences in the topological efficiency of the brain structural connectome in amnestic mild cognitive impairment.

    PubMed

    Zhao, Tengda; Sheng, Can; Bi, Qiuhui; Niu, Weili; Shu, Ni; Han, Ying

    2017-11-01

    Amnestic mild cognitive impairment (aMCI) is accompanied by the accelerated cognitive decline and rapid brain degeneration with aging. However, the age-related alterations of the topological organization of the brain connectome in aMCI patients remained largely unknown. In this study, we constructed the brain structural connectome in 51 aMCI patients and 51 healthy controls by diffusion magnetic resonance imaging and deterministic tractography. The different age-related alteration patterns of the global and regional network metrics between aMCI patients and healthy controls were assessed by a linear regression model. Compared with healthy controls, significantly decreased global and local network efficiency in aMCI patients were found. When correlating network efficiency with age, we observed a significant decline in network efficiency with aging in the aMCI patients, while not in the healthy controls. The age-related decreases of nodal efficiency in aMCI patients were mainly distributed in the key regions of the default-mode network, such as precuneus, anterior cingulate gyrus, and parahippocampal gyrus. In addition, age-related decreases in the connection strength of the edges between peripheral nodes were observed in aMCI patients. Moreover, the decreased regional efficiency of the parahippocampal gyrus was correlated with impaired memory performances in patients. The present study suggests an age-related disruption of the topological organization of the brain structural connectome in aMCI patients, which may provide evidence for different neural mechanisms underlying aging in aMCI and may serve as a potential imaging marker for the early diagnosis of Alzheimer's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain

    PubMed Central

    Moussaieff, Arieh; Rimmerman, Neta; Bregman, Tatiana; Straiker, Alex; Felder, Christian C.; Shoham, Shai; Kashman, Yoel; Huang, Susan M.; Lee, Hyosang; Shohami, Esther; Mackie, Ken; Caterina, Michael J.; Walker, J. Michael; Fride, Ester; Mechoulam, Raphael

    2008-01-01

    Burning of Boswellia resin as incense has been part of religious and cultural ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with such events. Transient receptor potential vanilloid (TRPV) 3 is an ion channel implicated in the perception of warmth in the skin. TRPV3 mRNA has also been found in neurons throughout the brain; however, the role of TRPV3 channels there remains unknown. Here we show that incensole acetate (IA), a Boswellia resin constituent, is a potent TRPV3 agonist that causes anxiolytic-like and antidepressive-like behavioral effects in wild-type (WT) mice with concomitant changes in c-Fos activation in the brain. These behavioral effects were not noted in TRPV3−/− mice, suggesting that they are mediated via TRPV3 channels. IA activated TRPV3 channels stably expressed in HEK293 cells and in keratinocytes from TRPV3+/+ mice. It had no effect on keratinocytes from TRPV3−/− mice and showed modest or no effect on TRPV1, TRPV2, and TRPV4, as well as on 24 other receptors, ion channels, and transport proteins. Our results imply that TRPV3 channels in the brain may play a role in emotional regulation. Furthermore, the biochemical and pharmacological effects of IA may provide a biological basis for deeply rooted cultural and religious traditions.—Moussaieff, A., Rimmerman, N., Bregman, T., Straiker, A., Felder, C. C., Shoham, S., Kashman, Y., Huang, S. M., Lee, H., Shohami, E., Mackie, K., Caterina, M. J., Walker, J. M., Fride, E., Mechoulam, R. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. PMID:18492727

  8. Cinnamon polyphenol extract exerts neuroprotective activity in traumatic brain injury through modulation of Nfr2 and cytokine expression.

    PubMed

    Yulug, Burak; Kilic, Ertugrul; Altunay, Serdar; Ersavas, Cenk; Orhan, Cemal; Dalay, Arman; Sahin, Nurhan; Tuzcu, Mehmet; Juturu, Vijaya; Sahin, Kazim

    2018-04-30

    Cinnamon cinnamon polyphenol extract is a traditional spice commonly used in different areas of the world for treatment of different disease conditions which are associated with inflammation and oxidative stress. Despite many preclinical studies showing the anti-oxidative, anti-inflammatory effects of CN, the underlying mechanisms in signaling pathways via which cinnamon protects the brain after brain trauma remained largely unknown. However, there is still no preclinical study delineating the possible molecular mechanism of neuroprotective effects cinnamon polyphenol extractin TBI.The primary aim of the current study was to test the hypothesis that cinnamon polyphenol extract administration would improve the histopathological outcomes and exert neuroprotective activity through its antioxidative and anti-inflammatory properties following TBI. To investigate the effects of cinnamon, we induced brain injury using a cold trauma model in mice that were treated with cinnamon polyphenol extract (10 mg/kg BW) or vehicle via intraperitoneal administration just after TBI. Mice were divided into two groups: TBI+vehicle group and TBI + cinnamon polyphenol extract group. Brain samples were collected 24 h later for analysis. We have shown that cinnamon polyphenol extract effectively reduced infarct and edema formation which were associated with significant alterations in inflammatory and oxidative parameters, including NF-κB, IL-1, IL-6, GFAP, NCAM and Nfr2 expressions. Our results identify an important neuroprotective role of cinnamon polyphenol extract in TBI which is mediated by its capability to suppress the inflammation and oxidative injury. Further, specially designed experimental studies to understand the molecular cross-talk between signaling pathways would provide valuable evidence for the therapeutic role of cinnamon in TBI and other TBI related conditions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Association of Elevated Reward Prediction Error Response With Weight Gain in Adolescent Anorexia Nervosa.

    PubMed

    DeGuzman, Marisa; Shott, Megan E; Yang, Tony T; Riederer, Justin; Frank, Guido K W

    2017-06-01

    Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. Female adolescents with anorexia nervosa (N=21; mean age, 16.4 years [SD=1.9]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 15.2 years [SD=2.4]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs.

  10. Association of Elevated Reward Prediction Error Response With Weight Gain in Adolescent Anorexia Nervosa

    PubMed Central

    DeGuzman, Marisa; Shott, Megan E.; Yang, Tony T.; Riederer, Justin; Frank, Guido K.W.

    2017-01-01

    Objective Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. Method Female adolescents with anorexia nervosa (N=21; mean age, 15.2 years [SD=2.4]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 16.4 years [SD=1.9]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. Results Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. Conclusions Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs. PMID:28231717

  11. Structural plasticity of the social brain: Differential change after socio-affective and cognitive mental training

    PubMed Central

    Valk, Sofie L.; Bernhardt, Boris C.; Trautwein, Fynn-Mathis; Böckler, Anne; Kanske, Philipp; Guizard, Nicolas; Collins, D. Louis; Singer, Tania

    2017-01-01

    Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation. PMID:28983507

  12. X-Ray Fluorescence Imaging: A New Tool for Studying Manganese Neurotoxicity

    PubMed Central

    Robison, Gregory; Zakharova, Taisiya; Fu, Sherleen; Jiang, Wendy; Fulper, Rachael; Barrea, Raul; Marcus, Matthew A.; Zheng, Wei; Pushkar, Yulia

    2012-01-01

    The neurotoxic effect of manganese (Mn) establishes itself in a condition known as manganism or Mn induced parkinsonism. While this condition was first diagnosed about 170 years ago, the mechanism of the neurotoxic action of Mn remains unknown. Moreover, the possibility that Mn exposure combined with other genetic and environmental factors can contribute to the development of Parkinson's disease has been discussed in the literature and several epidemiological studies have demonstrated a correlation between Mn exposure and an elevated risk of Parkinson's disease. Here, we introduce X-ray fluorescence imaging as a new quantitative tool for analysis of the Mn distribution in the brain with high spatial resolution. The animal model employed mimics deficits observed in affected human subjects. The obtained maps of Mn distribution in the brain demonstrate the highest Mn content in the globus pallidus, the thalamus, and the substantia nigra pars compacta. To test the hypothesis that Mn transport into/distribution within brain cells mimics that of other biologically relevant metal ions, such as iron, copper, or zinc, their distributions were compared. It was demonstrated that the Mn distribution does not follow the distributions of any of these metals in the brain. The majority of Mn in the brain was shown to occur in the mobile state, confirming the relevance of the chelation therapy currently used to treat Mn intoxication. In cells with accumulated Mn, it can cause neurotoxic action by affecting the mitochondrial respiratory chain. This can result in increased susceptibility of the neurons of the globus pallidus, thalamus, and substantia nigra pars compacta to various environmental or genetic insults. The obtained data is the first demonstration of Mn accumulation in the substantia nigra pars compacta, and thus, can represent a link between Mn exposure and its potential effects for development of Parkinson's disease. PMID:23185282

  13. Decoding the non-coding genome: elucidating genetic risk outside the coding genome.

    PubMed

    Barr, C L; Misener, V L

    2016-01-01

    Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Functional Connectivity of Multiple Brain Regions Required for the Consolidation of Social Recognition Memory.

    PubMed

    Tanimizu, Toshiyuki; Kenney, Justin W; Okano, Emiko; Kadoma, Kazune; Frankland, Paul W; Kida, Satoshi

    2017-04-12

    Social recognition memory is an essential and basic component of social behavior that is used to discriminate familiar and novel animals/humans. Previous studies have shown the importance of several brain regions for social recognition memories; however, the mechanisms underlying the consolidation of social recognition memory at the molecular and anatomic levels remain unknown. Here, we show a brain network necessary for the generation of social recognition memory in mice. A mouse genetic study showed that cAMP-responsive element-binding protein (CREB)-mediated transcription is required for the formation of social recognition memory. Importantly, significant inductions of the CREB target immediate-early genes c-fos and Arc were observed in the hippocampus (CA1 and CA3 regions), medial prefrontal cortex (mPFC), anterior cingulate cortex (ACC), and amygdala (basolateral region) when social recognition memory was generated. Pharmacological experiments using a microinfusion of the protein synthesis inhibitor anisomycin showed that protein synthesis in these brain regions is required for the consolidation of social recognition memory. These findings suggested that social recognition memory is consolidated through the activation of CREB-mediated gene expression in the hippocampus/mPFC/ACC/amygdala. Network analyses suggested that these four brain regions show functional connectivity with other brain regions and, more importantly, that the hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas the ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. We have found that a brain network composed of the hippocampus/mPFC/ACC/amygdala is required for the consolidation of social recognition memory. SIGNIFICANCE STATEMENT Here, we identify brain networks composed of multiple brain regions for the consolidation of social recognition memory. We found that social recognition memory is consolidated through CREB-meditated gene expression in the hippocampus, medial prefrontal cortex, anterior cingulate cortex (ACC), and amygdala. Importantly, network analyses based on c-fos expression suggest that functional connectivity of these four brain regions with other brain regions is increased with time spent in social investigation toward the generation of brain networks to consolidate social recognition memory. Furthermore, our findings suggest that hippocampus functions as a hub to integrate brain networks and generate social recognition memory, whereas ACC and amygdala are important for coordinating brain activity when social interaction is initiated by connecting with other brain regions. Copyright © 2017 the authors 0270-6474/17/374103-14$15.00/0.

  15. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    USDA-ARS?s Scientific Manuscript database

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  16. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    USDA-ARS?s Scientific Manuscript database

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  17. The Cognitive Basis for Sentence Planning Difficulties in Discourse after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Peach, Richard K.

    2013-01-01

    Purpose: Analyses of language production of individuals with traumatic brain injury (TBI) place increasing emphasis on microlinguistic (i.e., within-sentence) patterns. It is unknown whether the observed problems involve implementation of well-formed sentence frames or represent a fundamental linguistic disturbance in computing sentence structure.…

  18. Pathophysiology of cerebral oedema in acute liver failure.

    PubMed

    Scott, Teresa R; Kronsten, Victoria T; Hughes, Robin D; Shawcross, Debbie L

    2013-12-28

    Cerebral oedema is a devastating consequence of acute liver failure (ALF) and may be associated with the development of intracranial hypertension and death. In ALF, some patients may develop cerebral oedema and increased intracranial pressure but progression to life-threatening intracranial hypertension is less frequent than previously described, complicating less than one third of cases who have proceeded to coma since the advent of improved clinical care. The rapid onset of encephalopathy may be dramatic with the development of asterixis, delirium, seizures and coma. Cytotoxic and vasogenic oedema mechanisms have been implicated with a preponderance of experimental data favouring a cytotoxic mechanism. Astrocyte swelling is the most consistent neuropathological finding in humans with ALF and ammonia plays a definitive role in the development of cytotoxic brain oedema. The mechanism(s) by which ammonia induces astrocyte swelling remains unclear but glutamine accumulation within astrocytes has led to the osmolyte hypothesis. Current evidence also supports an alternate 'Trojan horse' hypothesis, with glutamine as a carrier of ammonia into mitochondria, where its accumulation results in oxidative stress, energy failure and ultimately astrocyte swelling. Although a complete breakdown of the blood-brain barrier is not evident in human ALF, increased permeation to water and other small molecules such as ammonia has been demonstrated resulting from subtle alterations in the protein composition of paracellular tight junctions. At present, there is no fully efficacious therapy for cerebral oedema other than liver transplantation and this reflects our incomplete knowledge of the precise mechanisms underlying this process which remain largely unknown.

  19. Electrical and Optical Activation of Mesoscale Neural Circuits with Implications for Coding.

    PubMed

    Millard, Daniel C; Whitmire, Clarissa J; Gollnick, Clare A; Rozell, Christopher J; Stanley, Garrett B

    2015-11-25

    Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery of circuit function and for engineered approaches to alleviate various disorders of the nervous system. However, evidence suggests that neural activity generated by artificial stimuli differs dramatically from normal circuit function, in terms of both the local neuronal population activity at the site of activation and the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. Here, we used voltage-sensitive dye imaging of primary somatosensory cortex in the anesthetized rat in response to deflections of the facial vibrissae and electrical or optogenetic stimulation of thalamic neurons that project directly to the somatosensory cortex. Although the different inputs produced responses that were similar in terms of the average cortical activation, the variability of the cortical response was strikingly different for artificial versus sensory inputs. Furthermore, electrical microstimulation resulted in highly unnatural spatial activation of cortex, whereas optical input resulted in spatial cortical activation that was similar to that induced by sensory inputs. A thalamocortical network model suggested that observed differences could be explained by differences in the way in which artificial and natural inputs modulate the magnitude and synchrony of population activity. Finally, the variability structure in the response for each case strongly influenced the optimal inputs for driving the pathway from the perspective of an ideal observer of cortical activation when considered in the context of information transmission. Artificial activation of neural circuitry through electrical microstimulation and optogenetic techniques is important for both scientific discovery and clinical translation. However, neural activity generated by these artificial means differs dramatically from normal circuit function, both locally and in the propagation to downstream brain structures. The precise nature of these differences and the implications for information processing remain unknown. The significance of this work is in quantifying the differences, elucidating likely mechanisms underlying the differences, and determining the implications for information processing. Copyright © 2015 the authors 0270-6474/15/3515702-14$15.00/0.

  20. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    PubMed

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  1. Bidirectional electric communication between the inferior occipital gyrus and the amygdala during face processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Matsuda, Kazumi; Usui, Keiko; Usui, Naotaka; Inoue, Yushi; Toichi, Motomi

    2017-09-01

    Faces contain multifaceted information that is important for human communication. Neuroimaging studies have revealed face-specific activation in multiple brain regions, including the inferior occipital gyrus (IOG) and amygdala; it is often assumed that these regions constitute the neural network responsible for the processing of faces. However, it remains unknown whether and how these brain regions transmit information during face processing. This study investigated these questions by applying dynamic causal modeling of induced responses to human intracranial electroencephalography data recorded from the IOG and amygdala during the observation of faces, mosaics, and houses in upright and inverted orientations. Model comparisons assessing the experimental effects of upright faces versus upright houses and upright faces versus upright mosaics consistently indicated that the model having face-specific bidirectional modulatory effects between the IOG and amygdala was the most probable. The experimental effect between upright versus inverted faces also favored the model with bidirectional modulatory effects between the IOG and amygdala. The spectral profiles of modulatory effects revealed both same-frequency (e.g., gamma-gamma) and cross-frequency (e.g., theta-gamma) couplings. These results suggest that the IOG and amygdala communicate rapidly with each other using various types of oscillations for the efficient processing of faces. Hum Brain Mapp 38:4511-4524, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. The Human Thalamus Is an Integrative Hub for Functional Brain Networks

    PubMed Central

    Bertolero, Maxwell A.

    2017-01-01

    The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivity remains largely unknown. By performing graph-theoretic analyses on thalamocortical functional connectivity data collected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multimodal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. SIGNIFICANCE STATEMENT The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate information processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions. These findings support the idea that the thalamus is involved in integrating information across cortical networks. PMID:28450543

  3. Direct brain recordings reveal impaired neural function in infants with single-suture craniosynostosis: a future modality for guiding management?

    PubMed

    Hashim, Peter W; Brooks, Eric D; Persing, John A; Reuman, Hannah; Naples, Adam; Travieso, Roberto; Terner, Jordan; Steinbacher, Derek; Landi, Nicole; Mayes, Linda; McPartland, James C

    2015-01-01

    Patients with single-suture craniosynostosis (SSC) are at an elevated risk for long-term learning disabilities. Such adverse outcomes indicate that the early development of neural processing in SSC may be abnormal. At present, however, the precise functional derangements of the developing brain remain largely unknown. Event-related potentials (ERPs) are a form of noninvasive neuroimaging that provide direct measurements of cortical activity and have shown value in predicting long-term cognitive functioning. The current study used ERPs to examine auditory processing in infants with SSC to help clarify the developmental onset of delays in this population. Fifteen infants with untreated SSC and 23 typically developing controls were evaluated. ERPs were recorded during the presentation of speech sounds. Analyses focused on the P150 and N450 components of auditory processing. Infants with SSC demonstrated attenuated P150 amplitudes relative to typically developing controls. No differences in the N450 component were identified between untreated SSC and controls. Infants with untreated SSC demonstrate abnormal speech sound processing. Atypicalities are detectable as early as 6 months of age and may represent precursors to long-term language delay. Electrophysiological assessments provide a precise examination of neural processing in SSC and hold potential as a future modality to examine the effects of surgical treatment on brain development.

  4. The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS

    PubMed Central

    Maxwell, Michele M.; Tomkinson, Elizabeth M.; Nobles, Johnathan; Wizeman, John W.; Amore, Allison M.; Quinti, Luisa; Chopra, Vanita; Hersch, Steven M.; Kazantsev, Aleksey G.

    2011-01-01

    Sirtuin 2 (SIRT2) is one of seven known mammalian protein deacetylases homologous to the yeast master lifespan regulator Sir2. In recent years, the sirtuin protein deacetylases have emerged as candidate therapeutic targets for many human diseases, including metabolic and age-dependent neurological disorders. In non-neuronal cells, SIRT2 has been shown to function as a tubulin deacetylase and a key regulator of cell division and differentiation. However, the distribution and function of the SIRT2 microtubule (MT) deacetylase in differentiated, postmitotic neurons remain largely unknown. Here, we show abundant and preferential expression of specific isoforms of SIRT2 in the mammalian central nervous system and find that a previously uncharacterized form, SIRT2.3, exhibits age-dependent accumulation in the mouse brain and spinal cord. Further, our studies reveal that focal areas of endogenous SIRT2 expression correlate with reduced α-tubulin acetylation in primary mouse cortical neurons and suggest that the brain-enriched species of SIRT2 may function as the predominant MT deacetylases in mature neurons. Recent reports have demonstrated an association between impaired tubulin acetyltransferase activity and neurodegenerative disease; viewed in this light, our results showing age-dependent accumulation of the SIRT2 neuronal MT deacetylase in wild-type mice suggest a functional link between tubulin acetylation patterns and the aging brain. PMID:21791548

  5. NORADRENERGIC CONTROL OF CORTICO-STRIATO-THALAMIC AND MESOLIMBIC CROSS-STRUCTURAL SYNCHRONY

    PubMed Central

    Dzirasa, Kafui; Phillips, H. Westley; Sotnikova, Tatyana D.; Salahpour, Ali; Kumar, Sunil; Gainetdinov, Raul R.; Caron, Marc G.; Nicolelis, Miguel A. L.

    2010-01-01

    While normal dopaminergic tone has been shown to be essential for the induction of cortico-striatal and mesolimbic theta oscillatory activity, the influence of norepinephrine on these brain networks remains relatively unknown. To address this question, we simultaneously recorded local field potentials (LFPs) and single neuron activity across ten interconnected brain areas (ventral striatum, frontal association cortex hippocampus, primary motor cortex, orbital frontal cortex, prelimbic cortex, dorsal lateral striatum, medial dorsal nucleus of thalamus, substantia nigra pars reticularis, and ventral tegmental area) in a combined genetically and pharmacologically induced mouse model of hyponoradrenergia. Our results show that norepinephrine (NE) depletion induces a novel state in male mice characterized by a profound disruption of coherence across multiple cortico-striatal circuits, and an increase in mesolimbic cross-structural coherence. Moreover, this brain state is accompanied by a complex behavioral phenotype consisting of transient hyperactivity, stereotypic behaviors, and an acute twelve-fold increase in grooming. Notably, treatment with a norepinephrine precursors (L-DOPA 100mg/kg or L-DOPS 5mg/kg), or a selective serotonin reuptake inhibitor (fluoxetine 20mg/kg) attenuates the abnormal behaviors and selectively reverses the circuit changes observed in NE depleted mice. Together, our results demonstrate that norepinephrine modulates the dynamic tuning of coherence across cortico-striatal-thalamic circuits, and they suggest that changes in coherence across these circuits mediate the abnormal generation of hyperactivity and repetitive behaviors. PMID:20445065

  6. Noradrenergic control of cortico-striato-thalamic and mesolimbic cross-structural synchrony.

    PubMed

    Dzirasa, Kafui; Phillips, H Westley; Sotnikova, Tatyana D; Salahpour, Ali; Kumar, Sunil; Gainetdinov, Raul R; Caron, Marc G; Nicolelis, Miguel A L

    2010-05-05

    Although normal dopaminergic tone has been shown to be essential for the induction of cortico-striatal and mesolimbic theta oscillatory activity, the influence of norepinephrine on these brain networks remains relatively unknown. To address this question, we simultaneously recorded local field potentials and single-neuron activity across 10 interconnected brain areas (ventral striatum, frontal association cortex, hippocampus, primary motor cortex, orbital frontal cortex, prelimbic cortex, dorsal lateral striatum, medial dorsal nucleus of thalamus, substantia nigra pars reticularis, and ventral tegmental area) in a combined genetically and pharmacologically induced mouse model of hyponoradrenergia. Our results show that norepinephrine (NE) depletion induces a novel state in male mice characterized by a profound disruption of coherence across multiple cortico-striatal circuits and an increase in mesolimbic cross-structural coherence. Moreover, this brain state is accompanied by a complex behavioral phenotype consisting of transient hyperactivity, stereotypic behaviors, and an acute 12-fold increase in grooming. Notably, treatment with a norepinephrine precursors (l-3,4-dihydroxyphenylalanine at 100 mg/kg or l-threo-dihydroxyphenylserine at 5 mg/kg) or a selective serotonin reuptake inhibitor (fluoxetine at 20 mg/kg) attenuates the abnormal behaviors and selectively reverses the circuit changes observed in NE-depleted mice. Together, our results demonstrate that norepinephrine modulates the dynamic tuning of coherence across cortico-striato-thalamic circuits, and they suggest that changes in coherence across these circuits mediate the abnormal generation of hyperactivity and repetitive behaviors.

  7. Habenula functional resting-state connectivity in pediatric CRPS.

    PubMed

    Erpelding, Nathalie; Sava, Simona; Simons, Laura E; Lebel, Alyssa; Serrano, Paul; Becerra, Lino; Borsook, David

    2014-01-01

    The habenula (Hb) is a small brain structure located in the posterior end of the medial dorsal thalamus and through medial (MHb) and lateral (LHb) Hb connections, it acts as a conduit of information between forebrain and brainstem structures. The role of the Hb in pain processing is well documented in animals and recently also in acute experimental pain in humans. However, its function remains unknown in chronic pain disorders. Here, we investigated Hb resting-state functional connectivity (rsFC) in patients with complex regional pain syndrome (CRPS) compared with healthy controls. Twelve pediatric patients with unilateral lower-extremity CRPS (9 females; 10-17 yr) and 12 age- and sex-matched healthy controls provided informed consent to participate in the study. In healthy controls, Hb functional connections largely overlapped with previously described anatomical connections in cortical, subcortical, and brainstem structures. Compared with controls, patients exhibited an overall Hb rsFC reduction with the rest of the brain and, specifically, with the anterior midcingulate cortex, dorsolateral prefrontal cortex, supplementary motor cortex, primary motor cortex, and premotor cortex. Our results suggest that Hb rsFC parallels anatomical Hb connections in the healthy state and that overall Hb rsFC is reduced in patients, particularly connections with forebrain areas. Patients' decreased Hb rsFC to brain regions implicated in motor, affective, cognitive, and pain inhibitory/modulatory processes may contribute to their symptomatology.

  8. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice.

    PubMed

    Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric

    2013-01-18

    Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.

  9. Effects of Oxytocin and Vasopressin on Preferential Brain Responses to Negative Social Feedback.

    PubMed

    Gozzi, Marta; Dashow, Erica M; Thurm, Audrey; Swedo, Susan E; Zink, Caroline F

    2017-06-01

    Receiving negative social feedback can be detrimental to emotional, cognitive, and physical well-being, and fear of negative social feedback is a prominent feature of mental illnesses that involve social anxiety. A large body of evidence has implicated the neuropeptides oxytocin and vasopressin in the modulation of human neural activity underlying social cognition, including negative emotion processing; however, the influence of oxytocin and vasopressin on neural activity elicited during negative social evaluation remains unknown. Here 21 healthy men underwent functional magnetic resonance imaging in a double-blind, placebo-controlled, crossover design to determine how intranasally administered oxytocin and vasopressin modulated neural activity when receiving negative feedback on task performance from a study investigator. We found that under placebo, a preferential response to negative social feedback compared with positive social feedback was evoked in brain regions putatively involved in theory of mind (temporoparietal junction), pain processing (anterior insula and supplementary motor area), and identification of emotionally important visual cues in social perception (right fusiform). These activations weakened with oxytocin and vasopressin administration such that neural responses to receiving negative social feedback were not significantly greater than positive social feedback. Our results show effects of both oxytocin and vasopressin on the brain network involved in negative social feedback, informing the possible use of a pharmacological approach targeting these regions in multiple disorders with impairments in social information processing.

  10. Neural Correlates of Letter Reversal in Children and Adults

    PubMed Central

    Kalra, Priya; Yee, Debbie; Sinha, Pawan; Gabrieli, John D. E.

    2014-01-01

    Children often make letter reversal errors when first learning to read and write, even for letters whose reversed forms do not appear in normal print. However, the brain basis of such letter reversal in children learning to read is unknown. The present study compared the neuroanatomical correlates (via functional magnetic resonance imaging) and the electrophysiological correlates (via event-related potentials or ERPs) of this phenomenon in children, ages 5–12, relative to young adults. When viewing reversed letters relative to typically oriented letters, adults exhibited widespread occipital, parietal, and temporal lobe activations, including activation in the functionally localized visual word form area (VWFA) in left occipito-temporal cortex. Adults exhibited significantly greater activation than children in all of these regions; children only exhibited such activation in a limited frontal region. Similarly, on the P1 and N170 ERP components, adults exhibited significantly greater differences between typical and reversed letters than children, who failed to exhibit significant differences between typical and reversed letters. These findings indicate that adults distinguish typical and reversed letters in the early stages of specialized brain processing of print, but that children do not recognize this distinction during the early stages of processing. Specialized brain processes responsible for early stages of letter perception that distinguish between typical and reversed letters may develop slowly and remain immature even in older children who no longer produce letter reversals in their writing. PMID:24859328

  11. Reduction of the neuroprotective transcription factor Npas4 results in increased neuronal necrosis, inflammation and brain lesion size following ischaemia

    PubMed Central

    Choy, Fong Chan; Klarić, Thomas S; Leong, Wai Khay; Koblar, Simon A

    2015-01-01

    Stroke is the second leading cause of death and the most frequent cause of adult disability. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is an activity-dependent transcription factor whose expression is induced in various brain insults, including cerebral ischaemia. Although previous studies have demonstrated that Npas4 plays a critical role in protecting neurons against neurodegenerative insults, the neuroprotective effect of Npas4 in response to ischaemic brain injury remains unknown. In this study, we used a loss-of-function approach to examine the neuroprotective potential of Npas4 in the context of ischaemic damage. Using oxygen and glucose deprivation, we demonstrated that the knockdown of Npas4 in mouse cortical neurons resulted in increased susceptibility to cell death. The protective effect of Npas4 was further investigated in vivo using a photochemically-induced stroke model in mice. We found a significantly larger lesion size and increased neurodegeneration in Npas4 knockout mice as compared to wild-type mice. Moreover, we also showed that ablation of Npas4 caused an increase in activated astrocytes and microglia, pro-inflammatory cytokines interleukin-6 and tumour necrosis factor alpha levels and a switch from apoptotic to necrotic cell death. Taken together, these data suggest that Npas4 plays a neuroprotective role in ischaemic stroke by limiting progressive neurodegeneration and neuroinflammation. PMID:26661154

  12. Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms.

    PubMed

    Chapman, Heidi L; Eramudugolla, Ranmalee; Gavrilescu, Maria; Strudwick, Mark W; Loftus, Andrea; Cunnington, Ross; Mattingley, Jason B

    2010-07-01

    Visuomotor adaptation to a shift in visual input produced by prismatic lenses is an example of dynamic sensory-motor plasticity within the brain. Prism adaptation is readily induced in healthy individuals, and is thought to reflect the brain's ability to compensate for drifts in spatial calibration between different sensory systems. The neural correlate of this form of functional plasticity is largely unknown, although current models predict the involvement of parieto-cerebellar circuits. Recent studies that have employed event-related functional magnetic resonance imaging (fMRI) to identify brain regions associated with prism adaptation have discovered patterns of parietal and cerebellar modulation as participants corrected their visuomotor errors during the early part of adaptation. However, the role of these regions in the later stage of adaptation, when 'spatial realignment' or true adaptation is predicted to occur, remains unclear. Here, we used fMRI to quantify the distinctive patterns of parieto-cerebellar activity as visuomotor adaptation develops. We directly contrasted activation patterns during the initial error correction phase of visuomotor adaptation with that during the later spatial realignment phase, and found significant recruitment of the parieto-cerebellar network--with activations in the right inferior parietal lobe and the right posterior cerebellum. These findings provide the first evidence of both cerebellar and parietal involvement during the spatial realignment phase of prism adaptation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Effect of dietary γ-aminobutyric acid on the nerve growth factor and the choline acetyltransferase in the cerebral cortex and hippocampus of ovariectomized female rats.

    PubMed

    Tujioka, Kazuyo; Thanapreedawat, Panicha; Yamada, Takashi; Yokogoshi, Hidehiko; Horie, Kenji; Kim, Mujo; Tsutsui, Kazumi; Hayase, Kazutoshi

    2014-01-01

    The brain protein synthesis and the plasma concentration of growth hormone (GH) is sensitive to the dietary γ-aminobutyric acid (GABA) in ovariectomized female rats; however, the role of dietary GABA on biomarkers including nerve growth factor (NGF) and choline acetyltransferase for the function of cholinergic neurons remains unknown in ovariectomized female rats. The purpose of this study was to determine whether the dietary GABA affects the concentration and mRNA level of NGF, and the activity of choline acetyltransferase in the brains of ovariectomized female rats. Experiments were done on two groups of 24-wk-old ovariectomized female rats given 0 or 0.5% GABA added to a 20% casein diet. The concentrations of NGF and activities of choline acetyltransferase in the cerebral cortex and hippocampus, and mRNA level of NGF in the hippocampus increased significantly with the 20% casein+0.5% GABA compared with the 20% casein diet alone. In the hippocampus, the mRNA level of NGF significantly correlated with the NGF concentration (r=0.714, p<0.01). These results suggest that the administration of GABA to ovariectomized female rats is likely to control the mRNA level and concentration of NGF and cause an increase in the activity of choline acetyltransferase in the brains.

  14. Effects of edaravone on a rat model of punch-drunk syndrome.

    PubMed

    Nomoto, Jun; Kuroki, Takao; Nemoto, Masaaki; Kondo, Kosuke; Harada, Naoyuki; Nagao, Takeki

    2011-01-01

    Punch-drunk syndrome (PDS) refers to a pathological condition in which higher brain dysfunction occurs in a delayed fashion in boxers who have suffered repeated blows to the head. However, the underlying mechanisms remain unknown. This study attempted to elucidate the mechanism of higher brain dysfunction observed following skull vibration in two experiments involving a rat model of PDS. Experiment 1 evaluated the effects of edaravone on histological changes in the rat brain tissue after skull vibration (frequency 20 Hz, amplitude 4 mm, duration 60 minutes). The amount of free radicals formed in response to skull vibration was very small, and edaravone administration reduced the number of glial fibrillary acidic protein and advanced glycation end product-positive cells. Experiment 2 examined the time course of change in learning ability following skull vibration in Tokai High Avoider rats. The learning ability of individual rats was evaluated by the Sidman-type electric shock avoidance test 5 days after the last session of skull vibration or final anesthesia and once a month for 9 consecutive months. Delayed learning disability was not observed in rats administered edaravone immediately after skull vibration. These results suggest that free radical-induced astrocyte activation and subsequent glial scar formation contribute to the occurrence of delayed learning disabilities. Edaravone administration after skull vibration suppressed glial scar formation, thereby inhibiting the occurrence of delayed learning disabilities.

  15. Induction of Migraine-Like Photophobic Behavior in Mice by Both Peripheral and Central CGRP Mechanisms.

    PubMed

    Mason, Bianca N; Kaiser, Eric A; Kuburas, Adisa; Loomis, Maria-Cristina M; Latham, John A; Garcia-Martinez, Leon F; Russo, Andrew F

    2017-01-04

    The neuropeptide calcitonin gene-related peptide (CGRP) is a key player in migraine. Although migraine can be treated using CGRP antagonists that act peripherally, the relevant sites of CGRP action remain unknown. To address the role of CGRP both within and outside the CNS, we used CGRP-induced light-aversive behavior in mice as a measure of migraine-associated photophobia. Peripheral (intraperitoneal) injection of CGRP resulted in light-aversive behavior in wild-type CD1 mice similar to aversion seen previously after central (intracerebroventricular) injection. The phenotype was also observed in C57BL/6J mice, although to a lesser degree and with more variability. After intraperitoneal CGRP, motility was decreased in the dark only, similar to motility changes after intracerebroventricular CGRP. In addition, as with intracerebroventricular CGRP, there was no general increase in anxiety as measured in an open-field assay after intraperitoneal CGRP. Importantly, two clinically effective migraine drugs, the 5-HT 1B/D agonist sumatriptan and a CGRP-blocking monoclonal antibody, attenuated the peripheral CGRP-induced light aversion and motility behaviors. To begin to address the mechanism of peripheral CGRP action, we used transgenic CGRP-sensitized mice that have elevated levels of the CGRP receptor hRAMP1 subunit in nervous tissue (nestin/hRAMP1). Surprisingly, sensitivity to low light was not seen after intraperitoneal CGRP injection, but was seen after intracerebroventricular CGRP injection. These results suggest that CGRP can act in both the periphery and the brain by distinct mechanisms and that CGRP actions may be transmitted to the CNS via indirect sensitization of peripheral nerves. The neuropeptide calcitonin gene-related peptide (CGRP) is a central player in migraine pathogenesis, yet its site(s) of action remains unknown. Some preclinical studies have pointed to central sites in the brain and brainstem. However, a peripheral site of action is indicated by the ability of intravenous CGRP to trigger migraine in humans and the efficacy of CGRP receptor antagonists that evidently do no penetrate the CNS in effective amounts. Resolving this issue is particularly important given recent clinical trials showing that anti-CGRP monoclonal antibodies can reduce and even prevent migraine attacks. In this study, we report that CGRP can act in both the brain and the periphery of the mouse to cause migraine-like photophobia by apparently distinct mechanisms. Copyright © 2017 the authors 0270-6474/17/370204-13$15.00/0.

  16. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.

    PubMed

    Takahashi, Hiroo; Ogawa, Yoichi; Yoshihara, Sei-Ichi; Asahina, Ryo; Kinoshita, Masahito; Kitano, Tatsuro; Kitsuki, Michiko; Tatsumi, Kana; Okuda, Mamiko; Tatsumi, Kouko; Wanaka, Akio; Hirai, Hirokazu; Stern, Peter L; Tsuboi, Akio

    2016-08-03

    Neural circuits that undergo reorganization by newborn interneurons in the olfactory bulb (OB) are necessary for odor detection and discrimination, olfactory memory, and innate olfactory responses, including predator avoidance and sexual behaviors. The OB possesses many interneurons, including various types of granule cells (GCs); however, the contribution that each type of interneuron makes to olfactory behavioral control remains unknown. Here, we investigated the in vivo functional role of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic arborization of 5T4-expressing GCs (5T4 GCs), the level of which is reduced in the OB of 5T4 knock-out (KO) mice. Electrophysiological recordings with acute OB slices indicated that external tufted cells (ETCs) can be divided into two types, bursting and nonbursting. Optogenetic stimulation of 5T4 GCs revealed their connection to both bursting and nonbursting ETCs, as well as to mitral cells (MCs). Interestingly, nonbursting ETCs received fewer inhibitory inputs from GCs in 5T4 KO mice than from those in wild-type (WT) mice, whereas bursting ETCs and MCs received similar inputs in both mice. Furthermore, 5T4 GCs received significantly fewer excitatory inputs in 5T4 KO mice. Remarkably, in olfactory behavior tests, 5T4 KO mice had higher odor detection thresholds than the WT, as well as defects in odor discrimination learning. Therefore, the loss of 5T4 attenuates inhibitory inputs from 5T4 GCs to nonbursting ETCs and excitatory inputs to 5T4 GCs, contributing to disturbances in olfactory behavior. Our novel findings suggest that, among the various types of OB interneurons, the 5T4 GC subtype is required for odor detection and discrimination behaviors. Neuronal circuits in the brain include glutamatergic principal neurons and GABAergic interneurons. Although the latter is a minority cell type, they are vital for normal brain function because they regulate the activity of principal neurons. If interneuron function is impaired, brain function may be damaged, leading to behavior disorder. The olfactory bulb (OB) possesses various types of interneurons, including granule cells (GCs); however, the contribution that each type of interneuron makes to the control of olfactory behavior remains unknown. Here, we analyzed electrophysiologically and behaviorally the function of oncofetal trophoblast glycoprotein 5T4, a regulator for dendritic branching in OB GCs. We found that, among the various types of OB interneuron, the 5T4 GC subtype is required for odor detection and odor discrimination behaviors. Copyright © 2016 the authors 0270-6474/16/368211-18$15.00/0.

  17. Regulation of Synaptic Amyloid-β Generation through BACE1 Retrograde Transport in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Ye, Xuan; Chang, Qing; Jeong, Yu Young; Cai, Huaibin; Kusnecov, Alexander

    2017-01-01

    Amyloid-β (Aβ) peptides play a key role in synaptic damage and memory deficits in the early pathogenesis of Alzheimer's disease (AD). Abnormal accumulation of Aβ at nerve terminals leads to synaptic pathology and ultimately to neurodegeneration. β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the major neuronal β-secretase for Aβ generation. However, the mechanisms regulating BACE1 distribution in axons and β cleavage of APP at synapses remain largely unknown. Here, we reveal that dynein–Snapin-mediated retrograde transport regulates BACE1 trafficking in axons and APP processing at presynaptic terminals. BACE1 is predominantly accumulated within late endosomes at the synapses of AD-related mutant human APP (hAPP) transgenic (Tg) mice and patient brains. Defective retrograde transport by genetic ablation of snapin in mice recapitulates late endocytic retention of BACE1 and increased APP processing at presynaptic sites. Conversely, overexpressing Snapin facilitates BACE1 trafficking and reduces synaptic BACE1 accumulation by enhancing the removal of BACE1 from distal AD axons and presynaptic terminals. Moreover, elevated Snapin expression via stereotactic hippocampal injections of adeno-associated virus particles in mutant hAPP Tg mouse brains decreases synaptic Aβ levels and ameliorates synapse loss, thus rescuing cognitive impairments associated with hAPP mice. Altogether, our study provides new mechanistic insights into the complex regulation of BACE1 trafficking and presynaptic localization through Snapin-mediated dynein-driven retrograde axonal transport, thereby suggesting a potential approach of modulating Aβ levels and attenuating synaptic deficits in AD. SIGNIFICANCE STATEMENT β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) trafficking and synaptic localization significantly influence its β secretase activity and amyloid-β (Aβ) production. In AD brains, BACE1 is accumulated within dystrophic neurites, which is thought to augment Aβ-induced synaptotoxicity by Aβ overproduction. However, it remains largely unknown whether axonal transport regulates synaptic APP processing. Here, we demonstrate that Snapin-mediated retrograde transport plays a critical role in removing BACE1 from presynaptic terminals toward the soma, thus reducing synaptic Aβ production. Adeno-associated virus–mediated Snapin overexpression in the hippocampus of mutant hAPP mice significantly decreases synaptic Aβ levels, attenuates synapse loss, and thus rescues cognitive deficits. Our study uncovers a new pathway that controls synaptic APP processing by enhancing axonal BACE1 trafficking, thereby advancing our fundamental knowledge critical for ameliorating Aβ-linked synaptic pathology. PMID:28159908

  18. Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.

    PubMed

    Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan

    2017-10-25

    Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, that is, higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far, whether HOIs exist among brain regions and how they can affect the brain's activities remains largely elusive. To address these issues, here, we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak regardless of the network size, topology, degree of spatial proximity, spatial scales, and whether the global signal was regressed. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model and also found that HOIs were generally weak within a wide range of key parameters provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches. SIGNIFICANCE STATEMENT To explain how activities of different brain areas are coordinated through interactions is essential to revealing the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role in this process. Here, we show that HOIs are generally weak in macroscopic brain networks. We also suggest a possible dynamical mechanism that may underlie this phenomenon. These results provide plausible explanation for the effectiveness of widely used pairwise-based approaches in analyzing brain networks. More importantly, it reveals a previously unknown, simple organization of the brain's macroscopic functional systems. Copyright © 2017 the authors 0270-6474/17/3710481-17$15.00/0.

  19. Streptococcus sanguinis brain abscess as complication of subclinical endocarditis: emphasizing the importance of prompt diagnosis.

    PubMed

    Kassis, Hayah; Marnejon, Thomas; Gemmel, David; Cutrona, Anthony; Gottimukkula, Rajashree

    2010-06-01

    A 19-year-old male patient was diagnosed with S. sanguinis brain abscess of unknown etiopathology as a complication of subclinical endocarditis. While viridans streptococci are implicated in dental seeding to the heart, S. sanguinis brain abscesses are rare. Six previous cases of S. sanguinis brain abscess in the literature reported dental procedures and maxillofacial trauma. In our patient, there was no obvious source of infective endocarditis preceding the development of brain abscess. This demonstrates the importance of prompt diagnosis and initiation of antimicrobial therapy given the potential for long-term sequelae such as focal deficits and seizures.

  20. Comprehensive evaluation of the child with intellectual disability or global developmental delays.

    PubMed

    Moeschler, John B; Shevell, Michael

    2014-09-01

    Global developmental delay and intellectual disability are relatively common pediatric conditions. This report describes the recommended clinical genetics diagnostic approach. The report is based on a review of published reports, most consisting of medium to large case series of diagnostic tests used, and the proportion of those that led to a diagnosis in such patients. Chromosome microarray is designated as a first-line test and replaces the standard karyotype and fluorescent in situ hybridization subtelomere tests for the child with intellectual disability of unknown etiology. Fragile X testing remains an important first-line test. The importance of considering testing for inborn errors of metabolism in this population is supported by a recent systematic review of the literature and several case series recently published. The role of brain MRI remains important in certain patients. There is also a discussion of the emerging literature on the use of whole-exome sequencing as a diagnostic test in this population. Finally, the importance of intentional comanagement among families, the medical home, and the clinical genetics specialty clinic is discussed. Copyright © 2014 by the American Academy of Pediatrics.

  1. CDKL5, a protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling.

    PubMed

    Chen, Qian; Zhu, Yong-Chuan; Yu, Jing; Miao, Sheng; Zheng, Jing; Xu, Li; Zhou, Yang; Li, Dan; Zhang, Chi; Tao, Jiong; Xiong, Zhi-Qi

    2010-09-22

    Mutations in cyclin-dependent kinase-like 5 (CDKL5), also known as serine/threonine kinase 9 (STK9), have been identified in patients with Rett syndrome (RTT) and X-linked infantile spasm. However, the function of CDKL5 in the brain remains unknown. Here, we report that CDKL5 is a critical regulator of neuronal morphogenesis. We identified a neuron-specific splicing variant of CDKL5 whose expression was markedly induced during postnatal development of the rat brain. Downregulating CDKL5 by RNA interference (RNAi) in cultured cortical neurons inhibited neurite growth and dendritic arborization, whereas overexpressing CDKL5 had opposite effects. Furthermore, knocking down CDKL5 in the rat brain by in utero electroporation resulted in delayed neuronal migration, and severely impaired dendritic arborization. In contrast to its proposed function in the nucleus, we found that CDKL5 regulated dendrite development through a cytoplasmic mechanism. In fibroblasts and in neurons, CDKL5 colocalized and formed a protein complex with Rac1, a critical regulator of actin remodeling and neuronal morphogenesis. Overexpression of Rac1 prevented the inhibition of dendrite growth caused by CDKL5 knockdown, and the growth-promoting effect of ectopically expressed CDKL5 on dendrites was abolished by coexpressing a dominant-negative form of Rac1. Moreover, CDKL5 was required for brain-derived neurotrophic factor (BDNF)-induced activation of Rac1. Together, these results demonstrate a critical role of CDKL5 in neuronal morphogenesis and identify a Rho GTPase signaling pathway which may contribute to CDKL5-related disorders.

  2. "Where do auditory hallucinations come from?"--a brain morphometry study of schizophrenia patients with inner or outer space hallucinations.

    PubMed

    Plaze, Marion; Paillère-Martinot, Marie-Laure; Penttilä, Jani; Januel, Dominique; de Beaurepaire, Renaud; Bellivier, Franck; Andoh, Jamila; Galinowski, André; Gallarda, Thierry; Artiges, Eric; Olié, Jean-Pierre; Mangin, Jean-François; Martinot, Jean-Luc; Cachia, Arnaud

    2011-01-01

    Auditory verbal hallucinations are a cardinal symptom of schizophrenia. Bleuler and Kraepelin distinguished 2 main classes of hallucinations: hallucinations heard outside the head (outer space, or external, hallucinations) and hallucinations heard inside the head (inner space, or internal, hallucinations). This distinction has been confirmed by recent phenomenological studies that identified 3 independent dimensions in auditory hallucinations: language complexity, self-other misattribution, and spatial location. Brain imaging studies in schizophrenia patients with auditory hallucinations have already investigated language complexity and self-other misattribution, but the neural substrate of hallucination spatial location remains unknown. Magnetic resonance images of 45 right-handed patients with schizophrenia and persistent auditory hallucinations and 20 healthy right-handed subjects were acquired. Two homogeneous subgroups of patients were defined based on the hallucination spatial location: patients with only outer space hallucinations (N=12) and patients with only inner space hallucinations (N=15). Between-group differences were then assessed using 2 complementary brain morphometry approaches: voxel-based morphometry and sulcus-based morphometry. Convergent anatomical differences were detected between the patient subgroups in the right temporoparietal junction (rTPJ). In comparison to healthy subjects, opposite deviations in white matter volumes and sulcus displacements were found in patients with inner space hallucination and patients with outer space hallucination. The current results indicate that spatial location of auditory hallucinations is associated with the rTPJ anatomy, a key region of the "where" auditory pathway. The detected tilt in the sulcal junction suggests deviations during early brain maturation, when the superior temporal sulcus and its anterior terminal branch appear and merge.

  3. Chronic Alcohol Consumption and its Effect on Nodes of Frontocerebellar and Limbic Circuitry: Comparison of Effects in France and the United States

    PubMed Central

    Le Berre, Anne-Pascale; Pitel, Anne-Lise; Chanraud, Sandra; Beaunieux, Hélène; Eustache, Francis; Martinot, Jean-Luc; Reynaud, Michel; Martelli, Catherine; Rohlfing, Torsten; Sullivan, Edith V.; Pfefferbaum, Adolf

    2016-01-01

    Alcohol Use Disorders present a significant public health problem in France and the United States (U.S.), but whether the untoward effect of alcohol on the brain results in similar damage in both countries remains unknown. Accordingly, we conducted a retrospective collaborative investigation between two French sites (Caen and Orsay) and a U.S. laboratory (SRI/Stanford University) with T1-weighted, structural MRI data collected on a common imaging platform (1.5T, General Electric) on 288 normal controls (NC), 165 uncomplicated alcoholics (ALC), and 26 patients with alcoholic Korsakoff’s syndrome (KS) diagnosed at all sites with a common interview instrument. Data from the two countries were pooled, then preprocessed and analyzed together at the U.S. site using atlas-based parcellation. National differences indicated that thalamic volumes were smaller in ALC in France than the U.S. despite similar alcohol consumption levels in both countries. By contrast, volumes of the hippocampus, amygdala, and cerebellar vermis were smaller in KS in the U.S. than France. Estimated amount of alcohol consumed over a lifetime, duration of alcoholism, and length of sobriety were significant predictors of selective regional brain volumes in France and in the U.S. The common analysis of MRI data enabled identification of discrepancies in brain volume deficits in France and the U.S. that may reflect fundamental differences in the consequences of alcoholism on brain structure between the two countries, possibly related to genetic or environmental differences. PMID:24639416

  4. [Bacterial brain abscess--experiences with 67 patients].

    PubMed

    Berlit, P; Fedel, C; Tornow, K; Schmiedek, P

    1996-08-01

    Sixty-seven patients with brain abscess were managed over 19 years (1975-1993). Our series had a 2.5 to 1 male predominance; the age distribution was from 3 days to 81 years. The underlying conditions of hematogenic brain abscesses (n = 33; 49%) included lung infections (n = 16), heart disease (n = 4), sepsis (n = 10), and other foci (n = 3). Otolaryngologic infections led to the abscess in 10 cases; there were 9 traumatic abscesses. The causes remained unknown in 15 cases. There were 47 solitary abscesses (70%) and 20 multiple abscesses. The most frequent presenting signs and symptoms were neurologic deficits (n = 17), disturbances of consciousness (n = 14), seizures (n = 6), and headaches, meningism and vomiting (n = 13). Causative organisms were isolated in 39 cases (58%) and included staphylococci (n = 6), streptococci (n = 6), enterobacteriae (n = 2), and anaerobic pathogens (n = 9). The most reliable laboratory sign of inflammation was an elevated ESR (52/59 patients). With the advent of computed tomography, burr hole aspiration of the abscess with or without drainage was possible in 30 cases; the mortality in this subgroup was 9%. All 4 patients with surgical excision in the pre CT-era died. The mortality of patients treated with antibiotics only was 62% (18/29). Overall mortality was 37% (25/67), including 5 cases with post mortem-diagnosis of brain abscess. Good recovery was achieved in 29/42 survivors. Predictors of a poor outcome were the patient's age, the level of consciousness, multiple abscesses, polybacterial cultures, and a hematogenic etiology, but not the size of the abscess.

  5. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

    PubMed

    Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C

    2014-12-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  6. Prenatal Bisphenol A Exposure Alters Sex-Specific Estrogen Receptor Expression in the Neonatal Rat Hypothalamus and Amygdala

    PubMed Central

    Patisaul, Heather B.

    2013-01-01

    Bisphenol A (BPA) exposure is ubiquitous, and in laboratory animals, early-life BPA exposure has been shown to alter sex-specific neural organization, neuroendocrine physiology, and behavior. The specific mechanisms underlying these brain-related outcomes, however, remain largely unknown, constraining the capacity to ascertain the potential human relevance of neural effects observed in animal models. In the perinatal rat brain, estrogen is masculinizing, suggesting that BPA-induced perturbation of estrogen receptor (ESR) expression may underpin later in-life neuroendocrine effects. We hypothesized that prenatal BPA exposure alters sex-specific ESR1 (ERα) and ESR2 (ERβ) expression in postnatal limbic nuclei. Sprague Dawley rats were mated and gavaged on gestational days (GDs) 6–21 with vehicle, 2.5 or 25 μg/kg bw/day BPA, or 5 or 10 μg/kg bw/day ethinyl estradiol. An additional group was restrained but not gavaged (naïve control). Offspring were sacrificed the day after birth to quantify ESR gene expression throughout the hypothalamus and amygdala by in situ hybridization. Relative to the vehicle group, significant effects of BPA were observed on ESR1 and ESR2 expression throughout the mediobasal hypothalamus and amygdala in both sexes. Significant differences in ESR expression were also observed in the mediobasal hypothalamus and amygdala of the naïve control group compared with the vehicle group, highlighting the potential for gavage to influence gene expression in the developing brain. These results indicate that ESR expression in the neonatal brain of both sexes can be altered by low-dose prenatal BPA exposure. PMID:23457122

  7. The effect of space radiation of the nervous system

    NASA Astrophysics Data System (ADS)

    Gauger, Grant E.; Tobias, Cornelius A.; Yang, Tracy; Whitney, Monroe

    The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.

  8. Relationship Between Surface-Based Brain Morphometric Measures and Intelligence in Autism Spectrum Disorders: Influence of History of Language Delay.

    PubMed

    Balardin, Joana Bisol; Sato, João Ricardo; Vieira, Gilson; Feng, Yeu; Daly, Eileen; Murphy, Clodagh; Murphy, Declan; Ecker, Christine

    2015-10-01

    Autism spectrum disorders (ASD) are a group of conditions that show abnormalities in the neuroanatomy of multiple brain regions. The variability in the development of intelligence and language among individuals on the autism spectrum has long been acknowledged, but it remains unknown whether these differences impact on the neuropathology of ASD. In this study, we aimed to compare associations between surface-based regional brain measures and general intelligence (IQ) scores in ASD individuals with and without a history of language delay. We included 64 ASD adults of normal intelligence (37 without a history of language delay and 27 with a history of language delay and 80 neurotypicals). Regions with a significant association between verbal and nonverbal IQ and measures of cortical thickness (CT), surface area, and cortical volume were first identified in the combined sample of individuals with ASD and controls. Thicker dorsal frontal and temporal cortices, and thinner lateral orbital frontal and parieto-occipital cortices were associated with greater and lower verbal IQ scores, respectively. Correlations between cortical volume and verbal IQ were observed in similar regions as revealed by the CT analysis. A significant difference between ASD individuals with and without a history of language delay in the association between CT and verbal IQ was evident in the parieto-occipital region. These results indicate that ASD subgroups defined on the basis of differential language trajectories in childhood can have different associations between verbal IQ and brain measures in adulthood despite achieving similar levels of cognitive performance. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  9. CX3CR1 is dysregulated in blood and brain from schizophrenia patients.

    PubMed

    Bergon, Aurélie; Belzeaux, Raoul; Comte, Magali; Pelletier, Florence; Hervé, Mylène; Gardiner, Erin J; Beveridge, Natalie J; Liu, Bing; Carr, Vaughan; Scott, Rodney J; Kelly, Brian; Cairns, Murray J; Kumarasinghe, Nishantha; Schall, Ulrich; Blin, Olivier; Boucraut, José; Tooney, Paul A; Fakra, Eric; Ibrahim, El Chérif

    2015-10-01

    The molecular mechanisms underlying schizophrenia remain largely unknown. Although schizophrenia is a mental disorder, there is increasing evidence to indicate that inflammatory processes driven by diverse environmental factors play a significant role in its development. With gene expression studies having been conducted across a variety of sample types, e.g., blood and postmortem brain, it is possible to investigate convergent signatures that may reveal interactions between the immune and nervous systems in schizophrenia pathophysiology. We conducted two meta-analyses of schizophrenia microarray gene expression data (N=474) and non-psychiatric control (N=485) data from postmortem brain and blood. Then, we assessed whether significantly dysregulated genes in schizophrenia could be shared between blood and brain. To validate our findings, we selected a top gene candidate and analyzed its expression by RT-qPCR in a cohort of schizophrenia subjects stabilized by atypical antipsychotic monotherapy (N=29) and matched controls (N=31). Meta-analyses highlighted inflammation as the major biological process associated with schizophrenia and that the chemokine receptor CX3CR1 was significantly down-regulated in schizophrenia. This differential expression was also confirmed in our validation cohort. Given both the recent data demonstrating selective CX3CR1 expression in subsets of neuroimmune cells, as well as behavioral and neuropathological observations of CX3CR1 deficiency in mouse models, our results of reduced CX3CR1 expression adds further support for a role played by monocyte/microglia in the neurodevelopment of schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Dynamic circuitry for updating spatial representations. II. Physiological evidence for interhemispheric transfer in area LIP of the split-brain macaque.

    PubMed

    Heiser, Laura M; Berman, Rebecca A; Saunders, Richard C; Colby, Carol L

    2005-11-01

    With each eye movement, a new image impinges on the retina, yet we do not notice any shift in visual perception. This perceptual stability indicates that the brain must be able to update visual representations to take our eye movements into account. Neurons in the lateral intraparietal area (LIP) update visual representations when the eyes move. The circuitry that supports these updated representations remains unknown, however. In this experiment, we asked whether the forebrain commissures are necessary for updating in area LIP when stimulus representations must be updated from one visual hemifield to the other. We addressed this question by recording from LIP neurons in split-brain monkeys during two conditions: stimulus traces were updated either across or within hemifields. Our expectation was that across-hemifield updating activity in LIP would be reduced or abolished after transection of the forebrain commissures. Our principal finding is that LIP neurons can update stimulus traces from one hemifield to the other even in the absence of the forebrain commissures. This finding provides the first evidence that representations in parietal cortex can be updated without the use of direct cortico-cortical links. The second main finding is that updating activity in LIP is modified in the split-brain monkey: across-hemifield signals are reduced in magnitude and delayed in onset compared with within-hemifield signals, which indicates that the pathways for across-hemifield updating are less effective in the absence of the forebrain commissures. Together these findings reveal a dynamic circuit that contributes to updating spatial representations.

  11. Association of Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 with pathological diagnosis of Alzheimer disease.

    PubMed

    Yu, Lei; Chibnik, Lori B; Srivastava, Gyan P; Pochet, Nathalie; Yang, Jingyun; Xu, Jishu; Kozubek, James; Obholzer, Nikolaus; Leurgans, Sue E; Schneider, Julie A; Meissner, Alexander; De Jager, Philip L; Bennett, David A

    2015-01-01

    Recent large-scale genome-wide association studies have discovered several genetic variants associated with Alzheimer disease (AD); however, the extent to which DNA methylation in these AD loci contributes to the disease susceptibility remains unknown. To examine the association of brain DNA methylation in 28 reported AD loci with AD pathologies. Ongoing community-based clinical pathological cohort studies of aging and dementia (the Religious Orders Study and the Rush Memory and Aging Project) among 740 autopsied participants 66.0 to 108.3 years old. DNA methylation levels at individual CpG sites generated from dorsolateral prefrontal cortex tissue using a bead assay. Pathological diagnosis of AD by National Institute on Aging-Reagan criteria following a standard postmortem examination. Overall, 447 participants (60.4%) met the criteria for pathological diagnosis of AD. Brain DNA methylation in SORL1, ABCA7, HLA-DRB5, SLC24A4, and BIN1 was associated with pathological AD. The association was robustly retained after replacing the binary trait of pathological AD with 2 quantitative and molecular specific hallmarks of AD, namely, Aβ load and paired helical filament tau tangle density. Furthermore, RNA expression of transcripts of SORL1 and ABCA7 was associated with paired helical filament tau tangle density, and the expression of BIN1 was associated with Aβ load. Brain DNA methylation in multiple AD loci is associated with AD pathologies. The results provide further evidence that disruption of DNA methylation is involved in the pathological process of AD.

  12. Connectivity Predicts Deep Brain Stimulation Outcome in Parkinson Disease

    PubMed Central

    Horn, Andreas; Reich, Martin; Vorwerk, Johannes; Li, Ningfei; Wenzel, Gregor; Fang, Qianqian; Schmitz-Hübsch, Tanja; Nickl, Robert; Kupsch, Andreas; Volkmann, Jens; Kühn, Andrea A.; Fox, Michael D.

    2018-01-01

    Objective The benefit of deep brain stimulation (DBS) for Parkinson disease (PD) may depend on connectivity between the stimulation site and other brain regions, but which regions and whether connectivity can predict outcome in patients remain unknown. Here, we identify the structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) and test its ability to predict outcome in an independent cohort. Methods A training dataset of 51 PD patients with STN DBS was combined with publicly available human connectome data (diffusion tractography and resting state functional connectivity) to identify connections reliably associated with clinical improvement (motor score of the Unified Parkinson Disease Rating Scale [UPDRS]). This connectivity profile was then used to predict outcome in an independent cohort of 44 patients from a different center. Results In the training dataset, connectivity between the DBS electrode and a distributed network of brain regions correlated with clinical response including structural connectivity to supplementary motor area and functional anticorrelation to primary motor cortex (p<0.001). This same connectivity profile predicted response in an independent patient cohort (p<0.01). Structural and functional connectivity were independent predictors of clinical improvement (p<0.001) and estimated response in individual patients with an average error of 15% UPDRS improvement. Results were similar using connectome data from normal subjects or a connectome age, sex, and disease matched to our DBS patients. Interpretation Effective STN DBS for PD is associated with a specific connectivity profile that can predict clinical outcome across independent cohorts. This prediction does not require specialized imaging in PD patients themselves. PMID:28586141

  13. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan.

    PubMed

    Zhao, Tengda; Cao, Miao; Niu, Haijing; Zuo, Xi-Nian; Evans, Alan; He, Yong; Dong, Qi; Shu, Ni

    2015-10-01

    Lifespan is a dynamic process with remarkable changes in brain structure and function. Previous neuroimaging studies have indicated age-related microstructural changes in specific white matter tracts during development and aging. However, the age-related alterations in the topological architecture of the white matter structural connectome across the human lifespan remain largely unknown. Here, a cohort of 113 healthy individuals (ages 9-85) with both diffusion and structural MRI acquisitions were examined. For each participant, the high-resolution white matter structural networks were constructed by deterministic fiber tractography among 1024 parcellation units and were quantified with graph theoretical analyses. The global network properties, including network strength, cost, topological efficiency, and robustness, followed an inverted U-shaped trajectory with a peak age around the third decade. The brain areas with the most significantly nonlinear changes were located in the prefrontal and temporal cortices. Different brain regions exhibited heterogeneous trajectories: the posterior cingulate and lateral temporal cortices displayed prolonged maturation/degeneration compared with the prefrontal cortices. Rich-club organization was evident across the lifespan, whereas hub integration decreased linearly with age, especially accompanied by the loss of frontal hubs and their connections. Additionally, age-related changes in structural connections were predominantly located within and between the prefrontal and temporal modules. Finally, based on the graph metrics of structural connectome, accurate predictions of individual age were obtained (r = 0.77). Together, the data indicated a dynamic topological organization of the brain structural connectome across human lifespan, which may provide possible structural substrates underlying functional and cognitive changes with age. © 2015 Wiley Periodicals, Inc.

  14. Transfer of Learning Relates to Intrinsic Connectivity between Hippocampus, Ventromedial Prefrontal Cortex, and Large-Scale Networks

    PubMed Central

    Gerraty, Raphael T.; Davidow, Juliet Y.; Wimmer, G. Elliott; Kahn, Itamar

    2014-01-01

    An important aspect of adaptive learning is the ability to flexibly use past experiences to guide new decisions. When facing a new decision, some people automatically leverage previously learned associations, while others do not. This variability in transfer of learning across individuals has been demonstrated repeatedly and has important implications for understanding adaptive behavior, yet the source of these individual differences remains poorly understood. In particular, it is unknown why such variability in transfer emerges even among homogeneous groups of young healthy participants who do not vary on other learning-related measures. Here we hypothesized that individual differences in the transfer of learning could be related to relatively stable differences in intrinsic brain connectivity, which could constrain how individuals learn. To test this, we obtained a behavioral measure of memory-based transfer outside of the scanner and on a separate day acquired resting-state functional MRI images in 42 participants. We then analyzed connectivity across independent component analysis-derived brain networks during rest, and tested whether intrinsic connectivity in learning-related networks was associated with transfer. We found that individual differences in transfer were related to intrinsic connectivity between the hippocampus and the ventromedial prefrontal cortex, and between these regions and large-scale functional brain networks. Together, the findings demonstrate a novel role for intrinsic brain dynamics in flexible learning-guided behavior, both within a set of functionally specific regions known to be important for learning, as well as between these regions and the default and frontoparietal networks, which are thought to serve more general cognitive functions. PMID:25143610

  15. Longitudinal Changes in Serum Glucose Levels are Associated with Metabolic Changes in Alzheimer's Disease Related Brain Regions.

    PubMed

    Burns, Christine M; Kaszniak, Alfred W; Chen, Kewei; Lee, Wendy; Bandy, Daniel J; Caselli, Richard J; Reiman, Eric M

    2018-01-01

    The association between longitudinal changes in serum glucose level and longitudinal changes in [18F] Fluorodeoxyglucose-PET (FDG PET) measurements of Alzheimer's disease (AD) risk are unknown. To investigate whether variation in serum glucose levels across time are associated with changes in FDG PET measurements of cerebral metabolic rate for glucose (rCMRgl) in brain regions preferentially affected by Alzheimer's disease (AD). Participants are a subset of a prospective cohort study investigating FDG PET, apolipoprotein E (APOE) ɛ4, and risk for AD which includes data from baseline, interim, and follow up visits over 4.4±1.0-years. An automated brain-mapping algorithm was utilized to characterize and compare associations between longitudinal changes in serum glucose levels and longitudinal changes in rCMRgl. This study included 80 adults aged 61.5±5 years, including 38 carriers and 42 non-carriers of the APOE ɛ4 allele. Longitudinal increases in serum glucose levels were associated with longitudinal CMRgl decline in the vicinity of parietotemporal, precuneus/posterior cingulate, and prefrontal brain regions preferentially affected by AD (p < 0.05, corrected for multiple comparisons). Findings remained significant when controlled for APOE ɛ4 status and baseline and advancing age. Additional studies are needed to clarify and confirm the relationship between longitudinal changes in peripheral glucose and FDG PET measurements of AD risk. Future findings will set the stage on the use of FDG PET in the evaluation of possible interventions that target risk factors for the development of AD.

  16. Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress.

    PubMed

    Zhang, Bo; Wang, Bing; Cao, Shuhua; Wang, Yongqiang

    2015-11-01

    Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3-gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-1β and TNF-α mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of p47(phox) translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress.

  17. Effects of a spaceflight analog environment on brain connectivity and behavior.

    PubMed

    Cassady, Kaitlin; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Castenada, Roy Riascos; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2016-11-01

    Sensorimotor functioning is adaptively altered following long-duration spaceflight. The question of whether microgravity affects other central nervous system functions such as brain network organization and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to an established spaceflight analog on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. These bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Resting state functional magnetic resonance imaging (rs-fMRI) and behavioral data were obtained at seven time points averaging around: 12 and 8days prior to bed rest; 7, 50, and 70days during bed rest; and 8 and 12days after bed rest. To assess potential confounding effects due to scanning interval or task practice, we also acquired rs-fMRI and behavioral measurements from 14 control participants at four time points. 70days of head-down tilt (HDT) bed rest resulted in significant changes in the functional connectivity of motor, somatosensory, and vestibular areas of the brain. Moreover, several of these network alterations were significantly associated with changes in sensorimotor and spatial working memory performance, which suggests that neuroplasticity mechanisms may facilitate adaptation to the microgravity analog environment. The findings from this study provide novel insights into the underlying neural mechanisms and operational risks of spaceflight analog-related changes in sensorimotor performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Observed Parent Behaviors as Time-Varying Moderators of Problem Behaviors Following Traumatic Brain Injury in Young Children

    ERIC Educational Resources Information Center

    Treble-Barna, Amery; Zang, Huaiyu; Zhang, Nanhua; Taylor, H. Gerry; Stancin, Terry; Yeates, Keith Owen; Wade, Shari L.

    2016-01-01

    Parent behaviors moderate the adverse consequences of pediatric traumatic brain injury (TBI); however, it is unknown how these moderating effects change over time. This study examined the moderating effect of observed parent behaviors over time since injury on the relation between TBI and behavioral outcomes. Participants included children, ages…

  19. Socioeconomic Status and Functional Brain Development--Associations in Early Infancy

    ERIC Educational Resources Information Center

    Tomalski, Przemyslaw; Moore, Derek G.; Ribeiro, Helena; Axelsson, Emma L.; Murphy, Elizabeth; Karmiloff-Smith, Annette; Johnson, Mark H.; Kushnerenko, Elena

    2013-01-01

    Socioeconomic status (SES) impacts on both structural and functional brain development in childhood, but how early its effects can be demonstrated is unknown. In this study we measured resting baseline EEG activity in the gamma frequency range in awake 6-9-month-olds from areas of East London with high socioeconomic deprivation. Between-subject…

  20. Analysis and asynchronous detection of gradually unfolding errors during monitoring tasks

    NASA Astrophysics Data System (ADS)

    Omedes, Jason; Iturrate, Iñaki; Minguez, Javier; Montesano, Luis

    2015-10-01

    Human studies on cognitive control processes rely on tasks involving sudden-onset stimuli, which allow the analysis of these neural imprints to be time-locked and relative to the stimuli onset. Human perceptual decisions, however, comprise continuous processes where evidence accumulates until reaching a boundary. Surpassing the boundary leads to a decision where measured brain responses are associated to an internal, unknown onset. The lack of this onset for gradual stimuli hinders both the analyses of brain activity and the training of detectors. This paper studies electroencephalographic (EEG)-measurable signatures of human processing for sudden and gradual cognitive processes represented as a trajectory mismatch under a monitoring task. Time-locked potentials and brain-source analysis of the EEG of sudden mismatches revealed the typical components of event-related potentials and the involvement of brain structures related to cognitive control processing. For gradual mismatch events, time-locked analyses did not show any discernible EEG scalp pattern, despite related brain areas being, to a lesser extent, activated. However, and thanks to the use of non-linear pattern recognition algorithms, it is possible to train an asynchronous detector on sudden events and use it to detect gradual mismatches, as well as obtaining an estimate of their unknown onset. Post-hoc time-locked scalp and brain-source analyses revealed that the EEG patterns of detected gradual mismatches originated in brain areas related to cognitive control processing. This indicates that gradual events induce latency in the evaluation process but that similar brain mechanisms are present in sudden and gradual mismatch events. Furthermore, the proposed asynchronous detection model widens the scope of applications of brain-machine interfaces to other gradual processes.

  1. On Known Unknowns: Fluency and the Neural Mechanisms of Illusory Truth

    PubMed Central

    Wang, Wei-Chun; Brashier, Nadia M.; Wing, Erik A.; Marsh, Elizabeth J.; Cabeza, Roberto

    2016-01-01

    The “illusory truth” effect refers to the phenomenon whereby repetition of a statement increases its likelihood of being judged true. This phenomenon has important implications for how we come to believe oft-repeated information that may be misleading or unknown. Behavioral evidence indicates that fluency or the subjective ease experienced while processing a statement underlies this effect. This suggests that illusory truth should be mediated by brain regions previously linked to fluency, such as the perirhinal cortex (PRC). To investigate this possibility, we scanned participants with fMRI while they rated the truth of unknown statements, half of which were presented earlier (i.e., repeated). The only brain region that showed an interaction between repetition and ratings of perceived truth was PRC, where activity increased with truth ratings for repeated, but not for new, statements. This finding supports the hypothesis that illusory truth is mediated by a fluency mechanism and further strengthens the link between PRC and fluency. PMID:26765947

  2. Integrated Approach for Pain Management in Parkinson Disease.

    PubMed

    Geroin, Christian; Gandolfi, Marialuisa; Bruno, Veronica; Smania, Nicola; Tinazzi, Michele

    2016-04-01

    Pain, one of the most frequent nonmotor symptoms of Parkinson disease (PD), is recognized as an important component of the illness that adversely affects patient quality of life. The aims of this review are to summarize the current knowledge on the clinical assessment and to provide a detailed overview of the evidence-based pharmacologic and nonpharmacologic approaches to treating pain. Results of a literature search include studies investigating pain/sensory abnormalities in PD. The effects of levodopa administration, deep brain stimulation (DBS), pallidotomy, spinal cord stimulation, rehabilitation, and complementary/alternative medicine are reviewed critically. PD patients have altered pain and sensory thresholds; levodopa and DBS improve pain and change sensory abnormalities toward normal levels through antinociceptive and/or modulatory effects that remain unknown. A wide range of nonpharmacologic approaches require further investigation. A multidisciplinary approach is fundamental in managing pain syndromes in PD.

  3. Decreased SGK1 Expression and Function Contributes to Behavioral Deficits Induced by Traumatic Stress

    PubMed Central

    Licznerski, Pawel; Duric, Vanja; Banasr, Mounira; Alavian, Kambiz N.; Ota, Kristie T.; Kang, Hyo Jung; Jonas, Elizabeth A.; Ursano, Robert; Krystal, John H.; Duman, Ronald S.

    2015-01-01

    Exposure to extreme stress can trigger the development of major depressive disorder (MDD) as well as post-traumatic stress disorder (PTSD). The molecular mechanisms underlying the structural and functional alterations within corticolimbic brain regions, including the prefrontal cortex (PFC) and amygdala of individuals subjected to traumatic stress, remain unknown. In this study, we show that serum and glucocorticoid regulated kinase 1 (SGK1) expression is down-regulated in the postmortem PFC of PTSD subjects. Furthermore, we demonstrate that inhibition of SGK1 in the rat medial PFC results in helplessness- and anhedonic-like behaviors in rodent models. These behavioral changes are accompanied by abnormal dendritic spine morphology and synaptic dysfunction. Together, the results are consistent with the possibility that altered SGK1 signaling contributes to the behavioral and morphological phenotypes associated with traumatic stress pathophysiology. PMID:26506154

  4. Munc13 controls the location and efficiency of dense-core vesicle release in neurons.

    PubMed

    van de Bospoort, Rhea; Farina, Margherita; Schmitz, Sabine K; de Jong, Arthur; de Wit, Heidi; Verhage, Matthijs; Toonen, Ruud F

    2012-12-10

    Neuronal dense-core vesicles (DCVs) contain diverse cargo crucial for brain development and function, but the mechanisms that control their release are largely unknown. We quantified activity-dependent DCV release in hippocampal neurons at single vesicle resolution. DCVs fused preferentially at synaptic terminals. DCVs also fused at extrasynaptic sites but only after prolonged stimulation. In munc13-1/2-null mutant neurons, synaptic DCV release was reduced but not abolished, and synaptic preference was lost. The remaining fusion required prolonged stimulation, similar to extrasynaptic fusion in wild-type neurons. Conversely, Munc13-1 overexpression (M13OE) promoted extrasynaptic DCV release, also without prolonged stimulation. Thus, Munc13-1/2 facilitate DCV fusion but, unlike for synaptic vesicles, are not essential for DCV release, and M13OE is sufficient to produce efficient DCV release extrasynaptically.

  5. Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells

    PubMed Central

    Sun, Chen; Kitamura, Takashi; Yamamoto, Jun; Martin, Jared; Pignatelli, Michele; Kitch, Lacey J.; Schnitzer, Mark J.; Tonegawa, Susumu

    2015-01-01

    Entorhinal–hippocampal circuits in the mammalian brain are crucial for an animal’s spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca2+ imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells’ and ocean cells’ contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits. PMID:26170279

  6. The neural basis of novelty and appropriateness in processing of creative chunk decomposition.

    PubMed

    Huang, Furong; Fan, Jin; Luo, Jing

    2015-06-01

    Novelty and appropriateness have been recognized as the fundamental features of creative thinking. However, the brain mechanisms underlying these features remain largely unknown. In this study, we used event-related functional magnetic resonance imaging (fMRI) to dissociate these mechanisms in a revised creative chunk decomposition task in which participants were required to perform different types of chunk decomposition that systematically varied in novelty and appropriateness. We found that novelty processing involved functional areas for procedural memory (caudate), mental rewarding (substantia nigra, SN), and visual-spatial processing, whereas appropriateness processing was mediated by areas for declarative memory (hippocampus), emotional arousal (amygdala), and orthography recognition. These results indicate that non-declarative and declarative memory systems may jointly contribute to the two fundamental features of creative thinking. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Metabolic control of vesicular glutamate transport and release.

    PubMed

    Juge, Narinobu; Gray, John A; Omote, Hiroshi; Miyaji, Takaaki; Inoue, Tsuyoshi; Hara, Chiaki; Uneyama, Hisayuki; Edwards, Robert H; Nicoll, Roger A; Moriyama, Yoshinori

    2010-10-06

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with Cl(-) at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Quantifying the role of motor imagery in brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Marchesotti, Silvia; Bassolino, Michela; Serino, Andrea; Bleuler, Hannes; Blanke, Olaf

    2016-04-01

    Despite technical advances in brain machine interfaces (BMI), for as-yet unknown reasons the ability to control a BMI remains limited to a subset of users. We investigate whether individual differences in BMI control based on motor imagery (MI) are related to differences in MI ability. We assessed whether differences in kinesthetic and visual MI, in the behavioral accuracy of MI, and in electroencephalographic variables, were able to differentiate between high- versus low-aptitude BMI users. High-aptitude BMI users showed higher MI accuracy as captured by subjective and behavioral measurements, pointing to a prominent role of kinesthetic rather than visual imagery. Additionally, for the first time, we applied mental chronometry, a measure quantifying the degree to which imagined and executed movements share a similar temporal profile. We also identified enhanced lateralized μ-band oscillations over sensorimotor cortices during MI in high- versus low-aptitude BMI users. These findings reveal that subjective, behavioral, and EEG measurements of MI are intimately linked to BMI control. We propose that poor BMI control cannot be ascribed only to intrinsic limitations of EEG recordings and that specific questionnaires and mental chronometry can be used as predictors of BMI performance (without the need to record EEG activity).

  9. Offline memory reprocessing: involvement of the brain's default network in spontaneous thought processes.

    PubMed

    Wang, Kun; Yu, Chunshui; Xu, Lijuan; Qin, Wen; Li, Kuncheng; Xu, Lin; Jiang, Tianzi

    2009-01-01

    Spontaneous thought processes (STPs), also called daydreaming or mind-wandering, occur ubiquitously in daily life. However, the functional significance of STPs remains largely unknown. Using functional magnetic resonance imaging (fMRI), we first identified an STPs-network whose activity was positively correlated with the subjects' tendency of having STPs during a task-free state. The STPs-network was then found to be strongly associated with the default network, which has previously been established as being active during the task-free state. Interestingly, we found that offline reprocessing of previously memorized information further increased the activity of the STPs-network regions, although during a state with less STPs. In addition, we found that the STPs-network kept a dynamic balance between functional integration and functional separation among its component regions to execute offline memory reprocessing in STPs. These findings strengthen a view that offline memory reprocessing and STPs share the brain's default network, and thus implicate that offline memory reprocessing may be a predetermined function of STPs. This supports the perspective that memory can be consolidated and modified during STPs, and thus gives rise to a dynamic behavior dependent on both previous external and internal experiences.

  10. miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells.

    PubMed

    Sun, GuoQiang; Ye, Peng; Murai, Kiyohito; Lang, Ming-Fei; Li, Shengxiu; Zhang, Heying; Li, Wendong; Fu, Chelsea; Yin, Jason; Wang, Allen; Ma, Xiaoxiao; Shi, Yanhong

    2011-11-08

    miR-137 is a brain-enriched microRNA. Its role in neural development remains unknown. Here we show that miR-137 has an essential role in controlling embryonic neural stem cell fate determination. miR-137 negatively regulates cell proliferation and accelerates neural differentiation of embryonic neural stem cells. In addition, we show that the histone lysine-specific demethylase 1 (LSD1), a transcriptional co-repressor of nuclear receptor TLX, is a downstream target of miR-137. In utero electroporation of miR-137 in embryonic mouse brains led to premature differentiation and outward migration of the transfected cells. Introducing a LSD1 expression vector lacking the miR-137 recognition site rescued miR-137-induced precocious differentiation. Furthermore, we demonstrate that TLX, an essential regulator of neural stem cell self-renewal, represses the expression of miR-137 by recruiting LSD1 to the genomic regions of miR-137. Thus, miR-137 forms a feedback regulatory loop with TLX and LSD1 to control the dynamics between neural stem cell proliferation and differentiation during neural development.

  11. Potential Role of Aminoprocalcitonin in the Pathogenesis of Alzheimer Disease.

    PubMed

    Tavares, Eva; Antequera, Desiree; López-González, Irene; Ferrer, Isidro; Miñano, Francisco J; Carro, Eva

    2016-10-01

    Increasing evidence suggests that inflammatory responses cause brain atrophy and play a prominent and early role in the progression of Alzheimer disease. Recent findings show that the neuroendocrine peptide aminoprocalcitonin (NPCT) plays a critical role in the development of systemic inflammatory response; however, the presence, possible function, regulation, and mechanisms by which NPCT may be involved in Alzheimer disease neuropathology remain unknown. We explored the expression of NPCT and its interaction with amyloid-β (Aβ), and proinflammatory and neurogenic effects. By using brain samples of Alzheimer disease patients and APP/PS1 transgenic mice, we evaluated the potential role of NPCT on Aβ-related pathology. We found that NPCT is expressed in hippocampal and cortical neurons and Aβ-induced up-regulation of NPCT expression. Peripherally administered antibodies against NPCT decreased microglial activation, decreased circulating levels of proinflammatory cytokines, and prevented Aβ-induced neurotoxicity in experimental models of Alzheimer disease. Remarkably, anti-NPTC therapy resulted in a significant improvement in the behavioral status of APP/PS1 mice. Our results indicate a central role of NPCT in Alzheimer disease pathogenesis and suggest NPCT as a potential biomarker and therapeutic target. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Rapid treatment-induced brain changes in pediatric CRPS.

    PubMed

    Erpelding, Nathalie; Simons, Laura; Lebel, Alyssa; Serrano, Paul; Pielech, Melissa; Prabhu, Sanjay; Becerra, Lino; Borsook, David

    2016-03-01

    To date, brain structure and function changes in children with complex regional pain syndrome (CRPS) as a result of disease and treatment remain unknown. Here, we investigated (a) gray matter (GM) differences between patients with CRPS and healthy controls and (b) GM and functional connectivity (FC) changes in patients following intensive interdisciplinary psychophysical pain treatment. Twenty-three patients (13 females, 9 males; average age ± SD = 13.3 ± 2.5 years) and 21 healthy sex- and age-matched controls underwent magnetic resonance imaging. Compared to controls, patients had reduced GM in the primary motor cortex, premotor cortex, supplementary motor area, midcingulate cortex, orbitofrontal cortex, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex, precuneus, basal ganglia, thalamus, and hippocampus. Following treatment, patients had increased GM in the dlPFC, thalamus, basal ganglia, amygdala, and hippocampus, and enhanced FC between the dlPFC and the periaqueductal gray, two regions involved in descending pain modulation. Accordingly, our results provide novel evidence for GM abnormalities in sensory, motor, emotional, cognitive, and pain modulatory regions in children with CRPS. Furthermore, this is the first study to demonstrate rapid treatment-induced GM and FC changes in areas implicated in sensation, emotion, cognition, and pain modulation.

  13. Altered Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Schizophrenia.

    PubMed

    Zhu, Jiajia; Zhuo, Chuanjun; Xu, Lixue; Liu, Feng; Qin, Wen; Yu, Chunshui

    2017-10-21

    Respective changes in resting-state cerebral blood flow (CBF) and functional connectivity in schizophrenia have been reported. However, their coupling alterations in schizophrenia remain largely unknown. 89 schizophrenia patients and 90 sex- and age-matched healthy controls underwent resting-state functional MRI to calculate functional connectivity strength (FCS) and arterial spin labeling imaging to compute CBF. The CBF-FCS coupling of the whole gray matter and the CBF/FCS ratio (the amount of blood supply per unit of connectivity strength) of each voxel were compared between the 2 groups. Whole gray matter CBF-FCS coupling was decreased in schizophrenia patients relative to healthy controls. In schizophrenia patients, the decreased CBF/FCS ratio was predominantly located in cognitive- and emotional-related brain regions, including the dorsolateral prefrontal cortex, insula, hippocampus and thalamus, whereas an increased CBF/FCS ratio was mainly identified in the sensorimotor regions, including the putamen, and sensorimotor, mid-cingulate and visual cortices. These findings suggest that the neurovascular decoupling in the brain may be a possible neuropathological mechanism of schizophrenia. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com

  14. Ribosomal Protein S6 Phosphorylation Is Involved in Novelty-Induced Locomotion, Synaptic Plasticity and mRNA Translation

    PubMed Central

    Puighermanal, Emma; Biever, Anne; Pascoli, Vincent; Melser, Su; Pratlong, Marine; Cutando, Laura; Rialle, Stephanie; Severac, Dany; Boubaker-Vitre, Jihane; Meyuhas, Oded; Marsicano, Giovanni; Lüscher, Christian; Valjent, Emmanuel

    2017-01-01

    The phosphorylation of the ribosomal protein S6 (rpS6) is widely used to track neuronal activity. Although it is generally assumed that rpS6 phosphorylation has a stimulatory effect on global protein synthesis in neurons, its exact biological function remains unknown. By using a phospho-deficient rpS6 knockin mouse model, we directly tested the role of phospho-rpS6 in mRNA translation, plasticity and behavior. The analysis of multiple brain areas shows for the first time that, in neurons, phospho-rpS6 is dispensable for overall protein synthesis. Instead, we found that phospho-rpS6 controls the translation of a subset of mRNAs in a specific brain region, the nucleus accumbens (Acb), but not in the dorsal striatum. We further show that rpS6 phospho-mutant mice display altered long-term potentiation (LTP) in the Acb and enhanced novelty-induced locomotion. Collectively, our findings suggest a previously unappreciated role of phospho-rpS6 in the physiology of the Acb, through the translation of a selective subclass of mRNAs, rather than the regulation of general protein synthesis. PMID:29311811

  15. Rines E3 ubiquitin ligase regulates MAO-A levels and emotional responses.

    PubMed

    Kabayama, Miyuki; Sakoori, Kazuto; Yamada, Kazuyuki; Ornthanalai, Veravej G; Ota, Maya; Morimura, Naoko; Katayama, Kei-ichi; Murphy, Niall P; Aruga, Jun

    2013-08-07

    Monoamine oxidase A (MAO-A), the catabolic enzyme of norepinephrine and serotonin, plays a critical role in emotional and social behavior. However, the control and impact of endogenous MAO-A levels in the brain remains unknown. Here we show that the RING finger-type E3 ubiquitin ligase Rines/RNF180 regulates brain MAO-A subset, monoamine levels, and emotional behavior. Rines interacted with MAO-A and promoted its ubiquitination and degradation. Rines knock-out mice displayed impaired stress responses, enhanced anxiety, and affiliative behavior. Norepinephrine and serotonin levels were altered in the locus ceruleus, prefrontal cortex, and amygdala in either stressed or resting conditions, and MAO-A enzymatic activity was enhanced in the locus ceruleus in Rines knock-out mice. Treatment of Rines knock-out mice with MAO inhibitors showed genotype-specific effects on some of the abnormal affective behaviors. These results indicated that the control of emotional behavior by Rines is partly due to the regulation of MAO-A levels. These findings verify that Rines is a critical regulator of the monoaminergic system and emotional behavior and identify a promising candidate drug target for treating diseases associated with emotion.

  16. Disorganized cortical thickness covariance network in major depressive disorder implicated by aberrant hubs in large-scale networks

    PubMed Central

    Wang, Tao; Wang, Kangcheng; Qu, Hang; Zhou, Jingjing; Li, Qi; Deng, Zhou; Du, Xue; Lv, Fajin; Ren, Gaoping; Guo, Jing; Qiu, Jiang; Xie, Peng

    2016-01-01

    Major depressive disorder is associated with abnormal anatomical and functional connectivity, yet alterations in whole cortical thickness topology remain unknown. Here, we examined cortical thickness in medication-free adult depression patients (n = 76) and matched healthy controls (n = 116). Inter-regional correlation was performed to construct brain networks. By applying graph theory analysis, global (i.e., small-worldness) and regional (centrality) topology was compared between major depressive disorder patients and healthy controls. We found that in depression patients, topological organization of the cortical thickness network shifted towards randomness, and lower small-worldness was driven by a decreased clustering coefficient. Consistently, altered nodal centrality was identified in the isthmus of the cingulate cortex, insula, supra-marginal gyrus, middle temporal gyrus and inferior parietal gyrus, all of which are components within the default mode, salience and central executive networks. Disrupted nodes anchored in the default mode and executive networks were associated with depression severity. The brain systems involved sustain core symptoms in depression and implicate a structural basis for depression. Our results highlight the possibility that developmental and genetic factors are crucial to understand the neuropathology of depression. PMID:27302485

  17. Decoding the future from past experience: learning shapes predictions in early visual cortex.

    PubMed

    Luft, Caroline D B; Meeson, Alan; Welchman, Andrew E; Kourtzi, Zoe

    2015-05-01

    Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex. Copyright © 2015 the American Physiological Society.

  18. Quantifying the role of motor imagery in brain-machine interfaces

    PubMed Central

    Marchesotti, Silvia; Bassolino, Michela; Serino, Andrea; Bleuler, Hannes; Blanke, Olaf

    2016-01-01

    Despite technical advances in brain machine interfaces (BMI), for as-yet unknown reasons the ability to control a BMI remains limited to a subset of users. We investigate whether individual differences in BMI control based on motor imagery (MI) are related to differences in MI ability. We assessed whether differences in kinesthetic and visual MI, in the behavioral accuracy of MI, and in electroencephalographic variables, were able to differentiate between high- versus low-aptitude BMI users. High-aptitude BMI users showed higher MI accuracy as captured by subjective and behavioral measurements, pointing to a prominent role of kinesthetic rather than visual imagery. Additionally, for the first time, we applied mental chronometry, a measure quantifying the degree to which imagined and executed movements share a similar temporal profile. We also identified enhanced lateralized μ-band oscillations over sensorimotor cortices during MI in high- versus low-aptitude BMI users. These findings reveal that subjective, behavioral, and EEG measurements of MI are intimately linked to BMI control. We propose that poor BMI control cannot be ascribed only to intrinsic limitations of EEG recordings and that specific questionnaires and mental chronometry can be used as predictors of BMI performance (without the need to record EEG activity). PMID:27052520

  19. Neonatal pain and reduced maternal care: Early-life stressors interacting to impact brain and behavioral development.

    PubMed

    Mooney-Leber, Sean M; Brummelte, Susanne

    2017-02-07

    Advances in neonatal intensive care units (NICUs) have drastically increased the survival chances of preterm infants. However, preterm infants are still exposed to a wide range of stressors during their stay in the NICU, which include painful procedures and reduced maternal contact. The activation of the hypothalamic-pituitary-adrenal (HPA) axis, in response to these stressors during this critical period of brain development, has been associated with many acute and long-term adverse biobehavioral outcomes. Recent research has shown that Kangaroo care, a non-pharmacological analgesic based on increased skin-to-skin contact between the neonate and the mother, negates the adverse outcomes associated with neonatal pain and reduced maternal care, however the biological mechanism remains widely unknown. This review summarizes findings from both human and rodent literature investigating neonatal pain and reduced maternal care independently, primarily focusing on the role of the HPA axis and biobehavioral outcomes. The physiological and positive outcomes of Kangaroo care will also be discussed in terms of how dampening of the HPA axis response to neonatal pain and increased maternal care may account for positive outcomes associated with Kangaroo care. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Altered cortical communication in amyotrophic lateral sclerosis.

    PubMed

    Blain-Moraes, Stefanie; Mashour, George A; Lee, Heonsoo; Huggins, Jane E; Lee, Uncheol

    2013-05-24

    Amyotrophic lateral sclerosis (ALS) is a disorder associated primarily with the degeneration of the motor system. More recently, functional connectivity studies have demonstrated potentially adaptive changes in ALS brain organization, but disease-related changes in cortical communication remain unknown. We recruited individuals with ALS and age-matched controls to operate a brain-computer interface while electroencephalography was recorded over three sessions. Using normalized symbolic transfer entropy, we measured directed functional connectivity from frontal to parietal (feedback connectivity) and parietal to frontal (feedforward connectivity) regions. Feedback connectivity was not significantly different between groups, but feedforward connectivity was significantly higher in individuals with ALS. This result was consistent across a broad electroencephalographic spectrum (4-35 Hz), and in theta, alpha and beta frequency bands. Feedback connectivity has been associated with conscious state and was found to be independent of ALS symptom severity in this study, which may have significant implications for the detection of consciousness in individuals with advanced ALS. We suggest that increases in feedforward connectivity represent a compensatory response to the ALS-related loss of input such that sensory stimuli have sufficient strength to cross the threshold necessary for conscious processing in the global neuronal workspace. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4).

    PubMed

    Ose, Atsushi; Ito, Mototsugu; Kusuhara, Hiroyuki; Yamatsugu, Kenzo; Kanai, Motomu; Shibasaki, Masakatsu; Hosokawa, Masakiyo; Schuetz, John D; Sugiyama, Yuichi

    2009-02-01

    [3R,4R,5S]-4-Acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802) is a pharmacologically active form of the anti-influenza virus drug oseltamivir. Abnormal behavior is a suspected adverse effect of oseltamivir on the central nervous system. This study focused on the transport mechanisms of Ro 64-0802 across the blood-brain barrier (BBB). Ro 64-0802 was found to be a substrate of organic anion transporter 3 (OAT3/SLC22A8) and multidrug resistance-associated protein 4 (MRP4/ABCC4). Human embryonic kidney 293 cells expressing OAT3 exhibited a greater intracellular accumulation of Ro 64-0802 than mock-transfected cells (15 versus 1.2 microl/mg protein/10 min, respectively). The efflux of Ro 64-0802 was 3-fold greater when MRP4 was expressed in MDCKII cells and was significantly inhibited by indomethacin. After its microinjection into the cerebrum, the amount of Ro 64-0802 in brain was significantly greater in both Oat3(-/-) mice and Mrp4(-/-) mice compared with the corresponding wild-type mice (0.36 versus 0.080 and 0.32 versus 0.060 nmol at 120 min after injection, respectively). The brain/plasma concentration ratio (K(p,) (brain)) of Ro 64-0802, determined in wild-type mice after subcutaneous continuous infusion for 24 h, was close to the capillary volume (approximately 10 microl/g brain). Although the K(p,) (brain) of Ro 64-0802 was unchanged in Oat3(-/-) mice, it was significantly greater in Mrp4(-/-) mice (41 microl/g of brain). These results suggest that Ro 64-0802 can cross the BBB from the blood, but its brain distribution is limited by its active efflux by Mrp4 and Oat3 across the BBB. The transporter responsible for the brain uptake of Ro 64-0802 remains unknown, but Oat3 is a candidate transporter.

  2. Face-Name Association Learning and Brain Structural Substrates in Alcoholism

    PubMed Central

    Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V.

    2011-01-01

    Background Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Methods Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent a 3T structural MRI. Results Compared with controls, alcoholics had poorer associative and single-item recognition, each impaired to the same extent. Level of processing at encoding had little effect on recognition performance but affected reaction time. Correlations with brain volumes were generally modest and based primarily on reaction time in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task reaction times correlated modestly with volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Conclusions Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster reaction times and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded reaction time occurred at the expense of accuracy and was related most robustly to cerebellar volumes. PMID:22509954

  3. Neurological Injury and Cerebral Blood Flow in Single Ventricles Throughout Staged Surgical Reconstruction.

    PubMed

    Fogel, Mark A; Li, Christine; Elci, Okan U; Pawlowski, Tom; Schwab, Peter J; Wilson, Felice; Nicolson, Susan C; Montenegro, Lisa M; Diaz, Laura; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Mascio, Christopher; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Bethel, Jim; Vossough, Arastoo; Licht, Daniel J

    2017-02-14

    Patients with a single ventricle experience a high rate of brain injury and adverse neurodevelopmental outcome; however, the incidence of brain abnormalities throughout surgical reconstruction and their relationship with cerebral blood flow, oxygen delivery, and carbon dioxide reactivity remain unknown. Patients with a single ventricle were studied with magnetic resonance imaging scans immediately prior to bidirectional Glenn (pre-BDG), before Fontan (BDG), and then 3 to 9 months after Fontan reconstruction. One hundred sixty-eight consecutive subjects recruited into the project underwent 235 scans: 63 pre-BDG (mean age, 4.8±1.7 months), 118 BDG (2.9±1.4 years), and 54 after Fontan (2.4±1.0 years). Nonacute ischemic white matter changes on T2-weighted imaging, focal tissue loss, and ventriculomegaly were all more commonly detected in BDG and Fontan compared with pre-BDG patients ( P <0.05). BDG patients had significantly higher cerebral blood flow than did Fontan patients. The odds of discovering brain injury with adjustment for surgical stage as well as ≥2 coexisting lesions within a patient decreased (63%-75% and 44%, respectively) with increasing amount of cerebral blood flow ( P <0.05). In general, there was no association of oxygen delivery (except for ventriculomegaly in the BDG group) or carbon dioxide reactivity with neurological injury. Significant brain abnormalities are commonly present in patients with a single ventricle, and detection of these lesions increases as children progress through staged surgical reconstruction, with multiple coexisting lesions more common earlier than later. In addition, this study demonstrated that BDG patients had greater cerebral blood flow than did Fontan patients and that an inverse association exists of various indexes of cerebral blood flow with these brain lesions. However, CO 2 reactivity and oxygen delivery (with 1 exception) were not associated with brain lesion development. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02135081. © 2016 American Heart Association, Inc.

  4. Face-name association learning and brain structural substrates in alcoholism.

    PubMed

    Pitel, Anne-Lise; Chanraud, Sandra; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V

    2012-07-01

    Associative learning is required for face-name association and is impaired in alcoholism, but the cognitive processes and brain structural components underlying this deficit remain unclear. It is also unknown whether prompting alcoholics to implement a deep level of processing during face-name encoding would enhance performance. Abstinent alcoholics and controls performed a levels-of-processing face-name learning task. Participants indicated whether the face was that of an honest person (deep encoding) or that of a man (shallow encoding). Retrieval was examined using an associative (face-name) recognition task and a single-item (face or name only) recognition task. Participants also underwent 3T structural MRI. Compared with controls, alcoholics had poorer associative and single-item learning and performed at similar levels. Level of processing at encoding had little effect on recognition performance but affected reaction time (RT). Correlations with brain volumes were generally modest and based primarily on RT in alcoholics, where the deeper the processing at encoding, the more restricted the correlations with brain volumes. In alcoholics, longer control task RTs correlated modestly with smaller tissue volumes across several anterior to posterior brain regions; shallow encoding correlated with calcarine and striatal volumes; deep encoding correlated with precuneus and parietal volumes; and associative recognition RT correlated with cerebellar volumes. In controls, poorer associative recognition with deep encoding correlated significantly with smaller volumes of frontal and striatal structures. Despite prompting, alcoholics did not take advantage of encoding memoranda at a deep level to enhance face-name recognition accuracy. Nonetheless, conditions of deeper encoding resulted in faster RTs and more specific relations with regional brain volumes than did shallow encoding. The normal relation between associative recognition and corticostriatal volumes was not present in alcoholics. Rather, their speeded RTs occurred at the expense of accuracy and were related most robustly to cerebellar volumes. Copyright © 2012 by the Research Society on Alcoholism.

  5. Astrocytes Promote Oligodendrogenesis after White Matter Damage via Brain-Derived Neurotrophic Factor.

    PubMed

    Miyamoto, Nobukazu; Maki, Takakuni; Shindo, Akihiro; Liang, Anna C; Maeda, Mitsuyo; Egawa, Naohiro; Itoh, Kanako; Lo, Evan K; Lok, Josephine; Ihara, Masafumi; Arai, Ken

    2015-10-14

    Oligodendrocyte precursor cells (OPCs) in the adult brain contribute to white matter homeostasis. After white matter damage, OPCs compensate for oligodendrocyte loss by differentiating into mature oligodendrocytes. However, the underlying mechanisms remain to be fully defined. Here, we test the hypothesis that, during endogenous recovery from white matter ischemic injury, astrocytes support the maturation of OPCs by secreting brain-derived neurotrophic factor (BDNF). For in vitro experiments, cultured primary OPCs and astrocytes were prepared from postnatal day 2 rat cortex. When OPCs were subjected to chemical hypoxic stress by exposing them to sublethal CoCl2 for 7 d, in vitro OPC differentiation into oligodendrocytes was significantly suppressed. Conditioned medium from astrocytes (astro-medium) restored the process of OPC maturation even under the stressed conditions. When astro-medium was filtered with TrkB-Fc to remove BDNF, the BDNF-deficient astro-medium no longer supported OPC maturation. For in vivo experiments, we analyzed a transgenic mouse line (GFAP(cre)/BDNF(wt/fl)) in which BDNF expression is downregulated specifically in GFAP(+) astrocytes. Both wild-type (GFAP(wt)/BDNF(wt/fl) mice) and transgenic mice were subjected to prolonged cerebral hypoperfusion by bilateral common carotid artery stenosis. As expected, compared with wild-type mice, the transgenic mice exhibited a lower number of newly generated oligodendrocytes and larger white matter damage. Together, these findings demonstrate that, during endogenous recovery from white matter damage, astrocytes may promote oligodendrogenesis by secreting BDNF. The repair of white matter after brain injury and neurodegeneration remains a tremendous hurdle for a wide spectrum of CNS disorders. One potentially important opportunity may reside in the response of residual oligodendrocyte precursor cells (OPCs). OPCs may serve as a back-up for generating mature oligodendrocytes in damaged white matter. However, the underlying mechanisms are still mostly unknown. Here, we use a combination of cell biology and an animal model to report a new pathway in which astrocyte-derived BDNF supports oligodendrogenesis and regeneration after white matter damage. These findings provide new mechanistic insight into white matter physiology and pathophysiology, which would be broadly and clinically applicable to CNS disease. Copyright © 2015 the authors 0270-6474/15/3514002-07$15.00/0.

  6. Gut vagal sensory signaling regulates hippocampus function through multi-order pathways.

    PubMed

    Suarez, Andrea N; Hsu, Ted M; Liu, Clarissa M; Noble, Emily E; Cortella, Alyssa M; Nakamoto, Emily M; Hahn, Joel D; de Lartigue, Guillaume; Kanoski, Scott E

    2018-06-05

    The vagus nerve is the primary means of neural communication between the gastrointestinal (GI) tract and the brain. Vagally mediated GI signals activate the hippocampus (HPC), a brain region classically linked with memory function. However, the endogenous relevance of GI-derived vagal HPC communication is unknown. Here we utilize a saporin (SAP)-based lesioning procedure to reveal that selective GI vagal sensory/afferent ablation in rats impairs HPC-dependent episodic and spatial memory, effects associated with reduced HPC neurotrophic and neurogenesis markers. To determine the neural pathways connecting the gut to the HPC, we utilize monosynaptic and multisynaptic virus-based tracing methods to identify the medial septum as a relay connecting the medial nucleus tractus solitarius (where GI vagal afferents synapse) to dorsal HPC glutamatergic neurons. We conclude that endogenous GI-derived vagal sensory signaling promotes HPC-dependent memory function via a multi-order brainstem-septal pathway, thereby identifying a previously unknown role for the gut-brain axis in memory control.

  7. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio).

    PubMed

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Lv, Zhen-Ming

    2016-11-01

    Cadmium (Cd) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. The mechanisms underlying Cd-induced oxidative stress and immunotoxicity in fish remain largely unknown. In this study, adult female zebrafish were exposed to 0 (control), 1mgL -1 Cd for 24h and 96h, and the oxidative stress and inflammatory responses induced by Cd were evaluated in the brain, liver and ovary. Reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA) increased in a time-dependent manner after treatment with Cd in the brain and liver. The increase may result from the disturbance of genes including copper and zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), inducible nitric oxide synthase (iNOS), and ciclooxigenase-2 (COX-2) at mRNA, protein and activity levels. Although ROS, NO and MDA were not significantly affected by Cd in the ovary, the up-regulation of Cu/Zn-SOD, CAT, iNOS, and COX-2 was observed. Exposure to Cd induced a sharp increase in the protein levels of tumor necrosis factor alpha (TNF-α) in the brain, liver and ovary, possibly contributing to activate inflammatory responses. Furthermore, we also found a dramatic increase in mRNA levels of NF-E2-related factor 2 (Nrf2) and nuclear transcription factor κB (NF-κB) at 24h in the liver and ovary. The corresponding changes in the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1a and Keap1b) and the inhibitor of κBα (IκBαa and IκBαb) may contribute to regulate the transcriptional activity of Nrf2 and NF-κB, respectively. Contrarily, mRNA levels of Nrf2, NF-κB, Keap1, Keap1b, IκBαa and IκBαb remained stable at 24 and 96h in the brain. Taken together, we demonstrated Cd-induced oxidative stress and immunotoxicity in fish, possibly through transcriptional regulation of Nrf2 and NF-κB and gene modifications at transcriptional, translational, post-translational levels, which would greatly extend our understanding on the Cd toxicity. Copyright © 2016. Published by Elsevier B.V.

  8. Functional Status after Blast-Plus-Impact Complex Concussive Traumatic Brain Injury in Evacuated United States Military Personnel

    PubMed Central

    MacDonald, Christine L.; Johnson, Ann M.; Nelson, Elliot C.; Werner, Nicole J.; Fang, Raymond; Flaherty, Stephen F.

    2014-01-01

    Abstract Fundamental questions remain unanswered about the longitudinal impact of blast-plus-impact complex traumatic brain injuries (TBI) from wars in Iraq and Afghanistan. This prospective, observational study investigated measures of clinical outcome in US military personnel evacuated to Landstuhl Regional Medical Center (LRMC) in Germany after such “blast-plus” concussive TBIs. Glasgow Outcome Scale-Extended assessments completed 6–12 months after injury indicated a moderate overall disability in 41/47 (87%) blast-plus TBI subjects and a substantial but smaller number (11/18, 61%, p=0.018) of demographically similar US military controls without TBI evacuated for other medical reasons. Cognitive function assessed with a neuropsychological test battery was not different between blast-plus TBI subjects and controls; performance of both groups was generally in the normal range. No subject was found to have focal neurological deficits. However, 29/47 (57%) of blast-plus subjects with TBI met all criteria for post-traumatic stress disorder (PTSD) versus 5/18 (28%) of controls (p=0.014). PTSD was highly associated with overall disability; 31/34 patients with PTSD versus 19/31 patients who did not meet full PTSD criteria had moderate to severe disability (p=0.0003). Symptoms of depression were also more severe in the TBI group (p=0.05), and highly correlated with PTSD severity (r=0.86, p<0.0001). Thus, in summary, high rates of PTSD and depression but not cognitive impairment or focal neurological deficits were observed 6–12 months after concussive blast-plus-impact complex TBI. Overall disability was substantially greater than typically reported in civilian non-blast concussive (“mild”) patients with TBI, even with polytrauma. The relationship between these clinical outcomes and specific blast-related aspects of brain injuries versus other combat-related factors remains unknown. PMID:24367929

  9. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus

    PubMed Central

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2018-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications. PMID:29375311

  10. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus.

    PubMed

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2017-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress-induced pathologies; in particular, to inescapable stress-induced synaptic modifications.

  11. Role of surgery in brain metastases.

    PubMed

    Laghari, Altaf Ali; Ahmed, Syed Ijlal; Shamim, Muhammad Shahzad

    2017-08-01

    Brain metastases remain the commonest type of brain tumour, being four times more common than primary brain tumours. Although surgical intervention may be recommended for one of various reasons in the management of these tumours, including but not limited to conformation of diagnosis, relief of mass effect, improvement of neurological status and prolongation of survival, the guidelines for management of brain metastases remain largely subjective and therefore controversial. Herein the authors have attempted to review some of the existing evidence on role of surgery in the management of brain metastases and have presented their selected guidelines for the readers.

  12. Cerebral arteriovenous malformation

    MedlinePlus

    AVM - cerebral; Arteriovenous hemangioma; Stroke - AVM; Hemorrhagic stroke - AVM ... The cause of cerebral AVM is unknown. An AVM occurs when arteries in the brain connect directly to nearby veins without having the ...

  13. Correspondent Functional Topography of the Human Left Inferior Parietal Lobule at Rest and Under Task Revealed Using Resting-State fMRI and Coactivation Based Parcellation.

    PubMed

    Wang, Jiaojian; Xie, Sangma; Guo, Xin; Becker, Benjamin; Fox, Peter T; Eickhoff, Simon B; Jiang, Tianzi

    2017-03-01

    The human left inferior parietal lobule (LIPL) plays a pivotal role in many cognitive functions and is an important node in the default mode network (DMN). Although many previous studies have proposed different parcellation schemes for the LIPL, the detailed functional organization of the LIPL and the exact correspondence between the DMN and LIPL subregions remain unclear. Mounting evidence indicates that spontaneous fluctuations in the brain are strongly associated with cognitive performance at the behavioral level. However, whether a consistent functional topographic organization of the LIPL during rest and under task can be revealed remains unknown. Here, they used resting-state functional connectivity (RSFC) and task-related coactivation patterns separately to parcellate the LIPL and identified seven subregions. Four subregions were located in the supramarginal gyrus (SMG) and three subregions were located in the angular gyrus (AG). The subregion-specific networks and functional characterization revealed that the four anterior subregions were found to be primarily involved in sensorimotor processing, movement imagination and inhibitory control, audition perception and speech processing, and social cognition, whereas the three posterior subregions were mainly involved in episodic memory, semantic processing, and spatial cognition. The results revealed a detailed functional organization of the LIPL and suggested that the LIPL is a functionally heterogeneous area. In addition, the present study demonstrated that the functional architecture of the LIPL during rest corresponds with that found in task processing. Hum Brain Mapp 38:1659-1675, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Safety and efficacy of endovascular therapy and gamma knife surgery for brain arteriovenous malformations in China: Study protocol for an observational clinical trial.

    PubMed

    Jin, Hengwei; Huo, Xiaochuan; Jiang, Yuhua; Li, Xiaolong; Li, Youxiang

    2017-09-01

    Brain arteriovenous malformations (BAVMs) are associated with high morbidity and mortality. The treatment of BAVM remains controversial. Microinvasive treatment, including endovascular therapy and gamma knife surgery, has been the first choice in many conditions. However, the overall clinical outcome of microinvasive treatment remains unknown and a prospective trial is needed. This is a prospective, non-randomized, and multicenter observational registry clinical trial to evaluate the safety and efficacy of microinvasive treatment for BAVMs. The study will require up to 400 patients in approximately 12 or more centers in China, followed for 2 years. Main subjects of this study are BAVM patients underwent endovascular therapy and/or gamma knife surgery. The trial will not affect the choice of treatment modality. The primary outcomes are perioperative complications (safety), and postoperative hemorrhage incidence rate and complete occlusion rate (efficacy). Secondary outcomes are elimination of hemorrhage risk factors (coexisting aneurysms and arteriovenous fistula), volume reduction and remission of symptoms. Safety and efficacy of endovascular therapy, gamma knife surgery, and various combination modes of the two modalities will be compared. Operative complications and outcomes at pretreatment, post-treatment, at discharge and at 3 months, 6 months and 2 years follow-up intervals will be analyzed using the modified Rankin Scale (mRS). The most confusion on BAVM treatment is whether to choose interventional therapy or medical therapy, and the choice of interventional therapy modes. This study will provide evidence for evaluating the safety and efficacy of microinvasive treatment in China, to characterize the microinvasive treatment strategy for BAVMs.

  15. Pathophysiology of cerebral oedema in acute liver failure

    PubMed Central

    Scott, Teresa R; Kronsten, Victoria T; Hughes, Robin D; Shawcross, Debbie L

    2013-01-01

    Cerebral oedema is a devastating consequence of acute liver failure (ALF) and may be associated with the development of intracranial hypertension and death. In ALF, some patients may develop cerebral oedema and increased intracranial pressure but progression to life-threatening intracranial hypertension is less frequent than previously described, complicating less than one third of cases who have proceeded to coma since the advent of improved clinical care. The rapid onset of encephalopathy may be dramatic with the development of asterixis, delirium, seizures and coma. Cytotoxic and vasogenic oedema mechanisms have been implicated with a preponderance of experimental data favouring a cytotoxic mechanism. Astrocyte swelling is the most consistent neuropathological finding in humans with ALF and ammonia plays a definitive role in the development of cytotoxic brain oedema. The mechanism(s) by which ammonia induces astrocyte swelling remains unclear but glutamine accumulation within astrocytes has led to the osmolyte hypothesis. Current evidence also supports an alternate ‘Trojan horse’ hypothesis, with glutamine as a carrier of ammonia into mitochondria, where its accumulation results in oxidative stress, energy failure and ultimately astrocyte swelling. Although a complete breakdown of the blood-brain barrier is not evident in human ALF, increased permeation to water and other small molecules such as ammonia has been demonstrated resulting from subtle alterations in the protein composition of paracellular tight junctions. At present, there is no fully efficacious therapy for cerebral oedema other than liver transplantation and this reflects our incomplete knowledge of the precise mechanisms underlying this process which remain largely unknown. PMID:24409052

  16. Prevalence and Correlates of Rest Tremor in Essential Tremor: Cross-Sectional Survey of 831 Patients Across Four Distinct Cohorts

    PubMed Central

    Louis, Elan D.; Hernandez, Nora; Michalec, Monika

    2015-01-01

    Background Essential tremor (ET) is among the most commonly encountered neurological disorders. Its hallmark feature is kinetic tremor. However, other tremors may also occur in ET patients, creating considerable diagnostic confusion among treating physicians. Hence, characterizing the prevalence and clinical accompaniments of these other tremors is of value. Surprisingly, there are few data on the prevalence of rest tremor in ET patients, and even fewer data on the clinical correlates of such tremor. Methods 831 patients in four distinct settings (population, genetics study, study of environmental epidemiology, brain bank) underwent a detailed videotaped neurological examination that was reviewed by a senior movement disorders neurologist. Rest tremor was evaluated in several positions (seated, standing, lying down). Results The prevalence of rest tremor while seated or standing was lowest in the population-based setting (1.9%), highest in the brain bank study (46.4%), and intermediate in the remaining two settings (9.6% and 14.7%, respectively). Rest tremor was restricted to the arms and was not observed in the legs. Rest tremor was associated with older age, longer disease duration (in some studies), greater tremor severity and, to some extent, the presence of cranial tremors. Conclusions Rest tremor can be a common clinical feature of ET. Its prevalence is highly dependent on the setting in which patients are evaluated, ranging from as low as 1% to nearly 50%. Rest tremor seems to emerge as a clinical feature with advancing disease. The anatomical substrates for this type of tremor remain unknown at present. PMID:25786561

  17. Brain shape convergence in the adaptive radiation of New World monkeys

    PubMed Central

    Aristide, Leandro; dos Reis, Sergio Furtado; Machado, Alessandra C.; Lima, Inaya; Lopes, Ricardo T.; Perez, S. Ivan

    2016-01-01

    Primates constitute one of the most diverse mammalian clades, and a notable feature of their diversification is the evolution of brain morphology. However, the evolutionary processes and ecological factors behind these changes are largely unknown. In this work, we investigate brain shape diversification of New World monkeys during their adaptive radiation in relation to different ecological dimensions. Our results reveal that brain diversification in this clade can be explained by invoking a model of adaptive peak shifts to unique and shared optima, defined by a multidimensional ecological niche hypothesis. Particularly, we show that the evolution of convergent brain phenotypes may be related to ecological factors associated with group size (e.g., social complexity). Together, our results highlight the complexity of brain evolution and the ecological significance of brain shape changes during the evolutionary diversification of a primate clade. PMID:26858427

  18. How Cryptococcus interacts with the blood-brain barrier.

    PubMed

    Tseng, Hsiang-Kuang; Huang, Tseng-Yu; Wu, Alice Ying-Jung; Chen, Hsin-Hong; Liu, Chang-Pan; Jong, Ambrose

    2015-01-01

    Cryptococcus demonstrates predilection for invasion of the brain, but the mechanism by which Cryptococcus crosses the blood-brain barrier (BBB) to cause brain invasion is largely unknown. In order for Cryptococcus to cross the BBB, there must be a way to either cross human brain microvascular endothelial cells, which are the main constitute of the BBB, or go in between tight junctions. Recent evidence of human brain microvascular endothelial cell responses to transcellular brain invasions includes membrane rearrangements, intracellular signaling pathways and cytoskeletal activations. Several Cryptococcal genes related to the traversal of BBB have been identified, including CPS1, ITR1a, ITR3c, PLB1, MPR1, FNX1 and RUB1. In addition, Cryptococcus neoformans-derived microvesicles may contribute to cryptococcal brain invasion. Paracellularly, Cryptococcus may traverse across BBB using either routes utilizing plasmin, ammonia or macrophages in a Trojan horse mechanism.

  19. Serpins Promote Cancer Cell Survival and Vascular Cooption in Brain Metastasis

    PubMed Central

    Valiente, Manuel; Obenauf, Anna C.; Jin, Xin; Chen, Qing; Zhang, Xiang H.-F.; Lee, Derek J.; Chaft, Jamie E.; Kris, Mark G.; Huse, Jason T.; Brogi, Edi; Massagué, Joan

    2014-01-01

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM that metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its deleterious consequences. By protecting cancer cells from death signals and fostering vascular cooption, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. PMID:24581498

  20. The Neural Basis of Maternal Bonding

    PubMed Central

    Wan, Ming Wai; Downey, Darragh; Strachan, Hilary; Elliott, Rebecca; Williams, Steve R.; Abel, Kathryn M.

    2014-01-01

    Background Accumulating evidence suggests that mothers show a different pattern of brain responses when viewing their own compared to other infants. However, there is inconsistency across functional imaging studies regarding the key areas involved, and none have examined relationships between brain and behavioural responses to infants. We examined the brain regions activated when mothers viewed videos of their own infant contrasted with an unknown infant, and whether these are associated with behavioural and self-reported measures of mother-infant relations. Method Twenty right-handed mothers viewed alternating 30-sec blocks of video of own 4–9 month infant and an unfamiliar matched infant, interspersed with neutral video. Whole brain functional magnetic resonance images (fMRI) were acquired on a 1.5T Philips Intera scanner using a TR of 2.55 s. Videotaped mother-infant interactions were systematically evaluated blind to family information to generate behavioural measures for correlational analysis. Results Enhanced blood oxygenation functional imaging responses were found in the own versus unknown infant contrast in the bilateral precuneus, right superior temporal gyrus, right medial and left middle frontal gyri and left amygdala. Positive mother-infant interaction (less directive parent behaviour; more positive/attentive infant behaviour) was significantly associated with greater activation in several regions on viewing own versus unknown infant, particularly the middle frontal gyrus. Mothers' perceived warmth of her infant was correlated with activations in the same contrast, particularly in sensory and visual areas. Conclusion This study partially replicates previous reports of the brain regions activated in mothers in response to the visual presentation of their own infant. It is the first to report associations between mothers' unique neural responses to viewing their own infant with the quality of her concurrent behaviour when interacting with her infant and with her perceptions of infant warmth. These findings provide support for developing fMRI as a potential biomarker of parenting risk and change. PMID:24594508

  1. Neural signature of behavioural inhibition in women with bulimia nervosa.

    PubMed

    Skunde, Mandy; Walther, Stephan; Simon, Joe J; Wu, Mudan; Bendszus, Martin; Herzog, Wolfgang; Friederich, Hans-Christoph

    2016-08-01

    Impaired inhibitory control is considered a behavioural phenotype in patients with bulimia nervosa. However, the underlying neural correlates of impaired general and food-specific behavioural inhibition are largely unknown. Therefore, we investigated brain activation during the performance of behavioural inhibition to general and food-related stimuli in adults with bulimia nervosa. Women with bulimia and healthy control women underwent event-related fMRI while performing a general and a food-specific no-go task. We included 28 women with bulimia nervosa and 29 healthy control women in our study. On a neuronal level, we observed significant group differences in response to general no-go stimuli in women with bulimia nervosa with high symptom severity; compared with healthy controls, the patients showed reduced activation in the right sensorimotor area (postcentral gyrus, precentral gyrus) and right dorsal striatum (caudate nucleus, putamen). The present results are limited to adult women with bulimia nervosa. Furthermore, it remains unclear whether impaired behavioural inhibition in patients with this disorder are a cause or consequence of chronic illness. Our findings suggest that diminished frontostriatal brain activation in patients with bulimia nervosa contribute to the severity of binge eating symptoms. Gaining further insight into the neural mechanisms of behavioural inhibition problems in individuals with this disorder may inform brain-directed treatment approaches and the development of response inhibition training approaches to improve inhibitory control in patients with bulimia nervosa. The present study does not support greater behavioural and neural impairments to food-specific behavioural inhibition in these patients.

  2. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila.

    PubMed

    Hong, Sung-Tae; Bang, Sunhoe; Hyun, Seogang; Kang, Jongkyun; Jeong, Kyunghwa; Paik, Donggi; Chung, Jongkyeong; Kim, Jaeseob

    2008-08-07

    Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.

  3. Combined effects of marijuana and nicotine on memory performance and hippocampal volume.

    PubMed

    Filbey, Francesca M; McQueeny, Tim; Kadamangudi, Shrinath; Bice, Collette; Ketcherside, Ariel

    2015-10-15

    Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Social information changes stress hormone receptor expression in the songbird brain.

    PubMed

    Cornelius, Jamie M; Perreau, Gillian; Bishop, Valerie R; Krause, Jesse S; Smith, Rachael; Hahn, Thomas P; Meddle, Simone L

    2018-01-01

    Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Maternal vitamin C deficiency does not reduce hippocampal volume and β-tubulin III intensity in prenatal Guinea pigs.

    PubMed

    Hansen, Stine N; Schjoldager, Janne G; Paidi, Maya D; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2016-07-01

    Marginal vitamin C (vitC) deficiency affects 5% to 10% of adults including subpopulations such as pregnant women and newborns. Animal studies link vitC deficiency to deleterious effects on the developing brain, but exactly how the brain adapts to vitC deficiency and the mechanisms behind the observed deficits remain largely unknown. We hypothesized that vitC deficiency in utero may lead to a decreased neuronal maturation and increased cellular death giving rise to alterations of the hippocampal morphology in a guinea pig model. Brains from prenatal guinea pig pups (n=9-10 in each group) subjected to either a sufficient (918mg vitC/kg feed) or deficient (100mg vitC/kg feed) maternal dietary regimen were assessed with regards to hippocampal volume and β-tubulin isotype III staining intensity at 2 gestational time points (45 and 56). We found a distinct differential regional growth pattern of the hippocampus with a clear effect of gestational age, whereas vitC status did not affect either investigated parameters. Within hippocampal subdivisions, the overall expansion of the hippocampus from gestational day 45 to 56 was found to reside in the dentate gyrus. In conclusion, the present study found that hippocampal volume and β-tubulin isotype III intensity in the prenatal guinea pig were influenced by gestational day but not by maternal vitC intake. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Distinct Brain Mechanisms Support Spatial vs. Temporal Filtering of Nociceptive Information

    PubMed Central

    Nahman-Averbuch, H.; Martucci, K.T.; Granovsky, Y.; Weissman-Fogel, I.; Yarnitsky, D.; Coghill, R. C.

    2014-01-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional MRI during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula and SII. OA produced reduced activity in SI, but was associated with greater activation in the anterior insula, dorso-lateral prefrontal cortex, intra-parietal sulcus, and inferior parietal lobule relative to CPM. In the brainstem, CPM consistently produced reductions in activity while OA produced increases in activity. Conjunction analysis confirmed that CPM related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs. temporal filtering of nociceptive information. PMID:25047783

  7. You can't stop the music: reduced auditory alpha power and coupling between auditory and memory regions facilitate the illusory perception of music during noise.

    PubMed

    Müller, Nadia; Keil, Julian; Obleser, Jonas; Schulz, Hannah; Grunwald, Thomas; Bernays, René-Ludwig; Huppertz, Hans-Jürgen; Weisz, Nathan

    2013-10-01

    Our brain has the capacity of providing an experience of hearing even in the absence of auditory stimulation. This can be seen as illusory conscious perception. While increasing evidence postulates that conscious perception requires specific brain states that systematically relate to specific patterns of oscillatory activity, the relationship between auditory illusions and oscillatory activity remains mostly unexplained. To investigate this we recorded brain activity with magnetoencephalography and collected intracranial data from epilepsy patients while participants listened to familiar as well as unknown music that was partly replaced by sections of pink noise. We hypothesized that participants have a stronger experience of hearing music throughout noise when the noise sections are embedded in familiar compared to unfamiliar music. This was supported by the behavioral results showing that participants rated the perception of music during noise as stronger when noise was presented in a familiar context. Time-frequency data show that the illusory perception of music is associated with a decrease in auditory alpha power pointing to increased auditory cortex excitability. Furthermore, the right auditory cortex is concurrently synchronized with the medial temporal lobe, putatively mediating memory aspects associated with the music illusion. We thus assume that neuronal activity in the highly excitable auditory cortex is shaped through extensive communication between the auditory cortex and the medial temporal lobe, thereby generating the illusion of hearing music during noise. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs

    PubMed Central

    Muguruza, Carolina; Meana, J. Javier; Callado, Luis F.

    2016-01-01

    Schizophrenia is a chronic psychiatric disorder which substantially impairs patients’ quality of life. Despite the extensive research in this field, the pathophysiology and etiology of schizophrenia remain unknown. Different neurotransmitter systems and functional networks have been found to be affected in the brain of patients with schizophrenia. In this context, postmortem brain studies as well as genetic assays have suggested alterations in Group II metabotropic glutamate receptors (mGluRs) in schizophrenia. Despite many years of drug research, several needs in the treatment of schizophrenia have not been addressed sufficiently. In fact, only 5–10% of patients with schizophrenia successfully achieve a full recovery after treatment. In recent years mGluRs have turned up as novel targets for the design of new antipsychotic medications for schizophrenia. Concretely, Group II mGluRs are of particular interest due to their regulatory role in neurotransmission modulating glutamatergic activity in brain synapses. Preclinical studies have demonstrated that orthosteric Group II mGluR agonists exhibit antipsychotic-like properties in animal models of schizophrenia. However, when these compounds have been tested in human clinical studies with schizophrenic patients results have been inconclusive. Nevertheless, it has been recently suggested that this apparent lack of efficacy in schizophrenic patients may be related to previous exposure to atypical antipsychotics. Moreover, the role of the functional heterocomplex formed by 5-HT2A and mGlu2 receptors in the clinical response to Group II mGluR agonists is currently under study. PMID:27242534

  9. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K +, Cl -, and Ca + distributions unreliable. In the present study, we directly examined themore » distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl - and Fe while K + levels increase further from the ventricle as Cl - levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl - surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. Furthermore, this study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.« less

  10. Variation in PPP3CC Genotype Is Associated with Long-Term Recovery after Severe Brain Injury.

    PubMed

    Osier, Nicole D; Bales, James W; Pugh, Bunny; Shin, Samuel; Wyrobek, Julie; Puccio, Ava M; Okonkwo, David O; Ren, Dianxu; Alexander, Sheila; Conley, Yvette P; Dixon, C Edward

    2017-01-01

    After experimental traumatic brain injury (TBI), calcineurin is upregulated; blocking calcineurin is associated with improved outcomes. In humans, variation in the calcineurin A-gamma gene (PPP3CC) has been associated with neuropsychiatric disorders, though any role in TBI recovery remains unknown. This study examines associations between PPP3CC genotype and mortality, as well as gross functional status assessed at admission using the Glasgow Coma Scale (GCS) and at 3, 6, and 12 months after severe TBI using the Glasgow Outcome Score (GOS). The following tagging single nucleotide polymorphisms (tSNPs) in PPP3CC were genotyped: rs2443504, rs2461491, rs2469749, and rs10108011. The rs2443504 AA genotype was univariately associated with GCS (p = 0.022), GOS at 3, 6, and 12 months (p = 0.002, p = 0.034, and p = 0.004, respectively), and mortality (p = 0.007). In multivariate analysis controlling for age, sex, and GCS, the AA genotype of rs2443504 was associated with GOS at 3 (p = 0.02), and 12 months (p = 0.01), with a trend toward significance at 6 months (p = 0.05); the AA genotype also was associated with mortality in the multivariate model (p = 0.04). Further work is warranted to better understand the role of calcineurin, as well as the genes encoding it and their relevance to outcomes after brain injury.

  11. Neurological Effects of Blast Injury

    PubMed Central

    Hicks, Ramona R.; Fertig, Stephanie J.; Desrocher, Rebecca E.; Koroshetz, Walter J.; Pancrazio, Joseph J.

    2010-01-01

    Over the last few years, thousands of soldiers and an even greater number of civilians have suffered traumatic injuries due to blast exposure, largely attributed to improvised explosive devices in terrorist and insurgent activities. The use of body armor is allowing soldiers to survive blasts that would otherwise be fatal due to systemic damage. Emerging evidence suggests that exposure to a blast can produce neurological consequences in the brain, but much remains unknown. To elucidate the current scientific basis for understanding blast-induced traumatic brain injury (bTBI), the NIH convened a workshop in April, 2008. A multidisciplinary group of neuroscientists, engineers, and clinicians were invited to share insights on bTBI, specifically pertaining to: physics of blast explosions, acute clinical observations and treatments, preclinical and computational models, and lessons from the international community on civilian exposures. This report provides an overview of the state of scientific knowledge of bTBI, drawing from the published literature, as well as presentations, discussions, and recommendations from the workshop. One of the major recommendations from the workshop was the need to characterize the effects of blast exposure on clinical neuropathology. Clearer understanding of the human neuropathology would enable validation of preclinical and computational models, which are attempting to simulate blast wave interactions with the central nervous system. Furthermore, the civilian experience with bTBI suggests that polytrauma models incorporating both brain and lung injuries may be more relevant to the study of civilian countermeasures than considering models with a neurological focus alone. PMID:20453776

  12. Loss of Vitamin D Receptor Produces Polyuria by Increasing Thirst

    PubMed Central

    Kong, Juan; Zhang, Zhongyi; Li, Dongdong; Wong, Kari E.; Zhang, Yan; Szeto, Frances L.; Musch, Mark W.; Li, Yan Chun

    2008-01-01

    Vitamin D receptor (VDR)-null mice develop polyuria, but the underlying mechanism remains unknown. In this study, we investigated the relationship between vitamin D and homeostasis of water and electrolytes. VDR-null mice had polyuria, but the urine osmolarity was normal as a result of high salt excretion. The urinary responses to water restriction and to vasopressin were similar between wild-type and VDR-null mice, suggesting intact fluid-handling capacity in VDR-null mice. Compared with wild-type mice, however, renin and angiotensin II were dramatically upregulated in the kidney and brain of VDR-null mice, leading to a marked increase in water intake and salt appetite. Angiotensin II–mediated upregulation of intestinal NHE3 expression partially explained the increased salt absorption and excretion in VDR-null mice. In the brain of VDR-null mice, expression of c-Fos, which is known to associate with increased water intake, was increased in the hypothalamic paraventricular nucleus and the subfornical organ. Treatment with an angiotensin II type 1 receptor antagonist normalized water intake, urinary volume, and c-Fos expression in VDR-null mice. Furthermore, despite a salt-deficient diet to reduce intestinal salt absorption, VDR-null mice still maintained the increased water intake and urinary output. Together, these data indicate that the polyuria observed in VDR-null mice is not caused by impaired renal fluid handling or increased intestinal salt absorption but rather is the result of increased water intake induced by the increase in systemic and brain angiotensin II. PMID:18832438

  13. Loss of vitamin D receptor produces polyuria by increasing thirst.

    PubMed

    Kong, Juan; Zhang, Zhongyi; Li, Dongdong; Wong, Kari E; Zhang, Yan; Szeto, Frances L; Musch, Mark W; Li, Yan Chun

    2008-12-01

    Vitamin D receptor (VDR)-null mice develop polyuria, but the underlying mechanism remains unknown. In this study, we investigated the relationship between vitamin D and homeostasis of water and electrolytes. VDR-null mice had polyuria, but the urine osmolarity was normal as a result of high salt excretion. The urinary responses to water restriction and to vasopressin were similar between wild-type and VDR-null mice, suggesting intact fluid-handling capacity in VDR-null mice. Compared with wild-type mice, however, renin and angiotensin II were dramatically upregulated in the kidney and brain of VDR-null mice, leading to a marked increase in water intake and salt appetite. Angiotensin II-mediated upregulation of intestinal NHE3 expression partially explained the increased salt absorption and excretion in VDR-null mice. In the brain of VDR-null mice, expression of c-Fos, which is known to associate with increased water intake, was increased in the hypothalamic paraventricular nucleus and the subfornical organ. Treatment with an angiotensin II type 1 receptor antagonist normalized water intake, urinary volume, and c-Fos expression in VDR-null mice. Furthermore, despite a salt-deficient diet to reduce intestinal salt absorption, VDR-null mice still maintained the increased water intake and urinary output. Together, these data indicate that the polyuria observed in VDR-null mice is not caused by impaired renal fluid handling or increased intestinal salt absorption but rather is the result of increased water intake induced by the increase in systemic and brain angiotensin II.

  14. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    PubMed Central

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael; Howard, Daryl L.; Howland, John G.; Hackett, Mark J.

    2016-01-01

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl−, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl− and Fe while K+ levels increase further from the ventricle as Cl− levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl− surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models. PMID:27351594

  15. Physical biology of human brain development.

    PubMed

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  16. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    DOE PAGES

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael; ...

    2016-06-28

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K +, Cl -, and Ca + distributions unreliable. In the present study, we directly examined themore » distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl - and Fe while K + levels increase further from the ventricle as Cl - levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl - surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. Furthermore, this study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.« less

  17. Effects of gemfibrozil on outcome after permanent middle cerebral artery occlusion in mice

    PubMed Central

    Guo, Qingmin; Wang, Guangming; Liu, Xiaowei; Namura, Shobu

    2009-01-01

    Fibrates are lipid lowering drugs and found as ligands for peroxisome proliferator-activated receptors (PPARs). A clinical study has shown that one type of fibrate gemfibrozil reduces stroke incidence in men. However, it remains unknown whether gemfibrozil improves outcome after stroke. We hypothesized that prophylactic administration of gemfibrozil improves outcome after ischemic stroke. In this study, we measured the impact of gemfibrozil in two permanent middle cerebral artery occlusion (MCAO) models in young adult male mice on normal diet. First, we tested gemfibrozil in a filamentous MCAO model. Pretreatment with gemfibrozil (30 mg/kg) for 7 days moderately but significantly reduced infarct size at 24 h after MCAO. A higher dose (120 mg/kg) did not attenuate infarct size. Rather, it tended to increase brain swelling. Second, we tested in a distal MCAO model. Gemfibrozil (30 mg/kg) for 7 days before and after stroke significantly attenuated cortical lesion size at 7 days after MCAO. Cortical blood flow measured by laser speckle imaging was improved by gemfibrozil in the ischemic hemisphere. In non-stroke animals gemfibrozil also altered gene expression levels of PPARs in both the aorta and brain in organ specific manners; however, endothelial nitric oxide synthase (eNOS) was not significantly affected. These findings suggested the possibility that the observed infarct reductions and cortical blood flow improvements in ischemic brains were not through eNOS-mediated mechanisms. Further investigations may be meritorious to examine whether prophylactic usage of gemfibrozil against stroke is beneficial. PMID:19427843

  18. Effects of gemfibrozil on outcome after permanent middle cerebral artery occlusion in mice.

    PubMed

    Guo, Qingmin; Wang, Guangming; Liu, Xiaowei; Namura, Shobu

    2009-07-07

    Fibrates are lipid lowering drugs and found as ligands for peroxisome proliferator-activated receptors (PPARs). A clinical study has shown that one type of fibrate gemfibrozil reduces stroke incidence in men. However, it remains unknown whether gemfibrozil improves outcome after stroke. We hypothesized that prophylactic administration of gemfibrozil improves outcome after ischemic stroke. In this study, we measured the impact of gemfibrozil in two permanent middle cerebral artery occlusion (MCAO) models in young adult male mice on normal diet. First, we tested gemfibrozil in a filamentous MCAO model. Pretreatment with gemfibrozil (30 mg/kg) for 7 days moderately but significantly reduced infarct size at 24 h after MCAO. A higher dose (120 mg/kg) did not attenuate infarct size. Rather, it tended to increase brain swelling. Second, we tested in a distal MCAO model. Gemfibrozil (30 mg/kg) for 7 days before and after stroke significantly attenuated cortical lesion size at 7 days after MCAO. Cortical blood flow measured by laser speckle imaging was improved by gemfibrozil in the ischemic hemisphere. In non-stroke animals gemfibrozil also altered gene expression levels of PPARs in both the aorta and brain in organ specific manners; however, endothelial nitric oxide synthase (eNOS) was not significantly affected. These findings suggested the possibility that the observed infarct reductions and cortical blood flow improvements in ischemic brains were not through eNOS-mediated mechanisms. Further investigations may be meritorious to examine whether prophylactic usage of gemfibrozil against stroke is beneficial.

  19. Working Memory Performance Is Correlated with Local Brain Morphology in the Medial Frontal and Anterior Cingulate Cortex in Fibromyalgia Patients: Structural Correlates of Pain-Cognition Interaction

    ERIC Educational Resources Information Center

    Luerding, R.; Weigand, T.; Bogdahn, U.; Schmidt-Wilcke, T.

    2008-01-01

    Fibromyalgia (FM) is a disorder of unknown aetiology, characterized by chronic widespread pain, stiffness and sleep disturbances. In addition, patients frequently complain of memory and attention deficits. Accumulating evidence suggests that FM is associated with CNS dysfunction and with an altered brain morphology. However, few studies have…

  20. Highly adaptive tests for group differences in brain functional connectivity.

    PubMed

    Kim, Junghi; Pan, Wei

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) and other technologies have been offering evidence and insights showing that altered brain functional networks are associated with neurological illnesses such as Alzheimer's disease. Exploring brain networks of clinical populations compared to those of controls would be a key inquiry to reveal underlying neurological processes related to such illnesses. For such a purpose, group-level inference is a necessary first step in order to establish whether there are any genuinely disrupted brain subnetworks. Such an analysis is also challenging due to the high dimensionality of the parameters in a network model and high noise levels in neuroimaging data. We are still in the early stage of method development as highlighted by Varoquaux and Craddock (2013) that "there is currently no unique solution, but a spectrum of related methods and analytical strategies" to learn and compare brain connectivity. In practice the important issue of how to choose several critical parameters in estimating a network, such as what association measure to use and what is the sparsity of the estimated network, has not been carefully addressed, largely because the answers are unknown yet. For example, even though the choice of tuning parameters in model estimation has been extensively discussed in the literature, as to be shown here, an optimal choice of a parameter for network estimation may not be optimal in the current context of hypothesis testing. Arbitrarily choosing or mis-specifying such parameters may lead to extremely low-powered tests. Here we develop highly adaptive tests to detect group differences in brain connectivity while accounting for unknown optimal choices of some tuning parameters. The proposed tests combine statistical evidence against a null hypothesis from multiple sources across a range of plausible tuning parameter values reflecting uncertainty with the unknown truth. These highly adaptive tests are not only easy to use, but also high-powered robustly across various scenarios. The usage and advantages of these novel tests are demonstrated on an Alzheimer's disease dataset and simulated data.

Top