Sample records for brain reveals glioma

  1. Spontaneous complete regression of a brain stem glioma pathologically diagnosed as a high-grade glioma.

    PubMed

    Ishihara, Masahiro; Yamamoto, Kazumi; Miwa, Hideaki; Nishi, Masaya

    2017-12-01

    Spontaneous regressions of brain stem gliomas are extremely rare. Only six cases have been reported in the literature. We describe the case of a patient who was diagnosed with a pontomedullary dorsal brain stem glioma at the age of 15 years. An open biopsy showed the presence of an anaplastic glioma. Because the patient and her parents refused conventional therapies, including radiation and chemotherapy, we followed up the patient by performing magnetic resonance imaging scans on her every 3 months. At 3 months after biopsy, we observed the radiological disappearance of her tumor. One year after biopsy, the tumor retained the spontaneous complete regression observed earlier. In this case report, we present the first report of the spontaneous complete regression of a brain stem glioma that was histologically proven to be a high-grade glioma and we believe that this regression was the natural progression of this case, as may be the scenario in a few other cases of brain stem gliomas.

  2. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells

    PubMed Central

    Li, Xue-tao; Tang, Wei; Jiang, Ying; Wang, Xiao-min; Wang, Yan-hong; Cheng, Lan; Meng, Xian-sheng

    2016-01-01

    Malignant brain glioma is the most lethal and aggressive type of cancer. Surgery and radiotherapy cannot eliminate all glioma stem cells (GSCs) and blood–brain barrier (BBB) restricts the movement of antitumor drugs from blood to brain, thus leading to the poor prognosis with high recurrence rate. In the present study, the targeting conjugates of cholesterol polyethylene glycol polyethylenimine (CHOL-PEG2000-PEI) and D-a-tocopheryl polyethylene glycol 1000 succinate vapreotide (TPGS1000-VAP) were newly synthesized for transporting drugs across the BBB and targeting glioma cells and GSCs. The multifunctional targeting vinorelbine plus tetrandrine liposomes were constructed by modifying the targeting conjugates. The studies were undertaken on BBB model, glioma cells, GSCs, and glioma-bearing mice. In vitro results showed that multifunctional targeting drugs-loaded liposomes with suitable physicochemical property could enhance the transport drugs across the BBB, increase the intracellular uptake, inhibit glioma cells and GSCs, penetrate and destruct the GSCs spheroids, and induce apoptosis via activating related apoptotic proteins. In vivo results demonstrated that multifunctional targeting drugs-loaded liposomes could significantly accumulate into brain tumor location, show the specificity to tumor sites, and result in a robust overall antitumor efficacy in glioma-bearing mice. These data suggested that the multifunctional targeting vinorelbine plus tetrandrine liposomes could offer a promising strategy for treating brain glioma. PMID:27029055

  3. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixedmore » in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.« less

  4. IDH1 Mutation in Brain Stem Glioma: Case Report and Review of Literature.

    PubMed

    Javadi, Seyed Amirhossein; Hartmann, Christian; Walter, Gerhard Franz; Banan, Roozbeh; Samii, Amir

    2018-01-01

    The role of isocitrate dehydrogenase 1 (IDH1) mutation in brain stem glioma is not clear. To the best of our knowledge, six cases of brain stem gliomas carrying IDH1/2 mutations are currently reported in the literature. One case of diffuse brain stem glioma with IDH1 mutation, which was followed for 2 years, is presented and compared with IDH1 negative tumors. A 22-year-old lady was referred with diplopia and left arm palsy. Neuroimaging detected a nonenhancing, nonhomogeneous diffuse infiltrating brain stem tumor extending from pons to medulla. Microsurgical debulking was performed. Microscopic evaluation of the tissue specimen and immunohistochemistry revealed an astrocytoma WHO Grade II with proliferation rate of 3% and glial fibrillary acidic protein (GFAP)-positive tumor cells. Interestingly, the tumor cells expressed mutated IDH1 R132H protein. The patient underwent adjuvant radiation and chemotherapy. The primary and 2 years' clinical/radiological characteristics did not indicate any significant difference from other cases without IDH1 mutation. the prognostic value of IDH1/2 mutation in brain stem glioma is unclear. Brain stem biopsies may allow determination of a tissue-based tumor diagnosis for further investigations.

  5. [Antitumor effect of baicalin on rat brain glioma].

    PubMed

    Hu, Yong-zhen; Wang, Dian-hong; Luan, Yu; Gong, Hai-dong

    2013-01-01

    To investigate the therapeutic mechanism of baicalin on rat brain glioma. Deep brain glioma models were established by injection of glioma cell line C6 cells into the brain of Wistar rats. The rats at 7 days after modeling were randomly divided into tumor control group (0.9% NaCl solution 30 mg×kg(-1)×d(-1) gavage)and experimental groups. The experimental rats was divided into 3 groups: low dose group (50 mg×kg(-1)×d(-1)), middle dose group (100 mg×kg(-1)×d(-1)) and high dose group (200 mg×kg(-1)×d(-1)), given the baicalin by gavage. Pathological and electron microscopic changes were observed. The expressions of p53 and Bcl-2 were determined by immunohistochemistry, and the changes of MRI, the average survival time and body weight of the rats in each group after treatments were analyzed. Compared with the control group, the tumor diameter and volume of high dose group rats before sacrifice were significantly reduced (P < 0.01), and the survival time was significantly prolonged (P < 0.01). Immunohistochemistry revealed strong positive expression rate of mutant p53 (84.47 ± 3.74)% and moderately positive rate (47.28 ± 2.38)% in the control group, significantly higher than that in the negative group (12.91 ± 1.07)% (P < 0.01). The positive rate of mutant p53 of the high dose group was (46.42 ± 2.19)%, significantly lower than that of the control group (84.47 ± 3.74)% (P < 0.01). The expression rate of Bcl-2 in the control group was strongly positive (86.51 ± 4.17)% and moderate positive (48.19 ± 2.11)%, significantly higher than that of the negative group (10.36 ± 1.43)% (P < 0.01). Electron microscopy revealed that baicalin caused damages of the cell nuclei and organelles in the gliomas. Baicalin has significant inhibitory effect on glioma in vivo, and its mechanism may be related to cell apoptosis induced by down-regulated expression of mutant p53, but not related with Bcl-2 expression.

  6. Childhood Brain Stem Glioma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Childhood brain stem glioma presents as a diffuse intrinsic pontine glioma (DIPG; a fast-growing tumor that is difficult to treat and has a poor prognosis) or a focal glioma (grows more slowly, is easier to treat, and has a better prognosis). Learn about the diagnosis, cellular classification, staging, treatment, and clinical trials for pediatric brain stem glioma in this expert-reviewed summary.

  7. Childhood Brain Stem Glioma Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood brain stem glioma treatment options can include surgery, radiation therapy, chemotherapy, cerebral spinal fluid diversion, observation, and targeted therapy. Learn more about newly diagnosed and recurrent childhood brain stem glioma in this expert-reviewed summary.

  8. Resonant Raman spectra of grades of human brain glioma tumors reveal the content of tryptophan by the 1588 cm-1 mode

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; Zhu, Ke; Liu, Yulong; Zhang, Lin; Boydston-White, Susie; Cheng, Gangge; Pu, Yang; Bidyut, Das; Alfano, Robert R.

    2015-03-01

    RR spectra of brain normal tissue, gliomas in low grade I and II, and malignant glioma tumors in grade III and IV were measured using a confocal micro Raman spectrometer. This report focus on the relative contents of tryptophan (W) in various grades of brain glioma tumors by the intrinsic molecular resonance Raman (RR) spectroscopy method using the 1588cm-1 of tryptophan mode by 532 nm excitation. The RR spectra of key fingerprints of tryptophan, with a main vibrational mode at 1588cm-1 (W8b), were observed. It was found that tryptophan contribution was accumulated in grade I to IV gliomas and the mode of 1588cm-1 in grade III and IV malignant gliomas were enhanced by resonance.

  9. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  10. Circular RNA profile in gliomas revealed by identification tool UROBORUS.

    PubMed

    Song, Xiaofeng; Zhang, Naibo; Han, Ping; Moon, Byoung-San; Lai, Rose K; Wang, Kai; Lu, Wange

    2016-05-19

    Recent evidence suggests that many endogenous circular RNAs (circRNAs) may play roles in biological processes. However, the expression patterns and functions of circRNAs in human diseases are not well understood. Computationally identifying circRNAs from total RNA-seq data is a primary step in studying their expression pattern and biological roles. In this work, we have developed a computational pipeline named UROBORUS to detect circRNAs in total RNA-seq data. By applying UROBORUS to RNA-seq data from 46 gliomas and normal brain samples, we detected thousands of circRNAs supported by at least two read counts, followed by successful experimental validation on 24 circRNAs from the randomly selected 27 circRNAs. UROBORUS is an efficient tool that can detect circRNAs with low expression levels in total RNA-seq without RNase R treatment. The circRNAs expression profiling revealed more than 476 circular RNAs differentially expressed in control brain tissues and gliomas. Together with parental gene expression, we found that circRNA and its parental gene have diversified expression patterns in gliomas and control brain tissues. This study establishes an efficient and sensitive approach for predicting circRNAs using total RNA-seq data. The UROBORUS pipeline can be accessed freely for non-commercial purposes at http://uroborus.openbioinformatics.org/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Ectopic High Expression of E2-EPF Ubiquitin Carrier Protein Indicates a More Unfavorable Prognosis in Brain Glioma.

    PubMed

    Zhang, Xiaohui; Zhao, Fangbo; Zhang, Shujun; Song, Yichun

    2017-04-01

    Ubiquitination of proteins meant for elimination is a primary method of eukaryotic cellular protein degradation. The ubiquitin carrier protein E2-EPF is a key degradation enzyme that is highly expressed in many tumors. However, its expression and prognostic significance in brain glioma are still unclear. The aim of this study was to reveal how the level of E2-EPF relates to prognosis in brain glioma. Thirty low-grade and 30 high-grade brain glioma samples were divided into two tissue microarrays each. Levels of E2-EPF protein were examined by immunohistochemistry and immunofluorescence. Quantitative real-time polymerase chain reaction was used to analyze the level of E2-EPF in 60 glioma and 3 normal brain tissue samples. The relationship between E2-EPF levels and prognosis was analyzed by Kaplan-Meier survival curves. E2-EPF levels were low in normal brain tissue samples but high in glioma nuclei. E2-EPF levels gradually increased as glioma grade increased (p < 0.05). Ectopic E2-EPF levels in high-grade glioma were significantly higher than in low-grade glioma (p < 0.01). The 5-year survival rate of glioma patients with high E2-EPF levels was shorter than in patients with low expression (p < 0.05). Furthermore, the 5-year survival rate of patients with ectopic E2-EPF was significantly shorter than patients with only nuclear E2-EPF (p < 0.01). These results suggest that higher E2-EPF levels, especially ectopic, are associated with higher grade glioma and shorter survival. E2-EPF levels may play a key role in predicting the prognosis for patients with brain glioma.

  12. Known glioma risk loci are associated with glioma with a family history of brain tumours -- a case-control gene association study.

    PubMed

    Melin, Beatrice; Dahlin, Anna M; Andersson, Ulrika; Wang, Zhaoming; Henriksson, Roger; Hallmans, Göran; Bondy, Melissa L; Johansen, Christoffer; Feychting, Maria; Ahlbom, Anders; Kitahara, Cari M; Wang, Sophia S; Ruder, Avima M; Carreón, Tania; Butler, Mary Ann; Inskip, Peter D; Purdue, Mark; Hsing, Ann W; Mechanic, Leah; Gillanders, Elizabeth; Yeager, Meredith; Linet, Martha; Chanock, Stephen J; Hartge, Patricia; Rajaraman, Preetha

    2013-05-15

    Familial cancer can be used to leverage genetic association studies. Recent genome-wide association studies have reported independent associations between seven single nucleotide polymorphisms (SNPs) and risk of glioma. The aim of this study was to investigate whether glioma cases with a positive family history of brain tumours, defined as having at least one first- or second-degree relative with a history of brain tumour, are associated with known glioma risk loci. One thousand four hundred and thirty-one glioma cases and 2,868 cancer-free controls were identified from four case-control studies and two prospective cohorts from USA, Sweden and Denmark and genotyped for seven SNPs previously reported to be associated with glioma risk in case-control designed studies. Odds ratios were calculated by unconditional logistic regression. In analyses including glioma cases with a family history of brain tumours (n = 104) and control subjects free of glioma at baseline, three of seven SNPs were associated with glioma risk: rs2736100 (5p15.33, TERT), rs4977756 (9p21.3, CDKN2A-CDKN2B) and rs6010620 (20q13.33, RTEL1). After Bonferroni correction for multiple comparisons, only one marker was statistically significantly associated with glioma risk, rs6010620 (ORtrend for the minor (A) allele, 0.39; 95% CI: 0.25-0.61; Bonferroni adjusted ptrend , 1.7 × 10(-4) ). In conclusion, as previously shown for glioma regardless of family history of brain tumours, rs6010620 (RTEL1) was associated with an increased risk of glioma when restricting to cases with family history of brain tumours. These findings require confirmation in further studies with a larger number of glioma cases with a family history of brain tumours. Copyright © 2012 UICC.

  13. Family History of Cancer in Benign Brain Tumor Subtypes Versus Gliomas

    PubMed Central

    Ostrom, Quinn T.; McCulloh, Christopher; Chen, Yanwen; Devine, Karen; Wolinsky, Yingli; Davitkov, Perica; Robbins, Sarah; Cherukuri, Rajesh; Patel, Ashokkumar; Gupta, Rajnish; Cohen, Mark; Barrios, Jaime Vengoechea; Brewer, Cathy; Schilero, Cathy; Smolenski, Kathy; McGraw, Mary; Denk, Barbara; Naska, Theresa; Laube, Frances; Steele, Ruth; Greene, Dale; Kastl, Alison; Bell, Susan; Aziz, Dina; Chiocca, E. A.; McPherson, Christopher; Warnick, Ronald; Barnett, Gene H.; Sloan, Andrew E.; Barnholtz-Sloan, Jill S.

    2012-01-01

    Purpose: Family history is associated with gliomas, but this association has not been established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%), 78 meningioma (65%), 49 pituitary adenoma (73.1%), and 152 glioma patients (58.2%). The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs) and 95% confidence intervals. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusion: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases. PMID:22649779

  14. Destruction of vasculogenic mimicry channels by targeting epirubicin plus celecoxib liposomes in treatment of brain glioma

    PubMed Central

    Ju, Rui-Jun; Zeng, Fan; Liu, Lei; Mu, Li-Min; Xie, Hong-Jun; Zhao, Yao; Yan, Yan; Wu, Jia-Shuan; Hu, Ying-Jie; Lu, Wan-Liang

    2016-01-01

    The efficacy of chemotherapy for brain glioma is restricted by the blood–brain barrier (BBB), and surgery or radiotherapy cannot eliminate the glioma cells because of their unique location. Residual brain glioma cells can form vasculogenic mimicry (VM) channels that can cause a recurrence of brain glioma. In the present study, targeting liposomes incorporating epirubicin and celecoxib were prepared and used for the treatment of brain glioma, along with the destruction of their VM channels. Evaluations were performed on the human brain glioma U87MG cells in vitro and on intracranial brain glioma-bearing nude mice. Targeting epirubicin plus celecoxib liposomes in the circulatory blood system were able to be transported across the BBB, and accumulated in the brain glioma region. Then, the liposomes were internalized by brain glioma cells and killed glioma cells by direct cytotoxic injury and the induction of apoptosis. The induction of apoptosis was related to the activation of caspase-8- and -3-signaling pathways, the activation of the proapoptotic protein Bax, and the suppression of the antiapoptotic protein Mcl-1. The destruction of brain glioma VM channels was related to the downregulation of VM channel-forming indictors, which consisted of MMP-2, MMP-9, FAK, VE-Cad, and VEGF. The results demonstrated that the targeting epirubicin plus celecoxib liposomes were able to effectively destroy the glioma VM channels and exhibited significant efficacy in the treatment of intracranial glioma-bearing nude mice. Therefore, targeting epirubicin plus celecoxib liposomes could be a potential nanostructured formulation to treat gliomas and destroy their VM channels. PMID:27042063

  15. Wavelet-domain de-noising of OCT images of human brain malignant glioma

    NASA Astrophysics Data System (ADS)

    Dolganova, I. N.; Aleksandrova, P. V.; Beshplav, S.-I. T.; Chernomyrdin, N. V.; Dubyanskaya, E. N.; Goryaynov, S. A.; Kurlov, V. N.; Reshetov, I. V.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have proposed a wavelet-domain de-noising technique for imaging of human brain malignant glioma by optical coherence tomography (OCT). It implies OCT image decomposition using the direct fast wavelet transform, thresholding of the obtained wavelet spectrum and further inverse fast wavelet transform for image reconstruction. By selecting both wavelet basis and thresholding procedure, we have found an optimal wavelet filter, which application improves differentiation of the considered brain tissue classes - i.e. malignant glioma and normal/intact tissue. Namely, it allows reducing the scattering noise in the OCT images and retaining signal decrement for each tissue class. Therefore, the observed results reveals the wavelet-domain de-noising as a prospective tool for improved characterization of biological tissue using the OCT.

  16. Pembrolizumab in Treating Younger Patients With Recurrent, Progressive, or Refractory High-Grade Gliomas, Diffuse Intrinsic Pontine Gliomas, Hypermutated Brain Tumors, Ependymoma or Medulloblastoma

    ClinicalTrials.gov

    2018-06-28

    Constitutional Mismatch Repair Deficiency Syndrome; Lynch Syndrome; Malignant Glioma; Progressive Ependymoma; Progressive Medulloblastoma; Recurrent Brain Neoplasm; Recurrent Childhood Ependymoma; Recurrent Diffuse Intrinsic Pontine Glioma; Recurrent Medulloblastoma; Refractory Brain Neoplasm; Refractory Diffuse Intrinsic Pontine Glioma; Refractory Ependymoma; Refractory Medulloblastoma

  17. C-type natriuretic peptide-modified lipid vesicles: fabrication and use for the treatment of brain glioma.

    PubMed

    Wu, Jia-Shuan; Mu, Li-Min; Bu, Ying-Zi; Liu, Lei; Yan, Yan; Hu, Ying-Jie; Bai, Jing; Zhang, Jing-Ying; Lu, Weiyue; Lu, Wan-Liang

    2017-06-20

    Chemotherapy of brain glioma faces a major obstacle owing to the inability of drug transport across the blood-brain barrier (BBB). Besides, neovasculatures in brain glioma site result in a rapid infiltration, making complete surgical removal virtually impossible. Herein, we reported a novel kind of C-type natriuretic peptide (CNP) modified vinorelbine lipid vesicles for transferring drug across the BBB, and for treating brain glioma along with disrupting neovasculatures. The studies were performed on brain glioma U87-MG cells in vitro and on glioma-bearing nude mice in vivo. The results showed that the CNP-modified vinorelbine lipid vesicles could transport vinorelbine across the BBB, kill the brain glioma, and destroy neovasculatures effectively. The above mechanisms could be associated with the following aspects, namely, long circulation in the blood; drug transport across the BBB via natriuretic peptide receptor B (NPRB)-mediated transcytosis; elimination of brain glioma cells and disruption of neovasculatures by targeting uptake and cytotoxic injury. Besides, CNP-modified vinorelbine lipid vesicles could induce apoptosis of the glioma cells. The mechanisms could be related to the activations of caspase 8, caspase 3, p53, and reactive oxygen species (ROS), and inhibition of survivin. Hence, CNP-modified lipid vesicles could be used as a carrier material for treating brain glioma and disabling glioma neovasculatures.

  18. Patterns of Invasive Growth in Malignant Gliomas-The Hippocampus Emerges as an Invasion-Spared Brain Region.

    PubMed

    Mughal, Awais A; Zhang, Lili; Fayzullin, Artem; Server, Andres; Li, Yuping; Wu, Yingxi; Glass, Rainer; Meling, Torstein; Langmoen, Iver A; Leergaard, Trygve B; Vik-Mo, Einar O

    2018-05-21

    Widespread infiltration of tumor cells into surrounding brain parenchyma is a hallmark of malignant gliomas, but little data exist on the overall invasion pattern of tumor cells throughout the brain. We have studied the invasive phenotype of malignant gliomas in two invasive mouse models and patients. Tumor invasion patterns were characterized in a patient-derived xenograft mouse model using brain-wide histological analysis and magnetic resonance (MR) imaging. Findings were histologically validated in a cdkn2a-/- PDGF-β lentivirus-induced mouse glioblastoma model. Clinical verification of the results was obtained by analysis of MR images of malignant gliomas. Histological analysis using human-specific cellular markers revealed invasive tumors with a non-radial invasion pattern. Tumors cells accumulated in structures located far from the transplant site, such as the optic white matter and pons, whereas certain adjacent regions were spared. As such, the hippocampus was remarkably free of infiltrating tumor cells despite the extensive invasion of surrounding regions. Similarly, MR images of xenografted mouse brains displayed tumors with bihemispheric pathology, while the hippocampi appeared relatively normal. In patients, most malignant temporal lobe gliomas were located lateral to the collateral sulcus. Despite widespread pathological fluid-attenuated inversion recovery signal in the temporal lobe, 74% of the "lateral tumors" did not show signs of involvement of the amygdalo-hippocampal complex. Our data provide clear evidence for a compartmental pattern of invasive growth in malignant gliomas. The observed invasion patterns suggest the presence of preferred migratory paths, as well as intra-parenchymal boundaries that may be difficult for glioma cells to traverse supporting the notion of compartmental growth. In both mice and human patients, the hippocampus appears to be a brain region that is less prone to tumor invasion. Copyright © 2018 The Authors. Published

  19. Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors

    PubMed Central

    Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.

    2014-01-01

    Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

  20. Tipifarnib in Treating Young Patients With Recurrent or Progressive High-Grade Glioma, Medulloblastoma, Primitive Neuroectodermal Tumor, or Brain Stem Glioma

    ClinicalTrials.gov

    2013-10-07

    Childhood High-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  1. Compression stiffening of brain and its effect on mechanosensing by glioma cells

    NASA Astrophysics Data System (ADS)

    Pogoda, Katarzyna; Chin, LiKang; Georges, Penelope C.; Byfield, FitzRoy J.; Bucki, Robert; Kim, Richard; Weaver, Michael; Wells, Rebecca G.; Marcinkiewicz, Cezary; Janmey, Paul A.

    2014-07-01

    Many cell types, including neurons, astrocytes and other cells of the central nervous system, respond to changes in the extracellular matrix or substrate viscoelasticity, and increased tissue stiffness is a hallmark of several disease states, including fibrosis and some types of cancers. Whether the malignant tissue in brain, an organ that lacks the protein-based filamentous extracellular matrix of other organs, exhibits the same macroscopic stiffening characteristic of breast, colon, pancreatic and other tumors is not known. In this study we show that glioma cells, like normal astrocytes, respond strongly in vitro to substrate stiffness in the range of 100 to 2000 Pa, but that macroscopic (mm to cm) tissue samples isolated from human glioma tumors have elastic moduli in the order of 200 Pa that are indistinguishable from those of normal brain. However, both normal brain and glioma tissues increase their shear elastic moduli under modest uniaxial compression, and glioma tissue stiffens more strongly under compression than normal brain. These findings suggest that local tissue stiffness has the potential to alter glial cell function, and that stiffness changes in brain tumors might arise not from increased deposition or crosslinking of the collagen-rich extracellular matrix, but from pressure gradients that form within the tumors in vivo.

  2. Cerebral schistosomiasis: diffusion-weighted imaging helps to differentiate from brain glioma and metastasis.

    PubMed

    Huang, Jinbai; Luo, Jing; Peng, Jie; Yang, Tao; Zheng, Huanghua; Mao, Chunping

    2017-11-01

    Background Diffusion-weighted imaging (DWI) was introduced into clinical use some years ago. However, its use in the diagnosis of cerebral schistosomiasis has not been reported. Purpose To investigate the ability of the apparent diffusion coefficient (ADC) value of DWI in the diagnosis of cerebral schistosomiasis, and to differentiate it from brain high-grade gliomas and metastasis. Material and Methods Conventional brain MRI with pre-contrast, post-contrast, and DWI was performed on 50 cases of cerebral schistosomiasis, high-grade glioma, and brain metastasis. The ADC values of the three lesions, the proximal and the distal perifocal edema were measured. In order to remove the individual difference effect of ADC values, relative ADC (rADC) values were calculated through dividing the ADC value of the lesion area by that of the contralateral normal white matter. rADC values were used to evaluate the differences among cerebral schistosomiasis, brain high-grade gliomas, and metastasis. Results rADC of cerebral schistosomiasis was significantly lower than rADC of brain metastasis ( P < 0.05), without any significant differences when compared with high-grade gliomas. rADC of proximal perifocal edema in cerebral schistosomiasis was significantly higher than in high-grade gliomas ( P < 0.010), but not different compared with brain metastasis. Conclusion DWI examination with ADC values of lesions and proximal perifocal edema might be helpful in the exact diagnosis of cerebral schistosomiasis.

  3. Similarities and differences in neuroplasticity mechanisms between brain gliomas and nonlesional epilepsy.

    PubMed

    Bourdillon, Pierre; Apra, Caroline; Guénot, Marc; Duffau, Hugues

    2017-12-01

    To analyze the conceptual and practical implications of a hodotopic approach in neurosurgery, and to compare the similarities and the differences in neuroplasticity mechanisms between low-grade gliomas and nonlesional epilepsy. We review the recent data about the hodotopic organization of the brain connectome, alongside the organization of epileptic networks, and analyze how these two structures interact, suggesting therapeutic prospects. Then we focus on the mechanisms of neuroplasticity involved in glioma natural course and after glioma surgery. Comparing these mechanisms with those in action in an epileptic brain highlights their differences, but more importantly, gives an original perspective to the consequences of surgery on an epileptic brain and what could be expected after pathologic white matter removal. The organization of the brain connectome and the neuroplasticity is the same in all humans, but different pathologic mechanisms are involved, and specific therapeutic approaches have been developed in epilepsy and glioma surgery. We demonstrate that the "connectome" point of view can enrich epilepsy care. We also underscore how theoretical and practical tools commonly used in epilepsy investigations, such as invasive electroencephalography, can be of great help in awake surgery in general. Putting together advances in understanding of connectomics and neuroplasticity, leads to significant conceptual improvements in epilepsy surgery. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  4. Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas.

    PubMed

    Ruban, Angela; Berkutzki, Tamara; Cooper, Itzik; Mohar, Boaz; Teichberg, Vivian I

    2012-12-01

    L-Glutamate (Glu) plays a crucial role in the growth of malignant gliomas. We have established the feasibility of accelerating a naturally occurring brain to-blood Glu efflux by decreasing blood Glu levels with intravenous oxaloacetate, the respective Glu co-substrate of the blood resident enzyme humane glutamate–oxaloacetate transaminase(hGOT). We wished to demonstrate that blood Glu scavenging provides neuroprotection in the case of glioma.We now describe the neuroprotective effects of blood Glu scavenging in a fatal condition such as brain-implanted C6 glioma in rats and brain-implanted human U87 MG glioma in nude mice. Rat (C-6) or human (U87) glioma cells were grafted stereotactically in the brain of rats or mice. After development of tumors, the animals were drinking oxaloacetate with or without injections of hGOT. In addition, mice were treated with combination treatment, which included drinking oxaloacetate with intracutaneous injections of hGOT and intraperitoneal injection of Temozolomide. Animals drinking oxaloacetate with or without injections of hGOT displayed a smaller tumor volume, reduced invasiveness and prolonged survival than control animals drinking saline. These effects were significantly enhanced by Temozolomide in mice, which increased survival by 237%. This is the first demonstration of blood Glu scavenging in brain cancer, and because of its safety, is likely to be of clinical significance for the future treatment of human gliomas. As we demonstrated, the blood glutamate scavenging treatment in combination with TMZ could be a good candidate or as an alternative treatment to the patients that do not respond to TMZ.

  5. Functional analysis of the DEPDC1 oncoantigen in malignant glioma and brain tumor initiating cells.

    PubMed

    Kikuchi, Ryogo; Sampetrean, Oltea; Saya, Hideyuki; Yoshida, Kazunari; Toda, Masahiro

    2017-06-01

    DEP domain containing 1 (DEPDC1) is a novel oncoantigen expressed in cancer cells, which presents oncogenic activity and high immunogenicity. Although DEPDC1 has been predicted to be a useful antigen for the development of a cancer vaccine, its pathophysiological roles in glioma have not been investigated. Here, we analyzed the expression and function of DEPDC1 in malignant glioma. DEPDC1 expression in glioma cell lines, glioma tissues, and brain tumor initiating cells (BTICs) was assessed by western blot and quantitative polymerase chain reaction (PCR). The effect of DEPDC1 downregulation on cell growth and nuclear factor kappa B (NFκB) signaling in glioma cells was investigated. Overall survival was assessed in mouse glioma models using human glioma cells and induced mouse brain tumor stem cells (imBTSCs) to determine the effect of DEPDC1 suppression in vivo. DEPDC1 expression was increased in glioma cell lines, tissues, and BTICs. Suppression of endogenous DEPDC1 expression by small interfering RNA (siRNA) inhibited glioma cell viability and induced apoptosis through NFκB signaling. In mouse glioma models using human glioma cells and imBTSCs, downregulation of DEPDC1 expression prolonged overall survival. These results suggest that DEPDC1 represents a target molecule for the treatment of glioma.

  6. Studying the MicroRNA role as a survival predictor and revealing its part in malignancy level determination in patients with supratentorial gliomas of brain

    NASA Astrophysics Data System (ADS)

    Stupak, E. V.; Veryaskina, Yu. A.; Titov, S. E.; Achmerova, L. G.; Stupak, V. V.; Dolzhenko, D. A.; Rabinovich, S. S.; Narodov, A. A.; Ivanov, M. K.; Zhimulev, I. F.; Kolesnikov, N. N.

    2017-09-01

    The numerous data show, that microRNA (miRNA) are direct participants of carcinogenesis. Also miRNA plays the role of a diagnostic and prognostic marker for different types of cancer, including gliomas. The aim of this research is to make the comparative analysis of 10 micro RNA (miR-124, -125b, -16, -181b, -191, -21, -221, -223, -31 and -451) expression profiles. The analysis was made for gliomas with different malignancy degree, then compared with the samples of the adjacent not changed tissues (n = 90). During the study the specific profiles of miRNA expression for various histotypes of tumors were revealed. It was determined, that miRNA acts as a predictor of patient survival in the cases with malignant supratentorial brain tumors. The diagnostic approaches based on miRNA expression profile were designed. It will help to determine the malignancy level and to predict the course of the disease.

  7. "Unusual brain stone": heavily calcified primary neoplasm with some features suggestive of angiocentric glioma.

    PubMed

    Sajjad, Jahangir; Kaliaperumal, Chandrasekaran; Bermingham, Niamh; Marks, Charles; Keohane, Catherine

    2015-11-01

    This 40-year-old man presented with a 5-month history of progressive right-sided headache associated with visual blurring. He also had a history of epilepsy but had been seizure free with medication for the past 10 years. An initial CT scan of his brain performed 16 years previously had revealed a small area of calcification in the right parietal region. In the current presentation, he had a left-sided homonymous hemianopia but no other neurological deficits. A CT scan of his brain showed a much larger calcified, partly cystic lesion in the right parietal region. Because he was symptomatic, the lesion was excised and the cyst was drained. Histological examination of the excised tissue showed an unusual primary tumor that was difficult to classify but had some features of angiocentric glioma. The heavy calcification, mixed-density cell population, and regions with features of angiocentric glioma were most unusual. The patient remained asymptomatic 5 years after surgery, and follow-up scans did not show recurrence.

  8. Disruption of astrocyte-vascular coupling and the blood-brain barrier by invading glioma cells

    PubMed Central

    Watkins, Stacey; Robel, Stefanie; Kimbrough, Ian F.; Robert, Stephanie M.; Ellis-Davies, Graham; Sontheimer, Harald

    2014-01-01

    Astrocytic endfeet cover the entire cerebral vasculature and serve as exchange sites for ions, metabolites, and energy substrates from the blood to the brain. They maintain endothelial tight junctions that form the blood-brain barrier (BBB) and release vasoactive molecules that regulate vascular tone. Malignant gliomas are highly invasive tumors that use the perivascular space for invasion and co-opt existing vessels as satellite tumors form. Here we use a clinically relevant mouse model of glioma and find that glioma cells, as they populate the perivascular space of pre-existing vessels, displace astrocytic endfeet from endothelial or vascular smooth muscle cells. This causes a focal breach in the BBB. Furthermore, astrocyte-mediated gliovascular coupling is lost, and glioma cells seize control over regulation of vascular tone through Ca2+-dependent release of K+. These findings have important clinical implications regarding blood flow in the tumor-associated brain and the ability to locally deliver chemotherapeutic drugs in disease. PMID:24943270

  9. Purine synthesis promotes maintenance of brain tumor initiating cells in glioma.

    PubMed

    Wang, Xiuxing; Yang, Kailin; Xie, Qi; Wu, Qiulian; Mack, Stephen C; Shi, Yu; Kim, Leo J Y; Prager, Briana C; Flavahan, William A; Liu, Xiaojing; Singer, Meromit; Hubert, Christopher G; Miller, Tyler E; Zhou, Wenchao; Huang, Zhi; Fang, Xiaoguang; Regev, Aviv; Suvà, Mario L; Hwang, Tae Hyun; Locasale, Jason W; Bao, Shideng; Rich, Jeremy N

    2017-05-01

    Brain tumor initiating cells (BTICs), also known as cancer stem cells, hijack high-affinity glucose uptake active normally in neurons to maintain energy demands. Here we link metabolic dysregulation in human BTICs to a nexus between MYC and de novo purine synthesis, mediating glucose-sustained anabolic metabolism. Inhibiting purine synthesis abrogated BTIC growth, self-renewal and in vivo tumor formation by depleting intracellular pools of purine nucleotides, supporting purine synthesis as a potential therapeutic point of fragility. In contrast, differentiated glioma cells were unaffected by the targeting of purine biosynthetic enzymes, suggesting selective dependence of BTICs. MYC coordinated the control of purine synthetic enzymes, supporting its role in metabolic reprogramming. Elevated expression of purine synthetic enzymes correlated with poor prognosis in glioblastoma patients. Collectively, our results suggest that stem-like glioma cells reprogram their metabolism to self-renew and fuel the tumor hierarchy, revealing potential BTIC cancer dependencies amenable to targeted therapy.

  10. Genetic Alterations in Glioma

    PubMed Central

    Bralten, Linda B. C.; French, Pim J.

    2011-01-01

    Gliomas are the most common type of primary brain tumor and have a dismal prognosis. Understanding the genetic alterations that drive glioma formation and progression may help improve patient prognosis by identification of novel treatment targets. Recently, two major studies have performed in-depth mutation analysis of glioblastomas (the most common and aggressive subtype of glioma). This systematic approach revealed three major pathways that are affected in glioblastomas: The receptor tyrosine kinase signaling pathway, the TP53 pathway and the pRB pathway. Apart from frequent mutations in the IDH1/2 gene, much less is known about the causal genetic changes of grade II and III (anaplastic) gliomas. Exceptions include TP53 mutations and fusion genes involving the BRAF gene in astrocytic and pilocytic glioma subtypes, respectively. In this review, we provide an update on all common events involved in the initiation and/or progression across the different subtypes of glioma and provide future directions for research into the genetic changes. PMID:24212656

  11. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes.

    PubMed

    Gao, Jian-Qing; Lv, Qing; Li, Li-Ming; Tang, Xin-Jiang; Li, Fan-Zhu; Hu, Yu-Lan; Han, Min

    2013-07-01

    Effective chemotherapy for glioblastoma requires a carrier that can penetrate the blood-brain barrier (BBB) and subsequently target the glioma cells. Dual-targeting doxorubincin (Dox) liposomes were produced by conjugating liposomes with both folate (F) and transferrin (Tf), which were proven effective in penetrating the BBB and targeting tumors, respectively. The liposome was characterized by particle size, Dox entrapment efficiency, and in vitro release profile. Drug accumulation in cells, P-glycoprotein (P-gp) expression, and drug transport across the BBB in the dual-targeting liposome group were examined by using bEnd3 BBB models. In vivo studies demonstrated that the dual-targeting Dox liposomes could transport across the BBB and mainly distribute in the brain glioma. The anti-tumor effect of the dual-targeting liposome was also demonstrated by the increased survival time, decreased tumor volume, and results of both hematoxylin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis. The dual-targeting Dox liposome could improve the therapeutic efficacy of brain glioma and were less toxic than the Dox solution, showing a dual-targeting effect. These results indicate that this dual-targeting liposome can be used as a potential carrier for glioma chemotherapy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Bafetinib in Treating Patients With Recurrent High-Grade Glioma or Brain Metastases

    ClinicalTrials.gov

    2018-04-12

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Tumors Metastatic to Brain; Adult Anaplastic Oligoastrocytoma

  13. Monocyte-derived cells of the brain and malignant gliomas: the double face of Janus.

    PubMed

    Kushchayev, Sergiy V; Kushchayeva, Yevgeniya S; Wiener, Philip C; Scheck, Adrienne C; Badie, Behnam; Preul, Mark C

    2014-12-01

    Monocyte-derived cells of the brain (MDCB) are a diverse group of functional immune cells that are also highly abundant in gliomas. There is growing evidence that MDCB play essential roles in the pathogenesis of gliomas. The aim of this review was to collate and systematize contemporary knowledge about these cells as they relate to glioma progression and antiglioblastoma therapeutic modalities with a view toward improved effectiveness of therapy. We reviewed relevant studies to construct a summary of different MDCB subpopulations in steady state and in malignant gliomas and discuss their role in the development of malignant gliomas and potential future therapies. Current studies suggest that MDCB subsets display different phenotypes and differentiation potentials depending on their milieu in the brain and exposure to tumoral influences. MDCB possess specific and unique functions, including those that are protumoral and those that are antitumoral. Elucidating the role of mononuclear-derived cells associated with gliomas is crucial in designing novel immunotherapy strategies. Much progress is needed to characterize markers to identify cell subsets and their specific regulatory roles. Investigation of MDCB can be clinically relevant. Specific MDCB populations potentially can be used for glioma therapy as a target or as cell vehicles that might deliver cytotoxic substances or processes to the glioma microenvironment. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. [A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].

    PubMed

    Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A

    2015-01-01

    The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (p<0.05). We also established a relationship between the tensor and kurtosis parameters of CNAWM and the glioma proliferative activity index (p<0.05). The correlation between all the absolute and normalized diffusion parameters and the glioma proliferative activity index, except absolute and normalized FA and RA values, was found to be statistically significant (p<0.05). Kurtosis (MK, AK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the

  15. Glioma

    MedlinePlus

    ... cells are called mixed gliomas. Tumors such as “optic nerve glioma” and “brain stem glioma” are named ... Oligodendroglioma: Click here to learn more about oligodendroglioma. Optic Glioma: These tumors may involve any part of ...

  16. Comparative expression analysis reveals lineage relationships between human and murine gliomas and a dominance of glial signatures during tumor propagation in vitro.

    PubMed

    Henriquez, Nico V; Forshew, Tim; Tatevossian, Ruth; Ellis, Matthew; Richard-Loendt, Angela; Rogers, Hazel; Jacques, Thomas S; Reitboeck, Pablo Garcia; Pearce, Kerra; Sheer, Denise; Grundy, Richard G; Brandner, Sebastian

    2013-09-15

    Brain tumors are thought to originate from stem/progenitor cell populations that acquire specific genetic mutations. Although current preclinical models have relevance to human pathogenesis, most do not recapitulate the histogenesis of the human disease. Recently, a large series of human gliomas and medulloblastomas were analyzed for genetic signatures of prognosis and therapeutic response. Using a mouse model system that generates three distinct types of intrinsic brain tumors, we correlated RNA and protein expression levels with human brain tumors. A combination of genetic mutations and cellular environment during tumor propagation defined the incidence and phenotype of intrinsic murine tumors. Importantly, in vitro passage of cancer stem cells uniformly promoted a glial expression profile in culture and in brain tumors. Gene expression profiling revealed that experimental gliomas corresponded to distinct subclasses of human glioblastoma, whereas experimental supratentorial primitive neuroectodermal tumors (sPNET) correspond to atypical teratoid/rhabdoid tumor (AT/RT), a rare childhood tumor. ©2013 AACR.

  17. Altered intraoperative cerebrovascular reactivity in brain areas of high-grade glioma recurrence.

    PubMed

    Fierstra, Jorn; van Niftrik, Bas; Piccirelli, Marco; Burkhardt, Jan Karl; Pangalu, Athina; Kocian, Roman; Valavanis, Antonios; Weller, Michael; Regli, Luca; Bozinov, Oliver

    2016-07-01

    Current MRI sequences are limited in identifying brain areas at risk for high grade glioma recurrence. We employed intraoperative 3-Tesla functional MRI to assess cerebrovascular reactivity (CVR) after high-grade glioma resection and analyzed regional CVR responses in areas of tumor recurrence on clinical follow-up imaging. Five subjects with high-grade glioma that underwent an intraoperative Blood Oxygen-Level Dependent (BOLD) MRI CVR examination and had a clinical follow-up of at least 18months were selected from a prospective database. For this study, location of tumor recurrence was spatially matched to the intraoperative imaging to assess CVR response in that particular area. CVR is defined as the percent BOLD signal change during repeated cycles of apnea. Of the 5 subjects (mean age 44, 2 females), 4 were diagnosed with a WHO grade III and 1 subject with a WHO grade IV glioma. Three subjects exhibited a tumor recurrence on clinical follow-up MRI (mean: 15months). BOLD CVR measured in the spatially matched area of tumor recurrence was on average 94% increased (range-32% to 183%) as compared to contralateral hemisphere CVR response, 1.50±0.81 versus 1.03±0.46 respectively (p=0.31). For this first analysis in a small cohort, we found altered intraoperative CVR in brain areas exhibiting high grade glioma recurrence on clinical follow-up imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Mixed Glioma (Oligoastrocytoma) in the brain of an African Hedgehog (Atelerix albiventris).

    PubMed

    Benneter, S S; Summers, B A; Schulz-Schaeffer, W J; Härtig, W; Mollidor, J; Schöniger, S

    2014-11-01

    This report describes an oligoastrocytoma in the brain of a 3.5-year-old female pet African hedgehog (Atelerix albiventris) that showed progressive central nervous system signs for 6 months. Microscopical examination of the brain revealed a widely infiltrative, deep-seated glioma within the white matter of the cerebral hemispheres, basal nuclei, hippocampus, thalamus, midbrain, pons and the medulla of the cerebellum with extension of neoplastic cells into the cerebral cortex and overlying leptomeninges. Morphological features of the neoplastic cells, together with variable immunohistochemical expression of glial fibrillary acidic protein, Olig-2 and Nogo-A, indicated the presence of intermingled astrocytic and oligodendroglial tumour cells with an astrocytic component of approximately 40% consistent with an oligoastrocytoma. The distribution of the tumour is consistent with gliomatosis cerebri. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Influence of glioma cells on a new co-culture in vitro blood-brain barrier model for characterization and validation of permeability.

    PubMed

    Mendes, Bárbara; Marques, Cláudia; Carvalho, Isabel; Costa, Paulo; Martins, Susana; Ferreira, Domingos; Sarmento, Bruno

    2015-07-25

    The blood-brain barrier plays an important role in protecting the brain from injury and diseases, but also restrains the delivery of potential therapeutic drugs for the treatment of brain illnesses, such as tumors. Glioma is most common cancer type of central nervous system in adults and the most lethal in children. The treatment is normally poor and ineffective. To better understand the ability of drug delivery systems to permeate this barrier, a blood-brain barrier model using human brain endothelial cells and a glioma cell line is herein proposed. The consistent trans-endothelial electrical values, immunofluorescence and scanning electronic microscopy showed a confluent endothelial cell monolayer with high restrictiveness. Upon inclusion of glioma cell line, the trans-endothelial electrical resistance decreased, with consequent increase of apparent permeability of fluorescein isothiocyanate dextran used as model drug, revealing a reduction of the barrier robustness. In addition, it was demonstrated a cell shape modification in the co-culture, with loss of tight junctions. The microenvironment of co-cultured model presented significant increase of of CCL2/MCP-1 and IL-6 production, correlating with the modulation of permeation. The results encourage the use of the proposed in vitro model as a screening tool when performing drugs permeability for the treatment of disorders among the central nervous system. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling.

    PubMed

    a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-05-01

    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  1. Signal transduction molecules in gliomas of all grades.

    PubMed

    Ermoian, Ralph P; Kaprealian, Tania; Lamborn, Kathleen R; Yang, Xiaodong; Jelluma, Nannette; Arvold, Nils D; Zeidman, Ruth; Berger, Mitchel S; Stokoe, David; Haas-Kogan, Daphne A

    2009-01-01

    To interrogate grade II, III, and IV gliomas and characterize the critical effectors within the PI3-kinase pathway upstream and downstream of mTOR. Experimental design Tissues from 87 patients who were treated at UCSF between 1990 and 2004 were analyzed. Twenty-eight grade II, 17 grade III glioma, 26 grade IV gliomas, and 16 non-tumor brain specimens were analyzed. Protein levels were assessed by immunoblots; RNA levels were determined by polymerase chain reaction amplification. To address the multiple comparisons, first an overall analysis was done comparing the four groups using Spearman's Correlation Coefficient. Only if this analysis was statistically significant were individual pairwise comparisons done. Multiple comparison analyses revealed a significant correlation with grade for all variables examined, except phosphorylated-S6. Expression of phosphorylated-4E-BP1, phosphorylated-PKB/Akt, PTEN, TSC1, and TSC2 correlated with grade (P < 0.01 for all). We extended our analyses to ask whether decreases in TSC proteins levels were due to changes in mRNA levels, or due to changes in post-transcriptional alterations. We found significantly lower levels of TSC1 and TSC2 mRNA in GBMs than in grade II gliomas or non-tumor brain (P < 0.01). Expression levels of critical signaling molecules upstream and downstream of mTOR differ between non-tumor brain and gliomas of any grade. The single variable whose expression did not differ between non-tumor brain and gliomas was phosphorylated-S6, suggesting that other protein kinases, in addition to mTOR, contribute significantly to S6 phosphorylation. mTOR provides a rational therapeutic target in gliomas of all grades, and clinical benefit may emerge as mTOR inhibitors are combined with additional agents.

  2. Validation of DWI pre-processing procedures for reliable differentiation between human brain gliomas.

    PubMed

    Vellmer, Sebastian; Tonoyan, Aram S; Suter, Dieter; Pronin, Igor N; Maximov, Ivan I

    2018-02-01

    Diffusion magnetic resonance imaging (dMRI) is a powerful tool in clinical applications, in particular, in oncology screening. dMRI demonstrated its benefit and efficiency in the localisation and detection of different types of human brain tumours. Clinical dMRI data suffer from multiple artefacts such as motion and eddy-current distortions, contamination by noise, outliers etc. In order to increase the image quality of the derived diffusion scalar metrics and the accuracy of the subsequent data analysis, various pre-processing approaches are actively developed and used. In the present work we assess the effect of different pre-processing procedures such as a noise correction, different smoothing algorithms and spatial interpolation of raw diffusion data, with respect to the accuracy of brain glioma differentiation. As a set of sensitive biomarkers of the glioma malignancy grades we chose the derived scalar metrics from diffusion and kurtosis tensor imaging as well as the neurite orientation dispersion and density imaging (NODDI) biophysical model. Our results show that the application of noise correction, anisotropic diffusion filtering, and cubic-order spline interpolation resulted in the highest sensitivity and specificity for glioma malignancy grading. Thus, these pre-processing steps are recommended for the statistical analysis in brain tumour studies. Copyright © 2017. Published by Elsevier GmbH.

  3. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma

    PubMed Central

    Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-01-01

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion. PMID:28212546

  4. Precursor N-cadherin mediates glial cell line-derived neurotrophic factor-promoted human malignant glioma.

    PubMed

    Xiong, Ye; Liu, Liyun; Zhu, Shuang; Zhang, Baole; Qin, Yuxia; Yao, Ruiqin; Zhou, Hao; Gao, Dian Shuai

    2017-04-11

    As the most prevalent primary brain tumor, gliomas are highly metastatic, invasive and are characteristic of high levels of glial cell-line derived neurotrophic factor (GDNF). GDNF is an important factor for invasive glioma cell growth; however, the underlying mechanism involved is unclear. In this study, we affirm a significantly higher expression of the precursor of N-cadherin (proN-cadherin) in most gliomas compared with normal brain tissues. Our findings reveal that GDNF interacts with the extracellular domain of proN-cadherin, which suggests that proN-cadherin mediates GDNF-induced glioma cell migration and invasion. We hypothesize that proN-cadherin might cause homotypic adhesion loss within neighboring cells and at the same time promote heterotypic adhesion within the extracellular matrix (ECM) through a certain mechanism. This study also demonstrates that the interaction between GDNF and proN-cadherin activates specific intracellular signaling pathways; furthermore, GDNF promoted the secretion of matrix metalloproteinase-9 (MMP-9), which degrades the ECM via proN-cadherin. To reach the future goal of developing novel therapies of glioma, this study, reveals a unique mechanism of glioma cell migration and invasion.

  5. Transmigration of Neural Stem Cells across the Blood Brain Barrier Induced by Glioma Cells

    PubMed Central

    Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza

    2013-01-01

    Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2. PMID:23637756

  6. Laser versus traditional techniques in cerebral and brain stem gliomas

    NASA Astrophysics Data System (ADS)

    Lombard, Gian F.

    1996-01-01

    In medical literature no significant studies have been published on the effectiveness of laser compared with traditional procedures in two series of cerebral gliomas; for this reason we have studied 220 tumors (200 supratentorial -- 20 brain stem gliomas), 110 operated upon with laser, 100 with conventional techniques. Four surgical protocols have been carried out: (1) traditional techniques; (2) carbon dioxide laser free hand; (3) carbon dioxide laser plus microscope; (4) multiple laser sources plus microscope plus neurosector plus CUSA. Two laser sources have been used alone or in combination (carbon dioxide -- Nd:YAG 1.06 or 1.32). Patients have been monitored for Karnofsky scale before and after operation, 12 - 24 and 36 months later; and for survival rate. Tumors were classified by histological examination, dimensions, vascularization, topography (critical or non critical areas). Results for supratentorial gliomas: survival time is the same in both series (laser and traditional). Post- op morbidity is significantly improved in the laser group (high grade sub-group); long term follow-up shows an improvement of quality of life until 36 months in the low grade sub-group.

  7. The Long Noncoding RNA TP73-AS1 Interacted with miR-124 to Modulate Glioma Growth by Targeting Inhibitor of Apoptosis-Stimulating Protein of p53.

    PubMed

    Xiao, Shuai; Wang, Rensheng; Wu, Xiangwei; Liu, Wen; Ma, Shanshan

    2018-02-01

    P73 antisense RNA 1T (non-protein coding), known as TP73-AS1 or PDAM, is a long noncoding RNA (lncRNA), which may regulate apoptosis by regulation of p53-dependent antiapoptotic genes. An abnormal change of TP73-AS1 expression was noticed in cancers. The effects of TP73-AS1 in brain glioma growth and the underlying mechanism remain unclear so far. In this study, the effect of TP73-AS1 in human brain glioma cell lines and clinical tumor samples was detected so as to reveal its role and function. In this study, TP73-AS1 was specifically upregulated in brain glioma cell lines and promoted glioma cell growth through targeting miR-124. TP73-AS1 knocking down suppressed human brain glioma cell proliferation, invasion, and metastasis in vitro. The inhibitory effect of TP73-AS1 knocking down on glioma cell proliferation and invasion could partly be restored by miR-124 inhibition. In addition, miR-124-dependent inhibitor of apoptosis-stimulating protein of p53 (iASPP) regulation was required in TP73-AS1-induced brain glioma cell growth. Data from this study revealed that TP73-AS1 inhibited the brain glioma growth and metastasis as a competing endogenous RNA (ceRNA) through miR-124-dependent iASPP regulation. In conclusion, we regarded TP73-AS1 as an oncogenic lncRNA promoting brain glioma proliferation and metastasis and a potential target for human brain glioma treatment.

  8. Blood-Brain Barrier Disruption, Sodium Fluorescein, And Fluorescence-Guided Surgery Of Gliomas.

    PubMed

    Xiang, Yan; Zhu, Xiao-Peng; Zhao, Jian-Nong; Huang, Guo-Hao; Tang, Jun-Hai; Chen, Huan-Ran; Du, Lei; Zhang, Dong; Tang, Xue-Feng; Yang, Hui; Lv, Sheng-Qing

    2018-01-22

    Sodium fluorescein (SF) is an ideal dye for intraoperative guided-resection of high-grade gliomas (HGGs). However, it is not well understood whether the SF-guided technique is suitable for different grades of gliomas, and the correlation between fluorescence and pathology is also not yet clear. In this study, we investigated 28 patients, including 23 patients with HGG and 5 patients with low-grade glioma (LGG). All patients were treated using the SF-guided technique on a Pentero 900 microscope (Carl Zeiss, Oberkochen, Germany). Claudin-5 immunohistochemical (IHC) staining for the tumours and peritumour tissues was analyzed. Intraoperative yellow fluorescence was noted in all the HGGs but not in the LGGs. Claudin-5 expression in the blood brain barrier endothelial cells was downregulated and disconnected in the HGGs (p < 0.05), but had no difference or slightly decreased in the LGGs (p > 0.05). The SF-guided technique is suitable for HGG surgery but not for LGG surgery. Downregulation of claudin-5 expression may contribute to the presence of yellow fluorescence in the glioma in SF-guided surgery.

  9. A pragmatic clinicopathobiological grouping/staging system for gliomas: proposal of the Indian TNM subcommittee on brain tumors.

    PubMed

    Gupta, Tejpal; Sarin, Rajiv; Jalali, Rakesh; Sharma, Suash; Kurkure, Purna; Goel, Atul

    2009-01-01

    There is no universally accepted staging system for primary brain tumors wherein prognostication is mainly based on complex composite indices. To develop a simple, pragmatic, and widely applicable grouping/staging system for gliomas, the most common primary brain tumor. An expert neurooncology panel with representation from radiation oncology, neurosurgery, pathology, radiology, and medical oncology had several rounds of discussion on issues pertinent to brain tumor staging. The trade off was between the accuracy of prognostic categorization and a pragmatic, widely applicable approach. The Tumor-Node-Metastasis staging was considered irrelevant for gliomas that seldom metastasize to lymphatics or outside the neuraxis. Instead, a 4-point staging/grouping system is proposed, using histological grade as the main prognostic variable and at least one stage migration based on other unfavorable features such as tumor location (brainstem); age (<5 years for all grades, >50 years for high-grade, and >40 years for low-grade gliomas); poor neurological performance status (NPS 2-4); multicentricity and/or gliomatosis; and adverse biological parameters (proliferative index, angiogenesis markers, apoptotic index, cytogenetic abnormalities, and molecular markers). In absence of a grouping/staging system for primary brain tumors, prognostification is mostly based on complex composite indices. The proposed clinicopathobiological grouping/staging system for gliomas is a simple, pragmatic, and user-friendly tool with a potential to fulfill the objectives of staging classification.

  10. Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma.

    PubMed

    Qin, Elizabeth Y; Cooper, Dominique D; Abbott, Keene L; Lennon, James; Nagaraja, Surya; Mackay, Alan; Jones, Chris; Vogel, Hannes; Jackson, Peter K; Monje, Michelle

    2017-08-24

    The lateral ventricle subventricular zone (SVZ) is a frequent and consequential site of pediatric and adult glioma spread, but the cellular and molecular mechanisms mediating this are poorly understood. We demonstrate that neural precursor cell (NPC):glioma cell communication underpins this propensity of glioma to colonize the SVZ through secretion of chemoattractant signals toward which glioma cells home. Biochemical, proteomic, and functional analyses of SVZ NPC-secreted factors revealed the neurite outgrowth-promoting factor pleiotrophin, along with required binding partners SPARC/SPARCL1 and HSP90B, as key mediators of this chemoattractant effect. Pleiotrophin expression is strongly enriched in the SVZ, and pleiotrophin knock down starkly reduced glioma invasion of the SVZ in the murine brain. Pleiotrophin, in complex with the binding partners, activated glioma Rho/ROCK signaling, and ROCK inhibition decreased invasion toward SVZ NPC-secreted factors. These findings demonstrate a pathogenic role for NPC:glioma interactions and potential therapeutic targets to limit glioma invasion. PAPERCLIP. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1.

    PubMed

    Chen, Jiaying; Zhang, Can; Mi, Yang; Chen, Fuxue; Du, Dongshu

    2017-12-01

    Glioma is stemmed from the glial cells in the brain, which is accounted for about 45% of all intracranial tumors. The characteristic of glioma is invasive growth, as well as there is no obvious boundary between normal brain tissue and glioma tissue, so it is difficult to resect completely with worst prognosis. The metabolism of glioma is following the Warburg effect. Previous researches have shown that GLUT1, as a glucose transporter carrier, affected the Warburg effect, but the molecular mechanism is not very clear. CREB1 (cAMP responsive element-binding protein1) is involved in various biological processes, and relevant studies confirmed that CREB1 protein regulated the expression of GLUT1, thus mediating glucose transport in cells. Our experiments mainly reveal that the CREB1 could affect glucose transport in glioma cells by regulating the expression of GLUT1, which controlled the metabolism of glioma and affected the progression of glioma.

  12. miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma

    PubMed Central

    2012-01-01

    Background MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21. Methods We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student´s t-test. Results We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression

  13. On the relevance of glycolysis process on brain gliomas.

    PubMed

    Kounelakis, M G; Zervakis, M E; Giakos, G C; Postma, G J; Buydens, L M C; Kotsiakis, X

    2013-01-01

    The proposed analysis considers aspects of both statistical and biological validation of the glycolysis effect on brain gliomas, at both genomic and metabolic level. In particular, two independent datasets are analyzed in parallel, one engaging genomic (Microarray Expression) data and the other metabolomic (Magnetic Resonance Spectroscopy Imaging) data. The aim of this study is twofold. First to show that, apart from the already studied genes (markers), other genes such as those involved in the human cell glycolysis significantly contribute in gliomas discrimination. Second, to demonstrate how the glycolysis process can open new ways towards the design of patient-specific therapeutic protocols. The results of our analysis demonstrate that the combination of genes participating in the glycolytic process (ALDOA, ALDOC, ENO2, GAPDH, HK2, LDHA, LDHB, MDH1, PDHB, PFKM, PGI, PGK1, PGM1 and PKLR) with the already known tumor suppressors (PTEN, Rb, TP53), oncogenes (CDK4, EGFR, PDGF) and HIF-1, enhance the discrimination of low versus high-grade gliomas providing high prediction ability in a cross-validated framework. Following these results and supported by the biological effect of glycolytic genes on cancer cells, we address the study of glycolysis for the development of new treatment protocols.

  14. Tissue Proteome Analysis of Different Grades of Human Gliomas Provides Major Cues for Glioma Pathogenesis.

    PubMed

    Gollapalli, Kishore; Ghantasala, Saicharan; Atak, Apurva; Rapole, Srikanth; Moiyadi, Aliasgar; Epari, Sridhar; Srivastava, Sanjeeva

    2017-05-01

    Gliomas are heterogeneous and most commonly occurring brain tumors. Blood-brain barrier restricts the entry of brain tumor proteins into blood stream thus limiting the usage of serum or plasma for proteomic analysis. Our study aimed at understanding the molecular basis of aggressiveness of various grades of brain tumors using isobaric tagging for relative and absolute quantification (iTRAQ) based mass spectrometry. Tissue proteomic analysis of various grades of gliomas was performed using four-plex iTRAQ. We labeled five sets (each set consists of control, grade-II, III, and IV tumor samples) of individual glioma patients using iTRAQ reagents. Significantly altered proteins were subjected to bioinformatics analysis using Database for Annotation, Visualization and Integrated Discovery (DAVID). Various metabolic pathways like glycolysis, TCA-cycle, electron transport chain, lactate metabolism, and blood coagulation pathways were majorly observed to be perturbed in gliomas. Most of the identified proteins involved in redox reactions, protein folding, pre-messenger RNA (mRNA) processing, antiapoptosis, and blood coagulation were found to be upregulated in gliomas. Transcriptomics data of glioblastoma multiforme (GBM), low-grade gliomas (LGGs), and controls were downloaded from The Cancer Genome Atlas (TCGA) data portal and further analyzed using BRB-Array tools. Expression levels of a few significantly altered proteins like lactate dehydrogenase, alpha-1 antitrypsin, fibrinogen alpha chain, nucleophosmin, annexin A5, thioredoxin, ferritin light chain, thymosin beta-4-like protein 3, superoxide dismutase-2, and peroxiredoxin-1 and 6 showed a positive correlation with increasing grade of gliomas thereby offering an insight into molecular basis behind their aggressive nature. Several proteins identified in different grades of gliomas are potential grade-specific markers, and perturbed pathways provide comprehensive overview of molecular cues involved in glioma

  15. Application of Awake Craniotomy and Intraoperative Brain Mapping for Surgical Resection of Insular Gliomas of the Dominant Hemisphere.

    PubMed

    Alimohamadi, Maysam; Shirani, Mohammad; Shariat Moharari, Reza; Pour-Rashidi, Ahmad; Ketabchi, Mehdi; Khajavi, Mohammadreza; Arami, Mohamadali; Amirjamshidi, Abbas

    2016-08-01

    Radical resection of dominant insular gliomas is difficult because of their close vicinity with internal capsule, basal ganglia, and speech centers. Brain mapping techniques can be used to maximize the extent of tumor removal and to minimize postoperative morbidities by precise localization of eloquent cortical and subcortical areas. Patients with newly diagnosed gliomas of dominant insula were enrolled. The exclusion criteria were severe cognitive disturbances, communication difficulty, age greater than 75 years, severe obesity, difficult airways for intubation and severe cardiopulmonary diseases. All were evaluated preoperatively with contrast-enhanced brain magnetic resonance imaging (MRI), functional brain MRI, and diffusion tensor tractography of language and motor systems. All underwent awake craniotomy with the same anesthesiology protocol. Intraoperative monitoring included continuous motor-evoked potential, electromyography, electrocorticography, direct electrical stimulation of cortex, and subcortical tracts. The patients were followed with serial neurologic examination and imaging. Ten patients were enrolled (4 men, 6 women) with a mean age of 43.6 years. Seven patients suffered from low-grade glioma, and 3 patients had high-grade glioma. The most common clinical presentation was seizure followed by speech disturbance, hemiparesis, and memory loss. Extent of tumor resection ranged from 73% to 100%. No mortality or new major postoperative neurologic deficit was encountered. Seizure control improved in three fourths of patients with medical refractory epilepsy. In one patient with speech disorder at presentation, the speech problem became worse after surgery. Brain mapping during awake craniotomy helps to maximize extent of tumor resection while preserving neurologic function in patients with dominant insular lobe glioma. Copyright © 2016. Published by Elsevier Inc.

  16. The pathobiology of collagens in glioma

    PubMed Central

    Payne, Leo S.; Huang, Paul H.

    2013-01-01

    Malignant gliomas are characterised by diffuse infiltration into the surrounding brain parenchyma. Infiltrating glioma cells exist in close proximity with components of the tumour microenvironment, including the extracellular matrix (ECM). While levels of collagens in the normal adult brain are low, in glioma, collagen levels are elevated and play an important role in driving the tumor progression. In this review, we provide a comprehensive overview of the nature of collagens found in gliomas and offer insights into the mechanisms by which cancer cells interact with this ECM via receptors including the integrins, discoidin domain receptors and Endo180. We further describe the major remodelling pathways of brain tumour collagen mediated by the matrix metalloproteinases and highlight the reciprocal relationship between these enzymes and the collagen receptors. Finally, we conclude by offering a perspective on how the biophysical properties of the collagen ECM, in particular, mechanical stiffness and compliance may influence malignant outcome. Understanding the complex interactions between glioma cells and the collagen ECM may provide new avenues to combat the rampant tumor progression and chemoresistance in brain cancer patients. PMID:23861322

  17. Expression of Fas ligand by microglia: possible role in glioma immune evasion.

    PubMed

    Badie, B; Schartner, J; Prabakaran, S; Paul, J; Vorpahl, J

    2001-11-01

    The immune-privileged status of the central nervous system is thought to limit the application of immunotherapy for treatment of malignant brain tumors. Because the Fas pathway has been proposed to play a role in immune evasion, we examined the effect of tumor environment on the expression of Fas ligand (FasL) in a mouse glioma model. Immunoblotting revealed the expression of membrane-bound FasL to nearly double when murine G26 gliomas were propagated intracranially (IC) as compared to subcutaneously (SC). Further analysis by flow cytometry revealed microglia, which were absent in the SC tumors, to account for half of the FasL expression in the IC tumors. Interestingly, when FasL activity was inhibited in IC tumors, the proportion of tumor-infiltrating leukocytes increased three-fold, reaching the same frequency as the SC tumors. These observations suggest that microglia are a major source of FasL expression in brain tumors and possibly contribute to the local immunosuppressive milieu of malignant gliomas.

  18. Mustard-inspired delivery shuttle for enhanced blood-brain barrier penetration and effective drug delivery in glioma therapy.

    PubMed

    Wang, Nan; Sun, Pei; Lv, Mingming; Tong, Gangsheng; Jin, Xin; Zhu, Xinyuan

    2017-05-02

    Effective penetration through the blood-brain barrier (BBB) remains a challenge for the treatment of many brain diseases. In this study, a small molecule, sinapic acid (SA), extracted from mustard, was selected as a novel bioinspired BBB-permeable ligand for efficient drug delivery in glioma treatment. SA was conjugated on the surface of zwitterionic polymer poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-encapsulated bovine serum albumin (BSA)-based nanoparticles, yielding nBSA-SA. The PMPC shell serves as a protective layer to prolong the in vivo blood circulation time with a better chance to cross the BBB. Furthermore, temozolomide (TMZ), which can be loaded onto the nanoparticles via electrostatic interactions with acrylic acid (AA) to generate AA-nBSA-SA-TMZ, was applied as an excellent chemotherapeutic drug for glioma therapy. The obtained nanoparticles with a distinct size show great BBB permeability. Through the mechanism study, it was found that the cell internalization of the SA-conjugated nanoparticles is an energy-dependent process with only transient disruption of the BBB. The biological evaluation results unambiguously suggest that drug-loaded nanoparticles can lead to strong apoptosis on the tumor site and increase the median survival time of glioma-bearing mice. Overall, this novel BBB-permeable ligand SA paves the way for the delivery of cargo into the brain and provides a powerful nanoplatform for glioma therapy via intravenous administration.

  19. Roles of purinergic P2X7 receptor in glioma and microglia in brain tumors.

    PubMed

    McLarnon, James G

    2017-08-28

    This review considers evidence suggesting that activation of the ionotropic purinergic receptor P2X 7 (P2X 7 R) is a contributing factor in the growth of brain tumors. Importantly, expression of P2X 7 R may be upregulated in both glioma cells and in immune responding microglial cells with possible differential effects on tumor progression. The recruitment of immune cells into tumor regions may not only be involved in supporting an immunosuppressive environment aiding tumor growth but activated microglia could secrete inflammatory factors promoting neoangiogenesis in expanding tumors. The subtype P2X 7 R exhibits a number of unique properties including activation of the receptor in pathological conditions associated with developing brain tumors. In particular, the tumor microenvironment includes elevated levels of ATP required for activation of P2X 7 R and the sustained tumor and immune cell P2X 7 R-mediated responses which in total contribute to overall tumor growth and viability. Studies on cultured rat and human glioma show marked increases in expression of P2X 7 R and enhanced cell mobility relative to control. Glioma cell animal models demonstrate enhanced expression of P2X 7 R in both glioma and microglia with antagonism of receptor showing differential effects on tumor growth. Overall, P2X 7 R activation is associated with a complexity of modulatory actions on tumor growth in part due to ubiquitous expression of the receptor in glioma and immune responsive cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents.

    PubMed

    Patil, Abhijit A; Sayal, Parag; Depondt, Marie-Lise; Beveridge, Ryan D; Roylance, Anthony; Kriplani, Deepti H; Myers, Katie N; Cox, Angela; Jellinek, David; Fernando, Malee; Carroll, Thomas A; Collis, Spencer J

    2014-08-15

    Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge, where survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome.

  1. FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents

    PubMed Central

    Patil, Abhijit A.; Sayal, Parag; Depondt, Marie-Lise; Beveridge, Ryan D.; Roylance, Anthony; Kriplani, Deepti H.; Myers, Katie N.; Cox, Angela; Jellinek, David; Fernando, Malee; Carroll, Thomas A.; Collis, Spencer J.

    2014-01-01

    Brain tumours kill more children and adults under 40 than any other cancer. Around half of primary brain tumours are glioblastoma multiforme (GBMs) where treatment remains a significant challenge. GBM survival rates have improved little over the last 40 years, thus highlighting an unmet need for the identification/development of novel therapeutic targets and agents to improve GBM treatment. Using archived and fresh glioma tissue, we show that in contrast to normal brain or benign schwannomas GBMs exhibit re-expression of FANCD2, a key protein of the Fanconi Anaemia (FA) DNA repair pathway, and possess an active FA pathway. Importantly, FANCD2 expression levels are strongly associated with tumour grade, revealing a potential exploitable therapeutic window to allow inhibition of the FA pathway in tumour cells, whilst sparing normal brain tissue. Using several small molecule inhibitors of the FA pathway in combination with isogenic FA-proficient/deficient glioma cell lines as well as primary GBM cultures, we demonstrate that inhibition of the FA pathway sensitises gliomas to the chemotherapeutic agents Temozolomide and Carmustine. Our findings therefore provide a strong rationale for the development of novel and potent inhibitors of the FA pathway to improve the treatment of GBMs, which may ultimately impact on patient outcome. PMID:25071006

  2. Reduced tumorigenicity of rat glioma cells in the brain when mediated by hygromycin phosphotransferase.

    PubMed

    Hormigo, A; Friedlander, D R; Brittis, P A; Zagzag, D; Grumet, M

    2001-04-01

    A variant of C6 glioma cells, C6R-G/H cells express hygromycin phosphotransferase (HPT) and appear to have reduced tumorigenicity in the embryonic brain. The goal of this study was to investigate their reduced capacity to generate tumors in the adult rat brain. Cell lines were implanted into rat brains and tumorigenesis was evaluated. After 3 weeks, all rats with C6 cells showed signs of neurological disease, whereas rats with C6R-G/H cells did not and were either killed then or allowed to survive until later. Histological studies were performed to analyze tumor size, malignancy, angiogenesis, and cell proliferation. Cells isolated from rat brain tumors were analyzed for mutation to HPT by testing their sensitivity to hygromycin. The results indicate that HPT suppresses tumor formation. Three weeks after implantation, only 44% of animals implanted with C6R-G/H cells developed tumors, whereas all animals that received C6 glioma cells developed high-grade gliomas. The C6R-G/H cells filled a 20-fold smaller maximal cross-sectional area than the C6 cells, and exhibited less malignant characteristics, including reduced angiogenesis, mitosis, and cell proliferation. Similar results were obtained in the brain of nude rats, indicating that the immune system did not play a significant role in suppressing tumor growth. The combination of green fluorescent protein (GFP) and HPT was more effective in suppressing tumorigenesis than either plasmid by itself, indicating that the GFP may protect against inactivation of the HPT. Interestingly. hygromycin resistance was lost in tumor cells that were recovered from a group of animals in which C6R-G/H cells formed tumors, confirming the correlation of HPT with reduced tumorigenicity.

  3. Transcriptome and Small RNA Deep Sequencing Reveals Deregulation of miRNA Biogenesis in Human Glioma

    PubMed Central

    Moore, Lynette M.; Kivinen, Virpi; Liu, Yuexin; Annala, Matti; Cogdell, David; Liu, Xiuping; Liu, Chang-Gong; Sawaya, Raymond; Yli-Harja, Olli; Shmulevich, Ilya; Fuller, Gregory N.; Zhang, Wei; Nykter, Matti

    2013-01-01

    Altered expression of oncogenic and tumor-suppressing microRNAs (miRNAs) is widely associated with tumorigenesis. However, the regulatory mechanisms underlying these alterations are poorly understood. We sought to shed light on the deregulation of miRNA biogenesis promoting the aberrant miRNA expression profiles identified in these tumors. Using sequencing technology to perform both whole-transcriptome and small RNA sequencing of glioma patient samples, we examined precursor and mature miRNAs to directly evaluate the miRNA maturation process, and interrogated expression profiles for genes involved in the major steps of miRNA biogenesis. We found that ratios of mature to precursor forms of a large number of miRNAs increased with the progression from normal brain to low-grade and then to high-grade gliomas. The expression levels of genes involved in each of the three major steps of miRNA biogenesis (nuclear processing, nucleo-cytoplasmic transport, and cytoplasmic processing) were systematically altered in glioma tissues. Survival analysis of an independent data set demonstrated that the alteration of genes involved in miRNA maturation correlates with survival in glioma patients. Direct quantification of miRNA maturation with deep sequencing demonstrated that deregulation of the miRNA biogenesis pathway is a hallmark for glioma genesis and progression. PMID:23007860

  4. Gpx 4 is involved in the proliferation, migration and apoptosis of glioma cells.

    PubMed

    Zhao, Hongyu; Ji, Bin; Chen, Jianguo; Huang, Qingfeng; Lu, Xueguan

    2017-06-01

    Glioma is one of the most common and aggressive types of human brain tumor, it is important to explore novel glioma-associated genes. In this report, we defined Gpx4 as a therapeutic target for glioma. Western blot and immunohistochemistry(IHC) analysis revealed that the protein level of Gpx4 was higher in glioma tissues and cell lines. In addition, IHC stain revealed that there was statistical significance between the expression of Gpx4 and the WHO grade (P=0.004) and Ki-67(P=0.000) expression. Kaplan-Meier curve showed that high expression of Gpx4 was associated with poor prognosis of glioma patients (P<0.01). To determine whether Gpx4 could regulate the proliferation and migration of glioma cells, we transfected glioma cells with Gpx4-siRNA and then investigated cell proliferation with cell counting kit (CCK) -8, flow cytometry assay and colony formation analyses, and we used wound-healing and transwell assays to investigate cell migration. Our results indicated that knockdown of Gpx4 would inhibit the proliferation and migration of glioma cells. Besides, silencing of Gpx4 could induce the apoptosis of glioma cells. This research indicated that Gpx4 might be thought of as a new prognostic factor in glioma and be closely correlated with glioma cell proliferation, migration and apoptosis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy

    PubMed Central

    Yong, William H.; Butte, Pramod V.; Pikul, Brian K.; Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Black, Keith L.; Marcu, Laura

    2010-01-01

    Neuropathology frozen section diagnoses are difficult in part because of the small tissue samples and the paucity of adjunctive rapid intraoperative stains. This study aims to explore the use of time-resolved laser-induced fluorescence spectroscopy as a rapid adjunctive tool for the diagnosis of glioma specimens and for distinction of glioma from normal tissues intraoperatively. Ten low grade gliomas, 15 high grade gliomas without necrosis, 6 high grade gliomas with necrosis and/or radiation effect, and 14 histologically uninvolved “normal” brain specimens are spectroscopicaly analyzed and contrasted. Tissue autofluorescence was induced with a pulsed Nitrogen laser (337 nm, 1.2 ns) and the transient intensity decay profiles were recorded in the 370-500 nm spectral range with a fast digitized (0.2 ns time resolution). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site were used for tissue characterization. A linear discriminant analysis diagnostic algorithm was used for tissue classification. Both low and high grade gliomas can be distinguished from histologically uninvolved cerebral cortex and white matter with high accuracy (above 90%). In addition, the presence or absence of treatment effect and/or necrosis can be identified in high grade gliomas. Taking advantage of tissue autofluorescence, this technique facilitates a direct and rapid investigation of surgically obtained tissue. PMID:16368511

  6. Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging.

    PubMed

    Zhang, Liang; Habib, Amyn A; Zhao, Dawen

    2016-06-21

    Phosphatidylserine (PS), which is normally intracellular, becomes exposed on the outer surface of viable endothelial cells (ECs) of tumor vasculature. Utilizing a PS-targeting antibody, we have recently established a PS-targeted liposomal (PS-L) nanoplatform that has demonstrated to be highly tumor-selective. Because of the vascular lumen-exposed PS that is immediately accessible without a need to penetrate the intact blood brain barrier (BBB), we hypothesize that the systemically administered PS-L binds specifically to tumor vascular ECs, becomes subsequently internalized into the cells and then enables its cargos to be efficiently delivered to glioma parenchyma. To test this, we exploited the dual MRI/optical imaging contrast agents-loaded PS-L and injected it intravenously into mice bearing intracranial U87 glioma. At 24 h, both in vivo optical imaging and MRI depicted enhanced tumor contrast, distinct from the surrounding normal brain. Intriguingly, longitudinal MRI revealed temporal and spatial intratumoral distribution of the PS-L by following MRI contrast changes, which appeared punctate in tumor periphery at an earlier time point (4 h), but became clustering and disseminated throughout the tumor at 24 h post injection. Importantly, glioma-targeting specificity of the PS-L was antigen specific, since a control probe of irrelevant specificity showed minimal accumulation in the glioma. Together, these results indicate that the PS-L nanoplatform enables the enhanced, glioma-targeted delivery of imaging contrast agents by crossing the tumor BBB efficiently, which may also serve as a useful nanoplatform for anti-glioma drugs.

  7. Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System

    PubMed Central

    Nieto-Sampedro, Manuel; Valle-Argos, Beatriz; Gómez-Nicola, Diego; Fernández-Mayoralas, Alfonso; Nieto-Díaz, Manuel

    2011-01-01

    Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radiation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells. The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our laboratory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors do not affect neurons or fibroblasts up to concentrations of 4 μM or higher. At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neovascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step. PMID:22084619

  8. 18F-Fluorocholine PET/CT, Brain MRI, and 5-Aminolevulinic Acid for the Assessment of Tumor Resection in High-Grade Glioma.

    PubMed

    García Vicente, Ana María; Jiménez Aragón, Fátima; Villena Martín, Maikal; Jiménez Londoño, German Andrés; Borrás Moreno, Jose María

    2017-06-01

    High-grade glioma is a very aggressive and infiltrative tumor in which complete resection is a chance for a better outcome. We present the case of a 57-year-old man with a brain lesion suggestive of high-grade glioma. Brain MRI and F-fluorocholine PET/CT were performed previously to plan the surgery. Surgery was microscope assisted after the administration of 5-aminolevulinic acid. Postsurgery brain MRI and PET were blind evaluated to the surgery results and reported as probably gross total resection.

  9. NI-16INTRA-OPERATIVE USE OF FLUORESCEIN FOR MALIGNANT GLIOMA RESECTION DIFFERENTIATES TUMOR FROM NORMAL BRAIN TISSUE BASED ON HISTOPATHOLOGIC ANALYSIS

    PubMed Central

    Decker, Matthew; Kresak, Jesse; Yachnis, Anthony; Bova, Frank; Rahman, Maryam

    2014-01-01

    OBJECTIVES: To determine whether the use of IV fluorescein during surgery for malignant glioma can reliably be used to differentiate between infiltrative tumor and normal brain tissue. BACKGROUND: Fluorescein sodium is a molecular compound with fluorescent capabilities between light wavelengths of 520-530nm, appearing yellow-green (1). Neurosurgical application of fluorescein has been studied primarily for increasing intra-operative visibility of malignant gliomas (1). The mechanism of action has been hypothesized to involve disruption of the blood brain barrier (BBB) (2). Cells in areas with disrupted BBB take up fluorescein with a sensitivity of 94% and specificity of 89% for high-grade gliomas (2). We performed histopathologic analysis on tissue obtained during fluorescein-guided tumor resections to evaluate the differences between fluorescent and non-fluorescent tissue. METHODS: Two adult patients with suspected high-grade gliomas underwent surgical resection. Prior to opening of the dura 3mg/kg of IV fluorescein was given. A Zeiss OPMI Pentero microscope (Carl Zeiss Meditech Inc.) with a yellow 560nm filter was used to visualize the tumor. At the tumor margins, tissue was identified as "bright" and "dark" and sent as separate specimens for histopathological analysis. RESULTS: Histological sections of specimens labeled "bright" contained infiltrating glioma with focal microvascular proliferation. Histological sections of specimens labeled "dark" contained gray matter and focal subcortical white matter with no high-grade glioma identified. Final grading for both patients was WHO Grade IV, glioblastoma. CONCLUSION: Intra-operative use of fluorescein in surgical resection of malignant gliomas can help to distinguish between infiltrating tumor and normal brain tissue based on histopathological analysis. Further evaluation of the utility of flurorescein during high and low-grade glioma surgery is necessary.

  10. Revealing the potential pathogenesis of glioma by utilizing a glioma associated protein-protein interaction network.

    PubMed

    Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming

    2015-04-01

    This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

  11. A Probabilistic Atlas of Diffuse WHO Grade II Glioma Locations in the Brain

    PubMed Central

    Baumann, Cédric; Zouaoui, Sonia; Yordanova, Yordanka; Blonski, Marie; Rigau, Valérie; Chemouny, Stéphane; Taillandier, Luc; Bauchet, Luc; Duffau, Hugues; Paragios, Nikos

    2016-01-01

    Diffuse WHO grade II gliomas are diffusively infiltrative brain tumors characterized by an unavoidable anaplastic transformation. Their management is strongly dependent on their location in the brain due to interactions with functional regions and potential differences in molecular biology. In this paper, we present the construction of a probabilistic atlas mapping the preferential locations of diffuse WHO grade II gliomas in the brain. This is carried out through a sparse graph whose nodes correspond to clusters of tumors clustered together based on their spatial proximity. The interest of such an atlas is illustrated via two applications. The first one correlates tumor location with the patient’s age via a statistical analysis, highlighting the interest of the atlas for studying the origins and behavior of the tumors. The second exploits the fact that the tumors have preferential locations for automatic segmentation. Through a coupled decomposed Markov Random Field model, the atlas guides the segmentation process, and characterizes which preferential location the tumor belongs to and consequently which behavior it could be associated to. Leave-one-out cross validation experiments on a large database highlight the robustness of the graph, and yield promising segmentation results. PMID:26751577

  12. Stereotactic delivery of a recombinant adenovirus into a C6 glioma cell line in a rat brain tumor model.

    PubMed

    Badie, B; Hunt, K; Economou, J S; Black, K L

    1994-11-01

    The dismal results of conventional therapy for primary malignant brain tumors has justified exploring gene therapy approaches for this disease. Transduction of animal brain tumor models in vivo has been reported previously with retroviruses and herpes viruses. Because adenoviruses have the advantage of transducing quiescent and actively dividing tumor cells, they may prove to be more effective in such therapy. We used a replication-deficient recombinant adenovirus bearing the Escherichia coli beta-galactosidase gene in a rat C6 glioma tumor model. Transduced cells were detected by X-5-bromo-4-chloro-3-indolyl beta-D-galactoside staining to reveal beta-galactosidase activity. Initial experiments in vitro showed 50% and 90% transduction at vector titers of approximately 10(7) and 10(8) plaque-forming units/ml, respectively. Although no cytopathic effects were seen at 10(7) plaque-forming units/ml, more than 50% reduction in tumor cell growth was noted at 10(8) plaque-forming units/ml both in vitro and in vivo. Stereotactic delivery of the recombinant adenovirus into the frontal lobe of normal rat brains resulted in intense staining of all cell types, that is, neurons, astrocytes, and ependymal cells. Stereotactic injection into C6 glioma brain tumors in rats stained 25 to 30% of the tumor cells. We conclude that adenovirus vectors can be used to transfer genes to central nervous system tumors in vivo. Using stereotactic delivery, adenovirus vectors can transfer genes into the central nervous system intended for tumor therapy.

  13. Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by miR-9.

    PubMed

    Katakowski, Mark; Charteris, Nicholas; Chopp, Michael; Khain, Evgeniy

    2016-12-01

    The phenotypic axis of invasion and proliferation in malignant glioma cells is a well-documented phenomenon. Invasive glioma cells exhibit a decreased proliferation rate and a resistance to apoptosis, and invasive tumor cells dispersed in brain subsequently revert to proliferation and contribute to secondary tumor formation. One miRNA can affect dozens of mRNAs, and some miRNAs are potent oncogenes. Multiple miRNAs are implicated in glioma malignancy, and several of which have been identified to regulate tumor cell motility and division. Using rat 9 L gliosarcoma and human U87 glioblastoma cell lines, we investigated miRNAs associated with the switch between glioma cell invasion and proliferation. Using micro-dissection of 9 L glioma tumor xenografts in rat brain, we identified disparate expression of miR-9 between cells within the periphery of the primary tumor, and those comprising tumor islets within the invasive zone. Modifying miR-9 expression in in vitro assays, we report that miR-9 controls the axis of glioma cell invasion/proliferation, and that its contribution to invasion or proliferation is biphasic and dependent upon local tumor cell density. In addition, immunohistochemistry revealed elevated hypoxia inducible factor 1 alpha (HIF-1α) in the invasive zone as compared to the primary tumor periphery. We also found that hypoxia promotes miR-9 expression in glioma cells. Based upon these findings, we propose a hypothesis for the contribution of miR-9 to the dynamics glioma invasion and satellite tumor formation in brain adjacent to tumor.

  14. Distinct molecular profile of diffuse cerebellar gliomas.

    PubMed

    Nomura, Masashi; Mukasa, Akitake; Nagae, Genta; Yamamoto, Shogo; Tatsuno, Kenji; Ueda, Hiroki; Fukuda, Shiro; Umeda, Takayoshi; Suzuki, Tomonari; Otani, Ryohei; Kobayashi, Keiichi; Maruyama, Takashi; Tanaka, Shota; Takayanagi, Shunsaku; Nejo, Takahide; Takahashi, Satoshi; Ichimura, Koichi; Nakamura, Taishi; Muragaki, Yoshihiro; Narita, Yoshitaka; Nagane, Motoo; Ueki, Keisuke; Nishikawa, Ryo; Shibahara, Junji; Aburatani, Hiroyuki; Saito, Nobuhito

    2017-12-01

    Recent studies have demonstrated that tumor-driving alterations are often different among gliomas that originated from different brain regions and have underscored the importance of analyzing molecular characteristics of gliomas stratified by brain region. Therefore, to elucidate molecular characteristics of diffuse cerebellar gliomas (DCGs), 27 adult, mostly glioblastoma cases were analyzed. Comprehensive analysis using whole-exome sequencing, RNA sequencing, and Infinium methylation array (n = 17) demonstrated their distinct molecular profile compared to gliomas in other brain regions. Frequent mutations in chromatin-modifier genes were identified including, noticeably, a truncating mutation in SETD2 (n = 4), which resulted in loss of H3K36 trimethylation and was mutually exclusive with H3F3A K27M mutation (n = 3), suggesting that epigenetic dysregulation may lead to DCG tumorigenesis. Alterations that cause loss of p53 function including TP53 mutation (n = 9), PPM1D mutation (n = 2), and a novel type of PPM1D fusion (n = 1), were also frequent. On the other hand, mutations and copy number changes commonly observed in cerebral gliomas were infrequent. DNA methylation profile analysis demonstrated that all DCGs except for those with H3F3A mutations were categorized in the "RTK I (PDGFRA)" group, and those DCGs had a gene expression signature that was highly associated with PDGFRA. Furthermore, compared with the data of 315 gliomas derived from different brain regions, promoter methylation of transcription factors genes associated with glial development showed a characteristic pattern presumably reflecting their tumor origin. Notably, SOX10, a key transcription factor associated with oligodendroglial differentiation and PDGFRA regulation, was up-regulated in both DCG and H3 K27M-mutant diffuse midline glioma, suggesting their developmental and biological commonality. In contrast, SOX10 was silenced by promoter methylation in most cerebral gliomas. These

  15. Terahertz reflectometry imaging for low and high grade gliomas

    NASA Astrophysics Data System (ADS)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-10-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes.

  16. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network.

    PubMed

    Cui, Shaoguo; Mao, Lei; Jiang, Jingfeng; Liu, Chang; Xiong, Shuyu

    2018-01-01

    Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice.

  17. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network

    PubMed Central

    Mao, Lei; Liu, Chang; Xiong, Shuyu

    2018-01-01

    Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice. PMID:29755716

  18. Blood-Brain Barrier Permeable Gold Nanoparticles: An Efficient Delivery Platform for Enhanced Malignant Glioma Therapy and Imaging

    PubMed Central

    Cheng, Yu; Dai, Qing; Morshed, Ramin; Fan, Xiaobing; Wegscheid, Michelle L.; Wainwright, Derek A.; Han, Yu; Zhang, Lingjiao; Auffinger, Brenda; Tobias, Alex L.; Rincón, Esther; Thaci, Bart; Ahmed, Atique U.; Warnke, Peter; He, Chuan

    2014-01-01

    The blood-brain barrier (BBB) remains a formidable obstacle in medicine, preventing efficient penetration of chemotherapeutic and diagnostic agents to malignant gliomas. Here, we demonstrate that a transactivator of transcription (TAT) peptide-modified gold nanoparticle platform (TAT-Au NP) with a 5 nm core size is capable of crossing the BBB efficiently and delivering cargoes such as the anticancer drug doxorubicin (Dox) and Gd3+ contrast agents to brain tumor tissues. Treatment of mice bearing intracranial glioma xenografts with pH-sensitive Dox-conjugated TAT-Au NPs via a single intravenous administration leads to significant survival benefit when compared to the free Dox. Furthermore, we demonstrate that TAT-Au NPs are capable of delivering Gd3+ chelates for enhanced brain tumor imaging with a prolonged retention time of Gd3+ when compared to the free Gd3+ chelates. Collectively, these results show promising applications of the TAT-Au NPs for enhanced malignant brain tumor therapy and non-invasive imaging. PMID:25104165

  19. Mature brain-derived neurotrophic factor and its receptor TrkB are upregulated in human glioma tissues.

    PubMed

    Xiong, Jing; Zhou, L I; Lim, Yoon; Yang, Miao; Zhu, Yu-Hong; Li, Zhi-Wei; Fu, Deng-Li; Zhou, Xin-Fu

    2015-07-01

    There are two forms of brain-derived neurotrophic factor (BDNF), precursor of BDNF (proBDNF) and mature BDNF, which each exert opposing effects through two different transmembrane receptor signaling systems, consisting of p75 neurotrophin receptor (p75NTR) and tyrosine receptor kinase B (TrkB). Previous studies have demonstrated that proBDNF promotes cell death and inhibits the growth and migration of C6 glioma cells through p75NTR in vitro , while mature BDNF has opposite effects on C6 glioma cells. It is hypothesized that mature BDNF is essential in the development of malignancy in gliomas. However, histological data obtained in previous studies were unable distinguish mature BDNF from proBDNF due to the lack of specific antibodies. The present study investigated the expression of mature BDNF using a specific sheep monoclonal anti-mature BDNF antibody in 42 human glioma tissues of different grades and 10 control tissues. The correlation between mature BDNF and TrkB was analyzed. Mature BDNF expression was significantly increased in high-grade gliomas, and was positively correlated with the malignancy of the tumor and TrkB receptor expression. The present data have demonstrated that increased levels of mature BDNF contribute markedly to the development of malignancy of human gliomas through the primary BDNF receptor TrkB.

  20. Occupational risk factors for low grade and high grade glioma: results from an international case control study of adult brain tumours.

    PubMed

    Schlehofer, Brigitte; Hettinger, Iris; Ryan, Philip; Blettner, Maria; Preston-Martin, Susan; Little, Julian; Arslan, Annie; Ahlbom, Anders; Giles, Graham G; Howe, Geoffrey R; Ménégoz, Francoise; Rodvall, Ylva; Choi, Won N; Wahrendorf, Jürgen

    2005-01-01

    The majority of suspected occupational risk factors for adult brain tumours have yet to be confirmed as etiologically relevant. Within an international case-control study on brain tumours, lifelong occupational histories and information on exposures to specific substances were obtained by direct interviews to further investigate occupational risk factors for glioma. This is one of the largest studies of brain tumours in adults, including 1,178 cases and 1987 population controls from 8 collaborating study centres matched for age, gender and centre. All occupational information, was aggregated into 16 occupational categories. In a pooled analysis, odds ratios (OR), adjusted for education, were estimated separately for men and women and for high-grade glioma (HGG) and low-grade glioma (LGG), focusing especially on 6 categories defined a priori: agricultural, chemical, construction, metal, electrical/electronic and transport. For men, an elevated OR of glioma associated with the category "metal" (OR = 1.24, 95% CI 0.96-1.62) was seen, which appeared to be largely accounted for by LGG (OR = 1.59, 95% CI 1.00-2.52). For the other 5 occupational categories, no elevated risks for glioma were observed. For women the only noteworthy observation for the 6 a priori categories was an inverse association with the "agriculture" category (OR = 0.60, 95% CI 0.36-0.99). Apart from the 6 major categories, women working in food production or food processing (category "food") showed an increased OR of 1.95 (95% CI 1.04-3.68). None of the 20 substance groups was positively associated with glioma risk. Although some other point estimates were elevated, they lacked statistical significance. The results do not provide evidence of a strong association between occupational exposures and glioma development.

  1. Gadobutrol Versus Gadopentetate Dimeglumine or Gadobenate Dimeglumine Before DCE-MRI in Diagnosing Patients With Multiple Sclerosis, Grade II-IV Glioma, or Brain Metastases

    ClinicalTrials.gov

    2017-03-22

    Adult Anaplastic (Malignant) Meningioma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Neoplasm; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Primary Melanocytic Lesion of Meninges; Adult Supratentorial Primitive Neuroectodermal Tumor; Malignant Adult Intracranial Hemangiopericytoma; Metastatic Malignant Neoplasm in the Brain; Multiple Sclerosis; Recurrent Adult Brain Neoplasm

  2. Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma.

    PubMed

    Gritsenko, Pavlo; Leenders, William; Friedl, Peter

    2017-10-01

    Diffuse invasion of glioma cells into the brain parenchyma leads to nonresectable brain tumors and poor prognosis of glioma disease. In vivo, glioma cells can adopt a range of invasion strategies and routes, by moving as single cells, collective strands and multicellular networks along perivascular, perineuronal and interstitial guidance cues. Current in vitro assays to probe glioma cell invasion, however, are limited in recapitulating the modes and adaptability of glioma invasion observed in brain parenchyma, including collective behaviours. To mimic in vivo-like glioma cell invasion in vitro, we here applied three tissue-inspired 3D environments combining multicellular glioma spheroids and reconstituted microanatomic features of vascular and interstitial brain structures. Radial migration from multicellular glioma spheroids of human cell lines and patient-derived xenograft cells was monitored using (1) reconstituted basement membrane/hyaluronan interfaces representing the space along brain vessels; (2) 3D scaffolds generated by multi-layered mouse astrocytes to reflect brain interstitium; and (3) freshly isolated mouse brain slice culture ex vivo. The invasion patterns in vitro were validated using histological analysis of brain sections from glioblastoma patients and glioma xenografts infiltrating the mouse brain. Each 3D assay recapitulated distinct aspects of major glioma invasion patterns identified in mouse xenografts and patient brain samples, including individually migrating cells, collective strands extending along blood vessels, and multicellular networks of interconnected glioma cells infiltrating the neuropil. In conjunction, these organotypic assays enable a range of invasion modes used by glioma cells and will be applicable for mechanistic analysis and targeting of glioma cell dissemination.

  3. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature.

    PubMed

    Huang, Ning; Cheng, Si; Zhang, Xiang; Tian, Qi; Pi, Jiangli; Tang, Jun; Huang, Qing; Wang, Feng; Chen, Jin; Xie, Zongyi; Xu, Zhongye; Chen, Weifu; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    Delivery of imaging agents to brain glioma is challenging because the blood-brain barrier (BBB) functions as a physiological checkpoint guarding the central nervous system from circulating large molecules. Moreover, the ability of existing probes to target glioma has been insufficient and needs to be improved. In present study, PEG-based long circulation, CdSe/ZnS quantum dots (QDs)-based nanoscale and fluorescence, asparagines-glycine-arginine peptides (NGR)-based specific CD13 recognition were integrated to design and synthesize a novel nanoprobe by conjugating biotinylated NGR peptides to avidin-PEG-coated QDs. Our data showed that the NGR-PEG-QDs were nanoscale with less than 100 nm and were stable in various pH (4.0~8.0). These nanomaterials with non-toxic concentrations could cross the BBB and target CD13-overexpressing glioma and tumor vasculature in vitro and in vivo, contributing to fluorescence imaging of this brain malignancy. These achievements allowed groundbreaking technological advances in targeted fluorescence imaging for the diagnosis and surgical removal of glioma, facilitating potential transformation toward clinical nanomedicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas.

    PubMed

    Chen, Ning; Shao, Chen; Li, Shuai; Wang, Zihao; Qu, Yanming; Gu, Wei; Yu, Chunjiang; Ye, Ling

    2015-11-01

    The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection of tumors. Herein, we prepared the PEG-Cy5.5 conjugated MnO nanoparticles (MnO-PEG-Cy5.5 NPs) with magnetic resonance (MR) and near-infrared fluorescence (NIRF) imaging modalities. The applicability of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe for the detection of brain gliomas was investigated. In vivo MR contrast enhancement of the MnO-PEG-Cy5.5 nanoprobe in the tumor region was demonstrated. Meanwhile, whole-body NIRF imaging of glioma bearing nude mouse exhibited distinct tumor localization upon injection of MnO-PEG-Cy5.5 NPs. Moreover, ex vivo CLSM imaging of the brain slice hosting glioma indicated the preferential accumulation of MnO-PEG-Cy5.5 NPs in the glioma region. Our results therefore demonstrated the potential of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe in improving the diagnostic efficacy by simultaneously providing anatomical information from deep inside the body and more sensitive information at the cellular level. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Functional analysis of a novel glioma antigen, EFTUD1

    PubMed Central

    Saito, Katsuya; Iizuka, Yukihiko; Ohta, Shigeki; Takahashi, Satoshi; Nakamura, Kenta; Saya, Hideyuki; Yoshida, Kazunari; Kawakami, Yutaka; Toda, Masahiro

    2014-01-01

    Background A cDNA library made from 2 glioma cell lines, U87MG and T98G, was screened by serological identification of antigens by recombinant cDNA expression (SEREX) using serum from a glioblastoma patient. Elongation factor Tu GTP binding domain containing protein 1 (EFTUD1), which is required for ribosome biogenesis, was identified. A cancer microarray database showed overexpression of EFTUD1 in gliomas, suggesting that EFTUD1 is a candidate molecular target for gliomas. Methods EFTUD1 expression in glioma cell lines and glioma tissue was assessed by Western blot, quantitative PCR, and immunohistochemistry. The effect on ribosome biogenesis, cell growth, cell cycle, and induction of apoptosis and autophagy in glioma cells during the downregulation of EFTUD1 was investigated. To reveal the role of autophagy, the autophagy-blocker, chloroquine (CQ), was used in glioma cells downregulating EFTUD1. The effect of combining CQ with EFTUD1 inhibition in glioma cells was analyzed. Results EFTUD1 expression in glioma cell lines and tissue was higher than in normal brain tissue. Downregulating EFTUD1 induced G1 cell-cycle arrest and apoptosis, leading to reduced glioma cell proliferation. The mechanism underlying this antitumor effect was impaired ribosome biogenesis via EFTUD1 inhibition. Additionally, protective autophagy was induced by glioma cells as an adaptive response to EFTUD1 inhibition. The antitumor effect induced by the combined treatment was significantly higher than that of either EFTUD1 inhibition or CQ alone. Conclusion These results suggest that EFTUD1 represents a novel therapeutic target and that the combination of EFTUD1 inhibition with autophagy blockade may be effective in the treatment of gliomas. PMID:25015090

  6. Proton Beam Radiation Therapy in Treating Patients With Low Grade Gliomas

    ClinicalTrials.gov

    2015-12-14

    Adult Brain Tumor; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Melanocytic Lesion; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma; Adult Pineocytoma; Recurrent Adult Brain Tumor

  7. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  8. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

    PubMed

    Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C

    2007-10-08

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.

  9. Anaesthetic management for awake craniotomy in brain glioma resection: initial experience in Military Hospital Mohamed V of Rabat.

    PubMed

    Meziane, Mohammed; Elkoundi, Abdelghafour; Ahtil, Redouane; Guazaz, Miloudi; Mustapha, Bensghir; Haimeur, Charki

    2017-01-01

    The awake brain surgery is an innovative approach in the treatment of tumors in the functional areas of the brain. There are various anesthetic techniques for awake craniotomy (AC), including asleep-awake-asleep technique, monitored anesthesia care, and the recent introduced awake-awake-awake method. We describe our first experience with anesthetic management for awake craniotomy, which was a combination of these techniques with scalp nerve block, and propofol/rémifentanil target controlled infusion. A 28-year-oldmale underwent an awake craniotomy for brain glioma resection. The scalp nerve block was performed and a low sedative state was maintained until removal of bone flap. During brain glioma resection, the patient awake state was maintained without any complications. Once, the tumorectomy was completed, the level of anesthesia was deepened and a laryngeal mask airway was inserted. A well psychological preparation, a reasonable choice of anesthetic techniques and agents, and continuous team communication were some of the key challenges for successful outcome in our patient.

  10. Anaesthetic management for awake craniotomy in brain glioma resection: initial experience in Military Hospital Mohamed V of Rabat

    PubMed Central

    Meziane, Mohammed; Elkoundi, Abdelghafour; Ahtil, Redouane; Guazaz, Miloudi; Mustapha, Bensghir; Haimeur, Charki

    2017-01-01

    The awake brain surgery is an innovative approach in the treatment of tumors in the functional areas of the brain. There are various anesthetic techniques for awake craniotomy (AC), including asleep-awake-asleep technique, monitored anesthesia care, and the recent introduced awake-awake-awake method. We describe our first experience with anesthetic management for awake craniotomy, which was a combination of these techniques with scalp nerve block, and propofol/rémifentanil target controlled infusion. A 28-year-oldmale underwent an awake craniotomy for brain glioma resection. The scalp nerve block was performed and a low sedative state was maintained until removal of bone flap. During brain glioma resection, the patient awake state was maintained without any complications. Once, the tumorectomy was completed, the level of anesthesia was deepened and a laryngeal mask airway was inserted. A well psychological preparation, a reasonable choice of anesthetic techniques and agents, and continuous team communication were some of the key challenges for successful outcome in our patient. PMID:28904684

  11. Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma

    NASA Astrophysics Data System (ADS)

    Ramachandran, Ranjith; Junnuthula, Vijayabhaskar Reddy; Gowd, G. Siddaramana; Ashokan, Anusha; Thomas, John; Peethambaran, Reshmi; Thomas, Anoop; Unni, Ayalur Kodakara Kochugovindan; Panikar, Dilip; Nair, Shantikumar V.; Koyakutty, Manzoor

    2017-03-01

    Localized and controlled delivery of chemotherapeutics directly in brain-tumor for prolonged periods may radically improve the prognosis of recurrent glioblastoma. Here, we report a unique method of nanofiber by fiber controlled delivery of anti-cancer drug, Temozolomide, in orthotopic brain-tumor for one month using flexible polymeric nano-implant. A library of drug loaded (20 wt%) electrospun nanofiber of PLGA-PLA-PCL blends with distinct in vivo brain-release kinetics (hours to months) were numerically selected and a single nano-implant was formed by co-electrospinning of nano-fiber such that different set of fibres releases the drug for a specific periods from days to months by fiber-by-fiber switching. Orthotopic rat glioma implanted wafers showed constant drug release (116.6 μg/day) with negligible leakage into the peripheral blood (<100 ng) rendering ~1000 fold differential drug dosage in tumor versus peripheral blood. Most importantly, implant with one month release profile resulted in long-term (>4 month) survival of 85.7% animals whereas 07 day releasing implant showed tumor recurrence in 54.6% animals, rendering a median survival of only 74 days. In effect, we show that highly controlled drug delivery is possible for prolonged periods in orthotopic brain-tumor using combinatorial nanofibre libraries of bulk-eroding polymers, thereby controlling glioma recurrence.

  12. Concurrent thermochemoradiotherapy for brain high-grade glioma

    NASA Astrophysics Data System (ADS)

    Ryabova, A. I.; Novikov, V. A.; Choinzonov, E. L.; Gribova, O. V.; Startseva, Zh. A.; Bober, E. E.; Frolova, I. G.; Baranova, A. V.

    2016-08-01

    Despite the achievements in the current strategies for treatment, the prognosis in malignant glioma patients remains unsatisfactory. Hyperthermia is currently considered to be the most effective and universal modifier of radiotherapy and chemotherapy. Preliminary treatment outcomes for 28 patients with newly diagnosed (23) and recurrent (5) high-grade gliomas were presented. All the patients received multimodality treatment including surgery, thermoche-moradiotherapy followed by 4 cycles of adjuvant chemotherapy. All the patients endured thermochemoradiotherapy well. A complication, limited skin burn (II stage), was diagnosed in two cases and treated conservatively without treatment interruption. A month after thermochemoradiotherapy the results were as follows: complete regression was achieved in 4 cases, partial regression in 4 cases, stable disease in 14 cases and disease progression in 6 cases (one of them is pseudo-progression). After completing the adjuvant chemotherapy 2 more patients demonstrated complete response and 1 patient had disease progression. Introduction of local hyperthermia in multimodal therapy of malignant glioma does not impair the combined modality treatment tolerability of patients with malignant gliomas. A small number of studied patients and short follow-up time do not allow making reliable conclusions about the impact of local hyperthermia on the treatment outcomes; however, there is a tendency towards the increase in disease-free survival in the patients with newly diagnosed malignant gliomas.

  13. Concurrent thermochemoradiotherapy for brain high-grade glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryabova, A. I., E-mail: ranigor@mail.ru; Novikov, V. A.; Startseva, Zh. A.

    Despite the achievements in the current strategies for treatment, the prognosis in malignant glioma patients remains unsatisfactory. Hyperthermia is currently considered to be the most effective and universal modifier of radiotherapy and chemotherapy. Preliminary treatment outcomes for 28 patients with newly diagnosed (23) and recurrent (5) high-grade gliomas were presented. All the patients received multimodality treatment including surgery, thermoche-moradiotherapy followed by 4 cycles of adjuvant chemotherapy. All the patients endured thermochemoradiotherapy well. A complication, limited skin burn (II stage), was diagnosed in two cases and treated conservatively without treatment interruption. A month after thermochemoradiotherapy the results were as follows: completemore » regression was achieved in 4 cases, partial regression in 4 cases, stable disease in 14 cases and disease progression in 6 cases (one of them is pseudo-progression). After completing the adjuvant chemotherapy 2 more patients demonstrated complete response and 1 patient had disease progression. Introduction of local hyperthermia in multimodal therapy of malignant glioma does not impair the combined modality treatment tolerability of patients with malignant gliomas. A small number of studied patients and short follow-up time do not allow making reliable conclusions about the impact of local hyperthermia on the treatment outcomes; however, there is a tendency towards the increase in disease-free survival in the patients with newly diagnosed malignant gliomas.« less

  14. Intraarterial Infusion Of Erbitux and Bevacizumab For Relapsed/Refractory Intracranial Glioma In Patients Under 22

    ClinicalTrials.gov

    2018-01-26

    Glioblastoma Multiforme; Fibrillary Astrocytoma of Brain; Glioma of Brainstem; Anaplastic Astrocytoma; Pilomyxoid Astrocytoma; Mixed Oligodendroglioma-Astrocytoma; Brain Stem Glioma; Diffuse Intrinsic Pontine Glioma

  15. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands.

    PubMed

    Wei, Xiaoli; Gao, Jie; Zhan, Changyou; Xie, Cao; Chai, Zhilan; Ran, Danni; Ying, Man; Zheng, Ping; Lu, Weiyue

    2015-11-28

    The treatment of glioma is one of the most challenging tasks in clinic. As an intracranial tumor, glioma exhibits many distinctive characteristics from other tumors. In particular, various barriers including enzymatic barriers in the blood and brain capillary endothelial cells, blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) rigorously prevent drug and drug delivery systems from reaching the tumor site. To tackle this dilemma, we developed a liposomal formulation to circumvent multiple-barriers by modifying the liposome surface with proteolytically stable peptides, (D)CDX and c(RGDyK). (D)CDX is a D-peptide ligand of nicotine acetylcholine receptors (nAChRs) on the BBB, and c(RGDyK) is a ligand of integrin highly expressed on the BBTB and glioma cells. Lysosomal compartments of brain capillary endothelial cells are implicated in the transcytosis of those liposomes. However, both peptide ligands displayed exceptional stability in lysosomal homogenate, ensuring that intact ligands could exert subsequent exocytosis from brain capillary endothelial cells and glioma targeting. In the cellular uptake studies, dually labeled liposomes could target both brain capillary endothelial cells and tumor cells, effectively traversing the BBB and BBTB monolayers, overcoming enzymatic barrier and targeting three-dimensional tumor spheroids. Its targeting ability to intracranial glioma was further verified in vivo by ex vivo imaging and histological studies. As a result, doxorubicin liposomes modified with both (D)CDX and c(RGDyK) presented better anti-glioma effect with prolonged median survival of nude mice bearing glioma than did unmodified liposomes and liposomes modified with individual peptide ligand. In conclusion, the liposome suggested in the present study could effectively overcome multi-barriers and accomplish glioma targeted drug delivery, validating its potential value in improving the therapeutic efficacy of doxorubicin for glioma. Copyright © 2015

  16. Trends and Outcomes in the Treatment of Gliomas Based on Data during 2001–2004 from the Brain Tumor Registry of Japan

    PubMed Central

    NARITA, Yoshitaka; SHIBUI, Soichiro

    2015-01-01

    The committee of Brain Tumor Registry of Japan (BTRJ) was founded in 1973 and conducts surveys and analyses of incidence, therapeutic methods, and treatment outcomes of primary and metastatic brain tumors with the cooperation of the Japan Neurosurgical Society members. Newly diagnosed 3,000–4,000 primary brain tumors and 600–1,000 brain metastases patients were enrolled in each year. This report describes the trends and treatment outcomes of gliomas from BTRJ volume 13, including 13,431 patients with primary brain tumors who newly started treatment from 2001 to 2004. Data from 382 diffuse astrocytomas (DAs), 121 oligodendrogliomas (OLs), 90 oligoastrocytomas (OAs), 513 anaplastic astrocytomas (AAs), 126 anaplastic oligodendrogliomas (AOs), 106 anaplastic oligoastrocytomas (AOAs), and 1,489 glioblastomas (GBMs) were analyzed for overall survival (OS) and progression free survival (PFS) depending on age, symptoms, Karnofsky performance status, location of the tumor, extent of resection (EOR), initial radiotherapy and chemotherapy. The 5-year PFS rates of the patients with DA, OL + OA, AA, AO + AOA, and GBM were 57.0%, 74.6%, 28.7%, 54.0%, and 9.2%, and the 5-year OS rates were 75.0%, 90.0%, 41.1%, 68.2%, and 10.1%, respectively. Higher EOR ≥ 75% in DA and OL + OA and that ≥ 50% in AA, AO + AOA, and GBM significantly prolonged OS. Complications and cause of death were also reported. BTRJ had been edited for all the patients, researchers, and especially for clinicians at bedside to give useful information about brain tumors and to contribute to the advances in brain tumor treatment. This report revealed various clinical problematic issues pertaining to the diagnosis and treatment of gliomas. PMID:25797780

  17. Potential application of a handheld confocal endomicroscope imaging system using a variety of fluorophores in experimental gliomas and normal brain.

    PubMed

    Martirosyan, Nikolay L; Georges, Joseph; Eschbacher, Jennifer M; Cavalcanti, Daniel D; Elhadi, Ali M; Abdelwahab, Mohammed G; Scheck, Adrienne C; Nakaji, Peter; Spetzler, Robert F; Preul, Mark C

    2014-02-01

    The authors sought to assess the feasibility of a handheld visible-wavelength confocal endomicroscope imaging system (Optiscan 5.1, Optiscan Pty., Ltd.) using a variety of rapid-acting fluorophores to provide histological information on gliomas, tumor margins, and normal brain in animal models. Mice (n = 25) implanted with GL261 cells were used to image fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA), acridine orange (AO), acriflavine (AF), and cresyl violet (CV). A U251 glioma xenograft model in rats (n = 5) was used to image sulforhodamine 101 (SR101). A swine (n = 3) model with AO was used to identify confocal features of normal brain. Images of normal brain, obvious tumor, and peritumoral zones were collected using the handheld confocal endomicroscope. Histological samples were acquired through biopsies from matched imaging areas. Samples were visualized with a benchtop confocal microscope. Histopathological features in corresponding confocal images and photomicrographs of H & E-stained tissues were reviewed. Fluorescence induced by FNa, 5-ALA, AO, AF, CV, and SR101 and detected with the confocal endomicroscope allowed interpretation of histological features. Confocal endomicroscopy revealed satellite tumor cells within peritumoral tissue, a definitive tumor border, and striking fluorescent cellular and subcellular structures. Fluorescence in various tumor regions correlated with standard histology and known tissue architecture. Characteristic features of different areas of normal brain were identified as well. Confocal endomicroscopy provided rapid histological information precisely related to the site of microscopic imaging with imaging characteristics of cells related to the unique labeling features of the fluorophores. Although experimental with further clinical trial validation required, these data suggest that intraoperative confocal imaging can help to distinguish normal brain from tumor and tumor margin and may have application in improving

  18. Optic glioma

    MedlinePlus

    ... is a strong association between optic glioma and neurofibromatosis type 1 ( NF1 ). Symptoms The symptoms are due ... brain (intracranial pressure). There may be signs of neurofibromatosis type 1 (NF1). The following tests may be ...

  19. In Silico Neuro-Oncology: Brownian Motion-Based Mathematical Treatment as a Potential Platform for Modeling the Infiltration of Glioma Cells into Normal Brain Tissue.

    PubMed

    Antonopoulos, Markos; Stamatakos, Georgios

    2015-01-01

    Intensive glioma tumor infiltration into the surrounding normal brain tissues is one of the most critical causes of glioma treatment failure. To quantitatively understand and mathematically simulate this phenomenon, several diffusion-based mathematical models have appeared in the literature. The majority of them ignore the anisotropic character of diffusion of glioma cells since availability of pertinent truly exploitable tomographic imaging data is limited. Aiming at enriching the anisotropy-enhanced glioma model weaponry so as to increase the potential of exploiting available tomographic imaging data, we propose a Brownian motion-based mathematical analysis that could serve as the basis for a simulation model estimating the infiltration of glioblastoma cells into the surrounding brain tissue. The analysis is based on clinical observations and exploits diffusion tensor imaging (DTI) data. Numerical simulations and suggestions for further elaboration are provided.

  20. New developments in surgery of malignant gliomas

    PubMed Central

    Vranic, Andrej

    2011-01-01

    Background Malignant gliomas account for a high proportion of brain tumours. With new advances in neurooncology, the recurrence-free survival of patients with malignant gliomas has been substantially prolonged. It, however, remains dependent on the thoroughness of the surgical resection. The maximal tumour resection without additional postoperative deficit is the goal of surgery on patients with malignant gliomas. In order to minimize postoperative deficit, several pre- and intraoperative techniques have been developed. Conclusions Several techniques used in malignant glioma surgery have been developed, including microsurgery, neuroendoscopy, stereotactic biopsy and brachytherapy. Imaging and functional techniques allowing for safer tumour resection have a special value. Imaging techniques allow for better preoperative visualization and choice of the approach, while functional techniques help us locate eloquent regions of the brain. PMID:22933950

  1. Molecular markers in glioma.

    PubMed

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  2. Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells

    NASA Astrophysics Data System (ADS)

    Pogoda, Katarzyna

    The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.

  3. Vascular Gene Expression in Nonneoplastic and Malignant Brain

    PubMed Central

    Madden, Stephen L.; Cook, Brian P.; Nacht, Mariana; Weber, William D.; Callahan, Michelle R.; Jiang, Yide; Dufault, Michael R.; Zhang, Xiaoming; Zhang, Wen; Walter-Yohrling, Jennifer; Rouleau, Cecile; Akmaev, Viatcheslav R.; Wang, Clarence J.; Cao, Xiaohong; St. Martin, Thia B.; Roberts, Bruce L.; Teicher, Beverly A.; Klinger, Katherine W.; Stan, Radu-Virgil; Lucey, Brenden; Carson-Walter, Eleanor B.; Laterra, John; Walter, Kevin A.

    2004-01-01

    Malignant gliomas are uniformly lethal tumors whose morbidity is mediated in large part by the angiogenic response of the brain to the invading tumor. This profound angiogenic response leads to aggressive tumor invasion and destruction of surrounding brain tissue as well as blood-brain barrier breakdown and life-threatening cerebral edema. To investigate the molecular mechanisms governing the proliferation of abnormal microvasculature in malignant brain tumor patients, we have undertaken a cell-specific transcriptome analysis from surgically harvested nonneoplastic and tumor-associated endothelial cells. SAGE-derived endothelial cell gene expression patterns from glioma and nonneoplastic brain tissue reveal distinct gene expression patterns and consistent up-regulation of certain glioma endothelial marker genes across patient samples. We define the G-protein-coupled receptor RDC1 as a tumor endothelial marker whose expression is distinctly induced in tumor endothelial cells of both brain and peripheral vasculature. Further, we demonstrate that the glioma-induced gene, PV1, shows expression both restricted to endothelial cells and coincident with endothelial cell tube formation. As PV1 provides a framework for endothelial cell caveolar diaphragms, this protein may serve to enhance glioma-induced disruption of the blood-brain barrier and transendothelial exchange. Additional characterization of this extensive brain endothelial cell gene expression database will provide unique molecular insights into vascular gene expression. PMID:15277233

  4. Epstein–Barr Virus in Gliomas: Cause, Association, or Artifact?

    PubMed Central

    Akhtar, Saghir; Vranic, Semir; Cyprian, Farhan Sachal; Al Moustafa, Ala-Eddin

    2018-01-01

    Gliomas are the most common malignant brain tumors and account for around 60% of all primary central nervous system cancers. Glioblastoma multiforme (GBM) is a grade IV glioma associated with a poor outcome despite recent advances in chemotherapy. The etiology of gliomas is unknown, but neurotropic viruses including the Epstein–Barr virus (EBV) that is transmitted via salivary and genital fluids have been implicated recently. EBV is a member of the gamma herpes simplex family of DNA viruses that is known to cause infectious mononucleosis (glandular fever) and is strongly linked with the oncogenesis of several cancers, including B-cell lymphomas, nasopharyngeal, and gastric carcinomas. The fact that EBV is thought to be the causative agent for primary central nervous system (CNS) lymphomas in immune-deficient patients has led to its investigations in other brain tumors including gliomas. Here, we provide a review of the clinical literature pertaining to EBV in gliomas and discuss the possibilities of this virus being simply associative, causative, or even an experimental artifact. We searched the PubMed/MEDLINE databases using the following key words such as: glioma(s), glioblastoma multiforme, brain tumors/cancers, EBV, and neurotropic viruses. Our literature analysis indicates conflicting results on the presence and role of EBV in gliomas. Further comprehensive studies are needed to fully implicate EBV in gliomagenesis and oncomodulation. Understanding the role of EBV and other oncoviruses in the etiology of gliomas, would likely open up new avenues for the treatment and management of these, often fatal, CNS tumors. PMID:29732319

  5. Seizure control as a new metric in assessing efficacy of tumor treatment in low-grade glioma trials

    PubMed Central

    Chamberlain, Marc; Schiff, David; Reijneveld, Jaap C.; Armstrong, Terri S.; Ruda, Roberta; Wen, Patrick Y.; Weller, Michael; Koekkoek, Johan A. F.; Mittal, Sandeep; Arakawa, Yoshiki; Choucair, Ali; Gonzalez-Martinez, Jorge; MacDonald, David R.; Nishikawa, Ryo; Shah, Aashit; Vecht, Charles J.; Warren, Paula; van den Bent, Martin J.; DeAngelis, Lisa M.

    2017-01-01

    Patients with low-grade glioma frequently have brain tumor–related epilepsy, which is more common than in patients with high-grade glioma. Treatment for tumor-associated epilepsy usually comprises a combination of surgery, anti-epileptic drugs (AEDs), chemotherapy, and radiotherapy. Response to tumor-directed treatment is measured primarily by overall survival and progression-free survival. However, seizure frequency has been observed to respond to tumor-directed treatment with chemotherapy or radiotherapy. A review of the current literature regarding seizure assessment for low-grade glioma patients reveals a heterogeneous manner in which seizure response has been reported. There is a need for a systematic approach to seizure assessment and its influence on health-related quality-of-life outcomes in patients enrolled in low-grade glioma therapeutic trials. In view of the need to have an adjunctive metric of tumor response in these patients, a method of seizure assessment as a metric in brain tumor treatment trials is proposed. PMID:27651472

  6. Global and Targeted Pathway Impact of Gliomas on White Matter Integrity Based on Lobar Localization.

    PubMed

    Ormond, David R; D'Souza, Shawn; Thompson, John A

    2017-09-07

    Primary brain tumors comprise 28% of all tumors and 80% of malignant tumors. Pathophysiology of high-grade gliomas includes significant distortion of white matter architecture, necrosis, the breakdown of the blood brain barrier, and increased intracranial pressure. Diffusion tensor imaging (DTI), a diffusion weighted imaging technique, can be used to assess white matter architecture. Use of DTI as a non-invasive pathophysiological tool to analyze glioma impact on white matter microstructure has yet to be fully explored. Preliminary assessment of DTI tractography was done as a measure of intracranial tumor impact on white matter architecture. Specifically, we addressed three questions: 1) whether glioma differentially affects local white matter structure compared to metastasis, 2) whether glioma affects tract integrity of major white matter bundles, 3) whether glioma lobe localization affects tract integrity of different white matter bundles. In this study, we retrospectively investigated preoperative DTI scans from 24 patients undergoing tumor resection. Fiber tractography was estimated using a deterministic fiber tracking algorithm in DSI (diffusion spectrum imaging) Studio. The automatic anatomical labeling (AAL) atlas was used to define the left and right (L/R)   hemisphere regions of interest (ROI). In addition, the John Hopkins University (JHU) White Matter Atlas was used to auto-segment major white matter bundle ROIs. For all tracts derived from ROI seed targets, we computed the following parameters: tract number, tract length, fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD). The DTI tractography analysis revealed that white matter integrity in the hemisphere ipsilateral to intracranial tumor was significantly compromised compared to the control contralateral hemisphere. No differences were observed between high vs low-grade gliomas, however, gliomas induced significantly greater white matter

  7. Childhood Brain Stem Glioma Treatment

    MedlinePlus

    ... glioma should have their treatment planned by a team of health care providers who are experts in ... treatment is best for their child. The healthcare team can give parents information to help them make ...

  8. Capillary electrophoresis - Mass spectrometry metabolomics analysis revealed enrichment of hypotaurine in rat glioma tissues.

    PubMed

    Gao, Peng; Ji, Min; Fang, Xueyan; Liu, Yingyang; Yu, Zhigang; Cao, Yunfeng; Sun, Aijun; Zhao, Liang; Zhang, Yong

    2017-11-15

    Glioma is one of the most lethal brain malignancies with unknown etiologies. Many metabolomics analysis aiming at diverse kinds of samples had been performed. Due to the varied adopted analytical platforms, the reported disease-related metabolites were not consistent across different studies. Comparable metabolomics results are more likely to be acquired by analyzing the same sample types with identical analytical platform. For tumor researches, tissue samples metabolomics analysis own the unique advantage that it can gain more direct insight into disease-specific pathological molecules. In this light, a previous reported capillary electrophoresis - mass spectrometry human tissues metabolomics analysis method was employed to profile the metabolome of rat C6 cell implantation gliomas and the corresponding precancerous tissues. It was found that 9 metabolites increased in the glioma tissues. Of them, hypotaurine was the only metabolite that enriched in the malignant tissues as what had been reported in the relevant human tissues metabolomics analysis. Furthermore, hypotaurine was also proved to inhibit α-ketoglutarate-dependent dioxygenases (2-KDDs) through immunocytochemistry staining and in vitro enzymatic activity assays by using C6 cell cultures. This study reinforced the previous conclusion that hypotaurine acted as a competitive inhibitor of 2-KDDs and proved the value of metabolomics in oncology studies. Copyright © 2017. Published by Elsevier Inc.

  9. Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis.

    PubMed

    Annibali, Daniela; Whitfield, Jonathan R; Favuzzi, Emilia; Jauset, Toni; Serrano, Erika; Cuartas, Isabel; Redondo-Campos, Sara; Folch, Gerard; Gonzàlez-Juncà, Alba; Sodir, Nicole M; Massó-Vallés, Daniel; Beaulieu, Marie-Eve; Swigart, Lamorna B; Mc Gee, Margaret M; Somma, Maria Patrizia; Nasi, Sergio; Seoane, Joan; Evan, Gerard I; Soucek, Laura

    2014-08-18

    Gliomas are the most common primary tumours affecting the adult central nervous system and respond poorly to standard therapy. Myc is causally implicated in most human tumours and the majority of glioblastomas have elevated Myc levels. Using the Myc dominant negative Omomyc, we previously showed that Myc inhibition is a promising strategy for cancer therapy. Here, we preclinically validate Myc inhibition as a therapeutic strategy in mouse and human glioma, using a mouse model of spontaneous multifocal invasive astrocytoma and its derived neuroprogenitors, human glioblastoma cell lines, and patient-derived tumours both in vitro and in orthotopic xenografts. Across all these experimental models we find that Myc inhibition reduces proliferation, increases apoptosis and remarkably, elicits the formation of multinucleated cells that then arrest or die by mitotic catastrophe, revealing a new role for Myc in the proficient division of glioma cells.

  10. The biology and mathematical modelling of glioma invasion: a review

    PubMed Central

    Talkenberger, K.; Seifert, M.; Klink, B.; Hawkins-Daarud, A.; Swanson, K. R.; Hatzikirou, H.

    2017-01-01

    Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion. PMID:29118112

  11. Products of cells from gliomas: VIII. Multiple-well immunoperoxidase assay of immunoreactivity of primary hybridoma supernatants with human glioma and brain tissue and cultured glioma cells.

    PubMed

    McKeever, P E; Wahl, R L; Shakui, P; Jackson, G A; Letica, L H; Liebert, M; Taren, J A; Beierwaltes, W H; Hoff, J T

    1990-06-01

    To test the feasibility of primary screening of hybridoma supernatants against human glioma tissue, over 5000 combinations of hybridoma supernatants with glioma tissue, cultured glioma cells, and normal central neural tissue were screened with a new multiple-well (M-well) screening system. This is an immunoperoxidase assay system with visual endpoints for screening 20-30 hybridoma supernatants per single microscope slide. There were extensive differences between specificities to tissue and to cultured glioma cells when both were screened with M-wells and when cultured cells were screened with standard semi-automated fluorescence. Primary M-well screening with glioma tissue detected seven hybridoma supernatants that specifically identified parenchymal cells of glioma tissue and that were not detected with cultured cells. Immunoreactivities of individual supernatants for vascular components (nine supernatants), necrosis (five supernatants), and nuclei (three supernatants) were detected. Other supernatants bound multiple sites on glioma tissue and/or subpopulations of neurons and glia of normal tissue. The results show that primary screening with glioma tissue detects a number of different specificities of hybridoma supernatants to gliomas not detected by conventional screening with cultured cells. These are potentially applicable to diagnosis and therapy.

  12. Pc 4 photodynamic therapy of U87 (human glioma) orthotopic tumor in nude rat brain

    NASA Astrophysics Data System (ADS)

    Dean, David; George, John E., III; Ahmad, Yusra; Wolfe, Michael S.; Lilge, Lothar; Morris, Rachel L.; Peterson, Allyn; Lust, W. D.; Totonchi, Ali; Varghai, Davood; Li, Xiaolin; Hoppel, Charles L.; Sun, Jiayang; Oleinick, Nancy L.

    2005-04-01

    Introduction: Photodynamic therapy (PDT) for Barrett"s esophagus, advanced esophageal cancer, and both early and late inoperable lung carcinoma is now FDA-approved using the first generation photosensitizer PhotofrinTM (Axcan Pharma, Birmingham, AL). Photofrin-mediated PDT of glioma is now in Phase III clinical trials. A variety of second generation photosensitizers have been developed to provide improved: (1) specificity for the target tissue, (2) tumoricidal capability, and (3) rapid clearance the vascular compartment, skin, and eyes. The phthalocyanine Pc 4 is a second generation photosensitizer that is in early phase I clinical trials for skin cancer. We have undertaken a preclinical study that seeks to determine if Pc 4-mediated PDT can be of benefit for the intra-operative localization and treatment of glioma. Methods: Using a stereotactic frame, 250,000 U87 cells were injected via Hamilton syringe through a craniotomy, and the dura, 1-2 mm below the cortical surface of nude (athymic) rat brains (N=91). The craniotomy was filled with a piece of surgical PVC and the scalp closed. After two weeks of tumor growth, the animals received 0.5 mg/kg Pc 4 via tail vein injection. One day later the scalp was re-incised, and the PVC removed. The tumor was then illuminated with either 5 or 30 Joule/cm2 of 672-nm light from a diode laser at 50 mW/cm2. The animals were sacrificed one day later and the brain was cold-perfused with formaldehyde. Two thirds of the explanted brains are now being histologically surveyed for necrosis after staining with hematoxylin and eosin and for apoptosis via immunohistochemistry (i.e., TUNEL assay). The other third were analyzed by HPLC-mass spectrometry for the presence of drug in tumor, normal brain, and plasma at sacrifice. Initial histological results show PDT-induced apoptosis and necrosis confined to the growing (live) portion of the tumor. Preliminary analysis shows an average selectivity of Pc 4 uptake in the bulk tumor to be 3

  13. A Study of the Treatment of Recurrent Malignant Glioma With rQNestin34.5v.2

    ClinicalTrials.gov

    2018-04-09

    Malignant Glioma of Brain; Astrocytoma; Malignant Astrocytoma; Oligodendroglioma; Anaplastic Oligodendroglioma of Brain (Diagnosis); Mixed Oligo-Astrocytoma; Ependymoma; Ganglioglioma; Pylocytic/Pylomyxoid Astrocytoma; Brain Tumor; Glioma; Brain Cancer; Glioblastoma; Glioblastoma Multiforme

  14. Veliparib, Radiation Therapy, and Temozolomide in Treating Younger Patients With Newly Diagnosed Diffuse Pontine Gliomas

    ClinicalTrials.gov

    2018-03-30

    Anaplastic Astrocytoma; Brain Stem Glioma; Childhood Mixed Glioma; Fibrillary Astrocytoma; Giant Cell Glioblastoma; Glioblastoma; Gliosarcoma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliosarcoma

  15. Significance of perivascular tumour cells defined by CD109 expression in progression of glioma.

    PubMed

    Shiraki, Yukihiro; Mii, Shinji; Enomoto, Atsushi; Momota, Hiroyuki; Han, Yi-Peng; Kato, Takuya; Ushida, Kaori; Kato, Akira; Asai, Naoya; Murakumo, Yoshiki; Aoki, Kosuke; Suzuki, Hiromichi; Ohka, Fumiharu; Wakabayashi, Toshihiko; Todo, Tomoki; Ogawa, Seishi; Natsume, Atsushi; Takahashi, Masahide

    2017-12-01

    In the progression of glioma, tumour cells often exploit the perivascular microenvironment to promote their survival and resistance to conventional therapies. Some of these cells are considered to be brain tumour stem cells (BTSCs); however, the molecular nature of perivascular tumour cells has not been specifically clarified because of the complexity of glioma. Here, we identified CD109, a glycosylphosphatidylinositol-anchored protein and regulator of multiple signalling pathways, as a critical regulator of the progression of lower-grade glioma (World Health Organization grade II/III) by clinicopathological and whole-genome sequencing analysis of tissues from human glioma. The importance of CD109-positive perivascular tumour cells was confirmed not only in human lower-grade glioma tissues but also in a mouse model that recapitulated human glioma. Intriguingly, BTSCs isolated from mouse glioma expressed high levels of CD109. CD109-positive BTSCs exerted a proliferative effect on differentiated glioma cells treated with temozolomide. These data reveal the significance of tumour cells that populate perivascular regions during glioma progression, and indicate that CD109 is a potential therapeutic target for the disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. 5-Aminolevulinic Acid Accumulation in a Cerebral Infarction Mimicking High-Grade Glioma.

    PubMed

    Behling, Felix; Hennersdorf, Florian; Bornemann, Antje; Tatagiba, Marcos; Skardelly, Marco

    2016-08-01

    5-Aminolevulinic acid (5-ALA) has become an integral part in the neurosurgical treatment of malignant glioma. Over time, several other tumor entities have been identified to metabolize 5-ALA and show a similar fluorescence pattern during surgical resection. This case report is the first description of 5-ALA accumulation in postischemic cerebral tissue. This evidence questions the assumption that 5-ALA accumulation in glioma is exclusively attributed to tumor infiltration. Instead, 5-ALA accumulation can also occur beyond the tumor borders and may be partially ascribed to inflammatory changes in the surrounding brain tissue. A 64-year old woman presented with episodes of apraxia and a ring-enhancing lesion in postcontrast T1-weighted magnetic resonance sequences suggestive of high grade glioma. Strong fluorescence was observed during 5-ALA-guided resection. However, although the frozen section was inconclusive, the final histopathologic examination revealed a stage II cerebral infarction. 5-ALA accumulation in postischemic cerebral tissue should be considered for intended supramarginal resections near eloquent brain regions. Therefore, sufficient preoperative imaging should regularly include magnetic resonance imaging spectroscopy and perfusion sequences to ascertain the proper diagnosis. Moreover, further research is warranted to determine the role of 5-ALA accumulation in postischemic and inflammatory brain tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cholera Toxin Subunit B Enabled Multifunctional Glioma-Targeted Drug Delivery.

    PubMed

    Guan, Juan; Zhang, Zui; Hu, Xuefeng; Yang, Yang; Chai, Zhilan; Liu, Xiaoqin; Liu, Jican; Gao, Bo; Lu, Weiyue; Qian, Jun; Zhan, Changyou

    2017-12-01

    Glioma is among the most formidable brain cancers due to location in the brain. Cholera toxin subunit B (CTB) is investigated to facilitate multifunctional glioma-targeted drug delivery by targeting the glycosphingolipid GM1 expressed in the blood-brain barrier (BBB), neovasulature, and glioma cells. When modified on the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CTB-NPs), CTB fully retains its bioactivity after 24 h incubation in the fresh mouse plasma. The formed protein corona (PC) of CTB-NP and plain PLGA nanoparticles (NP) after incubation in plasma is analyzed using liquid chromatography tandem massspectrometry (nano-LC-MS/MS). CTB modification does not alter the protein components of the formed PC, macrophage phagocytosis, or pharmacokinetic profiles. CTB-NP can efficiently penetrate the in vitro BBB model and target glioma cells and human umbilical vascular endothelial cells. Paclitaxel is loaded in NP (NP/PTX) and CTB-NP (CTB-NP/PTX), and their antiglioma effects are assessed in nude mice bearing intracranial glioma. CTB-NP/PTX can efficiently induce apoptosis of intracranial glioma cells and ablate neovasulature in vivo, resulting in significant prolongation of survival of nude mice bearing intracranial glioma (34 d) in comparison to those treated with NP/PTX (29 d), Taxol (24 d), and saline (21 d). The present study suggests a potential multifunctional glioma-targeted drug delivery system enabled by cholera toxin subunit B. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Expression and mechanism of Twist2 in glioma].

    PubMed

    Wang, L Z; Wang, W J; Xiong, Y F; Xu, S; Wang, S S; Tu, Y; Wang, Z Y; Yan, X L; Mei, J H; Wang, C L

    2017-12-08

    Objective: To investigate the significance of Twist2 in glioma and whether it is involved in the malignant transformation of glioma by epithelial-mesenchymal transition (EMT). Methods: Using immunohistochemical method detected the expression level of Twist2 in 60 cases of gliomas (including WHO grades Ⅱ, Ⅲ and Ⅳ, each for 20 cases) and 20 cases of non-tumor brain tissues. Real-time fluorescence quantitative PCR and Western blot were used to detect the expression level of Twist2 mRNA and protein in 61 cases of fresh glioma tissue (WHO grade Ⅱ 16 cases, Ⅲ 21 cases, Ⅳ 24 cases) and 12 cases of adjacent tissues, and the expression levels of E-cadherin, N-cadherin and vimentin were also investigated in fresh glioma tissue. Results: Immunohistochemistry results showed that the percentages of Twist2 expression in glioma was 90%(54/60) compared with 30%(6/20) in non-tumor brain tissues( P <0.01). The percentages of Twist2 expression were 75% (15/20), 95% (19/20), and 100% (20/20) in the WHO gradesⅡ, Ⅲ and Ⅳ gliomas, respectively. WHO grades Ⅳ and Ⅲ were significantly higher than that of WHO grade Ⅱ ( P <0.01). There was no significant difference between WHO grade Ⅳand WHO Ⅲ glioma ( P >0.05). Real-time fluorescence quantitative PCR and Western blot showed that the expression level of Twist 2 in gliomas was significantly higher than that in para-cancerous tissues ( P <0.01), and those in WHO grades Ⅳ and Ⅲ gliomas were significantly higher than that in WHO grade Ⅱ glioma ( P <0.01). There was no significant difference between WHO grade Ⅳand grade Ⅲ glioma ( P >0.05). Detection of key protein expression in EMT by Western blot displayed that the expression of E-cadherin was negatively associated with Twist2 in glioma ( r =-0.972, P <0.01). The expression of N-cadherin and vimentin was positively associated with Twist2 in glioma( r =0.971, P <0.01; r =0.968, P <0.01). Conclusions: The expression of Twist2 in human glioma is positively

  19. Myristic Acid-Modified DA7R Peptide for Whole-Process Glioma-Targeted Drug Delivery.

    PubMed

    Ying, Man; Wang, Songli; Zhang, Mingfei; Wang, Ruifeng; Zhu, Hangchang; Ruan, Huitong; Ran, Danni; Chai, Zhilan; Wang, Xiaoyi; Lu, Weiyue

    2018-06-13

    The clinical treatment of aggressive glioma has been a great challenge, mainly because of the complexity of the glioma microenvironment and the existence of the blood-brain tumor barrier (BBTB)/blood-brain barrier (BBB), which severely hampers the effective accumulation of most therapeutic agents in the glioma region. Additionally, vasculogenic mimicry (VM), angiogenesis, and glioma stem cells (GSC) in malignant glioma also lead to the failure of clinical therapy. To address the aforementioned issues, a whole-process glioma-targeted drug delivery strategy was proposed. The D A7R peptide has effective BBTB-penetrating and notable glioma-, angiogenesis-, and VM-targeting abilities. Herein, we designed a myristic acid modified D A7R ligand (MC- D A7R), which combines tumor-homing D A7R with BBB-penetrable MC. MC- D A7R was then immobilized to PEGylated liposomes (MC- D A7R-LS) to form a whole-process glioma-targeting system. MC- D A7R-LS exhibited exceptional internalization in glioma, tumor neovascular, and brain capillary endothelial cells. Enhanced BBTB- and BBB-traversing efficiencies were also observed on MC- D A7R-LS. Ex vivo imaging on brain tumors also demonstrated the feasibility of MC- D A7R-LS in intracranial glioma-homing, whereas the immunofluorescence studies demonstrated its GSC and angiogenesis homing. Furthermore, doxorubicin-loaded MC- D A7R-LS accomplished a remarkable therapeutic outcome, as a result of a synergistic improvement on the glioma microenvironment. Our study highlights the potential of the MC-modified D A7R peptide as a great candidate for the whole-process glioma-targeted drug delivery.

  20. Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells

    PubMed Central

    Kim, Ella L.; Wüstenberg, Robin; Rübsam, Anne; Schmitz-Salue, Christoph; Warnecke, Gabriele; Bücker, Eva-Maria; Pettkus, Nadine; Speidel, Daniel; Rohde, Veit; Schulz-Schaeffer, Walter; Deppert, Wolfgang; Giese, Alf

    2010-01-01

    Glioblastoma is the most common malignant brain tumor in adults. The currently available treatments offer only a palliative survival advantage and the need for effective treatments remains an urgent priority. Activation of the p53 growth suppression/apoptotic pathway is one of the promising strategies in targeting glioma cells. We show that the quinoline derivative chloroquine activates the p53 pathway and suppresses growth of glioma cells in vitro and in vivo in an orthotopic (U87MG) human glioblastoma mouse model. Induction of apoptosis is one of the mechanisms underlying the effects of chloroquine on suppressing glioma cell growth and viability. siRNA-mediated downregulation of p53 in wild-type but not mutant p53 glioblastoma cells substantially impaired chloroquine-induced apoptosis. In addition to its p53-activating effects, chloroquine may also inhibit glioma cell growth via p53-independent mechanisms. Our results clarify the mechanistic basis underlying the antineoplastic effect of chloroquine and reveal its therapeutic potential as an adjunct to glioma chemotherapy. PMID:20308316

  1. Glioma Stem Cells and Immunotherapy for the Treatment of Malignant Gliomas

    PubMed Central

    Toda, Masahiro

    2013-01-01

    Stem cell research has led to the discovery of glioma stem cells (GSCs), and because these cells are resistant to chemotherapy and radiotherapy, analysis of their properties has been rapidly pursued for targeted treatment of malignant glioma. Recent studies have also revealed complex crosstalk between GSCs and their specialized environment (niche). Therefore, targeting not only GSCs but also their niche may be a principle for novel therapies of malignant glioma. One possible novel strategy for targeting GSCs and their niches is immunotherapy with different antitumor mechanism(s) from those of conventional therapy. Recent clinical studies of immunotherapy using peptide vaccines and antibodies have shown promising results. This review describes the recent findings related to GSCs and their niches, as well as immunotherapies for glioma, followed by discussion of immunotherapies that target GSCs for the treatment of malignant glioma. PMID:23762610

  2. Glioma stem cells and immunotherapy for the treatment of malignant gliomas.

    PubMed

    Toda, Masahiro

    2013-01-01

    Stem cell research has led to the discovery of glioma stem cells (GSCs), and because these cells are resistant to chemotherapy and radiotherapy, analysis of their properties has been rapidly pursued for targeted treatment of malignant glioma. Recent studies have also revealed complex crosstalk between GSCs and their specialized environment (niche). Therefore, targeting not only GSCs but also their niche may be a principle for novel therapies of malignant glioma. One possible novel strategy for targeting GSCs and their niches is immunotherapy with different antitumor mechanism(s) from those of conventional therapy. Recent clinical studies of immunotherapy using peptide vaccines and antibodies have shown promising results. This review describes the recent findings related to GSCs and their niches, as well as immunotherapies for glioma, followed by discussion of immunotherapies that target GSCs for the treatment of malignant glioma.

  3. Characteristics of sequential targeting of brain glioma for transferrin-modified cisplatin liposome.

    PubMed

    Lv, Qing; Li, Li-Min; Han, Min; Tang, Xin-Jiang; Yao, Jin-Na; Ying, Xiao-Ying; Li, Fan-Zhu; Gao, Jian-Qing

    2013-02-28

    Methods on how to improve the sequential targeting of glioma subsequent to passing of drug through the blood-brain barrier (BBB) have been occasionally reported. However, the characteristics involved are poorly understood. In the present study, cisplatin (Cis) liposome (lipo) was modified with transferrin (Tf) to investigate the characteristics of potential sequential targeting to glioma. In bEnd3/C6 co-culture BBB models, higher transport efficiency across the BBB and cytotoxicity in basal C6 cells induced by Cis-lipo(Tf) than Cis-lipo and Cis-solution, suggest its sequential targeting effect. Interestingly, similar liposomal morphology as that of donor compartment was first demonstrated in the receptor solution of BBB models. Meanwhile, a greater acquisition in the lysosome of bEnd3, distributed sequentially into the nucleus of C6 cells were found for the Cis-lipo(Tf). Pre-incubation of chlorpromazine and Tf inhibited this process, indicating that a clathrin-dependent endocytosis is involved in the transport of Cis-lipo(Tf) across the BBB. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Increasing the efficacy of antitumor glioma vaccines by photodynamic therapy and local injection of allogeneic glioma cells

    NASA Astrophysics Data System (ADS)

    Christie, Catherine E.; Peng, Qian; Madsen, Steen J.; Uzal, Francisco A.; Hirschberg, Henry

    2016-03-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage vaccines could be increased by: (1) PDT of the priming tumor cells, and (2) injection of allogeneic glioma cells directly into brain tumors. Experiments were conducted in an in vivo brain tumor model using Fisher rats and BT4C (allogeneic) and F98 (syngeneic) glioma cells. Preliminary results showed that vaccination alone had significantly less inhibitory effect on F98 tumor growth compared to the combination of vaccination and allogeneic cell (BT4C) injection.

  5. Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule.

    PubMed

    Yang, Muhua; Adla, Shalini; Temburni, Murali K; Patel, Vivek P; Lagow, Errin L; Brady, Owen A; Tian, Jing; Boulos, Magdy I; Galileo, Deni S

    2009-10-29

    Malignant glioma cells are particularly motile and can travel diffusely through the brain parenchyma, apparently without following anatomical structures to guide their migration. The neural adhesion/recognition protein L1 (L1CAM; CD171) has been implicated in contributing to stimulation of motility and metastasis of several non-neural cancer types. We explored the expression and function of L1 protein as a stimulator of glioma cell motility using human high-grade glioma surgical specimens and established rat and human glioma cell lines. L1 protein expression was found in 17 out of 18 human high-grade glioma surgical specimens by western blotting. L1 mRNA was found to be present in human U-87/LacZ and rat C6 and 9L glioma cell lines. The glioma cell lines were negative for surface full length L1 by flow cytometry and high resolution immunocytochemistry of live cells. However, fixed and permeablized cells exhibited positive staining as numerous intracellular puncta. Western blots of cell line extracts revealed L1 proteolysis into a large soluble ectodomain (~180 kDa) and a smaller transmembrane proteolytic fragment (~32 kDa). Exosomal vesicles released by the glioma cell lines were purified and contained both full-length L1 and the proteolyzed transmembrane fragment. Glioma cell lines expressed L1-binding alphavbeta5 integrin cell surface receptors. Quantitative time-lapse analyses showed that motility was reduced significantly in glioma cell lines by 1) infection with an antisense-L1 retroviral vector and 2) L1 ectodomain-binding antibodies. Our novel results support a model of autocrine/paracrine stimulation of cell motility in glioma cells by a cleaved L1 ectodomain and/or released exosomal vesicles containing L1. This mechanism could explain the diffuse migratory behavior of high-grade glioma cancer cells within the brain.

  6. Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule

    PubMed Central

    Yang, Muhua; Adla, Shalini; Temburni, Murali K; Patel, Vivek P; Lagow, Errin L; Brady, Owen A; Tian, Jing; Boulos, Magdy I; Galileo, Deni S

    2009-01-01

    Background Malignant glioma cells are particularly motile and can travel diffusely through the brain parenchyma, apparently without following anatomical structures to guide their migration. The neural adhesion/recognition protein L1 (L1CAM; CD171) has been implicated in contributing to stimulation of motility and metastasis of several non-neural cancer types. We explored the expression and function of L1 protein as a stimulator of glioma cell motility using human high-grade glioma surgical specimens and established rat and human glioma cell lines. Results L1 protein expression was found in 17 out of 18 human high-grade glioma surgical specimens by western blotting. L1 mRNA was found to be present in human U-87/LacZ and rat C6 and 9L glioma cell lines. The glioma cell lines were negative for surface full length L1 by flow cytometry and high resolution immunocytochemistry of live cells. However, fixed and permeablized cells exhibited positive staining as numerous intracellular puncta. Western blots of cell line extracts revealed L1 proteolysis into a large soluble ectodomain (~180 kDa) and a smaller transmembrane proteolytic fragment (~32 kDa). Exosomal vesicles released by the glioma cell lines were purified and contained both full-length L1 and the proteolyzed transmembrane fragment. Glioma cell lines expressed L1-binding αvβ5 integrin cell surface receptors. Quantitative time-lapse analyses showed that motility was reduced significantly in glioma cell lines by 1) infection with an antisense-L1 retroviral vector and 2) L1 ectodomain-binding antibodies. Conclusion Our novel results support a model of autocrine/paracrine stimulation of cell motility in glioma cells by a cleaved L1 ectodomain and/or released exosomal vesicles containing L1. This mechanism could explain the diffuse migratory behavior of high-grade glioma cancer cells within the brain. PMID:19874583

  7. Endoscopic third ventriculostomy for hydrocephalus in brainstem glioma: a case series.

    PubMed

    Kobayashi, Natsuki; Ogiwara, Hideki

    2016-07-01

    A brainstem glioma is an incurable brain tumor that can be complicated by hydrocephalus. A ventriculoperitoneal (VP) shunt is generally performed for the control of hydrocephalus. This study aimed to reveal the safety and efficacy of an endoscopic third ventriculostomy (ETV) for hydrocephalus in brainstem gliomas. Six patients who had pontine glioma with hydrocephalus underwent an ETV between May 2010 and November 2015. In all the cases, there were one or more symptoms of hydrocephalus (headache, nausea, vomiting, or lethargy). Retrospective review of these patients was performed using the medical records and neuroimagings. The ETV was performed safely and there were no intraoperative complications in all patients. The mean follow-up period was 12.3 months. An immediate symptomatic relief of hydrocephalus and an adequate control of symptoms were achieved without a VP shunt in all patients. The ETV is considered to be an effective and safe procedure for the treatment of hydrocephalus in brainstem gliomas. Determining the ventriculostomy site according to the preoperative MRI in each case is considered to be important for the safe procedure.

  8. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis

    PubMed Central

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc −; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627

  9. Recent Advances in Targeted Therapy for Glioma.

    PubMed

    Lin, Lin; Cai, Jinquan; Jiang, Chuanlu

    2017-01-01

    Gliomas are the most common primary malignant brain tumors, which have a universally fatal outcome. Current standard treatment for glioma patients is surgical removal followed by radiotherapy and adjuvant chemotherapy. Due to therapeutic resistance and tumor recurrence, efforts are ongoing to identify the molecules that are fundamental to regulate the tumor progression and provide additional methods for individual treatment of glioma patients. By studying the initiation and maintenance of glioma, studies focused on the targets of tyrosine kinase receptors including EGFR, PDGFR and other crucial signal pathways such as PI3K/AKT and RAS/RAF/MAPK pathway. Furthermore, recent advances in targeting immunotherapy and stem cell therapy also brought numerous strategies to glioma treatment. This article reviewed the researches focused on the advanced strategies of various target therapies for improving the glioma treatment efficacy, and discussed the challenges and future directions for glioma therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  11. Effects of metformin treatment on glioma-induced brain edema

    PubMed Central

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5’-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo. PMID:27648126

  12. Effects of metformin treatment on glioma-induced brain edema.

    PubMed

    Zhao, Bin; Wang, Xiaoke; Zheng, Jun; Wang, Hailiang; Liu, Jun

    2016-01-01

    Considerable evidence has demonstrated that metformin can activate 5'-AMP-activated protein kinase (AMPK) signaling pathway, which plays a critical role in protection of endothelial cell permeability. Hence, the present study evaluated the effects of metformin on blood brain barrier permeability and AQP4 expression in vitro, and assessed the effects of metformin treatment on tumor-induced brain edema in vivo. Hypoxia or VEGF exposure enhanced bEnd3 endothelial cell monolayer permeability and attenuated the expression of tight junction proteins including Occludin, Claudin-5, ZO-1, and ZO-2. However, 0.5 mM metformin treatment protected bEnd3 endothelial cell monolayer from hypoxia or VEGF-induced permeability, which was correlated with increased expression of tight junction proteins. Furthermore, metformin treatment attenuated AQP4 protein expression in cultured astrocytes. Such an effect involved the activation of AMPK and inhibition of NF-κB. Finally, metformin treatment dose-dependently reduced glioma induced vascular permeability and cerebral edema in vivo in rats. Thus, our results suggested that metformin may protect endothelial cell tight junction, prevent damage to the blood brain barrier induced by brain tumor growth, and alleviate the formation of cerebral edema. Furthermore, since the formation of cytotoxic edema and AQP4 expression was positively correlated, our results indicated that metformin may reduce the formation of cytotoxic edema. However, given that AQP4 plays a key role in the elimination of cerebral edema, attenuation of AQP4 expression by metformin may reduce the elimination of cerebral edema. Hence, future studies will be necessary to dissect the specific mechanisms of metformin underlying the dynamics of tumor-induced brain edema in vivo.

  13. The construction of the multifunctional targeting ursolic acids liposomes and its apoptosis effects to C6 glioma stem cells

    PubMed Central

    Ying, Xue; Wang, Yahua; Xu, Haolun; Li, Xia; Yan, Helu; Tang, Hui; Wen, Chen; Li, Yingchun

    2017-01-01

    Brain gliomas, one of the most fatal tumors to human, severely threat the health and life of human. They are capable of extremely strong invasion ability. And invasive glioma cells could rapidly penetrate into normal brain tissues and break them. We prepared a kind of functional liposomes, which could be transported acrossing the blood-brain barrier (BBB) and afterwards induce the apoptosis of glioma stem cells. In this research, we chose ursolic acids (UA) as an anti-cancer drug to inhibit the growth of C6 glioma cells, while epigallocatechin 3-gallate(EGCG) as the agent that could induce the apoptosis of C6 glioma stem cells. With the targeting ability of MAN, the liposomes could be delivered through the BBB and finally were concentrated on the brain gliomas. Cell experiments in vitro demonstrated that the functional liposomes were able to significantly enhance the anti-cancer effects of the drugs due to promoting the apoptosis and endocytosis effects of C6 glioma cells and C6 glioma stem cells at the same time. Furthermore, the evaluations through animal models showed that the drugs could obviously prolong the survival period of brain glioma-bearing mice and inhibit the tumor growth. Consequently, multifunctional targeting ursolic acids liposomes could potentially improve the therapeutic effects on C6 glioma cells and C6 glioma stem cells. PMID:28969057

  14. Molecular Alterations of KIT Oncogene in Gliomas

    PubMed Central

    Gomes, Ana L.; Reis-Filho, Jorge S.; Lopes, José M.; Martinho, Olga; Lambros, Maryou B. K.; Martins, Albino; Schmitt, Fernando; Pardal, Fernando; Reis, Rui M.

    2007-01-01

    Gliomas are the most common and devastating primary brain tumours. Despite therapeutic advances, the majority of gliomas do not respond either to chemo or radiotherapy. KIT, a class III receptor tyrosine kinase (RTK), is frequently involved in tumourigenic processes. Currently, KIT constitutes an attractive therapeutic target. In the present study we assessed the frequency of KIT overexpression in gliomas and investigated the genetic mechanisms underlying KIT overexpression. KIT (CD117) immunohistochemistry was performed in a series of 179 gliomas of various grades. KIT activating gene mutations (exons 9, 11, 13 and 17) and gene amplification analysis, as defined by chromogenic in situ hybridization (CISH) and quantitative real-time PCR (qRT-PCR) were performed in CD117 positive cases. Tumour cell immunopositivity was detected in 15.6% (28/179) of cases, namely in 25% (1/4) of pilocytic astrocytomas, 25% (5/20) of diffuse astrocytomas, 20% (1/5) of anaplastic astrocytomas, 19.5% (15/77) of glioblastomas and one third (3/9) of anaplastic oligoastrocytomas. Only 5.7% (2/35) of anaplastic oligodendrogliomas showed CD117 immunoreactivity. No association was found between tumour CD117 overexpression and patient survival. In addition, we also observed CD117 overexpression in endothelial cells, which varied from 0–22.2% of cases, being more frequent in high-grade lesions. No KIT activating mutations were identified. Interestingly, CISH and/or qRT-PCR analysis revealed the presence of KIT gene amplification in 6 glioblastomas and 2 anaplastic oligoastrocytomas, corresponding to 33% (8/24) of CD117 positive cases. In conclusion, our results demonstrate that KIT gene amplification rather than gene mutation is a common genetic mechanism underlying KIT expression in subset of malignant gliomas. Further studies are warranted to determine whether glioma patients exhibiting KIT overexpression and KIT gene amplification may benefit from therapy with anti-KIT RTK inhibitors. PMID

  15. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    PubMed

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. PID1 (NYGGF4), a new growth-inhibitory gene in embryonal brain tumors and gliomas

    PubMed Central

    Erdreich-Epstein, Anat; Robison, Nathan; Ren, Xiuhai; Zhou, Hong; Xu, Jingying; Davidson, Tom B.; Schur, Mathew; Gilles, Floyd H.; Ji, Lingyun; Malvar, Jemily; Shackleford, Gregory M.; Margol, Ashley S.; Krieger, Mark D.; Judkins, Alexander R.; Jones, David T.W.; Pfister, Stefan; Kool, Marcel; Sposto, Richard; Asgharazadeh, Shahab

    2014-01-01

    Purpose We present here the first report of PID1 (Phosphotyrosine Interaction Domain containing 1; NYGGF4) in cancer. PID1 was identified in 2006 as a gene that modulates insulin signaling and mitochondrial function in adipocytes and muscle cells. Experimental Design and Results Using four independent medulloblastoma datasets, we show that mean PID1 mRNA levels were lower in unfavorable medulloblastomas (Groups 3 and 4, and anaplastic histology) compared with favorable medulloblastomas (SHH and WNT groups, and desmoplastic/nodular histology) and with fetal cerebellum. In two large independent glioma datasets PID1 mRNA was lower in glioblastomas (GBMs), the most malignant gliomas, compared to other astrocytomas, oligodendrogliomas and non-tumor brains. Neural and proneural GBM subtypes had higher PID1 mRNA compared to classical and mesenchymal GBM. Importantly, overall survival and radiation-free progression-free survival were longer in medulloblastoma patients with higher PID1 mRNA (univariate and multivariate analyses). Higher PID1 mRNA also correlated with longer overall survival in glioma and GBM patients. In cell culture, overexpression of PID1 inhibited colony formation in medulloblastoma, atypical teratoid rhabdoid tumor (ATRT) and GBM cell lines. Increasing PID1 also increased cell death and apoptosis, inhibited proliferation, induced mitochondrial depolarization, and decreased serum-mediated phosphorylation of AKT and ERK in medulloblastoma, ATRT and/or GBM cell lines, whereas siRNA to PID1 diminished mitochondrial depolarization. Conclusions These data are the first to link PID1 to cancer and suggest that PID1 may have a tumor inhibitory function in these pediatric and adult brain tumors. PMID:24300787

  17. Clinicopathological features and treatment outcomes of brain stem gliomas in Saudi population

    PubMed Central

    Bayoumi, Yasser; Sabbagh, Abdulrahman J; Mohamed, Reham; ElShokhaiby, Usama M; Maklad, Ahmed Marzouk; Tunio, Mutahir A; Balbaid, Ali Abdullah O

    2014-01-01

    AIM: To analyze experiences to identify treatment outcomes and prognostic factors in a Saudi population. METHODS: Medical records of patients with brainstem gliomas treated from July 2001 to December 2012 were reviewed to identify treatment outcomes of surgery, radiation therapy and chemotherapy and associated prognostic factors in a Saudi population. RESULTS: We analyzed 49 brain stem glioma (BSG) patients from July 2001 to December 2012; 31 of them were males (63.3%) with a median age of 12.6 years (range: 8-64 mo). Twenty-two patients (44.9%) had diffuse intrinsic pontine gliomas (DIPG) and 15 (30.6%) presented with focal/tectal BSG. Histopathology was available in 30 patients (61.2%). Median survival time for the whole cohort was 1.5 years. One and two year OS rates were 51.1% and 41.9% respectively. Two year OS rates for focal/tectal, dorsally exophytic, cervicomedullary and DIPG tumors were 60%, 33.3%, 33.3% and 13.6% respectively (P < 0.0001). Significant prognostic factors related to OS were age at diagnosis (worse for > 18 years) P = 0.01, KPS < 70 P = 0.02, duration of symptoms (< 60 d) P = 0.002, histology (better for favorable) P = 0.002, surgery (maximal resection) P = 0.002, and concurrent chemotherapy with radiation therapy in DIPG (better if given) P = 0.01. CONCLUSION: BSG, especially the DIPG subgroup, had a dismal prognosis, needing more aggressive neurosurgical, radiation and chemotherapy techniques, while focal and tectal tumors were found to have a better prognosis. PMID:25493242

  18. Proteomics of gliomas: Initial biomarker discovery and evolution of technology

    PubMed Central

    Kalinina, Juliya; Peng, Junmin; Ritchie, James C.; Van Meir, Erwin G.

    2011-01-01

    Gliomas are a group of aggressive brain tumors that diffusely infiltrate adjacent brain tissues, rendering them largely incurable, even with multiple treatment modalities and agents. Mostly asymptomatic at early stages, they present in several subtypes with astrocytic or oligodendrocytic features and invariably progress to malignant forms. Gliomas are difficult to classify precisely because of interobserver variability during histopathologic grading. Identifying biological signatures of each glioma subtype through protein biomarker profiling of tumor or tumor-proximal fluids is therefore of high priority. Such profiling not only may provide clues regarding tumor classification but may identify clinical biomarkers and pathologic targets for the development of personalized treatments. In the past decade, differential proteomic profiling techniques have utilized tumor, cerebrospinal fluid, and plasma from glioma patients to identify the first candidate diagnostic, prognostic, predictive, and therapeutic response markers, highlighting the potential for glioma biomarker discovery. The number of markers identified, however, has been limited, their reproducibility between studies is unclear, and none have been validated for clinical use. Recent technological advancements in methodologies for high-throughput profiling, which provide easy access, rapid screening, low sample consumption, and accurate protein identification, are anticipated to accelerate brain tumor biomarker discovery. Reliable tools for biomarker verification forecast translation of the biomarkers into clinical diagnostics in the foreseeable future. Herein we update the reader on the recent trends and directions in glioma proteomics, including key findings and established and emerging technologies for analysis, together with challenges we are still facing in identifying and verifying potential glioma biomarkers. PMID:21852429

  19. Alisertib and Fractionated Stereotactic Radiosurgery in Treating Patients With Recurrent High Grade Gliomas

    ClinicalTrials.gov

    2017-10-25

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  20. Changes in brain glioma incidence and laterality correlates with use of mobile phones--a nationwide population based study in Israel.

    PubMed

    Barchana, Micha; Margaliot, Menahem; Liphshitz, Irena

    2012-01-01

    Mobile phones are in extensive use worldwide and concerns regarding their role in tumor formation were raised. Over the years multiple studies were published in order to investigate this issue using several approaches. The current study looks at secular trends of brain gliomas (low and high grade) incidence and changes in tumor's laterality over 30 years in a population extensively using this technology with a possible correlation to the spread of use of mobile phones. All brain gliomas that were diagnosed from 1980-2009 were included and subdivided into two groups--low and high grade. Secular and periodic time trend analyses of incidence rates and changes in laterality were performed. Preferred side of head using mobile phones was assessed with a questionnaire in a sample of adult individuals. A decrease in incidence of low grade giomas (LGG) that correlated with introduction of mobile technology was found from 2.57, 2.34 and 2.79 for every 100,000 in the period 1980 to the end of 1994 to 1.72, 1.82 and 1.57, respectively, over the last three 5-years periods (1995-2009). High-grade glioma incidences increased significantly from 1980-2009 but in the period after mobile phones were introduced (1994-2009) a lower, non significant, rate of increase was observed in males and a lower one (significant) in females. A shift towards left sided tumor location for all adult gliomas combined and separately for LGG and HGG was noted from 1995 onward. The shift was more marked for those who were diagnosed in ages 20-49 (p=0.03). We found a statistically significant decrease in LGG's over 30-years period that correlates with introducing of mobile phones technology and a shift in laterality towards left-sided tumors, the latter occurred in both low and high-grade gliomas.

  1. Preclinical Pharmacological Evaluation of Letrozole as a Novel Treatment for Gliomas

    PubMed Central

    Dave, Nimita; Chow, Lionel M.L.; Gudelsky, Gary A.; LaSance, Kathleen; Qi, Xiaoyang; Desai, Pankaj B.

    2015-01-01

    We present data that letrozole, an extensively used aromatase inhibitor in the treatment of estrogen receptor-positive breast tumors in postmenopausal women, may be potentially used in the treatment of glioblastomas. First, we measured the in vitro cytotoxicity of letrozole and aromatase (CYP19A1) expression and activity in human LN229, T98G, U373MG, U251MG, and U87MG, and rat C6 glioma cell lines. Estrogen receptor (ER)positive MCF-7 and ER-negative MDA-MB-231 cells served as controls. Cytotoxicity was determined employing the MTT assay, and aromatase activity using an immunoassay that measures the conversion of testosterone to estrogen. Second, in vivo activity of letrozole was assessed in Sprague-Dawley rats orthotopically implanted with C6 gliomas. The changes in tumor volume with letrozole treatment (4 mg/kg/day) were assessed employing μPET/CT imaging, employing [18F]-fluorodeoxyglucose (F18-FDG) as the radiotracer. Brain tissues were collected for histologic evaluations. All glioma cell lines included here expressed CYP19A1 and letrozole exerted considerable cytotoxicity and decrease in aromatase activity against these cells (IC50, 0.1–3.5 μmol/L). Imaging analysis employing F18-FDG μPET/CT demonstrated a marked reduction of active tumor volume (>75%) after 8 days of letrozole treatment. Immunohistochemical analysis revealed marked reduction in aromatase expression in tumoral regions of the brain after letrozole treatment. Thus, employing multifaceted tools, we demonstrate that aromatase may be a novel target for the treatment of gliomas and that letrozole, an FDA-approved drug with an outstanding record of safety may be repurposed for the treatment of such primary brain tumors, which currently have few therapeutic options. PMID:25695958

  2. Preclinical pharmacological evaluation of letrozole as a novel treatment for gliomas.

    PubMed

    Dave, Nimita; Chow, Lionel M L; Gudelsky, Gary A; LaSance, Kathleen; Qi, Xiaoyang; Desai, Pankaj B

    2015-04-01

    We present data that letrozole, an extensively used aromatase inhibitor in the treatment of estrogen receptor-positive breast tumors in postmenopausal women, may be potentially used in the treatment of glioblastomas. First, we measured the in vitro cytotoxicity of letrozole and aromatase (CYP19A1) expression and activity in human LN229, T98G, U373MG, U251MG, and U87MG, and rat C6 glioma cell lines. Estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 cells served as controls. Cytotoxicity was determined employing the MTT assay, and aromatase activity using an immunoassay that measures the conversion of testosterone to estrogen. Second, in vivo activity of letrozole was assessed in Sprague-Dawley rats orthotopically implanted with C6 gliomas. The changes in tumor volume with letrozole treatment (4 mg/kg/day) were assessed employing μPET/CT imaging, employing [(18)F]-fluorodeoxyglucose (F18-FDG) as the radiotracer. Brain tissues were collected for histologic evaluations. All glioma cell lines included here expressed CYP19A1 and letrozole exerted considerable cytotoxicity and decrease in aromatase activity against these cells (IC50, 0.1-3.5 μmol/L). Imaging analysis employing F18-FDG μPET/CT demonstrated a marked reduction of active tumor volume (>75%) after 8 days of letrozole treatment. Immunohistochemical analysis revealed marked reduction in aromatase expression in tumoral regions of the brain after letrozole treatment. Thus, employing multifaceted tools, we demonstrate that aromatase may be a novel target for the treatment of gliomas and that letrozole, an FDA-approved drug with an outstanding record of safety may be repurposed for the treatment of such primary brain tumors, which currently have few therapeutic options. ©2015 American Association for Cancer Research.

  3. Perfluorocarbon emulsions radiosensitise brain tumors in carbogen breathing mice with orthotopic GL261 gliomas

    PubMed Central

    Feldman, Lisa A.; Fabre, Marie-Sophie; Grasso, Carole; Reid, Dana; Broaddus, William C.; Lanza, Gregory M.; Spiess, Bruce D.; Garbow, Joel R.; McConnell, Melanie J.

    2017-01-01

    Background Tumour hypoxia limits the effectiveness of radiation therapy. Delivering normobaric or hyperbaric oxygen therapy elevates pO2 in both tumour and normal brain tissue. However, pO2 levels return to baseline within 15 minutes of stopping therapy. Aim To investigate the effect of perfluorocarbon (PFC) emulsions on hypoxia in subcutaneous and intracranial mouse gliomas and their radiosensitising effect in orthotopic gliomas in mice breathing carbogen (95%O2 and 5%CO2). Results PFC emulsions completely abrogated hypoxia in both subcutaneous and intracranial GL261 models and conferred a significant survival advantage orthotopically (Mantel Cox: p = 0.048) in carbogen breathing mice injected intravenously (IV) with PFC emulsions before radiation versus mice receiving radiation alone. Carbogen alone decreased hypoxia levels substantially and conferred a smaller but not statistically significant survival advantage over and above radiation alone. Conclusion IV injections of PFC emulsions followed by 1h carbogen breathing, radiosensitises GL261 intracranial tumors. PMID:28873460

  4. A Novel Candidate Molecule in Pathological Grading Of Gliomas: ELABELA.

    PubMed

    Artas, Gokhan; Ozturk, Sait; Kuloglu, Tuncay; Dagli, Adile Ferda; Gonen, Murat; Artas, Hakan; Aydin, Suleyman; Erol, Fatih Serhat

    2018-04-06

    This study aimed to investigate the possible role of ELABELA (ELA) in the histopathological grading of gliomas. We retrospectively assessed pathological specimens of patients who underwent surgery for intracranial space-occupying lesions. Only primary glioma specimens were included in this study. We enrolled 11 patients histologically diagnosed with low-grade glioma and 22 patients with high-grade glioma. The ELA antibody was applied to 4-6-µm-thick sections obtained from paraffin blocks. Histoscores were calculated using the distribution and intensity of staining immunoreactivity. An independent sample t-test was used for two-point inter-group assessments, whereas one-way analysis of variance was used for the other assessments. P 0.05 was considered statistically significant. The histoscores of the control brain, low-grade glioma, and high-grade glioma tissues were found to be 0.08, 0.37, and 0.92, respectively. The difference in ELA immunoreactivity between the control brain tissue and glioma tissue was statistically significant (p 0.05). In addition, a statistically significant increase was observed in ELA immunoreactivity in high-grade glioma tissues compared with that in low-grade glioma tissues (p 0.05). ELA has an angiogenetic role in the progression of glial tumors. ELA, which is an endogenous ligand of the apelin receptor, activates the apelinergic system and causes the progression of glial tumors. Further studies with a large number of patients are necessary to investigate the angiogenetic role of ELA in glial tumors.

  5. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    PubMed Central

    Wang, Shanshan; Meng, Ying; Li, Chengyi; Qian, Min; Huang, Rongqin

    2015-01-01

    Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications. PMID:28344260

  6. Survival rates and prognostic predictors of high grade brain stem gliomas in childhood: a systematic review and meta-analysis.

    PubMed

    Hassan, Hadeel; Pinches, Anne; Picton, Susan V; Phillips, Robert S

    2017-10-01

    Diagnosis of a pediatric high grade brain stem glioma is devastating with dismal outcomes. This systematic review and meta-analysis was undertaken to determine the survival rates and assess potential prognostic factors including selected interventions. Studies included involved pediatric participants with high grade brain stem gliomas diagnosed by magnetic resonance imaging or biopsy reporting overall survival rates. Meta-analysis was undertaken using a binomial random effects model. Sixty-five studies (2336 participants) were included. Meta-analysis showed 1 year overall survival (OS) of 41% (95% confidence interval (CI) 38-44%, I-sq 52%, 2083 participants), 2 year OS of 15.3% (95% confidence interval 12-20%, I-sq 73.1%, 1329 participants) and 3 year OS of 7.3% (95% confidence interval 5.2-10%, I-sq 26%, 584 participants). Meta-analyses of median overall survival results was not possible due to the lack of reported measures of variance. Subgroup analysis comparing date of study, classification of tumor, use of temozolomide, non-standard interventions or phase 1/2 versus other studies demonstrated no difference in survival outcomes. There was insufficient data to undertake subgroup meta-analysis of patient age, duration of symptoms, K27M histone mutations and AVCR1 mutations. Survival outcomes of high grade brain stem gliomas have remained very poor, and do not clearly vary according to classification, phase of study or use of different therapeutic interventions. Future studies should harmonize outcome and prognostic variable reporting to enable accurate meta-analysis and better exploration of prognosis.

  7. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma.

    PubMed

    Ceccarelli, Michele; Barthel, Floris P; Malta, Tathiane M; Sabedot, Thais S; Salama, Sofie R; Murray, Bradley A; Morozova, Olena; Newton, Yulia; Radenbaugh, Amie; Pagnotta, Stefano M; Anjum, Samreen; Wang, Jiguang; Manyam, Ganiraju; Zoppoli, Pietro; Ling, Shiyun; Rao, Arjun A; Grifford, Mia; Cherniack, Andrew D; Zhang, Hailei; Poisson, Laila; Carlotti, Carlos Gilberto; Tirapelli, Daniela Pretti da Cunha; Rao, Arvind; Mikkelsen, Tom; Lau, Ching C; Yung, W K Alfred; Rabadan, Raul; Huse, Jason; Brat, Daniel J; Lehman, Norman L; Barnholtz-Sloan, Jill S; Zheng, Siyuan; Hess, Kenneth; Rao, Ganesh; Meyerson, Matthew; Beroukhim, Rameen; Cooper, Lee; Akbani, Rehan; Wrensch, Margaret; Haussler, David; Aldape, Kenneth D; Laird, Peter W; Gutmann, David H; Noushmehr, Houtan; Iavarone, Antonio; Verhaak, Roel G W

    2016-01-28

    Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The role of myosin II in glioma invasion: A mathematical model

    PubMed Central

    Lee, Wanho; Lim, Sookkyung; Kim, Yangjin

    2017-01-01

    Gliomas are malignant tumors that are commonly observed in primary brain cancer. Glioma cells migrate through a dense network of normal cells in microenvironment and spread long distances within brain. In this paper we present a two-dimensional multiscale model in which a glioma cell is surrounded by normal cells and its migration is controlled by cell-mechanical components in the microenvironment via the regulation of myosin II in response to chemoattractants. Our simulation results show that the myosin II plays a key role in the deformation of the cell nucleus as the glioma cell passes through the narrow intercellular space smaller than its nuclear diameter. We also demonstrate that the coordination of biochemical and mechanical components within the cell enables a glioma cell to take the mode of amoeboid migration. This study sheds lights on the understanding of glioma infiltration through the narrow intercellular spaces and may provide a potential approach for the development of anti-invasion strategies via the injection of chemoattractants for localization. PMID:28166231

  9. 14-3-3β exerts glioma-promoting effects and is associated with malignant progression and poor prognosis in patients with glioma.

    PubMed

    Liu, Liang; Liu, Zhixiong; Wang, Hao; Chen, Long; Ruan, Fuqiang; Zhang, Jihui; Hu, Yi; Luo, Hengshan; Wen, Shuai

    2018-03-01

    Glioma is a type of tumor that affects the central nervous system. It has been demonstrated that 14-3-3β, a protein that is mainly concentrated in the brain, serves an important role in tumor regulation. However, the mechanism of action of 14-3-3β that underlies the pathogenesis of glioma remains to be elucidated. In the present study, 14-3-3β was silenced by RNA interference in the human glioma cell line U373-MG. Following knockdown of 14-3-3β, the proliferation, colony formation, cell cycle progression, migration and invasion of U373-MG cells were significantly decreased (P<0.01), whereas cell apoptosis was increased (P<0.01). Furthermore, in a tumor xenograft experiment, silencing 14-3-3β significantly inhibited the in vivo tumor growth of U373-MG cells (P<0.01). The results demonstrated that 14-3-3β levels were significantly higher in human glioma tissues compared with normal brain tissues (P<0.01) and high 14-3-3β expression was significantly associated with advanced pathological grade (P<0.03) and low Karnofsky performance scale (P<0.003). Patients with glioma who had high 14-3-3β levels had a significantly shorter survival time compared with those with low expression of 14-3-3β (P=0.031), suggesting that 14-3-3β may be an effective predictor of the prognosis of patients with glioma. The results of the present study indicate that 14-3-3β serves an oncogenic role in glioma, suggesting that 14-3-3β may have potential as a promising therapeutic target for glioma.

  10. Better Prognosis of Patients with Glioma Expressing FGF2-Dependent PDGFRA Irrespective of Morphological Diagnosis

    PubMed Central

    Chen, Dongfeng; Persson, Annette; Sun, Yingyu; Salford, Leif G.; Nord, David Gisselsson; Englund, Elisabet; Jiang, Tao; Fan, Xiaolong

    2013-01-01

    Signaling of platelet derived growth factor receptor alpha (PDGFRA) is critically involved in the development of gliomas. However, the clinical relevance of PDGFRA expression in glioma subtypes and the mechanisms of PDGFRA expression in gliomas have been controversial. Under the supervision of morphological diagnosis, analysis of the GSE16011 and the Repository of Molecular Brain Neoplasia Data (Rembrandt) set revealed enriched PDGFRA expression in low-grade gliomas. However, gliomas with the top 25% of PDGFRA expression levels contained nearly all morphological subtypes, which was associated with frequent IDH1 mutation, 1p LOH, 19q LOH, less EGFR amplification, younger age at disease onset and better survival compared to those gliomas with lower levels of PDGFRA expression. SNP analysis in Rembrandt data set and FISH analysis in eleven low passage glioma cell lines showed infrequent amplification of PDGFRA. Using in vitro culture of these low passage glioma cells, we tested the hypothesis of gliogenic factor dependent expression of PDGFRA in glioma cells. Fibroblast growth factor 2 (FGF2) was able to maintain PDGFRA expression in glioma cells. FGF2 also induced PDGFRA expression in glioma cells with low or non-detectable PDGFRA expression. FGF2-dependent maintenance of PDGFRA expression was concordant with the maintenance of a subset of gliogenic genes and higher rates of cell proliferation. Further, concordant expression patterns of FGF2 and PDGFRA were detected in glioma samples by immunohistochemical staining. Our findings suggest a role of FGF2 in regulating PDGFRA expression in the subset of gliomas with younger age at disease onset and longer patient survival regardless of their morphological diagnosis. PMID:23630597

  11. Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation.

    PubMed

    Badie, Behnam; Schartner, Jill M; Hagar, Aaron R; Prabakaran, Sakthivel; Peebles, Todd R; Bartley, Becky; Lapsiwala, Samir; Resnick, Daniel K; Vorpahl, Jessica

    2003-02-01

    Cerebral edema is responsible for significant morbidity and mortality in patients harboring malignant gliomas. To examine the role of inflammatory cells in brain edema formation, we studied the expression cyclooxygenase (COX)-2, a key enzyme in arachidonic acid metabolism, by microglia in the C6 rodent glioma model. The expression of COX-2 in primary microglia cultures obtained from intracranial rat C6 gliomas was examined using reverse transcription-PCR, Western analysis, and prostaglandin E(2) (PGE(2)) enzyme immunoassay. Blood-tumor barrier permeability was studied in the same tumor model using magnetic resonance imaging. In contrast to C6 glioma cells, microglia isolated from intracranial C6 tumors produced high levels of PGE(2) through a COX-2-dependent pathway. To test whether the observed microglia COX-2 activity played a role in brain edema formation in gliomas, tumor-bearing rats were treated with rofecoxib, a selective COX-2 inhibitor. Rofecoxib was as effective as dexamethasone in decreasing the diffusion of contrast material into the brain parenchyma (P = 0.01, rofecoxib versus control animals), suggesting a reduction in blood-tumor barrier permeability. These findings suggest that glioma-infiltrating microglia are a major source of PGE(2) production through the COX-2 pathway and support the use of COX-2 inhibitors as possible alternatives to glucocorticoids in the treatment of peritumoral edema in patients with malignant brain tumors.

  12. Potential of MR spectroscopy for assessment of glioma grading.

    PubMed

    Bulik, Martin; Jancalek, Radim; Vanicek, Jiri; Skoch, Antonin; Mechl, Marek

    2013-02-01

    Magnetic resonance spectroscopy (MRS) is an imaging diagnostic method based that allows non-invasive measurement of metabolites in tissues. There are a number of metabolites that can be identified by standard brain proton MRS but only a few of them has a clinical significance in diagnosis of gliomas including N-acetylaspartate, choline, creatine, myo-inositol, lactate, and lipids. In this review, we describe potential of MRS for grading of gliomas. Low-grade gliomas are generally characterized by a relatively high concentration of N-acetylaspartate, low level of choline and absence of lactate and lipids. The increase in creatine concentration indicates low-grade gliomas with earlier progression and malignant transformation. Progression in grade of a glioma is reflected in the progressive decrease in the N-acetylaspartate and myo-inositol levels on the one hand and elevation in choline level up to grade III on the other. Malignant transformation of the glial tumors is also accompanied by the presence of lactate and lipids in MR spectra of grade III but mainly grade IV gliomas. It follows that MRS is a helpful method for detection of glioma regions with aggressive growth or upgrading due to favorable correlation of the choline and N-acetylaspartate levels with histopathological proliferation index Ki-67. Thus, magnetic resonance spectroscopy is also a suitable method for the targeting of brain biopsies. Gliomas of each grade have some specific MRS features that can be used for improvement of the diagnostic value of conventional magnetic resonance imaging in non-invasive assessment of glioma grade. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  13. Handedness and the risk of glioma.

    PubMed

    Miller, Briana; Peeri, Noah C; Nabors, Louis Burt; Creed, Jordan H; Thompson, Zachary J; Rozmeski, Carrie M; LaRocca, Renato V; Chowdhary, Sajeel; Olson, Jeffrey J; Thompson, Reid C; Egan, Kathleen M

    2018-05-01

    Gliomas are the most common type of malignant primary brain tumor and few risk factors have been linked to their development. Handedness has been associated with several pathologic neurological conditions such as schizophrenia, autism, and epilepsy, but few studies have evaluated a connection between handedness and risk of glioma. In this study, we examined the relationship between handedness and glioma risk in a large case-control study (1849 glioma cases and 1354 healthy controls) and a prospective cohort study (326,475 subjects with 375 incident gliomas). In the case-control study, we found a significant inverse association between left handedness and glioma risk, with left-handed persons exhibiting a 35% reduction in the risk of developing glioma [odds ratio (OR) = 0.65, 95% confidence interval (CI) 0.51-0.83] after adjustment for age, gender, race, education, and state of residence; similar inverse associations were observed for GBM (OR = 0.69, 95% CI 0.52-0.91), and non-GBM (OR = 0.59, 95% CI 0.42-0.82) subgroups. The association was consistent in both males and females, and across age strata, and was observed in both glioblastoma and in lower grade tumors. In the prospective cohort study, we found no association between handedness and glioma risk (hazards ratio = 0.92, 95% CI 0.67-1.28) adjusting for age, gender, and race. Further studies on this association may help to elucidate mechanisms of pathogenesis in glioma.

  14. Establishment and maintenance of a standardized glioma tissue bank: Huashan experience.

    PubMed

    Aibaidula, Abudumijiti; Lu, Jun-feng; Wu, Jin-song; Zou, He-jian; Chen, Hong; Wang, Yu-qian; Qin, Zhi-yong; Yao, Yu; Gong, Ye; Che, Xiao-ming; Zhong, Ping; Li, Shi-qi; Bao, Wei-min; Mao, Ying; Zhou, Liang-fu

    2015-06-01

    Cerebral glioma is the most common brain tumor as well as one of the top ten malignant tumors in human beings. In spite of the great progress on chemotherapy and radiotherapy as well as the surgery strategies during the past decades, the mortality and morbidity are still high. One of the major challenges is to explore the pathogenesis and invasion of glioma at various "omics" levels (such as proteomics or genomics) and the clinical implications of biomarkers for diagnosis, prognosis or treatment of glioma patients. Establishment of a standardized tissue bank with high quality biospecimens annotated with clinical information is pivotal to the solution of these questions as well as the drug development process and translational research on glioma. Therefore, based on previous experience of tissue banks, standardized protocols for sample collection and storage were developed. We also developed two systems for glioma patient and sample management, a local database for medical records and a local image database for medical images. For future set-up of a regional biobank network in Shanghai, we also founded a centralized database for medical records. Hence we established a standardized glioma tissue bank with sufficient clinical data and medical images in Huashan Hospital. By September, 2013, tissues samples from 1,326 cases were collected. Histological diagnosis revealed that 73 % were astrocytic tumors, 17 % were oligodendroglial tumors, 2 % were oligoastrocytic tumors, 4 % were ependymal tumors and 4 % were other central nervous system neoplasms.

  15. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas

    PubMed Central

    Bao, Zhao-Shi; Yang, Ming-Yu; Zhang, Chuan-Bao; Yu, Kai; Ye, Wan-Lu; Hu, Bo-Qiang; Yan, Wei; Zhang, Wei; Akers, Johnny; Ramakrishnan, Valya; Li, Jie; Carter, Bob; Liu, Yan-Wei; Hu, Hui-Min; Wang, Zheng; Li, Ming-Yang; Yao, Kun; Qiu, Xiao-Guang; Kang, Chun-Sheng; You, Yong-Ping; Fan, Xiao-Long; Song, Wei Sonya; Li, Rui-Qiang

    2014-01-01

    Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs. PMID:25135958

  16. Endothelial Cell Implantation and Survival within Experimental Gliomas

    NASA Astrophysics Data System (ADS)

    Lal, Bachchu; Indurti, Ravi R.; Couraud, Pierre-Olivier; Goldstein, Gary W.; Laterra, John

    1994-10-01

    The delivery of therapeutic genes to primary brain neoplasms opens new opportunities for treating these frequently fatal tumors. Efficient gene delivery to tissues remains an important obstacle to therapy, and this problem has unique characteristics in brain tumors due to the blood-brain and blood-tumor barriers. The presence of endothelial mitogens and vessel proliferation within solid tumors suggests that genetically modified endothelial cells might efficiently transplant to brain tumors. Rat brain endothelial cells immortalized with the adenovirus E1A gene and further modified to express the β-galactosidase reporter were examined for their ability to survive implantation to experimental rat gliomas. Rats received 9L, F98, or C6 glioma cells in combination with endothelial cells intracranially to caudate/putamen or subcutaneously to flank. Implanted endothelial cells were identified by β-galactosidase histochemistry or by polymerase chain reaction in all tumors up to 35 days postimplantation, the latest time examined. Implanted endothelial cells appeared to cooperate in tumor vessel formation and expressed the brain-specific endothelial glucose transporter type 1 as identified by immunohistochemistry. The proliferation of implanted endothelial cells was supported by their increased number within tumors between postimplantation days 14 and 21 (P = 0.015) and by their expression of the proliferation antigen Ki67. These findings establish that genetically modified endothelial cells can be stably engrafted to growing gliomas and suggest that endothelial cell implantation may provide a means of delivering therapeutic genes to brain neoplasms and other solid tumors. In addition, endothelial implantation to brain may be useful for defining mechanisms of brain-specific endothelial differentiation.

  17. Magnetic Labeling of Activated Microglia in Experimental Gliomas1

    PubMed Central

    Fleige, Gerrit; Nolte, Christiane; Synowitz, Michael; Seeberger, Florian; Kettenmann, Helmut; Zimmer, Claus

    2001-01-01

    Abstract Microglia, as intrinsic immunoeffector cells of the central nervous system (CNS), play a very sensitive, crucial role in the response to almost any brain pathology where they are activated to a phagocytic state. Based on the characteristic features of activated microglia, we investigated whether these cells can be visualized with magnetic resonance imaging (MRI) using ultrasmall superparamagnetic iron oxides (USPIOs). The hypothesis of this study was that MR microglia visualization could not only reveal the extent of the tumor, but also allow for assessing the status of immunologic defense. Using USPIOs in cell culture experiments and in a rat glioma model, we showed that microglia can be labeled magnetically. Labeled microglia are detected by confocal microscopy within and around tumors in a typical border-like pattern. Quantitative in vitro studies revealed that microglia internalize amounts of USPIOs that are significantly higher than those incorporated by tumor cells and astrocytes. Labeled microglia can be detected and quantified with MRI in cell phantoms, and the extent of the tumor can be seen in glioma-bearing rats in vivo. We conclude that magnetic labeling of microglia provides a potential tool for MRI of gliomas, which reflects tumor morphology precisely. Furthermore, the results suggest that MRI may yield functional data on the immunologic reaction of the CNS. PMID:11774031

  18. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas.

    PubMed

    Saito, Ryuta; Tominaga, Teiji

    2017-01-15

    Convection-enhanced delivery (CED) circumvents the blood-brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distribution remain a problem in large brains, such as those of humans. Accurate and consistent delivery of an agent is another challenge associated with CED. Similar to the difficulties caused by immunosuppressive environments associated with gliomas, there are several mechanisms that make effective local drug distribution difficult in malignant gliomas. In this review, methods for local drug application targeting gliomas are discussed with special emphasis on CED. Although early clinical trials have failed to demonstrate the efficacy of CED against gliomas, CED potentially can be a platform for translating the molecular understanding of glioblastomas achieved in the laboratory into effective clinical treatments. Several clinical studies using CED of chemotherapeutic agents are ongoing. Successful delivery of effective agents should prove the efficacy of CED in the near future.

  19. Convection-enhanced Delivery of Therapeutics for Malignant Gliomas

    PubMed Central

    SAITO, Ryuta; TOMINAGA, Teiji

    2017-01-01

    Convection-enhanced delivery (CED) circumvents the blood–brain barrier by delivering agents directly into the tumor and surrounding parenchyma. CED can achieve large volumes of distribution by continuous positive-pressure infusion. Although promising as an effective drug delivery method in concept, the administration of therapeutic agents via CED is not without challenges. Limitations of distribution remain a problem in large brains, such as those of humans. Accurate and consistent delivery of an agent is another challenge associated with CED. Similar to the difficulties caused by immunosuppressive environments associated with gliomas, there are several mechanisms that make effective local drug distribution difficult in malignant gliomas. In this review, methods for local drug application targeting gliomas are discussed with special emphasis on CED. Although early clinical trials have failed to demonstrate the efficacy of CED against gliomas, CED potentially can be a platform for translating the molecular understanding of glioblastomas achieved in the laboratory into effective clinical treatments. Several clinical studies using CED of chemotherapeutic agents are ongoing. Successful delivery of effective agents should prove the efficacy of CED in the near future. PMID:27980285

  20. Benefits of adjuvant chemotherapy in high-grade gliomas.

    PubMed

    DeAngelis, Lisa M

    2003-12-01

    The current standard of care for patients with high-grade glioma is resection followed by radiotherapy. Adjuvant chemotherapy is not widely accepted because of the low sensitivity of gliomas to traditional antineoplastic agents, the poor penetration of most drugs across the blood-brain barrier, and the significant systemic toxicity associated with current agents. However, nitrosoureas and, subsequently, temozolomide (Temodar [US], Temodal [international]; Schering-Plough Corporation, Kenilworth, NJ), a novel alkylating agent, cross the blood-brain barrier and have activity against gliomas. Nitrosoureas have been studied in phase III trials in the adjuvant setting. In individual trials, chemotherapy did not increase median survival but did increase the proportion of patients surviving >/=18 months by 15%. Only with large meta-analyses did the addition of chemotherapy achieve a statistically significant improvement in median survival. Currently there is no means of identifying which patients will benefit from adjuvant chemotherapy, but nitrosoureas and temozolomide are well tolerated in most patients, justifying the administration of adjuvant chemotherapy to all newly diagnosed patients with malignant glioma.

  1. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma.

    PubMed

    Tang, Jiaze; Huang, Ning; Zhang, Xiang; Zhou, Tao; Tan, Ying; Pi, Jiangli; Pi, Li; Cheng, Si; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood-brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma

  2. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma

    PubMed Central

    Tang, Jiaze; Huang, Ning; Zhang, Xiang; Zhou, Tao; Tan, Ying; Pi, Jiangli; Pi, Li; Cheng, Si; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood–brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma

  3. Closed-loop control of targeted ultrasound drug delivery across the blood–brain/tumor barriers in a rat glioma model

    PubMed Central

    Sun, Tao; Zhang, Yongzhi; Power, Chanikarn; Alexander, Phillip M.; Sutton, Jonathan T.; Aryal, Muna; Vykhodtseva, Natalia; Miller, Eric L.; McDannold, Nathan J.

    2017-01-01

    Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood–brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies. PMID:29133392

  4. Molecular genetics of low-grade gliomas: genomic alterations guiding diagnosis and therapeutic intervention. 11th annual Frye-Halloran Brain Tumor Symposium.

    PubMed

    Jones, Pamela S; Dunn, Gavin P; Barker, Fred G; Curry, William T; Hochberg, Fred H; Cahill, Daniel P

    2013-02-01

    The authors' goal was to review the current understanding of the underlying molecular and genetic mechanisms involved in low-grade glioma development and how these mechanisms can be targets for detection and treatment of the disease and its recurrence. On October 4, 2012, the authors convened a meeting of researchers and clinicians across a variety of pertinent medical specialties to review the state of current knowledge on molecular genetic mechanisms of low-grade gliomas and to identify areas for further research and drug development. The meeting consisted of 3 scientific sessions ranging from neuropathology of IDH1 mutations; CIC, ATRX, and FUBP1 mutations in oligodendrogliomas and astrocytomas; and IDH1 mutations as therapeutic targets. Sessions consisted of a total of 10 talks by international leaders in low-grade glioma research, mutant IDH1 biology and its application in glioma research, and treatment. The recent discovery of recurrent gene mutations in low-grade glioma has increased the understanding of the molecular mechanisms involved in a host of biological activities related to low-grade gliomas. Understanding the role these genetic alterations play in brain cancer initiation and progression will help lead to the development of novel treatment modalities than can be personalized to each patient, thereby helping transform this now often-fatal malignancy into a chronic or even curable disease.

  5. Inference of Low and High-Grade Glioma Gene Regulatory Networks Delineates the Role of Rnd3 in Establishing Multiple Hallmarks of Cancer

    PubMed Central

    Turan, Nil; Soulet, Fabienne; Mohd Zahari, Maihafizah; Ryan, Katie R.; Durant, Sarah; He, Shan; Herbert, John; Ankers, John; Heath, John K.; Bjerkvig, Rolf; Bicknell, Roy; Hotchin, Neil A.; Bikfalvi, Andreas; Falciani, Francesco

    2015-01-01

    Gliomas are a highly heterogeneous group of brain tumours that are refractory to treatment, highly invasive and pro-angiogenic. Glioblastoma patients have an average survival time of less than 15 months. Understanding the molecular basis of different grades of glioma, from well differentiated, low-grade tumours to high-grade tumours, is a key step in defining new therapeutic targets. Here we use a data-driven approach to learn the structure of gene regulatory networks from observational data and use the resulting models to formulate hypothesis on the molecular determinants of glioma stage. Remarkably, integration of available knowledge with functional genomics datasets representing clinical and pre-clinical studies reveals important properties within the regulatory circuits controlling low and high-grade glioma. Our analyses first show that low and high-grade gliomas are characterised by a switch in activity of two subsets of Rho GTPases. The first one is involved in maintaining normal glial cell function, while the second is linked to the establishment of multiple hallmarks of cancer. Next, the development and application of a novel data integration methodology reveals novel functions of RND3 in controlling glioma cell migration, invasion, proliferation, angiogenesis and clinical outcome. PMID:26132659

  6. Intraoperative detection of glioma invasion beyond MRI enhancement with Raman spectroscopy in humans

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Mok, Kelvin; Mercier, Jeanne; Desroches, Joannie; Pichette, Julien; Saint-Arnaud, Karl; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frédéric

    2015-03-01

    Cancer tissue is frequently impossible to distinguish from normal brain during surgery. Gliomas are a class of brain cancer which invade into the normal brain. If left unresected, these invasive cancer cells are the source of glioma recurrence. Moreover, these invasion areas do not show up on standard-of-care pre-operative Magnetic Resonance Imaging (MRI). This inability to fully visualize invasive brain cancers results in subtotal surgical resections, negatively impacting patient survival. To address this issue, we have demonstrated the efficacy of single-point in vivo Raman spectroscopy using a contact hand-held fiber optic probe for rapid detection of cancer invasion in 8 patients with low and high grade gliomas. Using a supervised machine learning algorithm to analyze the Raman spectra obtained in vivo, we were able to distinguish normal brain from the presence of cancer cells with sensitivity and specificity greater than 90%. Moreover, by correlating these results with pre-operative MRI we demonstrate the ability to detect low density cancer invasion up to 1.5cm beyond the cancer extent visible using MRI. This represents the potential for significant improvements in progression-free and overall patient survival, by identifying previously undetectable residual cancer cell populations and preventing the resection of normal brain tissue. While the importance of maximizing the volume of tumor resection is important for all grades of gliomas, the impact for low grade gliomas can be dramatic because surgery can even be curative. This convenient technology can rapidly classify cancer invasion in real-time, making it ideal for intraoperative use in brain tumor resection.

  7. Bevacizumab and Irinotecan in Treating Young Patients With Recurrent, Progressive, or Refractory Glioma, Medulloblastoma, Ependymoma, or Low Grade Glioma

    ClinicalTrials.gov

    2017-10-23

    Childhood Cerebral Anaplastic Astrocytoma; Childhood Oligodendroglioma; Childhood Spinal Cord Neoplasm; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma

  8. Intrinsic protective mechanisms of the neuron-glia network against glioma invasion.

    PubMed

    Iwadate, Yasuo; Fukuda, Kazumasa; Matsutani, Tomoo; Saeki, Naokatsu

    2016-04-01

    Gliomas arising in the brain parenchyma infiltrate into the surrounding brain and break down established complex neuron-glia networks. However, mounting evidence suggests that initially the network microenvironment of the adult central nervous system (CNS) is innately non-permissive to glioma cell invasion. The main players are inhibitory molecules in CNS myelin, as well as proteoglycans associated with astrocytes. Neural stem cells, and neurons themselves, possess inhibitory functions against neighboring tumor cells. These mechanisms have evolved to protect the established neuron-glia network, which is necessary for brain function. Greater insight into the interaction between glioma cells and the surrounding neuron-glia network is crucial for developing new therapies for treating these devastating tumors while preserving the important and complex neural functions of patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Antitumor effect of fibrin glue containing temozolomide against malignant glioma

    PubMed Central

    Anai, Shigeo; Hide, Takuichiro; Takezaki, Tatsuya; Kuroda, Jun-ichiro; Shinojima, Naoki; Makino, Keishi; Nakamura, Hideo; Yano, Shigetoshi; Kuratsu, Jun-ichi

    2014-01-01

    Temozolomide (TMZ), used to treat glioblastoma and malignant glioma, induces autophagy, apoptosis and senescence in cancer cells. We investigated fibrin glue (FG) as a drug delivery system for the local administration of high-concentration TMZ aimed at preventing glioma recurrence. Our high-power liquid chromatography studies indicated that FG containing TMZ (TMZ-FG) manifested a sustained drug release potential. We prepared a subcutaneous tumor model by injecting groups of mice with three malignant glioma cell lines and examined the antitumor effect of TMZ-FG. We estimated the tumor volume and performed immunostaining and immunoblotting using antibodies to Ki-67, cleaved caspase 3, LC3 and p16. When FG sheets containing TMZ (TMZ-FGS) were inserted beneath the tumors, their growth was significantly suppressed. In mice treated with peroral TMZ plus TMZ-FGS the tumors tended to be smaller than in mice whose tumors were treated with TMZ-FGS or peroral TMZ alone. The TMZ-FGS induced autophagy, apoptosis and senescence in subcutaneous glioma tumor cells. To assess the safety of TMZ-FG for normal brain, we placed it directly on the brain of living mice and stained tissue sections obtained in the acute and chronic phase immunohistochemically. In both phases, TMZ-FG failed to severely damage normal brain tissue. TMZ-FG may represent a safe new drug delivery system with sustained drug release potential to treat malignant glioma. PMID:24673719

  10. Up-regulation of plakophilin-2 is correlated with the progression of glioma.

    PubMed

    Zhang, Degeng; Qian, Yuxia; Liu, Xiaoxing; Yu, Hong; Zhao, Niangao; Wu, Zhengdong

    2017-06-01

    Glioma is the most common type of primary brain tumor in the CNS. Due to its poor prognosis and high mortality rates, it is urgent to find out more effective therapies. Plakophilin-2 (PKP2) is a widespread desmosomal plaque protein. Recently, the important roles of PKP2 in the proliferation and migration of cancer cells and tumor progression has been shown. However, the expression and potential function of PKP2 in glioma was still unclear. In this study, we demonstrated that PKP2 protein expression level was increased in glioma tissues compared with normal brain tissues, and its level was significantly associated with the Ki-67 expression and WHO grade by Western blot analysis and immunohistochemistry. Clinically, high PKP2 expression was tightly related to poor prognosis of glioma patients. Interestingly, we found that down-regulated PKP2 expression was shown to inhibit the migration of cells in glioma. Moreover, cell counting kit (CCK)-8 and colony formation analyses proved that reduced expression of PKP2 could weaken glioma cell proliferation. Taken together, these data uncover a potential role for PKP2 in the pathogenic process of glioma, suggesting that PKP2 may be a promising therapeutic target of glioma. © 2017 Japanese Society of Neuropathology.

  11. Overexpressed KDM5B is associated with the progression of glioma and promotes glioma cell growth via downregulating p21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Bin; Hu, Zhiqiang, E-mail: zhiqhutg@126.com; Huang, Hui

    Highlights: • KDM5B is overexpressed in glioma samples. • KDM5B stimulated proliferation of glioma cells. • Inhibition of p21contributes to KDM5B-induced proliferation. - Abstract: Epigenetic alterations such as aberrant expression of histone-modifying enzymes have been implicated in tumorigenesis. Upregulation of lysine (K)-specific demethylase 5B (KDM5B) has been reported in a variety of malignant tumors. However, the impact of KDM5B in glioma remains unclear. The objective of this study was to investigate the expression and prognostic value of KDM5B in glioma. In clinical glioma samples, we found that KDM5B expression was significantly upregulated in cancer lesions compared with normal brain tissues.more » Kaplan–Meier analysis showed that patients with glioma and higher KDM5B expression tend to have shorter overall survival time. By silencing or overexpressing KDM5B in glioma cells, we found that KDM5B could promote cell growth both in vitro and in vivo. Moreover, we demonstrated that KDM5B promoted glioma proliferation partly via regulation of the expression of p21. Our study provided evidence that KDM5B functions as a novel tumor oncogene in glioma and may be a potential therapeutic target for glioma management.« less

  12. Imaging, autoradiography, and biodistribution of (188)Re-labeled PEGylated nanoliposome in orthotopic glioma bearing rat model.

    PubMed

    Huang, Feng-Yun J; Lee, Te-Wei; Kao, Chih-Hao K; Chang, Chih-Hsien; Zhang, Xiaoning; Lee, Wan-Yu; Chen, Wan-Jou; Wang, Shu-Chi; Lo, Jem-Mau

    2011-12-01

    The (188)Re-labeled pegylated nanoliposome (abbreviated as (188)Re-Liposome) was prepared and evaluated for its potential as a theragnostic agent for glioma. (188)Re-BMEDA complex was loaded into the pegylated liposome core with pH 5.5 ammonium sulfate gradient to produce (188)Re-Liposome. Orthotopic Fischer344/F98 glioma tumor-bearing rats were prepared and intravenously injected with (188)Re-Liposome. Biodistribution, pharmacokinetic study, autoradiography (ARG), histopathology, and nano-SPECT/CT imaging were conducted for the animal model. The result showed that (188)Re-Liposome accumulated in the brain tumor of the animal model from 0.28%±0.09% injected dose (ID)/g (n=3) at 1 hour to a maximum of 1.95%±0.35% ID/g (n=3) at 24 hours postinjection. The tumor-to-normal brain uptake ratio (T/N ratio) increased from 3.5 at 1 hour to 32.5 at 24 hours. Both ARG and histopathological images clearly showed corresponding tumor regions with high T/N ratios. Nano-SPECT/CT detected a very clear tumor image from 4 hours till 48 hours. This study reveals the potential of (188)Re-Liposome as a theragnostic agent for brain glioma.

  13. Effect of Nicotine on CYP2B1 Expression in a Glioma Animal Model and Analysis of CYP2B6 Expression in Pediatric Gliomas.

    PubMed

    Nava-Salazar, Sonia; Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Marhx-Bracho, Alfonso; Phillips-Farfán, Bryan V; Diaz-Avalos, Carlos; Vanoye-Carlo, America

    2018-06-16

    Cyclophosphamide (CPA) is a pro-drug commonly used in the chemotherapeutic schemes for glioma treatment but has high toxicity and the side effects include brain damage and even death. Since CPA is activated mainly by CY2B6, over-expression of the enzyme in the tumor cells has been proposed to enhance CPA activation. In this study, we explored the induction of the Cyp2b1 (homologous to CYP2B6 ) by nicotine in an animal rat model with glioma. Gene expression and protein levels were analyzed by RT-PCR and Western blot. Nicotine treatment increased CYP2B1 protein levels in the healthy animals’ brain tissue. In the brain tissue of animals with glioma, the CYP2B1 showed a high expression, even before nicotine treatment. Nicotine did not increase significantly the CYP2B1 protein expression in the tumor, but increased its expression in the tumor vicinity, especially around blood vessels in the cortex. We also explored CY2B6 expression in glioma samples derived from pediatric patients. Tumor tissue showed a variable expression of the enzyme, which could depend on the tumor malignancy grade. Induction of the CYP2B6 in pediatric gliomas with lower expression of the enzyme, could be an alternative to improve the antitumoral effect of CPA treatment.

  14. Role of microglia in glioma biology.

    PubMed

    Badie, B; Schartner, J

    2001-07-15

    Microglia, a type of differentiated tissue macrophage, are considered to be the most plastic cell population of the central nervous system (CNS). In response to pathological conditions, resting microglia undergo a stereotypic activation process and become capable of phagocytosis, antigen presentation, and lymphocyte activation. Considering their immune effector function, it is not surprising to see microglia accumulation in almost every CNS disease process, including malignant brain tumors or malignant gliomas. Although the function of these cells in CNS inflammatory processes is being studied, their role in malignant glioma biology remains unclear. On one hand, microglia may represent a CNS anti-tumor response, which is inactivated by local secretion of immunosuppressive factors by glioma cells. On the other hand, taking into account that microglia are capable of secreting a variety of immunomodulatory cytokines, it is possible that they are attracted by gliomas to promote tumor growth. A better understanding of microglia-glioma interaction will be helpful in designing novel immune-based therapies against these fatal tumors. Copyright 2001 Wiley-Liss, Inc.

  15. Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Yuqing; Zhou, Fengbiao; Chen, Hong

    2010-07-09

    Sox2, a master transcription factor, contributes to the generation of induced pluripotent stem cells and plays significant roles in sustaining the self-renewal of neural stem cells and glioma-initiating cells. Understanding the functional differences of Sox2 between glioma-initiating cells and normal neural stem cells would contribute to therapeutic approach for treatment of brain tumors. Here, we first demonstrated that Sox2 could contribute to the self-renewal and proliferation of glioma-initiating cells. The following experiments showed that Sox2 was activated at translational level in a subset of human glioma-initiating cells compared with the normal neural stem cells. Further investigation revealed there was amore » positive correlation between Sox2 and eukaryotic initiation factor 4E (eIF4E) in glioma tissues. Down-regulation of eIF4E decreased Sox2 protein level without altering its mRNA level in glioma-initiating cells, indicating that Sox2 was activated by eIF4E at translational level. Furthermore, eIF4E was presumed to regulate the expression of Sox2 by its 5' untranslated region (5' UTR) sequence. Our results suggest that the eIF4E-Sox2 axis is a novel mechanism of unregulated self-renewal of glioma-initiating cells, providing a potential therapeutic target for glioma.« less

  16. Atypical nuclear localization of VIP receptors in glioma cell lines and patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbarin, Alice; Séité, Paule; Godet, Julie

    Highlights: • The VIP receptor VPAC1 contains a putative NLS signal. • VPAC1 is predominantly nuclear in GBM cell lines but not VPAC2. • Non-nuclear VPAC1/2 protein expression is correlated with glioma grade. • Nuclear VPAC1 is observed in 50% of stage IV glioma (GBM). - Abstract: An increasing number of G protein-coupled receptors, like receptors for vasoactive intestinal peptide (VIP), are found in cell nucleus. As VIP receptors are involved in the regulation of glioma cell proliferation and migration, we investigated the expression and the nuclear localization of the VIP receptors VPAC1 and VPAC2 in this cancer. First, bymore » applying Western blot and immunofluorescence detection in three human glioblastoma (GBM) cell lines, we observed a strong nuclear staining for the VPAC1 receptor and a weak nuclear VPAC2 receptor staining. Second, immunohistochemical staining of VPAC1 and VPAC2 on tissue microarrays (TMA) showed that the two receptors were expressed in normal brain and glioma tissues. Expression in the non-nuclear compartment of the two receptors significantly increased with the grade of the tumors. Analysis of nuclear staining revealed a significant increase of VPAC1 staining with glioma grade, with up to 50% of GBM displaying strong VPAC1 nuclear staining, whereas nuclear VPAC2 staining remained marginal. The increase in VPAC receptor expression with glioma grades and the enhanced nuclear localization of the VPAC1 receptors in GBM might be of importance for glioma progression.« less

  17. Frequent Nek1 overexpression in human gliomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jun; Neurosurgery Department, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai; Cai, Yu, E-mail: aihaozuqiu22@163.com

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients’ poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG,more » U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. - Highlights: • Nek1 is upregulated in multiple human glioma tissues and cell lines. • Nek1 overexpression correlates with glioma grades and patients’ KPS score. • Nek1 overexpression correlates with patients’ poor overall survival. • siRNA knockdown of Nek1 inhibits glioma cell growth. • siRNA knockdown of Nek1 sensitizes human glioma cells to temozolomide.« less

  18. RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas.

    PubMed

    Bao, Zhao-Shi; Chen, Hui-Min; Yang, Ming-Yu; Zhang, Chuan-Bao; Yu, Kai; Ye, Wan-Lu; Hu, Bo-Qiang; Yan, Wei; Zhang, Wei; Akers, Johnny; Ramakrishnan, Valya; Li, Jie; Carter, Bob; Liu, Yan-Wei; Hu, Hui-Min; Wang, Zheng; Li, Ming-Yang; Yao, Kun; Qiu, Xiao-Guang; Kang, Chun-Sheng; You, Yong-Ping; Fan, Xiao-Long; Song, Wei Sonya; Li, Rui-Qiang; Su, Xiao-Dong; Chen, Clark C; Jiang, Tao

    2014-11-01

    Studies of gene rearrangements and the consequent oncogenic fusion proteins have laid the foundation for targeted cancer therapy. To identify oncogenic fusions associated with glioma progression, we catalogued fusion transcripts by RNA-seq of 272 gliomas. Fusion transcripts were more frequently found in high-grade gliomas, in the classical subtype of gliomas, and in gliomas treated with radiation/temozolomide. Sixty-seven in-frame fusion transcripts were identified, including three recurrent fusion transcripts: FGFR3-TACC3, RNF213-SLC26A11, and PTPRZ1-MET (ZM). Interestingly, the ZM fusion was found only in grade III astrocytomas (1/13; 7.7%) or secondary GBMs (sGBMs, 3/20; 15.0%). In an independent cohort of sGBMs, the ZM fusion was found in three of 20 (15%) specimens. Genomic analysis revealed that the fusion arose from translocation events involving introns 3 or 8 of PTPRZ and intron 1 of MET. ZM fusion transcripts were found in GBMs irrespective of isocitrate dehydrogenase 1 (IDH1) mutation status. sGBMs harboring ZM fusion showed higher expression of genes required for PIK3CA signaling and lowered expression of genes that suppressed RB1 or TP53 function. Expression of the ZM fusion was mutually exclusive with EGFR overexpression in sGBMs. Exogenous expression of the ZM fusion in the U87MG glioblastoma line enhanced cell migration and invasion. Clinically, patients afflicted with ZM fusion harboring glioblastomas survived poorly relative to those afflicted with non-ZM-harboring sGBMs (P < 0.001). Our study profiles the shifting RNA landscape of gliomas during progression and reveled ZM as a novel, recurrent fusion transcript in sGBMs. © 2014 Bao et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Effects of anticancer drugs on glia-glioma brain tumor model characterized by acoustic impedance microscopy

    NASA Astrophysics Data System (ADS)

    Soon, Thomas Tiong Kwong; Chean, Tan Wei; Yamada, Hikari; Takahashi, Kenta; Hozumi, Naohiro; Kobayashi, Kazuto; Yoshida, Sachiko

    2017-07-01

    An ultrasonic microscope is a useful tool for observing living tissue without chemical fixation or histochemical processing. Two-dimensional (2D) acoustic impedance microscopy developed in our previous study for living cell observation was employed to visualize intracellular changes. We proposed a brain tumor model by cocultivating rat glial cells and C6 gliomas to quantitatively analyze the effects of two types of anticancer drugs, cytochalasin B (CyB) and temozolomide (TMZ), when they were applied. We reported that CyB treatment (25 µg/ml, T = 90 min) significantly reduced the acoustic impedance of gliomas and has little effect on glial cells. Meanwhile, TMZ treatment (2 mg/ml, T = 90 min) impacted both cells equally, in which both cells’ acoustic impedances were decreased. As CyB targets the actin filament polymerization of the cells, we have concluded that the decrease in acoustic impedance was in fact due to actin filament depolymerization and the data can be quantitatively assessed for future studies in novel drug development.

  20. Differential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization – Mass Spectrometry Imaging

    PubMed Central

    Pirro, Valentina; Hattab, Eyas M.; Cohen-Gadol, Aaron A.; Cooks, R. Graham

    2016-01-01

    Desorption electrospray ionization—mass spectrometry (DESI-MS) imaging was used to analyze unmodified human brain tissue sections from 39 subjects sequentially in the positive and negative ionization modes. Acquisition of both MS polarities allowed more complete analysis of the human brain tumor lipidome as some phospholipids ionize preferentially in the positive and others in the negative ion mode. Normal brain parenchyma, comprised of grey matter and white matter, was differentiated from glioma using positive and negative ion mode DESI-MS lipid profiles with the aid of principal component analysis along with linear discriminant analysis. Principal component–linear discriminant analyses of the positive mode lipid profiles was able to distinguish grey matter, white matter, and glioma with an average sensitivity of 93.2% and specificity of 96.6%, while the negative mode lipid profiles had an average sensitivity of 94.1% and specificity of 97.4%. The positive and negative mode lipid profiles provided complementary information. Principal component–linear discriminant analysis of the combined positive and negative mode lipid profiles, via data fusion, resulted in approximately the same average sensitivity (94.7%) and specificity (97.6%) of the positive and negative modes when used individually. However, they complemented each other by improving the sensitivity and specificity of all classes (grey matter, white matter, and glioma) beyond 90% when used in combination. Further principal component analysis using the fused data resulted in the subgrouping of glioma into two groups associated with grey and white matter, respectively, a separation not apparent in the principal component analysis scores plots of the separate positive and negative mode data. The interrelationship of tumor cell percentage and the lipid profiles is discussed, and how such a measure could be used to measure residual tumor at surgical margins. PMID:27658243

  1. Pharmacodynamic and Therapeutic Investigation of Focused Ultrasound-Induced Blood-Brain Barrier Opening for Enhanced Temozolomide Delivery in Glioma Treatment

    PubMed Central

    Liu, Hao-Li; Huang, Chiung-Yin; Chen, Ju-Yu; Wang, Hay-Yan Jack; Chen, Pin-Yuan; Wei, Kuo-Chen

    2014-01-01

    Focused ultrasound (FUS) exposure with the presence of microbubbles has been shown to transiently open the blood-brain barrier (BBB), and thus has potential to enhance the delivery of various kinds of therapeutic agents into brain tumors. The purpose of this study was to assess the preclinical therapeutic efficacy of FUS-BBB opening for enhanced temozolomide (TMZ) delivery in glioma treatment. FUS exposure with microbubbles was delivered to open the BBB of nude mice that were either normal or implanted with U87 human glioma cells. Different TMZ dose regimens were tested, ranging from 2.5 to 25 mg/kg. Plasma and brain samples were obtained at different time-points ranging from 0.5 to 4 hours, and the TMZ concentration within samples was quantitated via a developed LC-MS/MS procedure. Tumor progression was followed with T2-MRI, and animal survival and brain tissue histology were conducted. Results demonstrated that FUS-BBB opening caused the local TMZ accumulation in the brain to increase from 6.98 to 19 ng/mg. TMZ degradation time in the tumor core was found to increase from 1.02 to 1.56 hours. Improved tumor progression and animal survival were found at different TMZ doses (up to 15% and 30%, respectively). In conclusion, this study provides preclinical evidence that FUS-BBB opening increases the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting the potential for clinical application to improve current brain tumor treatment. PMID:25490097

  2. Glioma targeted delivery strategy of doxorubicin-loaded liposomes by dual-ligand modification.

    PubMed

    Han, Wei; Yin, Guangfu; Pu, Ximing; Chen, Xianchun; Liao, Xiaoming; Huang, Zhongbing

    2017-10-01

    The blood-brain barrier (BBB) is the protective parclose of brain safety, but it is also the main obstacle of the drug delivery to cerebral parenchyma, which hamper therapy for brain diseases. In this work, a glioma targeted drug delivery system was developed through loading doxorubicin into Angiopep-2 and TAT peptide dual-modified liposomes (DOX-TAT-Ang-LIP). Low-density lipoprotein receptor-related protein-1 (LRP1) was one receptor overexpressed on both BBB and glioma cytomembranes. Angiopep-2, a specific ligand of LRP1, exhibited high LRP1 binding efficiency. Additionally, TAT could penetrate through cell membranes without selectivity via an unsaturated pathway. To avoid the receptor saturation of Angiopep-2, TAT was also conjugated on the surface of liposomes, providing that the liposomes not only have effective BBB penetrating effect, but also have the glioma targeting function. The prepared DOX liposomes appeared good stability and narrow dispersity in serum with a diameter of 90 nm, and exhibited sustained DOX release behaviors. The conjunctions of Angiopep-2 and TAT were confirmed by 1 H NMR spectra. The BBB model, cellular uptake observations, antiproliferation study, and the cell ultrastructure analyses suggested that DOX-TAT-Ang-LIP could not only penetrate through BBB via transcytosis, but also concentrate in glioma, then enter into glioma cells and finally result in the necrosis of glioma cells.

  3. Utility of 68Ga-PSMA-11 PET/CT in Imaging of Glioma-A Pilot Study.

    PubMed

    Sasikumar, Arun; Kashyap, Raghava; Joy, Ajith; Charan Patro, Kanhu; Bhattacharya, Parthasarathy; Reddy Pilaka, Venkata Krishna; Oommen, Karuna Elza; Pillai, Maroor Raghavan Ambikalmajan

    2018-06-22

    Imaging of gliomas remains challenging. The aim of the study was to assess the feasibility of using Ga-PSMA-11 PET/CT for imaging gliomas. Fifteen patients with glioma from 2 centers were included in the study. Ten patients were treated cases of glioblastoma with suspected recurrence. Two patients were sent for assessing the nature (primary lesion/metastasis) of space-occupying lesion in the brain; 3 patients were imaged immediately after surgery and before radiotherapy. Target-to-background ratios (TBR) for the brain lesions were calculated using contralateral cerebellar uptake as background. Among the 10 cases with suspected recurrence, scan was positive in 9, subsequent surgery was done, and histopathology proved it to be true recurrence. In the scan-negative case on follow-up, no evidence of disease could be made clinically or radiologically. Among the other cases the presence or absence of disease could be unequivocally identified on the Ga-PSMA-11 brain scan and correlated with the histopathology or other imaging. Apart from the visual assessment quantitative assessment of the lesions with TBR also showed a significantly high TBR value for those with true disease compared with those with no disease. In the evaluation of gliomas, Ga-PSMA-11 PET/CT brain imaging is a potentially useful imaging tool. The use of Ga-PSMA-11 brain PET/CT in evaluation of recurrent glioma seems promising. Absence of physiological uptake of Ga-PSMA-11 in the normal brain parenchyma results in high TBR values and consequently better visualization of glioma lesions.

  4. Glioma-mediated microglial activation promotes glioma proliferation and migration: roles of Na+/H+ exchanger isoform 1

    PubMed Central

    Zhu, Wen; Carney, Karen E.; Pigott, Victoria M.; Falgoust, Lindsay M.; Clark, Paul A.; Kuo, John S.; Sun, Dandan

    2016-01-01

    Microglia play important roles in extracellular matrix remodeling, tumor invasion, angiogenesis, and suppression of adaptive immunity in glioma. Na+/H+ exchanger isoform 1 (NHE1) regulates microglial activation and migration. However, little is known about the roles of NHE1 in intratumoral microglial activation and microglia–glioma interactions. Our study revealed up-regulation of NHE1 protein expression in both glioma cells and tumor-associated Iba1+ microglia in glioma xenografts and glioblastoma multiforme microarrays. Moreover, we observed positive correlation of NHE1 expression with Iba1 intensity in microglia/macrophages. Glioma cells, via conditioned medium or non-contact glioma-microglia co-cultures, concurrently upregulated microglial expression of NHE1 protein and other microglial activation markers (iNOS, arginase-1, TGF-β, IL-6, IL-10 and the matrix metalloproteinases MT1-MMP and MMP9). Interestingly, glioma-stimulated microglia reciprocally enhanced glioma proliferation and migration. Most importantly, inhibition of microglial NHE1 activity via small interfering RNA (siRNA) knockdown or the potent NHE1-specific inhibitor HOE642 significantly attenuated microglial activation and abolished microglia-stimulated glioma migration and proliferation. Taken together, our findings provide the first evidence that NHE1 function plays an important role in glioma–microglia interactions, enhancing glioma proliferation and invasion by stimulating microglial release of soluble factors. NHE1 upregulation is a novel marker of the glioma-associated microglial activation phenotype. Inhibition of NHE1 represents a novel glioma therapeutic strategy by targeting tumor-induced microglial activation. PMID:27287871

  5. Evaluation of porphyrin C analogues for photodynamic therapy of cerebral glioma.

    PubMed

    Karagianis, G; Hill, J S; Stylli, S S; Kaye, A H; Varadaxis, N J; Reiss, J A; Phillips, D R

    1996-02-01

    A series of monomeric porphyrins (2-8) based on porphyrin C (1) have been tested as sensitisers for photodynamic therapy (PDT) of cerebral glioma using the in vitro/in vivo C6 intracerebral animal tumour model. The in vivo screening, consisting of cytotoxicity, phototoxicity (red light) and subcellular localisation studies, revealed two sensitisers (porphyrin 7, molecular weight 863 Da and porphyrin 8, molecular weight 889 Da), which had greater photoactivity than porphyrin C and similar photoactivity to haematoporphyrin derivative (HpD) although at a 5-fold higher dose than HpD. Both sensitisers showed intracellular localisation to discrete organelle sites and exhibited considerably less 'dark' cytotoxicity than HpD. The kinetics of uptake of porphyrins 7 and 8 was studied in the mouse C6 glioma model as well as in biopsy samples from normal brain, liver, spleen and blood. Maximal drug uptake levels in tumour occurred 9 and 6 h after intraperitoneal injection for 7 and 8 respectively, at which time the tumour to normal brain ratios were 15:1 and 13:1 respectively. The effect of PDT using porphyrin 7 activated by the gold metal vapour laser tuned to 627.8 nm was studied in Wistar rats bearing intracerebral C6 glioma. At a drug dose of 10 mg porphyrin 7 kg-1 body weight and laser doses of up to 400 J cm-2 light, selective tumour kill with sparing of normal brain was achieved, with a maximal depth of tumour kill of 1.77+/-0.40. mm. Irradiation following a higher drug dose of 75 mg porphyrin 7 kg-1 body weight resulted in a greater depth of tumour kill, but also significantly increased the likelihood and extent of necrosis in normal brain.

  6. In vivo detection of inducible nitric oxide synthase in rodent gliomas.

    PubMed

    Towner, Rheal A; Smith, Nataliya; Doblas, Sabrina; Garteiser, Philippe; Watanabe, Yasuko; He, Ting; Saunders, Debra; Herlea, Oana; Silasi-Mansat, Robert; Lupu, Florea

    2010-03-01

    Increased iNOS expression is often found in brain tumors, such as gliomas. The goal of this study was to develop and assess a novel molecular MRI (mMRI) probe for in vivo detection of iNOS in rodent models for gliomas (intracerebral implantation of rat C6 or RG2 cells or ethyl nitrosourea-induced glioma). The probe we used incorporated a Gd-DTPA (gadolinium(III) complex of diethylenetriamine-N,N,N',N'',N''-pentaacetate) backbone with albumin and biotin moieties and covalent binding of an anti-iNOS antibody (Ab) to albumin (anti-iNOS probe). We used mMRI with the anti-iNOS probe to detect in vivo iNOS levels in gliomas. Nonimmune normal rat IgG coupled to albumin-Gd-DTPA-biotin was used as a control nonspecific contrast agent. By targeting the biotin component of the anti-iNOS probe with streptavidin Cy3, fluorescence imaging confirmed the specificity of the probe for iNOS in glioma tissue. iNOS levels in glioma tumors were also confirmed via Western blots and immunohistochemistry. The presence of plasma membrane-associated iNOS in glioma cells was established by transmission electron microscopy and gold-labeled anti-iNOS Ab. The more aggressive RG2 glioma was not found to have higher levels of iNOS compared to C6. Differences in glioma vascularization and blood-brain barrier permeability between the C6 and the RG2 gliomas are discussed. In vivo assessment of iNOS levels associated with tumor development is quite feasible in heterogeneous tissues with mMRI. (c) 2009 Elsevier Inc. All rights reserved.

  7. Astragaloside IV inhibits progression of glioma via blocking MAPK/ERK signaling pathway.

    PubMed

    Li, Bin; Wang, Fei; Liu, Ningtao; Shen, Wen; Huang, Tao

    2017-09-09

    Glioma is one of the most common primary brain tumors in adults with a high mortality rate and relapse rate. Thus, finding better effective approaches to treat glioma has become very urgent. Astragaloside IV (AS-IV), the major active triterpenoid in Radix Astragali, has shown anti-tumorigenic properties in certain cancers. However, its role in glioma remains unclear. Here, we studied the effects of AS-IV on glioma in vitro and in vivo, and explored the underlying mechanisms. Our results revealed that AS-IV dose-dependently inhibited the proliferation of U251 cells in vitro and attenuated tumor growth in vivo. In addition, the migration and invasion ability of U251 cell has been suppressed in presence of AS-IV. The levels of proliferating cell nuclear antigen (PCNA), Ki67, matrix metallopeptidase (MMP) -2, MMP-9 and vascular endothelial growth factor (VEGF) were decreased significantly by the treatment of different concentrations AS-IV. Furthermore, AS-IV also significantly weakened the activation of Mitogen-activated protein kinase/Extracellular regulated protein kinase (MAPK/ERK) signaling pathway in vitro and in vivo. Taken together our study has identified a novel function of AS-IV and provided a molecular basis for AS-IV potential applications in the treatment of glioma and other cancers. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Multidisciplinar approach to the management of gliomas].

    PubMed

    Moura, Bianca; Migliorini, Denis; Bourhis, Jean; Daniel, Roy; Levivier, Marc; Hottinger, Andreas F

    2016-04-27

    Gliomas represent two thirds of all primary brain tumors. Their prognosis depends directly upon their level of differentiation. On MRI, tumoral aggressivity is highlighted by contrast uptake and the infiltrative nature of the lesion. Clinical suspicion must however be confirmed by histology and molecular markers become essential to refine the diagnosis and tailor the treatment. Isocytrate dehydrogenase (IDH) mutations, codeletion of 1p and 19q and the presence of methylation of the MGMT promoter identify a subgroup of gliomas with better prognosis and may help predict response to treatment. Management of patients with primary brain tumors should always be defined in multidisciplinar tumor boards involving neurosurgeons, oncologists, radiation oncologists, neuropathologists and neuroradiologists.

  9. Long term reshaping of language, sensory, and motor maps after glioma resection: a new parameter to integrate in the surgical strategy

    PubMed Central

    Duffau, H; Denvil, D; Capelle, L

    2002-01-01

    Objectives: To describe cortical reorganisation and the effects of glioma infiltration on local brain function in three patients who underwent two operations 12–24 months apart. Methods: Three patients who had no neurological deficit underwent two operations for low grade glioma, located in functionally important brain regions. During each operation, local brain function was characterised by electrical mapping and awake craniotomy. Results: Language or sensorimotor areas had been invaded by the tumour at the time of the first operation, leading to incomplete glioma removal in all cases. Because of a tumour recurrence, the patients were reoperated on between 12 and 24 months later. Functional reorganisation of the language, sensory, and motor maps was detected by electrical stimulation of the brain, and this allowed total glioma removal without neurological sequelae. Conclusions: These findings show that surgical resection of a glioma can lead to functional reorganisation in the peritumorous and infiltrated brain. It may be that this reorganisation is directly or indirectly caused by the surgical procedure. If this hypothesis is confirmed by other studies, the use of such brain plasticity potential could be used when planning surgical options in some patients with low grade glioma. Such a strategy could extend the limits of tumour resection in gliomas involving eloquent brain areas without causing permanent morbidity. PMID:11909913

  10. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains ofmore » nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.« less

  11. Setting the Stage for Personalized Treatment of Glioma | Center for Cancer Research

    Cancer.gov

    Gliomas, the most common type of primary brain tumors in adults, arise from different types of glial cells, which support and protect the neurons of the central nervous system. How a patient’s glioma is treated depends in part on the type of glial cell from which the tumor developed. Classification of gliomas has traditionally been done by microscopic analysis of tumor

  12. Hu antigen R (HuR) multimerization contributes to glioma disease progression.

    PubMed

    Filippova, Natalia; Yang, Xiuhua; Ananthan, Subramaniam; Sorochinsky, Anastasia; Hackney, James R; Gentry, Zachery; Bae, Sejong; King, Peter; Nabors, L Burt

    2017-10-13

    Among primary brain cancers, gliomas are the most deadly and most refractory to current treatment modalities. Previous reports overwhelmingly support the role of the RNA-binding protein Hu antigen R (HuR) as a positive regulator of glioma disease progression. HuR expression is consistently elevated in tumor tissues, and a cytoplasmic localization appears essential for HuR-dependent oncogenic transformation. Here, we report HuR aggregation (multimerization) in glioma and the analysis of this tumor-specific HuR protein multimerization in clinical brain tumor samples. Using a split luciferase assay, a bioluminescence resonance energy transfer technique, and site-directed mutagenesis, we examined the domains involved in HuR multimerization. Results obtained with the combination of the split HuR luciferase assay with the bioluminescence resonance energy transfer technique suggested that multiple (at least three) HuR molecules come together during HuR multimerization in glioma cells. Using these data, we developed a model of HuR multimerization in glioma cells. We also demonstrate that exposing glioma cells to the HuR inhibitor tanshinone group compound 15,16-dihydrotanshinone-I or to the newly identified compound 5 disrupts HuR multimerization modules and reduces tumor cell survival and proliferation. In summary, our findings provide new insights into HuR multimerization in glioma and highlight possible pharmacological approaches for targeting HuR domains involved in cancer cell-specific multimerization.

  13. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    NASA Astrophysics Data System (ADS)

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  14. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway

    PubMed Central

    Rolón-Reyes, Kimberleve; Kucheryavykh, Yuriy V.; Cubano, Luis A.; Inyushin, Mikhail; Skatchkov, Serguei N.; Eaton, Misty J.; Harrison, Jeffrey K.; Kucheryavykh, Lilia Y.

    2015-01-01

    Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells. PMID:26098895

  15. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    PubMed

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  16. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E.Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas

    ClinicalTrials.gov

    2017-11-07

    Adult Anaplastic Astrocytoma; Recurrent Grade III Glioma; Recurrent Grade IV Glioma; Adult Anaplastic Oligodendroglioma; Adult Brain Tumor; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Adult Anaplastic Oligoastrocytoma; Recurrent High Grade Glioma

  17. The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xin; Hao, Bin; Liu, Ying

    Highlights: • PCBP2 expression is over-expressed in human glioma tissues and cell lines. • SIRT6 is decreased in glioma and correlated with PCBP2. • SIRT6 inhibits PCBP2 expression by deacetylating H3K9. • SIRT6 inhibits glioma growth in vitro and in vivo. - Abstract: More than 80% of tumors that occur in the brain are malignant gliomas. The prognosis of glioma patients is still poor, which makes glioma an urgent subject of cancer research. Previous evidence and our present data show that PCBP2 is over-expressed in human glioma tissues and predicts poor outcome. However, the mechanism by which PCBP2 is regulatedmore » in glioma remains elusive. We find that SIRT6, one of the NAD{sup +}-dependent class III deacetylase SIRTUINs, is down-regulated in human glioma tissues and that the level of SIRT6 is negatively correlated with PCBP2 level while H3K9ac enrichment on the promoter of PCBP2 is positively correlated with PCBP2 expression. Furthermore, we identify PCBP2 as a target of SIRT6. We demonstrate that PCBP2 expression is inhibited by SIRT6, which depends upon deacetylating H3K9ac. Finally, our results reveal that SIRT6 inhibits glioma cell proliferation and colony formation in vitro and glioma cell growth in vivo in a PCBP2 dependent manner. In summary, our findings implicate that SIRT6 inhibits PCBP2 expression through deacetylating H3K9ac and SIRT6 acts as a tumor suppressor in human glioma.« less

  18. Therapeutic dormancy to delay postsurgical glioma recurrence: the past, present and promise of focal hypothermia.

    PubMed

    Wion, Didier

    2017-07-01

    Surgery precedes both radiotherapy and chemotherapy as the first-line therapy for glioma. However, despite multimodal treatment, most glioma patients die from local recurrence in the resection margin. Glioma surgery is inherently lesional, and the response of brain tissue to surgery includes hemostasis, angiogenesis, reactive gliosis and inflammation. Unfortunately, these processes are also associated with tumorigenic side-effects. An increasing amount of evidence indicates that the response to a surgery-related brain injury is hijacked by residual glioma cells and participates in the local regeneration of tumor tissues at the resection margin. Inducing therapeutic hypothermia in the brain has long been used to treat the secondary damage, such as neuroinflammation and edema, that are caused by accidental traumatic brain injuries. There is compelling evidence to suggest that inducing therapeutic hypothermia at the resection margin would delay the local recurrence of glioma by (i) limiting cell proliferation, (ii) disrupting the pathological connection between inflammation and glioma recurrence, and (iii) limiting the consequences of the functional heterogeneity and complexity inherent to the tumor ecosystem. While the global whole-body cooling methods that are currently used to treat stroke in clinical practice may not adequately treat the resection margin, the future lies in implantable focal microcooling devices similar to those under development for the treatment of epilepsy. Preclinical and clinical strategies to evaluate focal hypothermia must be implemented to prevent glioma recurrence in the resection margin. Placing the resection margin in a state of hibernation may potentially provide such a long-awaited therapeutic breakthrough.

  19. Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice

    PubMed Central

    Garofalo, Stefano; D’Alessandro, Giuseppina; Chece, Giuseppina; Brau, Frederic; Maggi, Laura; Rosa, Alessandro; Porzia, Alessandra; Mainiero, Fabrizio; Esposito, Vincenzo; Lauro, Clotilde; Benigni, Giorgia; Bernardini, Giovanni; Santoni, Angela; Limatola, Cristina

    2015-01-01

    Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment. PMID:25818172

  20. The molecular profile of microglia under the influence of glioma

    PubMed Central

    Li, Wei; Graeber, Manuel B.

    2012-01-01

    Microglia, which contribute substantially to the tumor mass of glioblastoma, have been shown to play an important role in glioma growth and invasion. While a large number of experimental studies on functional attributes of microglia in glioma provide evidence for their tumor-supporting roles, there also exist hints in support of their anti-tumor properties. Microglial activities during glioma progression seem multifaceted. They have been attributed to the receptors expressed on the microglia surface, to glioma-derived molecules that have an effect on microglia, and to the molecules released by microglia in response to their environment under glioma control, which can have autocrine effects. In this paper, the microglia and glioma literature is reviewed. We provide a synopsis of the molecular profile of microglia under the influence of glioma in order to help establish a rational basis for their potential therapeutic use. The ability of microglia precursors to cross the blood–brain barrier makes them an attractive target for the development of novel cell-based treatments of malignant glioma. PMID:22573310

  1. 18F-FDOPA PET/CT or PET/MRI in Measuring Tumors in Patients With Newly-Diagnosed or Recurrent Gliomas

    ClinicalTrials.gov

    2017-01-30

    Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Recurrent Adult Brain Tumor; Recurrent Childhood Anaplastic Astrocytoma; Recurrent Childhood Anaplastic Oligoastrocytoma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Diffuse Astrocytoma; Recurrent Childhood Fibrillary Astrocytoma; Recurrent Childhood Gemistocytic Astrocytoma; Recurrent Childhood Giant Cell Glioblastoma; Recurrent Childhood Glioblastoma; Recurrent Childhood Gliomatosis Cerebri; Recurrent Childhood Gliosarcoma; Recurrent Childhood Oligoastrocytoma; Recurrent Childhood Oligodendroglioma; Recurrent Childhood Pilomyxoid Astrocytoma; Recurrent Childhood Protoplasmic Astrocytoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligoastrocytoma; Untreated Childhood Anaplastic Oligodendroglioma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Cerebellar Astrocytoma; Untreated Childhood Cerebral Astrocytoma; Untreated Childhood Diffuse Astrocytoma; Untreated Childhood Fibrillary Astrocytoma; Untreated Childhood Gemistocytic Astrocytoma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliomatosis Cerebri; Untreated Childhood Gliosarcoma; Untreated Childhood

  2. Comparison of T1 and T2 metabolite relaxation times in glioma and normal brain at 3 T

    PubMed Central

    Li, Yan; Srinivasan, Radhika; Ratiney, Helene; Lu, Ying; Chang, Susan M.; Nelson, Sarah J.

    2011-01-01

    Purpose To measure T1 and T2 relaxation times of metabolites in glioma patients at 3T and to investigate how these values influence the observed metabolite levels. Materials and Methods Twenty-three patients with gliomas and ten volunteers were studied with single voxel 2D J-resolved PRESS using a 3T MR scanner. Voxels were chosen in normal appearing white matter and in regions of tumor. The T1 and T2 of choline containing compounds (Cho), creatine (Cr) and N-acetyl aspartate (NAA) were estimated. Results Metabolite T1 relaxation values in gliomas were not significantly different from values in normal white matter. The T2 of Cho and Cr were statistically significantly longer for Grade 4 gliomas than for normal white matter but the T2 of NAA was similar. These differences were large enough to impact the corrections of metabolite levels for relaxation times with tumor grade in terms of metabolite ratios (P<0.001). Conclusion The differential increase in T2 for Cho and Cr relative to NAA means that the ratios of Cho/NAA and Cr/NAA are higher in tumor at longer echo times relative to values in normal appearing brain. Having this information may be useful in defining the acquisition parameters for optimizing contrast between tumor and normal tissue in MRSI data, where limited time is available and only one echo time can be used. PMID:18666155

  3. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas.

    PubMed

    Chaichana, Kaisorn L; Pinheiro, Leon; Brem, Henry

    2015-03-01

    Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their propensity to invade surrounding brain parenchyma, making curative resection difficult. These tumors typically recur within two centimeters of the resection cavity even after gross total removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving local disease control. In this review, we will summarize the current developments in the delivery of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of drug-loaded polymers, as well as the application of these therapeutics in future methods including microchip drug delivery and local gene therapy.

  4. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas

    PubMed Central

    Chaichana, Kaisorn L; Pinheiro, Leon; Brem, Henry

    2015-01-01

    Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their propensity to invade surrounding brain parenchyma, making curative resection difficult. These tumors typically recur within two centimeters of the resection cavity even after gross total removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving local disease control. In this review, we will summarize the current developments in the delivery of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of drug-loaded polymers, as well as the application of these therapeutics in future methods including microchip drug delivery and local gene therapy. PMID:25853310

  5. Effect of Brain- and Tumor-Derived Connective Tissue Growth Factor on Glioma Invasion

    PubMed Central

    Edwards, Lincoln A.; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A.; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T.; Zhang, Wei

    2011-01-01

    Background Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Methods Highly infiltrative patient-derived glioma tumor–initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Results Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1–TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF200 ng/mL: 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF200 ng/mL + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most

  6. Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion.

    PubMed

    Edwards, Lincoln A; Woolard, Kevin; Son, Myung Jin; Li, Aiguo; Lee, Jeongwu; Ene, Chibawanye; Mantey, Samuel A; Maric, Dragan; Song, Hua; Belova, Galina; Jensen, Robert T; Zhang, Wei; Fine, Howard A

    2011-08-03

    Tumor cell invasion is the principal cause of treatment failure and death among patients with malignant gliomas. Connective tissue growth factor (CTGF) has been previously implicated in cancer metastasis and invasion in various tumors. We explored the mechanism of CTGF-mediated glioma cell infiltration and examined potential therapeutic targets. Highly infiltrative patient-derived glioma tumor-initiating or tumor stem cells (TIC/TSCs) were harvested and used to explore a CTGF-induced signal transduction pathway via luciferase reporter assays, chromatin immunoprecipitation (ChIP), real-time polymerase chain reaction, and immunoblotting. Treatment of TIC/TSCs with small-molecule inhibitors targeting integrin β1 (ITGB1) and the tyrosine kinase receptor type A (TrkA), and short hairpin RNAs targeting CTGF directly were used to reduce the levels of key protein components of CTGF-induced cancer infiltration. TIC/TSC infiltration was examined in real-time cell migration and invasion assays in vitro and by immunohistochemistry and in situ hybridization in TIC/TSC orthotopic xenograft mouse models (n = 30; six mice per group). All statistical tests were two-sided. Treatment of TIC/TSCs with CTGF resulted in CTGF binding to ITGB1-TrkA receptor complexes and nuclear factor kappa B (NF-κB) transcriptional activation as measured by luciferase reporter assays (mean relative luciferase activity, untreated vs CTGF(200 ng/mL): 0.53 vs 1.87, difference = 1.34, 95% confidence interval [CI] = 0.69 to 2, P < .001). NF-κB activation resulted in binding of ZEB-1 to the E-cadherin promoter as demonstrated by ChIP analysis with subsequent E-cadherin suppression (fold increase in ZEB-1 binding to the E-cadherin promoter region: untreated + ZEB-1 antibody vs CTGF(200 ng/mL) + ZEB-1 antibody: 1.5 vs 6.4, difference = 4.9, 95% CI = 4.8 to 5.0, P < .001). Immunohistochemistry and in situ hybridization revealed that TrkA is selectively expressed in the most infiltrative glioma cells in situ

  7. Epigenetic modification of miR-141 regulates SKA2 by an endogenous ‘sponge’ HOTAIR in glioma

    PubMed Central

    Wang, Chao; Zong, Gang; Wang, Hong-Liang; Zhao, Bing

    2016-01-01

    Aberrant expression of miR-141 has recently implicated in the occurrence and development of various types of malignant tumors. However whether the involvement of miR-141 in the pathogenesis of glioma remains unknown. Here, we showed that miR-141 was markedly downregulated in glioma tissues and cell lines compared with normal brain tissues, and its expression correlated with the pathological grading. Enforced expression of miR-141 in glioma cells significantly inhibited cell proliferation, migration and invasion, whereas knockdown of miR-141 exerted opposite effect. Mechanistic investigations revealed that HOTAIR might act as an endogenous ‘sponge’ of miR-141, thereby regulating the derepression of SKA2. Further, we explored the molecular mechanism by which miR-141 expression was regulated, and found that the miR-141 promoter was hypermethylated and that promoter methylation of miR-141 was mediated by DNMT1 in glioma cells. Finally, both overexpression of miR-141 and knockdown of HOTAIR in a mouse model of human glioma resulted in significant reduction of tumor growth in vivo. Collectively, these results suggest that epigenetic modification of miR-141 and the interaction of ceRNA regulatory network will provide a new approach for therapeutics against glioma. PMID:27121316

  8. Glioma Indian scenario: Is there a human leucocyte antigen association?

    PubMed

    Shankarkumar, U; Sridharan, B

    2011-07-01

    The central nervous system tumors are a rare neoplasm with little knowledge with Human Leukocyte Antigen (HLA) involvement. Primary brain tumors are cancers that originate in brain classified according to their appearance under a microscope as low grade (grade I and II) with diffuse astrocytomas, pliocytic astrocytomas, oligodendrogliomas, gangliogliomas, and mixed gliomas as common subtypes and high grade (grade III and IV). HLA associations in common glioma are reported from other parts of the world. The normal cancer treatment is surgery, followed by radiotherapy, and chemotherapy; nowadays immunotherapy is advised. HLA distribution in a Glioma patient was done based on serology and molecular techniques. The immune response gene studies have implicated the HLA allele association in most of the common diseases from India. Considerable variations are noted in HLA association with cancers; hence, we have summarized the HLA involvement in Glioma with respect to the literature. HLA A*030101, A*310102, B*350101, B*4406, Cw*040101, Cw*070101, DRB1*070101, and DRB1*1001. Ethnic diversity and HLA polymorphism precipitate differential immune response genes involved in variable disease manifestations. Therefore, caste-specific HLA allelic specificity needs to be identified, which may help in early identification of the associated HLA allele and establishing clinical practices among glioma patients.

  9. Setting the Stage for Personalized Treatment of Glioma | Center for Cancer Research

    Cancer.gov

    Gliomas, the most common type of primary brain tumors in adults, arise from different types of glial cells, which support and protect the neurons of the central nervous system. How a patient’s glioma is treated depends in part on the type of glial cell from which the tumor developed. Classification of gliomas has traditionally been done by microscopic analysis of tumor sections. This process is subjective and prone to inconsistencies, which may explain in part the wide-ranging and often suboptimal responses of gliomas to treatment.  

  10. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  11. Current state and future prospects of immunotherapy for glioma.

    PubMed

    Kamran, Neha; Alghamri, Mahmoud S; Nunez, Felipe J; Shah, Diana; Asad, Antonela S; Candolfi, Marianela; Altshuler, David; Lowenstein, Pedro R; Castro, Maria G

    2018-02-01

    There is a large unmet need for effective therapeutic approaches for glioma, the most malignant brain tumor. Clinical and preclinical studies have enormously expanded our knowledge about the molecular aspects of this deadly disease and its interaction with the host immune system. In this review we highlight the wide array of immunotherapeutic interventions that are currently being tested in glioma patients. Given the molecular heterogeneity, tumor immunoediting and the profound immunosuppression that characterize glioma, it has become clear that combinatorial approaches targeting multiple pathways tailored to the genetic signature of the tumor will be required in order to achieve optimal therapeutic efficacy.

  12. The role of drebrin in glioma migration and invasion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terakawa, Yuzo; Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka; Agnihotri, Sameer

    Glioblastoma (GBM) is the most common primary brain tumor in adults. Despite current advances in therapy consisting of surgery followed by chemotherapy and radiation, the overall survival rate still remains poor. Therapeutic failures are partly attributable to the highly infiltrative nature of tumor adjacent to normal brain parenchyma. Recently, evidence is mounting to suggest that actin cytoskeleton dynamics are critical components of the cell invasion process. Drebrin is an actin-binding protein involved in the regulation of actin filament organization, and plays a significant role in cell motility; however, the role of drebrin in glioma cell invasiveness has not yet beenmore » fully elucidated. Therefore, this study was aimed to clarify the role of drebrin in glioma cell morphology and cell motility. Here we show that drebrin is expressed in glioma cell lines and in operative specimens of GBM. We demonstrate that stable overexpression of drebrin in U87 cells leads to alterations in cell morphology, and induces increased invasiveness in vitro while knockdown of drebrin in U87 cells by small interfering RNA (siRNA) decreases invasion and migration. In addition, we show that depletion of drebrin by siRNA alters glioma cell morphology in A172 GBM cell line. Our results suggest that drebrin contributes to the maintenance of cell shape, and may play an important role in glioma cell motility. - Highlights: ► Drebrin is an actin-binding protein aberrantly expressed in several cancers. ► Role of drebrin in glioma cell morphology and motility is previously unknown. ► We demonstrate that drebrin is expressed in 40% of glioblastoma specimens. ► Drebrin plays a significant role in modulating glioma cell migration and invasion.« less

  13. The effects of gene polymorphisms on glioma prognosis.

    PubMed

    Cui, Ying; Li, Guolin; Yan, Mengdan; Li, Jing; Jin, Tianbo; Li, Shanqu; Mu, Shijie

    2017-11-01

    Malignant gliomas are the most common primary brain tumors. Various genetic factors play important roles in the development and prognosis of glioma. The present study focuses on the impact of MPHOSPH6, TNIP1 and several other genes (ACYP2, NAF1, TERC, TERT, OBFC1, ZNF208 and RTEL1) on telomere length and how this affects the prognosis of glioma. Forty-three polymorphisms in nine genes from 605 glioma patients were selected. The association between genotype and survival outcome was analyzed using the Kaplan-Meier method, Cox regression analysis and the log-rank test. The 1-year overall survival (OS) rates of patients younger than 40 years of age was higher compared to those in patients older than 40 years of age. The 1-year OS rate of patients who underwent total resection was higher than that of patients whose gliomas were not completely resected. The 1-year OS rates of patients undergoing chemotherapy and of patients who did not undergo chemotherapy were 39.90% and 26.80%, respectively. Univariate analyses showed that ACYP2 rs12615793 and TERT rs2853676 loci affected progression-free survival in glioma patients; both ZNF208 rs8105767 and ACYP2 rs843720 affected the OS of patients with low-grade gliomas. Multivariate analyses suggested that MPHOSPH6 rs1056629 and rs1056654, and TERT rs2853676 loci were associated with good prognoses of patients with glioma or high-grade gliomas, whereas ZNF208 rs8105767 was associated with good prognosis of patients with low-grade glioma. Age, surgical resection and chemotherapy influenced the survival rates of glioma patients. TERT, MPHOSPH6, ACYP2 and ZNF208 genes were found to affect glioma prognosis. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Senescence from glioma stem cell differentiation promotes tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouchi, Rie; Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550; Okabe, Sachiko

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such asmore » IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.« less

  15. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma.

    PubMed

    Venkatesh, Humsa S; Tam, Lydia T; Woo, Pamelyn J; Lennon, James; Nagaraja, Surya; Gillespie, Shawn M; Ni, Jing; Duveau, Damien Y; Morris, Patrick J; Zhao, Jean J; Thomas, Craig J; Monje, Michelle

    2017-09-28

    High-grade gliomas (HGG) are a devastating group of cancers, and represent the leading cause of brain tumour-related death in both children and adults. Therapies aimed at mechanisms intrinsic to glioma cells have translated to only limited success; effective therapeutic strategies will need also to target elements of the tumour microenvironment that promote glioma progression. Neuronal activity promotes the growth of a range of molecularly and clinically distinct HGG types, including adult and paediatric glioblastoma (GBM), anaplastic oligodendroglioma, and diffuse intrinsic pontine glioma (DIPG). An important mechanism that mediates this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic adhesion molecule neuroligin-3 (NLGN3), which promotes glioma proliferation through the PI3K-mTOR pathway. However, the necessity of NLGN3 for glioma growth, the proteolytic mechanism of NLGN3 secretion, and the further molecular consequences of NLGN3 secretion in glioma cells remain unknown. Here we show that HGG growth depends on microenvironmental NLGN3, identify signalling cascades downstream of NLGN3 binding in glioma, and determine a therapeutically targetable mechanism of secretion. Patient-derived orthotopic xenografts of paediatric GBM, DIPG and adult GBM fail to grow in Nlgn3 knockout mice. NLGN3 stimulates several oncogenic pathways, such as early focal adhesion kinase activation upstream of PI3K-mTOR, and induces transcriptional changes that include upregulation of several synapse-related genes in glioma cells. NLGN3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. ADAM10 inhibitors prevent the release of NLGN3 into the tumour microenvironment and robustly block HGG xenograft growth. This work defines a promising strategy for targeting NLGN3 secretion, which could prove transformative for HGG therapy.

  16. Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma

    PubMed Central

    Venkatesh, Humsa S.; Tam, Lydia T.; Woo, Pamelyn J.; Lennon, James; Nagaraja, Surya; Gillespie, Shawn M.; Ni, Jing; Duveau, Damien Y.; Morris, Patrick J.; Zhao, Jean J.; Thomas, Craig J.; Monje, Michelle

    2017-01-01

    Summary High-grade gliomas (HGG) are a devastating group of cancers, representing the leading cause of brain tumor-related death in both children and adults. Therapies aimed at mechanisms intrinsic to the glioma cell have translated to only limited success; effective therapeutic strategies will need to also target elements of the tumor microenvironment that promote glioma progression. We recently demonstrated that neuronal activity robustly promotes the growth of a range of molecularly and clinically distinct HGG types, including adult glioblastoma (GBM), anaplastic oligodendroglioma, pediatric GBM, and diffuse intrinsic pontine glioma (DIPG)1. An important mechanism mediating this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic molecule neuroligin-3 (NLGN3), which promotes glioma proliferation through the PI3K-mTOR pathway1. However, neuroligin-3 necessity to glioma growth, proteolytic mechanism of secretion and further molecular consequences in glioma remain to be clarified. Here, we demonstrate a striking dependence of HGG growth on microenvironmental neuroligin-3, elucidate signaling cascades downstream of neuroligin-3 binding in glioma and determine a therapeutically targetable mechanism of secretion. Patient-derived orthotopic xenografts of pediatric GBM, DIPG and adult GBM fail to grow in Nlgn3 knockout mice. Neuroligin-3 stimulates numerous oncogenic pathways, including early focal adhesion kinase activation upstream of PI3K-mTOR, and induces transcriptional changes including upregulation of numerous synapse-related genes in glioma cells. Neuroligin-3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. ADAM10 inhibitors prevent release of neuroligin-3 into the tumor microenvironment and robustly block HGG xenograft growth. This work defines a promising strategy for targeting neuroligin-3 secretion, which could prove transformative for HGG therapy. PMID:28959975

  17. DNA methylation in adult diffuse gliomas.

    PubMed

    LeBlanc, Veronique G; Marra, Marco A

    2016-11-01

    Adult diffuse gliomas account for the majority of primary malignant brain tumours, and are in most cases lethal. Current therapies are often only marginally effective, and improved options will almost certainly benefit from further insight into the various processes contributing to gliomagenesis and pathology. While molecular characterization of these tumours classifies them on the basis of genetic alterations and chromosomal abnormalities, DNA methylation patterns are increasingly understood to play a role in glioma pathogenesis. Indeed, a subset of gliomas associated with improved survival is characterized by the glioma CpG island methylator phenotype (G-CIMP), which can be induced by the expression of mutant isocitrate dehydrogenase (IDH1/2). Aberrant methylation of particular genes or regulatory elements, within the context of G-CIMP-positive and/or negative tumours, has also been shown to be associated with differential survival. In this review, we provide an overview of the current knowledge regarding the role of DNA methylation in adult diffuse gliomas. In particular, we discuss IDH mutations and G-CIMP, MGMT promoter methylation, DNA methylation-mediated microRNA regulation and aberrant methylation of specific genes or groups of genes. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Semiautomatic Segmentation of Glioma on Mobile Devices.

    PubMed

    Wu, Ya-Ping; Lin, Yu-Song; Wu, Wei-Guo; Yang, Cong; Gu, Jian-Qin; Bai, Yan; Wang, Mei-Yun

    2017-01-01

    Brain tumor segmentation is the first and the most critical step in clinical applications of radiomics. However, segmenting brain images by radiologists is labor intense and prone to inter- and intraobserver variability. Stable and reproducible brain image segmentation algorithms are thus important for successful tumor detection in radiomics. In this paper, we propose a supervised brain image segmentation method, especially for magnetic resonance (MR) brain images with glioma. This paper uses hard edge multiplicative intrinsic component optimization to preprocess glioma medical image on the server side, and then, the doctors could supervise the segmentation process on mobile devices in their convenient time. Since the preprocessed images have the same brightness for the same tissue voxels, they have small data size (typically 1/10 of the original image size) and simple structure of 4 types of intensity value. This observation thus allows follow-up steps to be processed on mobile devices with low bandwidth and limited computing performance. Experiments conducted on 1935 brain slices from 129 patients show that more than 30% of the sample can reach 90% similarity; over 60% of the samples can reach 85% similarity, and more than 80% of the sample could reach 75% similarity. The comparisons with other segmentation methods also demonstrate both efficiency and stability of the proposed approach.

  19. A choline derivate-modified nanoprobe for glioma diagnosis using MRI

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Huang, Shixian; Shao, Kun; Liu, Yang; An, Sai; Kuang, Yuyang; Guo, Yubo; Ma, Haojun; Wang, Xuxia; Jiang, Chen

    2013-04-01

    Gadolinium (Gd) chelate contrast-enhanced magnetic resonance imaging (MRI) is a preferred method of glioma detection and preoperative localisation because it offers high spatial resolution and non-invasive deep tissue penetration. Gd-based contrast agents, such as Gd-diethyltriaminepentaacetic acid (DTPA-Gd, Magnevist), are widely used clinically for tumor diagnosis. However, the Gd-based MRI approach is limited for patients with glioma who have an uncompromised blood-brain barrier (BBB). Moreover, the rapid renal clearance and non-specificity of such contrast agents further hinders their prevalence. We present a choline derivate (CD)-modified nanoprobe with BBB permeability, glioma specificity and a long blood half-life. Specific accumulation of the nanoprobe in gliomas and subsequent MRI contrast enhancement are demonstrated in vitro in U87 MG cells and in vivo in a xenograft nude model. BBB and glioma dual targeting by this nanoprobe may facilitate precise detection of gliomas with an uncompromised BBB and may offer better preoperative and intraoperative tumor localization.

  20. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets

    PubMed Central

    Miranda-Gonçalves, Vera; Honavar, Mrinalini; Pinheiro, Céline; Martinho, Olga; Pires, Manuel M.; Pinheiro, Célia; Cordeiro, Michelle; Bebiano, Gil; Costa, Paulo; Palmeirim, Isabel; Reis, Rui M.; Baltazar, Fátima

    2013-01-01

    Background Gliomas exhibit high glycolytic rates, and monocarboxylate transporters (MCTs) play a major role in the maintenance of the glycolytic metabolism through the proton-linked transmembrane transport of lactate. However, their role in gliomas is poorly studied. Thus, we aimed to characterize the expression of MCT1, MCT4, and their chaperone CD147 and to assess the therapeutic impact of MCT inhibition in gliomas. Methods MCTs and CD147 expressions were characterized by immunohistochemistry in nonneoplastic brain and glioma samples. The effect of CHC (MCT inhibitor) and MCT1 silencing was assessed in in vitro and in vivo glioblastoma models. Results MCT1, MCT4, and CD147 were overexpressed in the plasma membrane of glioblastomas, compared with diffuse astrocytomas and nonneoplastic brain. CHC decreased glycolytic metabolism, migration, and invasion and induced cell death in U251 cells (more glycolytic) but only affected proliferation in SW1088 (more oxidative). The effectiveness of CHC in glioma cells appears to be dependent on MCT membrane expression. MCT1 downregulation showed similar effects on different glioma cells, supporting CHC as an MCT1 inhibitor. There was a synergistic effect when combining CHC with temozolomide treatment in U251 cells. In the CAM in vivo model, CHC decreased the size of tumors and the number of blood vessels formed. Conclusions This is the most comprehensive study reporting the expression of MCTs and CD147 in gliomas. The MCT1 inhibitor CHC exhibited anti-tumoral and anti-angiogenic activity in gliomas and, of importance, enhanced the effect of temozolomide. Thus, our results suggest that development of therapeutic approaches targeting MCT1 may be a promising strategy in glioblastoma treatment. PMID:23258846

  1. D-amino acid oxidase gene therapy sensitizes glioma cells to the antiglycolytic effect of 3-bromopyruvate.

    PubMed

    El Sayed, S M; Abou El-Magd, R M; Shishido, Y; Chung, S P; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-01-01

    Glioma tumors are refractory to conventional treatment. Glioblastoma multiforme is the most aggressive type of primary brain tumors in humans. In this study, we introduce oxidative stress-energy depletion (OSED) therapy as a new suggested treatment for glioblastoma. OSED utilizes D-amino acid oxidase (DAO), which is a promising therapeutic protein that induces oxidative stress and apoptosis through generating hydrogen peroxide (H2O2). OSED combines DAO with 3-bromopyruvate (3BP), a hexokinase II (HK II) inhibitor that interferes with Warburg effect, a metabolic alteration of most tumor cells that is characterized by enhanced aerobic glycolysis. Our data revealed that 3BP induced depletion of energetic capabilities of glioma cells. 3BP induced H2O2 production as a novel mechanism of its action. C6 glioma transfected with DAO and treated with D-serine together with 3BP-sensitized glioma cells to 3BP and decreased markedly proliferation, clonogenic power and viability in a three-dimensional tumor model with lesser effect on normal astrocytes. DAO gene therapy using atelocollagen as an in vivo transfection agent proved effective in a glioma tumor model in Sprague-Dawley (SD) rats, especially after combination with 3BP. OSED treatment was safe and tolerable in SD rats. OSED therapy may be a promising therapeutic modality for glioma.

  2. Progression of motor deficits in glioma-bearing mice: impact of CNF1 therapy at symptomatic stages

    PubMed Central

    Fabbri, Alessia; Costa, Mario; Caleo, Matteo; Baroncelli, Laura

    2017-01-01

    Glioblastoma (GBM) is the most aggressive type of brain tumor. In this context, animal models represent excellent tools for the early detection and longitudinal mapping of neuronal dysfunction, that are critical in the preclinical validation of new therapeutic strategies. In a mouse glioma model, we developed sensitive behavioral readouts that allow early recognizing and following neurological symptoms. We injected GL261 cells into the primary motor cortex of syngenic mice and we used a battery of behavioral tests to longitudinally monitor the dysfunction induced by tumor growth. Grip strength test revealed an early onset of functional deficit associated to the glioma growth, with a significant forelimb weakness appearing 9 days after tumor inoculation. A later deficit was observed in the rotarod and in the grid walk tasks. Using this model, we found reduced tumor growth and maintenance of behavioral functions following treatment with Cytotoxic Necrotizing Factor 1 (CNF1) at a symptomatic stage. Our data provide a detailed and precise examination of how tumor growth reverberates on the behavioral functions of glioma-bearing mice, providing normative data for the study of therapeutic strategies for glioma treatment. The reduced tumor volume and robust functional sparing observed in CNF1-treated, glioma-bearing mice strengthen the notion that CNF1 delivery is a promising strategy for glioma therapy. PMID:28212563

  3. Microglia and Macrophages in Malignant Gliomas: Recent Discoveries and Implications for Promising Therapies

    PubMed Central

    Carvalho da Fonseca, Anna Carolina; Badie, Behnam

    2013-01-01

    Malignant gliomas are the most common primary brain tumors. Their deadliest manifestation, glioblastoma multiforme (GBM), accounts for 15% of all primary brain tumors and is associated with a median survival of only 15 months even after multimodal therapy. There is substantial presence of microglia and macrophages within and surrounding brain tumors. These immune cells acquire an alternatively activated phenotype with potent tumor-tropic functions that contribute to glioma growth and invasion. In this review, we briefly summarize recent data that has been reported on the interaction of microglia/macrophages with brain tumors and discuss potential application of these findings to the development of future antiglioma therapies. PMID:23864876

  4. Microglia and macrophages in malignant gliomas: recent discoveries and implications for promising therapies.

    PubMed

    da Fonseca, Anna Carolina Carvalho; Badie, Behnam

    2013-01-01

    Malignant gliomas are the most common primary brain tumors. Their deadliest manifestation, glioblastoma multiforme (GBM), accounts for 15% of all primary brain tumors and is associated with a median survival of only 15 months even after multimodal therapy. There is substantial presence of microglia and macrophages within and surrounding brain tumors. These immune cells acquire an alternatively activated phenotype with potent tumor-tropic functions that contribute to glioma growth and invasion. In this review, we briefly summarize recent data that has been reported on the interaction of microglia/macrophages with brain tumors and discuss potential application of these findings to the development of future antiglioma therapies.

  5. Symptom clusters in patients with high-grade glioma.

    PubMed

    Fox, Sherry W; Lyon, Debra; Farace, Elana

    2007-01-01

    To describe the co-occurring symptoms (depression, fatigue, pain, sleep disturbance, and cognitive impairment), quality of life (QoL), and functional status in patients with high-grade glioma. Correlational, descriptive study of 73 participants with high-grade glioma in the U.S. Nine brief measures were obtained with a mailed survey. Participants were recruited from the online message board of The Healing Exchange BRAIN TRUST, a nonprofit organization dedicated to improving quality of life for people with brain tumors. Two symptom cluster models were examined. Four co-occurring symptoms were significantly correlated with each other and explained 29% of the variance in QoL: depression, fatigue, sleep disturbance, and cognitive impairment. Depression, fatigue, sleep disturbance, cognitive impairment, and pain were significantly correlated with each other and explained 62% of the variance in functional status. The interrelationships of the symptoms examined in this study and their relationships with QoL and functional status meet the criteria for defining a symptom cluster. The differences in the models of QoL and functional status indicates that symptom clusters may have unique characteristics in patients with gliomas.

  6. Microfluidics in Malignant Glioma Research and Precision Medicine

    PubMed Central

    Logun, Meghan; Zhao, Wujun

    2018-01-01

    Glioblastoma multiforme (GBM) is an aggressive form of brain cancer that has no effective treatments and a prognosis of only 12–15 months. Microfluidic technologies deliver microscale control of fluids and cells, and have aided cancer therapy as point-of-care devices for the diagnosis of breast and prostate cancers. However, a few microfluidic devices are developed to study malignant glioma. The ability of these platforms to accurately replicate the complex microenvironmental and extracellular conditions prevailing in the brain and facilitate the measurement of biological phenomena with high resolution and in a high-throughput manner could prove useful for studying glioma progression. These attributes, coupled with their relatively simple fabrication process, make them attractive for use as point-of-care diagnostic devices for detection and treatment of GBM. Here, the current issues that plague GBM research and treatment, as well as the current state of the art in glioma detection and therapy, are reviewed. Finally, opportunities are identified for implementing microfluidic technologies into research and diagnostics to facilitate the rapid detection and better therapeutic targeting of GBM. PMID:29780878

  7. High-grade glioma diffusive modeling using statistical tissue information and diffusion tensors extracted from atlases.

    PubMed

    Roniotis, Alexandros; Manikis, Georgios C; Sakkalis, Vangelis; Zervakis, Michalis E; Karatzanis, Ioannis; Marias, Kostas

    2012-03-01

    Glioma, especially glioblastoma, is a leading cause of brain cancer fatality involving highly invasive and neoplastic growth. Diffusive models of glioma growth use variations of the diffusion-reaction equation in order to simulate the invasive patterns of glioma cells by approximating the spatiotemporal change of glioma cell concentration. The most advanced diffusive models take into consideration the heterogeneous velocity of glioma in gray and white matter, by using two different discrete diffusion coefficients in these areas. Moreover, by using diffusion tensor imaging (DTI), they simulate the anisotropic migration of glioma cells, which is facilitated along white fibers, assuming diffusion tensors with different diffusion coefficients along each candidate direction of growth. Our study extends this concept by fully exploiting the proportions of white and gray matter extracted by normal brain atlases, rather than discretizing diffusion coefficients. Moreover, the proportions of white and gray matter, as well as the diffusion tensors, are extracted by the respective atlases; thus, no DTI processing is needed. Finally, we applied this novel glioma growth model on real data and the results indicate that prognostication rates can be improved. © 2012 IEEE

  8. Comparison of 4'-[methyl-(11)C]thiothymidine ((11)C-4DST) and 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) PET/CT in human brain glioma imaging.

    PubMed

    Toyota, Yasunori; Miyake, Keisuke; Kawai, Nobuyuki; Hatakeyama, Tetsuhiro; Yamamoto, Yuka; Toyohara, Jun; Nishiyama, Yoshihiro; Tamiya, Takashi

    2015-01-01

    3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) has been used to evaluate tumor malignancy and cell proliferation in human brain gliomas. However, (18)F-FLT has several limitations in clinical use. Recently, (11)C-labeled thymidine analogue, 4'-[methyl-(11)C]thiothymidine ((11)C-4DST), became available as an in vivo cell proliferation positron emission tomography (PET) tracer. The present study was conducted to evaluate the usefulness of (11)C-4DST PET in the diagnosis of human brain gliomas by comparing with the images of (18)F-FLT PET. Twenty patients with primary and recurrent brain gliomas underwent (18)F-FLT and (11)C-4DST PET scans. The uptake values in the tumors were evaluated using the maximum standardized uptake value (SUVmax), the tumor-to-normal tissue uptake (T/N) ratio, and the tumor-to-blood uptake (T/B) ratio. These values were compared among different glioma grades. Correlation between the Ki-67 labeling index and the uptake values of (11)C-4DST and (18)F-FLT in the tumor was evaluated using linear regression analysis. The relationship between the individual (18)F-FLT and (11)C-4DST uptake values in the tumors was also examined. (11)C-4DST uptake was significantly higher than that of (18)F-FLT in the normal brain. The uptake values of (11)C-4DST in the tumor were similar to those of (18)F-FLT resulting in better visualization with (18)F-FLT. No significant differences in the uptake values of (18)F-FLT and (11)C-4DST were noted among different glioma grades. Linear regression analysis showed a significant correlation between the Ki-67 labeling index and the T/N ratio of (11)C-4DST (r = 0.50, P < 0.05) and (18)F-FLT (r = 0.50, P < 0.05). Significant correlations were also found between the Ki-67 labeling index and the T/B ratio of (11)C-4DST (r = 0.52, P < 0.05) and (18)F-FLT (r = 0.55, P < 0.05). A highly significant correlation was observed between the individual T/N ratio of (11)C-4DST and (18)F-FLT in the tumor (r

  9. Sestamibi technetium-99m brain single-photon emission computed tomography to identify recurrent glioma in adults: 201 studies.

    PubMed

    Le Jeune, Florence Prigent; Dubois, François; Blond, Serge; Steinling, Marc

    2006-04-01

    In the follow-up of treated gliomas, CT and MRI can often not differentiate radionecrosis from recurrent tumor. The aim of this study was to assess the interest of functional imaging with (99m)Tc-MIBI SPECT in a large series of 201 examinations. MIBI SPECT were performed in 81 patients treated for brain gliomas. A MIBI uptake index was computed as the ratio of counts in the lesion to counts in the controlateral region. SPECT was compared to stereotactic biopsy in 14 cases, or in the others cases to imaging evolution or clinical course at 6 months after the last tomoscintigraphy Two hundred and one tomoscintigraphies were performed. One hundred and two scans were true positive, 82 scans were true negative. Six scans were false positive (corresponding to 3 patients): 2 patients with an inflammatory reaction after radiosurgery, 1 with no explanation up to now. Eleven scans were false negative (5 patients): 1 patient with a deep peri-ventricular lesion, 2 patients with no contrast enhancement on MRI, 2 patients with a temporal tumor. The sensitivity for tumor recurrence was 90%, specificity 91.5% and accuracy 90.5%. We studied separately low and high grade glioma: sensitivity for tumor recurrence was respectively 91% and 89%, specificity 100% and 83% and accuracy 95% and 87%. MIBI SPECT allowed the diagnose of anaplasic degenerence of low grade sometimes earlier than clinical (5 cases) or MRI signs (7 cases). Our results confirm the usefullness of MIBI SPECT in the follow-up of treated gliomas for the differential diagnosis between radiation necrosis and tumor recurrence.

  10. Evaluation of D-isomers of 4-borono-2-18F-fluoro-phenylalanine and O-11C-methyl-tyrosine as brain tumor imaging agents: a comparative PET study with their L-isomers in rat brain glioma.

    PubMed

    Kanazawa, Masakatsu; Nishiyama, Shingo; Hashimoto, Fumio; Kakiuchi, Takeharu; Tsukada, Hideo

    2018-06-13

    The potential of the D-isomerization of 4-borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) to improve its target tumor to non-target normal brain tissue ratio (TBR) was evaluated in rat brain glioma and compared with those of L- and D- 11 C-methyl-tyrosine ( 11 C-CMT). The L- or D-isomer of 18 F-FBPA was injected into rats through the tail vein, and their whole body kinetics and distributions were assessed using the tissue dissection method up to 90 min after the injection. The kinetics of L- and D- 18 F-FBPA or L- and D- 11 C-CMT in the C-6 glioma-inoculated rat brain were measured for 90 or 60 min, respectively, using high-resolution animal PET, and their TBRs were assessed. Tissue dissection analyses showed that D- 18 F-FBPA uptake was significantly lower than that of L- 18 F-FBPA in the brain and abdominal organs, except for the kidney and bladder, reflecting the faster elimination rate of D- 18 F-FBPA than L- 18 F-FBPA from the blood to the urinary tract. PET imaging using 18 F-FBPA revealed that although the brain uptake of D- 18 F-FBPA was significantly lower than that of L- 18 F-FBPA, the TBR of the D-isomer improved to 6.93 from 1.45 for the L-isomer. Similar results were obtained with PET imaging using 11 C-CMT with a smaller improvement in TBR to 1.75 for D- 11 C-CMT from 1.33 for L- 11 C-CMT. The present results indicate that D- 18 F-FBPA is a better brain tumor imaging agent with higher TBR than its original L-isomer and previously reported tyrosine-based PET imaging agents. This improved TBR of D- 18 F-FBPA without any pre-treatments, such as tentative blood-brain barrier disruption using hyperosmotic agents or sonication, suggests that the D-isomerization of BPA results in the more selective accumulation of 10 B in tumor cells that is more effective and less toxic than conventional L-BPA.

  11. Genotype-based gene signature of glioma risk.

    PubMed

    Huang, Yen-Tsung; Zhang, Yi; Wu, Zhijin; Michaud, Dominique S

    2017-07-01

    Glioma accounts for 80% of malignant brain tumors, but its etiologic determinants remain elusive. Despite genetic susceptibility loci identified by genome-wide association study (GWAS), the agnostic approach leaves open the possibility that other susceptibility genes remain to be discovered. Here we conduct a gene-centric integrative GWAS (iGWAS) of glioma risk that combines transcriptomics and genetics. We synthesized a brain transcriptomics dataset (n = 354), a GWAS dataset (n = 4203), and an advanced glioma tumor transcriptomic dataset (n = 483) to conduct an iGWAS. Using the expression quantitative trait loci (eQTL) dataset, we built models to predict gene expression for the GWAS data, based on eQTL genotypes. With the predicted gene expression, iGWAS analyses were performed using a novel statistical method. Gene signature risk score was constructed using a penalized logistic regression model. A total of 30527 transcripts were analyzed using the iGWAS approach. Four novel glioma susceptibility genes were identified with internal and external validation, including DRD5 (P = 3.0 × 10-79), WDR1 (P = 8.4 × 10-77), NOMO1 (P = 1.3 × 10-25), and PDXDC1 (P = 8.3 × 10-24). The genotype-predicted transcription pattern between cases and controls is consistent with that between tumor and its matched normal tissue. The genotype-based 4-gene signature improved the classification between glioma cases and controls based on age, gender, and population stratification, with area under the receiver operating characteristic curve increasing from 0.77 to 0.85 (P = 8.1 × 10-23). A new genotype-based gene signature of glioma was identified using a novel iGWAS approach, which integrates multiplatform genomic data as well as different genetic association studies. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. CD147 and glioma: a meta-analysis.

    PubMed

    Li, Hui; Xi, Zhouhuan; Dai, Xuejiao; Wu, Wenyue; Li, Yanwen; Liu, Yanting; Zhang, Hanwen

    2017-08-01

    Gliomas are the most common primary brain tumors. This meta-analysis aimed to systematically evaluate the relationship between CD147 expression in tissues and the clinicopathological features of patients with glioma. We searched PubMed (1966-2016), EMBASE (1980-2016), Cochrane Library (1996-2016), Web of Science (1945-2016), China National Knowledge Infrastructure (1982-2016), and Wan Fang databases (1988-2016). Quality assessment of the literature was performed using the Newcastle-Ottawa Scale, with Revman 5.3 and Stata 14.0 for analysis. In total, 1806 glioma patients from 19 studies were included, and patients with CD147 overexpression had poorer overall survival [hazard ratio (HR) = 2.211, P < 0.0001], a higher risk of recurrence (HR = 2.20, P = 0.0025), and a lower 5-year survival rate [odds ratio (OR) 0.12; 95% CI 0.08-0.19; P < 0.00001]. We observed significant differences in CD147 expression when comparing glioma tissues versus non-cancerous brain tissues (OR 20.42; 95% CI 13.94-29.91; P < 0.00001), tumor grades III-IV versus grades I-II (OR 5.88, 95% CI 4.15-8.34; P < 0.00001), and large versus small tumors (OR 1.58, 95% CI 1.04-2.40; P = 0.03). We also observed a significant correlation with matrix metalloproteinase (MMP) 2 (OR 39.11, 95% CI 11.47-133.34; P < 0.00001) and MMP9 (OR 13.35, 95% CI 4.67-38.18; P < 0.00001). CD147 expression did not differ based on patient's age (young vs. old, P = 0.89) or gender (female vs. male, P = 0.57). CD147 expression may be a potential prognostic biomarker for poorer overall and relapse-free survival, and may affect the 5-year survival rate in glioma patients. CD147 expression is also closely correlated with poor clinical characteristics in glioma patients.

  13. Inhibition of GPR158 by microRNA-449a suppresses neural lineage of glioma stem/progenitor cells and correlates with higher glioma grades.

    PubMed

    Li, Ningning; Zhang, Ying; Sidlauskas, Kastytis; Ellis, Matthew; Evans, Ian; Frankel, Paul; Lau, Joanne; El-Hassan, Tedani; Guglielmi, Loredana; Broni, Jessica; Richard-Loendt, Angela; Brandner, Sebastian

    2018-05-03

    To identify biomarkers for glioma growth, invasion and progression, we used a candidate gene approach in mouse models with two complementary brain tumour phenotypes, developing either slow-growing, diffusely infiltrating gliomas or highly proliferative, non-invasive primitive neural tumours. In a microRNA screen we first identified microRNA-449a as most significantly differentially expressed between these two tumour types. miR-449a has a target dependent effect, inhibiting cell growth and migration by downregulation of CCND1 and suppressing neural phenotypes by inhibition of G protein coupled-receptor (GPR) 158. GPR158 promotes glioma stem cell differentiation and induces apoptosis and is highest expressed in the cerebral cortex and in oligodendrogliomas, lower in IDH mutant astrocytomas and lowest in the most malignant form of glioma, IDH wild-type glioblastoma. The correlation of GPR158 expression with molecular subtypes, patient survival and therapy response suggests a possible role of GPR158 as prognostic biomarker in human gliomas.

  14. The involvement of heparan sulfate proteoglycans in stem cell differentiation and in malignant glioma

    NASA Astrophysics Data System (ADS)

    Kundu, Soumi; Xiong, Anqi; Forsberg-Nilsson, Karin

    2016-04-01

    Heparan sulfate (HS) proteoglycans (HSPG) are major components of the extracellular matrix. They interact with a plethora of macromolecules that are of physiological importance. The pattern of sulfation of the HS chain determines the specificity of these interactions. The enzymes that synthesize and degrade HS are thus key regulators of processes ranging from embryonic development to tissue homeostasis and tumor development. Formation of the nervous system is also critically dependent on appropriate HSPGs as shown by several studies on the role of HS in neural induction from embryonic stem cells. High-grade glioma is the most common primary malignant brain tumor among adults, and the prognosis is poor. Neural and glioma stem cells share several traits, including sustained proliferation and highly efficient migration in the brain. There are also similarities between the neurogenic niche where adult neural stem cells reside and the tumorigenic niche, including their interactions with components of the extracellular matrix (ECM). The levels of many of these components, for example HSPGs and enzymes involved in the biosynthesis and modification of HS are attenuated in gliomas. In this paper, HS regulation of pathways involved in neural differentiation and how these may be of importance for brain development are discussed. The literature suggesting that modifications of HS could regulate glioma growth and invasion is reviewed. Targeting the invasiveness of glioma cells by modulating HS may improve upon present therapeutic options, which only marginally enhance the survival of glioma patients.

  15. Cabazitaxel operates anti-metastatic and cytotoxic via apoptosis induction and stalls brain tumor angiogenesis.

    PubMed

    Ghoochani, Ali; Hatipoglu Majernik, Gökce; Sehm, Tina; Wach, Sven; Buchfelder, Michael; Taubert, Helge; Eyupoglu, Ilker Y; Savaskan, Nicolai

    2016-06-21

    Taxanes target microtubules and are clinically established chemotherapeutic agents with proven efficacy in human cancers. Cabazitaxel (XRP-6258, Jevtana®) is a second generation semisynthetic taxane with high chemotherapeutic potential in prostate cancer. There, cabazitaxel can overcome docetaxel-resistant prostate cancer. Here, we tested the effects of cabazitaxel on glioma cells, and non-transformed cells such as neurons and astrocytes. Cabazitaxel operates highly toxic in various human glioma cells at nanomolar concentrations. In contrast, primary astrocytes and neurons are not affected by this agent. Cabazitaxel disrupts cytoskeletal F-actin fibers and induces apoptotic cell death in gliomas. Moreover, cabazitaxel displayed highest efficacy in inhibiting glioma cell migration and invasion. Here we demonstrate that cabazitaxel inhibited tumor migration already at 1 nM. We also tested cabazitaxel in the ex vivo VOGiM assay. Cabazitaxel stalled glioma growth and at the same time inhibited tumor-induced angiogenesis. In summary, we found that cabazitaxel operates as an apoptosis-inducing gliomatoxic agent with strongest effects on migration and invasive growth. Thus, our report uncovered cabazitaxel actions on gliomas and on the brain tumor microenvironment. These data reveal novel aspects for adjuvant approaches when applied to brain tumor patients.

  16. Cabazitaxel operates anti-metastatic and cytotoxic via apoptosis induction and stalls brain tumor angiogenesis

    PubMed Central

    Ghoochani, Ali; Majernik, Gökce Hatipoglu; Sehm, Tina; Wach, Sven; Buchfelder, Michael; Taubert, Helge

    2016-01-01

    Taxanes target microtubules and are clinically established chemotherapeutic agents with proven efficacy in human cancers. Cabazitaxel (XRP-6258, Jevtana®) is a second generation semisynthetic taxane with high chemotherapeutic potential in prostate cancer. There, cabazitaxel can overcome docetaxel-resistant prostate cancer. Here, we tested the effects of cabazitaxel on glioma cells, and non-transformed cells such as neurons and astrocytes. Cabazitaxel operates highly toxic in various human glioma cells at nanomolar concentrations. In contrast, primary astrocytes and neurons are not affected by this agent. Cabazitaxel disrupts cytoskeletal F-actin fibers and induces apoptotic cell death in gliomas. Moreover, cabazitaxel displayed highest efficacy in inhibiting glioma cell migration and invasion. Here we demonstrate that cabazitaxel inhibited tumor migration already at 1 nM. We also tested cabazitaxel in the ex vivo VOGiM assay. Cabazitaxel stalled glioma growth and at the same time inhibited tumor-induced angiogenesis. In summary, we found that cabazitaxel operates as an apoptosis-inducing gliomatoxic agent with strongest effects on migration and invasive growth. Thus, our report uncovered cabazitaxel actions on gliomas and on the brain tumor microenvironment. These data reveal novel aspects for adjuvant approaches when applied to brain tumor patients. PMID:27203678

  17. Vorinostat, Temozolomide, or Bevacizumab in Combination With Radiation Therapy Followed by Bevacizumab and Temozolomide in Young Patients With Newly Diagnosed High-Grade Glioma

    ClinicalTrials.gov

    2017-10-11

    Brain Stem Glioma; Cerebral Astrocytoma; Childhood Cerebellar Anaplastic Astrocytoma; Childhood Cerebral Anaplastic Astrocytoma; Childhood Spinal Cord Neoplasm; Untreated Childhood Brain Stem Glioma; Untreated Childhood Cerebral Astrocytoma

  18. Late post-treatment radiographic changes 3 years following chemoradiation for glioma: the importance of histopathology.

    PubMed

    Galante, Joao R; Rodriguez, Fausto; Grossman, Stuart A; Strowd, Roy E

    2017-07-18

    Treatment-related changes can mimic brain tumor progression both clinically and radiographically. Distinguishing these two entities represents a major challenge in neuro-oncology. No single imaging modality is capable of reliably achieving such distinction. While histopathology remains the gold standard, definitive pathological criteria are also lacking which can further complicate such cases. We report a patient with high-grade glioma who, after initially presenting with histopathologically confirmed pseudoprogression 10 months following treatment, re-presented 3 years following concurrent chemoradiation with clinical and radiographic changes that were most consistent with progressive disease but for which histopathology revealed treatment effects without active glioma. This case highlights the potential late onset of treatment-related changes and underscores the importance of histopathologic assessment even years following initial therapy.

  19. Vorinostat and Radiation Therapy Followed by Maintenance Therapy With Vorinostat in Treating Younger Patients With Newly Diagnosed Diffuse Intrinsic Pontine Glioma

    ClinicalTrials.gov

    2018-06-19

    Anaplastic Astrocytoma; Anaplastic Oligoastrocytoma; Brain Stem Glioma; Childhood Glioblastoma; Giant Cell Glioblastoma; Gliosarcoma; Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligoastrocytoma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Gliosarcoma

  20. Molecular Biology in Pediatric High-Grade Glioma: Impact on Prognosis and Treatment.

    PubMed

    Rizzo, Daniela; Ruggiero, Antonio; Martini, Maurizio; Rizzo, Valentina; Maurizi, Palma; Riccardi, Riccardo

    2015-01-01

    High-grade gliomas are the main cause of death in children with brain tumours. Despite recent advances in cancer therapy, their prognosis remains poor and the treatment is still challenging. To date, surgery followed by radiotherapy and temozolomide is the standard therapy. However, increasing knowledge of glioma biology is starting to impact drug development towards targeted therapies. The identification of agents directed against molecular targets aims at going beyond the traditional therapeutic approach in order to develop a personalized therapy and improve the outcome of pediatric high-grade gliomas. In this paper, we critically review the literature regarding the genetic abnormalities implicated in the pathogenesis of pediatric malignant gliomas and the current development of molecularly targeted therapies. In particular, we analyse the impact of molecular biology on the prognosis and treatment of pediatric high-grade glioma, comparing it to that of adult gliomas.

  1. MeCP2 overexpression inhibits proliferation, migration and invasion of C6 glioma by modulating ERK signaling and gene expression.

    PubMed

    Sharma, Kedarlal; Singh, Juhi; Frost, Emma E; Pillai, Prakash P

    2018-05-01

    MethylCpG binding protein-2 (MeCP2) is an epigenetic regulator and essential for brain development. MeCP2 mutations are associated with a spectrum of neuro-developmental disorders that vary depending on the patient gender, most notably Rett Syndrome. MeCP2 is essential for normal neuronal maturation, and glial cell function in the brain. Besides, its role in neurodevelopmental disorders, MeCP2 is involved in many cancers such as breast, colorectal, lung, liver, and prostate cancer. Glioma is the most lethal form of brain cancer. Studies have shown that dysfunctional epigenetic regulation plays a crucial role in glioma progression. Further, previous studies have suggested a role for MeCP2 in glioma pathogenesis. In this study, we show that MeCP2 may play a critical role in the suppression of glioma progression. Stable overexpression of MeCP2in C6 glioma cells inhibits proliferation, migration, invasion, and adhesion. Moreover, MeCP2 overexpression inhibits pERKand BDNF expression while inducing GFAP expression in C6 glioma. These findings suggest that MeCP2 may play a crucial role in suppression of glioma progression. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Automated discrimination of lower and higher grade gliomas based on histopathological image analysis.

    PubMed

    Mousavi, Hojjat Seyed; Monga, Vishal; Rao, Ganesh; Rao, Arvind U K

    2015-01-01

    Histopathological images have rich structural information, are multi-channel in nature and contain meaningful pathological information at various scales. Sophisticated image analysis tools that can automatically extract discriminative information from the histopathology image slides for diagnosis remain an area of significant research activity. In this work, we focus on automated brain cancer grading, specifically glioma grading. Grading of a glioma is a highly important problem in pathology and is largely done manually by medical experts based on an examination of pathology slides (images). To complement the efforts of clinicians engaged in brain cancer diagnosis, we develop novel image processing algorithms and systems to automatically grade glioma tumor into two categories: Low-grade glioma (LGG) and high-grade glioma (HGG) which represent a more advanced stage of the disease. We propose novel image processing algorithms based on spatial domain analysis for glioma tumor grading that will complement the clinical interpretation of the tissue. The image processing techniques are developed in close collaboration with medical experts to mimic the visual cues that a clinician looks for in judging of the grade of the disease. Specifically, two algorithmic techniques are developed: (1) A cell segmentation and cell-count profile creation for identification of Pseudopalisading Necrosis, and (2) a customized operation of spatial and morphological filters to accurately identify microvascular proliferation (MVP). In both techniques, a hierarchical decision is made via a decision tree mechanism. If either Pseudopalisading Necrosis or MVP is found present in any part of the histopathology slide, the whole slide is identified as HGG, which is consistent with World Health Organization guidelines. Experimental results on the Cancer Genome Atlas database are presented in the form of: (1) Successful detection rates of pseudopalisading necrosis and MVP regions, (2) overall

  3. Glioma infiltration sign on high b-value diffusion-weighted imaging in gliomas and its prognostic value.

    PubMed

    Zeng, Qiang; Ling, Chenhan; Shi, Feina; Dong, Fei; Jiang, Biao; Zhang, Jianmin

    2018-03-01

    Glioma cells may infiltrate beyond the tumor margins revealed on conventional structural images. To investigate whether the presence of a glioma infiltration sign on high b-value diffusion-weighted imaging (DWI) can predict the prognosis of gliomas. Retrospective cohort. Fifty-two patients with gliomas (14 WHO grade II; 13 WHO grade III; 25 WHO grade IV). 3.0T, including a T 1 -weighted contrast-enhanced (T 1 w-CE) sequence, contrast-enhanced T 2 -flair sequence, and a DWI sequence. T 1 w-CE images and contrast-enhanced T 2 -flair images were used for identifying the tumor region for enhancing and nonenhancing gliomas, respectively. The glioma infiltration sign was defined as the presence of a peritumoral abnormal high signal region on DWI map, which was adjacent to the tumor region and had higher signal than surrounding areas. This sign was assessed on a high b-value DWI map with b = 3000 s/mm 2 . For patients with glioma infiltration sign, DWI3000 max , DWI1000 max , ADC3000 min , and ADC1000 min were measured by drawing a region of interest over the peritumoral abnormal high signal region. Survival analysis was conducted by using Cox regression. Glioma infiltration sign was observed in 28 (53.8%) patients. The occurrence rate of this sign was 92.0% in grade IV gliomas, 30.8% in grade III gliomas, and 7.1% in grade II gliomas. The glioma infiltration sign could independently predict both the progression-free survival (hazard ratio [HR], 95% confidence interval [CI] = 8.58 [3.19-23.03], P < 0.001) and overall survival (HR, 95% CI = 11.90 [3.41-41.55], P < 0.001) after adjustment. For patients with glioma infiltration sign, DWI3000 max (P = 0.005) and ADC3000 min (P = 0.008) were both independent predictors of overall survival after adjustment, while DWI1000 max and ADC1000 min were not. The glioma infiltration sign on high b-value DWI is an independent predictor of poor prognosis in glioma patients. High b-value DWI might be a

  4. Glioma epidemiology in the central Tunisian population: 1993-2012.

    PubMed

    Trabelsi, Saoussen; Brahim, Dorra H'mida-Ben; Ladib, Mohamed; Mama, Nadia; Harrabi, Imed; Tlili, Kalthoum; Yacoubi, Mohamed Tahar; Krifa, Hedi; Hmissa, Sihem; Saad, Ali; Mokni, Moncef

    2014-01-01

    Glioma is a heterogeneous central nervous system (CNS) tumor group that encompasses different histological subtypes with high variability in prognosis. The lesions account for almost 80% of primary malignant brain tumors. The aim of this study is to extend our understanding of the glioma epidemiology in the central Tunisian region. We analyzed 393 gliomas recorded in cancer registry of central Tunisia from 1993 to 2012. Crude incidence rates (CR) and world age-standardized rates (ASR) were estimated using annual population data size and age structure. Statistic correlations were established using Chi-square and Kaplan-Meier test. Tunisian glioma patients were identified with a mean age at diagnosis of 48 years and 1.5 sex ratio (male/female). During the 19 years period of study the highest incidence value was observed in male group between 1998 and 2002 (CR: 0.28, ASR: 0.3). Incidence results underline increasing high grade glioma occurring in the adulthood in the last period (2007-2012). Median survival was 27 months, with 1-, 2- and 5-year survival rates of 42%, 30% and 26%, respectively. Survival was greater in patients with younger age, lower tumor grade, infratentrial tumor location and undergoing a palliative treatment. This central Tunisia gliomas registry study provides important information that could improve glioma management and healthcare practice.

  5. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy.

    PubMed

    Qin, Li; Wang, Cheng-Zheng; Fan, Hui-Jie; Zhang, Chong-Jian; Zhang, Heng-Wei; Lv, Min-Hao; Cui, Shu-DE

    2014-11-01

    The treatment of a brain glioma remains one of the most difficult challenges in oncology. In the present study a delivery system was developed for targeted drug delivery across the blood-brain barrier (BBB) to the brain cancer cells. A cyclic arginine-glycine-aspartic acid (RGD) peptide and transferrin (TF) were utilized as targeting ligands. Cyclic RGD peptides are specific targeting ligands of cancer cells and TFs are ligands that specifically target the BBB and cancer cells. Liposome (LP) was used to conjugate the cyclic RGD and TFs to establish the brain glioma cascade delivery system (RGD/TF-LP). The LPs were prepared by the thin film hydration method and physicochemical characterization was conducted. In vitro cell uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could target endothelial and tumor cells, as well as penetrate the tumor cells to reach the core of the tumor spheroids. The results of the in vivo imaging further demonstrated that the RGD/TF-LP provided the highest brain distribution. As a result, the paclitaxel-loaded RGD/TF-LP presents the best antiproliferative activity against C6 cells and tumor spheroids. In conclusion, the RGD/TF-LP may precisely target brain glioma, which may be valuable for glioma imaging and therapy.

  6. Characterization of PD-1 upregulation on tumor-infiltrating lymphocytes in human and murine gliomas and preclinical therapeutic blockade.

    PubMed

    Dejaegher, Joost; Verschuere, Tina; Vercalsteren, Ellen; Boon, Louis; Cremer, Jonathan; Sciot, Raf; Van Gool, Stefaan W; De Vleeschouwer, Steven

    2017-11-01

    Blockade of the immune checkpoint molecule programmed-cell-death-protein-1 (PD-1) yielded promising results in several cancers. To understand the therapeutic potential in human gliomas, quantitative data describing the expression of PD-1 are essential. Moreover, due the immune-specialized region of the brain in which gliomas arise, differences between tumor-infiltrating and circulating lymphocytes should be acknowledged. In this study we have used flow cytometry to quantify PD-1 expression on tumor-infiltrating T cells of 25 freshly resected glioma cell suspensions (10 newly and 5 relapsed glioblastoma, 10 lower grade gliomas) and simultaneously isolated circulating T cells. A strong upregulation of PD-1 expression in the tumor microenvironment compared to the blood circulation was seen in all glioma patients. Additionally, circulating T cells were isolated from 15 age-matched healthy volunteers, but no differences in PD-1 expression were found compared to glioma patients. In the murine GL261 malignant glioma model, there was a similar upregulation of PD-1 on brain-infiltrating lymphocytes. Using a monoclonal PD-1 blocking antibody, we found a marked prolonged survival with 55% of mice reaching long-term survival. Analysis of brain-infiltrating cells 21 days after GL261 tumor implantation showed a shift in infiltrating lymphocyte subgroups with increased CD8+ T cells and decreased regulatory T cells. Together, our results suggest an important role of PD-1 in glioma-induced immune escape, and provide translational evidence for the use of PD-1 blocking antibodies in human malignant gliomas. © 2017 UICC.

  7. The effects of CD147 on the cell proliferation, apoptosis, invasion, and angiogenesis in glioma.

    PubMed

    Yin, Haoyuan; Shao, Ying; Chen, Xuan

    2017-01-01

    To analyze the effects of extracellular matrix metalloproteinase inducer (CD147) on glioma proliferation, apoptosis, invasion, and angiogenesis. Tissue samples were obtained from 101 glioma cases while normal brain tissues were obtained from 30 brain injury cases. Immunohistochemical assay was performed to detect the expressions of CD147, CD34, and VEGF in tissue samples. QRT-PCR was performed to detect the relative expression of CD147 mRNA in human glioma cell lines. CD147 siRNA was transfected into glioma cell line U251. Cell proliferation, apoptosis, invasion, and angiogenesis were tested by MTT, flow cytometry, Transwell assay, and vasculogenic mimicry assay, respectively. Expressions of relative proteins were analyzed with western blot. CD147 was positively expressed with the percentage of 0, 37.5, 44.8, 67.9, and 85.7 % in normal tissues and glioma tissues with WHO grades I-IV, respectively, and the scores of MVDand VEGF were associated with the expression of CD147. CD147 was significantly upregulated in the human glioma cell lines (P < 0.05). Downregulated the expression of CD147 suppressed cell proliferation, blocked cell cycle, induced apoptosis, inhibited cell invasion and angiogenesis in glioma cells in vitro. The expression of CD147 was significantly associated with WHO tumor grade and angiogenesis; silencing of CD147 contributed to inhibition of glioma proliferation, invasion, and angiogenesis. Our study provided firm evidence that CD 147 is a potential glioma target for anti-angiogenic therapies.

  8. Ion channel gene expression predicts survival in glioma patients

    PubMed Central

    Wang, Rong; Gurguis, Christopher I.; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-01-01

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients. PMID:26235283

  9. Cationizable lipid micelles as vehicles for intraarterial glioma treatment.

    PubMed

    Nguyen, Juliane; Cooke, Johann R N; Ellis, Jason A; Deci, Michael; Emala, Charles W; Bruce, Jeffrey N; Bigio, Irving J; Straubinger, Robert M; Joshi, Shailendra

    2016-05-01

    The relative abundance of anionic lipids on the surface of endothelia and on glioma cells suggests a workable strategy for selective drug delivery by utilizing cationic nanoparticles. Furthermore, the extracellular pH of gliomas is relatively acidic suggesting that tumor selectivity could be further enhanced if nanoparticles can be designed to cationize in such an environment. With these motivating hypotheses the objective of this study was to determine whether nanoparticulate (20 nm) micelles could be designed to improve their deposition within gliomas in an animal model. To test this, we performed intra-arterial injection of micelles labeled with an optically quantifiable dye. We observed significantly greater deposition (end-tissue concentration) of cationizable micelles as compared to non-ionizable micelles in the ipsilateral hemisphere of normal brains. More importantly, we noted enhanced deposition of cationizable as compared to non-ionizable micelles in glioma tissue as judged by semiquantitative fluorescence analysis. Micelles were generally able to penetrate to the core of the gliomas tested. Thus we conclude that cationizable micelles may be constructed as vehicles for facilitating glioma-selective delivery of compounds after intraarterial injection.

  10. Neurodevelopmental Outcomes of Children with Low-Grade Gliomas

    ERIC Educational Resources Information Center

    Ris, M. Douglas; Beebe, Dean W.

    2008-01-01

    As a group, children with low-grade gliomas (LGGs) enjoy a high rate of long-term survival and do not require the intensity of neurotoxic treatments used with higher risk pediatric brain tumors. Because they are generally considered to have favorable neurobehavioral outcomes, they have not been studied as thoroughly as higher-grade brain tumors by…

  11. Passive antibody-mediated immunotherapy for the treatment of malignant gliomas.

    PubMed

    Mitra, Siddhartha; Li, Gordon; Harsh, Griffith R

    2010-01-01

    Despite advances in understanding the molecular mechanisms of brain cancer, the outcome of patients with malignant gliomas treated according to the current standard of care remains poor. Novel therapies are needed, and immunotherapy has emerged with great promise. The diffuse infiltration of malignant gliomas is a major challenge to effective treatment; immunotherapy has the advantage of accessing the entire brain with specificity for tumor cells. Therapeutic immune approaches include cytokine therapy, passive immunotherapy, and active immunotherapy. Cytokine therapy involves the administration of immunomodulatory cytokines to activate the immune system. Active immunotherapy is the generation or augmentation of an immune response, typically by vaccination against tumor antigens. Passive immunotherapy connotes either adoptive therapy, in which tumor-specific immune cells are expanded ex vivo and reintroduced into the patient, or passive antibody-mediated therapy. In this article, the authors discuss the preclinical and clinical studies that have used passive antibody-mediated immunotherapy, otherwise known as serotherapy, for the treatment of malignant gliomas.

  12. Metabolic Reprogramming in Glioma

    PubMed Central

    Strickland, Marie; Stoll, Elizabeth A.

    2017-01-01

    Many cancers have long been thought to primarily metabolize glucose for energy production—a phenomenon known as the Warburg Effect, after the classic studies of Otto Warburg in the early twentieth century. Yet cancer cells also utilize other substrates, such as amino acids and fatty acids, to produce raw materials for cellular maintenance and energetic currency to accomplish cellular tasks. The contribution of these substrates is increasingly appreciated in the context of glioma, the most common form of malignant brain tumor. Multiple catabolic pathways are used for energy production within glioma cells, and are linked in many ways to anabolic pathways supporting cellular function. For example: glycolysis both supports energy production and provides carbon skeletons for the synthesis of nucleic acids; meanwhile fatty acids are used both as energetic substrates and as raw materials for lipid membranes. Furthermore, bio-energetic pathways are connected to pro-oncogenic signaling within glioma cells. For example: AMPK signaling links catabolism with cell cycle progression; mTOR signaling contributes to metabolic flexibility and cancer cell survival; the electron transport chain produces ATP and reactive oxygen species (ROS) which act as signaling molecules; Hypoxia Inducible Factors (HIFs) mediate interactions with cells and vasculature within the tumor environment. Mutations in the tumor suppressor p53, and the tricarboxylic acid cycle enzymes Isocitrate Dehydrogenase 1 and 2 have been implicated in oncogenic signaling as well as establishing metabolic phenotypes in genetically-defined subsets of malignant glioma. These pathways critically contribute to tumor biology. The aim of this review is two-fold. Firstly, we present the current state of knowledge regarding the metabolic strategies employed by malignant glioma cells, including aerobic glycolysis; the pentose phosphate pathway; one-carbon metabolism; the tricarboxylic acid cycle, which is central to amino acid

  13. DSE promotes aggressive glioma cell phenotypes by enhancing HB-EGF/ErbB signaling.

    PubMed

    Liao, Wen-Chieh; Liao, Chih-Kai; Tsai, You-Huan; Tseng, To-Jung; Chuang, Li-Ching; Lan, Chyn-Tair; Chang, Hung-Ming; Liu, Chiung-Hui

    2018-01-01

    Remodeling of the extracellular matrix (ECM) in the tumor microenvironment promotes glioma progression. Chondroitin sulfate (CS) proteoglycans appear in the ECM and on the cell surface, and can be catalyzed by dermatan sulfate epimerase to form chondroitin sulfate/dermatan sulfate (CS/DS) hybrid chains. Dermatan sulfate epimerase 1 (DSE) is overexpressed in many types of cancer, and CS/DS chains mediate several growth factor signals. However, the role of DSE in gliomas has never been explored. In the present study, we determined the expression of DSE in gliomas by consulting a public database and conducting immunohistochemistry on a tissue array. Our investigation revealed that DSE was upregulated in gliomas compared with normal brain tissue. Furthermore, high DSE expression was associated with advanced tumor grade and poor survival. We found high DSE expression in several glioblastoma cell lines, and DSE expression directly mediated DS chain formation in glioblastoma cells. Knockdown of DSE suppressed the proliferation, migration, and invasion of glioblastoma cells. In contrast, overexpression of DSE in GL261 cells enhanced these malignant phenotypes and in vivo tumor growth. Interestingly, we found that DSE selectively regulated heparin-binding EGF-like growth factor (HB-EGF)-induced signaling in glioblastoma cells. Inhibiting epidermal growth factor receptor (EGFR) and ErbB2 with afatinib suppressed DSE-enhanced malignant phenotypes, establishing the critical role of the ErbB pathway in regulating the effects of DSE expression. This evidence indicates that upregulation of DSE in gliomas contributes to malignant behavior in cancer cells. We provide novel insight into the significance of DS chains in ErbB signaling and glioma pathogenesis.

  14. [Guidelines for the radiotherapy of gliomas].

    PubMed

    Feuvret, L; Antoni, D; Biau, J; Truc, G; Noël, G; Mazeron, J-J

    2016-09-01

    Gliomas are the most frequent primary brain tumours. Treating these tumours is difficult because of the proximity of organs at risk, infiltrating nature, and radioresistance. Clinical prognostic factors such as age, Karnofsky performance status, tumour location, and treatments such as surgery, radiation therapy, and chemotherapy have long been recognized in the management of patients with gliomas. Molecular biomarkers are increasingly evolving as additional factors that facilitate diagnosis and therapeutic decision-making. These practice guidelines aim at helping in choosing the best treatment, in particular radiation therapy. Copyright © 2016 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  15. Brain Tumor Statistics

    MedlinePlus

    ... Scientific Advisory Council & Reviewers The International Low Grade Glioma Registry Get Involved Advocacy Breakthrough for Brain Tumors ... an estimated 29,320 new cases in 2018. Gliomas , a broad term which includes all tumors arising ...

  16. Canine ocular gliomas: a retrospective study.

    PubMed

    Naranjo, Carolina; Schobert, Charles; Dubielzig, Richard

    2008-01-01

    The purpose of this paper is to classify glial tumors observed in the canine retina and optic nerve, describe the histopathological features and provide prognostic information on these neoplasms. The database of the Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW) was searched to collect canine glioma cases. Clinical and follow-up information was gathered from submission forms and an extensive follow-up survey. Slides were reviewed to describe the histopathological characteristics of the neoplasm and classify them. Immunohistochemistry for Glial Fibrillary Acidic Protein (GFAP) was performed in all cases. 18 canine glioma cases were found in the COPLOW database. There was no breed or gender predilection. The mean age was 9.33 +/- 3.67 years. Follow-up information was available for 12 dogs, 8 of which were dead at the time of most recent contact, with a survival time ranging from 0 days (globes received after euthanasia) up to 20 months post-enucleation. In 6 of the 8 dogs that had died during this stud), tumor extended to the margin where the optic nerve had been sectioned. Light microscopic examination of the optic nerve of the affected eyes of four dogs that were still alive during this study revealed no tumor at this surgical margin. One neoplasm was classified as low-grade astrocytoma, 5 tumors as medium-grade astrocytoma, 11 tumors as high grade-astrocytoma and 1 tumor as oligodendroglioma. GFAP was positive in all but two tumors. Retinal and optic nerve gliomas may be considered as differential diagnoses of intraocular and orbital masses. The metastatic potential appears to be low, but ascending invasion into the ventral aspect of the brain is possible.

  17. On the association between glioma, wireless phones, heredity and ionising radiation.

    PubMed

    Carlberg, Michael; Hardell, Lennart

    2012-09-01

    We performed two case-control studies on brain tumours diagnosed during 1 January 1997 to 30 June 2000 and 1 July 2000 to 31 December 2003, respectively. Living cases and controls aged 20-80 years were included. An additional study was performed on deceased cases with a malignant brain tumour using deceased controls. Pooled results for glioma yielded for ipsilateral use of mobile phone odds ratio (OR)=2.9, 95% confidence interval (CI)=1.8-4.7 in the >10 years latency group. The corresponding result for cordless phone was OR=3.8, 95% CI=1.8-8.1. OR increased statistically significant for cumulative use of wireless phones per 100h and per year of latency. For high-grade glioma ipsilateral use of mobile phone gave OR=3.9, 95% CI=2.3-6.6 and cordless phone OR=5.5, 95% CI=2.3-13 in the >10 years latency group. Heredity for brain tumour gave OR=3.4, 95% CI=2.1-5.5 for glioma. There was no interaction with use of wireless phones. X-ray investigation of the head gave overall OR=1.3, 95% CI=1.1-1.7 for glioma without interaction with use of wireless phones or heredity. In conclusion use of mobile and cordless phone increased the risk for glioma with highest OR for ipsilateral use, latency >10 years and third tertile of cumulative use in hours. In total, the risk was highest in the age group <20 years for first use of a wireless phone. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma.

    PubMed

    Khurshed, Mohammed; Molenaar, Remco J; Lenting, Krissie; Leenders, William P; van Noorden, Cornelis J F

    2017-07-25

    Hotspot mutations in isocitrate dehydrogenase 1 (IDH1) initiate low-grade glioma and secondary glioblastoma and induce a neomorphic activity that converts α-ketoglutarate (α-KG) to the oncometabolite D-2-hydroxyglutarate (D-2-HG). It causes metabolic rewiring that is not fully understood. We investigated the effects of IDH1 mutations (IDH1MUT) on expression of genes that encode for metabolic enzymes by data mining The Cancer Genome Atlas. We analyzed 112 IDH1 wild-type (IDH1WT) versus 399 IDH1MUT low-grade glioma and 157 IDH1WT versus 9 IDH1MUT glioblastoma samples. In both glioma types, IDH1WT was associated with high expression levels of genes encoding enzymes that are involved in glycolysis and acetate anaplerosis, whereas IDH1MUT glioma overexpress genes encoding enzymes that are involved in the oxidative tricarboxylic acid (TCA) cycle. In vitro, we observed that IDH1MUT cancer cells have a higher basal respiration compared to IDH1WT cancer cells and inhibition of the IDH1MUT shifts the metabolism by decreasing oxygen consumption and increasing glycolysis. Our findings indicate that IDH1WT glioma have a typical Warburg phenotype whereas in IDH1MUT glioma the TCA cycle, rather than glycolytic lactate production, is the predominant metabolic pathway. Our data further suggest that the TCA in IDH1MUT glioma is driven by lactate and glutamate anaplerosis to facilitate production of α-KG, and ultimately D-2-HG. This metabolic rewiring may be a basis for novel therapies for IDH1MUT and IDH1WT glioma.

  19. Molecular Biology in Pediatric High-Grade Glioma: Impact on Prognosis and Treatment

    PubMed Central

    Rizzo, Daniela; Ruggiero, Antonio; Martini, Maurizio; Rizzo, Valentina; Maurizi, Palma; Riccardi, Riccardo

    2015-01-01

    High-grade gliomas are the main cause of death in children with brain tumours. Despite recent advances in cancer therapy, their prognosis remains poor and the treatment is still challenging. To date, surgery followed by radiotherapy and temozolomide is the standard therapy. However, increasing knowledge of glioma biology is starting to impact drug development towards targeted therapies. The identification of agents directed against molecular targets aims at going beyond the traditional therapeutic approach in order to develop a personalized therapy and improve the outcome of pediatric high-grade gliomas. In this paper, we critically review the literature regarding the genetic abnormalities implicated in the pathogenesis of pediatric malignant gliomas and the current development of molecularly targeted therapies. In particular, we analyse the impact of molecular biology on the prognosis and treatment of pediatric high-grade glioma, comparing it to that of adult gliomas. PMID:26448930

  20. G6PD as a predictive marker for glioma risk, prognosis and chemosensitivity.

    PubMed

    Yang, Chin-An; Huang, Hsi-Yuan; Lin, Cheng-Li; Chang, Jan-Gowth

    2018-05-29

    Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme preventing cells from oxidative damage and has been reported to have tumor-promoting roles. This study aims to comprehensively evaluate the predictive values of G6PD on brain tumor risk, prognosis and chemo-resistance. A retrospective 13-year cohort study analyzing cancer risk using the Taiwan National Health Insurance Research Database (4066 G6PD deficiency patients and 16,264 controls) was conducted. Furthermore, RNAseq and clinical data of grade II-III glioma (LGG, n = 515) and glioblastoma (GBM, n = 155) were downloaded from The Cancer Genome Atlas (TCGA) and analyzed. Bioinformatics methods were applied to build a glioma prognostication model and to predict response to chemotherapy based on tumor G6PD-related gene expressions. The predicted results were validated in another glioma cohort GSE 16011 and in KALS1 cell line. G6PD-dificient patients were found to have an increased risk for cancers, especially for brain tumor (adjusted hazard ratio (HR) 10.5, 95% CI 1.03-7.60). Furthermore, higher tumor G6PD expression was associated with poor patient survival in LGG, but not in GBM. A prognostication model using expression levels of G6PD and 9 related genes (PSMA2, PSMB8, SHFM1, GSS, GSTK1, MGST2, POLD3, MSH2, MSH6) could independently predict LGG patient survival. Boosted decision tree analysis on 213 cancer cell line database revealed predictive values of G6PD expression on response to gemcitabine and bortezomib. Knockdown of G6PD in KALS1 cell line enhanced its sensitivity to both chemotherapeutic agents. Our study suggests that G6PD could be a marker predicting glioma risk, prognosis and chemo-sensitivity.

  1. Inter-hemispheric language functional reorganization in low-grade glioma patients after tumour surgery.

    PubMed

    Kristo, Gert; Raemaekers, Mathijs; Rutten, Geert-Jan; de Gelder, Beatrice; Ramsey, Nick F

    2015-03-01

    Despite many claims of functional reorganization following tumour surgery, empirical studies that investigate changes in functional activation patterns are rare. This study investigates whether functional recovery following surgical treatment in patients with a low-grade glioma in the left hemisphere is linked to inter-hemispheric reorganization. Based on literature, we hypothesized that reorganization would induce changes in the spatial pattern of activation specifically in tumour homologue brain areas in the healthy right hemisphere. An experimental group (EG) of 14 patients with a glioma in the left hemisphere near language related brain areas, and a control group of 6 patients with a glioma in the right, non-language dominant hemisphere were scanned before and after resection. In addition, an age and gender matched second control group of 18 healthy volunteers was scanned twice. A verb generation task was used to map language related areas and a novel technique was used for data analysis. Contrary to our hypothesis, we found that functional recovery following surgery of low-grade gliomas cannot be linked to functional reorganization in language homologue brain areas in the healthy, right hemisphere. Although elevated changes in the activation pattern were found in patients after surgery, these were largest in brain areas in proximity to the surgical resection, and were very similar to the spatial pattern of the brain shift following surgery. This suggests that the apparent perilesional functional reorganization is mostly caused by the brain shift as a consequence of surgery. Perilesional functional reorganization can however not be excluded. The study suggests that language recovery after transient post-surgical language deficits involves recovery of functioning of the presurgical language system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Current status and future perspectives of sonodynamic therapy in glioma treatment.

    PubMed

    Wang, Xiaobing; Jia, Yali; Wang, Pan; Liu, Quanhon; Zheng, Hairong

    2017-07-01

    Malignant glioma is one of the most challenging central nervous system diseases to treat, and has high rates of recurrence and mortality. The current therapies include surgery, radiation therapy, and chemotherapy, although these approaches often failed to control tumor progression or improve patient survival. Sonodynamic therapy is a developing cancer treatment that uses ultrasound combined with a sonosensitizer to synergistically kill tumor cells, and has provided impressive results in both in vitro and in vivo studies. The ultrasound waves can penetrate deep tissues and reversibly open the blood-brain barrier to enhance drug delivery to the brain. Thus, sonodynamic therapy has a promising potential in glioma treatment. In this review, we summarize the studies that have confirmed the pre-clinical efficacy of sonodynamic therapy for glioma treatment, and discuss the future directions for this emerging treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas.

    PubMed

    Alizadeh, Darya; Zhang, Leying; Hwang, Jungyeon; Schluep, Thomas; Badie, Behnam

    2010-04-01

    The goal of this study was to evaluate the mechanism of cyclodextrin-based nanoparticle (CDP-NP) uptake into a murine glioma model. Using mixed in vitro culture systems, we demonstrated that CDP-NPs were preferentially taken up by BV2 and N9 microglia (MG) cells compared with GL261 glioma cells. Fluorescent microscopy and flow cytometry analysis of intracranial GL261 gliomas confirmed these findings and demonstrated a predominant CDP-NP uptake by macrophages (MPs) and MG within and around the tumor site. Notably, in mice bearing bilateral intracranial tumor, MG and MPs carrying CDP-NPs were able to migrate to the contralateral tumors. In conclusion, these studies better characterize the cellular distribution of CDP-NPs in intracranial tumors and demonstrate that MPs and MG could potentially be used as nanoparticle drug carriers into malignant brain tumors. The goal of this study was to evaluate the mechanism of cyclodextrin-based nanoparticle (CDP-NP) uptake into a murine glioma model. CDP-NP was preferentially taken up microglia (MG) cells as compared to glioma cells. A predominant CDP-NP uptake by macrophages and MG was also shown in and around the tumor site. Macrophages and MG could potentially be used as nanoparticle drug carriers into malignant brain tumors. Copyright 2010 Elsevier Inc. All rights reserved.

  4. The association between birth order, sibship size and glioma development in adulthood.

    PubMed

    Amirian, E; Scheurer, Michael E; Bondy, Melissa L

    2010-06-01

    The etiology of brain tumors is still largely unknown. Previous research indicates that infectious agents and immunological characteristics may influence adult glioma risk. The purpose of our study was to evaluate the effects of birth order and sibship size (total number of siblings), as indicators of the timing and frequency of early life infections, on adult glioma risk using a population of 489 cases and 540 cancer-free controls from the Harris County Brain Tumor Study. Odds ratios for birth order and sibship size were calculated separately from multivariable logistic regression models, adjusting for sex, family history of cancer, education, and age. Each one-unit increase in birth order confers a 13% decreased risk of glioma development in adulthood (OR = 0.87, 95% CI = 0.79-0.97). However, sibship size was not significantly associated with adult glioma status (OR = 0.97, 95% CI = 0.91-1.04). Our study indicates that individuals who were more likely to develop common childhood infections at an earlier age (those with a higher birth order) may be more protected against developing glioma in adulthood. More biological and epidemiological research is warranted to clarify the exact mechanisms through which the timing of common childhood infections and the course of early life immune development affect gliomagenesis.

  5. Cortical GABAergic excitation contributes to epileptic activities around human glioma

    PubMed Central

    Pallud, Johan; Varlet, Pascale; Cresto, Noemie; Baulac, Michel; Duyckaerts, Charles; Kourdougli, Nazim; Chazal, Geneviève; Devaux, Bertrand; Rivera, Claudio; Miles, Richard; Capelle, Laurent; Huberfeld, Gilles

    2015-01-01

    Rationale Diffuse brain gliomas induce seizures in a majority of patients. As in most epileptic disorders, excitatory glutamatergic mechanisms are involved in the generation of epileptic activities in the neocortex surrounding gliomas. However, chloride homeostasis is known to be perturbed in glial tumor cells. Thus the contribution of GABAergic mechanisms which depend on intracellular chloride and which are defective or pro-epileptic in other structural epilepsies merits closer study. Objective We studied in neocortical slices from the peritumoral security margin resected around human brain gliomas, the occurrence, networks, cells and signaling basis of epileptic activities. Results Postoperative glioma tissue from 69% of patients spontaneously generated interictal-like discharges. These events were synchronized, with a high frequency oscillation signature, in superficial layers of neocortex around glioma areas with tumor infiltration. Interictal-like events depended on both glutamatergic transmission and on depolarizing GABAergic signaling. About 65% of pyramidal cells were depolarized by GABA released by interneurons. This effect was related to perturbations in Chloride homeostasis, due to changes in expression of chloride co-transporters: KCC2 was reduced and expression of NKCC1 increased. Ictal-like activities were initiated by convulsant stimuli exclusively in these epileptogenic areas. Conclusions Epileptic activities are sustained by excitatory effects of GABA in the peritumoral human neocortex, as in temporal lobe epilepsies. Glutamate and GABA signaling are involved in oncogenesis and chloride homeostasis is perturbed. These same factors, induce an imbalance between synaptic excitatory and inhibition underly epileptic discharges in tumor patients. PMID:25009229

  6. Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan.

    PubMed

    Bruce, Jeffrey N; Fine, Robert L; Canoll, Peter; Yun, Jonathan; Kennedy, Benjamin C; Rosenfeld, Steven S; Sands, Stephen A; Surapaneni, Krishna; Lai, Rose; Yanes, Candix L; Bagiella, Emilia; DeLaPaz, Robert L

    2011-12-01

    Convection-enhanced delivery of chemotherapeutics for the treatment of malignant glioma is a technique that delivers drugs directly into a tumor and the surrounding interstitium through continuous, low-grade positive-pressure infusion. This allows high local concentrations of drug while overcoming the limitations imposed by toxicity and the blood-brain barrier in systemic therapies that prevent the use of many potentially effective drugs. To examine the safety profile of a conventional chemotherapeutic agent, topotecan, via convection-enhanced delivery in the treatment of recurrent malignant gliomas and secondarily to assess radiographic response and survival. We performed a prospective, dose-escalation phase Ib study of the topoisomerase-I inhibitor topotecan given by convection-enhanced delivery in patients with recurrent malignant gliomas. Significant antitumor activity as described by radiographic changes and prolonged overall survival with minimal drug-associated toxicity was demonstrated. A maximum tolerated dose was established for future phase II studies. Topotecan by convection-enhanced delivery has significant antitumor activity at concentrations that are nontoxic to normal brain. The potential for use of this therapy as a generally effective treatment option for malignant gliomas will be tested in subsequent phase II and III trials.

  7. Paclitaxel loaded phospholipid-based gel as a drug delivery system for local treatment of glioma.

    PubMed

    Chen, Tijia; Gong, Ting; Zhao, Ting; Liu, Xing; Fu, Yao; Zhang, Zhirong; Gong, Tao

    2017-08-07

    Paclitaxel (PTX) is a chemotherapeutic agent and has been widely used in clinic against human cancer. However, it has limited application in brain tumor treatment due to the poor penetration of blood brain barrier. Local delivery system is a promising carrier of PTX in the treatment of glioma. A biodegradable phospholipid-based gel (PG) system was developed for intratumoral injection and evaluated in brain glioma-bearing mice model. PTX loaded PG was composed of phospholipid, ethanol, medium chain triglyceride, triacetin and PTX. It was prepared by a very simple method. The system was a transparent solution with good fluidity, while turned into a gel after phase-transition when ethanol diffused. Both in vitro dissolution and in vivo imaging study proved the sustained release effect of PG system. In vivo tolerability study showed a better tolerability after mice treated with PTX PG compared with free PTX. The survival time of brain glioma-bearing mice after treatment with PTX PG was significantly prolonged compared with mice treated by free PTX (P<0.05). In conclusion, this study developed a novel PG based local PTX delivery system with simple preparation method, good tolerability and high therapeutic efficacy. It has a great potential to improve the clinical management of glioma. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 1H-MRSI pattern perturbation in a mouse glioma: the effects of acute hyperglycemia and moderate hypothermia.

    PubMed

    Simões, R V; Delgado-Goñi, T; Lope-Piedrafita, S; Arús, C

    2010-01-01

    MR spectroscopic Imaging (MRSI), with PRESS localization, is used here to monitor the effects of acute hyperglycemia in the spectral pattern of 11 mice bearing GL261 gliomas at normothermia (36.5-37.5 degrees C) and at hypothermia (28.5-29.5 degrees C). These in vivo studies were complemented by ex vivo high resolution magic angle spinning (HR-MAS) analysis of GL261 tumor samples from 6 animals sacrificed by focused microwave irradiation, and blood glucose measurements in 12 control mice. Apparent glucose levels, monitored by in vivo MRSI in brain tumors during acute hyperglycemia, rose to an average of 1.6-fold during hypothermia (p < 0.05), while no significant changes were detected at normothermia, or in control experiments performed at euglycemia, or in normal/peritumoral brain regions. Ex vivo analysis of glioma-bearing mouse brains at hypothermia revealed higher glucose increases in distinct regions during the acute hyperglycemic challenge (up to 6.6-fold at the tumor center), in agreement with maximal in vivo blood glucose changes (5-fold). Phantom studies on taurine plus glucose containing solutions explained the differences between in vivo and ex vivo measurements. Our results also indicate brain tumor heterogeneity in the four animal tumors investigated in response to a defined metabolic challenge.

  9. The Effect of Molecular Diagnostics on the Treatment of Glioma.

    PubMed

    Bush, Nancy Ann Oberheim; Butowski, Nicholas

    2017-04-01

    This review summarizes the use of molecular diagnostics in glioma and its effect on the development of novel therapeutics and management decisions. Genomic and proteomic profiling of brain tumors has provided significant expansion of our understanding of oncogenesis, characterization, and prognostication of brain tumors. Molecular markers such as MGMT, EGFR, IDH, 1p19q, ATRX, TERT, FGFR-TACC, and BRAF are now being used to classify brain tumors as well as influence management decisions. Several of these markers are also being used as therapeutic targets. We review the use of several molecular diagnostics in gliomas and discuss their impact on drug development and clinical trial design. In the future, molecular characterization based on a specific genomic, proteomic as well as transcriptomes for bioformatics analysis will provide clinicians the ability to rationally select drugs with actionable targets for each patient.

  10. Coffee, tea, caffeine intake and risk of adult glioma in 3 prospective cohort studies

    PubMed Central

    Holick, Crystal N.; Smith, Scott G.; Giovannucci, Edward; Michaud, Dominique S.

    2009-01-01

    Current data suggest that caffeinated beverages may be associated with lower risk of glioma. Caffeine has different effects on the brain, some which could play a role in brain carcinogenesis, and coffee has been consistently associated with reduced risk of liver cancer, thus suggesting a potential anticarcinogenic effect. A total of 335 incident cases of gliomas (men = 133, women = 202) were available from three independent cohort studies. Dietary intake was assessed by food-frequency questionnaires obtained at baseline and during follow-up. Cox proportional hazard models were used to estimate incidence rate ratios (RR) and 95% confidence intervals (CI) between consumption of coffee, tea, carbonated beverages, caffeine, and glioma risk adjusting for age and total caloric intake. Estimates from each cohort were pooled using a random-effects model. Consumption of five or more cups of coffee and tea a day compared to no consumption was associated with a decrease risk of glioma (RR = 0.60; 95% CI: 0.41–0.87; p-trend = 0.04). Inverse, although weaker, associations were also observed between coffee, caffeinated coffee, tea, carbonated beverages and glioma risk. No association was observed between decaffeinated coffee and glioma risk. Among men, a statistically significant inverse association was observed between caffeine consumption and risk of glioma (RR = 0.46; 95% CI: 0.26–0.81; p-trend = 0.03); the association was weaker among women. Our findings suggest that consumption of caffeinated beverages, including coffee and tea, may reduce the risk of adult glioma, but further research is warranted to confirm these findings in other populations. PMID:20056621

  11. Tunicamycin inhibits progression of glioma cells through downregulation of the MEG-3-regulated wnt/β-catenin signaling pathway.

    PubMed

    Li, Xin; Xue, Lei; Peng, Qin

    2018-06-01

    Glioma is derived from the oncogenic transformation of brain and spinal cord glial cells, and is one of the most common primary brain tumors. Tunicamycin (TUN) can significantly inhibit glioma growth and aggressiveness by promoting apoptosis in glioma cells. The purpose of the present study was to investigate the effects of TUN on growth of glioma cells and examine the TUN-mediated signaling pathway. The inhibitory effects of TUN on apoptosis, growth, aggressiveness and cell cycle arrest of glioma tumor cells were determined by western blotting, reverse transcription-quantitative polymerase chain reaction, apoptotic assays and immunofluorescence. The results demonstrated that treatment with TUN suppressed growth, migration and invasion of glioma carcinoma cells. In addition, TUN treatment induced apoptosis of glioma cells through downregulation of Bcl-2 and P53 expression levels. Findings also indicated that TUN suppressed proliferation and arrested the glioma cells in the S phase of the cell cycle. Further analysis of the mechanisms of TUN demonstrated that TUN treatment upregulated the expression levels of maternally expressed gene (MEG)-3, wnt and β-catenin in glioma cells. Furthermore, knockdown of MEG-3 expression reversed the TUN-decreased wnt/β-catenin signaling pathway, which subsequently also reversed the TUN-inhibited growth and aggressiveness of glioma cells. In conclusion, the findings in the present study indicated that TUN treatment inhibited growth and aggressiveness through MEG-3-mediated wnt/β-catenin signaling, suggesting that TUN may be an efficient anticancer agent for the treatment of glioma.

  12. Long non-coding RNA DANCR facilitates glioma malignancy by sponging miR-33a-5p.

    PubMed

    Yang, J X; Sun, Y; Gao, L; Meng, Q; Yang, B Y

    2018-06-26

    Glioma is among the most fatal brain tumors characterized by a highly malignancy and rapid progression and early metastasis. Dysregulation of long non-coding RNA differentiation antagonizing non-protein coding RNA (LncRNA DANCR) is associated with the development, progression and metastasis of various cancers. In the present study, we investigated functional role of LncRNA DANCR in the malignancy of glioma. The results showed that LncRNA DANCR was increased in glioma tissues and cells compared with normal brain tissues and cells. DANCR expression was positively correlated with the malignancy and poor prognosis of glioma patients. DANCR contained a binding site of miR-33a-5p. miR-33a-5p was decreased in glioma tissues and cells compared with normal brain tissues and cells. Downregulation of miR-33a-5p was positively correlated with the malignancy and poor prognosis of glioma patients. In glioma tissues, the expression of DANCR was negatively correlated with the expression of miR-33a-5p. Downregulation of DANCR increased miR-33a-5p expression. miR-33a-5p mimic reduced the luciferase of DANCR-WT but not DANCR-MUT. DANCR pull-down showed the expression of miR-33a-5p. miR-33a-5p mimic enhanced knockdown of DANCR -induced inhibition of cell proliferation, migration, and EMT, and increase of apoptosis. Anti-miR-33a-5p reversed the effects of si- DANCR on cell malignancy. Knockdown of DANCR remarkably reduced the increase of tumor volumes in xenograft mouse models. In tumor tissues, knockdown of DANCR increased the expression of miR-33a-5p, reduced EMT and increased apoptosis. Our study provides novel insights in the functions of LncRNA DANCR-miR-33a-5p axis in tumorigenesis of glioma.

  13. Cellular phones, cordless phones, and the risks of glioma and meningioma (Interphone Study Group, Germany).

    PubMed

    Schüz, Joachim; Böhler, Eva; Berg, Gabriele; Schlehofer, Brigitte; Hettinger, Iris; Schlaefer, Klaus; Wahrendorf, Jürgen; Kunna-Grass, Katharina; Blettner, Maria

    2006-03-15

    The widespread use of cellular telephones has generated concern about possible adverse health effects, particularly brain tumors. In this population-based case-control study carried out in three regions of Germany, all incident cases of glioma and meningioma among patients aged 30-69 years were ascertained during 2000-2003. Controls matched on age, gender, and region were randomly drawn from population registries. In total, 366 glioma cases, 381 meningioma cases, and 1,494 controls were interviewed. Overall use of a cellular phone was not associated with brain tumor risk; the respective odds ratios were 0.98 (95% confidence interval (CI): 0.74, 1.29) for glioma and 0.84 (95% CI: 0.62, 1.13) for meningioma. Among persons who had used cellular phones for 10 or more years, increased risk was found for glioma (odds ratio = 2.20, 95% CI: 0.94, 5.11) but not for meningioma (odds ratio = 1.09, 95% CI: 0.35, 3.37). No excess of temporal glioma (p = 0.41) or meningioma (p = 0.43) was observed in cellular phone users as compared with nonusers. Cordless phone use was not related to either glioma risk or meningioma risk. In conclusion, no overall increased risk of glioma or meningioma was observed among these cellular phone users; however, for long-term cellular phone users, results need to be confirmed before firm conclusions can be drawn.

  14. Glioma grading using cell nuclei morphologic features in digital pathology images

    NASA Astrophysics Data System (ADS)

    Reza, Syed M. S.; Iftekharuddin, Khan M.

    2016-03-01

    This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.

  15. Methylation and expression patterns of tropomyosin-related kinase genes in different grades of glioma.

    PubMed

    Palani, Mahalakshmi; Arunkumar, R; Vanisree, Arrambakam Janardhanam

    2014-09-01

    Tropomyosin-related kinase family (NTRK1, NTRK2 and NTRK3) is well known to play an important role in the pathogenesis of brain tumour, which exhibit heterogeneity in its biological and clinical behaviour. However, the mechanism that regulates NTRKs in glioma is not well understood. The present study investigates the epigenetic status (methylation) of NTRKs and their expression in different grades of glioma. Promoter methylation and structural relationship of NTRKs was assessed using methylation-specific PCR followed by chromatin immunoprecipitation in brain tissue samples from 220 subjects with different grades of glioma. Control brain samples were also assessed similarly. Reverse transcriptase PCR was performed to analyse the expressions of NTRK mRNAs in the grades of glioma. In addition, the expression level of p75(NTR) protein was analysed using immunofluorescent technique in all of the samples. The overall percentage of NTRK3 gene methylation frequency with subsequent loss of mRNA expression was significantly higher in glioma compared with control samples (p < 0.05). No such significance was observed in other NTRK1 and NTRK2 genes. Further, mRNA expression pattern of NTRK1 and NTRK2 genes was found to be significantly higher in low grades as compared with high grades (HG) and control samples (p < 0.05). Survival rate of HG patients with negative expressions of NTRK1 and NTRK2 was poor than those with the positive expressions of both NTRK1 and NTRK2. Further, a significant correlation was observed with reduced expression of p75(NTR) and the expression pattern of NTRK family in glioma as compared with the control samples (p < 0.05). There exists a correlation between the expression of NTRK family and different grades of glioma with a significant suggestion that the promoter methylation does not play role in the regulation of these genes in glioma. Further, poor survival could be associated with NTRK mRNAs 1 and 2. Hence, NTRKs are potential probes for

  16. A novel synergetic targeting strategy for glioma therapy employing borneol combination with angiopep-2-modified, DOX-loaded PAMAM dendrimer.

    PubMed

    Han, Shunping; Zheng, Hongyue; Lu, Yanping; Sun, Yue; Huang, Anhao; Fei, Weidong; Shi, Xiaowei; Xu, Xiuling; Li, Jingjing; Li, Fanzhu

    2018-01-01

    Glioma is the most common primary malignant brain tumour and the effect of chemotherapy is hampered by low permeability across the blood-brain-barrier (BBB). Borneol is a time-honoured 'Guide' drug in traditional Chinese medicine and has been proved to be capable of promoting free drugs into the brain efficiently, but there are still risks that free drugs, especially anti-glioma drugs, may be disassembled and metabolised before penetrating the BBB and caused the whole brain distribution. The purpose of this paper was to investigate whether borneol intervention could facilitate the BBB penetration and assist glioma treatment by combining with doxorubicin (DOX) loaded PAMAM dendrimers drug delivery system modified with Angiopep-2 (a ligand of the low-density lipoprotein receptor-related protein, which overexpress both in the BBB and gliomas). The results demonstrated that Angiopep-2 modification could actually enhance the affinity between the dendrimers and the targeting cells and finally increase the cell uptake and boost the anti-tumour ability. Borneol physical combination could further enhance the anti-tumour efficiency of this targeting drug delivery system (TDDS) after penetrating BBB. Compared with free DOX solution, this TDDS illustrated obviously sustained and pH-dependent drug release. This suggested that this synergetic strategy provided a promising way for glioma therapy.

  17. Single-Cell RNA-Sequencing in Glioma.

    PubMed

    Johnson, Eli; Dickerson, Katherine L; Connolly, Ian D; Hayden Gephart, Melanie

    2018-04-10

    In this review, we seek to summarize the literature concerning the use of single-cell RNA-sequencing for CNS gliomas. Single-cell analysis has revealed complex tumor heterogeneity, subpopulations of proliferating stem-like cells and expanded our view of tumor microenvironment influence in the disease process. Although bulk RNA-sequencing has guided our initial understanding of glioma genetics, this method does not accurately define the heterogeneous subpopulations found within these tumors. Single-cell techniques have appealing applications in cancer research, as diverse cell types and the tumor microenvironment have important implications in therapy. High cost and difficult protocols prevent widespread use of single-cell RNA-sequencing; however, continued innovation will improve accessibility and expand our of knowledge gliomas.

  18. Exploring the regulatory role of isocitrate dehydrogenase mutant protein on glioma stem cell proliferation.

    PubMed

    Lu, H-C; Ma, J; Zhuang, Z; Qiu, F; Cheng, H-L; Shi, J-X

    2016-08-01

    Glioma is the most lethal form of cancer that originates mostly from the brain and less frequently from the spine. Glioma is characterized by abnormal regulation of glial cell differentiation. The severity of the glioma was found to be relaxed in isocitrate dehydrogenase 1 (IDH1) mutant. The present study focused on histological discrimination and regulation of cancer stem cell between IDH1 mutant and in non-IDH1 mutant glioma tissue. Histology, immunohistochemistry and Western blotting techniques are used to analyze the glioma nature and variation in glioma stem cells that differ between IDH1 mutant and in non-IDH1 mutant glioma tissue. The aggressive form of non-IDH1 mutant glioma shows abnormal cellular histological variation with prominent larger nucleus along with abnormal clustering of cells. The longer survival form of IDH1 mutant glioma has a control over glioma stem cell proliferation. Immunohistochemistry with stem cell markers, CD133 and EGFRvIII are used to demonstrate that the IDH1 mutant glioma shows limited dependence on cancer stem cells and it shows marked apoptotic signals in TUNEL assay to regulate abnormal cells. The non-IDH1 mutant glioma failed to regulate misbehaving cells and it promotes cancer stem cell proliferation. Our finding supports that the IDH1 mutant glioma has a regulatory role in glioma stem cells and their survival.

  19. Structural studies of human glioma pathogenesis-related protein 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structuresmore » of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.« less

  20. CCDC26 rs4295627 polymorphisms associated with an increased risk of glioma: A meta-analysis.

    PubMed

    Zeng, Jie; Luo, Yueji; Yu, Min; Li, Jianming; Liu, Zhenghai

    2017-11-01

    Gliomas are the most common primary brain tumor in adults. Many studies have revealed associations between the rs4295627 polymorphism in the coiled-coil domain containing 26 (CCDC26) gene and the risk of glioma. However, the conclusions are still unclear because some studies have reported inconsistent results. The aim of the present meta-analysis was to determine the relationship and quantitatively evaluate the effect of the rs4295627 polymorphism on the risk of glioma. Data was extracted from PubMed, EMBASE and Google Scholar, with the most recent search up to December, 2015. Odds ratios (OR) and their 95% CIs were used to evaluate the effect of CCDC26 rs4295627 polymorphisms on glioma. A test of heterogeneity and an assessment of publication bias were also performed. A total of 11 studies (8292 cases and 12,419 controls) were selected for this meta-analysis. Significant associations were observed in all genetic analysis models (G vs T: OR = 1.26, 95% CI = 1.12-1.43; GG vs TT: OR = 1.72, 95% CI = 1.24-2.39; GT vs TT: OR = 1.33, 95% CI = 1.24-1.42; GG + GT vs TT: OR = 1.36, 95% CI = 1.20-1.53; GG vs GT + TT: OR = 1.65, 95% CI = 1.18-2.29, respectively). The results of the present study clearly show that the G allele of the rs4295627 polymorphism significantly increases the risk of glioma. Nevertheless, well-designed large-scale studies are needed to further evaluate the effect of the rs4295627 polymorphism on different types or degrees of glioma in different ethnic groups as well as to measure the combined effects on glioma risk.

  1. RTVP-1 promotes mesenchymal transformation of glioma via a STAT-3/IL-6-dependent positive feedback loop

    PubMed Central

    Giladi, Nis David; Ziv-Av, Amotz; Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Ben-Asher, Hiba Waldman; deCarvalho, Ana; Mikkelsen, Tom; Poisson, Laila; Brodie, Chaya

    2015-01-01

    Glioblastomas (GBMs), the most aggressive primary brain tumors, exhibit increased invasiveness and resistance to anti-tumor treatments. We explored the role of RTVP-1, a glioma-associated protein that promotes glioma cell migration, in the mesenchymal transformation of GBM. Analysis of The Cancer Genome Atlas (TCGA) demonstrated that RTVP-1 expression was higher in mesenchymal GBM and predicted tumor recurrence and poor clinical outcome. ChiP analysis revealed that the RTVP-1 promoter binds STAT3 and C/EBPβ, two master transcription factors that regulate mesenchymal transformation of GBM. In addition, IL-6 induced RTVP-1 expression in a STAT3-dependent manner. RTVP-1 increased the migration and mesenchymal transformation of glioma cells. Similarly, overexpression of RTVP-1 in human neural stem cells induced mesenchymal differentiation, whereas silencing of RTVP-1 in glioma stem cells (GSCs) decreased the mesenchymal transformation and stemness of these cells. Silencing of RTVP-1 also increased the survival of mice bearing GSC-derived xenografts. Using gene array analysis of RTVP-1 silenced glioma cells we identified IL-6 as a mediator of RTVP-1 effects on the mesenchymal transformation and migration of GSCs, therefore acting in a positive feedback loop by upregulating RTVP-1 expression via the STAT3 pathway. Collectively, these results implicate RTVP-1 as a novel prognostic marker and therapeutic target in GBM. PMID:26267319

  2. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma.

    PubMed

    Bredlau, Amy Lee; Dixit, Suraj; Chen, Chao; Broome, Ann-Marie

    2017-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG.

  3. Nanotechnology Applications for Diffuse Intrinsic Pontine Glioma

    PubMed Central

    Bredlau, Amy Lee; Dixit, Suraj; Chen, Chao; Broome, Ann-Marie

    2017-01-01

    Diffuse intrinsic pontine gliomas (DIPGs) are invariably fatal tumors found in the pons of elementary school aged children. These tumors are grade II-IV gliomas, with a median survival of less than 1 year from diagnosis when treated with standard of care (SOC) therapy. Nanotechnology may offer therapeutic options for the treatment of DIPGs. Multiple nanoparticle formulations are currently being investigated for the treatment of DIPGs. Nanoparticles based upon stable elements, polymer nanoparticles, and organic nanoparticles are under development for the treatment of brain tumors, including DIPGs. Targeting of nanoparticles is now possible as delivery techniques that address the difficulty in crossing the blood brain barrier (BBB) are developed. Theranostic nanoparticles, a combination of therapeutics and diagnostic nanoparticles, improve imaging of the cancerous tissue while delivering therapy to the local region. However, additional time and attention should be directed to developing a nanoparticle delivery system for treatment of the uniformly fatal pediatric disease of DIPG. PMID:26903150

  4. Cellular immunotherapy for malignant gliomas.

    PubMed

    Lin, Yi; Okada, Hideho

    2016-10-01

    Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy.

  5. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside

    NASA Astrophysics Data System (ADS)

    Liu, Heng; Zhang, Jun; Chen, Xiao; Du, Xue-Song; Zhang, Jin-Long; Liu, Gang; Zhang, Wei-Guo

    2016-04-01

    Gliomas are the most common primary brain tumors and have a very dismal prognosis. However, recent advancements in nanomedicine and nanotechnology provide opportunities for personalized treatment regimens to improve the poor prognosis of patients suffering from glioma. This comprehensive review starts with an outline of the current status facing glioma. It then provides an overview of the state-of-the-art applications of iron oxide nanoparticles (IONPs) to glioma diagnostics and therapeutics, including MR contrast enhancement, drug delivery, cell labeling and tracking, magnetic hyperthermia treatment and magnetic particle imaging. It also addresses current challenges associated with the biological barriers and IONP design with an emphasis on recent advances and innovative approaches for glioma targeting strategies. Opportunities for future development are highlighted.

  6. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside.

    PubMed

    Liu, Heng; Zhang, Jun; Chen, Xiao; Du, Xue-Song; Zhang, Jin-Long; Liu, Gang; Zhang, Wei-Guo

    2016-04-21

    Gliomas are the most common primary brain tumors and have a very dismal prognosis. However, recent advancements in nanomedicine and nanotechnology provide opportunities for personalized treatment regimens to improve the poor prognosis of patients suffering from glioma. This comprehensive review starts with an outline of the current status facing glioma. It then provides an overview of the state-of-the-art applications of iron oxide nanoparticles (IONPs) to glioma diagnostics and therapeutics, including MR contrast enhancement, drug delivery, cell labeling and tracking, magnetic hyperthermia treatment and magnetic particle imaging. It also addresses current challenges associated with the biological barriers and IONP design with an emphasis on recent advances and innovative approaches for glioma targeting strategies. Opportunities for future development are highlighted.

  7. MicroRNA-211 expression is down-regulated and associated with poor prognosis in human glioma.

    PubMed

    Zhang, Jun; Lv, Jianguang; Zhang, Feng; Che, Hongmin; Liao, Qiwei; Huang, Wobin; Li, Shaopeng; Li, Yuqian

    2017-07-01

    Accumulating evidence has supported the role of microRNAs in the initiation and development of malignant tumors. MicroRNA-211 (miR-211), which was reported to involve in diverse physiological activities in several cancers, was investigated for its expression in human glioma and adjacent normal brain tissues, as well as its correlation with patient prognosis. Glioma tissues and adjacent normal brain tissues were obtained from 82 patients who underwent surgical resection, and quantitative real-time polymerase chain reaction was performed to assess the expression level of miR-211. Here, we found that miR-211 was significantly decreased in glioma tissues compared with adjacent normal brain tissues (glioma, 3.52 ± 0.14 vs. normal, 4.96 ± 0.17, p < 0.001), and inversely associated with ascending WHO classification (grade III-IV, 3.16 ± 0.21 vs. grade I-II, 4.22 ± 0.26, p < 0.001). Then, the correlation of miR-211 with clinicopathological factors was investigated by Pearson's Chi square test, indicating that miR-211 might be a potential biomarker to predict the malignant status of glioma. Further, Kaplan-Meier curves with log-rank analysis were carried out to determine the relationship between miR-211 expression level and the overall survival rate of glioma patients. Our data showed that there was a close correlation between down-regulated miR-211 and shorter survival time in 82 patients (p = 0.026). Finally, the multivariate Cox regression analysis indicated that WHO grade (HR = 2.437, 95% CI 1.251-4.966, p = 0.007), KPS (HR = 2.215, 95% CI 1.168-4.259, p = 0.016), and miR-211 expression level (HR = 3.614, 95% CI 2.152-6.748, p < 0.001) were considered as independent risk factors for glioma prognosis. These results suggested that lower miR-211 expression might be a marker for poor prognosis of glioma patients.

  8. MEG Network Differences between Low- and High-Grade Glioma Related to Epilepsy and Cognition

    PubMed Central

    van Dellen, Edwin; Douw, Linda; Hillebrand, Arjan; Ris-Hilgersom, Irene H. M.; Schoonheim, Menno M.; Baayen, Johannes C.; De Witt Hamer, Philip C.; Velis, Demetrios N.; Klein, Martin; Heimans, Jan J.; Stam, Cornelis J.; Reijneveld, Jaap C.

    2012-01-01

    Objective To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG) and high-grade glioma (HGG) patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL) and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. Methods We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG) recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. Results LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4–8 Hz), similar to NGL patients. HGG patients’ networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. Conclusion Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients’ networks are explained by differences in plasticity, guided by the particular lesional growth pattern. Interestingly, decreased synchronizability and decreased global integration in the theta band seem to make LGG and NGL patients more prone to the occurrence of seizures and cognitive decline. PMID:23166829

  9. Incubation and application of transgenic green fluorescent nude mice in visualization studies on glioma tissue remodeling.

    PubMed

    Dong, Jun; Dai, Xing-liang; Lu, Zhao-hui; Fei, Xi-feng; Chen, Hua; Zhang, Quan-bin; Zhao, Yao-dong; Wang, Zhi-min; Wang, Ai-dong; Lan, Qing; Huang, Qiang

    2012-12-01

    The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells. However, these tumor cells are hard to be visualized directly in histopathological preparations, or in experimental glioma models. Therefore, we developed an experimental human dual-color in vivo glioma model, which made tracking solitary invasive glioma cells possible, for the purpose of visualizing the interactions between red fluorescence labeled human glioma cells and host brain cells. This may offer references for further studying the roles of tumor microenvironment during glioma tissue remodeling. Transgenic female C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) were crossed with male Balb/c nude mice. Then sib mating was allowed to occur continuously in order to establish an inbred nude mice strain with 50% of their offspring that are EGFP positive. Human glioma cell lines U87-MG and SU3 were transfected with red fluorescent protein (RFP) gene, and a rat C6 glioma cell line was stained directly with CM-DiI, to establish three glioma cell lines emitting red fluorescence (SU3-RFP, U87-RFP, and C6-CM-DiI). Red fluorescence tumor cells were inoculated via intra-cerebral injection into caudate nucleus of the EGFP nude mice. Tumor-bearing mice were sacrificed when their clinical symptoms appeared, and the whole brain was harvested and snap frozen for further analysis. Confocal laser scanning microscopy was performed to monitor the mutual interactions between tumor cells and host brain cells. Almost all the essential tissues of the established EGFP athymic Balb/c nude mice, except hair and erythrocytes, fluoresced green under excitation using a blue light-emitting flashlight with a central peak of 470 nm, approximately 50% of the offsprings were nu/nu EGFP+. SU3-RFP, U87-RFP, and C6-CM-DiI almost 100% expressed red fluorescence under the fluorescence microscope

  10. Involvement of the Kynurenine Pathway in Human Glioma Pathophysiology

    PubMed Central

    Adams, Seray; Teo, Charles; McDonald, Kerrie L.; Zinger, Anna; Bustamante, Sonia; Lim, Chai K.; Sundaram, Gayathri; Braidy, Nady; Brew, Bruce J.; Guillemin, Gilles J.

    2014-01-01

    The kynurenine pathway (KP) is the principal route of L-tryptophan (TRP) catabolism leading to the production of kynurenine (KYN), the neuroprotectants, kynurenic acid (KYNA) and picolinic acid (PIC), the excitotoxin, quinolinic acid (QUIN) and the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+). The enzymes indoleamine 2,3-dioxygenase-1 (IDO-1), indoleamine 2,3-dioxygenase-2 (IDO-2) and tryptophan 2,3-dioxygenase (TDO-2) initiate the first step of the KP. IDO-1 and TDO-2 induction in tumors are crucial mechanisms implicated to play pivotal roles in suppressing anti-tumor immunity. Here, we report the first comprehensive characterisation of the KP in 1) cultured human glioma cells and 2) plasma from patients with glioblastoma (GBM). Our data revealed that interferon-gamma (IFN-γ) stimulation significantly potentiated the expression of the KP enzymes, IDO-1 IDO-2, kynureninase (KYNU), kynurenine hydroxylase (KMO) and significantly down-regulated 2-amino-3-carboxymuconate semialdehyde decarboxylase (ACMSD) and kynurenine aminotransferase-I (KAT-I) expression in cultured human glioma cells. This significantly increased KP activity but significantly lowered the KYNA/KYN neuroprotective ratio in human cultured glioma cells. KP activation (KYN/TRP) was significantly higher, whereas the concentrations of the neuroreactive KP metabolites TRP, KYNA, QUIN and PIC and the KYNA/KYN ratio were significantly lower in GBM patient plasma (n = 18) compared to controls. These results provide further evidence for the involvement of the KP in glioma pathophysiology and highlight a potential role of KP products as novel and highly attractive therapeutic targets to evaluate for the treatment of brain tumors, aimed at restoring anti-tumor immunity and reducing the capacity for malignant cells to produce NAD+, which is necessary for energy production and DNA repair. PMID:25415278

  11. DEAD-box RNA helicase DDX23 modulates glioma malignancy via elevating miR-21 biogenesis.

    PubMed

    Yin, Jinlong; Park, Gunwoo; Lee, Jeong Eun; Choi, Eun Young; Park, Ju Young; Kim, Tae-Hoon; Park, Nayun; Jin, Xiong; Jung, Ji-Eun; Shin, Daye; Hong, Jun Hee; Kim, Hyunggee; Yoo, Heon; Lee, Seung-Hoon; Kim, Youn-Jae; Park, Jong Bae; Kim, Jong Heon

    2015-09-01

    Upregulation of microRNA-21 (miR-21) is known to be strongly associated with the proliferation, invasion, and radio-resistance of glioma cells. However, the regulatory mechanism that governs the biogenesis of miR-21 in glioma is still unclear. Here, we demonstrate that the DEAD-box RNA helicase, DDX23, promotes miR-21 biogenesis at the post-transcriptional level. The expression of DDX23 was enhanced in glioma tissues compared to normal brain, and expression level of DDX23 was highly associated with poor survival of glioma patients. Specific knockdown of DDX23 expression suppressed glioma cell proliferation and invasion in vitro and in vivo, which is similar to the function of miR-21. We found that DDX23 increased the level of miR-21 by promoting primary-to-precursor processing of miR-21 through an interaction with the Drosha microprocessor. Mutagenesis experiments critically demonstrated that the helicase activity of DDX23 was essential for the processing (cropping) of miR-21, and we further found that ivermectin, a RNA helicase inhibitor, decreased miR-21 levels by potentially inhibiting DDX23 activity and blocked invasion and cell proliferation. Moreover, treatment of ivermectin decreased glioma growth in mouse xenografts. Taken together, these results suggest that DDX23 plays an essential role in glioma progression, and might thus be a potential novel target for the therapeutic treatment of glioma. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth.

    PubMed

    De Feyter, Henk M; Behar, Kevin L; Rao, Jyotsna U; Madden-Hennessey, Kirby; Ip, Kevan L; Hyder, Fahmeed; Drewes, Lester R; Geschwind, Jean-François; de Graaf, Robin A; Rothman, Douglas L

    2016-08-01

    The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas.

    PubMed

    Li, Yan; He, Hai; Jia, Xinru; Lu, Wan-Liang; Lou, Jinning; Wei, Yen

    2012-05-01

    A pH-sensitive dual-targeting drug carrier (G4-DOX-PEG-Tf-TAM) was synthesized with transferrin (Tf) conjugated on the exterior and Tamoxifen (TAM) in the interior of the fourth generation PAMAM dendrimers for enhancing the blood-brain barrier (BBB) transportation and improving the drug accumulation in the glioma cells. It was found that, on average, 7 doxorubicine (DOX) molecules, over 30 PEG(1000) and PEG(2000) chains and one Tf group were bonded on the periphery of each G4 PAMAM dendrimer, while 29 TAM molecules were encapsulated into the interior of per dendrimer. The pH-triggered DOX release was 32% at pH 4.5 and 6% at pH 7.4, indicating a comparatively fast drug release at weak acidic condition and stable state of the carrier at physiological environment. The in vitro assay of the drug transport across the BBB model showed that G4-DOX-PEG-Tf-TAM exhibited higher BBB transportation ability with the transporting ratio of 6.06% in 3 h. The carrier was internalized into C6 glioma cells upon crossing the BBB model by the coactions of TfR-mediated endocytosis and the inhibition effect of TAM to the drug efflux transports. Moreover, it also displayed the in vitro accumulation of DOX in the avascular C6 glioma spheroids made the tumor volume effectively reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Chimeric adeno-associated virus and bacteriophage: a potential targeted gene therapy vector for malignant glioma.

    PubMed

    Asavarut, Paladd; O'Neill, Kevin; Syed, Nelofer; Hajitou, Amin

    2014-01-01

    The incipient development of gene therapy for cancer has fuelled its progression from bench to bedside in mere decades. Of all malignancies that exist, gliomas are the largest class of brain tumors, and are renowned for their aggressiveness and resistance to therapy. In order for gene therapy to achieve clinical success, a multitude of barriers ranging from glioma tumor physiology to vector biology must be overcome. Many viral gene delivery systems have been subjected to clinical investigation; however, with highly limited success. In this review, the current progress and challenges of gene therapy for malignant glioma are discussed. Moreover, we highlight the hybrid adeno-associated virus and bacteriophage vector as a potential candidate for targeted gene delivery to brain tumors.

  15. Anisotropy of anomalous diffusion improves the accuracy of differentiating low- and high-grade cerebral gliomas.

    PubMed

    Xu, Boyan; Su, Lu; Wang, Zhenxiong; Fan, Yang; Gong, Gaolang; Zhu, Wenzhen; Gao, Peiyi; Gao, Jia-Hong

    2018-04-17

    Anomalous diffusion model has been introduced and shown to be beneficial in clinical applications. However, only the directionally averaged values of anomalous diffusion parameters were investigated, and the anisotropy of anomalous diffusion remains unexplored. The aim of this study was to demonstrate the feasibility of using anisotropy of anomalous diffusion for differentiating low- and high-grade cerebral gliomas. Diffusion MRI images were acquired from brain tumor patients and analyzed using the fractional motion (FM) model. Twenty-two patients with histopathologically confirmed gliomas were selected. An anisotropy metric for the FM-related parameters, including the Noah exponent (α) and the Hurst exponent (H), was introduced and their values were statistically compared between the low- and high-grade gliomas. Additionally, multivariate logistic regression analysis was performed to assess the combination of the anisotropy metric and the directionally averaged value for each parameter. The diagnostic performances for grading gliomas were evaluated using a receiver operating characteristic (ROC) analysis. The Hurst exponent H was more anisotropic in high-grade than in low-grade gliomas (P = 0.015), while no significant difference was observed for the anisotropy of α. The ROC analysis revealed that larger areas under the ROC curves were produced for the combination of α (1) and the combination of H (0.813) compared with the directionally averaged α (0.979) and H (0.594), indicating an improved performance for tumor differentiation. The anisotropy of anomalous diffusion can provide distinctive information and benefit the differentiation of low- and high-grade gliomas. The utility of anisotropic anomalous diffusion may have an improved effect for investigating pathological changes in tissues. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Awake surgery for hemispheric low-grade gliomas: oncological, functional and methodological differences between pediatric and adult populations.

    PubMed

    Trevisi, Gianluca; Roujeau, Thomas; Duffau, Hugues

    2016-10-01

    Brain mapping through a direct cortical and subcortical electrical stimulation during an awake craniotomy has gained an increasing popularity as a powerful tool to prevent neurological deficit while increasing extent of resection of hemispheric diffuse low-grade gliomas in adults. However, few case reports or very limited series of awake surgery in children are currently available in the literature. In this paper, we review the oncological and functional differences between pediatric and adult populations, and the methodological specificities that may limit the use of awake mapping in pediatric low-grade glioma surgery. This could be explained by the fact that pediatric low-grade gliomas have a different epidemiology and biologic behavior in comparison to adults, with pilocytic astrocytomas (WHO grade I glioma) as the most frequent histotype, and with WHO grade II gliomas less prone to anaplastic transformation than their adult counterparts. In addition, aside from the issue of poor collaboration of younger children under 10 years of age, some anatomical and functional peculiarities of children developing brain (cortical and subcortical myelination, maturation of neural networks and of specialized cortical areas) can influence direct electrical stimulation methodology and sensitivity, limiting its use in children. Therefore, even though awake procedure with cortical and axonal stimulation mapping can be adapted in a specific subgroup of children with a diffuse glioma from the age of 10 years, only few pediatric patients are nonetheless candidates for awake brain surgery.

  17. MR Fingerprinting of Adult Brain Tumors: Initial Experience.

    PubMed

    Badve, C; Yu, A; Dastmalchian, S; Rogers, M; Ma, D; Jiang, Y; Margevicius, S; Pahwa, S; Lu, Z; Schluchter, M; Sunshine, J; Griswold, M; Sloan, A; Gulani, V

    2017-03-01

    MR fingerprinting allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assessed the utility of MR fingerprinting in differentiating common types of adult intra-axial brain tumors. MR fingerprinting acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 World Health Organization grade II lower grade gliomas, and 8 metastases. T1, T2 of the solid tumor, immediate peritumoral white matter, and contralateral white matter were summarized within each ROI. Statistical comparisons on mean, SD, skewness, and kurtosis were performed by using the univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple-comparison testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases, and area under the receiver operator curve was calculated. Mean T2 values could differentiate solid tumor regions of lower grade gliomas from metastases (mean, 172 ± 53 ms, and 105 ± 27 ms, respectively; P = .004, significant after Bonferroni correction). The mean T1 of peritumoral white matter surrounding lower grade gliomas differed from peritumoral white matter around glioblastomas (mean, 1066 ± 218 ms, and 1578 ± 331 ms, respectively; P = .004, significant after Bonferroni correction). Logistic regression analysis revealed that the mean T2 of solid tumor offered the best separation between glioblastomas and metastases with an area under the curve of 0.86 (95% CI, 0.69-1.00; P < .0001). MR fingerprinting allows rapid simultaneous T1 and T2 measurement in brain tumors and surrounding tissues. MR fingerprinting-based relaxometry can identify quantitative differences between solid tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. © 2017 by American Journal of Neuroradiology.

  18. Intra-cerebral schwannoma simulating glioma.

    PubMed

    Louis, Elie; Cret, Corina; Poirier, Jacques; Cornu, Philippe; Martin-Duverneuil, Nadine; Delattre, Jean-Yves; Sanson, Marc

    2003-09-01

    An intra-cerebral schwannoma, presenting as a cystic, calcified, enhancing frontal mass, arising in a 52-year-old woman was misdiagnosed as a glioma and treated with radiotherapy. This observation emphasizes the importance of careful histological reexamination of all brain tumors when a discrepancy appears between the initial histological diagnosis and the clinical evolution, in order to recognize rare curable entities and to avoid potentially toxic treatment.

  19. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    PubMed

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  20. Temozolomide combined with PD-1 Antibody therapy for mouse orthotopic glioma model.

    PubMed

    Dai, Bailing; Qi, Na; Li, Junchao; Zhang, Guilong

    2018-07-02

    Temozolomide (TMZ) is the most frequent adjuvant chemotherapy drug in gliomas. PDL1 expresses on various tumors, including gliomas, and anti-PD-1 antibodies have been approved for treating some tumors by FDA. This study was to evaluate the therapeutical potential of combined TMZ with anti-PD-1 antibody therapy for mouse orthotopic glioma model. We performed C57BL/6 mouse orthotopic glioma model by stereotactic intracranial implantation of glioma cell line GL261, mice were randomly divided into four groups: (1) control group; (2) TMZ group; (3) anti-PD-1 antibody group; (4) TMZ combined with anti-PD-1 antibody group. Then the volume or size of tumor was assessed by 7.0 T MRI and immunohistochemistry, and the number of CD4 and CD8 infiltrating cells in brain tumor and spleen was evaluated by immunohistochemistry. Western blot was used to evaluate the expression of PDL1. Furthermore, Overall survival of each group mice was also evaluated. Overall survival was significantly improved in combined group compared to other groups (χ2 = 32.043, p < 0.01). The volume or size of tumor was significantly decreased in combined group compared with other groups (F = 42.771, P < 0.01). And the number of CD4 and CD8 infiltrating cells in brain tumor was also obviously increased in combined group (CD4 F = 45.67, P < 0.01; CD8 F = 53.75, P < 0.01). Anti-PD1 antibody combined with TMZ therapy for orthotopic mouse glioma model could significantly improve the survival time of tumor-bear mice. Thus, this study provides the effective preclinical evidence for support clinical chemotherapy combined with immunotherapy for glioma patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Erlotinib Hydrochloride and Isotretinoin in Treating Patients With Recurrent Malignant Glioma

    ClinicalTrials.gov

    2017-05-25

    Adult Anaplastic Astrocytoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Oligodendroglioma; Recurrent Adult Brain Tumor

  2. Surgical benefits of combined awake craniotomy and intraoperative magnetic resonance imaging for gliomas associated with eloquent areas.

    PubMed

    Motomura, Kazuya; Natsume, Atsushi; Iijima, Kentaro; Kuramitsu, Shunichiro; Fujii, Masazumi; Yamamoto, Takashi; Maesawa, Satoshi; Sugiura, Junko; Wakabayashi, Toshihiko

    2017-10-01

    OBJECTIVE Maximum extent of resection (EOR) for lower-grade and high-grade gliomas can increase survival rates of patients. However, these infiltrative gliomas are often observed near or within eloquent regions of the brain. Awake surgery is of known benefit for the treatment of gliomas associated with eloquent regions in that brain function can be preserved. On the other hand, intraoperative MRI (iMRI) has been successfully used to maximize the resection of tumors, which can detect small amounts of residual tumors. Therefore, the authors assessed the value of combining awake craniotomy and iMRI for the resection of brain tumors in eloquent areas of the brain. METHODS The authors retrospectively reviewed the records of 33 consecutive patients with glial tumors in the eloquent brain areas who underwent awake surgery using iMRI. Volumetric analysis of MRI studies was performed. The pre-, intra-, and postoperative tumor volumes were measured in all cases using MRI studies obtained before, during, and after tumor resection. RESULTS Intraoperative MRI was performed to check for the presence of residual tumor during awake surgery in a total of 25 patients. Initial iMRI confirmed no further tumor resection in 9 patients (36%) because all observable tumors had already been removed. In contrast, intraoperative confirmation of residual tumor during awake surgery led to further tumor resection in 16 cases (64%) and eventually an EOR of more than 90% in 8 of 16 cases (50%). Furthermore, EOR benefiting from iMRI by more than 15% was found in 7 of 16 cases (43.8%). Interestingly, the increase in EOR as a result of iMRI for tumors associated mainly with the insular lobe was significantly greater, at 15.1%, than it was for the other tumors, which was 8.0% (p = 0.001). CONCLUSIONS This study revealed that combining awake surgery with iMRI was associated with a favorable surgical outcome for intrinsic brain tumors associated with eloquent areas. In particular, these benefits were

  3. Hypoxia-induced expression of VE-cadherin and filamin B in glioma cell cultures and pseudopalisade structures.

    PubMed

    Nissou, Marie-France; El Atifi, Michèle; Guttin, Audrey; Godfraind, Catherine; Salon, Caroline; Garcion, Emmanuel; van der Sanden, Boudewijn; Issartel, Jean-Paul; Berger, François; Wion, Didier

    2013-06-01

    Most of our knowledge regarding glioma cell biology comes from cell culture experiments. For many years the standards for glioma cell culture were the use of cell lines cultured in the presence of serum and 20 % O2. However, in vivo, normoxia in many brain areas is in close to 3 % O2. Hence, in cell culture, the experimental value referred as the norm is hyperoxic compared to any brain physiological value. Likewise, cells in vivo are not usually exposed to serum, and low-passaged glioma neurosphere cultures maintained in serum-free medium is emerging as a new standard. A consequence of changing the experimental normoxic standard from 20 % O2 to the more brain physiological value of 3 % O2, is that a 3 % O2 normoxic reference point enabled a more rigorous characterization of the level of regulation of genes by hypoxia. Among the glioma hypoxia-regulated genes characterized using this approach we found VE-cadherin that is required for blood vessel formation, and filamin B a gene involved in endothelial cell motility. Both VE-cadherin and filamin B were found expressed in pseudopalisades, a glioblastoma pathognomonic structure made of hypoxic migrating cancer cells. These results provide additional clues on the role played by hypoxia in the acquisition of endothelial traits by glioma cells and on the functional links existing between pseudopalisades, hypoxia, and tumor progression.

  4. Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells.

    PubMed

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L; Park, John K

    2008-07-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule-destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement-related processes. Scratch wound-healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down-regulation of cellular stathmin levels and in the absence and presence of sublethal nitrosourea ([1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]; CCNU) concentrations. We show that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 micromol/L, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain, and that nitrosoureas may have therapeutic benefits in addition to their antiproliferative effects.

  5. Nitrosoureas Inhibit the Stathmin Mediated Migration and Invasion of Malignant Glioma Cells

    PubMed Central

    Liang, Xing-Jie; Choi, Yong; Sackett, Dan L.; Park, John K.

    2008-01-01

    Malignant gliomas are the most common primary intrinsic brain tumors and are highly lethal. The widespread migration and invasion of neoplastic cells from the initial site of tumor formation into the surrounding brain render these lesions refractory to definitive surgical treatment. Stathmin, a microtubule destabilizing protein that mediates cell cycle progression, can also regulate directed cell movement. Nitrosoureas, traditionally viewed as DNA alkylating agents, can also covalently modify proteins such as stathmin. We therefore sought to establish a role for stathmin in malignant glioma cell motility, migration, and invasion and determine the effects of nitrosoureas on these cell movement related processes. Scratch-wound healing recovery, Boyden chamber migration, Matrigel invasion, and organotypic slice invasion assays were performed before and after the down regulation of cellular stathmin levels and in the absence and presence of sub-lethal nitrosourea (CCNU; [1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea]) concentrations. We demonstrate that decreases in stathmin expression lead to significant decreases in malignant glioma cell motility, migration, and invasion. CCNU, at a concentration of 10 μM, causes similar significant decreases, even in the absence of any effects on cell viability. The direct inhibition of stathmin by CCNU is likely a contributing factor. These findings suggest that the inhibition of stathmin expression and function may be useful in limiting the spread of malignant gliomas within the brain and that nitrosoureas may have therapeutic benefits in addition to their anti-proliferative effects. PMID:18593927

  6. The epidemiology of glioma in adults: a “state of the science” review

    PubMed Central

    Ostrom, Quinn T.; Bauchet, Luc; Davis, Faith G.; Deltour, Isabelle; Fisher, James L.; Langer, Chelsea Eastman; Pekmezci, Melike; Schwartzbaum, Judith A.; Turner, Michelle C.; Walsh, Kyle M.; Wrensch, Margaret R.; Barnholtz-Sloan, Jill S.

    2014-01-01

    Gliomas are the most common primary intracranial tumor, representing 81% of malignant brain tumors. Although relatively rare, they cause significant mortality and morbidity. Glioblastoma, the most common glioma histology (∼45% of all gliomas), has a 5-year relative survival of ∼5%. A small portion of these tumors are caused by Mendelian disorders, including neurofibromatosis, tuberous sclerosis, and Li-Fraumeni syndrome. Genomic analyses of glioma have also produced new evidence about risk and prognosis. Recently discovered biomarkers that indicate improved survival include O6-methylguanine-DNA methyltransferase methylation, isocitrate dehydrogenase mutation, and a glioma cytosine–phosphate–guanine island methylator phenotype. Genome-wide association studies have identified heritable risk alleles within 7 genes that are associated with increased risk of glioma. Many risk factors have been examined as potential contributors to glioma risk. Most significantly, these include an increase in risk by exposure to ionizing radiation and a decrease in risk by history of allergies or atopic disease(s). The potential influence of occupational exposures and cellular phones has also been examined, with inconclusive results. We provide a “state of the science” review of current research into causes and risk factors for gliomas in adults. PMID:24842956

  7. EMMPRIN Is an Independent Negative Prognostic Factor for Patients with Astrocytic Glioma

    PubMed Central

    Chen, Yu; Cai, Min; Dong, Hailong; Xiong, Lize

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs). It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management. PMID:23516431

  8. EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma.

    PubMed

    Tian, Li; Zhang, Yang; Chen, Yu; Cai, Min; Dong, Hailong; Xiong, Lize

    2013-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs). It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management.

  9. Long noncoding RNA FTX is upregulated in gliomas and promotes proliferation and invasion of glioma cells by negatively regulating miR-342-3p.

    PubMed

    Zhang, Weiguang; Bi, Yunke; Li, Jianhua; Peng, Fei; Li, Hui; Li, Chenguang; Wang, Laizang; Ren, Fubin; Xie, Chen; Wang, Pengwei; Liang, Weiwei; Wang, Zhi; Zhu, Dan

    2017-04-01

    Gliomas remain a major public health challenge, posing a high risk for brain tumor-related morbidity and mortality. However, the mechanisms that drive the development of gliomas remain largely unknown. Emerging evidence has shown that long noncoding RNAs are key factors in glioma pathogenesis. qRT-PCR analysis was used to assess the expression of FTX and miR-342-3p in the different stages of gliomas in tissues. Bioinformatics tool DIANA and TargetSCan were used to predict the targets of FTX and miR-342-3p, respectively. Pearson's correlation analysis was performed to test the correlation between the expression levels of FTX, miR-342-3p, and astrocyte-elevated gene-1 (AEG-1). To examine the role of FTX in regulating proliferation and invasion of glioma cells, specific siRNA was used to knockdown FTX, and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and transwell assays were performed. Furthermore, rescue experiments were performed to further confirm the regulation of miR-342-3p by FTX. We then found that the expression of FTX and miR-342-3p was associated with progression of gliomas. FTX directly inhibited the expression of miR-342-3p, which subsequently regulates the expression of AEG-1. Collectively, FTX is critical for proliferation and invasion of glioma cells by regulating miR-342-3p and AEG-1. Our findings indicate that FTX and miR-342-3p may serve as a biomarker of glioma diagnosis, and offer potential novel therapeutic targets of treatment of gliomas.

  10. IGFBP6 Regulates Cell Apoptosis and Migration in Glioma.

    PubMed

    Bei, Yuanqi; Huang, Qingfeng; Shen, Jianhong; Shi, Jinlong; Shen, Chaoyan; Xu, Peng; Chang, Hao; Xia, Xiaojie; Xu, Li; Ji, Bin; Chen, JianGuo

    2017-07-01

    The insulin-like growth factor binding protein 6 (IGFBP6), as an inhibitor of IGF-II actions, plays an important role in inhibiting survival and migration of tumor cells. In our study, we intended to demonstrate the biological function of IGFBP6 in the development of glioma and its clinical significance. Firstly, Western blot and immunohistochemistry revealed that the expression of IGFBP6 inversely correlated with glioma grade. Secondly, multivariate analysis with the Cox proportional hazards model and Kaplan-Meier analysis indicated that IGFBP6 could be an independent prognostic factor for the survival of glioma patients. In addition, overexpression of IGFBP6 induced glioma cell apoptosis, and depletion of IGFBP6 had the opposite action. Finally, overexpression of IGFBP6 inhibited migration of glioma cells, and depletion of IGFBP6 had the opposite action. Together our findings suggest that IGFBP6 might be an important regulator and prognostic factor for glioma.

  11. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression.

    PubMed

    Song, G; Luo, T; Dong, L; Liu, Q

    2017-07-03

    Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM) on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs), collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.

  12. Increased Expression of Stress Inducible Protein 1 in Glioma-Associated Microglia/Macrophages

    PubMed Central

    da Fonseca, Anna Carolina Carvalho; Wang, Huaqing; Fan, Haitao; Chen, Xuebo; Zhang, Ian; Zhang, Leying; Lima, Flavia Regina Souza; Badie, Behnam

    2014-01-01

    Factors released by glioma-associated microglia/macrophages (GAMs) play an important role in the growth and infiltration of tumors. We have previously demonstrated that the co-chaperone stress-inducible protein 1 (STI1) secreted by microglia promotes proliferation and migration of human glioblastoma (GBM) cell lines in vitro. In the present study, in order to investigate the role of STI1 in a physiological context, we used a glioma model to evaluate STI1 expression in vivo. Here, we demonstrate that STI1 expression in both the tumor and in the infiltrating GAMs and lymphocytes significantly increased with tumor progression. Interestingly, high expression of STI1 was observed in macrophages and lymphocytes that infiltrated brain tumors, whereas STI1 expression in the circulating blood monocytes and lymphocytes remained unchanged. Our results correlate, for the first time, the expression of STI1 and glioma progression, and suggest that STI1 expression in GAMs and infiltrating lymphocytes is modulated by the brain tumor microenvironment. PMID:25042352

  13. Clinical Significance of SASH1 Expression in Glioma

    PubMed Central

    Yang, Liu; Zhang, Haitao; Yao, Qi; Yan, Yingying; Wu, Ronghua; Liu, Mei

    2015-01-01

    Objective. SAM and SH3 domain containing 1 (SASH1) is a recently discovered tumor suppressor gene. The role of SASH1 in glioma has not yet been described. We investigated SASH1 expression in glioma cases to determine its clinical significance on glioma pathogenesis and prognosis. Methods. We produced tissue microarrays using 121 patient-derived glioma samples and 30 patient-derived nontumor cerebral samples. Immunohistochemistry and Western blotting were used to evaluate SASH1 expression. We used Fisher's exact tests to determine relationships between SASH1 expression and clinicopathological characteristics; Cox regression analysis to evaluate the independency of different SASH1 expression; Kaplan-Meier analysis to determine any correlation of SASH1 expression with survival rate. Results. SASH1 expression was closely correlated with the WHO glioma grade. Of the 121 cases, 66.9% with low SASH1 expression were mostly grade III-IV cases, whereas 33.1% with high SASH1 expression were mostly grades I-II. Kaplan-Meier analysis revealed a significant positive correlation between SASH1 expression and postoperative survival. Conclusions. SASH1 was widely expressed in normal and low-grade glioma tissues. SASH1 expression strongly correlated with glioma grades, showing higher expression at a lower grade, which decreased significantly as grade increased. Furthermore, SASH1 expression was positively correlated with better postoperative survival in patients with glioma. PMID:26424902

  14. Clinical Significance of SASH1 Expression in Glioma.

    PubMed

    Yang, Liu; Zhang, Haitao; Yao, Qi; Yan, Yingying; Wu, Ronghua; Liu, Mei

    2015-01-01

    SAM and SH3 domain containing 1 (SASH1) is a recently discovered tumor suppressor gene. The role of SASH1 in glioma has not yet been described. We investigated SASH1 expression in glioma cases to determine its clinical significance on glioma pathogenesis and prognosis. We produced tissue microarrays using 121 patient-derived glioma samples and 30 patient-derived nontumor cerebral samples. Immunohistochemistry and Western blotting were used to evaluate SASH1 expression. We used Fisher's exact tests to determine relationships between SASH1 expression and clinicopathological characteristics; Cox regression analysis to evaluate the independency of different SASH1 expression; Kaplan-Meier analysis to determine any correlation of SASH1 expression with survival rate. SASH1 expression was closely correlated with the WHO glioma grade. Of the 121 cases, 66.9% with low SASH1 expression were mostly grade III-IV cases, whereas 33.1% with high SASH1 expression were mostly grades I-II. Kaplan-Meier analysis revealed a significant positive correlation between SASH1 expression and postoperative survival. SASH1 was widely expressed in normal and low-grade glioma tissues. SASH1 expression strongly correlated with glioma grades, showing higher expression at a lower grade, which decreased significantly as grade increased. Furthermore, SASH1 expression was positively correlated with better postoperative survival in patients with glioma.

  15. T1-T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles.

    PubMed

    Xiao, Ning; Gu, Wei; Wang, Hao; Deng, Yunlong; Shi, Xin; Ye, Ling

    2014-03-01

    To overcome the negative contrast limitations of iron oxide-based contrast agents and to improve the biocompatibility of Gd-chelate contrast agents, PEGylated Gd-doped iron oxide (PEG-GdIO) NPs as a T1-T2 dual-modal contrast agent were synthesized by the polyol method. The transverse relaxivity (r2) and longitudinal relaxivity (r1) of PEG-GdIO were determined to be 66.9 and 65.9 mM(-1) s(-1), respectively. The high r1 value and low r2/r1 ratio make PEG-GdIO NPs suitable as a T1-T2 dual-modal contrast agent. The in vivo MRI demonstrated a brighter contrast enhancement in T1-weighted image and a simultaneous darken effect in T2-weighted MR image compared to the pre-contrast image in the region of glioma. Furthermore, the biocompatibility of PEG-GdIO NPs was confirmed by the in vitro MTT cytotoxicity and in vivo histological analyses (H&E). Therefore, PEG-GdIO NPs hold great potential in T1-T2 dual-modal imaging for the diagnosis of brain glioma. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Scanning Fiber Endoscope Improves Detection of 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence at the Boundary of Infiltrative Glioma.

    PubMed

    Belykh, Evgenii; Miller, Eric J; Hu, Danying; Martirosyan, Nikolay L; Woolf, Eric C; Scheck, Adrienne C; Byvaltsev, Vadim A; Nakaji, Peter; Nelson, Leonard Y; Seibel, Eric J; Preul, Mark C

    2018-05-01

    Fluorescence-guided surgery with protoporphyrin IX (PpIX) as a photodiagnostic marker is gaining acceptance for resection of malignant gliomas. Current wide-field imaging technologies do not have sufficient sensitivity to detect low PpIX concentrations. We evaluated a scanning fiber endoscope (SFE) for detection of PpIX fluorescence in gliomas and compared it to an operating microscope (OPMI) equipped with a fluorescence module and to a benchtop confocal laser scanning microscope (CLSM). 5-Aminolevulinic acid-induced PpIX fluorescence was assessed in GL261-Luc2 cells in vitro and in vivo after implantation in mouse brains, at an invading glioma growth stage, simulating residual tumor. Intraoperative fluorescence of high and low PpIX concentrations in normal brain and tumor regions with SFE, OPMI, CLSM, and histopathology were compared. SFE imaging of PpIX correlated to CLSM at the cellular level. PpIX accumulated in normal brain cells but significantly less than in glioma cells. SFE was more sensitive to accumulated PpIX in fluorescent brain areas than OPMI (P < 0.01) and dramatically increased imaging time (>6×) before tumor-to-background contrast was diminished because of photobleaching. SFE provides new endoscopic capabilities to view PpIX-fluorescing tumor regions at cellular resolution. SFE may allow accurate imaging of 5-aminolevulinic acid labeling of gliomas and other tumor types when current detection techniques have failed to provide reliable visualization. SFE was significantly more sensitive than OPMI to low PpIX concentrations, which is relevant to identifying the leading edge or metastasizing cells of malignant glioma or to treating low-grade gliomas. This new application has the potential to benefit surgical outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Beyond Alkylating Agents for Gliomas: Quo Vadimus?

    PubMed

    Puduvalli, Vinay K; Chaudhary, Rekha; McClugage, Samuel G; Markert, James

    2017-01-01

    Recent advances in therapies have yielded notable success in terms of improved survival in several cancers. However, such treatments have failed to improve outcome in patients with gliomas for whom surgery followed by radiation therapy and chemotherapy with alkylating agents remain the standard of care. Genetic and epigenetic studies have helped identify several alterations specific to gliomas. Attempts to target these altered pathways have been unsuccessful due to various factors, including tumor heterogeneity, adaptive resistance of tumor cells, and limitations of access across the blood-brain barrier. Novel therapies that circumvent such limitations have been the focus of intense study and include approaches such as immunotherapy, targeting of signaling hubs and metabolic pathways, and use of biologic agents. Immunotherapeutic approaches including tumor-targeted vaccines, immune checkpoint blockade, antibody-drug conjugates, and chimeric antigen receptor-expressing cell therapies are in various stages of clinical trials. Similarly, identification of key metabolic pathways or converging hubs of signaling pathways that are tumor specific have yielded novel targets for therapy of gliomas. In addition, the failure of conventional therapies against gliomas has led to a growing interest among patients in the use of alternative therapies, which in turn has necessitated developing evidence-based approaches to the application of such therapies in clinical studies. The development of these novel approaches bears potential for providing breakthroughs in treatment of more meaningful and improved outcomes for patients with gliomas.

  18. Venous thromboembolism in malignant gliomas

    PubMed Central

    JENKINS, E. O.; SCHIFF, D.; MACKMAN, N.; KEY, N. S.

    2010-01-01

    Summary Malignant gliomas are associated with a very high risk of venous thromboembolism (VTE). While many clinical risk factors have previously been described in brain tumor patients, the risk of VTE associated with newer anti-angiogenic therapies such as bevacizumab in these patients remains unclear. When VTE occurs in this patient population, concern regarding the potential for intracranial hemorrhage complicates management decisions regarding anticoagulation, and these patients have a worse prognosis than their VTE-free counterparts. Risk stratification models identifying patients at high risk of developing VTE along with predictive plasma biomarkers may guide the selection of eligible patients for primary prevention with pharmacologic thromboprophylaxis. Recent studies exploring disordered coagulation, such as increased expression of tissue factor (TF), and tumorigenic molecular signaling may help to explain the increased risk of VTE in patients with malignant gliomas. PMID:19912518

  19. Molecular and clinical characterization of PTPN2 expression from RNA-seq data of 996 brain gliomas.

    PubMed

    Wang, Peng-Fei; Cai, Hong-Qing; Zhang, Chuan-Bao; Li, Yan-Michael; Liu, Xiang; Wan, Jing-Hai; Jiang, Tao; Li, Shou-Wei; Yan, Chang-Xiang

    2018-05-15

    Immune checkpoint inhibitors have been shown to promote antitumor immunity and achieve durable tumor remissions. However, certain tumors are refractory to current immunotherapy. These negative results encouraged us to uncover other therapeutic targets and strategies. PTPN2 (protein tyrosine phosphatase, non-receptor type 2) has been newly identified as an immunotherapy target. Loss of PTPN2 sensitizes the tumor to immunotherapy via IFNγ signaling. Here, we investigated the relationship between PTPN2 mRNA levels and clinical characteristics in gliomas. RNA-seq data of a cohort of 325 patients with glioma were available from the Chinese Glioma Genome Atlas and 671 from The Cancer Genome Atlas. R language, GraphPad Prism 5, and SPSS 22.0 were used to analyze data and draw figures. PTPN2 transcript levels increased significantly with higher grades of glioma and in isocitrate dehydrogenase (IDH) wild-type and mesenchymal subtype gliomas. A comprehensive biological analysis was conducted, which indicated a crucial role of PTPN2 in the immune and inflammation responses in gliomas. Specifically, PTPN2 was positively associated with HCK, LCK, MHC II, and STAT1 but negatively related to IgG and interferon. Moreover, canonical correlation analysis showed a positive correlation of PTPN2 with infiltrating immune cells, such as macrophages, neutrophils, and CD8 + T cells. Clinically, higher levels of PTPN2 were associated with a worse overall survival both in patients with gliomas and glioblastomas. PTPN2 expression level was increased in glioblastomas and associated with gliomas of the IDH wild-type and mesenchymal subtype. There was a close correlation between PTPN2 and the immune response and inflammatory activity in gliomas. Our results show that PTPN2 is a promising immunotherapy target and may provide additional treatment strategies.

  20. Monitoring oxygen levels in orthotopic human glioma xenograft following carbogen inhalation and chemotherapy by implantable resonator-based oximetry.

    PubMed

    Hou, Huagang; Krishnamurthy Nemani, Venkata; Du, Gaixin; Montano, Ryan; Song, Rui; Gimi, Barjor; Swartz, Harold M; Eastman, Alan; Khan, Nadeem

    2015-04-01

    Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognosis of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2 ) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were ∼56-69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation. © 2014 UICC.

  1. In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor.

    PubMed

    Badie, B; Schartner, J; Klaver, J; Vorpahl, J

    1999-05-01

    Considered as immune effector cells of the central nervous system, microglia represent a major component of the inflammatory cells found in malignant gliomas. Although their role in brain tumor biology is unclear, accumulation of microglia in malignant brain tumors may be mediated through active secretion of cytokines by glioma cells. Because hepatocyte growth factor/scatter factor (HGF/SF) has been shown to modulate glioma motility through an autocrine mechanism, and because microglia have been reported to express the HGF/SF receptor Met, we hypothesized that microglia recruitment by gliomas may also occur through the secretion of HGF/SF. The effect of glioma cells in augmenting BV-2 murine microglia motility was studied by using an in vitro Boyden chamber migration assay. To determine the chemokines involved in microglia migration, neutralizing monoclonal antibodies against monocyte chemotactic protein-1 and HGF/SF were tested. Immunoblotting was used to check for the expression of HGF/SF by glioma cells, and the expression of Met by BV-2 cells was examined by flow cytometry. BV-2 migration was noted within 7 hours of incubation with both human (U251 MG and U373 MG) and murine (GL261) glioma cell lines. This migration corresponded to HGF/SF secretion by glioma cells and was completely inhibited by neutralizing monoclonal antibody against HGF/SF, but not monocyte chemotactic protein-1. Exposure of BV-2 cells to recombinant HGF/SF, but not monocyte chemotactic protein-1, resulted in their migration and down-regulation of Met in a dose-dependent fashion. HGF/SF, which plays a role in glioma motility and mitogenesis, may also act as a chemokine for microglia and may be responsible for the microglia infiltration in malignant gliomas. This active recruitment of microglia may play an important role in glioma biology.

  2. Conjugation Magnetic PAEEP-PLLA Nanoparticles with Lactoferrin as a Specific Targeting MRI Contrast Agent for Detection of Brain Glioma in Rats

    NASA Astrophysics Data System (ADS)

    Luo, Binhua; Wang, Siqi; Rao, Rong; Liu, Xuhan; Xu, Haibo; Wu, Yun; Yang, Xiangliang; Liu, Wei

    2016-04-01

    The diagnosis of malignant brain gliomas is largely based on magnetic resonance imaging (MRI) with contrast agents. In recent years, nano-sized contrast agents have been developed for improved MRI diagnosis. In this study, oleylamine-coated Fe3O4 magnetic nanoparticles (OAM-MNPs) were synthesized with thermal decomposition method and encapsulated in novel amphiphilic poly(aminoethyl ethylene phosphate)/poly(L-lactide) (PAEEP-PLLA) copolymer nanoparticles. The OAM-MNP-loaded PAEEP-PLLA nanoparticles (M-PAEEP-PLLA-NPs) were further conjugated with lactoferrin (Lf) for glioma tumor targeting. The Lf-conjugated M-PAEEP-PLLA-NPs (Lf-M-PAEEP-PLLA-NPs) were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The average size of OAM-MNPs, M-PAEEP-PLLA-NPs, and Lf-M-PAEEP-PLLA-NPs were 8.6 ± 0.3, 165.7 ± 0.6, and 218.2 ± 0.4 nm, with polydispersity index (PDI) of 0.185 ± 0.023, 0.192 ± 0.021, and 0.224 ± 0.036, respectively. TEM imaging showed that OAM-MNPs were monodisperse and encapsulated in Lf-M-PAEEP-PLLA-NPs. TGA analysis showed that the content of iron oxide nanoparticles was 92.8 % in OAM-MNPs and 45.2 % in Lf-M-PAEEP-PLLA-NPs. VSM results indicated that both OAM-MNPs and Lf-M-PAEEP-PLLA-NPs were superparamagnetic, and the saturated magnetic intensity were 77.1 and 74.8 emu/g Fe. Lf-M-PAEEP-PLLA-NPs exhibited good biocompatibility in cytotoxicity assay. The high cellular uptake of Lf-M-PAEEP-PLLA-NPs in C6 cells indicated that Lf provided effective targeting for the brain tumor cells. The T 2 relaxation rate ( r 2) of M-PAEEP-PLLA-NPs and Lf-M-PAEEP-PLLA-NPs were calculated to be 167.2 and 151.3 mM-1 s-1. In MRI on Wistar rat-bearing glioma tumor, significant contrast enhancement could clearly appear at 4 h after injection and last 48 h. Prussian blue staining of the section clearly

  3. Stereotactic Radiosurgery in Treating Patients With Brain Tumors

    ClinicalTrials.gov

    2012-03-21

    Adult Central Nervous System Germ Cell Tumor; Adult Malignant Meningioma; Adult Medulloblastoma; Adult Noninfiltrating Astrocytoma; Adult Oligodendroglioma; Adult Craniopharyngioma; Adult Meningioma; Brain Metastases; Adult Ependymoma; Adult Pineal Parenchymal Tumor; Adult Brain Stem Glioma; Adult Infiltrating Astrocytoma; Mixed Gliomas; Stage IV Peripheral Primitive Neuroectodermal Tumor

  4. In vivo detection of c-Met expression in a rat C6 glioma model.

    PubMed

    Towner, R A; Smith, N; Doblas, S; Tesiram, Y; Garteiser, P; Saunders, D; Cranford, R; Silasi-Mansat, R; Herlea, O; Ivanciu, L; Wu, D; Lupu, F

    2008-01-01

    The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T(1) relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and 'normal'brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas.

  5. In vivo detection of c-Met expression in a rat C6 glioma model

    PubMed Central

    Towner, RA; Smith, N; Doblas, S; Tesiram, Y; Garteiser, P; Saunders, D; Cranford, R; Silasi-Mansat, R; Herlea, O; Ivanciu, L; Wu, D; Lupu, F

    2008-01-01

    Abstract The tyrosine kinase receptor, c-Met, and its substrate, the hepatocyte growth factor (HGF), are implicated in the malignant progression of glioblastomas. In vivo detection of c-Met expression may be helpful in the diagnosis of malignant tumours. The C6 rat glioma model is a widely used intracranial brain tumour model used to study gliomas experimentally. We used a magnetic resonance imaging (MRI) molecular targeting agent to specifically tag the cell surface receptor, c-Met, with an anti-c-Met antibody (Ab) linked to biotinylated Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)-albumin in rat gliomas to detect overexpression of this antigen in vivo. The anti-c-Met probe (anti-c-Met-Gd-DTPA-albumin) was administered intravenously, and as determined by an increase in MRI signal intensity and a corresponding decrease in regional T1 relaxation values, this probe was found to detect increased expression of c-Met protein levels in C6 gliomas. In addition, specificity for the binding of the anti-c-Met contrast agent was determined by using fluorescence microscopic imaging of the biotinylated portion of the targeting agent within neoplastic and ‘normal’brain tissues following in vivo administration of the anti-c-Met probe. Controls with no Ab or with a normal rat IgG attached to the contrast agent component indicated no non-specific binding to glioma tissue. This is the first successful visualization of in vivo overexpression of c-Met in gliomas. PMID:18194445

  6. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice.

    PubMed

    Zhang, Leying; Alizadeh, Darya; Van Handel, Michelle; Kortylewski, Marcin; Yu, Hua; Badie, Behnam

    2009-10-01

    As the main effector-cell population of the central nervous system, microglia (MG) are considered to play an important immunoregulatory function in a number of pathological conditions such as inflammation, trauma, degenerative disease, and brain tumors. Recent studies, however, have suggested that the anti-neoplastic function of MG may be suppressed in malignant brain tumors. Considering the proposed suppressive role of signal transducers and activators of transcription 3 (Stat3) in antitumor immunity, we evaluated the role of Stat3 inhibition on MG and macrophage (MP) activation and tumor growth in a murine glioma model. N9 MG cells were exposed to GL261 glioma conditioned medium (GL261-CM) and evaluated for Stat3 activity and cytokine expression. Furthermore, the role of Stat3 inhibition on MG and MP activation was studied both in vitro and in vivo. Finally, the effect of Stat3 inhibition on tumor growth was assessed in intracranial GL261 gliomas. GL261-CM increased Stat3 activity in N9 cells in vitro and resulted in overexpression of IL-10 and IL-6, and downregulation of IL1-beta, a pro-inflammatory cytokine. Inhibition of Stat3 by CPA-7 or siRNA reversed glioma-induced cytokine expression profile in N9 cells. Furthermore, inactivation of Stat3 in intracranial GL261 tumors by siRNA resulted in MG/MP activation and tumor growth inhibition. Glioma-induced MG and MP suppression may be mediated thorough Stat3. Inhibition of Stat3 function in tumor MG/MP may result in their activation and can potentially be used as an adjunct immunotherapy approach for gliomas.

  7. Metabolic brain imaging correlated with clinical features of brain tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alavi, J.; Alavi, A.; Dann, R.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1more » enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.« less

  8. Involvement of nitric oxide synthase in matrix metalloproteinase-9- and/or urokinase plasminogen activator receptor-mediated glioma cell migration

    PubMed Central

    2013-01-01

    Background Src tyrosine kinase activates inducible nitric oxide synthase (iNOS) and, in turn, nitric oxide production as a means to transduce cell migration. Src tyrosine kinase plays a key proximal role to control α9β1 signaling. Our recent studies have clearly demonstrated the role of α9β1 integrin in matrix metalloproteinase-9 (MMP-9) and/or urokinase plasminogen activator receptor (uPAR)-mediated glioma cell migration. In the present study, we evaluated the involvement of α9β1 integrin-iNOS pathway in MMP-9- and/or uPAR-mediated glioma cell migration. Methods MMP-9 and uPAR shRNAs and overexpressing plasmids were used to downregulate and upregulate these molecules, respectively in U251 glioma cells and 5310 glioma xenograft cells. The effect of treatments on migration and invasion potential of these glioma cells were assessed by spheroid migration, wound healing, and Matrigel invasion assays. In order to attain the other objectives we also performed immunocytochemical, immunohistochemical, RT-PCR, Western blot and fluorescence-activated cell sorting (FACS) analysis. Results Immunohistochemical analysis revealed the prominent association of iNOS with glioblastoma multiforme (GBM). Immunofluorescence analysis showed prominent expression of iNOS in glioma cells. MMP-9 and/or uPAR knockdown by respective shRNAs reduced iNOS expression in these glioma cells. RT-PCR analysis revealed elevated iNOS mRNA expression in either MMP-9 or uPAR overexpressed glioma cells. The migration potential of MMP-9- and/or uPAR-overexpressed U251 glioma cells was significantly inhibited after treatment with L-NAME, an inhibitor of iNOS. Similarly, a significant inhibition of the invasion potential of the control or MMP-9/uPAR-overexpressed glioma cells was noticed after L-NAME treatment. A prominent reduction of iNOS expression was observed in the tumor regions of nude mice brains, which were injected with 5310 glioma cells, after MMP-9 and/or uPAR knockdown. Protein expressions

  9. Resistance to Two Heterologous Neurotropic Oncolytic Viruses, Semliki Forest Virus and Vaccinia Virus, in Experimental Glioma

    PubMed Central

    Le Boeuf, Fabrice; Lemay, Chantal; De Silva, Naomi; Diallo, Jean-Simon; Cox, Julie; Becker, Michelle; Choi, Youngmin; Ananth, Abhirami; Sellers, Clara; Breton, Sophie; Roy, Dominic; Falls, Theresa; Brun, Jan; Hemminki, Akseli; Hinkkanen, Ari; Bell, John C.

    2013-01-01

    Attenuated Semliki Forest virus (SFV) may be suitable for targeting malignant glioma due to its natural neurotropism, but its replication in brain tumor cells may be restricted by innate antiviral defenses. We attempted to facilitate SFV replication in glioma cells by combining it with vaccinia virus, which is capable of antagonizing such defenses. Surprisingly, we found parenchymal mouse brain tumors to be refractory to both viruses. Also, vaccinia virus appears to be sensitive to SFV-induced antiviral interference. PMID:23221568

  10. Magnetic Resonance Fingerprinting of Adult Brain Tumors: Initial Experience

    PubMed Central

    Badve, Chaitra; Yu, Alice; Dastmalchian, Sara; Rogers, Matthew; Ma, Dan; Jiang, Yun; Margevicius, Seunghee; Pahwa, Shivani; Lu, Ziang; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Sloan, Andrew; Gulani, Vikas

    2016-01-01

    Background Magnetic resonance fingerprinting (MRF) allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assesses the utility of MRF in differentiating between common types of adult intra-axial brain tumors. Methods MRF acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 WHO grade II lower-grade gliomas and 8 metastases. T1, T2 of the solid tumor (ST), immediate peritumoral white matter (PW), and contralateral white matter (CW) were summarized within each region of interest. Statistical comparisons on mean, standard deviation, skewness and kurtosis were performed using univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple comparisons testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases and area under the receiver operator curve (AUC) was calculated. Results Mean T2 values could differentiate solid tumor regions of lower-grade gliomas from metastases (mean±sd: 172±53ms and 105±27ms respectively, p =0.004, significant after Bonferroni correction). Mean T1 of PW surrounding lower-grade gliomas differed from PW around glioblastomas (mean±sd: 1066±218ms and 1578±331ms respectively, p=0.004, significant after Bonferroni correction). Logistic regression analysis revealed that mean T2 of ST offered best separation between glioblastomas and metastases with AUC of 0.86 (95% CI 0.69–1.00, p<0.0001). Conclusion MRF allows rapid simultaneous T1, T2 measurement in brain tumors and surrounding tissues. MRF based relaxometry can identify quantitative differences between solid-tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. PMID:28034994

  11. Monoamine oxidase A (MAO A) inhibitors decrease glioma progression.

    PubMed

    Kushal, Swati; Wang, Weijun; Vaikari, Vijaya Pooja; Kota, Rajesh; Chen, Kevin; Yeh, Tzu-Shao; Jhaveri, Niyati; Groshen, Susan L; Olenyuk, Bogdan Z; Chen, Thomas C; Hofman, Florence M; Shih, Jean C

    2016-03-22

    Glioblastoma (GBM) is an aggressive brain tumor which is currently treated with temozolomide (TMZ). Tumors usually become resistant to TMZ and recur; no effective therapy is then available. Monoamine Oxidase A (MAO A) oxidizes monoamine neurotransmitters resulting in reactive oxygen species which cause cancer. This study shows that MAO A expression is increased in human glioma tissues and cell lines. MAO A inhibitors, clorgyline or the near-infrared-dye MHI-148 conjugated to clorgyline (NMI), were cytotoxic for glioma and decreased invasion in vitro. Using the intracranial TMZ-resistant glioma model, clorgyline or NMI alone or in combination with low-dose TMZ reduced tumor growth and increased animal survival. NMI was localized specifically to the tumor. Immunocytochemistry studies showed that the MAO A inhibitor reduced proliferation, microvessel density and invasion, and increased macrophage infiltration. In conclusion, we have identified MAO A inhibitors as potential novel stand-alone drugs or as combination therapy with low dose TMZ for drug-resistant gliomas. NMI can also be used as a non-invasive imaging tool. Thus has a dual function for both therapy and diagnosis.

  12. Coptis Chinensis affects the function of glioma cells through the down-regulation of phosphorylation of STAT3 by reducing HDAC3.

    PubMed

    Li, Jiangan; Ni, Lulu; Li, Bing; Wang, Mingdeng; Ding, Zhemin; Xiong, Chunrong; Lu, Xiaojie

    2017-12-06

    Glioma remains the most common cause of brain cancer-related mortality. Glioma accounts for 50-60% of brain cancer. Due to their low toxicity and infrequent side effects, traditional herbs have been increasingly popular. Coptis Chinensis is commonly used in cancer treatment in combination with other Chinese Medicine herbs. However, little is known about its biological functions and mechanisms in glioma cells. In this study, the anti-glioma cell effect of Coptis Chinensis was determined using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method, plate clone test, scratch tests, flow cytometry, western blotting and a glioma xenograft tumor model. The results showed that Coptis Chinensis significantly suppressed glioma cell proliferation, tumor formation, migration and tumor growth, and prolonged the survival time of glioma cell-bearing mice. The flow cytometry result showed that Coptis Chinensis induced cell cycle arrest and apoptosis in glioma cells. Western blotting showed that Coptis Chinensis down-regulated the Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels and reduced the expression of Histone deacetylase 3 (HDAC3) and caspase 3. Coptis Chinensis can inhibit various aspects of glioma cell functions. This study provides favorable scientific evidence for the potential use of natural products such as Coptis Chinensis in the clinical treatment of patients with glioma.

  13. Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF

    PubMed Central

    Li, Zeju; Shi, Zhifeng; Guo, Yi; Chen, Liang; Mao, Ying

    2017-01-01

    This work proposed a novel automatic three-dimensional (3D) magnetic resonance imaging (MRI) segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN) and fully connected conditional random field (CRF). Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC) of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas. PMID:29065666

  14. Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF.

    PubMed

    Li, Zeju; Wang, Yuanyuan; Yu, Jinhua; Shi, Zhifeng; Guo, Yi; Chen, Liang; Mao, Ying

    2017-01-01

    This work proposed a novel automatic three-dimensional (3D) magnetic resonance imaging (MRI) segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN) and fully connected conditional random field (CRF). Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC) of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas.

  15. A pro-invasive role for the Ca2+-activated K+ channel KCa3.1 in malignant glioma

    PubMed Central

    Turner, Kathryn L.; Honasoge, Avinash; Robert, Stephanie M.; McFerrin, Michael M.; Sontheimer, Harald

    2014-01-01

    Glioblastoma multiforme (GBM) are highly motile primary brain tumors. Diffuse tissue invasion hampers surgical resection leading to poor patient prognosis. Recent studies suggest that intracellular Ca2+ acts as a master regulator for cell motility and engages a number of downstream signals including Ca2+-activated ion channels. Querying the REepository of Molecular BRAin Neoplasia DaTa (REMBRANDT), an annotated patient gene database maintained by the National Cancer Institute, we identified the intermediate conductance Ca2+-activated K+ channels, KCa3.1, being overexpressed in 32% of glioma patients where protein expression significantly correlated with poor patient survival. To mechanistically link KCa3.1 expression to glioma invasion, we selected patient gliomas that, when propagated as xenolines in vivo, present with either high or low KCa3.1 expression. In addition we generated U251 glioma cells that stably express an inducible knockdown shRNA to experimentally eliminate KCa3.1 expression. Subjecting these cells to a combination of in vitro and in situ invasion assays, we demonstrate that KCa3.1 expression significantly enhances glioma invasion and that either specific pharmacological inhibition with TRAM-34 or elimination of the channel impairs invasion. Importantly, after intracranial implantation into SCID mice, ablation of KCa3.1 with inducible shRNA resulted in a significant reduction in tumor invasion into surrounding brain in vivo. These results show that KCa3.1 confers an invasive phenotype that significantly worsens a patient’s outlook, and suggests that KCa3.1 represents a viable therapeutic target to reduce glioma invasion. PMID:24585442

  16. A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications.

    PubMed

    Bogdańska, Magdalena U; Bodnar, Marek; Piotrowska, Monika J; Murek, Michael; Schucht, Philippe; Beck, Jürgen; Martínez-González, Alicia; Pérez-García, Víctor M

    2017-01-01

    Gliomas are the most frequent type of primary brain tumours. Low grade gliomas (LGGs, WHO grade II gliomas) may grow very slowly for the long periods of time, however they inevitably cause death due to the phenomenon known as the malignant transformation. This refers to the transition of LGGs to more aggressive forms of high grade gliomas (HGGs, WHO grade III and IV gliomas). In this paper we propose a mathematical model describing the spatio-temporal transition of LGGs into HGGs. Our modelling approach is based on two cellular populations with transitions between them being driven by the tumour microenvironment transformation occurring when the tumour cell density grows beyond a critical level. We show that the proposed model describes real patient data well. We discuss the relationship between patient prognosis and model parameters. We approximate tumour radius and velocity before malignant transformation as well as estimate the onset of this process.

  17. Evaluation of TgH(CX3CR1-EGFP) mice implanted with mCherry-GL261 cells as an in vivo model for morphometrical analysis of glioma-microglia interaction.

    PubMed

    Resende, Fernando F B; Bai, Xianshu; Del Bel, Elaine Aparecida; Kirchhoff, Frank; Scheller, Anja; Titze-de-Almeida, Ricardo

    2016-02-08

    Glioblastoma multiforme is the most aggressive brain tumor. Microglia are prominent cells within glioma tissue and play important roles in tumor biology. This work presents an animal model designed for the study of microglial cell morphology in situ during gliomagenesis. It also allows a quantitative morphometrical analysis of microglial cells during their activation by glioma cells. The animal model associates the following cell types: 1- mCherry red fluorescent GL261 glioma cells and; 2- EGFP fluorescent microglia, present in the TgH(CX3CR1-EGFP) mouse line. First, mCherry-GL261 glioma cells were implanted in the brain cortex of TgH(CX3CR1-EGFP) mice. Epifluorescence - and confocal laser-scanning microscopy were employed for analysis of fixed tissue sections, whereas two-photon laser-scanning microscopy (2P-LSM) was used to track tumor cells and microglia in the brain of living animals. Implanted mCherry-GL261 cells successfully developed brain tumors. They mimic the aggressive behavior found in human disease, with a rapid increase in size and the presence of secondary tumors apart from the injection site. As tumor grows, mCherry-GL261 cells progressively lost their original shape, adopting a heterogeneous and diffuse morphology at 14-18 d. Soma size increased from 10-52 μm. At this point, we focused on the kinetics of microglial access to glioma tissues. 2P-LSM revealed an intense microgliosis in brain areas already shortly after tumor implantation, i.e. at 30 min. By confocal microscopy, we found clusters of microglial cells around the tumor mass in the first 3 days. Then cells infiltrated the tumor area, where they remained during all the time points studied, from 6-18 days. Microglia in contact with glioma cells also present changes in cell morphology, from a ramified to an amoeboid shape. Cell bodies enlarged from 366 ± 0.0 μm(2), in quiescent microglia, to 1310 ± 146.0 μm(2), and the cell processes became shortened. The GL261/CX3CR1 mouse model

  18. Metabolomic signature of brain cancer.

    PubMed

    Pandey, Renu; Caflisch, Laura; Lodi, Alessia; Brenner, Andrew J; Tiziani, Stefano

    2017-11-01

    Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed. © 2017 Wiley Periodicals, Inc.

  19. Comparative magnetic resonance imaging findings between gliomas and presumed cerebrovascular accidents in dogs.

    PubMed

    Cervera, Vicente; Mai, Wilfried; Vite, Charles H; Johnson, Victoria; Dayrell-Hart, Betsy; Seiler, Gabriela S

    2011-01-01

    Cerebrovascular accidents, or strokes, and gliomas are common intraaxial brain lesions in dogs. An accurate differentiation of these two lesions is necessary for prognosis and treatment decisions. The magnetic resonance (MR) imaging characteristics of 21 dogs with a presumed cerebrovascular accident and 17 with a glioma were compared. MR imaging findings were reviewed retrospectively by three observers unaware of the final diagnosis. Statistically significant differences between the appearance of gliomas and cerebrovascular accidents were identified based on lesion location, size, mass effect, perilesional edema, and appearance of the apparent diffusion coefficient map. Gliomas were predominantly located in the cerebrum (76%) compared with presumed cerebrovascular accidents that were located mainly in the cerebellum, thalamus, caudate nucleus, midbrain, and brainstem (76%). Gliomas were significantly larger compared with presumed cerebrovascular accidents and more commonly associated with mass effect and perilesional edema. Wedge-shaped lesions were seen only in 19% of presumed cerebrovascular accidents. Between the three observers, 10-47% of the presumed cerebrovascular accidents were misdiagnosed as gliomas, and 0-12% of the gliomas were misdiagnosed as cerebrovascular accidents. Diffusion weighted imaging increased the accuracy of the diagnosis for both lesions. Agreement between observers was moderate (kappa = 0.48, P < 0.01).

  20. Gap junctions modulate glioma invasion by direct transfer of microRNA.

    PubMed

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L; Naus, Christian C

    2015-06-20

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.

  1. Gap junctions modulate glioma invasion by direct transfer of microRNA

    PubMed Central

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L.; Naus, Christian C.

    2015-01-01

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028

  2. Cellular immunotherapy for malignant gliomas

    PubMed Central

    Lin, Yi

    2016-01-01

    Introduction Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Areas covered Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. Expert opinion While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy. PMID:27434205

  3. Histogram analysis of T2*-based pharmacokinetic imaging in cerebral glioma grading.

    PubMed

    Liu, Hua-Shan; Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Ping-Huei; Hsu, Fei-Ting; Cho, Nai-Yu; Wang, Chao-Ying; Chou, Ming-Chung; Chen, Cheng-Yu

    2018-03-01

    To investigate the feasibility of histogram analysis of the T2*-based permeability parameter volume transfer constant (K trans ) for glioma grading and to explore the diagnostic performance of the histogram analysis of K trans and blood plasma volume (v p ). We recruited 31 and 11 patients with high- and low-grade gliomas, respectively. The histogram parameters of K trans and v p , derived from the first-pass pharmacokinetic modeling based on the T2* dynamic susceptibility-weighted contrast-enhanced perfusion-weighted magnetic resonance imaging (T2* DSC-PW-MRI) from the entire tumor volume, were evaluated for differentiating glioma grades. Histogram parameters of K trans and v p showed significant differences between high- and low-grade gliomas and exhibited significant correlations with tumor grades. The mean K trans derived from the T2* DSC-PW-MRI had the highest sensitivity and specificity for differentiating high-grade gliomas from low-grade gliomas compared with other histogram parameters of K trans and v p . Histogram analysis of T2*-based pharmacokinetic imaging is useful for cerebral glioma grading. The histogram parameters of the entire tumor K trans measurement can provide increased accuracy with additional information regarding microvascular permeability changes for identifying high-grade brain tumors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gefitinib and Radiation Therapy in Treating Children With Newly Diagnosed Gliomas

    ClinicalTrials.gov

    2014-05-15

    Untreated Childhood Anaplastic Astrocytoma; Untreated Childhood Anaplastic Oligodendroglioma; Untreated Childhood Brain Stem Glioma; Untreated Childhood Giant Cell Glioblastoma; Untreated Childhood Glioblastoma; Untreated Childhood Gliomatosis Cerebri; Untreated Childhood Gliosarcoma; Untreated Childhood Oligodendroglioma

  5. Erlotinib and Temsirolimus in Treating Patients With Recurrent Malignant Glioma

    ClinicalTrials.gov

    2015-05-29

    Adult Anaplastic Astrocytoma; Adult Anaplastic Oligodendroglioma; Adult Diffuse Astrocytoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Subependymal Giant Cell Astrocytoma; Recurrent Adult Brain Tumor

  6. The expression and significance of HIF-1alpha and GLUT-3 in glioma.

    PubMed

    Liu, Yang; Li, Yun-ming; Tian, Rui-feng; Liu, Wei-ping; Fei, Zhou; Long, Qian-fa; Wang, Xiao-an; Zhang, Xiang

    2009-12-22

    HIF-1alpha plays an indispensable role in tumor formation and histogenesis. Target genes involved in glucose transport are acutely transactivated by HIF-1alpha. GLUT-3 protein is the rate-limiting factor related to glucose transport, which is classified as brain-type glucose transporter. This study was the initial one aiming to probe into the co-expression and clinical significance of HIF-1alpha and GLUT-3 in glioma. One hundred and twenty cases of glioma tissues and ten human normal cerebral tissues decompressed in glioma excision were examined using immunohistochemistry and Western blot. The expression of HIF-1alpha and GLUT-3 increased gradually with the increase of pathological grade of glioma, respectively. There was significant difference in the expression of HIF-1alpha and GLUT-3 in every two groups, respectively. There was a positive correlation between HIF-1alpha and GLUT-3. In conclusion, the expression of HIF-1alpha and GLUT-3 in glioma was correlated significantly with tumors' pathological grade, which can be taken as a pair of useful markers for predicting the biological behavior of glioma.

  7. [Identification of emotions in patients with low-grade gliomas versus cerebrovascular accidents].

    PubMed

    du Boullay, V; Plaza, M; Capelle, L; Chaby, L

    2013-03-01

    Facial and vocal emotions contribute to sustain efficient social relationships. Brain disease may impair their identification. In the case of slow-growth tumors (Low Grade Gliomas [LGG]) or sudden stroke (cerebrovascular accidents [CVA]), the lesions induce contrasted plasticity and reorganisation processes. We compared the facial, vocal and intermodal identification of six emotions (happiness, fear, angriness, sadness, disgust and neutral) of three groups: patients with LGG before and after tumor resection, patients with CVA and control subjects. In LGG patients, the results revealed less efficient performances after tumor resection and in CVA patients weak performances regarding negative emotions. The intermodal condition (simultaneous visual and vocal association) improved performances in all groups and enabled equivalent performance in CVA subjects compared with control subjects. The intergroup differences may be related to variable brain plasticity as a function of type and rapidity of brain injury. Intermodal processing appears to be a compensatory condition. Copyright © 2012. Published by Elsevier Masson SAS.

  8. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA

    PubMed Central

    Liu, Xiaoli; Madhankumar, Achuthamangalam B.; Miller, Patti A.; Duck, Kari A.; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M.; Connor, James R.; Yang, Qing X.

    2016-01-01

    Background Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. Methods The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. Results The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. Conclusions IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. PMID:26519740

  9. EGFR-directed Affibody for fluorescence-guided glioma surgery: time-dose analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ribeiro de Souza, Ana Luiza; Marra, Kayla; Gunn, Jason R.; Elliott, Jonathan T.; Samkoe, Kimberley S.; Paulsen, Keith D.; Draney, Daniel R.; Feldwisch, Joachim

    2016-03-01

    The key to fluorescence guided surgical oncology is the ability to create specific contrast between normal and glioma tissue. The blood brain barrier that limits the delivery of substances to the normal brain is broken in tumors, allowing accumulation of agents in the tumor interior. However, for a clinical success, imaging agents should be in the infiltrative edges to minimize the resection of normal brain while enable the removal of tumor. The aberrant overexpression and/or activation of EGFR is associated with many types of cancers, including glioblastoma and the injection of a fluorescent molecule targeted to these receptors would improve tumor contrast during fluorescence guided surgery. Affibody molecules have intentional medium affinity and high potential specificity, which are the desirable features of a good surgical imaging agent. The aim of this study was evaluate the brain/glioma uptake of ABY029 labeled with near-infrared dye IRDye800CW after intravenous injection. Rats were either inoculated with orthotopic implantations of U251 human glioma cell line or PBS (shams control) in the brain. The tumors were allowed to grow for 2-3 weeks before carrying out fluorescent tracer experiments. Fluorescent imaging of ex vivo brain slices from rats was acquired at different time points after infection of fluorescently labeled EGFR-specific affibody to verify which time provided maximal contrast tumor to normal brain. Although the tumor was most clearly visualized after 1h of IRDye800CW-labeled ABY029 injection, the tumor location could be identified from the background after 48h. These results suggest that the NIR-labeled affibody examined shows excellent potential to increase surgical visualization for confirmed EGFR positive tumors.

  10. Non-optic glioma in adults and children with neurofibromatosis 1.

    PubMed

    Sellmer, Laura; Farschtschi, Said; Marangoni, Marco; Heran, Manraj K S; Birch, Patricia; Wenzel, Ralph; Friedman, Jan M; Mautner, Victor-Felix

    2017-02-15

    Non-optic gliomas occur in 5% of children with NF1, but little is known about these tumours in adults. We aimed to investigate progression, spontaneous regression and the natural history of non-optic gliomas in adults and compare these findings to the results found in children. One thousand seven hundred twenty-two brain MRI scans of 562 unselected individuals with NF1 were collected at the NF outpatient department of the University Hospital Hamburg-Eppendorf between 2003 and 2015. The number of scans per patient ranged from one to 12; patients were followed for a median of 3.7 years. We identified 24 patients (4.3%) with non-optic gliomas. Median age at first scan with glioma was 21.2 years, much higher than in previous publications. Only seven of the 24 non-optic glioma patients were symptomatic. Five of 24 patients had multiple non-optic gliomas. Four individuals developed a new tumour, and 4 cases showed progression. The risk of new tumour development was 0.19% (95% confidence interval 0.06% to 0.52%) per patient year of follow-up for patients over 10 years. The rate of progressing non-optic gliomas per patient year of follow-up in the first 5 years after tumour diagnosis was 4.7% (95% confidence interval 1.5% to 12%). Non-optic gliomas are twice as common in an unselected cohort of NF1 patients as previously reported. This is likely due to increased frequency of diagnosis of asymptomatic tumours when routine MRIs are performed and a higher prevalence in older individuals.

  11. Induction of anti-glioma NK cell response following multiple low-dose intracerebral CpG therapy

    PubMed Central

    Alizadeh, Darya; Zhang, Leying; Brown, Christine E.; Farrukh, Omar; Jensen, Michael C.; Badie, Behnam

    2010-01-01

    Purpose Stimulation of toll-like receptor-9 (TLR9) by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN which can induce toxicity in a clinical setting. The goal of this study was to evaluate the anti-tumor efficacy of multiple low-dose intratumoral CpG- ODN in a glioma model. Experimental Design Mice bearing four-day old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 μg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Results Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor free remission (> 3 months), and were protected from intracranial rechallenge with GL21 gliomas, demonstrating the capacity for long-term anti-tumor immunity. Although most inflammatory cells appeared to increase, activated NK cells (i.e. NK+CD107a+) were more frequent than CD8+CD107a+ in the brains of rechallenged CpG-ODN-treated animals and demonstrated a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN anti-tumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. Conclusions These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK mediated effector function. PMID:20570924

  12. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue.

    PubMed

    Zhang, Xuemei; Li, Xuejuan; Hua, Hongchen; Wang, Aiping; Liu, Wanhui; Li, Youxin; Fu, Fenghua; Shi, Yanan; Sun, Kaoxiang

    2017-01-01

    Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs). The cyclic hexapeptide c(RGDf(N-me) VK)-C (cHP) has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(d,l-lactide-co-glycolide) (PEG-PLGA) conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs) was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells. The targeted cHP/Cur-NPs, c(RGDf(N-me)VK)-C-modified Cur-NPs, exhibited improved binding, uptake, and penetration abilities than non-targeting NPs for glioma cells, cell spheres, and glioma tissue. In conclusion, c(RGDf(N-me)VK)-C can serve as an effective targeting ligand, and cHP/Cur-NPs can be exploited as a potential drug delivery system for targeting gliomas.

  13. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue

    PubMed Central

    Zhang, Xuemei; Li, Xuejuan; Hua, Hongchen; Wang, Aiping; Liu, Wanhui; Li, Youxin; Fu, Fenghua; Shi, Yanan; Sun, Kaoxiang

    2017-01-01

    Glioma has one of the highest mortality rates among primary brain tumors. The clinical treatment for glioma is very difficult due to its infiltration and specific growth locations. To achieve improved drug delivery to a brain tumor, we report the preparation and in vitro and in vivo evaluation of curcumin nanoparticles (Cur-NPs). The cyclic hexapeptide c(RGDf(N-me) VK)-C (cHP) has increased affinity for cells that overexpress integrins and was designed to target Cur-NPs to tumors. Functional polyethyleneglycol-modified poly(d,l-lactide-co-glycolide) (PEG-PLGA) conjugated to cHP was synthesized, and targeted Cur-NPs were prepared using a self-assembly nanoprecipitation process. The physicochemical properties and the in vitro cytotoxicity, accuracy, and penetration capabilities of Cur-NPs targeting cells with high levels of integrin expression were investigated. The in vivo targeting and penetration capabilities of the NPs were also evaluated against glioma in rats using in vivo imaging equipment. The results showed that the in vitro cytotoxicity of the targeted cHP-modified curcumin nanoparticles (cHP/Cur-NPs) was higher than that of either free curcumin or non-targeted Cur-NPs due to the superior ability of the cHP/Cur-NPs to target tumor cells. The targeted cHP/Cur-NPs, c(RGDf(N-me)VK)-C-modified Cur-NPs, exhibited improved binding, uptake, and penetration abilities than non-targeting NPs for glioma cells, cell spheres, and glioma tissue. In conclusion, c(RGDf(N-me)VK)-C can serve as an effective targeting ligand, and cHP/Cur-NPs can be exploited as a potential drug delivery system for targeting gliomas. PMID:28848349

  14. A long noncoding RNA UCA1 promotes proliferation and predicts poor prognosis in glioma.

    PubMed

    Zhao, W; Sun, C; Cui, Z

    2017-06-01

    Acting as a proto-oncogene, long noncoding RNAs (lncRNAs) urothelial carcinoembryonic antigen 1 (UCA1) plays a key role in the occurrence and development of several human tumors. However, the expression and biological functions of UCA1 in glioma are less known. This study discussed the expression of UCA1 in glioma and its effect on the proliferation and cell cycle of glioma cells. LncRNA UCA1 expressions in 64 glioma samples (Grade I-II in 22 cases and Grade III-IV in 42 cases, according to WHO criteria) and 10 normal brain samples were detected using real-time fluorescence quantitative PCR. On this basis, the correlations of UCA1 to clinicopathological characteristics and prognosis of glioma were assessed. Then, using qPCR, the lncRNA UCA1 expressions in glioma cell lines and astrocytes were detected. UCA1-overexpressing glioma cell lines U87 and U251 were further detected after siRNA transfection of these two cell lines, and the impact on cell proliferation and cell cycle was assessed with CCK-8 (cell counting kit-8) assay and flow cytometry method (FCM), respectively. The expression of cyclin D1, a cell cycle-related protein, was detected using Western Blot. LncRNA UCA1 expression in the glioma samples was obviously higher as compared with the normal brain samples (P < 0.001), and the expression was correlated significantly with grading of the tumors (P < 0.05). However, lncRNA UCA1 expression was not correlated with age, gender, tumor size and KPS score (P > 0.05). After interference of UCA1 expression by siRNA transfection, the proliferation of both U251 and SHG-44 cells was inhibited (P < 0.05), with more cells arrested in G0/G1 (P < 0.05). Moreover, cyclin D1 expression was also downregulated considerably. LncRNA UCA1 can promote the proliferation and cell cycle progression of glioma cells by upregulating cyclin D1 transcription. So UCA1 may serve as an independent prognostic indicator and a novel therapeutic target for glioma.

  15. Immune-Checkpoint Blockade and Active Immunotherapy for Glioma

    PubMed Central

    Ahn, Brian J.; Pollack, Ian F.; Okada, Hideho

    2013-01-01

    Cancer immunotherapy has made tremendous progress, including promising results in patients with malignant gliomas. Nonetheless, the immunological microenvironment of the brain and tumors arising therein is still believed to be suboptimal for sufficient antitumor immune responses for a variety of reasons, including the operation of “immune-checkpoint” mechanisms. While these mechanisms prevent autoimmunity in physiological conditions, malignant tumors, including brain tumors, actively employ these mechanisms to evade from immunological attacks. Development of agents designed to unblock these checkpoint steps is currently one of the most active areas of cancer research. In this review, we summarize recent progresses in the field of brain tumor immunology with particular foci in the area of immune-checkpoint mechanisms and development of active immunotherapy strategies. In the last decade, a number of specific monoclonal antibodies designed to block immune-checkpoint mechanisms have been developed and show efficacy in other cancers, such as melanoma. On the other hand, active immunotherapy approaches, such as vaccines, have shown encouraging outcomes. We believe that development of effective immunotherapy approaches should ultimately integrate those checkpoint-blockade agents to enhance the efficacy of therapeutic approaches. With these agents available, it is going to be quite an exciting time in the field. The eventual success of immunotherapies for brain tumors will be dependent upon not only an in-depth understanding of immunology behind the brain and brain tumors, but also collaboration and teamwork for the development of novel trials that address multiple layers of immunological challenges in gliomas. PMID:24202450

  16. Increased expression of stress inducible protein 1 in glioma-associated microglia/macrophages.

    PubMed

    Carvalho da Fonseca, Anna Carolina; Wang, Huaqing; Fan, Haitao; Chen, Xuebo; Zhang, Ian; Zhang, Leying; Lima, Flavia Regina Souza; Badie, Behnam

    2014-09-15

    Factors released by glioma-associated microglia/macrophages (GAMs) play an important role in the growth and infiltration of tumors. We have previously demonstrated that the co-chaperone stress-inducible protein 1 (STI1) secreted by microglia promotes proliferation and migration of human glioblastoma (GBM) cell lines in vitro. In the present study, in order to investigate the role of STI1 in a physiological context, we used a glioma model to evaluate STI1 expression in vivo. Here, we demonstrate that STI1 expression in both the tumor and in the infiltrating GAMs and lymphocytes significantly increased with tumor progression. Interestingly, high expression of STI1 was observed in macrophages and lymphocytes that infiltrated brain tumors, whereas STI1 expression in the circulating blood monocytes and lymphocytes remained unchanged. Our results correlate, for the first time, the expression of STI1 and glioma progression, and suggest that STI1 expression in GAMs and infiltrating lymphocytes is modulated by the brain tumor microenvironment. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a (HPPH) in a nude rat glioma model: implications for photodynamic therapy.

    PubMed

    Lobel, J; MacDonald, I J; Ciesielski, M J; Barone, T; Potter, W R; Pollina, J; Plunkett, R J; Fenstermaker, R A; Dougherty, T J

    2001-01-01

    In this study, we evaluated 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-alpha (HPPH or Photochlor) as a photosensitizer for the treatment of malignant gliomas by photodynamic therapy (PDT). We performed in vivo reflection spectroscopy in athymic rats to measure the attenuation of light in normal brain tissue. We also studied HPPH pharmacokinetics and PDT effects in nude rats with brain tumors derived from stereotactically implanted U87 human glioma cells. Rats implanted with tumors were sacrificed at designated time points to determine the pharmacokinetics of HPPH in serum, tumor, normal brain, and brain adjacent to tumor (BAT). HPPH concentrations in normal brain, BAT and tumor were determined using fluorescence spectroscopy. Twenty-four hours after intravenous injection of HPPH, we administered interstitial PDT treatment at a wavelength of 665 nm. Light was given in doses of 3.5, 7.5 or 15 J/cm at the tumor site and at a rate of 50 mW/cm. In vivo spectroscopy of normal brain tissue showed that the attenuation depth of 665 nm light is approximately 30% greater than that of 630 nm light used to activate Photofrin, which is currently being evaluated for PDT as an adjuvant to surgery for malignant gliomas. The t1/2 of disappearance of drug from serum and tumor was 25 and 30 hours, respectively. Twenty-four hours after injection of 0.5 mg/kg HPPH, tumor-to-brain drug ratios ranged from 5:1 to 15:1. Enhanced survival was observed in each of the HPPH/PDT-treated animal groups. These data suggest that HPPH may be a useful adjuvant for the treatment of malignant gliomas.

  18. Trends in incidence of primary brain cancer in New Zealand, 1995 to 2010.

    PubMed

    Kim, Stella J-H; Ioannides, Sally J; Elwood, J Mark

    2015-04-01

    Case-control studies have linked mobile phone use to an increased risk of glioma in the most exposed brain areas, the temporal and parietal lobes, although inconsistently. We examined time trends in the incidence rates of brain malignancies in New Zealand from 1995 to 2010. Data from the New Zealand Cancer Registry was used to calculate incidence rates of primary brain cancer, by age, gender, morphology and anatomical site. Log-linear regression analysis was used to assess trends in the annual incidence of primary brain cancer; annual percentage changes and their 95% confidence intervals were estimated. No consistent increases in all primary brain cancer, glioma, or temporal or parietal lobe glioma were seen. At ages 10-69, the incidence of all brain cancers declined significantly. Incidence of glioma increased at ages over 70. In New Zealand, there has been no consistent increase in incidence rates of primary brain cancers. An increase in glioma at ages over 70 is likely to be due to improvements in diagnosis. As with any such studies, a small effect, or one with a latent period of more than 10 to 15 years, cannot be excluded. © 2015 Public Health Association of Australia.

  19. Performance analysis of successive over relaxation method for solving glioma growth model

    NASA Astrophysics Data System (ADS)

    Hussain, Abida; Faye, Ibrahima; Muthuvalu, Mohana Sundaram

    2016-11-01

    Brain tumor is one of the prevalent cancers in the world that lead to death. In light of the present information of the properties of gliomas, mathematical models have been developed by scientists to quantify the proliferation and invasion dynamics of glioma. In this study, one-dimensional glioma growth model is considered, and finite difference method is used to discretize the problem. Then, two stationary methods, namely Gauss-Seidel (GS) and Successive Over Relaxation (SOR) are used to solve the governing algebraic system. The performance of the methods are evaluated in terms of number of iteration and computational time. On the basis of performance analysis, SOR method is shown to be more superior compared to GS method.

  20. Biodistribution and Subcellular Localization of an Unnatural Boron-Containing Amino Acid (Cis-ABCPC) by Imaging Secondary Ion Mass Spectrometry for Neutron Capture Therapy of Melanomas and Gliomas

    PubMed Central

    Chandra, Subhash; Barth, Rolf F.; Haider, Syed A.; Yang, Weilian; Huo, Tianyao; Shaikh, Aarif L.; Kabalka, George W.

    2013-01-01

    The development of new boron-delivery agents is a high priority for improving the effectiveness of boron neutron capture therapy. In the present study, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC) as a mixture of its L- and D- enantiomers was evaluated in vivo using the B16 melanoma model for the human tumor and the F98 rat glioma as a model for human gliomas. A secondary ion mass spectrometry (SIMS) based imaging instrument, CAMECA IMS 3F SIMS Ion Microscope, was used for quantitative imaging of boron at 500 nm spatial resolution. Both in vivo and in vitro studies in melanoma models demonstrated that boron was localized in the cytoplasm and nuclei with some cell-to-cell variability. Uptake of cis-ABCPC in B16 cells was time dependent with a 7.5:1 partitioning ratio of boron between cell nuclei and the nutrient medium after 4 hrs. incubation. Furthermore, cis-ABCPC delivered boron to cells in all phases of the cell cycle, including S-phase. In vivo SIMS studies using the F98 rat glioma model revealed an 8:1 boron partitioning ratio between the main tumor mass and normal brain tissue with a 5:1 ratio between infiltrating tumor cells and contiguous normal brain. Since cis-ABCPC is water soluble and can cross the blood-brain-barrier via the L-type amino acid transporters (LAT), it may accumulate preferentially in infiltrating tumor cells in normal brain due to up-regulation of LAT in high grade gliomas. Once trapped inside the tumor cell, cis-ABCPC cannot be metabolized and remains either in a free pool or bound to cell matrix components. The significant improvement in boron uptake by both the main tumor mass and infiltrating tumor cells compared to those reported in animal and clinical studies of p-boronophenylalanine strongly suggest that cis-ABCPC has the potential to become a novel new boron delivery agent for neutron capture therapy of gliomas and melanomas. PMID:24058680

  1. Clinical Neuropathology practice news 2-2014: ATRX, a new candidate biomarker in gliomas.

    PubMed

    Haberler, Christine; Wöhrer, Adelheid

    2014-01-01

    Genome-wide molecular approaches have substantially elucidated molecular alterations and pathways involved in the oncogenesis of brain tumors. In gliomas, several molecular biomarkers including IDH mutation, 1p/19q co-deletion, and MGMT promotor methylation status have been introduced into neuropathological practice. Recently, mutations of the ATRX gene have been found in various subtypes and grades of gliomas and were shown to refine the prognosis of malignant gliomas in combination with IDH and 1p/19q status. Mutations of ATRX are associated with loss of nuclear ATRX protein expression, detectable by a commercially available antibody, thus turning ATRX into a promising prognostic candidate biomarker in the routine neuropathological setting.

  2. The top cited articles on glioma stem cells in Web of Science.

    PubMed

    Yi, Fuxin; Ma, Jun; Ni, Weimin; Chang, Rui; Liu, Wenda; Han, Xiubin; Pan, Dongxiao; Liu, Xingbo; Qiu, Jianwu

    2013-05-25

    Glioma is the most common intracranial tumor and has a poor patient prognosis. The presence of brain tumor stem cells was gradually being understood and recognized, which might be beneficial for the treatment of glioma. To use bibliometric indexes to track study focuses on glioma stem cell, and to investigate the relationships among geographic origin, impact factors, and highly cited articles indexed in Web of Science. A list of citation classics for glioma stem cells was generated by searching the database of Web of Science-Expanded using the terms "glioma stem cell" or "glioma, stem cell" or "brain tumor stem cell". The top 63 cited research articles which were cited more than 100 times were retrieved by reading the abstract or full text if needed. Each eligible article was reviewed for basic information on subject categories, country of origin, journals, authors, and source of journals. Inclusive criteria: (1) articles in the field of glioma stem cells which was cited more than 100 times; (2) fundamental research on humans or animals, clinical trials and case reports; (3) research article; (4) year of publication: 1899-2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles needing to be manually searched or accessed only by telephone; (2) unpublished articles; and (3) reviews, conference proceedings, as well as corrected papers. Of 2 040 articles published, the 63 top-cited articles were published between 1992 and 2010. The number of citations ranged from 100 to 1 754, with a mean of 280 citations per article. These citation classics came from nineteen countries, of which 46 articles came from the United States. Duke University and University of California, San Francisco led the list of classics with seven papers each. The 63 top-cited articles were published in 28 journals, predominantly Cancer Research and Cancer Cell, followed by Cell Stem Cell and Nature. Our bibliometric analysis provides a historical perspective

  3. Involvement of estrogen receptor β5 in the progression of glioma.

    PubMed

    Li, Wenjun; Winters, Ali; Poteet, Ethan; Ryou, Myoung-Gwi; Lin, Song; Hao, Shuyu; Wu, Zhen; Yuan, Fang; Hatanpaa, Kimmo J; Simpkins, James W; Yang, Shao-Hua

    2013-03-29

    Emerging evidence suggests a decline of ERβ expression in various peripheral cancers. ERβ has been proposed as a cancer brake that inhibits tumor proliferation. In the current study, we have identified ERβ5 as the predominant isoform of ERβ in human glioma and its expression was significantly increased in human glioma as compared with non-neoplastic brain tissue. Hypoxia and activation of hypoxia inducible factor (HIF) increased ERβ transcription in U87 cells, suggesting elevated ERβ expression in glioma might be induced by the hypoxic stress in the tumor. Over-expression of either ERβ1 or ERβ5 increased PTEN expression and inhibited activation of the PI3K/AKT/mTOR pathway. In addition, ERβ5 inhibited the MAPK/ERK pathway. In U87 cells, ERβ1 and ERβ5 inhibit cell proliferation and reduced cells in the S+G2/M phase. Our findings suggest hypoxia induced ERβ5 expression in glioma as a self-protective mechanism against tumor proliferation and that ERβ5 might serve as a therapeutic target for the treatment of glioma. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas

    PubMed Central

    Miyatake, Shin-Ichi; Kawabata, Shinji; Nonoguchi, Naosuke; Yokoyama, Kunio; Kuroiwa, Toshihiko; Matsui, Hideki; Ono, Koji

    2009-01-01

    Pseudoprogression has been recognized and widely accepted in the treatment of malignant gliomas, as transient increases in the volume of the enhanced area just after chemoradiotherapy, especially using temozolomide. We experienced a similar phenomenon in the treatment of malignant gliomas and meningiomas using boron neutron capture therapy (BNCT), a cell-selective form of particle radiation. Here, we introduce representative cases and analyze the pathogenesis. Fifty-two cases of malignant glioma and 13 cases of malignant meningioma who were treated by BNCT were reviewed retrospectively mainly via MR images. Eleven of 52 malignant gliomas and 3 of 13 malignant meningiomas showed transient increases of enhanced volume in MR images within 3 months after BNCT. Among these cases, five patients with glioma underwent surgery because of suspicion of relapse. In histology, most of the specimens showed necrosis with small amounts of residual tumor cells. Ki-67 labeling showed decreased positivity compared with previous samples from the individuals. Fluoride-labeled boronophenylalanine PET was applied in four and two cases of malignant gliomas and meningiomas, respectively, at the time of transient increase of lesions. These PET scans showed decreased lesion:normal brain ratios in all cases compared with scans obtained prior to BNCT. With or without surgery, all lesions were decreased or stable in size during observation. Transient increases in enhanced volume in malignant gliomas and meningiomas immediately after BNCT seemed to be pseudoprogression. This pathogenesis was considered as treatment-related intratumoral necrosis in the subacute phase after BNCT. PMID:19289492

  5. Hormones and immunity in cancer: are thyroid hormones endocrine players in the microglia/glioma cross-talk?

    PubMed Central

    Perrotta, Cristiana; De Palma, Clara; Clementi, Emilio; Cervia, Davide

    2015-01-01

    Accumulating evidence indicates that the endocrine and immune systems engage in complex cross-talks in which a prominent role is played by thyroid hormones (THs). The increase of resident vs. monocyte recruited macrophages was shown to be an important effector of the TH 3,3′,5′-Triiodo-L-thyronine (T3)-induced protection against inflammation and a key role of T3 in inhibiting the differentiation of peripheral monocytes into macrophages was observed. Herein, we report on the role of T3 as a modulator of microglia, the specialized macrophages of the central nervous system (CNS). Mounting evidence supports a role of microglia and macrophages in the growth and invasion of malignant glioma. In this respect, we unveil the putative involvement of T3 in the microglia/glioma cell communication. Since THs are known to cross the blood-brain barrier, we suggest that T3 not only exerts a direct modulation of brain cancer cell itself but also indirectly promotes glioma growth through a modulation of microglia. Our observations expand available information on the role of TH system in glioma and its microenvironment and highlight the endocrine modulation of microglia as an important target for future therapeutic development of glioma treatments. PMID:26157361

  6. Glioma CpG island methylator phenotype (G-CIMP): biological and clinical implications.

    PubMed

    Malta, Tathiane M; de Souza, Camila F; Sabedot, Thais S; Silva, Tiago C; Mosella, Maritza S; Kalkanis, Steven N; Snyder, James; Castro, Ana Valeria B; Noushmehr, Houtan

    2018-04-09

    Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties. Despite advances in surgical techniques and clinical regimens, treatment of high-grade glioma remains challenging and carries dismal rates of therapeutic success and overall survival. Challenges include the molecular complexity of gliomas, as well as inconsistencies in histopathological grading, resulting in an inaccurate prediction of disease progression and failure in the use of standard therapy. The updated 2016 World Health Organization (WHO) classification of tumors of the central nervous system reflects a refinement of tumor diagnostics by integrating the genotypic and phenotypic features, thereby narrowing the defined subgroups. The new classification recommends molecular diagnosis of isocitrate dehydrogenase (IDH) mutational status in gliomas. IDH-mutant gliomas manifest the cytosine-phosphate-guanine (CpG) island methylator phenotype (G-CIMP). Notably, the recent identification of clinically relevant subsets of G-CIMP tumors (G-CIMP-high and G-CIMP-low) provides a further refinement in glioma classification that is independent of grade and histology. This scheme may be useful for predicting patient outcome and may be translated into effective therapeutic strategies tailored to each patient. In this review, we highlight the evolution of our understanding of the G-CIMP subsets and how recent advances in characterizing the genome and epigenome of gliomas may influence future basic and translational research.

  7. Retinoids in the treatment of glioma: a new perspective.

    PubMed

    Mawson, Anthony R

    2012-01-01

    Primary brain tumors are among the top ten causes of cancer-related deaths in the US. Malignant gliomas account for approximately 70% of the 22,500 new cases of malignant primary brain tumors diagnosed in adults each year and are associated with high morbidity and mortality. Despite optimal treatment, the prognosis for patients with gliomas remains poor. The use of retinoids (vitamin A and its congeners) in the treatment of certain tumors was originally based on the assumption that these conditions were associated with an underlying deficiency of vitamin A and that supplementation with pharmacological doses would correct the deficiency. Yet the results of retinoid treatment have been only modestly beneficial and usually short-lived. Studies also indicate that vitamin A excess and supplementation have pro-oxidant effects and are associated with increased risks of mortality from cancer and other diseases. The therapeutic role of vitamin A in cancer thus remains uncertain and a new perspective on the facts is needed. The modest and temporary benefits of retinoid treatment could result from a process of feedback inhibition, whereby exogenous retinoid temporarily inhibits the endogenous synthesis of these compounds. In fact, repeated and/or excessive exposure of the tissues to endogenous retinoic acid may contribute to carcinogenesis. Gliomas, in particular, may result from an imbalance in retinoid receptor expression initiated by environmental factors that increase the endogenous production of retinoic acid in glia. At the receptor level, it is proposed that this imbalance is characterized by excessive expression of retinoic acid receptor-α (RARα) and reduced expression of retinoic acid receptor-β (RARβ). This suggests a potential new treatment strategy for gliomas, possibly even at a late stage of the disease, ie, to combine the use of a RARα antagonist and a RARβ agonist. According to this hypothesis, the RARα antagonist would be expected to inhibit RAR

  8. Where are we now? And where are we going? A report from the Accelerate Brain Cancer Cure (ABC2) Low-grade Glioma Research Workshop

    PubMed Central

    Huse, Jason T.; Wallace, Max; Aldape, Kenneth D.; Berger, Mitchel S.; Bettegowda, Chetan; Brat, Daniel J.; Cahill, Daniel P.; Cloughesy, Timothy; Haas-Kogan, Daphne A.; Marra, Marco; Miller, C. Ryan; Nelson, Sarah J.; Salama, Sofie R.; Soffietti, Riccardo; Wen, Patrick Y.; Yip, Stephen; Yen, Katharine; Costello, Joseph F.; Chang, Susan

    2014-01-01

    Diffuse gliomas consist of both low- and high-grade varieties, each with distinct morphological and biological features. The often extended periods of relative indolence exhibited by low-grade gliomas (LGG; WHO grade II) differ sharply from the aggressive, rapidly fatal clinical course of primary glioblastoma (GBM; WHO grade IV). Nevertheless, until recently, the molecular foundations underlying this stark biological contrast between glioma variants remained largely unknown. The discoveries of distinctive and highly recurrent genomic and epigenomic abnormalities in LGG have both informed a more accurate classification scheme and pointed to viable avenues for therapeutic development. As such, the field of neuro-oncology now seems poised to capitalize on these gains to achieve significant benefit for LGG patients. This report will briefly recount the proceedings of a workshop held in January 2013 and hosted by Accelerate Brain Cancer Cure (ABC2) on the subject of LGG. While much of the meeting covered recent insights into LGG biology, its focus remained on how best to advance the clinical management, whether by improved preclinical modeling, more effective targeted therapeutics and clinical trial design, or innovative imaging technology. PMID:24305708

  9. Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire

    PubMed Central

    Sims, Jennifer S.; Grinshpun, Boris; Feng, Yaping; Ung, Timothy H.; Neira, Justin A.; Samanamud, Jorge L.; Canoll, Peter; Shen, Yufeng; Sims, Peter A.; Bruce, Jeffrey N.

    2016-01-01

    Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and β-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a “signature” set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy. PMID:27261081

  10. Downregulation of Pygopus 2 inhibits vascular mimicry in glioma U251 cells by suppressing the canonical Wnt signaling pathway

    PubMed Central

    WANG, HAIDONG; FU, JIANHUA; XU, DIANSHUANG; XU, WEIWEI; WANG, SHIYONG; ZHANG, LIU; XIANG, YONGSHENG

    2016-01-01

    Gliomas are the most common type of malignant primary brain tumor, and the Wnt signaling pathway is associated with glioma malignancy. Pygopus protein plays an important role in developmental brain patterning, and has been identified to be a component of the Wnt signaling pathway. In the present study, the Pygopus 2 (Pygo2) protein was examined in 80 glioma tissue samples. Short hairpin (sh)RNA-Pygo2 was transfected into glioma U251 cells, and the cell proliferation, colony formation and bromodeoxyuridine (BrdU) incorporation were analyzed. Western blot analysis and reverse transcription-polymerase chain reaction were used to detect the expression of Pygo2. A vascular mimicry assay was performed to examine the vascular mimicry of U251 cells. A luciferase reporter assay was used to detect the β-catenin/Wnt system. The cyclin D1 protein was also detected using western blot analysis. The results demonstrated that inhibition of the expression of Pygo2 significantly triggered the decrease of cell proliferation, colony formation and BrdU incorporation compared with the cells treated with scramble control shRNA (shRNA-Scr). shRNA-Pygo2 transfection was found to inhibit vascular-mimicry and block the Wnt signaling pathway compared to the cells transfected with shRNA-Scr. The transfection of shRNA-Pygo2 also decreased the expression of the Wnt target gene cyclin D1. In conclusion, shRNA-Pygo2 suppressed glioma cell proliferation effectively and inhibited vascular mimicry by inhibiting the expression of cyclin D1 in the canonical Wnt/β-catenin pathway in brain glioma cells. PMID:26870266

  11. Epidemiology of primary brain tumors: current concepts and review of the literature.

    PubMed Central

    Wrensch, Margaret; Minn, Yuriko; Chew, Terri; Bondy, Melissa; Berger, Mitchel S.

    2002-01-01

    The purpose of this review is to provide a sufficiently detailed perspective on epidemiologic studies of primary brain tumors to encourage multidisciplinary etiologic and prognostic studies among surgeons, neuro-oncologists, epidemiologists, and molecular scientists. Molecular tumor markers that predict survival and treatment response are being identified with hope of even greater gains in this area from emerging array technologies. Regarding risk factors, studies of inherited susceptibility and constitutive polymorphisms in genes pertinent to carcinogenesis (for example, DNA repair and detoxification genes and mutagen sensitivity) have revealed provocative findings. Inverse associations of the history of allergies with glioma risk observed in 3 large studies and reports of inverse associations of glioma with common infections suggest a possible role of immune factors in glioma genesis or progression. Studies continue to suggest that brain tumors might result from workplace, dietary, and other personal and residential exposures, but studies of cell phone use and power frequency electromagnetic fields have found little to support a causal connection with brain tumors; caveats remain. The only proven causes of brain tumors (that is, rare hereditary syndromes, therapeutic radiation, and immune suppression giving rise to brain lymphomas) account for a small proportion of cases. Progress in understanding primary brain tumors might result from studies of well-defined histologic and molecular tumor types incorporating assessment of potentially relevant information on subject susceptibility and environmental and noninherited endogenous factors (viruses, radiation, and carcinogenic or protective chemical exposures through diet, workplace, oxidative metabolism, or other sources). Such studies will require the cooperation of researchers from many disciplines. PMID:12356358

  12. Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas.

    PubMed

    Badie, Behnam; Bartley, Becky; Schartner, Jill

    2002-12-01

    To assess the immune function of microglia and macrophages in brain tumors, the expression of MHC class II and B7 costimulatory molecules in three rodent glioma models was examined. Microglia and macrophages, which accounted for 5-12% of total cells, expressed B7.1 and MHC class II molecules in the C6 and 9L tumors, but not RG2 gliomas. Interestingly, the expression of B7.1 and MHC class II molecules by microglia and macrophage was associated with an increase in the number of tumor-infiltrating lymphocytes in C6 and 9L tumors. B7.2 expression, which was present at low levels on microglia and macrophages in normal brain, did not significantly change in tumors. Interestingly, the expression of all three surface antigens increased after microglia were isolated from intracranial C6 tumors and cultured for a short period of time. We conclude that microglia immune activity may be suppressed in gliomas and directly correlates to the immunogenecity of experimental brain tumors.

  13. Hypofractionated conformal irradiation of patients with malignant glioma.

    PubMed

    Aboziada, Mohamed A; Abo-Kresha, Ahmed E

    2012-09-01

    The aim of the study is to evaluate the effect of a conformal irradiation in short fractionation scheme of 49.5Gy in 15 fractions in an overall time of 3 weeks, in terms of overall survival (OAS) and progression free survival (PFS) rates in brain glioma patients. A prospective study was conducted on 54 brain glioma patients and was carried out in the Radiation Oncology Department, South Egypt Cancer Institute, Assiut University during the period from April 2006 till June 2009. Patients were treated by hypofractionated conformal irradiation (49.5 Gy/15 fractions/3 weeks). The median follow up was 23 months (range: 9-39 months). Two-year OAS and PFS rates were 68% and 60%, respectively. In univariate analysis, age >50 years, poor performance status [Karnofasky score of ≥40-≤70%], poor neuroperformance status of score III, high-grade tumor [glioblastoma multiforme], and biopsy were all associated with statistically significant reduction in OAS and PFS rates. Multivariate analysis, showed that age >50 years and glioblastoma pathology were the only independent prognostic factors that were associated with poor OAS (p=0.003 and p=0.004, respectively), and PFS (p=0.027 and p=0.011, respectively). Hypofractionated conformal radiotherapy was as effective as the conventional radiotherapy, with time sparing for patients, and for radiation oncology centers. Hypofractionated radiotherapy may be considered the radiotherapy regimen of choice in clinical practice for patients with gliomas. Copyright © 2012. Published by Elsevier B.V.

  14. Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy.

    PubMed

    Alizadeh, Darya; Zhang, Leying; Brown, Christine E; Farrukh, Omar; Jensen, Michael C; Badie, Behnam

    2010-07-01

    Stimulation of toll-like receptor-9 by CpG oligodeoxynucleotides (CpG-ODN) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. These studies, however, have used high doses of CpG-ODN, which can induce toxicity in a clinical setting. The goal of this study was to evaluate the antitumor efficacy of multiple low-dose intratumoral CpG-ODN in a glioma model. Mice bearing 4-day-old intracranial GL261 gliomas received a single or multiple (two or four) intratumoral injections of CpG-ODN (3 microg) every 4 days. Tumor growth was measured by bioluminescent imaging, brain histology, and animal survival. Flow cytometry and cytotoxicity assays were used to assess anti-glioma immune response. Two and four intracranial injections of low-dose CpG-ODN, but not a single injection, eradicated gliomas in 70% of mice. Moreover, surviving animals exhibited durable tumor-free remission (> 3 months) and were protected from intracranial rechallenge with GL261 gliomas, showing the capacity for long-term antitumor immunity. Although most inflammatory cells seemed to increase, activated natural killer (NK) cells (i.e., NK(+)CD107a(+)) were more frequent than CD8(+)CD107a(+) in the brains of rechallenged CpG-ODN-treated animals and showed a stronger in vitro cytotoxicity against GL261 target cells. Leukocyte depletion studies confirmed that NK cells played an important role in the initial CpG-ODN antitumor response, but both CD8 and NK cells were equally important in long-term immunity against gliomas. These findings suggest that multiple low-dose intratumoral injections of CpG-ODN can eradicate intracranial gliomas possibly through mechanisms involving NK-mediated effector function.

  15. NOS2 expression in glioma cell lines and glioma primary cell cultures: correlation with neurosphere generation and SOX-2 expression.

    PubMed

    Palumbo, Paola; Miconi, Gianfranca; Cinque, Benedetta; Lombardi, Francesca; La Torre, Cristina; Dehcordi, Soheila Raysi; Galzio, Renato; Cimini, Annamaria; Giordano, Antonio; Cifone, Maria Grazia

    2017-04-11

    Nitric oxide has been implicated in biology and progression of glioblastoma (GBM) being able to influence the cellular signal depending on the concentration and duration of cell exposure. NOS2 (inducible nitric oxide synthase) have been proposed as a component of molecular profile of several tumors, including glioma, one of the most aggressive primary brain tumor featuring local cancer stem cells responsible for enhanced resistance to therapies and for tumor recurrence. Here, we investigated the NOS2 mRNA expression by reverse transcription-PCR in human glioma primary cultures at several grade of malignancy and glioma stem cell (GSC) derived neurospheres. Glioma cell lines were used as positive controls both in terms of stemness marker expression that of capacity of generating neurospheres. NOS2 expression was detected at basal levels in cell lines and primary cultures and appeared significantly up-regulated in cultures kept in the specific medium for neurospheres. The immunofluorescence analysis of all cell cultures to evaluate the levels of SOX-2, a stemness marker aberrantly up-regulated in GBM, was also performed. The potential correlation between NOS2 expression and ability to generate neurospheres and between NOS2 and SOX-2 levels was also verified. The results show that the higher NOS2 expression is detected in all primary cultures able to arise neurosphere. A high and significant correlation between NOS2 expression and SOX-2 positive cells (%) in all cell cultures maintained in standard conditions has been observed. The results shed light on the potential relevance of NOS2 as a prognostic factor for glioma malignancy and recurrence.

  16. Hypoxia-induced PLOD2 promotes proliferation, migration and invasion via PI3K/Akt signaling in glioma.

    PubMed

    Song, Ye; Zheng, Shihao; Wang, Jizhou; Long, Hao; Fang, Luxiong; Wang, Gang; Li, Zhiyong; Que, Tianshi; Liu, Yi; Li, Yilei; Zhang, Xi'an; Fang, Weiyi; Qi, Songtao

    2017-06-27

    Gliomas are the most common form of malignant primary brain tumors with poor 5-year survival rate. Dysregulation of procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) was observed in gliomas, but the specific role and molecular mechanism of PLOD2 in glioma have not been reported yet. In this study, PLOD2 was found to be frequently up-regulated in glioma and could serve as an independent prognostic marker to identify patients with poor clinical outcome. Knockdown of PLOD2 inhibited proliferation, migration and invasion of glioma cells in vitro and in vivo. Mechanistically, inhibition of PLOD2 inactivated PI3K/AKT signaling pathway and thus regulated the expression of its downstream epithelial-mesenchymal transition (EMT)-associated regulators, including E-cadherin, vimentin, N-cadherin, β-catenin, snail and slug in glioma cells. Moreover, PLOD2 could be induced by hypoxia-inducible factor-1α (HIF-1α) via hypoxia, thereby promoting hypoxia-induced EMT in glioma cells. Our data suggests that PLOD2 may be a potential therapeutic target for patients with glioma.

  17. Methylation of the miR-126 gene associated with glioma progression.

    PubMed

    Cui, Hongwei; Mu, Yongping; Yu, Lei; Xi, Ya-guang; Matthiesen, Rune; Su, Xiulan; Sun, Wenjie

    2016-04-01

    Gliomas are the most common and the most malignant brain tumors, accouting for 45-55% of all intracranial tumors. The incidence of glioma worldwide is about 6-12 per 100,000. Recently, several studies showed that the activation of the oncogenes and the inactivation and/or loss of the tumor suppressor genes, especially for miRNA-21, let-7 and so on, are the most primary molecule event in gliomas. MicroRNAs (miRNAs) are a class of endogenously expressed small noncoding RNAs which are usually 21-23 nucleotides long. miRNAs regulate gene expression and play important roles in a variety of physiological and pathological processes, such as cell proliferation, differentiation and apoptosis. To date, Growing evidence has shown that mi RNAs are frequently dysregulated in human cancers and can act as both tumor suppressors and oncogenes. Along with the discovery of micro RNA, more and more research focusing on its relationship with glioma was carried out to investigate the biological features of glioma and to provide experimental evidence for glioma mechanism. In the present study, we aimed to verify the miRNA-126 down-regulation which showed in the results of glioma tissue miRNAs chip and discuss the miRNA-126 methylation in patients with glioma. A total of 50 samples from patients with glioma and 20 control samples from patients with cerebral trauma were included in this study. The expression levels of the miR-126 gene were detected using quantitative polymerase chain reaction (PCR), and the methylation status of miR-126 was examined using methylation-specific PCR-denaturing high-performance liquid chromatography (MSP-DHPLC). The expression level of miRNA-126 was found to be significantly higher in the control group (0.6134 ± 0.1214) than in the glioma group (0.2771 ± 0.1529; P < 0.05). The expression was also significantly elevated in low-grade gliomas (0.3117 ± 0.1474) compared with high-grade gliomas (0.1582 ± 0.1345; P < 0.05). In addition, increased methylation of

  18. HGG-22. TARGETING NEURONAL ACTIVITY-REGULATED NEUROLIGIN-3 DEPENDENCY FOR HIGH-GRADE GLIOMA THERAPY

    PubMed Central

    Venkatesh, Humsa S; Tam, Lydia T; Woo, Pamelyn J; Monje, Michelle

    2017-01-01

    Abstract Neuronal activity promotes high-grade glioma (HGG) growth. An important mechanism mediating this neural regulation of brain cancer is activity-dependent cleavage and secretion of the synaptic molecule and glioma mitogen neuroligin-3 (Nlgn3), but the therapeutic potential of targeting Nlgn3 in glioma remains to be defined. Here, we demonstrate a striking dependence of HGG growth on microenvironmental Nlgn3 and determine a targetable mechanism of secretion. Patient-derived orthotopic xenografts of pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG) fail to grow in Nlgn3 knockout mice. Using genetic mouse models, we illustrate that Nlgn3 is cleaved from both neurons and oligodendrocyte precursor cells via the ADAM10 sheddase. Administration of an ADAM10 inhibitor robustly blocks pGBM and DIPG xenograft growth via modulation of the tumor microenvironment. This work defines the therapeutic potential of and a promising strategy for targeting Nlgn3 secretion in the glioma microenvironment, which could prove transformative for treatment of HGG.

  19. Insights into molecular therapy of glioma: current challenges and next generation blueprint

    PubMed Central

    Rajesh, Y; Pal, Ipsita; Banik, Payel; Chakraborty, Sandipan; Borkar, Sachin A; Dey, Goutam; Mukherjee, Ahona; Mandal, Mahitosh

    2017-01-01

    Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma. PMID:28317871

  20. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  1. Diffusion kurtosis imaging can efficiently assess the glioma grade and cellular proliferation.

    PubMed

    Jiang, Rifeng; Jiang, Jingjing; Zhao, Lingyun; Zhang, Jiaxuan; Zhang, Shun; Yao, Yihao; Yang, Shiqi; Shi, Jingjing; Shen, Nanxi; Su, Changliang; Zhang, Ju; Zhu, Wenzhen

    2015-12-08

    Conventional diffusion imaging techniques are not sufficiently accurate for evaluating glioma grade and cellular proliferation, which are critical for guiding glioma treatment. Diffusion kurtosis imaging (DKI), an advanced non-Gaussian diffusion imaging technique, has shown potential in grading glioma; however, its applications in this tumor have not been fully elucidated. In this study, DKI and diffusion weighted imaging (DWI) were performed on 74 consecutive patients with histopathologically confirmed glioma. The kurtosis and conventional diffusion metric values of the tumor were semi-automatically obtained. The relationships of these metrics with the glioma grade and Ki-67 expression were evaluated. The diagnostic efficiency of these metrics in grading was further compared. It was demonstrated that compared with the conventional diffusion metrics, the kurtosis metrics were more promising imaging markers in distinguishing high-grade from low-grade gliomas and distinguishing among grade II, III and IV gliomas; the kurtosis metrics also showed great potential in the prediction of Ki-67 expression. To our best knowledge, we are the first to reveal the ability of DKI to assess the cellular proliferation of gliomas, and to employ the semi-automatic method for the accurate measurement of gliomas. These results could have a significant impact on the diagnosis and subsequent therapy of glioma.

  2. OP17MICRORNA PROFILING USING SMALL RNA-SEQ IN PAEDIATRIC LOW GRADE GLIOMAS

    PubMed Central

    Jeyapalan, Jennie N.; Jones, Tania A.; Tatevossian, Ruth G.; Qaddoumi, Ibrahim; Ellison, David W.; Sheer, Denise

    2014-01-01

    INTRODUCTION: MicroRNAs regulate gene expression by targeting mRNAs for translational repression or degradation at the post-transcriptional level. In paediatric low-grade gliomas a few key genetic mutations have been identified, including BRAF fusions, FGFR1 duplications and MYB rearrangements. Our aim in the current study is to profile aberrant microRNA expression in paediatric low-grade gliomas and determine the role of epigenetic changes in the aetiology and behaviour of these tumours. METHOD: MicroRNA profiling of tumour samples (6 pilocytic, 2 diffuse, 2 pilomyxoid astrocytomas) and normal brain controls (4 adult normal brain samples and a primary glial progenitor cell-line) was performed using small RNA sequencing. Bioinformatic analysis included sequence alignment, analysis of the number of reads (CPM, counts per million) and differential expression. RESULTS: Sequence alignment identified 695 microRNAs, whose expression was compared in tumours v. normal brain. PCA and hierarchical clustering showed separate groups for tumours and normal brain. Computational analysis identified approximately 400 differentially expressed microRNAs in the tumours compared to matched location controls. Our findings will then be validated and integrated with extensive genetic and epigenetic information we have previously obtained for the full tumour cohort. CONCLUSION: We have identified microRNAs that are differentially expressed in paediatric low-grade gliomas. As microRNAs are known to target genes involved in the initiation and progression of cancer, they provide critical information on tumour pathogenesis and are an important class of biomarkers.

  3. Complementary therapy use and quality of life in persons with high-grade gliomas.

    PubMed

    Fox, Sherry; Laws, Edward R; Anderson, Frederick; Farace, Elana

    2006-08-01

    Studies have indicated that 30%-80% of cancer patients use complementary and alternative practices and products (CAPPs), but little is known about CAPPs use by persons with brain tumors. This secondary analysis of Glioma Outcomes Project data compared CAPPs users with nonusers, compared those who stopped using CAPPs with those who continued use, described frequency and patterns of CAPPs use, and compared the relationship of CAPPs use to self-reported quality of life (QOL) over time, in 186 persons with high-grade gliomas. CAPPs users at all three measurement points rated QOL higher, although not significantly higher, than nonusers. Study findings support further exploration of CAPPs use and its effects on key outcomes in persons with high-grade gliomas.

  4. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study.

    PubMed

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-07-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity.

  5. MicroRNA-105 inhibits human glioma cell malignancy by directly targeting SUZ12.

    PubMed

    Zhang, Jie; Wu, Weining; Xu, Shuo; Zhang, Jian; Zhang, Jiale; Yu, Qun; Jiao, Yuanyuan; Wang, Yingyi; Lu, Ailin; You, Yongping; Zhang, Junxia; Lu, Xiaoming

    2017-06-01

    Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. MicroRNAs are a class of small noncoding RNAs that function as regulators of gene expression. Accumulating evidence shows that microRNAs are associated with tumorigenesis and tumor progression. In this study, we found that miR-105 is significantly downregulated in glioma tissues and glioma cell lines. We identified suppressor of Zeste 12 homolog as a novel direct target of miR-105 and showed that suppressor of Zeste 12 homolog protein levels were inversely correlated with the levels of miR-105 expression in clinical specimens. Overexpression of miR-105 inhibited cell proliferation, tumorigenesis, migration, invasion, and drug sensitivity, whereas overexpression of suppressor of Zeste 12 homolog antagonized the tumor-suppressive functions of miR-105. Taken together, our results indicate that miR-105 plays a significant role in tumor behavior and malignant progression, which may provide a novel therapeutic strategy for the treatment of glioma and other cancers.

  6. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    PubMed

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  7. Meta-analysis of diffusion metrics for the prediction of tumor grade in gliomas.

    PubMed

    Miloushev, V Z; Chow, D S; Filippi, C G

    2015-02-01

    Diffusion tensor metrics are potential in vivo quantitative neuroimaging biomarkers for the characterization of brain tumor subtype. This meta-analysis analyzes the ability of mean diffusivity and fractional anisotropy to distinguish low-grade from high-grade gliomas in the identifiable tumor core and the region of peripheral edema. A meta-analysis of articles with mean diffusivity and fractional anisotropy data for World Health Organization low-grade (I, II) and high-grade (III, IV) gliomas, between 2000 and 2013, was performed. Pooled data were analyzed by using the odds ratio and mean difference. Receiver operating characteristic analysis was performed for patient-level data. The minimum mean diffusivity of high-grade gliomas was decreased compared with low-grade gliomas. High-grade gliomas had decreased average mean diffusivity values compared with low-grade gliomas in the tumor core and increased average mean diffusivity values in the peripheral region. High-grade gliomas had increased FA values compared with low-grade gliomas in the tumor core, decreased values in the peripheral region, and a decreased fractional anisotropy difference between the tumor core and peripheral region. The minimum mean diffusivity differs significantly with respect to the World Health Organization grade of gliomas. Statistically significant effects of tumor grade on average mean diffusivity and fractional anisotropy were observed, supporting the concept that high-grade tumors are more destructive and infiltrative than low-grade tumors. Considerable heterogeneity within the literature may be due to systematic factors in addition to underlying lesion heterogeneity. © 2015 by American Journal of Neuroradiology.

  8. Long non-coding RNA SNHG6 promotes glioma tumorigenesis by sponging miR-101-3p.

    PubMed

    Meng, Qiang; Yang, Bao-Ying; Liu, Bei; Yang, Ji-Xue; Sun, Yang

    2018-05-01

    Glioma is the most common primary brain tumor. The small nucleolar RNA host gene (SNHG) SNHG6 is a potential oncogene in the development of several types of cancers. In this study, we investigated the functional role of long non-coding RNA (lncRNA) SNHG6 in the malignancy of glioma in cell lines and transplanted nude mice. We found that the expression of lncRNA SNHG6 was higher in glioma tissues and cells than in normal brain tissues and cells. The expression of lncRNA SNHG6 was positively correlated with the malignancy and poor prognosis of glioma patients. microRNA (miR)-101-3p expression was decreased in glioma tissues and cells and was negatively correlated with the malignancy and poor prognosis of glioma patients. In glioma tissues, the expression of lncRNA SNHG6 was negatively correlated with the expression of miR-101-3p. SNHG6 contained a binding site of miR-101-3p. Knockdown of SNHG6 expression resulted in a significant increase of miR-101-3p expression. miR-101-3p mimic markedly decreased the luciferase activity of SNHG6. Knockdown of SNHG6 inhibited glioma cell proliferation, migration, and epithelial-mesenchymal transition (EMT), and increased apoptosis. miR-101-3p mimic enhanced knockdown of SNHG6-induced inhibition of cell proliferation, migration, and EMT, and an increase of apoptosis. Anti-miR-101-3p reversed the the effects of si-SNHG6 on cell malignancy. Knockdown of SNHG6 remarkably reduced the increase of tumor volumes in xenograft mouse models. In tumor tissues, knockdown of SNHG6 increased the expression of miR-101-3p and reduced EMT biomarker expression. Our study provides novel insights into the functions of lncRNA SNHG6/miR-101-3p axis in the tumorigenesis of glioma.

  9. Perspectives in Intraoperative Diagnostics of Human Gliomas

    PubMed Central

    Tyurikova, O.; Dembitskaya, Y.; Yashin, K.; Mishchenko, M.; Vedunova, M.; Medyanik, I.; Kazantsev, V.

    2015-01-01

    Amongst large a variety of oncological diseases, malignant gliomas represent one of the most severe types of tumors. They are also the most common type of the brain tumors and account for over half of the astrocytic tumors. According to different sources, the average life expectancy of patients with various glioblastomas varies between 10 and 12 months and that of patients with anaplastic astrocytic tumors between 20 and 24 months. Therefore, studies of the physiology of transformed glial cells are critical for the development of treatment methods. Modern medical approaches offer complex procedures, including the microsurgical tumor removal, radiotherapy, and chemotherapy, supplemented with photodynamic therapy and immunotherapy. The most radical of them is surgical resection, which allows removing the largest part of the tumor, reduces the intracranial hypertension, and minimizes the degree of neurological deficit. However, complete removal of the tumor remains impossible. The main limitations are insufficient visualization of glioma boundaries, due to its infiltrative growth, and the necessity to preserve healthy tissue. This review is devoted to the description of advantages and disadvantages of modern intraoperative diagnostics of human gliomas and highlights potential perspectives for development of their treatment. PMID:26543495

  10. Single vs. combination immunotherapeutic strategies for glioma

    PubMed Central

    Chandran, Mayuri; Candolfi, Marianela; Shah, Diana; Mineharu, Yohei; Yadav, Vivek; Koschmann, Carl; Asad, Antonela S.; Lowenstein, Pedro R.; Castro, Maria G.

    2017-01-01

    Introduction Malignant gliomas are highly invasive tumors, associated with a dismal survival rate despite standard of care, which includes surgical resection, radiotherapy and chemotherapy with temozolomide (TMZ). Precision immunotherapies or combinations of immunotherapies that target unique tumor-specific featuresmay substantially improve upon existing treatments. Areas covered Clinical trials of single immunotherapies have shown therapeutic potential in high-grade glioma patients, and emerging preclinical studies indicate that combinations of immunotherapies may be more effective than monotherapies. In this review we discuss emerging combinations of immunotherapies and compare efficacy of single vs. combined therapies tested in preclinical brain tumor models. Expert opinion Malignant gliomas are characterized by a number of factors which may limit the success of single immunotherapies including inter-tumor and intra-tumor heterogeneity, intrinsic resistance to traditional therapies, immunosuppression, and immune selection for tumor cells with low antigenicity. Combination of therapies which target multiple aspects of tumor physiology are likely to be more effective than single therapies. While we describe a limited number of combination immunotherapies which are currently being tested in preclinical and clinical studies, the field is expanding at an astounding rate, and endless combinations remain open for exploration. PMID:28286975

  11. Upregulation of Long Noncoding RNA Small Nucleolar RNA Host Gene 18 Promotes Radioresistance of Glioma by Repressing Semaphorin 5A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Rong; Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian; Yao, Qiwei

    Purpose: Although increasing evidence has shown that long noncoding RNAs play an important regulatory role in carcinogenesis and tumor progression, little is known about the role of small nucleolar RNA host gene 18 (SNHG18) in cancer. The goal of this study was to investigate the expression of SNHG18 and its clinical significance in glioma. Methods and Materials: Differences in the lncRNA expression profile between M059K and M059J cells were assessed by lncRNA expression microarray analysis. The expression and localization of SNHG18 in glioma cells or tissues was evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH),more » respectively. the clinical associations of SNHG18 in glioma was evaluated by qRT-PCR, ISH and immunohistochemistry. The role of SNHG18 in glioma radiosensitivity was evaluated by colony formation assays, immunofluorescence, Western blot and tumor growth inhibition study. Results: The present study investigated the clinical associations of SNHG18 and its role in glioma. Our results showed that the expression of SNHG18 was remarkably upregulated in clinical glioma tissues compared with normal brain tissues. SNHG18 expression was associated with the clinical tumor grade and correlated negatively with isocitrate dehydrogenase 1 mutation. In addition, knockdown of SNHG18 with short hairpin RNA suppressed the radioresistance of glioma cells, and transgenic expression of SNHG18 had the opposite effect. Furthermore, xenograft tumors grown from cells with SNHG18 deletion were more radiosensitive than tumors grown from control cells. Further studies revealed that SNHG18 promotes radioresistance by inhibiting semaphorin 5A and that inhibition of semaphorin 5A expression abrogated the radiosensitizing effect caused by SNHG18 deletion. Conclusions: Our findings provide new insights into the role of SNHG18 in glioma and suggest its potential as a target for glioma therapy.« less

  12. Pleiotrophin promotes vascular abnormalization in gliomas and correlates with poor survival in patients with astrocytomas.

    PubMed

    Zhang, Lei; Kundu, Soumi; Feenstra, Tjerk; Li, Xiujuan; Jin, Chuan; Laaniste, Liisi; El Hassan, Tamador Elsir Abu; Ohlin, K Elisabet; Yu, Di; Olofsson, Tommie; Olsson, Anna-Karin; Pontén, Fredrik; Magnusson, Peetra U; Nilsson, Karin Forsberg; Essand, Magnus; Smits, Anja; Dieterich, Lothar C; Dimberg, Anna

    2015-12-08

    Glioblastomas are aggressive astrocytomas characterized by endothelial cell proliferation and abnormal vasculature, which can cause brain edema and increase patient morbidity. We identified the heparin-binding cytokine pleiotrophin as a driver of vascular abnormalization in glioma. Pleiotrophin abundance was greater in high-grade human astrocytomas and correlated with poor survival. Anaplastic lymphoma kinase (ALK), which is a receptor that is activated by pleiotrophin, was present in mural cells associated with abnormal vessels. Orthotopically implanted gliomas formed from GL261 cells that were engineered to produce pleiotrophin showed increased microvessel density and enhanced tumor growth compared with gliomas formed from control GL261 cells. The survival of mice with pleiotrophin-producing gliomas was shorter than that of mice with gliomas that did not produce pleiotrophin. Vessels in pleiotrophin-producing gliomas were poorly perfused and abnormal, a phenotype that was associated with increased deposition of vascular endothelial growth factor (VEGF) in direct proximity to the vasculature. The growth of pleiotrophin-producing GL261 gliomas was inhibited by treatment with the ALK inhibitor crizotinib, the ALK inhibitor ceritinib, or the VEGF receptor inhibitor cediranib, whereas control GL261 tumors did not respond to either inhibitor. Our findings link pleiotrophin abundance in gliomas with survival in humans and mice, and show that pleiotrophin promotes glioma progression through increased VEGF deposition and vascular abnormalization. Copyright © 2015, American Association for the Advancement of Science.

  13. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Christie, Catherine; Huynh, Khoi; Peng, Qian; Uzal, Francisco A.; Krasieva, Tatiana B.; Hirschberg, Henry

    2018-02-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage (MaF98) vaccines can be increased by: (1) photodynamic therapy (PDT) of the priming tumor cells and (2) intracranial injection of allogeneic glioma cells directly into the tumor site. Experiments were conducted in an in vivo brain tumor development model using Fischer rats and F98 (syngeneic) and BT4C (allogeneic) glioma cells. The results showed that immunization with Ma (acting as antigen-presenting cells), primed with PDT-treated tumor cells (MaF98), significantly slowed but did not prevent the growth of F98-induced tumors in the brain. Complete suppression of tumor development was obtained via MaF98 inoculation combined with direct intracranial injection of allogeneic glioma cells. No deleterious effects were noted in any of the animals during the 14-day observation period.

  14. Development of a Hypoxic Radiosensitizer-Prodrug Liposome Delivery DNA Repair Inhibitor Dbait Combination with Radiotherapy for Glioma Therapy.

    PubMed

    Liu, Hongmei; Cai, Yifan; Zhang, Yafei; Xie, Yandong; Qiu, Hui; Hua, Lei; Liu, Xuejiao; Li, Yuling; Lu, Jun; Zhang, Longzhen; Yu, Rutong

    2017-06-01

    Gliomas are highly radioresistant tumors, mainly due to hypoxia in the core region of the gliomas and efficient DNA double-strand break repair. However, the design of a radiosensitizer incorporating the two above mechanisms is difficult and has rarely been reported. Thus, this study develops a hypoxic radiosensitizer-prodrug liposome (MLP) to deliver the DNA repair inhibitor Dbait (MLP/Dbait) to achieve the simultaneous entry of radiosensitizers with two different mechanisms into the glioma. MLP/Dbait effectively sensitizes glioma cells to X-ray radiotherapy (RT). Histological and microscopic examinations of dissected brain tissue confirm that MLP effectively delivers Dbait into the glioma. Furthermore, the combination of MLP/Dbait with RT significantly inhibits growth of the glioma, as assessed by in vivo bioluminescence imaging. These findings suggest that MLP is a promising candidate as a Dbait delivery system to enhance the effect of RT on glioma, owing to the synergistic effects of the two different radiosensitizers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Clinical characteristics associated with the intracranial dissemination of gliomas.

    PubMed

    Cai, Xu; Qin, Jun-Jie; Hao, Shu-Yu; Li, Huan; Zeng, Chun; Sun, Sheng-Jun; Yu, Lan-Bing; Gao, Zhi-Xian; Xie, Jian

    2018-03-01

    Glioma is the most common malignant tumor of the brain and the intracranial dissemination of gliomas is the late stage of the development of the tumor. However, there is little research in literature on the occurrence of intracranial dissemination of gliomas. In order to provide a reference for clinical work, we carried out this study on intracranial dissemination of glioma. A total of 629 patients with gliomas received tumor resection by the same surgeon from August 2010 to September 2015 were included in this study. The authors performed a retrospective review of the patients and the information regarding clinical features, histopathological results, molecular pathologic results and clinical outcomes was collected and analyzed. In this retrospective study, we found that the intracranial dissemination phenomenon occurred in 53 patients (8.43%). We analyzed the clinical characteristics of patients and found that the age at diagnosis (P = 0.011), WHO grade of the tumor (P < 0.001), and involvement of the corpus callosum (P = 0.010) were associated with the occurrence of dissemination. The higher grade of the tumor, the more prone to disseminate. Deletion of 1p/19q had no significant correlation with the intracranial dissemination. MMP9, Ki-67, and EGFR were highly expressed in tumor cells that caused dissemination, and the level of Ki-67 expression had significance in statistics (P < 0.01). In our study, older age (>40 years), high pathological grade, invasion of the corpus callosum and high levels of Ki-67 expression were risk factors associated with the intracranial dissemination of gliomas. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture.

    PubMed

    van Pel, Derek M; Harada, Kaori; Song, Dandan; Naus, Christian C; Sin, Wun Chey

    2018-06-16

    Glioma is a highly aggressive form of brain cancer, with some subtypes having 5-year survival rates of less than 5%. Tumour cell invasion into the surrounding parenchyma seems to be the primary driver of these poor outcomes, as most gliomas recur within 2 cm of the original surgically-resected tumour. Many current approaches to the development of anticancer therapy attempt to target genetic weaknesses in a particular cancer, but may not take into account the microenvironment experienced by a tumour and the patient-specific genetic differences in susceptibility to treatment. Here we demonstrate the use of complementary approaches, 3D bioprinting and scaffold-free 3D tissue culture, to examine the invasion of glioma cells into neural-like tissue with 3D confocal microscopy. We found that, while both approaches were successful, the use of 3D tissue culture for organoid development offers the advantage of broad accessibility. As a proof-of-concept of our approach, we developed a system in which we could model the invasion of human glioma cells into mouse neural progenitor cell-derived spheroids. We show that we can follow invasion of human tumour cells using cell-tracking dyes and 3D laser scanning confocal microscopy, both in real time and in fixed samples. We validated these results using conventional cryosectioning. Our scaffold-free 3D approach has broad applicability, as we were easily able to examine invasion using different neural progenitor cell lines, thus mimicking differences that might be observed in patient brain tissue. These results, once applied to iPSC-derived cerebral organoids that incorporate the somatic genetic variability of patients, offer the promise of truly personalized treatments for brain cancer.

  17. MRI contrast agent for targeting glioma: interleukin-13 labeled liposome encapsulating gadolinium-DTPA.

    PubMed

    Liu, Xiaoli; Madhankumar, Achuthamangalam B; Miller, Patti A; Duck, Kari A; Hafenstein, Susan; Rizk, Elias; Slagle-Webb, Becky; Sheehan, Jonas M; Connor, James R; Yang, Qing X

    2016-05-01

    Detection of glioma with MRI contrast agent is limited to cases in which the blood-brain barrier (BBB) is compromised as contrast agents cannot cross the BBB. Thus, an early-stage infiltrating tumor is not detectable. Interleukin-13 receptor alpha 2 (IL-13Rα2), which has been shown to be overexpressed in glioma, can be used as a target moiety. We hypothesized that liposomes conjugated with IL-13 and encapsulating MRI contrast agent are capable of passing through an intact BBB and producing MRI contrast with greater sensitivity. The targeted MRI contrast agent was created by encapsulating Magnevist (Gd-DTPA) into liposomes conjugated with IL-13 and characterized by particle size distribution, cytotoxicity, and MRI relaxivity. MR image intensity was evaluated in the brain in normal mice post injection of Gd-DTPA and IL-13-liposome-Gd-DTPA one day apart. The specificity for glioma detection by IL-13-liposome-Gd-DTPA was demonstrated in an intracranial glioma mouse model and validated histologically. The average size of IL-13-liposome-Gd-DTPA was 137 ± 43 nm with relaxivity of 4.0 ± 0.4 L/mmole-s at 7 Tesla. No significant cytotoxicity was observed with MTS assay and serum chemistry in mice. The MRI signal intensity was enhanced up to 15% post injection of IL-13-liposome-Gd-DTPA in normal brain tissue following a similar time course as that for the pituitary gland outside of the BBB. MRI enhanced by IL-13-liposome-Gd-DTPA detected small tumor masses in addition to those seen with Magnevist-enhanced MRI. IL-13-liposome-Gd-DTPA is able to pass through the uncompromised BBB and detect an early stage glioma that cannot be seen with conventional contrast-enhanced MRI. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4.

    PubMed

    Zhang, Zechuan; Gong, Qiaoyun; Li, Meiying; Xu, Jinying; Zheng, Yangyang; Ge, Pengfei; Chi, Guangfan

    2017-10-01

    MicroRNA-124 (miR-124) has been shown to be downregulated in glioma; however, its biological functions in glioma are not yet fully understood. The aim of this study was to examine the Smad4‑dependent effects of miR‑124 on C6 glioma cell proliferation. In this study, the level of miR‑124 was found to be enhanced in C6 cells upon transfection with miR‑124 mimics, and the mechanisms of action of miR‑124 in C6 cells were investigated by reverse transcriptase-quantitative polymerase chain reaction, MTT assay, western blot analysis and luciferase reporter assays in vitro. The results revealed that miR‑124 expression was significantly lower in the C6 cells than in either normal rat brain tissue or astrocytes. Upon the overexpression of miR‑124, the proliferation of the C6 cells decreased and Smad4 expression was significantly suppressed. Smad4 was identified as a direct target of miR‑124 through luciferase reporter assays. Furthermore, miR‑124 was found to modulate signal transducer and activator of transcription 3 (Stat3) by downregulating Smad4 expression. Using small interfering RNA targeting Smad4 mRNA, we also confirmed that miR‑124 downregulated c‑Myc by modulating Smad4 expression. In addition, caspase‑3 expression was induced by miR‑124 overexpression, but not via Smad4 downregulation. On the whole, our results demonstrate that miR‑124 upregulation inhibits the growth of C6 glioma cells by targeting Smad4 directly. These findings may be clinically useful for the development of therapeutic strategies directed toward miR‑124 function in patients with glioma.

  19. Introduction of a standardized multimodality image protocol for navigation-guided surgery of suspected low-grade gliomas.

    PubMed

    Mert, Aygül; Kiesel, Barbara; Wöhrer, Adelheid; Martínez-Moreno, Mauricio; Minchev, Georgi; Furtner, Julia; Knosp, Engelbert; Wolfsberger, Stefan; Widhalm, Georg

    2015-01-01

    OBJECT Surgery of suspected low-grade gliomas (LGGs) poses a special challenge for neurosurgeons due to their diffusely infiltrative growth and histopathological heterogeneity. Consequently, neuronavigation with multimodality imaging data, such as structural and metabolic data, fiber tracking, and 3D brain visualization, has been proposed to optimize surgery. However, currently no standardized protocol has been established for multimodality imaging data in modern glioma surgery. The aim of this study was therefore to define a specific protocol for multimodality imaging and navigation for suspected LGG. METHODS Fifty-one patients who underwent surgery for a diffusely infiltrating glioma with nonsignificant contrast enhancement on MRI and available multimodality imaging data were included. In the first 40 patients with glioma, the authors retrospectively reviewed the imaging data, including structural MRI (contrast-enhanced T1-weighted, T2-weighted, and FLAIR sequences), metabolic images derived from PET, or MR spectroscopy chemical shift imaging, fiber tracking, and 3D brain surface/vessel visualization, to define standardized image settings and specific indications for each imaging modality. The feasibility and surgical relevance of this new protocol was subsequently prospectively investigated during surgery with the assistance of an advanced electromagnetic navigation system in the remaining 11 patients. Furthermore, specific surgical outcome parameters, including the extent of resection, histological analysis of the metabolic hotspot, presence of a new postoperative neurological deficit, and intraoperative accuracy of 3D brain visualization models, were assessed in each of these patients. RESULTS After reviewing these first 40 cases of glioma, the authors defined a specific protocol with standardized image settings and specific indications that allows for optimal and simultaneous visualization of structural and metabolic data, fiber tracking, and 3D brain

  20. ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis.

    PubMed

    Anderson, Joshua C; Grammer, J Robert; Wang, Wenquan; Nabors, L Burton; Henkin, Jack; Stewart, Jerry E; Gladson, Candece L

    2007-03-01

    Anti-angiogenic therapies would be particularly beneficial in the treatment of malignant gliomas. Peptides derived from the second type 1 repeat (TSR) of thrombospondin-1 (TSP-1) have been shown to inhibit angiogenesis in non-glioma tumor models and a modified TSR peptide, ABT-510, has now entered into Phase II clinical trials of its efficacy in non-glioma tumors. As microvascular endothelial cells (MvEC) exhibit heterogeneity, we evaluated the ability of the modified TSR peptide (NAcSarGlyValDallolleThrNvalleArgProNHE, ABT-510) to inhibit malignant glioma growth in vivo and to induce apoptosis of brain microvessel endothelial cells (MvEC) propagated in vitro. We found that daily administration of ABT-510 until euthanasia (days 7 to 19), significantly inhibited the growth of human malignant astrocytoma tumors established in the brain of athymic nude mice. The microvessel density was significantly lower and the number of apoptotic MvEC was significantly higher (3-fold) in the tumors of the ABT-510-treated animals. Similar results were found using a model in which the established tumor is an intracerebral malignant glioma propagated in a syngeneic mouse model. ABT-510 treatment of primary human brain MvEC propagated as a monolayer resulted in induction of apoptosis in a dose- and time-dependent manner through a caspase-8-dependent mechanism. It also inhibited tubular morphogenesis of MvEC propagated in collagen gels in a dose- and caspase-8 dependent manner through a mechanism that requires the TSP-1 receptor (CD36) on the MvEC. These findings indicate that ABT-510 should be evaluated as a therapeutic option for patients with malignant glioma.

  1. Targeting Gliomas: Can a New Alkylating Hybrid Compound Make a Difference?

    PubMed

    Pinheiro, Rui; Braga, Cláudia; Santos, Gisela; Bronze, Maria R; Perry, Maria J; Moreira, Rui; Brites, Dora; Falcão, Ana S

    2017-01-18

    Glioblastoma (GBM) is the most common and aggressive type of brain tumor in adults. The triazene Temozolomide (TMZ), an alkylating drug, is the classical chemotherapeutic agent for gliomas, but has been disappointing against the highly invasive and resistant nature of GBM. Hybrid compounds may open new horizons within this challenge. The multicomponent therapeutic strategy here used resides on a combination of two repurposing drugs acting by different but potentially synergistic mechanisms, improved efficacy, and lower resistance effects. We synthesized a new hybrid compound (HYBCOM) by covalently binding a TMZ analogue to valproic acid, a histone deacetylase inhibitor drug that was shown to sensitize TMZ-resistant glioma cells. Advantages of this new molecule as compared to TMZ, in terms of chemotherapeutic efficacy, were investigated. Our results evidenced that HYBCOM more efficiently decreased the viability and proliferation of the GL261 glioma cells, while showing to better target the tumor cells than the functionally normal astrocytes. Increased cytotoxicity by HYBCOM may be a consequence of the improved autophagic process observed. Additionally, HYBCOM changed the morphology of GL261 cells into a nonpolar, more rounded shape, impairing cell migration ability. Most interesting, and in opposite to TMZ, cells exposed to HYBCOM did not enhance the expression of drug resistance proteins, a major issue in the treatment of GBM. Overall, our studies indicate that HYBCOM has promising chemotherapeutic benefits over the classical TMZ, and future studies should assess if the treatment translates into efficacy in glioblastoma experimental models and reveal clinical benefits in GBM patients.

  2. Combination of photodynamic therapy and temozolomide on glioma in a rat C6 glioma model.

    PubMed

    Zhang, Xiaoming; Guo, Mian; Shen, Lei; Hu, Shaoshan

    2014-12-01

    For glioma, temozolomide (TMZ) is a commonly used chemotherapy drug and photodynamic therapy (PDT) is an important adjuvant therapy. The aim of this study was to evaluate the effect of their combination for the treatment of glioma. A rat C6 glioma model using male Wistar rats (n=180) weighing 280-300 g was established. Glioma-bearing rats (n=100) were treated with mock, hematoporphyrin monomethyl ether (HMME), laser or PDT. The expression of P-glycoprotein (P-gp) in endothelial cells of the blood-tumor-barrier and in glioma tissues was detected using immunohistochemistry and western blot, respectively. Glioma-bearing rats (n=40) were treated with normal saline, TMZ (60 mg/m(2) for five consecutive days), PDT (630 nm for 10 min) or a combination of TMZ and PDT. TMZ concentration in glioma tissues was detected using liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) and cell death was observed using transmission microscopy. Concurrently, another batch of 40 glioma-bearing rats was subjected to the same treatment, and the survival of these rats was estimated using Kaplan-Meier analysis. PDT significantly decreased the expression of P-gp in endothelial cells comprising the blood-tumor-barrier and in glioma tissues. The combination of TMZ with PDT significantly increased TMZ concentration in glioma tissues, enhanced glioma cell apoptosis and prolonged the median survival of glioma-bearing rats. The combination of PDT with TMZ shows synergistic effect in rat C6 glioma model, indicating its potential clinical use in glioma treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading.

    PubMed

    Xie, Tian; Chen, Xiao; Fang, Jingqin; Kang, Houyi; Xue, Wei; Tong, Haipeng; Cao, Peng; Wang, Sumei; Yang, Yizeng; Zhang, Weiguo

    2018-04-01

    Presurgical glioma grading by dynamic contrast-enhanced MRI (DCE-MRI) has unresolved issues. The aim of this study was to investigate the ability of textural features derived from pharmacokinetic model-based or model-free parameter maps of DCE-MRI in discriminating between different grades of gliomas, and their correlation with pathological index. Retrospective. Forty-two adults with brain gliomas. 3.0T, including conventional anatomic sequences and DCE-MRI sequences (variable flip angle T1-weighted imaging and three-dimensional gradient echo volumetric imaging). Regions of interest on the cross-sectional images with maximal tumor lesion. Five commonly used textural features, including Energy, Entropy, Inertia, Correlation, and Inverse Difference Moment (IDM), were generated. All textural features of model-free parameters (initial area under curve [IAUC], maximal signal intensity [Max SI], maximal up-slope [Max Slope]) could effectively differentiate between grade II (n = 15), grade III (n = 13), and grade IV (n = 14) gliomas (P < 0.05). Two textural features, Entropy and IDM, of four DCE-MRI parameters, including Max SI, Max Slope (model-free parameters), vp (Extended Tofts), and vp (Patlak) could differentiate grade III and IV gliomas (P < 0.01) in four measurements. Both Entropy and IDM of Patlak-based K trans and vp could differentiate grade II (n = 15) from III (n = 13) gliomas (P < 0.01) in four measurements. No textural features of any DCE-MRI parameter maps could discriminate between subtypes of grade II and III gliomas (P < 0.05). Both Entropy and IDM of Extended Tofts- and Patlak-based vp showed highest area under curve in discriminating between grade III and IV gliomas. However, intraclass correlation coefficient (ICC) of these features revealed relatively lower inter-observer agreement. No significant correlation was found between microvascular density and textural features, compared with a moderate correlation found

  4. ESI-MS/MS and MALDI-IMS Localization Reveal Alterations in Phosphatidic Acid, Diacylglycerol, and DHA in Glioma Stem Cell Xenografts.

    PubMed

    Wildburger, Norelle C; Wood, Paul L; Gumin, Joy; Lichti, Cheryl F; Emmett, Mark R; Lang, Frederick F; Nilsson, Carol L

    2015-06-05

    Glioblastoma (GBM) is the most common adult primary brain tumor. Despite aggressive multimodal therapy, the survival of patients with GBM remains dismal. However, recent evidence has demonstrated the promise of bone marrow-derived mesenchymal stem cells (BM-hMSCs) as a therapeutic delivery vehicle for anti-glioma agents due to their ability to migrate or home to human gliomas. While several studies have demonstrated the feasibility of harnessing the homing capacity of BM-hMSCs for targeted delivery of cancer therapeutics, it is now also evident, based on clinically relevant glioma stem cell (GSC) models of GBMs, that BM-hMSCs demonstrate variable tropism toward these tumors. In this study, we compared the lipid environment of GSC xenografts that attract BM-hMSCs (N = 9) with those that do not attract (N = 9) to identify lipid modalities that are conducive to homing of BM-hMSC to GBMs. We identified lipids directly from tissue by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) of lipid extracts. Several species of signaling lipids, including phosphatidic acid (PA 36:2, PA 40:5, PA 42:5, and PA 42:7) and diacylglycerol (DAG 34:0, DAG 34:1, DAG 36:1, DAG 38:4, DAG 38:6, and DAG 40:6), were lower in attracting xenografts. Molecular lipid images showed that PA (36:2), DAG (40:6), and docosahexaenoic acid (DHA) were decreased within tumor regions of attracting xenografts. Our results provide the first evidence for lipid signaling pathways and lipid-mediated tumor inflammatory responses in the homing of BM-hMSCs to GSC xenografts. Our studies provide new fundamental knowledge on the molecular correlates of the differential homing capacity of BM-hMSCs toward GSC xenografts.

  5. Intrinsic Astrocyte Heterogeneity Influences Tumor Growth in Glioma Mouse Models.

    PubMed

    Irvin, David M; McNeill, Robert S; Bash, Ryan E; Miller, C Ryan

    2017-01-01

    The influence of cellular origin on glioma pathogenesis remains elusive. We previously showed that mutations inactivating Rb and Pten and activating Kras transform astrocytes and induce tumorigenesis throughout the adult mouse brain. However, it remained unclear whether astrocyte subpopulations were susceptible to these mutations. We therefore used genetic lineage tracing and fate mapping in adult conditional, inducible genetically engineered mice to monitor transformation of glial fibrillary acidic protein (GFAP) and glutamate aspartate transporter (GLAST) astrocytes and immunofluorescence to monitor cellular composition of the tumor microenvironment over time. Because considerable regional heterogeneity exists among astrocytes, we also examined the influence of brain region on tumor growth. GFAP astrocyte transformation induced uniformly rapid, regionally independent tumor growth, but transformation of GLAST astrocytes induced slowly growing tumors with significant regional bias. Transformed GLAST astrocytes had reduced proliferative response in culture and in vivo and malignant progression was delayed in these tumors. Recruited glial cells, including proliferating astrocytes, oligodendrocyte progenitors and microglia, were the majority of GLAST, but not GFAP astrocyte-derived tumors and their abundance dynamically changed over time. These results suggest that intrinsic astrocyte heterogeneity, and perhaps regional brain microenvironment, significantly contributes to glioma pathogenesis. © 2016 International Society of Neuropathology.

  6. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery.

    PubMed

    Guo, Jianwei; Gao, Xiaoling; Su, Lina; Xia, Huimin; Gu, Guangzhi; Pang, Zhiqing; Jiang, Xinguo; Yao, Lei; Chen, Jun; Chen, Hongzhuan

    2011-11-01

    Targeted delivery of therapeutic nanoparticles in a disease-specific manner represents a potentially powerful technology especially when treating infiltrative brain tumors such as gliomas. We developed a nanoparticulate drug delivery system decorated with AS1411 (Ap), a DNA aptamer specifically binding to nucleolin which was highly expressed in the plasma membrane of both cancer cells and endothelial cells in angiogenic blood vessels, as the targeting ligand to facilitate anti-glioma delivery of paclitaxel (PTX). Ap was conjugated to the surface of PEG-PLGA nanoparticles (NP) via an EDC/NHS technique. With the conjugation confirmed by Urea PAGE and XPS, the resulting Ap-PTX-NP was uniformly round with particle size at 156.0 ± 54.8 nm and zeta potential at -32.93 ± 3.1 mV. Ap-nucleolin interaction significantly enhanced cellular association of nanoparticles in C6 glioma cells, and increased the cytotoxicity of its payload. Prolonged circulation and enhanced PTX accumulation at the tumor site was achieved for Ap-PTX-NP, which eventually obtained significantly higher tumor inhibition on mice bearing C6 glioma xenografts and prolonged animal survival on rats bearing intracranial C6 gliomas when compared with PTX-NP and Taxol(®). The results of this contribution demonstrated the potential utility of AS1411-functionalized nanoparticles for a therapeutic application in the treatment of gliomas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Multiple functionalized carbon quantum dots for targeting glioma and tissue imaging

    NASA Astrophysics Data System (ADS)

    Gao, Lipeng; Zhao, Xiao; Wang, Jing; Wang, Yiting; Yu, Lei; Peng, Hui; Zhu, Jianzhong

    2018-01-01

    Carbon quantum dots (CQDs) was successfully functionalized with Mal-PEG-NHS linked RGERPPR. They exhibit double functions of both tissue imaging and targeting to brain gliomas. The mean size of the functionalized CQDs about 9.0 ± 2.0 nm. The maximum absorption wavelength of the functionalized CQDs appear at 230 nm. The peak of the fluorescence spectra for the functionalized CQDs is at 460 nm, red shifted by 20 nm comparing with the unmodified CQDs. This may be due to the increased particle size. The functionalized CQDs were successfully applied to imaging and targeting gliomas.

  8. Treatment of Glioma Using neuroArm Surgical System

    PubMed Central

    2016-01-01

    The use of robotic technology in the surgical treatment of brain tumour promises increased precision and accuracy in the performance of surgery. Robotic manipulators may allow superior access to narrow surgical corridors compared to freehand or conventional neurosurgery. This paper reports values and ranges of tool-tissue interaction forces during the performance of glioma surgery using an MR compatible, image-guided neurosurgical robot called neuroArm. The system, capable of microsurgery and stereotaxy, was used in the surgical resection of glioma in seven cases. neuroArm is equipped with force sensors at the end-effector allowing quantification of tool-tissue interaction forces and transmits force of dissection to the surgeon sited at a remote workstation that includes a haptic interface. Interaction forces between the tool tips and the brain tissue were measured for each procedure, and the peak forces were quantified. Results showed maximum and minimum peak force values of 2.89 N (anaplastic astrocytoma, WHO grade III) and 0.50 N (anaplastic oligodendroglioma, WHO grade III), respectively, with the mean of peak forces varying from case to case, depending on type of the glioma. Mean values of the peak forces varied in range of 1.27 N (anaplastic astrocytoma, WHO grade III) to 1.89 N (glioblastoma with oligodendroglial component, WHO grade IV). In some cases, ANOVA test failed to reject the null hypothesis of equality in means of the peak forces measured. However, we could not find a relationship between forces exerted to the pathological tissue and its size, type, or location. PMID:27314044

  9. 99mTc-MDM Brain SPECT for the Detection of Recurrent/Remnant Glioma-Comparison With ceMRI and 18F-FLT PET Imaging: Initial Results.

    PubMed

    Singh, Baljinder; Kumar, Narendra; Sharma, Sarika; Watts, Ankit; Hazari, Puja P; Rani, Nisha; Vyas, Sameer; Anish, Bhattacharya; Mishra, Anil K

    2015-10-01

    To evaluate the diagnostic use of an indigenously developed single vial ready to label (with Tc) kit preparation of bis-methionine-DTPA (Tc-MDM) for the detection of recurrent/residual glioma. We prospectively studied 32 patients (21 male and 11 female subjects aged 43.0±16.0 years) with clinical suspicion of postoperative recurrent/residual glioma. After radical radiotherapy (54.0-60.0 Gy) with or without concurrent temozolomide as indicated, Tc-MDM SPECT and ceMRI of the brain was performed in all the patients and F-FLT-PET imaging in 16 of 32 patients. MDM SPECT and ceMRI findings were concordant in 28 patients (15 positive and 13 negative). The findings were discordant in the remaining 5 patients, with positive ceMRI and negative MDM-SPECT in 2 patients and negative ceMRI and positive MDM-SPECT in 3 patients. Tc-MDM-SPECT, F-FLT PET, and ceMRI scan findings were positive in 9 of 16 and negative in 5 of 16 patients. In the remaining 2 of 16 patients, both F-FLT-PET and Tc-MDM-SPECT were positive, but ceMRI was negative. Sensitivity, specificity, PPV, NPV, and DA of Tc-MDM-SPECT for diagnosing recurrent/residual glioma were 88.24%, 81.25%, 83.3%, 86.7%, and 84.8%, respectively. The diagnostic accuracy of Tc-bis-methionine (MDM)-SPECT imaging was comparable with that of ceMRI and F-FLT-PET and may be useful in the management of glioma patients in the postsurgical follow-up period. This imaging technique may be of special interest in peripheral hospitals/developing countries lacking access to expensive PET/cyclotron technology. However, comparison with the existing "gold standard" PET tracers, especially with C-11-methionine-PET imaging and histopathological correlation, is warranted in a large cohort of glioma patients through multicentric studies.

  10. Focal brainstem gliomas

    PubMed Central

    Sabbagh, Abdulrahman J.; Alaqeel, Ahmed M.

    2015-01-01

    Improved neuronavigation guidance as well as intraoperative imaging and neurophysiologic monitoring technologies have enhanced the ability of neurosurgeons to resect focal brainstem gliomas. In contrast, diffuse brainstem gliomas are considered to be inoperable lesions. This article is a continuation of an article that discussed brainstem glioma diagnostics, imaging, and classification. Here, we address open surgical treatment of and approaches to focal, dorsally exophytic, and cervicomedullary brainstem gliomas. Intraoperative neuronavigation, intraoperative neurophysiologic monitoring, as well as intraoperative imaging are discussed as adjunctive measures to help render these procedures safer, more acute, and closer to achieving surgical goals. PMID:25864061

  11. Sustained delivery of cytarabine-loaded vesicular phospholipid gels for treatment of xenografted glioma.

    PubMed

    Qi, Na; Cai, Cuifang; Zhang, Wei; Niu, Yantao; Yang, Jingyu; Wang, Lihui; Tian, Bin; Liu, Xiaona; Lin, Xia; Zhang, Yu; Zhang, Yan; He, Haibing; Chen, Kang; Tang, Xing

    2014-09-10

    This study described the development of vesicular phospholipid gels (VPGs) for sustained delivery of cytarabine (Ara-C) for the treatment of xenografted glioma. Ara-C-loaded VPGs in the state of a semisolid phospholipid dispersion looked like numerous vesicles tightly packing together under the freeze-fracture electron microscopy (FF-TEM), their release profiles displayed sustained drug release up to 384 h in vitro. The biodistribution of Ara-C in the rat brain showed that Ara-C-loaded VPGs could maintain therapeutic concentrations up to 5mm distance from the implantation site in brain tissue within 28 days. At the same time, fluorescence micrograph confirmed drug distribution in brain tissue visually. Furthermore, after single administration, Ara-C-loaded VPGs group significantly inhibited the U87-MG glioma growth in right flank in comparison with Ara-C solution (p<0.01). It was explained that the entrapped drug in VPGs could avoid degradation from cytidine deaminase and sustained release of drug from Ara-C-loaded VPGs could maintain the effective therapeutic levels for a long time around the tumor. In conclusion, Ara-C-loaded VPGs, with the properties of sustained release, high penetration capacity, nontoxicity and no shape restriction of the surgical cavity, are promising local delivery systems for post-surgical sustained chemotherapy against glioma. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Metabolic Targeting of Lactate Efflux by Malignant Glioma Inhibits Invasiveness and Induces Necrosis: An In Vivo Study1

    PubMed Central

    Colen, Chaim B; Shen, Yimin; Ghoddoussi, Farhad; Yu, Pingyang; Francis, Todd B; Koch, Brandon J; Monterey, Michael D; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2011-01-01

    Glioblastoma multiforme (GBM) are the most malignant among brain tumors. They are frequently refractory to chemotherapy and radiotherapy with mean patient survival of approximately 6 months, despite surgical intervention. The highly glycolytic nature of glioblastomas describes their propensity to metabolize glucose to lactic acid at an elevated rate. To survive, GBMs efflux lactic acid to the tumor microenvironment through transmembrane transporters denoted monocarboxylate transporters (MCTs). We hypothesized that inhibition of MCT function would impair the glycolytic metabolism and affect both glioma invasiveness and survival. We examined the effect on invasiveness with α-cyano-4-hydroxy-cinnamic acid (ACCA, 4CIN, CHCA), a small-molecule inhibitor of lactate transport, through Matrigel-based and organotypic (brain) slice culture invasive assays using U87-MG and U251-MG glioma cells. We then conducted studies in immunodeficient rats by stereotaxic intracranial implantation of the glioma cells followed by programmed orthotopic application of ACCA through osmotic pumps. Effect on the implanted tumor was monitored by small-animal magnetic resonance imaging. Our assays indicated that glioma invasion was markedly impaired when lactate efflux was inhibited. Convection-enhanced delivery of inhibitor to the tumor bed caused tumor necrosis, with 50% of the animals surviving beyond the experimental end points (3 months after inhibitor exhaustion). Most importantly, control animals did not display any adverse neurologic effects during orthotopic administration of ACCA to brain through programmed delivery. These results indicate the clinical potential of targeting lactate efflux in glioma through delivery of small-molecule inhibitors of MCTs either to the tumor bed or to the postsurgical resection cavity. PMID:21750656

  13. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging

    NASA Astrophysics Data System (ADS)

    Ruan, Shaobo; Qian, Jun; Shen, Shun; Zhu, Jianhua; Jiang, Xinguo; He, Qin; Gao, Huile

    2014-08-01

    Fluorescent carbon dots (CD) possess impressive potential in bioimaging because of their low photobleaching, absence of optical blinking and good biocompatibility. However, their relatively short excitation/emission wavelengths restrict their application in in vivo imaging. In the present study, a kind of CD was prepared by a simple heat treatment method using glycine as the only precursor. The diameter of CD was lower than 5 nm, and the highest emission wavelength was 500 nm. However, at 600 nm, there was still a relatively strong fluorescent emission, suggesting CD could be used for in vivo imaging. Additionally, several experiments demonstrated that CD possessed good serum stability and low cytotoxicity. In vitro, CD could be taken up into C6 glioma cells in a time- and concentration-dependent manner, with both endosomes and mitochondria involved. In vivo, CD could be used for non-invasive glioma imaging because of its high accumulation in the glioma site of the brain, which was demonstrated by both in vivo imaging and ex vivo tissue imaging. Furthermore, the fluorescent distribution in tissue slices also showed CD distributed in glioma with high intensity, while with a low intensity in normal brain tissue. In conclusion, CD were prepared using a simple method with relatively long excitation and emission wavelengths and could be used for non-invasive glioma imaging.Fluorescent carbon dots (CD) possess impressive potential in bioimaging because of their low photobleaching, absence of optical blinking and good biocompatibility. However, their relatively short excitation/emission wavelengths restrict their application in in vivo imaging. In the present study, a kind of CD was prepared by a simple heat treatment method using glycine as the only precursor. The diameter of CD was lower than 5 nm, and the highest emission wavelength was 500 nm. However, at 600 nm, there was still a relatively strong fluorescent emission, suggesting CD could be used for in vivo imaging

  14. Concurrent Chemotherapy of Malignant Glioma in Rats by Using Multidrug-Loaded Biodegradable Nanofibrous Membranes

    NASA Astrophysics Data System (ADS)

    Tseng, Yuan-Yun; Huang, Yin-Chen; Yang, Tao-Chieh; Yang, Shun-Tai; Liu, Shou-Cheng; Chang, Tzu-Min; Kau, Yi-Chuan; Liu, Shih-Jung

    2016-07-01

    Glioblastoma multiforme has a poor prognosis and is highly chemoresistant. In this study, we implanted biodegradable 1,3-bis[2-chloroethyl]-1-nitroso-urea-, irinotecan-, and cisplatin-eluting poly[(d,l)-lactide-co-glycolide] (BIC/PLGA) and virgin nanofibrous membranes on the brain surface of C6 glioma-bearing rats in concurrent and virgin groups, respectively. The concentrations of all applied drugs were significantly higher in the brain than in the blood for more than 8 weeks in all studied rats. Tumor growth was more rapid in the vehicle-treated group, and tumor volumes were significantly higher in the vehicle-treated group. Moreover, the average survival time was significantly shorter in the vehicle-treated group (P = 0.026), and the BIC/PLGA nanofibrous membranes significantly reduced the risk of mortality (P < 0.001). Furthermore, the results suggested that the BIC/PLGA nanofibers reduced the malignancy of C6 glioma. The experimental findings indicate that the multianticancer drug (i.e., BIC)-eluting PLGA nanofibers are favorable candidates for treating malignant glioma.

  15. Concurrent Chemotherapy of Malignant Glioma in Rats by Using Multidrug-Loaded Biodegradable Nanofibrous Membranes

    PubMed Central

    Tseng, Yuan-Yun; Huang, Yin-Chen; Yang, Tao-Chieh; Yang, Shun-Tai; Liu, Shou-Cheng; Chang, Tzu-Min; Kau, Yi-Chuan; Liu, Shih-Jung

    2016-01-01

    Glioblastoma multiforme has a poor prognosis and is highly chemoresistant. In this study, we implanted biodegradable 1,3-bis[2-chloroethyl]-1-nitroso-urea-, irinotecan-, and cisplatin-eluting poly[(d,l)-lactide-co-glycolide] (BIC/PLGA) and virgin nanofibrous membranes on the brain surface of C6 glioma-bearing rats in concurrent and virgin groups, respectively. The concentrations of all applied drugs were significantly higher in the brain than in the blood for more than 8 weeks in all studied rats. Tumor growth was more rapid in the vehicle-treated group, and tumor volumes were significantly higher in the vehicle-treated group. Moreover, the average survival time was significantly shorter in the vehicle-treated group (P = 0.026), and the BIC/PLGA nanofibrous membranes significantly reduced the risk of mortality (P < 0.001). Furthermore, the results suggested that the BIC/PLGA nanofibers reduced the malignancy of C6 glioma. The experimental findings indicate that the multianticancer drug (i.e., BIC)-eluting PLGA nanofibers are favorable candidates for treating malignant glioma. PMID:27471070

  16. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression ofmore » Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.« less

  17. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    PubMed

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  18. Linking late cognitive outcome with glioma surgery location using resection cavity maps.

    PubMed

    Hendriks, Eef J; Habets, Esther J J; Taphoorn, Martin J B; Douw, Linda; Zwinderman, Aeilko H; Vandertop, W Peter; Barkhof, Frederik; Klein, Martin; De Witt Hamer, Philip C

    2018-05-01

    Patients with a diffuse glioma may experience cognitive decline or improvement upon resective surgery. To examine the impact of glioma location, cognitive alteration after glioma surgery was quantified and related to voxel-based resection probability maps. A total of 59 consecutive patients (range 18-67 years of age) who had resective surgery between 2006 and 2011 for a supratentorial nonenhancing diffuse glioma (grade I-III, WHO 2007) were included in this observational cohort study. Standardized neuropsychological examination and MRI were obtained before and after surgery. Intraoperative stimulation mapping guided resections towards neurological functions (language, sensorimotor function, and visual fields). Maps of resected regions were constructed in standard space. These resection cavity maps were compared between patients with and without new cognitive deficits (z-score difference >1.5 SD between baseline and one year after resection), using a voxel-wise randomization test and calculation of false discovery rates. Brain regions significantly associated with cognitive decline were classified in standard cortical and subcortical anatomy. Cognitive improvement in any domain occurred in 10 (17%) patients, cognitive decline in any domain in 25 (42%), and decline in more than one domain in 10 (17%). The most frequently affected subdomains were attention in 10 (17%) patients and information processing speed in 9 (15%). Resection regions associated with decline in more than one domain were predominantly located in the right hemisphere. For attention decline, no specific region could be identified. For decline in information speed, several regions were found, including the frontal pole and the corpus callosum. Cognitive decline after resective surgery of diffuse glioma is prevalent, in particular, in patients with a tumor located in the right hemisphere without cognitive function mapping. © The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  19. A comprehensive review of paediatric low-grade diffuse glioma: pathology, molecular genetics and treatment.

    PubMed

    Ryall, Scott; Tabori, Uri; Hawkins, Cynthia

    2017-04-01

    Gliomas are the most common central nervous system neoplasms affecting children and can be both high- and low-grade. Paediatric low-grade glioma may be either World Health Organization grade I or grade II. Despite being classified as grade II diffuse astrocytoma, these neoplasms arising in children are distinct clinically and molecularly from their adult counterparts. They do not tend to progress to higher grade lesions and only rarely harbour an IDH mutation. Here, we review the clinical, histologic and molecular features of paediatric grade II diffuse glioma, highlighting their diagnostic criteria, prevalence across brain locations, their most common molecular features and how to test for them, and lastly the current status of therapeutic options available for their treatment.

  20. Connexin 43-targeted T1 contrast agent for MRI diagnosis of glioma.

    PubMed

    Abakumova, Tatiana; Abakumov, Maxim; Shein, Sergey; Chelushkin, Pavel; Bychkov, Dmitry; Mukhin, Vladimir; Yusubalieva, Gaukhar; Grinenko, Nadezhda; Kabanov, Alexander; Nukolova, Natalia; Chekhonin, Vladimir

    2016-01-01

    Glioblastoma multiforme is the most aggressive form of brain tumor. Early and accurate diagnosis of glioma and its borders is an important step for its successful treatment. One of the promising targets for selective visualization of glioma and its margins is connexin 43 (Cx43), which is highly expressed in reactive astrocytes and migrating glioma cells. The purpose of this study was to synthesize a Gd-based contrast agent conjugated with specific antibodies to Cx43 for efficient visualization of glioma C6 in vivo. We have prepared stable nontoxic conjugates of monoclonal antibody to Cx43 and polylysine-DTPA ligands complexed with Gd(III), which are characterized by higher T1 relaxivity (6.5 mM(-1) s(-1) at 7 T) than the commercial agent Magnevist® (3.4 mM(-1) s(-1)). Cellular uptake of Cx43-specific T1 contrast agent in glioma C6 cells was more than four times higher than the nonspecific IgG-contrast agent, as detected by flow cytometry and confocal analysis. MRI experiments showed that the obtained agents could markedly enhance visualization of glioma C6 in vivo after their intravenous administration. Significant accumulation of Cx43-targeted contrast agents in glioma and the peritumoral zone led not only to enhanced contrast but also to improved detection of the tumor periphery. Fluorescence imaging confirmed notable accumulation of Cx43-specific conjugates in the peritumoral zone compared with nonspecific IgG conjugates at 24 h after intravenous injection. All these features of Cx43-targeted contrast agents might be useful for more precise diagnosis of glioma and its borders by MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Red and processed meat consumption and risk of glioma in adults: A systematic review and meta-analysis of observational studies

    PubMed Central

    Saneei, Parvane; Willett, Walter; Esmaillzadeh, Ahmad

    2015-01-01

    Background: These findings from several observational studies, investigated the association between red meat consumption and gliomas, were inconsistent. We conducted a systematic review and meta-analysis of observational studies to summarize available date on the relation between meat intake and risk of glioma. Materials and Methods: A systematic literature search of relevant reports published until May 2014 of the PubMed/Medline, ISI Web of Knowledge, Excerpta Medica database, Ovid database, Google Scholar, and Scopus databases was conducted. From 723 articles yielded in the preliminary literature search, data from eighteen publications (14 case-control, three cohort, and one nested case-control study) on unprocessed red meat, processed meat, and/or total red meat consumption in relation to glioma in adults were included in the analysis. Quality assessment of studies was performed. Random effects model was used to conduct the meta-analysis. Results: We found a positive significant association between unprocessed red meat intake and risk of glioma (relative risk [RR] = 1.30; 95% confidence interval [CI]: 1.08-1.58) after excluding three studies with uncertain type of brain cancer. This analysis included only one cohort study which revealed no relation between unprocessed red meat intake and glioma (RR = 1.75; 95% CI: 0.35-8.77). Consumption of processed meats was not related to increased risk of glioma in population-based case-control studies (RR = 1.26; 95% CI: 1.05-1.51) and reduced risk in hospital-based case-controls (RR = 0.79; 95% CI: 0.65-0.97). No significant association was seen between processed red meat intake and risk of glioma in cohort studies (RR: 1.08; 95% CI: 0.84-1.37). Total red meat consumption was not associated with risk of adult glioma in case-control or cohort studies. Conclusion: In this meta-analysis of 18 observational studies, we found a modest positive association between unprocessed red meat intake and risk of gliomas based almost

  2. GBP3 promotes glioma cell proliferation via SQSTM1/p62-ERK1/2 axis.

    PubMed

    Xu, Hui; Sun, Lili; Zheng, Yanwen; Yu, Shuye; Ou-Yang, Jia; Han, Hui; Dai, Xingliang; Yu, Xiaoting; Li, Ming; Lan, Qing

    2018-01-01

    Guanylate binding proteins (GBPs) are interferon-inducible large GTPases and play a crucial role in cell-autonomous immunity. However, the biology function of GBPs in cancer remains elusive. GBP3 is specifically expressed in adult brain. Here we show that GBP3 is highly elevated in human glioma tumors and glioma cell lines. Overexpression of GBP3 dramatically increased glioma cell proliferation whereas silencing GBP3 by RNA interference produced opposite effects. We further showed that GBP3 expression was able to induce sequestosome-1(SQSTM1, also named p62) expression and activate extracellular signal-regulated kinase (ERK1/2). The SQSTM1-ERK1/2 signaling cascade was essential for GBP3-promoted cell growth because depletion of SQSTM1 markedly reduced the phosphorylated ERK1/2 levels and GBP3-mediated cell growth, and inhibition of mitogen-activated protein kinase/ERK kinase abolished GBP3-induced glioma cell proliferation. Consistently, GBP3 overexpression significantly promoted glioma tumor growth in vivo and its expression was inversely correlated with the survival rate of glioma patients. Taken together, these results for the first time suggest that GBP3 contributes to the proliferation of glioma cells via regulating SQSTM1-ERK1/2 pathway, and GBP3 might represent as a new potential therapeutic target against glioma. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study

    PubMed Central

    de Groot, John F.; Lamborn, Kathleen R.; Chang, Susan M.; Gilbert, Mark R.; Cloughesy, Timothy F.; Aldape, Kenneth; Yao, Jun; Jackson, Edward F.; Lieberman, Frank; Robins, H. Ian; Mehta, Minesh P.; Lassman, Andrew B.; DeAngelis, Lisa M.; Yung, W.K. Alfred; Chen, Alice; Prados, Michael D.; Wen, Patrick Y.

    2011-01-01

    Purpose Antivascular endothelial growth factor (anti-VEGF) therapy is a promising treatment approach for patients with recurrent glioblastoma. This single-arm phase II study evaluated the efficacy of aflibercept (VEGF Trap), a recombinantly produced fusion protein that scavenges both VEGF and placental growth factor in patients with recurrent malignant glioma. Patients and Methods Forty-two patients with glioblastoma and 16 patients with anaplastic glioma who had received concurrent radiation and temozolomide and adjuvant temozolomide were enrolled at first relapse. Aflibercept 4 mg/kg was administered intravenously on day 1 of every 2-week cycle. Results The 6-month progression-free survival rate was 7.7% for the glioblastoma cohort and 25% for patients with anaplastic glioma. Overall radiographic response rate was 24% (18% for glioblastoma and 44% for anaplastic glioma). The median progression-free survival was 24 weeks for patients with anaplastic glioma (95% CI, 5 to 31 weeks) and 12 weeks for patients with glioblastoma (95% CI, 8 to 16 weeks). A total of 14 patients (25%) were removed from the study for toxicity, on average less than 2 months from treatment initiation. The main treatment-related National Cancer Institute Common Terminology Criteria grades 3 and 4 adverse events (38 total) included fatigue, hypertension, and lymphopenia. Two grade 4 CNS ischemias and one grade 4 systemic hemorrhage were reported. Aflibercept rapidly decreases permeability on dynamic contrast enhanced magnetic resonance imaging, and molecular analysis of baseline tumor tissue identified tumor-associated markers of response and resistance. Conclusion Aflibercept monotherapy has moderate toxicity and minimal evidence of single-agent activity in unselected patients with recurrent malignant glioma. PMID:21606416

  4. Ccl5 establishes an autocrine high-grade glioma growth regulatory circuit critical for mesenchymal glioblastoma survival

    PubMed Central

    Pan, Yuan; Smithson, Laura J.; Ma, Yu; Hambardzumyan, Dolores; Gutmann, David H.

    2017-01-01

    Glioblastoma (GBM) is the most common malignant brain tumor in adults, with a median survival of 15 months. These poor clinical outcomes have prompted the development of drugs that block neoplastic cancer cell growth; however, non-neoplastic cell-derived signals (chemokines and cytokines) in the tumor microenvironment may also represent viable treatment targets. One such chemokine, Ccl5, produced by low-grade tumor-associated microglia, is responsible for maintaining neurofibromatosis type 1 (NF1) mouse optic glioma growth in vivo. Since malignant gliomas may achieve partial independence from growth regulatory factors produced by non-neoplastic cells in the tumor microenvironment by producing the same cytokines secreted by the stromal cells in their low-grade counterparts, we tested the hypothesis that CCL5/CCL5-receptor signaling in glioblastoma creates an autocrine circuit important for high-grade glioma growth. Herein, we demonstrate that increased CCL5 expression was restricted to both human and mouse mesenchymal GBM (M-GBM), a molecular subtype characterized by NF1 loss. We further show that the NF1 protein, neurofibromin, negatively regulates Ccl5 expression through suppression of AKT/mTOR signaling. Consistent with its role as a glioblastoma growth regulator, Ccl5 knockdown in M-GBM cells reduces M-GBM cell survival in vitro, and increases mouse glioblastoma survival in vivo. Finally, we demonstrate that Ccl5 operates through an unconventional CCL5 receptor, CD44, to inhibit M-GBM apoptosis. Collectively, these findings reveal an NF1-dependent CCL5-mediated pathway that regulates M-GBM cell survival, and support the concept that paracrine factors important for low-grade glioma growth can be usurped by high-grade tumors to create autocrine regulatory circuits that maintain malignant glioma survival. PMID:28380429

  5. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    PubMed Central

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  6. Dissecting dysfunctional crosstalk pathways regulated by miRNAs during glioma progression

    PubMed Central

    Li, Feng; Li, Xiang; Feng, Li; Shi, Xinrui; Wang, Lihua; Li, Xia

    2016-01-01

    Glioma is a malignant nervous system tumor with a high fatality rate and poor prognosis. MicroRNAs (miRNAs) are important post-transcriptional modulators of glioma initiation and progression. Tumor progression often results from dysfunctional co-operation between pathways regulated by miRNAs. We therefore constructed a glioma progression-related miRNA-pathway crosstalk network that not only revealed some key miRNA-pathway patterns, but also helped characterize the functional roles of miRNAs during glioma progression. Our data indicate that crosstalk between cell cycle and p53 pathways is associated with grade II to grade III progression, while cell communications-related pathways involving regulation of actin cytoskeleton and adherens junctions are associated with grade IV glioblastoma progression. Furthermore, miRNAs and their crosstalk pathways may be useful for stratifying glioma and glioblastoma patients into groups with short or long survival times. Our data indicate that a combination of miRNA and pathway crosstalk information can be used for survival prediction. PMID:27013589

  7. ¹⁸F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas.

    PubMed

    Hirata, Kenji; Terasaka, Shunsuke; Shiga, Tohru; Hattori, Naoya; Magota, Keiichi; Kobayashi, Hiroyuki; Yamaguchi, Shigeru; Houkin, Kiyohiro; Tanaka, Shinya; Kuge, Yuji; Tamaki, Nagara

    2012-05-01

    Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and its prognosis is significantly poorer than those of less malignant gliomas. Pathologically, necrosis is one of the most important characteristics that differentiate GBM from lower grade gliomas; therefore, we hypothesized that (18)F fluoromisonidazole (FMISO), a radiotracer for hypoxia imaging, accumulates in GBM but not in lower grade gliomas. We aimed to evaluate the diagnostic value of FMISO positron emission tomography (PET) for the differential diagnosis of GBM from lower grade gliomas. This prospective study included 23 patients with pathologically confirmed gliomas. All of the patients underwent FMISO PET and (18)F-fluorodeoxyglucose (FDG) PET within a week. FMISO images were acquired 4 h after intravenous administration of 400 MBq of FMISO. Tracer uptake in the tumor was visually assessed. Lesion to normal tissue ratios and FMISO uptake volume were calculated. Of the 23 glioma patients, 14 were diagnosed as having GBM (grade IV glioma in the 2007 WHO classification), and the others were diagnosed as having non-GBM (5 grade III and 4 grade II). In visual assessment, all GBM patients showed FMISO uptake in the tumor greater than that in the surrounding brain tissues, whereas all the non-GBM patients showed FMISO uptake in the tumor equal to that in the surrounding brain tissues (p ≤ 0.001). One GBM patient was excluded from FDG PET study because of hyperglycemia. All GBM patients and three of the nine (33%) non-GBM patients showed FDG uptake greater than or equal to that in the gray matter. The sensitivity and specificity for diagnosing GBM were 100 and 100% for FMISO, and 100 and 66% for FDG, respectively. The lesion to cerebellum ratio of FMISO uptake was higher in GBM patients (2.74 ± 0.60, range 1.71-3.81) than in non-GBM patients (1.22 ± 0.06, range 1.09-1.29, p ≤ 0.001) with no overlap between the groups. The lesion to gray matter ratio of FDG was also higher in GBM

  8. Penetration of blood-brain barrier and antitumor activity and nerve repair in glioma by doxorubicin-loaded monosialoganglioside micelles system.

    PubMed

    Zou, Dan; Wang, Wei; Lei, Daoxi; Yin, Ying; Ren, Peng; Chen, Jinju; Yin, Tieying; Wang, Bochu; Wang, Guixue; Wang, Yazhou

    2017-01-01

    For the treatment of glioma and other central nervous system diseases, one of the biggest challenges is that most therapeutic drugs cannot be delivered to the brain tumor tissue due to the blood-brain barrier (BBB). The goal of this study was to construct a nanodelivery vehicle system with capabilities to overcome the BBB for central nervous system administration. Doxorubicin as a model drug encapsulated in ganglioside GM1 micelles was able to achieve up to 9.33% loading efficiency and 97.05% encapsulation efficiency by orthogonal experimental design. The in vitro study demonstrated a slow and sustainable drug release in physiological conditions. In the cellular uptake studies, mixed micelles could effectively transport into both human umbilical vein endothelial cells and C6 cells. Furthermore, biodistribution imaging of mice showed that the DiR/GM1 mixed micelles were accumulated sustainably and distributed centrally in the brain. Experiments on zebrafish confirmed that drug-loaded GM1 micelles can overcome the BBB and enter the brain. Among all the treatment groups, the median survival time of C6-bearing rats after administering DOX/GM1 micelles was significantly prolonged. In conclusion, the ganglioside nanomicelles developed in this work can not only penetrate BBB effectively but also repair nerves and kill tumor cells at the same time.

  9. Pediatric low-grade gliomas and the need for new options for therapy: why and how?

    PubMed Central

    Qaddoumi, Ibrahim; Sultan, Iyad; Broniscer, Alberto

    2009-01-01

    Pediatric low-grade gliomas are the most common tumors of the central nervous system in children, accounting for almost 50% of all childhood brain tumors. They are a heterogeneous group of tumors with different histologic subtypes. Most treatment studies address low-grade gliomas as a single entity, depriving us of histology-specific treatment outcomes. This is mostly due to a lack of understanding of tumor biology at the molecular level. Pediatric low-grade gliomas are not benign, and most incompletely resected tumors will progress and negatively affect quality of life. The advancements made in understanding sporadic pilocytic astrocytoma and neurofibromatosis 1-associated pilocytic astrocytoma in particular have paved the way for potential targeted therapy and biological stratification. Such progress in pilocytic astrocytoma needs to be consolidated and expanded to other histologic varieties of pediatric low-grade gliomas. PMID:19164945

  10. EMP-induced BBB-disruption enhances drug delivery to glioma and increases treatment efficacy in rats.

    PubMed

    Li, Kangchu; Zhang, Keying; Xu, Shenglong; Wang, Xiaowu; Zhou, Yongchun; Zhou, Yan; Gao, Peng; Lin, Jiajin; Ding, Guirong; Guo, Guozhen

    2018-01-01

    Chemotherapy on gliomas is not satisfactorily efficient because the presence of blood-brain barriers (BBB) leads to inadequate exposure of tumor cells to administered drugs. In order to facilitate chemotherapeutics to penetrate BBB and increase the treatment efficacy of gliomas, electromagnetic pulse (EMP) was applied and the 1-(2-Chlorethyl)-cyclohexyl-nitrosourea (CCNU) lomustine concentration in tumor tissue, tumor size, tumor apoptosis, and side effects were measured in glioma-bearing rat model. The results showed that EMP exposure could enhance the delivery of CCNU to tumor tissue, facilitate tumor apoptosis, and inhibit tumor growth without obvious side effects. The data indicated that EMP-induced BBB disruption could enhance delivery of CCNU to glioblastoma multiforme and increase treatment efficacy in glioma-bearing rats. Bioelectromagnetics. 39:60-67, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Preclinical evaluation of convection-enhanced delivery of liposomal doxorubicin to treat pediatric diffuse intrinsic pontine glioma and thalamic high-grade glioma.

    PubMed

    Sewing, A Charlotte P; Lagerweij, Tonny; van Vuurden, Dannis G; Meel, Michaël H; Veringa, Susanna J E; Carcaboso, Angel M; Gaillard, Pieter J; Peter Vandertop, W; Wesseling, Pieter; Noske, David; Kaspers, Gertjan J L; Hulleman, Esther

    2017-05-01

    OBJECTIVE Pediatric high-grade gliomas (pHGGs) including diffuse intrinsic pontine gliomas (DIPGs) are primary brain tumors with high mortality and morbidity. Because of their poor brain penetrance, systemic chemotherapy regimens have failed to deliver satisfactory results; however, convection-enhanced delivery (CED) may be an alternative mode of drug delivery. Anthracyclines are potent chemotherapeutics that have been successfully delivered via CED in preclinical supratentorial glioma models. This study aims to assess the potency of anthracyclines against DIPG and pHGG cell lines in vitro and to evaluate the efficacy of CED with anthracyclines in orthotopic pontine and thalamic tumor models. METHODS The sensitivity of primary pHGG cell lines to a range of anthracyclines was tested in vitro. Preclinical CED of free doxorubicin and pegylated liposomal doxorubicin (PLD) to the brainstem and thalamus of naïve nude mice was performed. The maximum tolerated dose (MTD) was determined based on the observation of clinical symptoms, and brains were analyzed after H & E staining. Efficacy of the MTD was tested in adult glioma E98-FM-DIPG and E98-FM-thalamus models and in the HSJD-DIPG-007-Fluc primary DIPG model. RESULTS Both pHGG and DIPG cells were sensitive to anthracyclines in vitro. Doxorubicin was selected for further preclinical evaluation. Convection-enhanced delivery of the MTD of free doxorubicin and PLD in the pons was 0.02 mg/ml, and the dose tolerated in the thalamus was 10 times higher (0.2 mg/ml). Free doxorubicin or PLD via CED was ineffective against E98-FM-DIPG or HSJD-DIPG-007-Fluc in the brainstem; however, when applied in the thalamus, 0.2 mg/ml of PLD slowed down tumor growth and increased survival in a subset of animals with small tumors. CONCLUSIONS Local delivery of doxorubicin to the brainstem causes severe toxicity, even at doxorubicin concentrations that are safe in the thalamus. As a consequence, the authors could not establish a therapeutic

  12. Treatment of adult and pediatric high-grade gliomas with Withaferin A: antitumor mechanisms and future perspectives.

    PubMed

    Marlow, Megan M; Shah, Sumedh S; Véliz, Eduardo A; Ivan, Michael E; Graham, Regina M

    2017-01-01

    Resistance mechanisms employed by high-grade gliomas allow them to successfully evade current standard treatment of chemotherapy and radiation treatment. Withaferin A (WA), utilized in Ayurvedic medicine for centuries, is attracting attention for its antitumor capabilities. Here we review pertinent literature on WA as a high-grade glioma treatment, and discuss the cancerous mechanisms it affects. WA is relatively nontoxic and has shown potential in crossing the blood-brain barrier. WA prevents p53 alterations and inactivates overexpressed MDM2 through ARF and ROS production. Furthermore, WA upregulates Bax, inducing mitochondrial death cascades, inhibits mutated Akt, mTOR, and NF-κB pathways, and inhibits angiogenesis in tumors. Therapy with WA for high-grade gliomas is supported through the literature. Further investigation is warranted and encouraged to fully unearth its abilities against malignant gliomas.

  13. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI

    PubMed Central

    Weidensteiner, Claudia; Reichardt, Wilfried; Shami, Paul J.; Saavedra, Joseph E.; Keefer, Larry K.; Baumer, Brunhilde; Werres, Anna; Jasinski, Robert; Osterberg, Nadja; Weyerbrock, Astrid

    2013-01-01

    Nitric oxide (NO) released from NO donors can be cytotoxic in tumor cells and can enhance the transport of drugs into brain tumors by altering blood-tumor barrier permeability. The NO donor JS-K [O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] releases NO upon enzymatic activation selectively in cells overexpressing glutathione-S-transferases (GSTs) such as gliomas. Thus, JS-K-dependent NO effects - especially on cell viability and vascular permeability - were investigated in U87 glioma cells in vitro and in an orthotopic U87 xenograft model in vivo by magnetic resonance imaging (MRI). In vitro experiments showed dose-dependent antiproliferative and cytotoxic effects in U87 cells. In addition, treatment of U87 cells with JS-K resulted in a dose-dependent activation of soluble guanylate cyclase and intracellular accumulation of cyclic guanosine monophosphate (cGMP) which was irreversibly inhibited by the selective inhibitor of soluble guanylate cyclase ODQ (1H-[1,2,4]oxadiazolo(4,3a)quinoxaline-1-one). Using dynamic contrast enhanced MRI (DCE-MRI) as a minimally invasive technique, we demonstrated for the first time a significant increase in the DCE-MRI read-out initial area under the concentration curve (iAUC60) indicating an acute increase in blood-tumor barrier permeability after i.v. treatment with JS-K. Repeated MR imaging of animals with intracranial U87 gliomas under treatment with JS-K (3.5 μmol/kg JS-K 3×/week) and of untreated controls on day 12 and 19 after tumor inoculation revealed no significant changes in tumor growth, edema formation or tumor perfusion. Immunohistochemical workup of the brains showed a significant antiproliferative effect of JS-K in the gliomas. Taken together, in vitro and in vivo data suggest that JS-K has antiproliferative effects in U87 gliomas and opens the blood-tumor barrier by activation of the NO/cGMP signaling pathway. This might be a novel approach to facilitate entry of therapeutic

  14. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI.

    PubMed

    Weidensteiner, Claudia; Reichardt, Wilfried; Shami, Paul J; Saavedra, Joseph E; Keefer, Larry K; Baumer, Brunhilde; Werres, Anna; Jasinski, Robert; Osterberg, Nadja; Weyerbrock, Astrid

    2013-04-01

    Nitric oxide (NO) released from NO donors can be cytotoxic in tumor cells and can enhance the transport of drugs into brain tumors by altering blood-tumor barrier permeability. The NO donor JS-K [O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] releases NO upon enzymatic activation selectively in cells overexpressing glutathione-S-transferases (GSTs) such as gliomas. Thus, JS-K-dependent NO effects - especially on cell viability and vascular permeability - were investigated in U87 glioma cells in vitro and in an orthotopic U87 xenograft model in vivo by magnetic resonance imaging (MRI). In vitro experiments showed dose-dependent antiproliferative and cytotoxic effects in U87 cells. In addition, treatment of U87 cells with JS-K resulted in a dose-dependent activation of soluble guanylate cyclase and intracellular accumulation of cyclic guanosine monophosphate (cGMP) which was irreversibly inhibited by the selective inhibitor of soluble guanylate cyclase ODQ (1H-[1,2,4]oxadiazolo(4,3a)quinoxaline-1-one). Using dynamic contrast enhanced MRI (DCE-MRI) as a minimally invasive technique, we demonstrated for the first time a significant increase in the DCE-MRI read-out initial area under the concentration curve (iAUC60) indicating an acute increase in blood-tumor barrier permeability after i.v. treatment with JS-K. Repeated MR imaging of animals with intracranial U87 gliomas under treatment with JS-K (3.5 μmol/kg JS-K 3×/week) and of untreated controls on day 12 and 19 after tumor inoculation revealed no significant changes in tumor growth, edema formation or tumor perfusion. Immunohistochemical workup of the brains showed a significant antiproliferative effect of JS-K in the gliomas. Taken together, in vitro and in vivo data suggest that JS-K has antiproliferative effects in U87 gliomas and opens the blood-tumor barrier by activation of the NO/cGMP signaling pathway. This might be a novel approach to facilitate entry of therapeutic

  15. Regulation of IL-10 expression by upstream stimulating factor (USF-1) in glioma-associated microglia.

    PubMed

    Zhang, Leying; Handel, Michelle Van; Schartner, Jill M; Hagar, Aaron; Allen, Grant; Curet, Marjorie; Badie, Behnam

    2007-03-01

    Understanding the local CNS immune response to neoplasms is essential in the development of immune-based treatments for malignant brain tumors. Using rodent glioma models, we have recently found tumor-associated microglia/macrophages (MG/MP) to be less responsive to known MG/MP activators such as CpG, LPS and IFN-gamma. To understand the mechanism of MG/MP suppression, nuclear extracts from rodent intracranial C6 gliomas, C6 glioma-associated MG/MP, normal brain, and normal MG/MP were obtained and studied using Electrophoretic Mobility Shift Assay (EMSA). Among the nuclear factors studied (AP-1, IRF, USF-1 and Stat-1) only USF-1, which is constitutively expressed in most cells, was down-regulated in tumor-associated MG/MP, but not normal MG/MP. Because tumor-associated MG/MP had higher expression of IL-10 (but not TNF-alpha or TGF-beta), we evaluated the role of USF-1 on IL-10 expression. siRNA mediated inhibition of USF-1 expression in primary MG/MP cultures resulted in up-regulation of IL-10 mRNA but not TNF-alpha or TGF-beta. These findings suggest that USF-1 may play a role in IL-10 regulation in MG/MP in brain tumors.

  16. HP1α is highly expressed in glioma cells and facilitates cell proliferation and survival.

    PubMed

    Lai, Xianliang; Deng, Zhifeng; Guo, Hua; Zhu, Xingen; Tu, Wei

    2017-08-19

    Epigenetic alteration plays critical roles in gliomagenesis by regulating gene expression through modifications of Histones and DNA. Trimethylation of H3K9, an essential repressed transcription mark, and one of its methyltransferase, SUV39H1, are implicated in glioma pathogenesis and progression. We find that the protein level of HP1α, a reader of H3K9me3 is elevated in cultured glioma cell lines and glioma tissues. H3K9me3 is also upregulated. Depletion of HP1α and SUV39H1 weakens glioma cell proliferation capacity and results in apoptosis of cells. Furthermore, we find that HP1α and H3K9me3 are enriched in the FAS and PUMA promoters, which suggests that upregulated HP1α and H3K9me3 contribute to cell survival by suppressing apoptotic activators. These data suggests that up-regulated HP1α and H3K9me3 in glioma cells are functionally associated with glioma pathogenesis and progression and may serve as novel biomarkers for diagnostic and therapeutic targeting of brain tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. MicroRNA-145 is downregulated in glial tumors and regulates glioma cell migration by targeting connective tissue growth factor.

    PubMed

    Lee, Hae Kyung; Bier, Ariel; Cazacu, Simona; Finniss, Susan; Xiang, Cunli; Twito, Hodaya; Poisson, Laila M; Mikkelsen, Tom; Slavin, Shimon; Jacoby, Elad; Yalon, Michal; Toren, Amos; Rempel, Sandra A; Brodie, Chaya

    2013-01-01

    Glioblastomas (GBM), the most common and aggressive type of malignant glioma, are characterized by increased invasion into the surrounding brain tissues. Despite intensive therapeutic strategies, the median survival of GBM patients has remained dismal over the last decades. In this study we examined the expression of miR-145 in glial tumors and its function in glioma cells. Using TCGA analysis and real-time PCR we found that the expression of miR-145/143 cluster was downregulated in astrocytic tumors compared to normal brain specimens and in glioma cells and glioma stem cells (GSCs) compared to normal astrocytes and neural stem cells. Moreover, the low expression of both miR-145 and miR-143 in GBM was correlated with poor patient prognosis. Transfection of glioma cells with miR-145 mimic or transduction with a lentivirus vector expressing pre-miR 145 significantly decreased the migration and invasion of glioma cells. We identified connective tissue growth factor (CTGF) as a novel target of miR-145 in glioma cells; transfection of the cells with this miRNA decreased the expression of CTGF as determined by Western blot analysis and the expression of its 3'-UTR fused to luciferase. Overexpression of a CTGF plasmid lacking the 3'-UTR and administration of recombinant CTGF protein abrogated the inhibitory effect of miR-145 on glioma cell migration. Similarly, we found that silencing of CTGF decreased the migration of glioma cells. CTGF silencing also decreased the expression of SPARC, phospho-FAK and FAK and overexpression of SPARC abrogated the inhibitory effect of CTGF silencing on cell migration. These results demonstrate that miR-145 is downregulated in glial tumors and its low expression in GBM predicts poor patient prognosis. In addition miR-145 regulates glioma cell migration by targeting CTGF which downregulates SPARC expression. Therefore, miR-145 is an attractive therapeutic target for anti-invasive treatment of astrocytic tumors.

  18. Advances in the molecular genetics of gliomas - implications for classification and therapy.

    PubMed

    Reifenberger, Guido; Wirsching, Hans-Georg; Knobbe-Thomsen, Christiane B; Weller, Michael

    2017-07-01

    Genome-wide molecular-profiling studies have revealed the characteristic genetic alterations and epigenetic profiles associated with different types of gliomas. These molecular characteristics can be used to refine glioma classification, to improve prediction of patient outcomes, and to guide individualized treatment. Thus, the WHO Classification of Tumours of the Central Nervous System was revised in 2016 to incorporate molecular biomarkers - together with classic histological features - in an integrated diagnosis, in order to define distinct glioma entities as precisely as possible. This paradigm shift is markedly changing how glioma is diagnosed, and has important implications for future clinical trials and patient management in daily practice. Herein, we highlight the developments in our understanding of the molecular genetics of gliomas, and review the current landscape of clinically relevant molecular biomarkers for use in classification of the disease subtypes. Novel approaches to the genetic characterization of gliomas based on large-scale DNA-methylation profiling and next-generation sequencing are also discussed. In addition, we illustrate how advances in the molecular genetics of gliomas can promote the development and clinical translation of novel pathogenesis-based therapeutic approaches, thereby paving the way towards precision medicine in neuro-oncology.

  19. Podoplanin increases migration and angiogenesis in malignant glioma

    PubMed Central

    Grau, Stefan J; Trillsch, Fabian; Tonn, Joerg-Christian; Goldbrunner, Roland H; Noessner, Elfriede; Nelson, Peter J; von Luettichau, Irene

    2015-01-01

    Expression of podoplanin in glial brain tumors is grade dependent. While serving as a marker for tumor progression and modulating invasion in various neoplasms, little is known about podoplanin function in gliomas. Therefore we stably transfected two human glioma cell lines (U373MG and U87MG) with expression plasmids encoding podoplanin. The efficacy of transfection was confirmed by FACS analysis, PCR and immunocytochemistry. Cells were then sorted for highly podoplanin expressing cells (U373Phigh/U87Phigh). Transfection did not influence the production of pro-angiogenic factors including VEGF, VEGF-C and D. Also, expression of VEGF receptors (VEGFR) remained unchanged except for U87Phigh, where a VEGFR3 expression was induced. U373Phigh showed significantly reduced proliferation as compared to mock transfected group. By contrast, podoplanin significantly increased migration and invasion into collagen matrix. Furthermore, conditioned media from Phigh glioma cells strongly induced tube formation on matrigel. In conclusion, podoplanin increased migration of tumor cells and enhanced tube formation activity in endothelial cells independent from VEGF. Thus, podoplanin expression may be an important step in tumor progression. PMID:26339454

  20. Associations of High-Grade Glioma With Glioma Risk Alleles and Histories of Allergy and Smoking

    PubMed Central

    Lachance, Daniel H.; Yang, Ping; Johnson, Derek R.; Decker, Paul A.; Kollmeyer, Thomas M.; McCoy, Lucie S.; Rice, Terri; Xiao, Yuanyuan; Ali-Osman, Francis; Wang, Frances; Stoddard, Shawn M.; Sprau, Debra J.; Kosel, Matthew L.; Wiencke, John K.; Wiemels, Joseph L.; Patoka, Joseph S.; Davis, Faith; McCarthy, Bridget; Rynearson, Amanda L.; Worra, Joel B.; Fridley, Brooke L.; O’Neill, Brian Patrick; Buckner, Jan C.; Il’yasova, Dora; Jenkins, Robert B.; Wrensch, Margaret R.

    2011-01-01

    Glioma risk has consistently been inversely associated with allergy history but not with smoking history despite putative biologic plausibility. Data from 855 high-grade glioma cases and 1,160 controls from 4 geographic regions of the United States during 1997–2008 were analyzed for interactions between allergy and smoking histories and inherited variants in 5 established glioma risk regions: 5p15.3 (TERT), 8q24.21 (CCDC26/MLZE), 9p21.3 (CDKN2B), 11q23.3 (PHLDB1/DDX6), and 20q13.3 (RTEL1). The inverse relation between allergy and glioma was stronger among those who did not (odds ratioallergy-glioma = 0.40, 95% confidence interval: 0.28, 0.58) versus those who did (odds ratioallergy-glioma = 0.76, 95% confidence interval: 0.59, 0.97; Pinteraction = 0.02) carry the 9p21.3 risk allele. However, the inverse association with allergy was stronger among those who carried (odds ratioallergy-glioma = 0.44, 95% confidence interval: 0.29, 0.68) versus those who did not carry (odds ratioallergy-glioma = 0.68, 95% confidence interval: 0.54, 0.86) the 20q13.3 glioma risk allele, but this interaction was not statistically significant (P = 0.14). No relation was observed between glioma risk and smoking (odds ratio = 0.92, 95% confidence interval: 0.77, 1.10; P = 0.37), and there were no interactions for glioma risk of smoking history with any of the risk alleles. The authors’ observations are consistent with a recent report that the inherited glioma risk variants in chromosome regions 9p21.3 and 20q13.3 may modify the inverse association of allergy and glioma. PMID:21742680

  1. An optical assessment of the effects of glioma growth on resting state networks in mice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Orukari, Inema E.; Bauer, Adam Q.; Baxter, Grant A.; Rubin, Joshua B.; Culver, Joseph P.

    2017-02-01

    Gliomas are known to cause significant changes in normal brain function that lead to cognitive deficits. Disruptions in resting state networks (RSNs) are thought to underlie these changes. However, investigating the effects of glioma growth on RSNs in humans is complicated by the heterogeneity in lesion size, type, and location across subjects. In this study, we evaluated the effects of tumor growth on RSNs over time in a controlled mouse model of glioma growth. Methods: Glioma cells (5x104-105 U87s) were stereotactically injected into the forepaw somatosensory cortex of adult nude mice (n=5). Disruptions in RSNs were evaluated weekly with functional connectivity optical intrinsic signal imaging (fcOIS). Tumor growth was monitored with MRI and weekly bioluminescence imaging (BLI). In order to characterize how tumor growth affected different RSNs over time, we calculated a number of functional connectivity (fc) metrics, including homotopic (bilateral) connectivity, spatial similarity, and node degree. Results: Deficits in fc initiate near the lesion, and over a period of several weeks, extend more globally. The reductions in spatial similarity were found to strongly correlate with the BLI signal indicating that increased tumor size is associated with increased RSN disruption. Conclusions: We have shown that fcOIS is capable of detecting alterations in mouse RSNs due to brain tumor growth. A better understanding of how RSN disruption contributes to the development of cognitive deficits in brain tumor patients may lead to better patient risk stratification and consequently improved cognitive outcomes.

  2. Selective enrichment of hypericin in malignant glioma: pioneering in vivo results.

    PubMed

    Noell, Susan; Mayer, Daniel; Strauss, Wolfgang S L; Tatagiba, Marcos S; Ritz, Rainer

    2011-05-01

    Malignant gliomas are diffuse infiltrative growing tumors with a poor prognosis despite treatment with a combination of surgery, radiotherapy and chemotherapy. It has been shown recently that complete tumor resection improves the survival time significantly. Hypericin, a component of St. Johns Wort, is one of the most powerful photosensitizers in nature. The aim of the present study was to investigate accumulation of hypericin in intracerebral implanted malignant glioma in vivo. Rats underwent stereotactic implantation of C6 glioma cells. After intravenous administration of hypericin (5 mg per kg body weight), accumulation of the compound was studied in tumor, the infiltration zone surrounding the tumor and healthy brain (contralateral hemisphere) by fluorescence microscopy between 0 and 48 h after injection. Results were compared by one-way analysis of variance. For post hoc pair-wise comparison the Tukey-Kramer HSD test was used. Accumulation of hypericin was significantly higher in C6 glioma as compared to normal tissue. Maximum hypericin uptake was achieved at 24 h after injection. Ratios of fluorescence intensity between tumor and normal tissue as well as infiltration zone and normal tissue of about 6.1:1 and 1.4:1 were found. Considering tissue auto-fluorescence, fluorescence ratios of about 19.8:1 and 2.5:1 were calculated, respectively. Therefore, hypericin seems to be quite an effective fluorescence marker for the detection of glioma in vivo. To the best of our knowledge, the present study demonstrates for the first time that hypericin accumulates selectively in intracerebral implanted C6 glioma in vivo after systemic (intravenous) administration.

  3. Improved survival in rats with glioma using MRI-guided focused ultrasound and microbubbles to disrupt the blood-brain barrier and deliver Doxil

    NASA Astrophysics Data System (ADS)

    Aryal, Muna; Zhi Zhang, Yong; Vykhodtseva, Natalia; Park, Juyoung; Power, Chanikarn; McDannold, Nathan

    2012-02-01

    Blood-brain-barrier (BBB) limits the transportation of most neuropeptides, proteins (enzymes, antibodies), chemotherapeutic agents, and genes that have therapeutic potential for the treatment of brain diseases. Different methods have been used to overcome this limitation, but they are invasive, non-targeted, or require the development of new drugs. We have developed a method that uses MRI-guided focused ultrasound (FUS) combined with circulating microbubbles to temporarily open BBB in and around brain tumors to deliver chemotherapy agents. Here, we tested whether this noninvasive technique could enhance the effectiveness of a chemotherapy agent (Doxil). Using 690 kHz FUS transducer and microbubble (Definity), we induced BBB disruption in intracranially-implanted 9L glioma tumors in rat's brain in three weekly sessions. Animals who received BBB disruption and Doxil had a median survival time of 34.5 days, which was significantly longer than that found in control animals which is 16, 18.5, 21 days who received no treatment, BBB disruption only and Doxil only respectively This work demonstrates that FUS technique has promise in overcoming barriers to drug delivery, which are particularly stark in the brain due to the BBB.

  4. Functional-Based Resection Does Not Worsen Quality of Life in Patients with a Diffuse Low-Grade Glioma Involving Eloquent Brain Regions: A Prospective Cohort Study.

    PubMed

    Muto, Jun; Dezamis, Edouard; Rigaux-Viode, Odile; Peeters, Sophie; Roux, Alexandre; Zanello, Marc; Mellerio, Charles; Sauvageon, Xavier; Varlet, Pascale; Oppenheim, Catherine; Pallud, Johan

    2018-05-01

    We assessed the impact of surgery on postoperative cognitive function and ability to work in adult patients with a diffuse low-grade glioma involving eloquent brain regions and having a functional-based maximal surgical resection using intraoperative corticosubcortical mapping under awake conditions. We prospectively included 39 consecutive patients with diffuse isocitrate dehydrogenase-mutant low-grade glioma without preoperative and adjuvant oncologic treatment and assessed preoperative (mean, 24.1 ± 21.2 days before surgery) and postoperative (mean, 14.6 ± 13.2 months after surgery) cognitive evaluations and ability to work together with clinical, imaging, therapeutic, and follow-up characteristics before tumor progression. None of the 3 patients without preoperative cognitive deficit had postoperative worsening. We observed a significant inverse interaction between worsened postoperative cognitive function and extent of resection: 80.0%, 18.8%, and 16.7% of worsening after partial, subtotal, and total resection, respectively (P = 0.020). We observed an independent interaction between improved postoperative cognitive function and extent of resection: 20.0%, 43.7%, and 44.4% of improvement after partial, subtotal, and total resection, respectively (P = 0.022). Of the employed patients, 61.8% were unable to work preoperatively and 82.4% resumed their employment postoperatively (mean, 6.9 ± 5.5 months). We observed an independent interaction between postoperative ability to work, similar or superior to preoperative work capacity and extent of resection (P < 0.001): 20.0%, 87.5%, and 100% ability to work after partial, subtotal resection, and total resection. The extent of the functional-based surgical resection and the residual tumor for diffuse low-grade gliomas involving eloquent brain regions correlate with postoperative cognitive outcomes and return to work rates. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Dose-Dependent Cortical Thinning After Partial Brain Irradiation in High-Grade Glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karunamuni, Roshan; Bartsch, Hauke; White, Nathan S.

    Purpose: Radiation-induced cognitive deficits may be mediated by tissue damage to cortical regions. Volumetric changes in cortex can be reliably measured using high-resolution magnetic resonance imaging (MRI). We used these methods to study the association between radiation therapy (RT) dose and change in cortical thickness in high-grade glioma (HGG) patients. Methods and Materials: We performed a voxel-wise analysis of MRI from 15 HGG patients who underwent fractionated partial brain RT. Three-dimensional MRI was acquired pre- and 1 year post RT. Cortex was parceled with well-validated segmentation software. Surgical cavities were censored. Each cortical voxel was assigned a change in cortical thicknessmore » between time points, RT dose value, and neuroanatomic label by lobe. Effects of dose, neuroanatomic location, age, and chemotherapy on cortical thickness were tested using linear mixed effects (LME) modeling. Results: Cortical atrophy was seen after 1 year post RT with greater effects at higher doses. Estimates from LME modeling showed that cortical thickness decreased by −0.0033 mm (P<.001) for every 1-Gy increase in RT dose. Temporal and limbic cortex exhibited the largest changes in cortical thickness per Gy compared to that in other regions (P<.001). Age and chemotherapy were not significantly associated with change in cortical thickness. Conclusions: We found dose-dependent thinning of the cerebral cortex, with varying neuroanatomical regional sensitivity, 1 year after fractionated partial brain RT. The magnitude of thinning parallels 1-year atrophy rates seen in neurodegenerative diseases and may contribute to cognitive decline following high-dose RT.« less

  6. Mechanical confinement triggers glioma linear migration dependent on formin FHOD3

    PubMed Central

    Monzo, Pascale; Chong, Yuk Kien; Guetta-Terrier, Charlotte; Krishnasamy, Anitha; Sathe, Sharvari R.; Yim, Evelyn K. F.; Ng, Wai Hoe; Ang, Beng Ti; Tang, Carol; Ladoux, Benoit; Gauthier, Nils C.; Sheetz, Michael P.

    2016-01-01

    Glioblastomas are extremely aggressive brain tumors with highly invasive properties. Brain linear tracks such as blood vessel walls constitute their main invasive routes. Here we analyze rat C6 and patient-derived glioma cell motility in vitro using micropatterned linear tracks to mimic blood vessels. On laminin-coated tracks (3–10 μm), these cells used an efficient saltatory mode of migration similar to their in vivo migration. This saltatory migration was also observed on larger tracks (50–400 μm in width) at high cell densities. In these cases, the mechanical constraints imposed by neighboring cells triggered this efficient mode of migration, resulting in the formation of remarkable antiparallel streams of cells along the tracks. This motility involved microtubule-dependent polarization, contractile actin bundles and dynamic paxillin-containing adhesions in the leading process and in the tail. Glioma linear migration was dramatically reduced by inhibiting formins but, surprisingly, accelerated by inhibiting Arp2/3. Protein expression and phenotypic analysis indicated that the formin FHOD3 played a role in this motility but not mDia1 or mDia2. We propose that glioma migration under confinement on laminin relies on formins, including FHOD3, but not Arp2/3 and that the low level of adhesion allows rapid antiparallel migration. PMID:26912794

  7. Cigarette smoking, alcohol intake, and risk of glioma in the NIH-AARP Diet and Health Study.

    PubMed

    Braganza, M Z; Rajaraman, P; Park, Y; Inskip, P D; Freedman, N D; Hollenbeck, A R; de González, A Berrington; Kitahara, C M

    2014-01-07

    Although cigarette smoking and alcohol drinking increase the risk of several cancers and certain components of cigarette smoke and alcohol can penetrate the blood-brain barrier, it remains unclear whether these exposures influence the risk of glioma. We examined the associations between cigarette smoking, alcohol intake, and risk of glioma in the National Institutes of Health-AARP Diet and Health Study, a prospective study of 477,095 US men and women ages 50-71 years at baseline. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated using models with age as the time metric and adjusted for sex, race/ethnicity, education, and marital status. During a median 10.5 person-years of follow-up, 492 men and 212 women were diagnosed with first primary glioma. Among men, current, heavier smoking was associated with a reduced risk of glioma compared with never smoking, but this was based on only nine cases. No associations were observed between smoking behaviours and glioma risk in women. Greater alcohol consumption was associated with a decreased risk of glioma, particularly among men (>2 drinks per day vs <1 drink per week: HR=0.67, 95% CI=0.51-0.90). Smoking and alcohol drinking do not appear to increase the risk of glioma.

  8. Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain

    PubMed Central

    van der Vos, Kristan E.; Abels, Erik R.; Zhang, Xuan; Lai, Charles; Carrizosa, Esteban; Oakley, Derek; Prabhakar, Shilpa; Mardini, Osama; Crommentuijn, Matheus H. W.; Skog, Johan; Krichevsky, Anna M.; Stemmer-Rachamimov, Anat; Mempel, Thorsten R.; El Khoury, Joseph; Hickman, Suzanne E.; Breakefield, Xandra O.

    2016-01-01

    Background To understand the ability of gliomas to manipulate their microenvironment, we visualized the transfer of vesicles and the effects of tumor-released extracellular RNA on the phenotype of microglia in culture and in vivo. Methods Extracellular vesicles (EVs) released from primary human glioblastoma (GBM) cells were isolated and microRNAs (miRNAs) were analyzed. Primary mouse microglia were exposed to GBM-EVs, and their uptake and effect on proliferation and levels of specific miRNAs, mRNAs, and proteins were analyzed. For in vivo analysis, mouse glioma cells were implanted in the brains of mice, and EV release and uptake by microglia and monocytes/macrophages were monitored by intravital 2-photon microscopy, immunohistochemistry, and fluorescence activated cell sorting analysis, as well as RNA and protein levels. Results Microglia avidly took up GBM-EVs, leading to increased proliferation and shifting of their cytokine profile toward immune suppression. High levels of miR-451/miR-21 in GBM-EVs were transferred to microglia with a decrease in the miR-451/miR-21 target c-Myc mRNA. In in vivo analysis, we directly visualized release of EVs from glioma cells and their uptake by microglia and monocytes/macrophages in brain. Dissociated microglia and monocytes/macrophages from tumor-bearing brains revealed increased levels of miR-21 and reduced levels of c-Myc mRNA. Conclusions Intravital microscopy confirms the release of EVs from gliomas and their uptake into microglia and monocytes/macrophages within the brain. Our studies also support functional effects of GBM-released EVs following uptake into microglia, associated in part with increased miRNA levels, decreased target mRNAs, and encoded proteins, presumably as a means for the tumor to manipulate its environs. PMID:26433199

  9. An Updated and Comprehensive Meta-Analysis of Association Between Seven Hot Loci Polymorphisms from Eight GWAS and Glioma Risk.

    PubMed

    Wu, Qiang; Peng, Yanyan; Zhao, Xiaotao

    2016-09-01

    Eight genome-wide association studies (GWASs) found that seven loci (rs2736100, rs4295627, rs4977756, rs498872, rs11979158, rs2252586, rs6010620) polymorphisms could elevate the risk of glioma, one of the most common types of primary brain cancer in adults. However, the replication studies about these seven loci obtained inconsistent results. In order to derive a more accurate estimation about the relationship between the selected single-nucleotide polymorphism (SNP) and susceptibility to glioma, we conducted a meta-analysis containing all eligible published case control studies to evaluate the association. An overall literature search was conducted using the database of PubMed, Science Direct, China national knowledge infrastructure (CNKI), and Embase. Seventeen articles with 25 studies were included in the meta-analysis. Glioma risk (odds ratio, OR; 95 % confidential interval, 95 %CI) was estimated with the random-effect model or the fixed-effects model. STATA 12.0 was applied to analyze all statistical data. Results showed that seven hot loci were all associated with increased risk of glioma (rs2736100, OR = 1.28, 95 %CI = 1.23-1.32; rs4295627, OR = 1.34, 95 %CI = 1.21-1.47; rs4977756, OR = 1.24, 95 %CI = 1.20-1.28; rs498872, OR = 1.24, 95 %CI = 1.15-1.33; rs6010620, OR = 1.29, 95 %CI = 1.24-1.35; rs11979158: OR = 1.18, 95 %CI = 1.10-1.25; rs2252586: OR = 1.18, 95 %CI = 1.10-1.25). Additionally, subgroup analysis by stages of glioma found that variation of rs11979158 had stronger relationship with high-grade (OR = 1.32, 95 %CI = 1.19-1.45) than low-grade glioma (OR = 1.12, 95 % CI = 1.03-1.21). Similarly, stratified analysis of rs2252586 by stages revealed the similar trend, with OR of 1.26 (95 %CI = 1.17-1.35) in high-grade glioma and OR of 1.15 (95 %CI = 1.08-1.22) in low-grade glioma. In summary, the present study showed that mutations of the seven loci could elevate

  10. Preclinical investigation of ibrutinib, a Bruton's kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes

    PubMed Central

    Wei, Li; Su, Yu-Kai; Lin, Chien-Min; Chao, Tsu-Yi; Huang, Shang-Pen; Huynh, Thanh-Tuan; Jan, Hsun-Jin; Whang-Peng, Jacqueline; Chiou, Jeng-Fong; Wu, Alexander T.H.; Hsiao, Michael

    2016-01-01

    Standard interventions for glioma include surgery, radiation and chemotherapies but the prognosis for malignant cases such as glioblastoma multiforme remain grim. Even with targeted therapeutic agent, bevacitumab, malignant glioma often develops resistance and recurrence. Thus, developing alternative interventions (therapeutic targets, biomarkers) is urgently required. Bruton's tyrosine kinase (Btk) has been long implicated in B cell malignancies but surprisingly it has recently been shown to also play a tumorigenic role in solid tumors such as ovarian and prostate cancer. Bioinformatics data indicates that Btk is significantly higher in clinical glioma samples as compared to normal brain cells and Btk expression level is associated with stage progression. This prompts us to investigate the potential role of Btk as a therapeutic target for glioma. Here, we demonstrate Btk expression is associated with GBM tumorigenesis. Down-regulation of Btk in GBM cell lines showed a significantly reduced abilities in colony formation, migration and GBM sphere-forming potential. Mechanistically, Btk-silenced cells showed a concomitant reduction in the expression of CD133 and Akt/mTOR signaling. In parallel, Ibrutinib (a Btk inhibitor) treatment led to a similar anti-tumorigenic response. Using xenograft mouse model, tumorigenesis was significantly reduced in Btk-silenced or ibrutinib-treated mice as compared to control counterparts. Finally, our glioma tissue microarray analysis indicated a higher Btk staining in the malignant tumors than less malignant and normal brain tissues. Collectively, Btk may represent a novel therapeutic target for glioma and ibrunitib may be used as an adjuvant treatment for malignant GBM. PMID:27564106

  11. Preclinical investigation of ibrutinib, a Bruton's kinase tyrosine (Btk) inhibitor, in suppressing glioma tumorigenesis and stem cell phenotypes.

    PubMed

    Wei, Li; Su, Yu-Kai; Lin, Chien-Min; Chao, Tsu-Yi; Huang, Shang-Pen; Huynh, Thanh-Tuan; Jan, Hsun-Jin; Whang-Peng, Jacqueline; Chiou, Jeng-Fong; Wu, Alexander T H; Hsiao, Michael

    2016-10-25

    Standard interventions for glioma include surgery, radiation and chemotherapies but the prognosis for malignant cases such as glioblastoma multiforme remain grim. Even with targeted therapeutic agent, bevacitumab, malignant glioma often develops resistance and recurrence. Thus, developing alternative interventions (therapeutic targets, biomarkers) is urgently required. Bruton's tyrosine kinase (Btk) has been long implicated in B cell malignancies but surprisingly it has recently been shown to also play a tumorigenic role in solid tumors such as ovarian and prostate cancer. Bioinformatics data indicates that Btk is significantly higher in clinical glioma samples as compared to normal brain cells and Btk expression level is associated with stage progression. This prompts us to investigate the potential role of Btk as a therapeutic target for glioma. Here, we demonstrate Btk expression is associated with GBM tumorigenesis. Down-regulation of Btk in GBM cell lines showed a significantly reduced abilities in colony formation, migration and GBM sphere-forming potential. Mechanistically, Btk-silenced cells showed a concomitant reduction in the expression of CD133 and Akt/mTOR signaling. In parallel, Ibrutinib (a Btk inhibitor) treatment led to a similar anti-tumorigenic response. Using xenograft mouse model, tumorigenesis was significantly reduced in Btk-silenced or ibrutinib-treated mice as compared to control counterparts. Finally, our glioma tissue microarray analysis indicated a higher Btk staining in the malignant tumors than less malignant and normal brain tissues. Collectively, Btk may represent a novel therapeutic target for glioma and ibrunitib may be used as an adjuvant treatment for malignant GBM.

  12. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    ClinicalTrials.gov

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  13. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    PubMed

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  14. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    ClinicalTrials.gov

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  15. Antitumoral Cascade-Targeting Ligand for IL-6 Receptor-Mediated Gene Delivery to Glioma.

    PubMed

    Wang, Shanshan; Reinhard, Sören; Li, Chengyi; Qian, Min; Jiang, Huiling; Du, Yilin; Lächelt, Ulrich; Lu, Weiyue; Wagner, Ernst; Huang, Rongqin

    2017-07-05

    The effective treatment of glioma is largely hindered by the poor transfer of drug delivery systems across the blood-brain barrier (BBB) and the difficulty in distinguishing healthy and tumorous cells. In this work, for the first time, an interleukin-6 receptor binding I 6 P 7 peptide was exploited as a cascade-targeting ligand in combination with a succinoyl tetraethylene pentamine (Stp)-histidine oligomer-based nonviral gene delivery system (I 6 P 7 -Stp-His/DNA). The I 6 P 7 peptide provides multiple functions, including the cascade-targeting potential represented by a combined BBB-crossing and subsequent glioma-targeting ability, as well as a direct tumor-inhibiting effect. I 6 P 7 -Stp-His/DNA nanoparticles (NPs) mediated higher gene expression in human glioma U87 cells than in healthy human astrocytes and a deeper penetration into glioma spheroids than scrambled peptide-modified NPs. Transport of I 6 P 7 -modified, but not the control, NPs across the BBB was demonstrated in vitro in a transwell bEnd.3 cell model resulting in transfection of underlying U87 cells and also in vivo in glioma-bearing mice. Intravenous administration of I 6 P 7 -Stp-His/plasmid DNA (pDNA)-encoding inhibitor of growth 4 (pING4) significantly prolonged the survival time of orthotopic U87 glioma-bearing mice. The results denote that I 6 P 7 peptide is a roborant cascade-targeting ligand, and I 6 P 7 -modified NPs might be exploited for efficient glioma therapy. Copyright © 2017. Published by Elsevier Inc.

  16. Non-standard radiotherapy fractionations delay the time to malignant transformation of low-grade gliomas.

    PubMed

    Henares-Molina, Araceli; Benzekry, Sebastien; Lara, Pedro C; García-Rojo, Marcial; Pérez-García, Víctor M; Martínez-González, Alicia

    2017-01-01

    Grade II gliomas are slowly growing primary brain tumors that affect mostly young patients. Cytotoxic therapies (radiotherapy and/or chemotherapy) are used initially only for patients having a bad prognosis. These therapies are planned following the "maximum dose in minimum time" principle, i. e. the same schedule used for high-grade brain tumors in spite of their very different behavior. These tumors transform after a variable time into high-grade gliomas, which significantly decreases the patient's life expectancy. In this paper we study mathematical models describing the growth of grade II gliomas in response to radiotherapy. We find that protracted metronomic fractionations, i.e. therapeutical schedules enlarging the time interval between low-dose radiotherapy fractions, may lead to a better tumor control without an increase in toxicity. Other non-standard fractionations such as protracted or hypoprotracted schemes may also be beneficial. The potential survival improvement depends on the tumor's proliferation rate and can be even of the order of years. A conservative metronomic scheme, still being a suboptimal treatment, delays the time to malignant progression by at least one year when compared to the standard scheme.

  17. Resonance Raman imaging for detecting and monitoring molecular pathological changes in human brain tumors related to Warburg effect

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Zhu, Ke; Zhang, Chunyuan; Yang, Yang; Yu, Xinguang; Hu, Hailong; Cheng, Gangge; Wu, Binlin; Shi, Lingyan; Alfano, Robert R.

    2018-02-01

    The goal of the research is to determine the prognostic molecular pathological changes in components and composition, for human brain glioma gradings in comparison with normal tissues in three-dimensional Raman imaging profiles by visible Resonance Raman (VRR) imaging. VRR images from twenty-five specimens including three healthy tissues, one normal control, and twenty-one glioma tissues of grades II, II-III and III-IV with histology examination were measured and investigated using WITec300R confocal micro Raman imaging system with laser excitation of 532nm. Two-dimensional RR spectral mappings performed in 20μm x 20μm generated 400 images which integrated the intensity of the specific biochemical bonds as the third dimension. The three-dimension (3D) map demonstrated the spatial distributions of three selected sets of RR spectra of molecular biomarkers, and revealed significant differences in the spectra between normal and glioma tissues of different grades due to the composition changes in key molimageecules. These RR molecular spectral fingerprints have displayed: a clear enhancement of RR vibrational modes at 1129-1131cm-1 and 2934cm-1 which are supposed to be arising from lipoproteins; evident decreased RR vibrational modes at 1442cm-1 and 2854cm-1 which are from saturated fatty acids bonds in all-grades of glioma brain tissues compared with normal tissues; and the enhanced RR spectral modes of 1129 cm-1 and 2938cm-1 which suggest contribution from lactate. These findings may provide a novel proof for anaerobic glycolysis metabolic process in brain glioma cancer tissues that has been explained by Warburg effects.

  18. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel.

    PubMed

    Zacher, Angela; Kaulich, Kerstin; Stepanow, Stefanie; Wolter, Marietta; Köhrer, Karl; Felsberg, Jörg; Malzkorn, Bastian; Reifenberger, Guido

    2017-03-01

    Current classification of gliomas is based on histological criteria according to the World Health Organization (WHO) classification of tumors of the central nervous system. Over the past years, characteristic genetic profiles have been identified in various glioma types. These can refine tumor diagnostics and provide important prognostic and predictive information. We report on the establishment and validation of gene panel next generation sequencing (NGS) for the molecular diagnostics of gliomas. We designed a glioma-tailored gene panel covering 660 amplicons derived from 20 genes frequently aberrant in different glioma types. Sensitivity and specificity of glioma gene panel NGS for detection of DNA sequence variants and copy number changes were validated by single gene analyses. NGS-based mutation detection was optimized for application on formalin-fixed paraffin-embedded tissue specimens including small stereotactic biopsy samples. NGS data obtained in a retrospective analysis of 121 gliomas allowed for their molecular classification into distinct biological groups, including (i) isocitrate dehydrogenase gene (IDH) 1 or 2 mutant astrocytic gliomas with frequent α-thalassemia/mental retardation syndrome X-linked (ATRX) and tumor protein p53 (TP53) gene mutations, (ii) IDH mutant oligodendroglial tumors with 1p/19q codeletion, telomerase reverse transcriptase (TERT) promoter mutation and frequent Drosophila homolog of capicua (CIC) gene mutation, as well as (iii) IDH wildtype glioblastomas with frequent TERT promoter mutation, phosphatase and tensin homolog (PTEN) mutation and/or epidermal growth factor receptor (EGFR) amplification. Oligoastrocytic gliomas were genetically assigned to either of these groups. Our findings implicate gene panel NGS as a promising diagnostic technique that may facilitate integrated histological and molecular glioma classification. © 2016 International Society of Neuropathology.

  19. Diffuse Gliomas for Nonneuropathologists: The New Integrated Molecular Diagnostics.

    PubMed

    Lee, Sunhee C

    2018-05-18

    Diffuse gliomas comprise the bulk of "brain cancer" in adults. The recent update to the 4th edition of the World Health Organization's classification of tumors of the central nervous system reflects an unprecedented change in the landscape of the diagnosis and management of diffuse gliomas that will affect all those involved in the management and care of patients. Of the recently discovered gene alterations, mutations in the Krebs cycle enzymes isocitrate dehydrogenases (IDHs) 1 and 2 have fundamentally changed the way the gliomas are understood and classified. Incorporating information on a few genetic parameters (IDH, ATRX and/or p53, and chromosome 1p19q codeletion), a relatively straightforward diagnostic algorithm has been generated with robust and reproducible results that correlate with patients' survival far better than relying on conventional histology alone. Evidence also supports the conclusion that the vast majority of diffuse gliomas without IDH mutations (IDH-wild-type astrocytomas) behave like IDH-wild-type glioblastomas ("molecular GBM"). Together, these changes reflect a big shift in the practice of diagnostic neuropathology in which tumor risk stratification aligns better with molecular information than histology/grading. The purpose of this review is to provide the readers with a brief synopsis of the changes in the 2016 World Health Organization update with an emphasis on diffuse gliomas and to summarize key gene abnormalities on which these classifications are based. Practical points involved in day-to-day diagnostic workup are also discussed, along with a comparison of the various diagnostic tests, including immunohistochemistry, with an emphasis on targeted next-generation sequencing panel technology as a future universal approach.

  20. Tumor-Associated Macrophages Are Predominant Carriers of Cyclodextrin-Based Nanoparticles into Gliomas

    PubMed Central

    Alizadeh, Darya; Zhang, Leying; Hwang, Jungyeon; Schluep, Thomas; Badie, Behnam

    2009-01-01

    The goal of this study was to evaluate the mechanism of cyclodextrin-based nanoparticle (CDP-NP) uptake into a murine glioma model. Using mixed in vitro culture systems, we demonstrated that CDP-NP was preferentially taken up by BV2 and N9 microglia (MG) cells as compared to GL261 glioma cells. Fluorescent microscopy and flow cytometry analysis of intracranial (i.c.) GL261 gliomas confirmed these findings and demonstrated a predominant CDP-NP uptake by macrophages (MP) and MG within and around the tumor site. Interestingly, in mice bearing bilateral i.c. tumor, MG and MP carrying CDP-NP were able to migrate to the contralateral tumors. In conclusion, these studies better characterize the cellular distribution of CDP-NP in i.c. tumors and demonstrate that MP and MG could potentially be used as nanoparticle drug carriers into malignant brain tumors. PMID:19836468

  1. Molecular Subtypes of Glioblastoma Are Relevant to Lower Grade Glioma

    PubMed Central

    Sloan, Andrew E.; Chen, Yanwen; Brat, Daniel J.; O’Neill, Brian Patrick; de Groot, John; Yust-Katz, Shlomit; Yung, Wai-Kwan Alfred; Cohen, Mark L.; Aldape, Kenneth D.; Rosenfeld, Steven; Verhaak, Roeland G. W.; Barnholtz-Sloan, Jill S.

    2014-01-01

    Background Gliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM) expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas). Methods Gene expression array, single nucleotide polymorphism (SNP) array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III) from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson). Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP) was assigned using prediction models by Fine et al. Results Unsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs. Conclusions GBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression. PMID:24614622

  2. LncRNA-TP53TG1 Participated in the Stress Response Under Glucose Deprivation in Glioma.

    PubMed

    Chen, Xin; Gao, Yang; Li, Deheng; Cao, Yiqun; Hao, Bin

    2017-12-01

    Gliomas are the most common brain tumors of the center nervous system. And long non-coding RNAs (lncRNAs) are non-protein coding transcripts, which have been considered as one type of gene expression regulator for cancer development. In this study, we investigated the role of lncRNA-TP53TG1 in response to glucose deprivation in human gliomas. The expression levels of TP53TG1 in glioma tissues and cells were analyzed by qRT-PCR. In addition, the influence of TP53TG1 on glucose metabolism related genes at the mRNA level during both high and low glucose treatment was detected by qRT-PCR. MTT, clonogenicity assays, and flow cytometry were performed to detect the cell proliferation and cell apoptosis. Furthermore, the migration of glioma cells was examined by Transwell assays. The expression of TP53TG1 was significantly higher in human glioma tissues or cell lines compared with normal brain tissue or NHA. Moreover, TP53TG1 and some tumor glucose metabolism related genes, such as GRP78, LDHA, and IDH1 were up-regulated significantly in U87 and LN18 cells under glucose deprivation. In addition, knockdown of TP53TG1 decreased cell proliferation and migration and down-regulated GRP78 and IDH1 expression levels and up-regulated PKM2 levels in U87 cells under glucose deprivation. However, over-expression of TP53TG1 showed the opposite tendency. Moreover, the effects of TP53TG1 were more remarkable in low glucose than that in high glucose. Our data showed that TP53TG1 under glucose deprivation may promote cell proliferation and migration by influencing the expression of glucose metabolism related genes in glioma. J. Cell. Biochem. 118: 4897-4904, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Glioma antigen.

    PubMed

    Toda, Masahiro

    2012-01-01

    Because several antigenic peptides of human tumors that are recognized by T-lymphocytes have been identified, immune responses against cancer can now be artificially manipulated. Furthermore, since T-lymphocytes have been found to play an important role in the rejection of tumors by the host and also to have antigen-specific proliferative potentials and memory mechanisms, T-lymphocytes are thought to play a central role in cancer vaccination. Although multidisciplinary therapies have been attempted for the treatment of gliomas, the results remain unsatisfactory. For the development of new therapies against gliomas, it is required to identify tumor antigens as targets for specific immunotherapy. In this chapter, recent progress in research on glioma antigens is described.

  4. Detection of experimental brain tumors using time-resolved laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Reid C.; Black, Keith L.; Kateb, Babak; Marcu, Laura

    2002-05-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) has the potential to provide a non- invasive characterization and detection of tumors. We utilized TR-LIFS to detect gliomas in-vivo in the rat C6 glioma model. Time-resolved emission spectra of both normal brain and tumor were analyzed to determine if unique fluorescence signatures could be used to distinguish the two. Fluorescence parameters derived from both spectral and time domain were used for tissue characterization. Our results show that in the rat C6 glioma model, TR-LIFS can be used to differentiate brain tumors from normal tissue (gray and white mater) based upon time- resolved fluorescence signatures seen in brain tumors.

  5. Characterizing invading glioma cells based on IDH1-R132H and Ki-67 immunofluorescence.

    PubMed

    Sabit, Hemragul; Nakada, Mitsutoshi; Furuta, Takuya; Watanabe, Takuya; Hayashi, Yutaka; Sato, Hiroshi; Kato, Yukinari; Hamada, Jun-ichiro

    2014-10-01

    Glioma, the most common primary brain tumor, is characterized by proliferative-invasive growth. However, the detailed biological characteristics of invading glioma cells remain to be elucidated. A monoclonal antibody (clone HMab-1) that specifically and sensitively recognizes the isocitrate dehydrogenase-1 (IDH1) protein carrying the R132H mutation can identify invading glioma cells by immunostaining. To investigate the degree of invasion in gliomas of distinct grades and the proliferative capacity of the invading cells, immunofluorescent staining was conducted using antibodies against IDH1-R132H and Ki-67 on 11 surgical and autopsy specimens of the tumor core and the invading area. Higher numbers of IDH1-R132H-positive cells in the invading area correlated with a higher tumor grade. Double staining for IDH1-R132H and Ki-67 demonstrated that most invading cells that expressed IDH1-R132H were not stained by the Ki-67 antibody, and the ratio of Ki-67-positive cells among IDH1-R132H-positive cells was significantly lower in the invasion area than in the tumor core in all grades of glioma. These data suggest that higher grade gliomas have a greater invasive potential and that invading cells possess low proliferative capacity.

  6. Cytotoxic effect of menadione and sodium orthovanadate in combination on human glioma cells.

    PubMed

    Delwar, Zahid M; Avramidis, Dimitrios; Follin, Elna; Hua, Yan; Siden, Åke; Cruz, Mabel; Paulsson, Kajsa M; Yakisich, Juan Sebastian

    2012-08-01

    Gliomas are the most common primary brain tumor, and their treatment is still a challenge. Here, we evaluated the antiproliferative effect of a novel combination of two potent oxidative stress enhancers: menadione (M) and sodium orthovanadate (SO). We observed both short-term and prolonged growth inhibitory effects of M or SO alone as well as in combination (M:SO) on DBTRG.05MG human glioma cells. A stronger antiproliferative effect was observed in the short-term proliferation assay with the M:SO combination compared to either investigated agent alone. In the long-term proliferation assay, a 10-day exposure to M:SO at concentrations of 10 μM:17.5 μM or 17.5 μM:10 μM was enough to kill 100% of the cells; no cell regrowth was observed after re-incubation in drug-free media. When used in combination, the single concentration of M and SO could be decreased by 2.5- to 5-fold of those used for each experimental drug alone and still obtain a similar antiproliferative effect. The underlying molecular mechanism was investigated by co-incubating M:SO with dithiothreitol (DTT) and genistein. Both substances partially neutralized the effects of the M:SO combination, showing additive effects. This observation suggests a role of oxidative stress and tyrosine kinase stimulation in the M:SO cytotoxic effect. Our results indicate that M:SO combination is an attractive alternative for glioma treatment that encourages further study. The neutralizing effects of genistein and DTT reveal a possibility for their use in the minimization of potential M:SO systemic toxicity.

  7. RO4929097, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed Malignant Glioma

    ClinicalTrials.gov

    2015-09-28

    Acoustic Schwannoma; Adult Anaplastic (Malignant) Meningioma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Brain Stem Glioma; Adult Choroid Plexus Neoplasm; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pilocytic Astrocytoma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Primary Melanocytic Lesion of Meninges; Adult Subependymal Giant Cell Astrocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor; Malignant Adult Intracranial Hemangiopericytoma

  8. Carbon Nanotubes Enhance CpG Uptake and Potentiate Anti-Glioma Immunity

    PubMed Central

    Zhao, Dongchang; Alizadeh, Darya; Zhang, Leying; Liu, Wei; Farrukh, Omar; Manuel, Edwin; Diamond, Don J.; Badie, Behnam

    2010-01-01

    Purpose Stimulation of toll-like receptor-9 (TLR9) by CpG oligodeoxynucleotides (CpG) has been shown to counteract the immunosuppressive microenvironment and to inhibit tumor growth in glioma models. Since TLR9 is located intracellularly, we hypothesized that methods that enhance its internalization may also potentiate its immunostimulatory response. The goal of this study was to evaluate carbon nanotubes (CNTs) as a CpG delivery vehicle in brain tumor models. Experimental Design Functionalized single-walled CNTs were conjugated with CpG (CNT-CpG) and evaluated in vitro and in mice bearing intracranial GL261 gliomas. Flow cytometry was used to assess CNT-CpG uptake and anti-glioma immune response. Tumor growth was measured by bioluminescent imaging, histology, and animal survival. Results CNT-CpG was nontoxic and enhanced CpG uptake both in vitro and intracranial gliomas. CNT-mediated CpG delivery also potentiated pro-inflammatory cytokine production by primary monocytes. Interestingly, a single intracranial injection of low-dose CNT-CpG (but not free CpG or blank CNT) eradicated intracranial GL261 gliomas in half of tumor-bearing mice. Moreover, surviving animals exhibited durable tumor-free remission (> 3 months), and were protected from intracranial tumor rechallenge, demonstrating induction of long-term anti-tumor immunity. Conclusions These findings suggest that CNTs can potentiate CpG immunopotency by enhancing its delivery into tumor-associated inflammatory cells. PMID:21088258

  9. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma.

    PubMed

    Tsen, Andrew R; Long, Patrick M; Driscoll, Heather E; Davies, Matthew T; Teasdale, Benjamin A; Penar, Paul L; Pendlebury, William W; Spees, Jeffrey L; Lawler, Sean E; Viapiano, Mariano S; Jaworski, Diane M

    2014-03-15

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA-induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic and hypoacetylated mesenchymal glioma tumors. © 2013 UICC.

  10. Triacetin-based acetate supplementation as a chemotherapeutic adjuvant therapy in glioma

    PubMed Central

    Tsen, Andrew R.; Long, Patrick M.; Driscoll, Heather E.; Davies, Matthew T.; Teasdale, Benjamin A.; Penar, Paul L.; Pendlebury, William W.; Spees, Jeffrey L.; Lawler, Sean E.; Viapiano, Mariano S.; Jaworski, Diane M.

    2013-01-01

    Cancer is associated with epigenetic (i.e., histone hypoacetylation) and metabolic (i.e., aerobic glycolysis) alterations. Levels of N-acetyl-L-aspartate (NAA), the primary storage form of acetate in the brain, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis to generate acetate, are reduced in glioma; yet, few studies have investigated acetate as a potential therapeutic agent. This preclinical study sought to test the efficacy of the food additive Triacetin (glyceryl triacetate, GTA) as a novel therapy to increase acetate bioavailability in glioma cells. The growth-inhibitory effects of GTA, compared to the histone deacetylase inhibitor Vorinostat (SAHA), were assessed in established human glioma cell lines (HOG and Hs683 oligodendroglioma, U87 and U251 glioblastoma) and primary tumor-derived glioma stem-like cells (GSCs), relative to an oligodendrocyte progenitor line (Oli-Neu), normal astrocytes, and neural stem cells (NSCs) in vitro. GTA was also tested as a chemotherapeutic adjuvant with temozolomide (TMZ) in orthotopically grafted GSCs. GTA induced cytostatic growth arrest in vitro comparable to Vorinostat, but, unlike Vorinostat, GTA did not alter astrocyte growth and promoted NSC expansion. GTA alone increased survival of mice engrafted with glioblastoma GSCs and potentiated TMZ to extend survival longer than TMZ alone. GTA was most effective on GSCs with a mesenchymal cell phenotype. Given that GTA has been chronically administered safely to infants with Canavan disease, a leukodystrophy due to ASPA mutation, GTA-mediated acetate supplementation may provide a novel, safe chemotherapeutic adjuvant to reduce the growth of glioma tumors, most notably the more rapidly proliferating, glycolytic, and hypoacetylated mesenchymal glioma tumors. PMID:23996800

  11. L-DOPA Preloading Increases the Uptake of Borophenylalanine in C6 Glioma Rat Model: A New Strategy to Improve BNCT Efficacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capuani, Silvia; Enrico Fermi Center, Rome; Gili, Tommaso

    Purpose: Boron neutron capture therapy (BNCT) is a radiotherapeutic modality based on {sup 10}B(n,{alpha}){sup 7}Li reaction, for the treatment of malignant gliomas. One of the main limitations for BNCT effectiveness is the insufficient intake of {sup 10}B nuclei in the tumor cells. This work was aimed at investigating the use of L-DOPA as a putative enhancer for {sup 10}B-drug 4-dihydroxy-borylphenylalanine (BPA) uptake in the C6-glioma model. The investigation was first performed in vitro and then extended to the animal model. Methods and Materials: BPA accumulation in C6-glioma cells was assessed using radiowave dielectric spectroscopy, with and without L-DOPA preloading. Twomore » L-DOPA incubation times (2 and 4 hours) were investigated, and the corresponding effects on BPA accumulation were quantified. C6-glioma cells were also implanted in the brain of 32 rats, and tumor growth was monitored by magnetic resonance imaging. Rats were assigned to two experimental branches: (1) BPA administration; (2) BPA administration after pretreatment with L-DOPA. All animals were sacrificed, and assessments of BPA concentrations in tumor tissue, normal brain, and blood samples were performed using high-performance liquid chromatography. Results: L-DOPA preloading induced a massive increase of BPA concentration in C6-glioma cells only after a 4-hour incubation. In the animal model, L-DOPA pretreatment produced a significantly higher accumulation of BPA in tumor tissue but not in normal brain and blood samples. Conclusions: This study suggests the potential use of L-DOPA as enhancer for BPA accumulation in malignant gliomas eligible for BNCT. L-DOPA preloading effect is discussed in terms of membrane transport mechanisms.« less

  12. AKT Axis, miR-21, and RECK Play Pivotal Roles in Dihydroartemisinin Killing Malignant Glioma Cells

    PubMed Central

    Shao, Ying-Ying; Zhang, Tao-Lan; Wu, Lan-Xiang; Zou, He-Cun; Li, Shuang; Huang, Jin; Zhou, Hong-Hao

    2017-01-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is known to play important roles in inhibiting proliferation rate, inducing apoptosis, as well as hindering the metastasis and invasion of glioma cells, but the underlying mechanisms are still unclear so far. In this study, methyl thiazolyl tetrazolium (MTT), colony-forming, wound healing, invasion, and apoptosis assays were performed to investigate the effect of DHA on malignant glioma cells. Results showed that DHA induced apoptosis of malignant glioma cells through Protein Kinase B (AKT) axis, induced death of malignant glioma cells by downregulating miR-21, and inhibited the invasion of malignant glioma cells corresponding with up-regulation of the reversion-inducing-cysteine-rich protein with kazal motifs (RECK). These results revealed that AKT axis, miR-21, and RECK play pivotal roles in DHA killing malignant glioma cells, suggesting that DHA is a potential agent for treating glioma. PMID:28208619

  13. Solid lipid nanoparticles by coacervation loaded with a methotrexate prodrug: preliminary study for glioma treatment.

    PubMed

    Battaglia, Luigi; Muntoni, Elisabetta; Chirio, Daniela; Peira, Elena; Annovazzi, Laura; Schiffer, Davide; Mellai, Marta; Riganti, Chiara; Salaroglio, Iris Chiara; Lanotte, Michele; Panciani, Pierpaolo; Capucchio, Maria Teresa; Valazza, Alberto; Biasibetti, Elena; Gallarate, Marina

    2017-03-01

    Methotrexate-loaded biocompatible nanoparticles were tested for preliminary efficacy in glioma treatment. Behenic acid nanoparticles, prepared by the coacervation method, were loaded with the ester prodrug didodecylmethotrexate, which was previously tested in vitro against glioblastoma human primary cultures. Nanoparticle conjugation with an ApoE mimicking chimera peptide was performed to obtain active targeting to the brain. Biodistribution studies in healthy rats assessed the superiority of ApoE-conjugated formulation, which was tested on an F98/Fischer glioma model. Differences were observed in tumor growth rate (measured by MRI) between control and treated rats. In vitro tests on F98 cultured cells assessed their susceptibility to treatment, with consequent apoptosis, and allowed us to explain the apoptosis observed in glioma models.

  14. Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment.

    PubMed

    Zhou, Zhiping; Singh, Ranjodh; Souweidane, Mark M

    2017-01-01

    Convection-enhanced delivery (CED) is a technique designed to deliver drugs directly into the brain or tumors. Its ability to bypass the blood-brain barrier (BBB), one of the major hurdles in delivering drugs to the brain, has made it a promising drug delivery method for the treatment of primary brain tumors. A number of clinical trials utilizing CED of various therapeutic agents have been conducted to treat patients with supratentorial high-grade gliomas. Significant responses have been observed in certain patients in all of these trials. However, the insufficient ability to monitor drug distribution and pharmacokinetics hampers CED from achieving its potentials on a larger scale. Brainstem CED for diffuse intrinsic pontine glioma (DIPG) treatment is appealing because this tumor is compact and has no definitive treatment. The safety of brainstem CED has been established in small and large animals, and recently in early stage clinical trials. There are a few current clinical trials of brainstem CED in treating DIPG patients using targeted macromolecules such as antibodies and immunotoxins. Future advances for CED in DIPG treatment will come from several directions including: choosing the right agents for infusion; developing better agents and regimen for DIPG infusion; improving instruments and technique for easier and accurate surgical targeting and for allowing multisession or prolonged infusion to implement optimal time sequence; and better understanding and control of drug distribution, clearance and time sequence. CED-based therapies for DIPG will continue to evolve with new understanding of the technique and the disease.

  15. Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment

    PubMed Central

    Zhou, Zhiping; Singh, Ranjodh; Souweidane, Mark M.

    2017-01-01

    Convection-enhanced delivery (CED) is a technique designed to deliver drugs directly into the brain or tumors. Its ability to bypass the blood-brain barrier (BBB), one of the major hurdles in delivering drugs to the brain, has made it a promising drug delivery method for the treatment of primary brain tumors. A number of clinical trials utilizing CED of various therapeutic agents have been conducted to treat patients with supratentorial high-grade gliomas. Significant responses have been observed in certain patients in all of these trials. However, the insufficient ability to monitor drug distribution and pharmacokinetics hampers CED from achieving its potentials on a larger scale. Brainstem CED for diffuse intrinsic pontine glioma (DIPG) treatment is appealing because this tumor is compact and has no definitive treatment. The safety of brainstem CED has been established in small and large animals, and recently in early stage clinical trials. There are a few current clinical trials of brainstem CED in treating DIPG patients using targeted macromolecules such as antibodies and immunotoxins. Future advances for CED in DIPG treatment will come from several directions including: choosing the right agents for infusion; developing better agents and regimen for DIPG infusion; improving instruments and technique for easier and accurate surgical targeting and for allowing multisession or prolonged infusion to implement optimal time sequence; and better understanding and control of drug distribution, clearance and time sequence. CED-based therapies for DIPG will continue to evolve with new understanding of the technique and the disease. PMID:27306036

  16. L1 stimulation of human glioma cell motility correlates with FAK activation

    PubMed Central

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A.; Boulos, Magdy I.; Kappes, John C.

    2011-01-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  17. L1 stimulation of human glioma cell motility correlates with FAK activation.

    PubMed

    Yang, Muhua; Li, Yupei; Chilukuri, Kalyani; Brady, Owen A; Boulos, Magdy I; Kappes, John C; Galileo, Deni S

    2011-10-01

    The neural adhesion/recognition protein L1 (L1CAM; CD171) has been shown or implicated to function in stimulation of cell motility in several cancer types, including high-grade gliomas. Our previous work demonstrated the expression and function of L1 protein in stimulation of cell motility in rat glioma cells. However, the mechanism of this stimulation is still unclear. This study further investigated the function of L1 and L1 proteolysis in human glioblastoma multiforme (GBM) cell migration and invasion, as well as the mechanism of this stimulation. L1 mRNA was found to be present in human T98G GBM cell line but not in U-118 MG grade III human glioma cell line. L1 protein expression, proteolysis, and release were found in T98G cells and human surgical GBM cells by Western blotting. Exosome-like vesicles released by T98G cells were purified and contained full-length L1. In a scratch assay, T98G cells that migrated into the denuded scratch area exhibited upregulation of ADAM10 protease expression coincident with loss of surface L1. GBM surgical specimen cells exhibited a similar loss of cell surface L1 when xenografted into the chick embryo brain. When lentivirally introduced shRNA was used to attenuate L1 expression, such T98G/shL1 cells exhibited significantly decreased cell motility by time lapse microscopy in our quantitative Super Scratch assay. These cells also showed a decrease in FAK activity and exhibited increased focal complexes. L1 binding integrins which activate FAK were found in T98G and U-118 MG cells. Addition of L1 ectodomain-containing media (1) rescued the decreased cell motility of T98G/shL1 cells and (2) increased cell motility of U-118 MG cells but (3) did not further increase T98G cell motility. Injection of L1-attenuated T98G/shL1 cells into embryonic chick brains resulted in the absence of detectable invasion compared to control cells which invaded brain tissue. These studies support a mechanism where glioma cells at the edge of a cell mass

  18. Role of lymphocyte-specific protein tyrosine kinase (LCK) in the expansion of glioma-initiating cells by fractionated radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan

    2010-11-26

    Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In thismore » study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population

  19. Silencing Nrf2 impairs glioma cell proliferation via AMPK-activated mTOR inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Yue; Wang, Handong, E-mail: njhdwang@hotmail.com; Wang, Qiang

    Gliomas are the leading cause of death among adults with primary brain malignancies. Treatment for malignant gliomas remains limited, and targeted therapies have been incompletely explored. Nuclear factor erythroid 2-related factor 2 (Nrf2), a key transcription regulator for antioxidant and detoxification enzymes, is abundantly expressed in cancer cells. In this study, the role and mechanism of Nrf2 in cancer cell proliferation was investigated in multiple glioma cell lines. We first evaluated the expression patterns of Nrf2 in four glioma cell lines and found all four cell lines expressed Nrf2, but the highest level was observed in U251 cells. We further evaluatedmore » the biological functions of Nrf2 in U251 glioma cell proliferation by specific inhibition of Nrf2 using short hairpin RNA (shRNA). We found that Nrf2 depletion inhibited glioma cell proliferation. Nrf2 depletion also decreased colony formation in U251 cells stably expressing Nrf2 shRNA compared to scrambled control shRNA. Moreover, suppression of Nrf2 expression could lead to ATP depletion (with concomitant rise in AMP/ATP ratio) and consequently to AMPK-activated mTOR inhibition. Finally, activation of adenosine monophosphate–activated protein kinase (AMPK) by treated with phenformin, an AMPK agonist, can mimic the inhibitory effect of Nrf2 knockdown in U251 cells. In conclusion, our findings will shed light to the role and mechanism of Nrf2 in regulating glioma proliferation via ATP-depletion-induced AMPK activation and consequent mTOR inhibition, a novel insight into our understanding the role and mechanism of Nrf2 in glioma pathoetiology. To our knowledge, this is also the first report to provide a rationale for the implication of cross-linking between Nrf2 and mTOR signaling.« less

  20. Upregulation of B23 promotes tumor cell proliferation and predicts poor prognosis in glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jianguo; Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province; Sun, Jie

    B23 (also known as Nucleophosmin, NPM, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. In this study we intended to investigate the clinical significance of B23 expression in human glioma and its biological function in glioma cells. Western blot and immunohistochemistry analysis showed that B23 was overexpressed in glioma tissues and glioma cell lines. In addition, the expression level of B23 was positively correlated with glioma pathological grade and Ki-67 expression. Kaplan–Meier analysis revealed that a higher B23 expression in patients with glioma was associated with a poorer prognosis. In vitro, after the releasemore » of glioma cell lines from serum starvation, the expression of B23 was upregulated, as well as PCNA (Proliferating Cell Nuclear Antigen) and cyclin A. In addition, knockdown of B23 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. Taken together, our results implied that B23 could be a candidate prognostic biomarker as well as a potential therapeutical target of glioma. - Highlights: • B23 expression increased as the malignant degree of glioma increased, which was consistent with Ki-67 expression. • High expression of B23 could be a strong determinant of poor prognosis in glioma. • B23 may be involved in the proliferation of glioma in a cell-cycle-dependent pathway. • Knockdown of B23 expression by siRNA could affect the progression of glioma. • B23 may be a potential prognosis biomarker and a possible therapeutic target for glioma.« less

  1. miR-141-3p functions as a tumor suppressor modulating activating transcription factor 5 in glioma.

    PubMed

    Wang, Mengyuan; Hu, Ming; Li, Zhaohua; Qian, Dongmeng; Wang, Bin; Liu, David X

    2017-09-02

    Glioma is the most common malignant primary brain tumor which arises from the central nervous system. Our studies reported that an anti-apoptotic factor, activating transcription factor 5 (ATF5), is highly expressed in malignant glioma specimens and cell lines. Downregulation by dominant-negetive ATF5 could repress glioma cell proliferation and accelerate apoptosis. Here, we further investigate the upstream factor which regulates ATF5 expression. Bioinformatic analysis showed that ATF5 was a potential target of miR-141-3p. Luciferase reporter assay verified that miR-141-3p specifically targeted the ATF5 3'-UTR in glioma cells. Functional studied suggested that miR-141-3p overexpression inhibited proliferation and promoted apoptosis of glioma cells (U87MG and U251). Xenograft experiments proved the inhibition of miR-141-3p on glioma growth in vivo. Moreover, exogenous ATF5 without 3'-UTR restored the cell proliferation inhibition triggered by miR-141-3p. Taken together, we put forward that miR-141-3p is a new upstream target towards ATF5. It can serve as a crucial tumor suppressor in regulating the ATF5-regulated growth of malignant glioma. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Gene Therapy and Targeted Toxins for Glioma

    PubMed Central

    Castro, Maria G.; Candolfi, Marianela; Kroeger, Kurt; King, Gwendalyn D.; Curtin, James F.; Yagiz, Kader; Mineharu, Yohei; Assi, Hikmat; Wibowo, Mia; Muhammad, AKM Ghulam; Foulad, David; Puntel, Mariana; Lowenstein, Pedro R.

    2011-01-01

    The most common primary brain tumor in adults is glioblastoma. These tumors are highly invasive and aggressive with a mean survival time of nine to twelve months from diagnosis to death. Current treatment modalities are unable to significantly prolong survival in patients diagnosed with glioblastoma. As such, glioma is an attractive target for developing novel therapeutic approaches utilizing gene therapy. This review will examine the available preclinical models for glioma including xenographs, syngeneic and genetic models. Several promising therapeutic targets are currently being pursued in pre-clinical investigations. These targets will be reviewed by mechanism of action, i.e., conditional cytotoxic, targeted toxins, oncolytic viruses, tumor suppressors/oncogenes, and immune stimulatory approaches. Preclinical gene therapy paradigms aim to determine which strategies will provide rapid tumor regression and long-term protection from recurrence. While a wide range of potential targets are being investigated preclinically, only the most efficacious are further transitioned into clinical trial paradigms. Clinical trials reported to date are summarized including results from conditionally cytotoxic, targeted toxins, oncolytic viruses and oncogene targeting approaches. Clinical trial results have not been as robust as preclinical models predicted; this could be due to the limitations of the GBM models employed. Once this is addressed, and we develop effective gene therapies in models that better replicate the clinical scenario, gene therapy will provide a powerful approach to treat and manage brain tumors. PMID:21453286

  3. Extracellular miRNA-21 as a novel biomarker in glioma: evidence from meta-analysis, clinical validation and experimental investigations

    PubMed Central

    Liu, Tian; Wang, Zhixin; Tai, Minghui; Meng, Fandi; Zhang, Jingyao; Wan, Yong; Mao, Ping; Dong, Xiaoqun; Liu, Chang; Niu, Wenquan; Dong, Shunbin

    2016-01-01

    Evidence is accumulating highlighting the importance of extracellular miRNA as a novel biomarker for diagnosing various kinds of malignancies. MiR-21 is one of the most studied miRNAs and is over-expressed in cancer tissues. To explore the clinical implications and secretory mechanisms of extracellular miR-21, we firstly meta-analyzed the diagnostic efficiency of extracellular miR-21 in different cancer types. Eighty-one studies based on 59 articles were finally included. In our study, extracellular miR-21 was observed to exhibit an outstanding diagnostic accuracy in detecting brain cancer (area under the summary receiver operating characteristic curve or AUC = 0.94), and this accuracy was more obvious in glioma diagnosis (AUC = 0.95). Our validation study (n = 45) further confirmed the diagnostic and prognostic role of miR-21 in cerebrospinal fluid (CSF) for glioma. These findings inspired us to explore the biological function of miR-21. We next conducted mechanistic investigations to explain the secretory mechanisms of extracellular miR-21 in glioma. TGF-β/Smad3 signaling was identified to participate in mediating the release of miR-21 from glioma cells. Further targeting TGF-β/Smad3 signaling using galunisertib, an inhibitor of the TGF-β type I receptor kinase, can attenuate the secretion of miR-21 from glioma cells. Taken together, CSF-based miR-21 might serve as a potential biomarker for diagnosing brain cancer, especially for patients with glioma. Moreover, extracellular levels of miR-21 were affected by exogenous TGF-β activity and galunisertib treatment. PMID:27166186

  4. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences.

    PubMed

    Qin, Jiang-Bo; Liu, Zhenyu; Zhang, Hui; Shen, Chen; Wang, Xiao-Chun; Tan, Yan; Wang, Shuo; Wu, Xiao-Feng; Tian, Jie

    2017-05-07

    BACKGROUND Gliomas are the most common primary brain neoplasms. Misdiagnosis occurs in glioma grading due to an overlap in conventional MRI manifestations. The aim of the present study was to evaluate the power of radiomic features based on multiple MRI sequences - T2-Weighted-Imaging-FLAIR (FLAIR), T1-Weighted-Imaging-Contrast-Enhanced (T1-CE), and Apparent Diffusion Coefficient (ADC) map - in glioma grading, and to improve the power of glioma grading by combining features. MATERIAL AND METHODS Sixty-six patients with histopathologically proven gliomas underwent T2-FLAIR and T1WI-CE sequence scanning with some patients (n=63) also undergoing DWI scanning. A total of 114 radiomic features were derived with radiomic methods by using in-house software. All radiomic features were compared between high-grade gliomas (HGGs) and low-grade gliomas (LGGs). Features with significant statistical differences were selected for receiver operating characteristic (ROC) curve analysis. The relationships between significantly different radiomic features and glial fibrillary acidic protein (GFAP) expression were evaluated. RESULTS A total of 8 radiomic features from 3 MRI sequences displayed significant differences between LGGs and HGGs. FLAIR GLCM Cluster Shade, T1-CE GLCM Entropy, and ADC GLCM Homogeneity were the best features to use in differentiating LGGs and HGGs in each MRI sequence. The combined feature was best able to differentiate LGGs and HGGs, which improved the accuracy of glioma grading compared to the above features in each MRI sequence. A significant correlation was found between GFAP and T1-CE GLCM Entropy, as well as between GFAP and ADC GLCM Homogeneity. CONCLUSIONS The combined radiomic feature had the highest efficacy in distinguishing LGGs from HGGs.

  5. Centrosomal Protein of 55 Regulates Glucose Metabolism, Proliferation and Apoptosis of Glioma Cells via the Akt/mTOR Signaling Pathway

    PubMed Central

    Wang, Guangzhi; Liu, Mingna; Wang, Hongjun; Yu, Shan; Jiang, Zhenfeng; Sun, Jiahang; Han, Ke; Shen, Jia; Zhu, Minwei; Lin, Zhiguo; Jiang, Chuanlu; Guo, Mian

    2016-01-01

    Introduction: Glioma is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and the progression of glioma are elusive and controversial. Centrosomal protein of 55 (CEP55) was initially described as a highly coiled-coil protein that plays critical roles in cell division, but was recently identified as being overexpressed in many human cancers. The function of CEP55 has not previously been characterized in glioma. We aim to discover the effect and mechanism of CEP55 in glioma development. Method: qRT-PCR and immunohistochemistry were used to analyze CEP55 expression. Glucose uptake, western blot, MTS, CCK-8, Caspase-3 activity and TUNEL staining assays were performed to investigate the role and mechanism of CEP55 on glioma cell process. Results: We found that the levels of CEP55 expression were upregulated in glioma. In addition, CEP55 appeared to regulate glucose metabolism of glioma cells. Furthermore, knockdown of CEP55 inhibited cell proliferation and induced cell apoptosis in glioma. Finally, we provided preliminary evidence that knockdown of CEP55 inhibited glioma development via suppressing the activity of Akt/mTOR signaling. Conclusions: Our results demonstrated that CEP55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway, and its promotive effect on glioma tumorigenesis can be a potential target for glioma therapy in the future. PMID:27471559

  6. A new anti-glioma therapy, AG119: pre-clinical assessment in a mouse GL261 glioma model.

    PubMed

    Towner, Rheal A; Ihnat, Michael; Saunders, Debra; Bastian, Anja; Smith, Nataliya; Pavana, Roheeth Kumar; Gangjee, Aleem

    2015-07-17

    High grade gliomas (HGGs; grades III and IV) are the most common primary brain tumors in adults, and their malignant nature ranks them fourth in incidence of cancer death. Standard treatment for glioblastomas (GBM), involving surgical resection followed by radiation and chemotherapy with temozolomide (TMZ) and the anti-angiogenic therapy bevacizumab, have not substantially improved overall survival. New therapeutic agents are desperately needed for this devastating disease. Here we study the potential therapeutic agent AG119 in a pre-clinical model for gliomas. AG119 possesses both anti-angiogenic (RTK inhibition) and antimicrotubule cytotoxic activity in a single molecule. GL261 glioma-bearing mice were either treated with AG119, anti-VEGF (vascular endothelial growth factor) antibody, anti c-Met antibody or TMZ, and compared to untreated tumor-bearing mice. Animal survival was assessed, and tumor volumes and vascular alterations were monitored with morphological magnetic resonance imaging (MRI) and perfusion-weighted imaging, respectively. Percent survival of GL261 HGG-bearing mice treated with AG119 was significantly higher (p < 0.001) compared to untreated tumors. Tumor volumes (21-31 days following intracerebral implantation of GL261 cells) were found to be significantly lower for AG119 (p < 0.001), anti-VEGF (p < 0.05) and anti-c-Met (p < 0.001) antibody treatments, and TMZ-treated (p < 0.05) mice, compared to untreated controls. Perfusion data indicated that both AG119 and TMZ were able to reduce the effect of decreasing perfusion rates significantly (p < 0.05 for both), when compared to untreated tumors. It was also found that IC50 values for AG119 were much lower than those for TMZ in T98G and U251 cells. These data support further exploration of the anticancer activity AG119 in HGG, as this compound was able to increase animal survival and decrease tumor volumes in a mouse GL261 glioma model, and that AG119 is also not subject to methyl guanine

  7. Interaction of allergy history and antibodies to specific Varicella zoster virus proteins on glioma risk

    PubMed Central

    Lee, Seung-Tae; Bracci, Paige; Zhou, Mi; Rice, Terri; Wiencke, John; Wrensch, Margaret; Wiemels, Joseph

    2014-01-01

    Glioma is the most common cancer of the central nervous system but with few confirmed risk factors. Glioma has been inversely associated with chicken pox, shingles, and seroreactivity to varicella virus (VZV), as well as to allergies and allergy-associated IgE. The role of antibody reactivity against individual VZV antigens has not been assessed. Ten VZV-related proteins, selected for high immunogenicity or known function, were synthesized and used as targets for antibody measurements in the sera of 143 glioma cases and 131 healthy controls selected from the San Francisco Bay Area Adult Glioma Study. Glioma cases exhibited significantly reduced seroreactivity compared to controls for six antigens, including proteins IE63 (OR = 0.26, 95%CI:0.12-0.58, comparing lowest quartile to highest), and the VZV-unique protein ORF2p (OR = 0.44, 95%CI:0.21-0.96, lowest quartile to highest). When stratifying the study population into those with low and high self-reported allergy history, VZV protein seroreactivity was only associated inversely with glioma among individuals self-reporting more than two allergies. The data provide insight into both allergy and VZV effects on glioma: strong anti-VZV reactions in highly allergic individuals is associated with reduced occurrence of glioma. This result suggests a role for specificity in the anti-VZV immunity in brain tumor suppression for both individual VZV antigens and in the fine-tuning of the immune response by allergy. Anti-VZV reactions may also be a biomarker of effective CNS immunosurveillance due to the tropism of the virus. PMID:24127236

  8. Recombinant epidermal growth factor-like domain-1 from coagulation factor VII functionalized iron oxide nanoparticles for targeted glioma magnetic resonance imaging.

    PubMed

    Liu, Heng; Chen, Xiao; Xue, Wei; Chu, Chengchao; Liu, Yu; Tong, Haipeng; Du, Xuesong; Xie, Tian; Liu, Gang; Zhang, Weiguo

    The highly infiltrative and invasive nature of glioma cells often leads to blurred tumor margins, resulting in incomplete tumor resection and tumor recurrence. Accurate detection and precise delineation of glioma help in preoperative delineation, surgical planning and survival prediction. In this study, recombinant epidermal growth factor-like domain-1, derived from human coagulation factor VII, was conjugated to iron oxide nanoparticles (IONPs) for targeted glioma magnetic resonance (MR) imaging. The synthesized EGF1-EGFP-IONPs exhibited excellent targeting ability toward tissue factor (TF)-positive U87MG cells and human umbilical vein endothelial cells in vitro, and demonstrated persistent and efficient MR contrast enhancement up to 12 h for preclinical glioma models with high targeting specificity in vivo. They hold great potential for clinical translation and developing targeted theranostics against brain glioma.

  9. Wild-Type Reovirus in Combination With Sargramostim in Treating Younger Patients With High-Grade Relapsed or Refractory Brain Tumors

    ClinicalTrials.gov

    2018-03-16

    Childhood Astrocytoma; Childhood Atypical Teratoid/Rhabdoid Tumor; Diffuse Intrinsic Pontine Glioma; Glioma; Recurrent Childhood Anaplastic Oligodendroglioma; Recurrent Childhood Brain Neoplasm; Recurrent Childhood Glioblastoma; Recurrent Childhood Medulloblastoma; Recurrent Primitive Neuroectodermal Tumor; Refractory Brain Neoplasm

  10. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades.

    PubMed

    Togao, Osamu; Yoshiura, Takashi; Keupp, Jochen; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Suzuki, Yuriko; Suzuki, Satoshi O; Iwaki, Toru; Hata, Nobuhiro; Mizoguchi, Masahiro; Yoshimoto, Koji; Sagiyama, Koji; Takahashi, Masaya; Honda, Hiroshi

    2014-03-01

    Amide proton transfer (APT) imaging is a novel molecular MRI technique to detect endogenous mobile proteins and peptides through chemical exchange saturation transfer. We prospectively assessed the usefulness of APT imaging in predicting the histological grade of adult diffuse gliomas. Thirty-six consecutive patients with histopathologically proven diffuse glioma (48.1 ± 14.7 y old, 16 males and 20 females) were included in the study. APT MRI was conducted on a 3T clinical scanner and was obtained with 2 s saturation at 25 saturation frequency offsets ω = -6 to +6 ppm (step 0.5 ppm). δB0 maps were acquired separately for a point-by-point δB0 correction. APT signal intensity (SI) was defined as magnetization transfer asymmetry at 3.5 ppm: magnetization transfer ratio (MTR)asym = (S[-3.5 ppm] - S[+3.5 ppm])/S0. Regions of interest were carefully placed by 2 neuroradiologists in solid parts within brain tumors. The APT SI was compared with World Health Organization grade, Ki-67 labeling index (LI), and cell density. The mean APT SI values were 2.1 ± 0.4% in grade II gliomas (n = 8), 3.2 ± 0.9% in grade III gliomas (n = 10), and 4.1 ± 1.0% in grade IV gliomas (n = 18). Significant differences in APT intensity were observed between grades II and III (P < .05) and grades III and IV (P < .05), as well as between grades II and IV (P < .001). There were positive correlations between APT SI and Ki-67 LI (P = .01, R = 0.43) and between APT SI and cell density (P < .05, R = 0.38). The gliomas with microscopic necrosis showed higher APT SI than those without necrosis (P < .001). APT imaging can predict the histopathological grades of adult diffuse gliomas.

  11. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    NASA Astrophysics Data System (ADS)

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-11-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  12. The long non-coding RNA HOTAIR is transcriptionally activated by HOXA9 and is an independent prognostic marker in patients with malignant glioma

    PubMed Central

    Xavier-Magalhães, Ana; Gonçalves, Céline S.; Fogli, Anne; Lourenço, Tatiana; Pojo, Marta; Pereira, Bruno; Rocha, Miguel; Lopes, Maria Celeste; Crespo, Inês; Rebelo, Olinda; Tão, Herminio; Lima, João; Moreira, Ricardo; Pinto, Afonso A.; Jones, Chris; Reis, Rui M.; Costello, Joseph F.; Arnaud, Philippe; Sousa, Nuno; Costa, Bruno M.

    2018-01-01

    The lncRNA HOTAIR has been implicated in several human cancers. Here, we evaluated the molecular alterations and upstream regulatory mechanisms of HOTAIR in glioma, the most common primary brain tumors, and its clinical relevance. HOTAIR gene expression, methylation, copy-number and prognostic value were investigated in human gliomas integrating data from online datasets and our cohorts. High levels of HOTAIR were associated with higher grades of glioma, particularly IDH wild-type cases. Mechanistically, HOTAIR was overexpressed in a gene dosage-independent manner, while DNA methylation levels of particular CpGs in HOTAIR locus were associated with HOTAIR expression levels in GBM clinical specimens and cell lines. Concordantly, the demethylating agent 5-Aza-2′-deoxycytidine affected HOTAIR transcriptional levels in a cell line-dependent manner. Importantly, HOTAIR was frequently co-expressed with HOXA9 in high-grade gliomas from TCGA, Oncomine, and our Portuguese and French datasets. Integrated in silico analyses, chromatin immunoprecipitation, and qPCR data showed that HOXA9 binds directly to the promoter of HOTAIR. Clinically, GBM patients with high HOTAIR expression had a significantly reduced overall survival, independently of other prognostic variables. In summary, this work reveals HOXA9 as a novel direct regulator of HOTAIR, and establishes HOTAIR as an independent prognostic marker, providing new therapeutic opportunities to treat this highly aggressive cancer. PMID:29644006

  13. A novel COLD-PCR/FMCA assay enhances the detection of low-abundance IDH1 mutations in gliomas.

    PubMed

    Pang, Brendan; Durso, Mary B; Hamilton, Ronald L; Nikiforova, Marina N

    2013-03-01

    Point mutations in isocitrate dehydrogenase 1 (IDH1) have been identified in many gliomas. The detection of IDH1 mutations becomes challenging on suboptimal glioma biopsies when a limited number of tumor cells is available for analysis. Coamplification at lower denaturing-polymerase chain reaction (COLD-PCR) is a PCR technique that deliberately lowers the denaturing cycle temperature to selectively favor amplification of mutant alleles, allowing for the sensitive detection of low-abundance mutations. We developed a novel COLD-PCR assay on the LightCycler platform (Roche, Applied Science, Indianapolis, IN), using post-PCR fluorescent melting curve analysis (FMCA) for the detection of mutant IDH1 with a detection limit of 1%. Thirty-five WHO grade I to IV gliomas and 9 non-neoplastic brain and spinal cord biopsies were analyzed with this technique and the results were compared with the conventional real-time PCR and the Sanger sequencing analysis. COLD-PCR/FMCA was able to detect the most common IDH1 R132H mutation and rare mutation types including R132H, R132C, R132L, R132S, and R132G mutations. Twenty-five glioma cases were positive for IDH1 mutations by COLD-PCR/FMCA, and 23 gliomas were positive by the conventional real-time PCR and Sanger sequencing. A pilocytic astrocytoma (PA I) and a glioblastoma multiforme (GBM IV) showed low-abundance IDH1 mutations detected by COLD-PCR/FMCA. The remaining 10 glioma and 9 non-neoplastic samples were negative by all the 3 methods. In summary, we report a novel COLD-PCR/FMCA method that provides rapid and sensitive detection of IDH1 mutations in formalin-fixed paraffin-embedded tissue and can be used in the clinical setting to assess the small brain biopsies.

  14. Glioma cell VEGFR-2 confers resistance to chemotherapeutic and antiangiogenic treatments in PTEN-deficient glioblastoma

    PubMed Central

    Blaes, Jonas; Osswald, Matthias; Rübmann, Petra; Milford, David; Urban, Severino; Jestaedt, Leonie; Heiland, Sabine; Bendszus, Martin; Hertenstein, Anne; Pfenning, Philipp-Niclas; de Almodóvar, Carmen Ruiz; Wick, Antje; Winkler, Frank; von Deimling, Andreas; Platten, Michael; Wick, Wolfgang; Weiler, Markus

    2015-01-01

    Loss of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a prerequisite for tumor cell-specific expression of vascular endothelial growth factor receptor (VEGFR)-2 in glioblastoma defining a subgroup prone to develop evasive resistance towards antiangiogenic treatments. Immunohistochemical analysis of human tumor tissues showed VEGFR-2 expression in glioma cells in 19% of specimens examined, mainly in the infiltration zone. Glioma cell VEGFR-2 positivity was restricted to PTEN-deficient tumor specimens. PTEN overexpression reduced VEGFR-2 expression in vitro, as well as knock-down of raptor or rictor. Genetic interference with VEGFR-2 revealed proproliferative, antiinvasive and chemoprotective functions for VEGFR-2 in glioma cells. VEGFR-2-dependent cellular effects were concomitant with activation of 'kappa-light-chain-enhancer’ of activated B-cells, protein kinase B, and N-myc downstream regulated gene 1. Two-photon in vivo microscopy revealed that expression of VEGFR-2 in glioma cells hampers antiangiogenesis. Bevacizumab induces a proinvasive response in VEGFR-2-positive glioma cells. Patients with PTEN-negative glioblastomas had a shorter survival after initiation of bevacizumab therapy compared with PTEN-positive glioblastomas. Conclusively, expression of VEGFR-2 in glioma cells indicates an aggressive glioblastoma subgroup developing early resistance to temozolomide or bevacizumab. Loss of PTEN may serve as a biomarker identifying those tumors upfront by routine neuropathological methods. PMID:25682871

  15. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    PubMed

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American

  16. Comparison of O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography and Perfusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Patients with Progressive and Recurrent Glioma: A Hybrid Positron Emission Tomography/Magnetic Resonance Study.

    PubMed

    Verger, Antoine; Filss, Christian P; Lohmann, Philipp; Stoffels, Gabriele; Sabel, Michael; Wittsack, Hans-J; Kops, Elena Rota; Galldiks, Norbert; Fink, Gereon R; Shah, Nadim J; Langen, Karl-Josef

    2018-05-01

    To compare the diagnostic performance of O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET) positron emission tomography (PET) and perfusion-weighted magnetic resonance imaging (PWI) for the diagnosis of progressive or recurrent glioma. Thirty-two pretreated gliomas (25 progressive or recurrent tumors, 7 treatment-related changes) were investigated with 18 F-FET PET and PWI via a hybrid PET/magnetic resonance scanner. Volumes of interest with a diameter of 16 mm were centered on the maximum of abnormality in the tumor area in PET and PWI maps (relative cerebral blood volume, relative cerebral blood flow, mean transit time) and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios as well as dynamic data for 18 F-FET uptake were calculated. Diagnostic accuracies were evaluated by receiver operating characteristic analyses, calculating the area under the curve. 18 F-FET PET showed a significant greater sensitivity to detect abnormalities in pretreated gliomas than PWI (76% vs. 52%, P = 0.03). The maximum tumor-to-brain ratio of 18 F-FET PET was the only parameter that discriminated treatment-related changes from progressive or recurrent gliomas (area under the curve, 0.78; P = 0.03, best cut-off 2.61; sensitivity 80%, specificity 86%, accuracy 81%). Among patients with signal abnormality in both modalities, 75% revealed spatially incongruent local hot spots. This pilot study suggests that 18 F-FET PET is superior to PWI to diagnose progressive or recurrent glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Quantitative Analysis of Complex Glioma Cell Migration on Electrospun Polycaprolactone Using Time-Lapse Microscopy

    PubMed Central

    Johnson, Jed; Nowicki, M. Oskar; Lee, Carol H.; Chiocca, E. Antonio; Viapiano, Mariano S.; Lawler, Sean E.

    2009-01-01

    Malignant gliomas are the most common tumors originating within the central nervous system and account for over 15,000 deaths annually in the United States. The median survival for glioblastoma, the most common and aggressive of these tumors, is only 14 months. Therapeutic strategies targeting glioma cells migrating away from the tumor core are currently hampered by the difficulty of reproducing migration in the neural parenchyma in vitro. We utilized a tissue engineering approach to develop a physiologically relevant model of glioma cell migration. This revealed that glioma cells display dramatic differences in migration when challenged by random versus aligned electrospun poly-ɛ-caprolactone nanofibers. Cells on aligned fibers migrated at an effective velocity of 4.2 ± 0.39 μm/h compared to 0.8 ± 0.08 μm/h on random fibers, closely matching in vivo models and prior observations of glioma spread in white versus gray matter. Cells on random fibers exhibited extension along multiple fiber axes that prevented net motion; aligned fibers promoted a fusiform morphology better suited to infiltration. Time-lapse microscopy revealed that the motion of individual cells was complex and was influenced by cell cycle and local topography. Glioma stem cell–containing neurospheres seeded on random fibers did not show cell detachment and retained their original shape; on aligned fibers, cells detached and migrated in the fiber direction over a distance sixfold greater than the perpendicular direction. This chemically and physically flexible model allows time-lapse analysis of glioma cell migration while recapitulating in vivo cell morphology, potentially allowing identification of physiological mediators and pharmacological inhibitors of invasion. PMID:19199562

  18. Combating immunosuppression in glioma

    PubMed Central

    Vega, Eleanor A; Graner, Michael W; Sampson, John H

    2012-01-01

    Despite maximal therapy, malignant gliomas have a very poor prognosis. Patients with glioma express significant immune defects, including CD4 lymphopenia, increased fractions of regulatory T cells in peripheral blood and shifts in cytokine profiles from Th1 to Th2. Recent studies have focused on ways to combat immunosuppression in patients with glioma as well as in animal models for glioma. We concentrate on two specific ways to combat immunosuppression: inhibition of TGF-β signaling and modulation of regulatory T cells. TGF-β signaling can be interrupted by antisense oligonucleotide technology, TGF-β receptor I kinase inhibitors, soluble TGF-β receptors and antibodies against TGF-β. Regulatory T cells have been targeted with antibodies against T-cell markers, such as CD25, CTLA-4 and GITR. In addition, vaccination against Foxp3 has been explored. The results of these studies have been encouraging; combating immunosuppression may be one key to improving prognosis in malignant glioma. PMID:18518768

  19. Brain Gliomas: Multicenter Standardized Assessment of Dynamic Contrast-enhanced and Dynamic Susceptibility Contrast MR Images.

    PubMed

    Anzalone, Nicoletta; Castellano, Antonella; Cadioli, Marcello; Conte, Gian Marco; Cuccarini, Valeria; Bizzi, Alberto; Grimaldi, Marco; Costa, Antonella; Grillea, Giovanni; Vitali, Paolo; Aquino, Domenico; Terreni, Maria Rosa; Torri, Valter; Erickson, Bradley J; Caulo, Massimo

    2018-06-01

    Purpose To evaluate the feasibility of a standardized protocol for acquisition and analysis of dynamic contrast material-enhanced (DCE) and dynamic susceptibility contrast (DSC) magnetic resonance (MR) imaging in a multicenter clinical setting and to verify its accuracy in predicting glioma grade according to the new World Health Organization 2016 classification. Materials and Methods The local research ethics committees of all centers approved the study, and informed consent was obtained from patients. One hundred patients with glioma were prospectively examined at 3.0 T in seven centers that performed the same preoperative MR imaging protocol, including DCE and DSC sequences. Two independent readers identified the perfusion hotspots on maps of volume transfer constant (K trans ), plasma (v p ) and extravascular-extracellular space (v e ) volumes, initial area under the concentration curve, and relative cerebral blood volume (rCBV). Differences in parameters between grades and molecular subtypes were assessed by using Kruskal-Wallis and Mann-Whitney U tests. Diagnostic accuracy was evaluated by using receiver operating characteristic curve analysis. Results The whole protocol was tolerated in all patients. Perfusion maps were successfully obtained in 94 patients. An excellent interreader reproducibility of DSC- and DCE-derived measures was found. Among DCE-derived parameters, v p and v e had the highest accuracy (are under the receiver operating characteristic curve [A z ] = 0.847 and 0.853) for glioma grading. DSC-derived rCBV had the highest accuracy (A z = 0.894), but the difference was not statistically significant (P > .05). Among lower-grade gliomas, a moderate increase in both v p and rCBV was evident in isocitrate dehydrogenase wild-type tumors, although this was not significant (P > .05). Conclusion A standardized multicenter acquisition and analysis protocol of DCE and DSC MR imaging is feasible and highly reproducible. Both techniques showed a

  20. High expression of Bruton's tyrosine kinase (BTK) is required for EGFR-induced NF-κB activation and predicts poor prognosis in human glioma.

    PubMed

    Yue, Chenglong; Niu, Mingshan; Shan, Qian Qian; Zhou, Ting; Tu, Yiming; Xie, Peng; Hua, Lei; Yu, Rutong; Liu, Xuejiao

    2017-09-25

    Malignant glioma is the most common primary brain tumor in adults and has a poor prognosis. However, there are no effective targeted therapies for glioma patients. Thus, the development of novel targeted therapeutics for glioma is urgently needed. In this study, we examined the prognostic significance BTK expression in patients with glioma. Furthermore, we investigated the mechanism and therapeutic potential of ibrutinib in the treatment of human glioma in vitro and in vivo. Our data demonstrate that high expression of BTK is a novel prognostic marker for poor survival in patients with glioma. BTK-specific inhibitor ibrutinib effectively inhibits the proliferation, migration and invasion ability of glioma cells. Furthermore, ibrutinib can induce G1 cell-cycle arrest by regulating multiple cell cycle-associated proteins. More importantly, we found that BTK inhibition significantly blocks the degradation of IκBα and prevents the nuclear accumulation of NF-κB p65 subunit induced by EGF in glioma cells. Taken together, our study suggests that BTK is a novel prognostic marker and molecular therapeutic target for glioma. BTK is required for EGFR-induced NF-κB activation in glioma cells. These findings provide the basis for future clinical studies of ibrutinib for the treatment of glioma.