Zhu, Chong-Bin; Lindler, Kathryn M; Owens, Anthony W; Daws, Lynette C; Blakely, Randy D; Hewlett, William A
2010-01-01
Serotonin (5-hydroxytryptamine, 5-HT) has long been implicated in regulation of mood. Medications that block the neuronal 5-HT transporter (SERT) are used as major pharmacological treatment for mood disorders. Conversely, stimuli that enhance SERT activity might be predicted to diminish synaptic 5-HT availability and increase the risk for 5-HT-related CNS disorders. We have shown that the inflammatory cytokines enhance brain SERT activity in cultured serotonergic cells and nerve terminal preparations in vitro. In this study, we establish that intraperitoneal injection of the cytokine-inducer lipopolysaccharide (LPS) stimulates brain SERT activity, acting at doses below those required to induce overt motor suppression. SERT stimulation by LPS is paralleled by increased immobility in both the tail suspension test (TST) and the forced swim test (FST); antidepressant-sensitive alterations are thought to model aspects of behavioral despair. Both the stimulation of SERT activity and induced immobility are absent when LPS is administered to interleukin-1 receptor (IL-1R)-deficient mice and in the presence of SB203580, an inhibitor of IL-1R-stimulated p38 MAPK. Moreover, the ability of LPS to enhance immobility in TST is lost in SERT knockout mice. These findings reveal an ability of peripheral inflammatory stimuli to enhance brain SERT activity through IL-1R and p38 MAPK pathways in vivo and identify a requirement for SERT expression in immune-system-modulated despair behaviors. Our studies identify IL-1R- and p38 MAPK-dependent regulation of SERT as one of the mechanisms by which environmentally driven immune system activation can trigger despair-like behavior in an animal model, encouraging future analysis of the pathway for risk factors in neuropsychiatric disorders. PMID:20827273
Kindlundh-Högberg, Anna M S; Schiöth, Helgi B; Svenningsson, Per
2007-11-01
The popular recreational drug, 3,4-methylenedioxymethamphetamine (MDMA) is often taken as intermittent binges by adolescents at dance clubs. The neurobiological mechanisms that underlie MDMA-induced psychiatric conditions are still poorly understood. In the present study, mimicking adolescent patterns of administration, repeated intermittent MDMA binges (3x5 mg/(kg day) given 3h apart, every 7th day for 4 weeks) were given to adolescent mice and rats. Behavioral responses in the open-field and autoradiographic ligand-binding to dopamine (DAT) and serotonin (SERT) transporters in reward regions of the brain were measured. In the open-field, total horizontal activity (HA) was significantly increased in both mice and rats following the first and third weekly administered MDMA binge. However, rats, but not mice, exhibited an enhanced activity in the centre of the open-field arena, indicating on reduced anxiety or enhanced impulsivity, which is known to be associated with altered serotonin activity. Specific binding of DAT, but not SERT, was significantly reduced in the mouse AcbSh and CPU using in vitro autoradiography. On the contrary, SERT, but not DAT density was significantly reduced in the AcbSh of rats. Taken together, our data provide evidence for differential regulation of DAT and SERT densities in reward-related brain regions of rats and mice after long-term intermittent administration of MDMA.
Henke, Adam; Kovalyova, Yekaterina; Dunn, Matthew; Dreier, Dominik; Gubernator, Niko G; Dincheva, Iva; Hwu, Christopher; Šebej, Peter; Ansorge, Mark S; Sulzer, David; Sames, Dalibor
2018-05-16
Ongoing efforts in our laboratories focus on design of optical reporters known as fluorescent false neurotransmitters (FFNs) that enable the visualization of uptake into, packaging within, and release from individual monoaminergic neurons and presynaptic sites in the brain. Here, we introduce the molecular probe FFN246 as an expansion of the FFN platform to the serotonergic system. Combining the acridone fluorophore with the ethylamine recognition element of serotonin, we identified FFN54 and FFN246 as substrates for both the serotonin transporter and the vesicular monoamine transporter 2 (VMAT2). A systematic structure-activity study revealed the basic structural chemotype of aminoalkyl acridones required for serotonin transporter (SERT) activity and enabled lowering the background labeling of these probes while maintaining SERT activity, which proved essential for obtaining sufficient signal in the brain tissue (FFN246). We demonstrate the utility of FFN246 for direct examination of SERT activity and SERT inhibitors in 96-well cell culture assays, as well as specific labeling of serotonergic neurons of the dorsal raphe nucleus in the living tissue of acute mouse brain slices. While we found only minor FFN246 accumulation in serotonergic axons in murine brain tissue, FFN246 effectively traces serotonin uptake and packaging in the soma of serotonergic neurons with improved photophysical properties and loading parameters compared to known serotonin-based fluorescent tracers.
Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi
2003-05-01
We have designed and synthesized a dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT) as a novel class of treatment drugs for Alzheimer's disease on the basis of a hypothetical model of the AChE active site. Dual inhibitions of AChE and SERT would bring about greater therapeutic effects than AChE inhibition alone and avoid adverse peripheral effects caused by excessive AChE inhibition. Compound (S)-6j exhibited potent inhibitory activities against AChE (IC(50)=101 nM) and SERT (IC(50)=42 nM). Furthermore, (S)-6j showed inhibitory activities of both AChE and SERT in mice brain following oral administration.
Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots
NASA Astrophysics Data System (ADS)
Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra
2011-03-01
For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.
Vanicek, Thomas; Kutzelnigg, Alexandra; Philippe, Cecile; Sigurdardottir, Helen L; James, Gregory M; Hahn, Andreas; Kranz, Georg S; Höflich, Anna; Kautzky, Alexander; Traub-Weidinger, Tatjana; Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus; Kasper, Siegfried; Lanzenberger, Rupert
2017-02-01
Altered serotonergic neurotransmission has been found to cause impulsive and aggressive behavior, as well as increased motor activity, all exemplifying key symptoms of ADHD. The main objectives of this positron emission tomography (PET) study were to investigate the serotonin transporter binding potential (SERT BP ND ) in patients with ADHD and to assess associations of SERT BP ND between the brain regions. 25 medication-free patients with ADHD (age ± SD; 32.39 ± 10.15; 10 females) without any psychiatric comorbidity and 25 age and sex matched healthy control subjects (33.74 ± 10.20) were measured once with PET and the highly selective and specific radioligand [ 11 C]DASB. SERT BP ND maps in nine a priori defined ROIs exhibiting high SERT binding were compared between groups by means of a linear mixed model. Finally, adopted from structural and functional connectivity analyses, we performed correlational analyses using regional SERT binding potentials to examine molecular interregional associations between all selected ROIs. We observed significant differences in the interregional correlations between the precuneus and the hippocampus in patients with ADHD compared to healthy controls, using SERT BP ND of the investigated ROIs (P < 0.05; Bonferroni corrected). When correlating SERT BP ND and age in the ADHD and the healthy control group, we confirmed an age-related decline in brain SERT binding in the thalamus and insula (R 2 = 0.284, R 2 = 0.167, Ps < 0.05; Bonferroni corrected). The results show significantly different interregional molecular associations of the SERT expression for the precuneus with hippocampus in patients with ADHD, indicating presumably altered functional coupling. Altered interregional coupling between brain regions might be a sensitive approach to demonstrate functional and molecular alterations in psychiatric conditions. Hum Brain Mapp 38:792-802, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Traumatic brain injury decreases serotonin transporter expression in the rat cerebrum.
Abe, Keiichi; Shimada, Ryo; Okada, Yoshikazu; Kibayashi, Kazuhiko
2016-04-01
An association has been postulated between traumatic brain injury (TBI) and depression. The serotonin transporter (SERT) regulates the concentration of serotonin in the synaptic cleft and represents a molecular target for antidepressants. We hypothesized that SERT expression in the brain changes following TBI. We performed immunohistochemistry, real-time polymerase chain reaction analysis for mRNA and western blot analysis for protein to examine the time-dependent changes in SERT expression in the cerebrum during the first 14 days after TBI, using a controlled cortical impact model in rats. SERT immunoreactivity in neuronal fibres within the area adjacent to the cortical contusion decreased 1 to 14 days after injury. Significantly decreased SERT mRNA and protein expression were noted in the area adjacent to the cortical contusion 7 days after injury. There were no significant changes in SERT expression in the cingulum of the injured brain. The findings of this study indicate that TBI decreases SERT expression in the cerebral cortex. The decreased levels of SERT expression after TBI may result in decreased serotonin neurotransmission in the brain and indicate a possible relationship with depression following TBI.
Abe, Yasuyuki; Aoyagi, Atsushi; Hara, Takao; Abe, Kazumi; Yamazaki, Reina; Kumagae, Yoshihiro; Naruto, Shunji; Koyama, Kazuo; Marumoto, Shinji; Tago, Keiko; Toda, Narihiro; Takami, Kazuko; Yamada, Naho; Ori, Mayuko; Kogen, Hiroshi; Kaneko, Tsugio
2003-09-01
A dual inhibitor of acetylcholinesterase (AChE) and serotonin transporter (SERT), RS-1259 (4-[1S)-methylamino-3-(4-nitrophenoxy)]propylphenyl N,N-dimethylcarbamate (fumaric acid)(1/2)salt), was newly synthesized. RS-1259 simultaneously inhibited AChE and SERT in the brain following an oral administration in mice and rats. Actual simultaneous elevation of extracellular levels of 5-HT and ACh in the rat hippocampus was confirmed by microdialysis. The compound was as effective as SERT inhibitors such as fluoxetine and fluvoxamine in a 5-hydroxytryptophan-enhancing test in mice. Spatial memory deficits in the two-platform task of a water maze in aged rats were ameliorated by RS-1259 as well as donepezil. Both RS-1259 and donepezil increased the awake episodes in the daytime electroencephalogram of rats. Although RS-1259 was weaker than donepezil in enhancing central cholinergic transmission, as observed by ACh elevation in the hippocampus and memory enhancement in aged rats, the efficacy of RS-1259 on the consciousness level, which reflects the whole activity in the brain, was almost the same as that of donepezil. These results suggest that both cholinergic and serotonergic systems are involved in maintaining brain arousal and that a dual inhibitor of AChE and SERT may be useful for the treatment of cognitive disorders associated with reduced brain activity such as in Alzheimer's disease.
2014-01-01
Background Changes in serotonin transporter (SERT) function have been implicated in autism. SERT function is influenced by the number of transporter molecules present at the cell surface, which is regulated by various cellular mechanisms including interactions with other proteins. Thus, we searched for novel SERT-binding proteins and investigated whether the expression of one such protein was affected in subjects with autism. Methods Novel SERT-binding proteins were examined by a pull-down system. Alterations of SERT function and membrane expression upon knockdown of the novel SERT-binding protein were studied in HEK293-hSERT cells. Endogenous interaction of SERT with the protein was evaluated in mouse brains. Alterations in the mRNA expression of SERT (SLC6A4) and the SERT-binding protein in the post-mortem brains and the lymphocytes of autism patients were compared to nonclinical controls. Results N-ethylmaleimide-sensitive factor (NSF) was identified as a novel SERT-binding protein. NSF was co-localized with SERT at the plasma membrane, and NSF knockdown resulted in decreased SERT expression at the cell membranes and decreased SERT uptake function. NSF was endogenously co-localized with SERT and interacted with SERT. While SLC6A4 expression was not significantly changed, NSF expression tended to be reduced in post-mortem brains, and was significantly reduced in lymphocytes of autistic subjects, which correlated with the severity of the clinical symptoms. Conclusions These data clearly show that NSF interacts with SERT under physiological conditions and is required for SERT membrane trafficking and uptake function. A possible role for NSF in the pathophysiology of autism through modulation of SERT trafficking, is suggested. PMID:24834316
McCann, Una D; Szabo, Zsolt; Seckin, Esen; Rosenblatt, Peter; Mathews, William B; Ravert, Hayden T; Dannals, Robert F; Ricaurte, George A
2005-09-01
(+/-)3,4-Methylenedioxymethamphetamine (MDMA, 'Ecstasy') is a widely used illicit drug that produces toxic effects on brain serotonin axons and axon terminals in animals. The results of clinical studies addressing MDMA's serotonin neurotoxic potential in humans have been inconclusive. In the present study, 23 abstinent MDMA users and 19 non-MDMA controls underwent quantitative positron emission tomography (PET) studies using [11C]McN5652 and [11C]DASB, first- and second-generation serotonin transporter (SERT) ligands previously validated in baboons for detecting MDMA-induced brain serotonin neurotoxicity. Global and regional distribution volumes (DVs) and two additional SERT-binding parameters (DV(spec) and DVR) were compared in the two subject populations using parametric statistical analyses. Data from PET studies revealed excellent correlations between the various binding parameters of [11C]McN5652 and [11C]DASB, both in individual brain regions and individual subjects. Global SERT reductions were found in MDMA users with both PET ligands, using all three of the above-mentioned SERT-binding parameters. Preplanned comparisons in 15 regions of interest demonstrated reductions in selected cortical and subcortical structures. Exploratory correlational analyses suggested that SERT measures recover with time, and that loss of the SERT is directly associated with MDMA use intensity. These quantitative PET data, obtained using validated first- and second-generation SERT PET ligands, provide strong evidence of reduced SERT density in some recreational MDMA users.
Effects of LSD on grooming behavior in serotonin transporter heterozygous (Sert⁺/⁻) mice.
Kyzar, Evan J; Stewart, Adam Michael; Kalueff, Allan V
2016-01-01
Serotonin (5-HT) plays a crucial role in the brain, modulating mood, cognition and reward. The serotonin transporter (SERT) is responsible for the reuptake of 5-HT from the synaptic cleft and regulates serotonin signaling in the brain. In humans, SERT genetic variance is linked to the pathogenesis of various psychiatric disorders, including anxiety, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Rodent self-grooming is a complex, evolutionarily conserved patterned behavior relevant to stress, ASD and OCD. Genetic ablation of mouse Sert causes various behavioral deficits, including increased anxiety and grooming behavior. The hallucinogenic drug lysergic acid diethylamide (LSD) is a potent serotonergic agonist known to modulate human and animal behavior. Here, we examined heterozygous Sert(+/-) mouse behavior following acute administration of LSD (0.32 mg/kg). Overall, Sert(+/-) mice displayed a longer duration of self-grooming behavior regardless of LSD treatment. In contrast, LSD increased serotonin-sensitive behaviors, such as head twitching, tremors and backwards gait behaviors in both Sert(+/+) and Sert(+/-) mice. There were no significant interactions between LSD treatment and Sert gene dosage in any of the behavioral domains measured. These results suggest that Sert(+/-) mice may respond to the behavioral effects of LSD in a similar manner to wild-type mice. Copyright © 2015 Elsevier B.V. All rights reserved.
Bonano, J S; Banks, M L; Kolanos, R; Sakloth, F; Barnier, M L; Glennon, R A; Cozzi, N V; Partilla, J S; Baumann, M H; Negus, S S
2015-05-01
Methcathinone (MCAT) is a potent monoamine releaser and parent compound to emerging drugs of abuse including mephedrone (4-CH3 MCAT), the para-methyl analogue of MCAT. This study examined quantitative structure-activity relationships (QSAR) for MCAT and six para-substituted MCAT analogues on (a) in vitro potency to promote monoamine release via dopamine and serotonin transporters (DAT and SERT, respectively), and (b) in vivo modulation of intracranial self-stimulation (ICSS), a behavioural procedure used to evaluate abuse potential. Neurochemical and behavioural effects were correlated with steric (Es ), electronic (σp ) and lipophilic (πp ) parameters of the para substituents. For neurochemical studies, drug effects on monoamine release through DAT and SERT were evaluated in rat brain synaptosomes. For behavioural studies, drug effects were tested in male Sprague-Dawley rats implanted with electrodes targeting the medial forebrain bundle and trained to lever-press for electrical brain stimulation. MCAT and all six para-substituted analogues increased monoamine release via DAT and SERT and dose- and time-dependently modulated ICSS. In vitro selectivity for DAT versus SERT correlated with in vivo efficacy to produce abuse-related ICSS facilitation. In addition, the Es values of the para substituents correlated with both selectivity for DAT versus SERT and magnitude of ICSS facilitation. Selectivity for DAT versus SERT in vitro is a key determinant of abuse-related ICSS facilitation by these MCAT analogues, and steric aspects of the para substituent of the MCAT scaffold (indicated by Es ) are key determinants of this selectivity. © 2014 The British Pharmacological Society.
Bonano, J S; Banks, M L; Kolanos, R; Sakloth, F; Barnier, M L; Glennon, R A; Cozzi, N V; Partilla, J S; Baumann, M H; Negus, S S
2015-01-01
Background and Purpose Methcathinone (MCAT) is a potent monoamine releaser and parent compound to emerging drugs of abuse including mephedrone (4-CH3 MCAT), the para-methyl analogue of MCAT. This study examined quantitative structure–activity relationships (QSAR) for MCAT and six para-substituted MCAT analogues on (a) in vitro potency to promote monoamine release via dopamine and serotonin transporters (DAT and SERT, respectively), and (b) in vivo modulation of intracranial self-stimulation (ICSS), a behavioural procedure used to evaluate abuse potential. Neurochemical and behavioural effects were correlated with steric (Es), electronic (σp) and lipophilic (πp) parameters of the para substituents. Experimental Approach For neurochemical studies, drug effects on monoamine release through DAT and SERT were evaluated in rat brain synaptosomes. For behavioural studies, drug effects were tested in male Sprague-Dawley rats implanted with electrodes targeting the medial forebrain bundle and trained to lever-press for electrical brain stimulation. Key Results MCAT and all six para-substituted analogues increased monoamine release via DAT and SERT and dose- and time-dependently modulated ICSS. In vitro selectivity for DAT versus SERT correlated with in vivo efficacy to produce abuse-related ICSS facilitation. In addition, the Es values of the para substituents correlated with both selectivity for DAT versus SERT and magnitude of ICSS facilitation. Conclusions and Implications Selectivity for DAT versus SERT in vitro is a key determinant of abuse-related ICSS facilitation by these MCAT analogues, and steric aspects of the para substituent of the MCAT scaffold (indicated by Es) are key determinants of this selectivity. PMID:25438806
Perinatal MAO Inhibition Produces Long-Lasting Impairment of Serotonin Function in Offspring.
Burke, Mark W; Fillion, Myriam; Mejia, Jose; Ervin, Frank R; Palmour, Roberta M
2018-06-11
In addition to transmitter functions, many neuroamines have trophic or ontogenetic regulatory effects important to both normal and disordered brain development. In previous work (Mejia et al., 2002), we showed that pharmacologically inhibiting monoamine oxidase (MAO) activity during murine gestation increases the prevalence of behaviors thought to reflect impulsivity and aggression. The goal of the present study was to determine the extent to which this treatment influences dopamine and serotonin innervation of murine cortical and subcortical areas, as measured by regional density of dopamine (DAT) and serotonin transporters (SERT). We measured DAT and SERT densities at 3 developmental times (PND 14, 35 and 90) following inhibition of MAO A, or MAO B or both throughout murine gestation and early post-natal development. DAT binding was unaltered within the nigrostriatal pathway, but concurrent inhibition of MAO-A and MAO-B significantly and specifically reduced SERT binding by 10⁻25% in both the frontal cortex and raphe nuclei. Low levels of SERT binding persisted (PND 35, 90) after the termination (PND 21) of exposure to MAO inhibitors and was most marked in brain structures germane to the previously described behavioral changes. The relatively modest level of enzyme inhibition (25⁻40%) required to produce these effects mandates care in the use of any compound which might inhibit MAO activity during gestation.
Margolis, Kara Gross
2017-10-01
Many disease conditions considered CNS-predominant harbor significant intestinal comorbidities. Serotonin (5-HT) and the serotonin reuptake transporter (SERT) have increasingly been shown to play important roles in both brain and intestinal development and long-term function. 5-HT and SERT may thus modulate critical functions in the development and perpetuation of brain-gut axis disease. We discuss the potential roles of 5-HT and SERT in the brain and intestinal manifestations of autism spectrum disorders and developmental antidepressant exposure. The potential therapeutic value of 5-HT 4 modulation in the subsequent treatment of these conditions is also addressed. Copyright © 2017 Elsevier B.V. All rights reserved.
Shiue, Grace G; Choi, Seok-Rye; Fang, Ping; Hou, Catherine; Acton, Paul D; Cardi, Chris; Saffer, Janet R; Greenberg, Joel H; Karp, Joel S; Kung, Hank F; Shiue, Chyng-Yann
2003-12-01
There has been considerable interest in the development of PET radioligands that are useful for imaging serotonin transporter (SERT) in the living human brain. For the last decade, (11)C-(+)McN5652 has been the most promising PET agent for studying SERT in humans. However, this agent has some limitations. Recently, a new promising SERT PET radioligand, 3-(11)C-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile, has been reported. We recently reported the synthesis of a new (18)F-labeled SERT PET radioligand, N,N-dimethyl-2-(2-amino-4-(18)F-fluorophenylthio)benzylamine (4-(18)F-ADAM), which may have advantages over (11)C-labeled radioligands. The purpose of this study was to evaluate this newly developed (18)F-labeled PET radioligand as a promising agent for studying SERT in the living human brain. This agent was evaluated by studying its in vitro binding to different monoamine transporters, its in vivo biodistributions in rats, its integrity and pharmacologic profiles in rat brain, and its distribution in a female baboon brain. In vitro binding assays showed that 4-F-ADAM displayed high affinity to SERT sites (inhibition constant = 0.081 nmol/L, using membrane preparations of LLC-PK1 cells expressing the specific transporter) and showed more than 1,000- and 28,000-fold selectivity for SERT over norepinephrine transporter and dopamine transporter, respectively. Biodistribution of 4-(18)F-ADAM in rats showed a high initial uptake and slow clearance in the brain (2.13%, 1.90%, and 0.95% injected dose per organ at 2, 30, and 60 min after intravenous injection, respectively), with the specific binding peaking at 2 h after injection (hypothalamus/cerebellum = 12.49). The uptake in blood, muscle, lung, kidney, and liver was also initially high but cleared rapidly. The radioactivity in the femur increases with time for 4-(18)F-ADAM, indicating that in vivo defluorination may occur. In vivo metabolism studies in rats showed that 4-(18)F-ADAM was not metabolized in rat brain (>96% of radioactivity was recovered as parent compound at 1 h after injection). However, it metabolized rapidly in the blood. Less than 7% of the radioactivity recovered from plasma was the parent compound, with the majority of radioactivity in the plasma not extractable by ethyl acetate. Blocking studies showed significant decreases in the uptake of 4-(18)F-ADAM in the brain regions (hypothalamus, hippocampus, and striatum) where SERT concentrations are high when rats were pretreated with (+)McN5652 (2 mg/kg 5 min before intravenous injection of 4-(18)F-ADAM). However, changes in the uptake of 4-(18)F-ADAM in these brain regions were less significant when rats were pretreated with either methylphenidate or nisoxetine. The baboon study showed that uptake of 4-(18)F-ADAM in the midbrain peaked at approximately 1 h after injection and then declined slowly. The ratios of the radioactivity in the midbrain to that in the cerebellum (where the concentration of SERT is low) at 2 and 3 h after injection were 3.2 and 4.2, respectively. 4-(18)F-ADAM is suitable as a PET radioligand for studying SERT in the living brain. Further characterization of this new radioligand in humans is warranted.
Baganz, Nicole; Horton, Rebecca; Martin, Kathryn; Holmes, Andrew; Daws, Lynette C
2010-11-10
Activation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased extracellular serotonin (5-HT) in limbic brain regions. The mechanism through which this occurs remains unclear. One way could be via HPA axis-dependent impairment of serotonin transporter (SERT) function, the high-affinity uptake mechanism for 5-HT. Consistent with this idea, we found that 5-HT clearance rate in hippocampus was dramatically reduced in mice exposed to repeated swim, a stimulus known to activate the HPA axis. However, this phenomenon also occurred in mice lacking SERT, ruling out SERT as a mechanism. The organic cation transporter 3 (OCT3) is emerging as an important regulator of brain 5-HT. Moreover, corticosterone, which is released upon HPA axis activation, blocks 5-HT uptake by OCT3. Repeated swim produced a persistent elevation in plasma corticosterone, and, consistent with prolonged blockade by corticosterone, we found that OCT3 expression and function were reduced in these mice. Importantly, this effect of repeated swim to reduce 5-HT clearance rate was corticosterone dependent, as evidenced by its absence in adrenalectomized mice, in which plasma corticosterone levels were essentially undetectable. Behaviorally, mice subjected to repeated swim spent less time immobile in the tail suspension test than control mice, but responded similarly to SERT- and norepinephrine transporter-selective antidepressants. Together, these results show that reduced 5-HT clearance following HPA axis activation is likely mediated, at least in part, by the corticosterone-sensitive OCT3, and that drugs developed to selectively target OCT3 (unlike corticosterone) may be candidates for the development of novel antidepressant medications.
McFadden, Lisa M; Vieira-Brock, Paula L; Hanson, Glen R; Fleckenstein, Annette E
2014-08-01
Preclinical studies suggest that prior treatment with escalating doses of methamphetamine (METH) attenuates the persistent deficits in hippocampal serotonin (5-hydroxytryptamine; 5HT) transporter (SERT) function resulting from a subsequent 'binge' METH exposure. Previous work also demonstrates that brain-derived neurotrophic factor (BDNF) exposure increases SERT function. The current study investigated changes in hippocampal BDNF protein and SERT function in rats exposed to saline or METH self-administration prior to a binge exposure to METH or saline. Results revealed that METH self-administration increased hippocampal mature BDNF (mBDNF) immunoreactivity compared to saline-treated rats as assessed 24 h after the start of the last session. Further, mBDNF immunoreactivity was increased and SERT function was not altered in rats that self-administered METH prior to the binge METH exposure as assessed 24 h after the binge exposure. These results suggest that prior exposure to contingent METH increases hippocampal mBDNF, and this may contribute to attenuated deficits in SERT function.
Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H
2014-05-01
Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [(3)H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [(3)H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT.
Baumann, Michael H; Bulling, Simon; Benaderet, Tova S; Saha, Kusumika; Ayestas, Mario A; Partilla, John S; Ali, Syed F; Stockner, Thomas; Rothman, Richard B; Sandtner, Walter; Sitte, Harald H
2014-01-01
Serotonin (5-HT) transporter (SERT) substrates like fenfluramine and 3,4-methylenedioxymethamphetamine cause long-term depletion of brain 5-HT, while certain other substrates do not. The 5-HT deficits produced by SERT substrates are dependent upon transporter proteins, but the exact mechanisms responsible are unclear. Here, we compared the pharmacology of several SERT substrates: fenfluramine, d-fenfluramine, 1-(m-chlorophenyl)piperazine (mCPP) and 1-(m-trifluoromethylphenyl)piperainze (TFMPP), to establish relationships between acute drug mechanisms and the propensity for long-term 5-HT depletions. In vivo microdialysis was carried out in rat nucleus accumbens to examine acute 5-HT release and long-term depletion in the same subjects. In vitro assays were performed to measure efflux of [3H]5-HT in rat brain synaptosomes and transporter-mediated ionic currents in SERT-expressing Xenopus oocytes. When administered repeatedly to rats (6 mg/kg, i.p., four doses), all drugs produce large sustained elevations in extracellular 5-HT (>5-fold) with minimal effects on dopamine. Importantly, 2 weeks after dosing, only rats exposed to fenfluramine and d-fenfluramine display depletion of brain 5-HT. All test drugs evoke fluoxetine-sensitive efflux of [3H]5-HT from synaptosomes, but d-fenfluramine and its bioactive metabolite d-norfenfluramine induce significantly greater SERT-mediated currents than phenylpiperazines. Our data confirm that drug-induced 5-HT release probably does not mediate 5-HT depletion. However, the magnitude of transporter-mediated inward current may be a critical factor in the cascade of events leading to 5-HT deficits. This hypothesis warrants further study, especially given the growing popularity of designer drugs that target SERT. PMID:24287719
Yahata, Masahiro; Chiba, Koji; Watanabe, Takao; Sugiyama, Yuichi
2017-09-01
Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro K i values for human SERT and plasma concentrations of unbound drug (C u,plasma ), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro K i values were compared with the means of in vivo K i values (K i,u,plasma ) which were calculated as C u,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro K i values for 7 drugs were comparable to their in vivo K i,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro K i values and C u,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Developmental alterations in anxiety and cognitive behavior in serotonin transporter mutant mice.
Sakakibara, Yasufumi; Kasahara, Yoshiyuki; Hall, F Scott; Lesch, Klaus-Peter; Murphy, Dennis L; Uhl, George R; Sora, Ichiro
2014-10-01
A promoter variant of the serotonin transporter (SERT) gene is known to affect emotional and cognitive regulation. In particular, the "short" allelic variant is implicated in the etiology of multiple neuropsychiatric disorders. Heterozygous (SERT(+/-)) and homozygous (SERT(-/-)) SERT mutant mice are valuable tools for understanding the mechanisms of altered SERT levels. Although these genetic effects are well investigated in adulthood, the developmental trajectory of altered SERT levels for behavior has not been investigated. We assessed anxiety-like and cognitive behaviors in SERT mutant mice in early adolescence and adulthood to examine the developmental consequences of reduced SERT levels. Spine density of pyramidal neurons was also measured in corticolimbic brain regions. Adult SERT(-/-) mice exhibited increased anxiety-like behavior, but these differences were not observed in early adolescent SERT(-/-) mice. Conversely, SERT(+/-) and SERT(-/-) mice did display higher spontaneous alternation during early adolescence and adulthood. SERT(+/-) and SERT(-/-) also exhibited greater neuronal spine densities in the orbitofrontal but not the medial prefrontal cortices. Adult SERT(-/-) mice also showed an increased spine density in the basolateral amygdala. Developmental alterations of the serotonergic system caused by genetic inactivation of SERT can have different influences on anxiety-like and cognitive behaviors through early adolescence into adulthood, which may be associated with changes of spine density in the prefrontal cortex and amygdala. The altered maturation of serotonergic systems may lead to specific age-related vulnerabilities to psychopathologies that develop during adolescence.
Normann, Claus; Frase, Sibylle; Haug, Verena; von Wolff, Gregor; Clark, Kristin; Münzer, Patrick; Dorner, Alexandra; Scholliers, Jonas; Horn, Max; Vo Van, Tanja; Seifert, Gabriel; Serchov, Tsvetan; Biber, Knut; Nissen, Christoph; Klugbauer, Norbert; Bischofberger, Josef
2017-10-19
Long-term synaptic plasticity is a basic ability of the brain to dynamically adapt to external stimuli and regulate synaptic strength and ultimately network function. It is dysregulated by behavioral stress in animal models of depression and in humans with major depressive disorder. Antidepressants have been shown to restore disrupted synaptic plasticity in both animal models and humans; however, the underlying mechanism is unclear. We examined modulation of synaptic plasticity by selective serotonin reuptake inhibitors (SSRIs) in hippocampal brain slices from wild-type rats and serotonin transporter (SERT) knockout mice. Recombinant voltage-gated calcium (Ca 2+ ) channels in heterologous expression systems were used to determine the modulation of Ca 2+ channels by SSRIs. We tested the behavioral effects of SSRIs in the chronic behavioral despair model of depression both in the presence and in the absence of SERT. SSRIs selectively inhibited hippocampal long-term depression. The inhibition of long-term depression by SSRIs was mediated by a direct block of voltage-activated L-type Ca 2+ channels and was independent of SERT. Furthermore, SSRIs protected both wild-type and SERT knockout mice from behavioral despair induced by chronic stress. Finally, long-term depression was facilitated in animals subjected to the behavioral despair model, which was prevented by SSRI treatment. These results showed that antidepressants protected synaptic plasticity and neuronal circuitry from the effects of stress via a modulation of Ca 2+ channels and synaptic plasticity independent of SERT. Thus, L-type Ca 2+ channels might constitute an important signaling hub for stress response and for pathophysiology and treatment of depression. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Zessin, Jörg; Deuther-Conrad, Winnie; Kretzschmar, Marion; Wüst, Frank; Pawelke, Beate; Brust, Peter; Steinbach, Jörg; Bergmann, Ralf
2006-01-01
N,N-Dimethyl-2-(2-amino-4-methylthiophenylthio)benzylamine (SMe-ADAM, 1) is a highly potent and selective inhibitor of the serotonin transporter (SERT). This compound was labeled with carbon-11 by methylation of the S-desmethyl precursor 10 with [(11)C]methyl iodide to obtain the potential positron emission tomography (PET) radioligand [(11)C]SMe-ADAM. The radiochemical yield was 27 +/- 5%, and the specific radioactivity was 26-40 GBq/micromol at the end of synthesis. Ex vivo and in vivo biodistribution experiments in rats demonstrated a rapid accumulation of the radiotracer in brain regions known to be rich in SERT, such as the thalamus/hypothalamus region (3.59 +/- 0.41%ID/g at 5 min after injection). The specific uptake reached a thalamus to cerebellum ratio of 6.74 +/- 0.95 at 60 min postinjection. The [(11)C]SMe-ADAM uptake in the thalamus was significantly decreased by pretreatment with fluoxetine to 38 +/- 11% of the control value. Furthermore, no metabolites of [(11)C]SMe-ADAM could be detected in the SERT-rich regions of the rat brain. It is concluded that [(11)C]SMe-ADAM may be a suitable PET ligand for SERT imaging in the living brain.
Marusich, Julie A; Antonazzo, Kateland R; Blough, Bruce E; Brandt, Simon D; Kavanagh, Pierce V; Partilla, John S; Baumann, Michael H
2016-02-01
In recent years, use of psychoactive synthetic stimulants has grown rapidly. 5-(2-Aminopropyl)indole (5-IT) is a synthetic drug associated with a number of fatalities, that appears to be one of the newest 3,4-methylenedioxymethamphetamine (MDMA) replacements. Here, the monoamine-releasing properties of 5-IT, its structural isomer 6-(2-aminopropyl)indole (6-IT), and MDMA were compared using in vitro release assays at transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) in rat brain synaptosomes. In vivo pharmacology was assessed by locomotor activity and a functional observational battery (FOB) in mice. 5-IT and 6-IT were potent substrates at DAT, NET, and SERT. In contrast with the non-selective releasing properties of MDMA, 5-IT displayed greater potency for release at DAT over SERT, while 6-IT displayed greater potency for release at SERT over DAT. 5-IT produced locomotor stimulation and typical stimulant effects in the FOB similar to those produced by MDMA. Conversely, 6-IT increased behaviors associated with 5-HT toxicity. 5-IT likely has high abuse potential, which may be somewhat diminished by its slow onset of in vivo effects, whereas 6-IT may have low abuse liability, but enhanced risk for adverse effects. Results indicate that subtle differences in the chemical structure of transporter ligands can have profound effects on biological activity. The potent monoamine-releasing actions of 5-IT, coupled with its known inhibition of MAO A, could underlie its dangerous effects when administered alone, and in combination with other monoaminergic drugs or medications. Consequently, 5-IT and related compounds may pose substantial risk for abuse and serious adverse effects in human users. Copyright © 2015 Elsevier Ltd. All rights reserved.
Marusich, Julie A.; Antonazzo, Kateland R.; Blough, Bruce E.; Brandt, Simon D.; Kavanagh, Pierce V.; Partilla, John S.; Baumann, Michael H.
2015-01-01
In recent years, use of psychoactive synthetic stimulants has grown rapidly. 5-(2-Aminopropyl)indole (5-IT) is a synthetic drug associated with a number of fatalities, that appears to be one of the newest 3,4-methylenedioxymethamphetamine (MDMA) replacements. Here, the monoamine-releasing properties of 5-IT, its structural isomer 6-(2-aminopropyl)indole (6-IT), and MDMA were compared using in vitro release assays at transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) in rat brain synaptosomes. In vivo pharmacology was assessed by locomotor activity and a functional observational battery (FOB) in mice. 5-IT and 6-IT were potent substrates at DAT, NET, and SERT. In contrast with the non-selective releasing properties of MDMA, 5-IT displayed greater potency for release at DAT over SERT, while 6-IT displayed greater potency for release at SERT over DAT. 5-IT produced locomotor stimulation and typical stimulant effects in the FOB similar to those produced by MDMA. Conversely, 6-IT increased behaviors associated with 5-HT toxicity. 5-IT likely has high abuse potential, which may be somewhat diminished by its slow onset of in vivo effects, whereas 6-IT may have low abuse liability, but enhanced risk for adverse effects. Results indicate that subtle differences in the chemical structure of transporter ligands can have profound effects on biological activity. The potent monoamine-releasing actions of 5-IT, coupled with its known inhibition of MAO A, could underlie its dangerous effects when administered alone, and in combination with other monoaminergic drugs or medications. Consequently, 5-IT and related compounds may pose substantial risk for abuse and serious adverse effects in human users. PMID:26362361
Finnema, Sjoerd J; Halldin, Christer; Bang-Andersen, Benny; Bundgaard, Christoffer; Farde, Lars
2015-11-01
A number of serotonin receptor positron emission tomography (PET) radioligands have been shown to be sensitive to changes in extracellular serotonin concentration, in a generalization of the well-known dopamine competition model. High doses of selective serotonin reuptake inhibitors (SSRIs) decrease serotonin receptor availability in monkey brain, consistent with increased serotonin concentrations. However, two recent studies on healthy human subjects, using a single, lower and clinically relevant SSRI dose, showed increased cortical serotonin receptor radioligand binding, suggesting potential decreases in serotonin concentration in projection regions when initiating treatment. The cross-species differential SSRI effect may be partly explained by serotonin transporter (SERT) occupancy in monkey brain being higher than is clinically relevant. We here determine SERT occupancy after single doses of escitalopram or citalopram by conducting PET measurements with [(11)C]MADAM in monkeys. Relationships between dose, plasma concentration and SERT occupancy were estimated by one-site binding analyses. Binding affinity was expressed as dose (ID50) or plasma concentration (K i) where 50 % SERT occupancy was achieved. Estimated ID50 and K i values were 0.020 mg/kg and 9.6 nmol/L for escitalopram and 0.059 mg/kg and 9.7 nmol/L for citalopram, respectively. Obtained K i values are comparable to values reported in humans. Escitalopram or citalopram doses nearly saturated SERT in previous monkey studies which examined serotonin sensitivity of receptor radioligands. PET-measured cross-species differential effects of SSRI on cortical serotonin concentration may thus be related to SSRI dose. Future monkey studies using SSRI doses inducing clinically relevant SERT occupancy may further illuminate the delayed onset of SSRI therapeutic effects.
Payer, D E; Nurmi, E L; Wilson, S A; McCracken, J T; London, E D
2012-01-01
Individuals who abuse methamphetamine (MA) exhibit heightened aggression, but the neurobiological underpinnings are poorly understood. As variability in the serotonin transporter (SERT) gene can influence aggression, this study assessed possible contributions of this gene to MA-related aggression. In all, 53 MA-dependent and 47 control participants provided self-reports of aggression, and underwent functional magnetic resonance imaging while viewing pictures of faces. Participants were genotyped at two functional polymorphic loci in the SERT gene: the SERT-linked polymorphic region (SERT-LPR) and the intron 2 variable number tandem repeat polymorphism (STin2 VNTR); participants were then classified as having high or low risk for aggression according to individual SERT risk allele combinations. Comparison of SERT risk allele loads between groups showed no difference between MA-dependent and control participants. Comparison of self-report scores showed greater aggression in MA-dependent than control participants, and in high genetic risk than low-risk participants. Signal change in the amygdala was lower in high genetic risk than low-risk participants, but showed no main effect of MA abuse; however, signal change correlated negatively with MA use measures. Whole-brain differences in activation were observed between MA-dependent and control groups in the occipital and prefrontal cortex, and between genetic high- and low-risk groups in the occipital, fusiform, supramarginal and prefrontal cortex, with effects overlapping in a small region in the right ventrolateral prefrontal cortex. The findings suggest that the investigated SERT risk allele loads are comparable between MA-dependent and healthy individuals, and that MA and genetic risk influence aggression independently, with minimal overlap in associated neural substrates. PMID:22832817
Soiza-Reilly, Mariano; Goodfellow, Nathalie M.; Lambe, Evelyn K.; Commons, Kathryn G.
2014-01-01
5-HT1A receptors are widely expressed in the brain and play a critical role in feedback inhibition of serotonin (5-HT) neurons through multiple mechanisms. Yet, it remains poorly understood how these feedback mechanisms, particularly those involving long-range projections, adapt in mood disorders. Here, we examined several aspects of 5-HT1A receptor function in the 5-HT transporter knockout mouse (SERT-KO), a model of vulnerability to stress and mood disorders. We found that in comparison to wild-type (WT) mice, SERT-KO mice had more passive coping in response to acute swim stress and this was accompanied by hypo-activation of medial prefrontal cortex (mPFC) Fos expression. Both of these effects were reversed by systemically blocking 5-HT1A receptors. Ex-vivo electrophysiological experiments showed that 5-HT exerted greater 5-HT1A-mediated inhibitory effects in the mPFC of SERT-KO mice compared to WT. Since 5-HT1A receptors in the mPFC provide a key feedback regulation of the dorsal raphe nucleus (DRN), we used a disinhibition strategy to examined endogenous feedback control of 5-HT neurons. Blocking 5-HT1A receptors disinhibited several fold more 5-HT neurons in the DRN of SERT-KO than in WT mice, revealing the presence of enhanced feedback inhibition of 5-HT neurons in the SERT-KO. Taken together our results indicate that increased stress sensitivity in the SERT-KO is associated with the enhanced capacity of 5-HT1A receptors to inhibit neurons in the mPFC as well as to exert feedback inhibition of DRN 5-HT neurons. PMID:25261781
Fox, Meredith A.; Jensen, Catherine L.; French, Helen T.; Stein, Alison R.; Huang, Su-Jan; Tolliver, Teresa J.; Murphy, Dennis L.
2008-01-01
Rationale Serotonin transporter (SERT) knockout (−/−) mice have an altered phenotype in adulthood, including high baseline anxiety and depressive-like behaviors, associated with increased baseline extracellular serotonin levels throughout life. Objectives To examine the effects of increases in serotonin following administration of the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) in SERT wildtype (+/+), heterozygous (+/−) and −/− mice. Results 5-HTP increased serotonin in all five brain areas examined, with ~2–5-fold increases in SERT +/+ and +/− mice, and greater 4.5–11.7-fold increases in SERT −/− mice. Behaviorally, 5-HTP induced exaggerated serotonin syndrome behaviors in SERT −/− mice, with similar effects in male and female mice. Studies suggest promiscuous serotonin uptake by the dopamine transporter (DAT) in SERT −/− mice, and here, the DAT blocker GBR 12909 enhanced 5-HTP-induced behaviors in SERT −/− mice. Physiologically, 5-HTP induced exaggerated temperature effects in SERT-deficient mice. The 5-HT1A antagonist WAY 100635 decreased 5-HTP-induced hypothermia in SERT +/+ and +/− mice, with no effect in SERT −/− mice, whereas the 5-HT7 antagonist SB 269970 decreased this exaggerated response in SERT −/− mice only. WAY 100635 and SB 269970 together completely blocked 5-HTP-induced hypothermia in SERT +/− and −/− mice. Conclusions These studies demonstrate that SERT −/− mice have exaggerated neurochemical, behavioral and physiological responses to further increases in serotonin, and provide the first evidence of intact 5-HT7 receptor function in SERT −/− mice, with interesting interactions between 5-HT1A and 5-HT7 receptors. As roles for 5-HT7 receptors in anxiety and depression were recently established, the current findings have implications for understanding the high anxiety and depressive-like phenotype of SERT-deficient mice. PMID:18712364
Bazhenova, Ekaterina Y; Sinyakova, Nadezhda A; Kulikova, Elizabeth A; Kazarinova, Irina A; Bazovkina, Daria V; Gainetdinov, Raul R; Kulikov, Alexander V
2017-07-13
Selective serotonin reuptake inhibitors (SSRIs) are antidepressants that block serotonin transporter (SERT) and increase serotonin (5-HT) level in the synaptic cleft. The interaction between SERT and the key enzyme of 5-HT synthesis in the brain, tryptophan hydroxylase 2 (TPH2), is essential to maintain the brain 5-HT level. The G allele of C1473G polymorphism in Tph2 gene decreases enzyme activity by half in mouse brain. Here we studied effect of C1473G polymorphism on the reaction of brain 5-HT system to chronic fluoxetine treatment (120mg/l in drinking water, for 3 weeks) in adult males of the congenic B6-1473C and B6-1473G mouse lines with high and low enzyme activity, respectively. The polymorphism did not affect the levels of 5-HT, its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and Tph2 gene mRNA in the brain. Fluoxetine significantly attenuated 5-HT levels in the cortex and striatum, 5-HIAA concentrations in the cortex, hippocampus, striatum and midbrain, and Tph2 gene expression in the midbrain. However, we did not observed any effect of the genotype x treatment interaction on these neurochemical characteristics. Therefore, C1473G polymorphism does not seem to play an essential role in the reaction of the brain 5-HT system to chronic fluoxetine treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Yubero-Lahoz, S; Robledo, P; Farré, M; de laTorre, R
2013-01-01
Alterations in serotonergic activity have been observed in many pathological conditions, including neuro psychiatric diseases, irritable bowel syndrome, and hypertension. The serotonin (5-hydroxytryptamine; 5-HT) transporter(SERT) in the brain clears 5-HT from extracellular spaces, modulating the strength and duration of serotonergic signaling.Outside the central nervous system, it is also present in platelets, where it takes up 5-HT from plasma, keeping levels very low (i.e., ~1 nM). Importantly, it is generally accepted that SERT protein expressed in platelets is identical to the one found in neurons, displaying similar structural and functional properties in both tissues. At the present time, it is technically difficult to measure SERT binding and function in vivo since imaging methods are limited by a number of factors,especially the cost and the selectivity of the available radioligands. One of the most frequently used molecular imaging techniques to study SERT is positron emission tomography (PET). Although an impressive number of PET radio ligands have been synthesized and validated, there is still a lack of suitable ligands for a large part of the 5-HT system. Interest in determining both the molecular characteristics and the regulation of SERT has been enormous over the last decade, but the difficulty in obtaining human tissues and the ethical limitations in human experiments have turned researchers to look for alternative models. This review summarizes recent clinical and preclinical data relevant to the use of blood platelets asa peripheral marker for the central 5-HT system, and outlines future directions in this field.
Design and Synthesis of 4-Heteroaryl 1,2,3,4-Tetrahydroisoquinolines as Triple Reuptake Inhibitors
2014-01-01
A series of 4-bicyclic heteroaryl 1,2,3,4-tetrahydroisoquinoline inhibitors of the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT) was discovered. The synthesis and structure–activity relationship (SAR) of these triple reuptake inhibitors (TRIs) will be discussed. Compound 10i (AMR-2), a very potent inhibitor of SERT, NET, and DAT, showed efficacy in the rat forced-swim and mouse tail suspension models with minimum effective doses of 0.3 and 1 mg/kg (po), respectively. At efficacious doses in these assays, 10i exhibited substantial occupancy levels at the three transporters in both rat and mouse brain. The study of the metabolism of 10i revealed the formation of a significant active metabolite, compound 13. PMID:25050161
Design and synthesis of 4-heteroaryl 1,2,3,4-tetrahydroisoquinolines as triple reuptake inhibitors.
Liu, Shuang; Zha, Congxiang; Nacro, Kassoum; Hu, Min; Cui, Wenge; Yang, Yuh-Lin; Bhatt, Ulhas; Sambandam, Aruna; Isherwood, Matthew; Yet, Larry; Herr, Michael T; Ebeltoft, Sarah; Hassler, Carla; Fleming, Linda; Pechulis, Anthony D; Payen-Fornicola, Anne; Holman, Nicholas; Milanowski, Dennis; Cotterill, Ian; Mozhaev, Vadim; Khmelnitsky, Yuri; Guzzo, Peter R; Sargent, Bruce J; Molino, Bruce F; Olson, Richard; King, Dalton; Lelas, Snjezana; Li, Yu-Wen; Johnson, Kim; Molski, Thaddeus; Orie, Anitra; Ng, Alicia; Haskell, Roy; Clarke, Wendy; Bertekap, Robert; O'Connell, Jonathan; Lodge, Nicholas; Sinz, Michael; Adams, Stephen; Zaczek, Robert; Macor, John E
2014-07-10
A series of 4-bicyclic heteroaryl 1,2,3,4-tetrahydroisoquinoline inhibitors of the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT) was discovered. The synthesis and structure-activity relationship (SAR) of these triple reuptake inhibitors (TRIs) will be discussed. Compound 10i (AMR-2), a very potent inhibitor of SERT, NET, and DAT, showed efficacy in the rat forced-swim and mouse tail suspension models with minimum effective doses of 0.3 and 1 mg/kg (po), respectively. At efficacious doses in these assays, 10i exhibited substantial occupancy levels at the three transporters in both rat and mouse brain. The study of the metabolism of 10i revealed the formation of a significant active metabolite, compound 13.
Komorowski, A.; James, G. M.; Philippe, C.; Gryglewski, G.; Bauer, A.; Hienert, M.; Spies, M.; Kautzky, A.; Vanicek, T.; Hahn, A.; Traub-Weidinger, T.; Winkler, D.; Wadsak, W.; Mitterhauser, M.; Hacker, M.; Kasper, S.; Lanzenberger, R.
2017-01-01
Abstract Regional differences in posttranscriptional mechanisms may influence in vivo protein densities. The association of positron emission tomography (PET) imaging data from 112 healthy controls and gene expression values from the Allen Human Brain Atlas, based on post-mortem brains, was investigated for key serotonergic proteins. PET binding values and gene expression intensities were correlated for the main inhibitory (5-HT1A) and excitatory (5-HT2A) serotonin receptor, the serotonin transporter (SERT) as well as monoamine oxidase-A (MAO-A), using Spearman's correlation coefficients (rs) in a voxel-wise and region-wise analysis. Correlations indicated a strong linear relationship between gene and protein expression for both the 5-HT1A (voxel-wise rs = 0.71; region-wise rs = 0.93) and the 5-HT2A receptor (rs = 0.66; 0.75), but only a weak association for MAO-A (rs = 0.26; 0.66) and no clear correlation for SERT (rs = 0.17; 0.29). Additionally, region-wise correlations were performed using mRNA expression from the HBT, yielding comparable results (5-HT1Ars = 0.82; 5-HT2Ars = 0.88; MAO-A rs = 0.50; SERT rs = −0.01). The SERT and MAO-A appear to be regulated in a region-specific manner across the whole brain. In contrast, the serotonin-1A and -2A receptors are presumably targeted by common posttranscriptional processes similar in all brain areas suggesting the applicability of mRNA expression as surrogate parameter for density of these proteins. PMID:27909009
Jacobsen, Jacob P R; Plenge, Per; Sachs, Benjamin D; Pehrson, Alan L; Cajina, Manuel; Du, Yunzhi; Roberts, Wendy; Rudder, Meghan L; Dalvi, Prachiti; Robinson, Taylor J; O'Neill, Sharon P; Khoo, King S; Morillo, Connie Sanchez; Zhang, Xiaodong; Caron, Marc G
2014-12-01
Escitalopram appears to be a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, there by curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and hence anti-depressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram's inhibition here of. Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. Recombinant generation of hSERT transgenic mice; in vivo microdialysis; SERT binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). We generated mice expressing either the wild-type human SERT (hSERT(WT)) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERT(ALI/VFL+SI/TT)). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. The hSERT mice showed normal basal 5-HTExt levels. Escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment and was unaffected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small and tended to be enhanced by R-citalopram co-administration. We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram.
Meyer, Jerrold S; Brevard, Matthew E; Piper, Brian J; Ali, Syed F; Ferris, Craig F
2006-08-01
We used functional magnetic resonance imaging (fMRI) to investigate the acute effects of a recreational dose (1 mg/kg p.o.) of 3,4-methylenedioxymethamphetamine (MDMA) on regional brain activity in awake, restrained marmoset monkeys. In a second study, magnetic resonance spectroscopy (MRS) and postmortem measurements of serotonin transporter (SERT) binding and serotonin (5-HT) concentrations were used to determine the neurotoxic effects of low (4 x 1 mg/kg p.o.) and high (4 x 10 mg/kg i.m.) doses of MDMA. Several brain areas were significantly activated by the low oral dose of MDMA, including the midbrain raphe nuclei, hippocampus, hypothalamus, amygdala, and the corticostriatal circuit composed of the dorsal thalamus, sensory motor cortex, and basal ganglia. MDMA activated the primary visual cortex under baseline conditions and also enhanced the visual cortical response to photic stimulation. The onset of brain activation correlated well with the rise in plasma MDMA concentrations measured in separate monkeys given the same drug treatment. In the second study, the ratio of N-acetylaspartate (NAA; a putative neuronal marker) to creatine was significantly reduced in the hypothalamus following either MDMA treatment regimen, suggesting a particular vulnerability of this structure to MDMA-induced damage. Monkeys given the high-dose regimen also showed prolonged hyperthermia and reductions in 5-HT and SERT in a number of brain areas. These results are the first to identify the pattern of MDMA-induced brain activation in a nonhuman primate model, and they further suggest that even recreational doses of MDMA may have adverse consequences as indicated by the reduced hypothalamic NAA/creatine ratio.
The Gain-of-Function Integrin β3 Pro33 Variant Alters the Serotonin System in the Mouse Brain.
Dohn, Michael R; Kooker, Christopher G; Bastarache, Lisa; Jessen, Tammy; Rinaldi, Capria; Varney, Seth; Mazalouskas, Matthew D; Pan, Hope; Oliver, Kendra H; Velez Edwards, Digna R; Sutcliffe, James S; Denny, Joshua C; Carneiro, Ana M D
2017-11-15
Engagement of integrins by the extracellular matrix initiates signaling cascades that drive a variety of cellular functions, including neuronal migration and axonal pathfinding in the brain. Multiple lines of evidence link the ITGB3 gene encoding the integrin β3 subunit with the serotonin (5-HT) system, likely via its modulation of the 5-HT transporter (SERT). The ITGB3 coding polymorphism Leu33Pro (rs5918, Pl A2 ) produces hyperactive αvβ3 receptors that influence whole-blood 5-HT levels and may influence the risk for autism spectrum disorder (ASD). Using a phenome-wide scan of psychiatric diagnoses, we found significant, male-specific associations between the Pro33 allele and attention-deficit hyperactivity disorder and ASDs. Here, we used knock-in (KI) mice expressing an Itgb3 variant that phenocopies the human Pro33 variant to elucidate the consequences of constitutively enhanced αvβ3 signaling to the 5-HT system in the brain. KI mice displayed deficits in multiple behaviors, including anxiety, repetitive, and social behaviors. Anatomical studies revealed a significant decrease in 5-HT synapses in the midbrain, accompanied by decreases in SERT activity and reduced localization of SERTs to integrin adhesion complexes in synapses of KI mice. Inhibition of focal adhesion kinase (FAK) rescued SERT function in synapses of KI mice, demonstrating that constitutive active FAK signaling downstream of the Pro32Pro33 integrin αvβ3 suppresses SERT activity. Our studies identify a complex regulation of 5-HT homeostasis and behaviors by integrin αvβ3, revealing an important role for integrins in modulating risk for neuropsychiatric disorders. SIGNIFICANCE STATEMENT The integrin β3 Leu33Pro coding polymorphism has been associated with autism spectrum disorders (ASDs) within a subgroup of patients with elevated blood 5-HT levels, linking integrin β3, 5-HT, and ASD risk. We capitalized on these interactions to demonstrate that the Pro33 coding variation in the murine integrin β3 recapitulates the sex-dependent neurochemical and behavioral attributes of ASD. Using state-of-the-art techniques, we show that presynaptic 5-HT function is altered in these mice, and that the localization of 5-HT transporters to specific compartments within the synapse, disrupted by the integrin β3 Pro33 mutation, is critical for appropriate reuptake of 5-HT. Our studies provide fundamental insight into the genetic network regulating 5-HT neurotransmission in the CNS that is also associated with ASD risk. Copyright © 2017 the authors 0270-6474/17/3711272-14$15.00/0.
Krajnak, Kristine; Rosewell, Katherine L; Duncan, Marilyn J; Wise, Phyllis M
2003-11-14
Estrogen-related changes in serotonergic neuronal transmission, including changes in the number of serotonin transporter (SERT) binding sites, have been cited as a possible cause for changes in mood, memory and sleep that occur during the menopausal transition. However, both aging and estradiol regulate SERT binding sites in the brain. The goal of this experiment was to determine how aging and estrogen interact to regulate SERT levels in the forebrain of young and reproductively senescent female Sprague-Dawley rats using [3H]paroxetine. The density of specific [3H]paroxetine binding in various brain regions was compared in young (2-4 months) and reproductively senescent (10-12 months) female rats at three times of day. In most brain regions examined, estrogen and aging independently increased the number of [3H]paroxetine binding sites. The only region that displayed a reduction in [3H]paroxetine binding with age was the suprachiasmatic nucleus (SCN). Time of day influenced [3H]paroxetine binding in the SCN and the paraventricular thalamus (PVT), two regions known to be involved in the regulation of circadian rhythms. Aging and/or estrogen also altered the pattern of binding in these regions. Thus, based on the results of this study, we conclude that aging and estrogen both act to regulate SERT binding sites in the forebrain of female rats, and that this regulation is region specific.
Talbot, Peter S; Bradley, Stefan; Clarke, Cyril P; Babalola, Kola O; Philipp, Andrew W; Brown, Gavin; McMahon, Adam W; Matthews, Julian C
2010-01-01
Sibutramine is a centrally acting monoamine reuptake inhibitor prescribed as an appetite suppressant in the management of obesity. Its effects are mostly attributable to serotonin and norepinephrine transporter (SERT and NET, respectively) inhibition by its potent metabolites mono-desmethylsibutramine (M1) and di-desmethylsibutramine (M2). However, there is a paucity of in vivo data in humans about mechanisms underlying both clinical efficacy and the dose-independent non-response observed in a minority of patients. Twelve healthy male patients (mean age 41 years) completed a double-blind, placebo-controlled, within-subject crossover investigation of brain SERT occupancy by sibutramine 15 mg daily at steady state. Correlations were measured between occupancy and (i) plasma concentrations of sibutramine, M1 and M2; (ii) appetite suppression. 11C-DASB PET scans were performed on the HRRT camera. Binding potentials (BPND) were calculated by the Logan reference tissue (cerebellum) method. SERT occupancy was modest (mean 30±10%), was similar across brain regions, but varied widely across subjects (15–46%). Occupancy was correlated positively (p=0.09) with M2 concentration, but not with sibutramine or M1. No significant appetite suppression was seen at <25% occupancy and greatest suppression was associated with highest occupancy (25–46%). However, several subjects with occupancy (36–39%) in the higher range had no appetite suppression. SERT occupancy by clinical doses of sibutramine is of modest magnitude and may be mediated predominantly by M2 in humans. 5-HT reuptake inhibition may be necessary but is not sufficient for sibutramine's efficacy in humans, supporting preclinical data suggesting that the hypophagic effect requires the co-inhibition of both SERT and NET. PMID:19890256
Yeh, Yi-Wei; Ho, Pei-Shen; Chen, Chun-Yen; Kuo, Shin-Chang; Liang, Chih-Sung; Yen, Che-Hung; Huang, Chang-Chih; Shiue, Chyng-Yann; Huang, Wen-Sheng; Ma, Kuo-Hsing; Lu, Ru-Band; Huang, San-Yuan
2015-10-01
Suicide is an important issue in the military service, since it can influence military morale and create dangerous situations for other personnel. The serotonin transporter (SERT) has been suggested to be involved in the pathophysiology of depression and suicidal behaviours. The aims of this study were to examine whether the brain SERT availability differs between military conscripts with depression and control subjects, and whether suicidal ideation is correlated with SERT availability. We used N,N-dimethyl-2-(2-amino-4-[(18)F]-fluorophenylthio)benzylamine (4-[(18)F]-ADAM) as a radioligand for positron emission tomography (PET) imaging. All participants completed the Hamilton Depression Rating Scale and Beck Scale for Suicide Ideation (BSS) prior to PET imaging. The effect of major depression and BSS scores had an interaction on SERT availability. After adjusting for the BSS score, subjects with depression had lower SERT availability than control subjects (F1,17 = 23.85, P < 0.001). A positive correlation between SERT availability and BSS scores was observed in the depression group (F1,8 = 30.67, P = 0.001). The status of depression and intensity of suicidal ideation exert opposite effects on SERT availability. The extent of suicidal ideation may moderate the reduction effect in SERT binding observed in major depression in male military conscripts.
Bang-Andersen, Benny; Ruhland, Thomas; Jørgensen, Morten; Smith, Garrick; Frederiksen, Kristen; Jensen, Klaus Gjervig; Zhong, Huailing; Nielsen, Søren Møller; Hogg, Sandra; Mørk, Arne; Stensbøl, Tine Bryan
2011-05-12
The synthesis and structure-activity relationship of a novel series of compounds with combined effects on 5-HT(3A) and 5-HT(1A) receptors and on the serotonin (5-HT) transporter (SERT) are described. Compound 5m (Lu AA21004) was the lead compound, displaying high affinity for recombinant human 5-HT(1A) (K(i) = 15 nM), 5-HT(1B) (K(i) = 33 nM), 5-HT(3A) (K(i) = 3.7 nM), 5-HT(7) (K(i) = 19 nM), and noradrenergic β(1) (K(i) = 46 nM) receptors, and SERT (K(i) = 1.6 nM). Compound 5m displayed antagonistic properties at 5-HT(3A) and 5-HT(7) receptors, partial agonist properties at 5-HT(1B) receptors, agonistic properties at 5-HT(1A) receptors, and potent inhibition of SERT. In conscious rats, 5m significantly increased extracellular 5-HT levels in the brain after acute and 3 days of treatment. Following the 3-day treatment (5 or 10 (mg/kg)/day) SERT occupancies were only 43% and 57%, respectively. These characteristics indicate that 5m is a novel multimodal serotonergic compound, and 5m is currently in clinical development for major depressive disorder.
Lundgren, J D; Amsterdam, J; Newberg, A; Allison, K C; Wintering, N; Stunkard, A J
2009-03-01
We examined serotonin transporter (SERT) binding affinity using single photon emission computed tomography (SPECT) in patients with major depressive disorder (MDD) and night eating syndrome (NES). There are similarities between MDD and NES in affective symptoms, appetite disturbance, nighttime awakenings, and, particularly, response to selective serotonin reuptake inhibitors (SSRIs). Six non-depressed patients with NES and seven patients with MDD underwent SPECT brain imaging with 123I-ADAM, a radiopharmaceutical agent selective for SERT sites. Uptake ratios of 123I-ADAM SERT binding were obtained for the midbrain, basal ganglia, and temporal lobe regions compared to the cerebellum reference region. Patients with NES had significantly greater SERT uptake ratios (effect size range 0.64-0.84) in the midbrain, right temporal lobe, and left temporal lobe regions than those with MDD whom we had previously studied. Pathophysiological differences in SERT uptake between patients with NES and MDD suggest these are distinct clinical syndromes.
Strecker, Karl; Wegner, Florian; Hesse, Swen; Becker, Georg-Alexander; Patt, Marianne; Meyer, Philipp M; Lobsien, Donald; Schwarz, Johannes; Sabri, Osama
2011-01-01
Recent imaging and neuropathological studies indicate reduced serotonin transporter (SERT) in advanced Parkinson's disease (PD). However, data on SERT in early PD patients are sparse. Following the hypothesis that the serotonergic system is damaged early in PD, the aim of our study was to investigate SERT availability by means of PET imaging. Since the loss of dopaminergic neurons is the pathologic hallmark of PD and SERT might be associated with psychiatric co-morbidity, we further sought to correlate SERT availability with the availability of dopamine transporter (DAT) and depressive or motor symptoms in early PD. We prospectively recruited nine early PD patients (4 female, 5 male; 42-76 years) and nine age matched healthy volunteers (5 female, 4 male; 42-72 years). Diagnosis of PD was confirmed by the UK brain bank criteria and DAT imaging. SERT availability was measured by means of [11C]DASB PET. For neuropsychiatric assessment done on the day of PET we applied UPDRS parts I, II and III, Beck's Depression Inventory, Hamilton Rating Scale for Depression, Mini-Mental State Examination and Demtect. SERT was not reduced in any of 14 investigated regions of interest in the nine PD patients compared to healthy controls (p>0.13). SERT was negatively associated with DAT in the striatum (r=-0.69; p=0.04) but not within the midbrain. There was no correlation of SERT availability with depressive symptoms. No alteration of SERT binding in our patients suggests that the serotonergic system is remarkably preserved in early PD. Correlation with DAT might point to a compensatory regulation of the serotonergic system in early stages of PD.
Shih, Jui-Hu; Ma, Kuo-Hsing; Chen, Chien-Fu F; Cheng, Cheng-Yi; Pao, Li-Heng; Weng, Shao-Ju; Huang, Yuahn-Sieh; Shiue, Chyng-Yann; Yeh, Ming-Kung; Li, I-Hsun
2016-01-01
The misuse of 3,4-methylenedioxymethamphetamine (MDMA) has drawn a growing concern worldwide for its psychophysiological impacts on humans. MDMA abusers are often accompanied by long-term serotonergic neurotoxicity, which is associated with reduced density of cerebral serotonin transporters (SERT) and depressive disorders. Resveratrol (RSV) is a natural polyphenolic phytoalexin that has been known for its antidepressant and neuroprotective effects. However, biological targets of RSV as well as its neuroprotective effects against MDMA remained largely unknown. In this study, we examined binding potency of RSV and MDMA to SERT using small-animal positron emission tomography (PET) with the SERT radioligand, N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) and investigated the protection of RSV against the acute and long-term adverse effects of MDMA. We found that RSV exhibit binding potentials to SERT in vivo in a dose-dependent manner with variation among brain regions. When the MDMA-treated rats (10mg/kg, s.c.) were co-injected with RSV (20mg/kg, i.p.) twice daily for 4 consecutive days, MDMA-induced acute elevation in plasma corticosterone was significantly reduced. Further, 4-[(18)F]-ADAM PET imaging revealed that RSV protected against the MDMA-induced decrease in SERT availability in the midbrain and the thalamus 2 weeks following the co-treatment. The PET data were comparable to the observation from the forced swim test that RSV sufficiently ameliorated the depressive-like behaviors of the MDMA-treated rats. Together, these findings suggest that RSV is a potential antidepressant and may confer protection against neurobiological and behavioral changes induced by MDMA. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Hidalgo, Sergio; Molina-Mateo, Daniela; Escobedo, Pía; Zárate, Rafaella V; Fritz, Elsa; Fierro, Angélica; Perez, Edwin G; Iturriaga-Vasquez, Patricio; Reyes-Parada, Miguel; Varas, Rodrigo; Fuenzalida-Uribe, Nicolás; Campusano, Jorge M
2017-10-18
A better comprehension on how different molecular components of the serotonergic system contribute to the adequate regulation of behaviors in animals is essential in the interpretation on how they are involved in neuropsychiatric and pathological disorders. It is possible to study these components in "simpler" animal models including the fly Drosophila melanogaster, given that most of the components of the serotonergic system are conserved between vertebrates and invertebrates. Here we decided to advance our understanding on how the serotonin plasma membrane transporter (SERT) contributes to serotonergic neurotransmission and behaviors in Drosophila. In doing this, we characterized for the first time a mutant for Drosophila SERT (dSERT) and additionally used a highly selective serotonin-releasing drug, 4-methylthioamphetamine (4-MTA), whose mechanism of action involves the SERT protein. Our results show that dSERT mutant animals exhibit an increased survival rate in stress conditions, increased basal motor behavior, and decreased levels in an anxiety-related parameter, centrophobism. We also show that 4-MTA increases the negative chemotaxis toward a strong aversive odorant, benzaldehyde. Our neurochemical data suggest that this effect is mediated by dSERT and depends on the 4-MTA-increased release of serotonin in the fly brain. Our in silico data support the idea that these effects are explained by specific interactions between 4-MTA and dSERT. In sum, our neurochemical, in silico, and behavioral analyses demonstrate the critical importance of the serotonergic system and particularly dSERT functioning in modulating several behaviors in Drosophila.
Latorre, Eva; Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Alcalde, Ana I; Mesonero, José E
2016-01-01
TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system.
Layunta, Elena; Grasa, Laura; Castro, Marta; Pardo, Julián; Gomollón, Fernando; Mesonero, José E.
2016-01-01
TLR2 is a microbiota recognition receptor that has been described to contribute to intestinal homeostasis and to ameliorate inflammatory intestinal injury. In this context, serotonin (5-HT) has shown to be an essential intestinal physiological neuromodulator that is also involved in intestinal inflammatory diseases. Since the interaction between TLR2 activation and the intestinal serotoninergic system remains non-investigated, our main aim was to analyze the effect of TLR2 on intestinal serotonin transporter (SERT) activity and expression and the intracellular pathways involved. Caco-2/TC7 cells were used to analyze SERT and TLR2 molecular expression and SERT activity by measuring 5-HT uptake. The results showed that apical TLR2 activation inhibits SERT activity in Caco-2/TC7 cells mainly by reducing SERT protein level either in the plasma membrane, after short-term TLR2 activation or in both the plasma membrane and cell lysate, after long-term activation. cAMP/PKA pathway appears to mediate short-term inhibitory effect of TLR2 on SERT; however, p38 MAPK pathway has been shown to be involved in both short- and long-term TLR2 effect. Reciprocally, 5-HT long-term treatment yielded TLR2 down regulation in Caco-2/TC7 cells. Finally, results from in vivo showed an augmented intestinal SERT expression in mice Tlr2-/-, thus confirming our inhibitory effect of TLR2 on intestinal SERT in vitro. The present work infers that TLR2 may act in intestinal pathophysiology, not only by its inherent innate immune role, but also by regulating the intestinal serotoninergic system. PMID:28033388
Autoradiographic study of serotonin transporter during memory formation.
Tellez, Ruth; Rocha, Luisa; Castillo, Carlos; Meneses, Alfredo
2010-09-01
Serotonin transporter (SERT) has been associated with drugs of abuse like d-methamphetamine (METH). METH is well known to produce effects on the monoamine systems but it is unclear how METH affects SERT and memory. Here the effects of METH and the serotonin reuptake inhibitor fluoxetine (FLX) on autoshaping and novel object recognition (NOR) were investigated. Notably, both memory tasks recruit different behavioral, neural and cognitive demand. In autoshaping task a dose-response curve for METH was determined. METH (1.0mg/kg) impaired short-term memory (STM; lasting less of 90min) in NOR and impaired both STM and long-term memory (LTM; lasting 24 and 48h) in autoshaping, indicating that METH had long-lasting effects in the latter task. A comparative autoradiography study of the relationship between the binding pattern of SERT in autoshaping new untrained vs. trained treated (METH, FLX, or both) animals was made. Considering that hemispheric dominance is important for LTM, hence right vs. left hemisphere of the brain was compared. Results showed that trained animals decreased cortical SERT binding relative to untrained ones. In untrained and trained treated animals with the amnesic dose (1.0mg/kg) of METH SERT binding in several areas including hippocampus and cortex decreased, more remarkably in the trained animals. In contrast, FLX improved memory, increased SERT binding, prevented the METH amnesic effect and re-established the SERT binding. In general, memory and amnesia seemed to make SERT more vulnerable to drugs effects. Copyright 2010 Elsevier B.V. All rights reserved.
Simmler, Linda D; Anacker, Allison M J; Levin, Michael H; Vaswani, Nina M; Gresch, Paul J; Nackenoff, Alex G; Anastasio, Noelle C; Stutz, Sonja J; Cunningham, Kathryn A; Wang, Jing; Zhang, Bing; Henry, L Keith; Stewart, Adele; Veenstra-VanderWeele, Jeremy; Blakely, Randy D
2017-08-01
The psychostimulant cocaine induces complex molecular, cellular and behavioural responses as a consequence of inhibiting presynaptic dopamine, noradrenaline and 5-HT transporters. To elucidate 5-HT transporter (SERT)-specific contributions to cocaine action, we evaluated cocaine effects in the SERT Met172 knock-in mouse, which expresses a SERT coding substitution that eliminates high-affinity cocaine recognition. We measured the effects of SERT Met172 on cocaine antagonism of 5-HT re-uptake using ex vivo synaptosome preparations and in vivo microdialysis. We assessed SERT dependence of cocaine actions behaviourally through acute and chronic locomotor activation, sensitization, conditioned place preference (CPP) and oral cocaine consumption. We used c-Fos, quantitative RT-PCR and RNA sequencing methods for insights into cellular and molecular networks supporting SERT-dependent cocaine actions. SERT Met172 mice demonstrated functional insensitivity for cocaine at SERT. Although they displayed wild-type levels of acute cocaine-induced hyperactivity or chronic sensitization, the pattern of acute motor activation was different, with a bias toward thigmotaxis. CPP was increased, and a time-dependent elevation in oral cocaine consumption was observed. SERT Met172 mice displayed relatively higher levels of neuronal activation in the hippocampus, piriform cortex and prelimbic cortex (PrL), accompanied by region-dependent changes in immediate early gene expression. Distinct SERT-dependent gene expression networks triggered by acute and chronic cocaine administration were identified, including PrL Akt and nucleus accumbens ERK1/2 signalling. Our studies reveal distinct SERT contributions to cocaine action, reinforcing the possibility of targeting specific aspects of cocaine addiction by modulation of 5-HT signalling. © 2017 The British Pharmacological Society.
Ontogeny and Regulation of the Serotonin Transporter: Providing Insights into Human Disorders
Daws, Lynette C.; Gould, Georgianna G.
2011-01-01
Serotonin (5-hydroxytryptamine, 5-HT) was one of the first neurotransmitters for which a role in development was identified. Pharmacological and gene knockout studies have revealed a critical role for 5-HT in numerous processes, including cell division, neuronal migration, differentiation and synaptogenesis. An excess in brain 5-HT appears to be mechanistically linked to abnormal brain development, which in turn is associated with neurological disorders. Ambient levels of 5-HT are controlled by a vast orchestra of proteins, including a multiplicity of pre- and post-synaptic 5-HT receptors, heteroreceptors, enzymes and transporters. The 5-HT transporter (SERT, 5-HTT) is arguably the most powerful regulator of ambient extracellular 5-HT. SERT is the high-affinity uptake mechanism for 5-HT and exerts tight control over the strength and duration of serotonergic neurotransmission. Perturbation of its expression level or function has been implicated in many diseases, prominent among them are psychiatric disorders. This review synthesizes existing information on the ontogeny of SERT during embryonic and early postnatal development though adolescence, along with factors that influence its expression and function during these critical developmental windows. We integrate this knowledge to emphasize how inappropriate SERT expression or its dysregulation may be linked to the pathophysiology of psychiatric, cardiovascular and gastrointestinal diseases. PMID:21447358
Chang, Jerry C.; Tomlinson, Ian D.; Warnement, Michael R.; Ustione, Alessandro; Carneiro, Ana M. D.; Piston, David W.; Blakely, Randy D.; Rosenthal, Sandra J.
2012-01-01
The presynaptic serotonin (5-HT) transporter (SERT) is targeted by widely prescribed antidepressant medications. Altered SERT expression or regulation has been implicated in multiple neuropsychiatric disorders, including anxiety, depression and autism. Here, we implement a generalizable strategy that exploits antagonist-conjugated quantum dots (Qdots) to monitor, for the first time, single SERT proteins on the surface of serotonergic cells. We document two pools of SERT proteins defined by lateral mobility, one that exhibits relatively free diffusion, and a second, localized to cholesterol and GM1 ganglioside-enriched microdomains, that displays restricted mobility. Receptor-linked signalling pathways that enhance SERT activity mobilize transporters that, nonetheless, remain confined to membrane microdomains. Mobilization of transporters arise from a p38 MAPK-dependent untethering of the SERT C-terminus from the juxtamembrane actin cytoskeleton. Our studies establish the utility of ligand-conjugated Qdots for analysis of the behaviour of single membrane proteins and reveal a physical basis for signaling-mediated SERT regulation. PMID:22745492
Pereira-Figueiredo, Inês; Sancho, Consuelo; Carro, Juan; Castellano, Orlando; López, Dolores E.
2014-01-01
Sertraline (SERT) is a clinically effective Selective Serotonin Reuptake Inhibitor (SSRI) known to increase and stabilize serotonin levels. This neurotransmitter plays an important role in adolescent brain development in both rodents and humans, and its dysregulation has been correlated with deficits in behavior and emotional regulation. Since prenatal stress may disturb serotoninergic homeostasis, the aim of this study was to examine the long-lasting effects of exposure to SERT throughout adolescence on behavioral and physiological developmental parameters in prenatally stressed Wistar rats. SERT was administered (5 mg/kg/day p.o.) from the age of 1–3 months to half of the progeny, of both sexes, of gestating dams stressed by use of a restraint (PS) or not stressed. Our data reveal that long-term SERT treatment slightly reduced weight gain in both sexes, but reversed the developmental disturbed “catch-up” growth found in PS females. Neither prenatal stress nor SERT treatment induced remarkable alterations in behavior and had no effects on mean startle reflex values. However, a sex-dependent effects of PS was found: in males the PS paradigm slightly increased anxiety-like behavior in the open field, while in females, it impaired startle habituation. In both cases, SERT treatment reversed the phenomena. Additionally, the PS animals exhibited a disturbed leukocyte profile in both sexes, which was reversed by SERT. The present findings are evidence that continuous SERT administration from adolescence through adulthood is safe in rodents and lessens the impact of prenatal stress in rats. PMID:25147514
Li, I-Hsun; Ma, Kuo-Hsing; Kao, Tzu-Jen; Lin, Yang-Yi; Weng, Shao-Ju; Yen, Ting-Yin; Chen, Lih-Chi; Huang, Yuahn-Sieh
2016-01-01
It has been suggested that autophagy plays pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug that causes long-term serotonergic neurotoxicity in the brain. Apoptosis and necrosis have been implicated in MDMA-induced neurotoxicity, but the role of autophagy in MDMA-elicited serotonergic toxicity has not been investigated. The present study aimed to examine the contribution of autophagy to neurotoxicity in serotonergic neurons in in vitro and in vivo animal models challenged with MDMA. Here, we demonstrated that in cultured rat serotonergic neurons, MDMA exposure induced LC3B-densely stained autophagosome formation, accompanying by a decrease in neurite outgrowth. Autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated MDMA-induced autophagosome accumulation, and ameliorated MDMA-triggered serotonergic neurite damage and neuron death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in serotonergic neurons and aggravated neurite degeneration. In addition, MDMA-induced autophagy activation in cultured serotonergic neurons might be mediated by serotonin transporter (SERT). In an in vivo animal model administered MDMA, neuroimaging showed that 3-MA protected the serotonin system against MDMA-induced downregulation of SERT evaluated by animal-PET with 4-[(18)F]-ADAM, a SERT radioligand. Taken together, our results demonstrated that MDMA triggers upregulation of autophagy in serotonergic neurons, which appears to be detrimental to neuronal growth. Copyright © 2015 Elsevier Inc. All rights reserved.
Lizarraga, Lucina E.; Phan, Andy V.; Cholanians, Aram B.; Herndon, Joseph M.; Lau, Serrine S.; Monks, Terrence J.
2014-01-01
3,4-(±)-Methylenedioxymethamphetamine (MDMA) is a ring-substituted amphetamine derivative with potent psychostimulant properties. The neuropharmacological effects of MDMA are biphasic in nature, initially causing synaptic monoamine release, primarily of serotonin (5-HT), inducing thermogenesis and hyperactivity (5-HT syndrome). The long-term effects of MDMA manifest as a prolonged depletion in 5-HT, and structural damage to 5-HT nerve terminals. MDMA toxicity is in part mediated by an ability to inhibit the presynaptic 5-HT reuptake transporter (SERT). Using a SERT-knockout (SERT-KO) rat model, we determined the impact of SERT deficiency on thermoregulation, locomotor activity, and neurotoxicity in SERT-KO or Wistar-based wild-type (WT) rats exposed to MDMA. WT and SERT-KO animals exhibited the highest thermogenic responses to MDMA (four times 10 mg/kg, sc at 12 h intervals) during the diurnal (first and third) doses according to peak body temperature and area under the curve (∑°C × h) analysis. Although no differences in peak body temperature were observed between MDMA-treated WT and SERT-KO animals, ∑°C × h following the first MDMA dose was reduced in SERT-KO rats. Exposure to a single dose of MDMA stimulated horizontal velocity in both WT and SERT-KO rats, however, this effect was delayed and attenuated in the KO animals. Finally, SERT-KO rats were insensitive to MDMA-induced long-term (7 days) depletions in 5-HT and its metabolite, 5-hydroxyindole acetic acid, in both cortex and striatum. In conclusion, SERT deficiency modulated MDMA-mediated thermogenesis, hyperactivity and neurotoxicity in KO rats. The data confirm that the SERT is essential for the manifestation of the acute and long-term toxicities of MDMA. PMID:24595820
Ye, R; Carneiro, A M D; Han, Q; Airey, D; Sanders-Bush, E; Zhang, B; Lu, L; Williams, R; Blakely, R D
2014-03-01
Presynaptic serotonin (5-hydroxytryptamine, 5-HT) transporters (SERT) regulate 5-HT signaling via antidepressant-sensitive clearance of released neurotransmitter. Polymorphisms in the human SERT gene (SLC6A4) have been linked to risk for multiple neuropsychiatric disorders, including depression, obsessive-compulsive disorder and autism. Using BXD recombinant inbred mice, a genetic reference population that can support the discovery of novel determinants of complex traits, merging collective trait assessments with bioinformatics approaches, we examine phenotypic and molecular networks associated with SERT gene and protein expression. Correlational analyses revealed a network of genes that significantly associated with SERT mRNA levels. We quantified SERT protein expression levels and identified region- and gender-specific quantitative trait loci (QTLs), one of which associated with male midbrain SERT protein expression, centered on the protocadherin-15 gene (Pcdh15), overlapped with a QTL for midbrain 5-HT levels. Pcdh15 was also the only QTL-associated gene whose midbrain mRNA expression significantly associated with both SERT protein and 5-HT traits, suggesting an unrecognized role of the cell adhesion protein in the development or function of 5-HT neurons. To test this hypothesis, we assessed SERT protein and 5-HT traits in the Pcdh15 functional null line (Pcdh15(av-) (3J) ), studies that revealed a strong, negative influence of Pcdh15 on these phenotypes. Together, our findings illustrate the power of multidimensional profiling of recombinant inbred lines in the analysis of molecular networks that support synaptic signaling, and that, as in the case of Pcdh15, can reveal novel relationships that may underlie risk for mental illness. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Laursen, Helle Ruff; Henningsson, Susanne; Macoveanu, Julian; Jernigan, Terry L; Siebner, Hartwig R; Holst, Klaus K; Skimminge, Arnold; Knudsen, Gitte M; Ramsoy, Thomas Z; Erritzoe, David
2016-12-01
The brain's serotonergic system plays a crucial role in the processing of emotional stimuli, and several studies have shown that a reduced serotonergic neurotransmission is associated with an increase in amygdala activity during emotional face processing. Prolonged recreational use of ecstasy (3,4-methylene-dioxymethamphetamine [MDMA]) induces alterations in serotonergic neurotransmission that are comparable to those observed in a depleted state. In this functional magnetic resonance imaging (fMRI) study, we investigated the responsiveness of the amygdala to emotional face stimuli in recreational ecstasy users as a model of long-term serotonin depletion. Fourteen ecstasy users and 12 non-using controls underwent fMRI to measure the regional neural activity elicited in the amygdala by male or female faces expressing anger, disgust, fear, sadness, or no emotion. During fMRI, participants made a sex judgement on each face stimulus. Positron emission tomography with 11 C-DASB was additionally performed to assess serotonin transporter (SERT) binding in the brain. In the ecstasy users, SERT binding correlated negatively with amygdala activity, and accumulated lifetime intake of ecstasy tablets was associated with an increase in amygdala activity during angry face processing. Conversely, time since the last ecstasy intake was associated with a trend toward a decrease in amygdala activity during angry and sad face processing. These results indicate that the effects of long-term serotonin depletion resulting from ecstasy use are dose-dependent, affecting the functional neural basis of emotional face processing. © The Author(s) 2016.
Banks, Matthew L.
2017-01-01
Many cathinone analogs act as substrates or inhibitors at dopamine, norepinephrine, and serotonin transporters (DAT, NET, SERT, respectively). Drug selectivity at DAT vs. SERT is a key determinant of abuse potential for monoamine transporter substrates and inhibitors, such that potency at DAT > SERT is associated with high abuse potential, whereas potency at DAT < SERT is associated with low abuse potential. Quantitative structure—activity relationship (QSAR) studies with a series of 4-substituted methcathinone analogs identified volume of the 4-position substituent on the methcathinone phenyl ring as one structural determinant of both DAT vs. SERT selectivity and abuse-related behavioral effects in an intracranial self-stimulation procedure in rats. Subsequent modeling studies implicated specific amino acids in DAT and SERT that might interact with 4-substituent volume to determine effects produced by this series of cathinone analogs. These studies illustrate use of QSAR analysis to investigate pharmacology of cathinones and function of monoamine transporters. PMID:27696217
Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.
2016-01-01
Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230
Cloonan, Suzanne M; Keating, John J; Butler, Stephen G; Knox, Andrew J S; Jørgensen, Anne M; Peters, Günther H; Rai, Dilip; Corrigan, Desmond; Lloyd, David G; Williams, D Clive; Meegan, Mary J
2009-12-01
The discovery that some serotonin reuptake transporter (SERT) ligands have the potential to act as pro-apoptotic agents in the treatment of cancer adds greatly to their diverse pharmacological application. 4-Methylthioamphetamine (MTA) is a selective ligand for SERT over other monoamine transporters. In this study, a novel library of structurally diverse 4-MTA analogues were synthesised with or without N-alkyl and/or C-alpha methyl or ethyl groups so that their potential SERT-dependent antiproliferative activity could be assessed. Many of the compounds displayed SERT-binding activity as well as cytotoxic activity. While there was no direct correlation between these two effects, a number of derivatives displayed anti-tumour effects in lymphoma, leukaemia and breast cancer cell lines, showing further potential to be developed as possible chemotherapeutic agents.
Zientek, Franziska; Winter, Karsten; Müller, Astrid; Rullmann, Michael; Luthardt, Julia; Becker, Georg-Alexander; Bresch, Anke; Patt, Marianne; Sabri, Osama; Hilbert, Anja; Hesse, Swen
2016-10-01
There is evidence that temperamental factors are associated with obesity; however, the biological mechanism of such association remains elusive. We aimed to investigate a possible association between serotonin transmission and regulative temperament in obese and non-obese individuals by using positron emission tomography (PET) imaging of serotonin transporters (SERT) and the Adult Temperament Questionnaire. Twenty-nine obese individuals with body mass index (BMI) ≥ 35 kg/m 2 and 13 non-obese controls (BMI < 30 kg/m 2 ) underwent PET with [ 11 C]-labeled DASB (highly selective for SERT) and self-completed the Effortful Control (EC) scale of the Adult Temperament Questionnaire-Short Form (ATQ). With the help of this questionnaire, we aimed to assess the capacity of self-regulation. Overall, for obese and non-obese individuals together, VOI-based (volume of interest) analysis showed significant negative correlations between SERT BP ND and ATQ-EC AC (Activation Control) subscale in several brain regions (all r ≤ -0.47). Obese and non-obese individuals separated showed equally strong positive, but non-significant correlations. The analysis did not reveal any significant correlations of SERT availability and ATQ-EC IC (Inhibitory Control) or ATQ-EC AtC (Attentional Control) subscale within and between the two groups. The results indicate that regulative temperament - particularly the capacity to mitigate negatively toned impulses and to resist inappropriate avoidance behavior - might be associated with the prefrontal serotonergic system. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavone, Luigi Michele; Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples; Spina, Anna
2008-12-12
Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT{sup Cre/+};ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventriclemore » and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.« less
Control of serotonin transporter phosphorylation by conformational state
Zhang, Yuan-Wei; Turk, Benjamin E.
2016-01-01
Serotonin transporter (SERT) is responsible for reuptake and recycling of 5-hydroxytryptamine (5-HT; serotonin) after its exocytotic release during neurotransmission. Mutations in human SERT are associated with psychiatric disorders and autism. Some of these mutations affect the regulation of SERT activity by cGMP-dependent phosphorylation. Here we provide direct evidence that this phosphorylation occurs at Thr276, predicted to lie near the cytoplasmic end of transmembrane helix 5 (TM5). Using membranes from HeLa cells expressing SERT and intact rat basophilic leukemia cells, we show that agents such as Na+ and cocaine that stabilize outward-open conformations of SERT decreased phosphorylation and agents that stabilize inward-open conformations (e.g., 5-HT, ibogaine) increased phosphorylation. The opposing effects of the inhibitors cocaine and ibogaine were each reversed by an excess of the other inhibitor. Inhibition of phosphorylation by Na+ and stimulation by ibogaine occurred at concentrations that induced outward opening and inward opening, respectively, as measured by the accessibility of cysteine residues in the extracellular and cytoplasmic permeation pathways, respectively. The results are consistent with a mechanism of SERT regulation that is activated by the transport of 5-HT, which increases the level of inward-open SERT and may lead to unwinding of the TM5 helix to allow phosphorylation. PMID:27140629
Control of serotonin transporter phosphorylation by conformational state.
Zhang, Yuan-Wei; Turk, Benjamin E; Rudnick, Gary
2016-05-17
Serotonin transporter (SERT) is responsible for reuptake and recycling of 5-hydroxytryptamine (5-HT; serotonin) after its exocytotic release during neurotransmission. Mutations in human SERT are associated with psychiatric disorders and autism. Some of these mutations affect the regulation of SERT activity by cGMP-dependent phosphorylation. Here we provide direct evidence that this phosphorylation occurs at Thr276, predicted to lie near the cytoplasmic end of transmembrane helix 5 (TM5). Using membranes from HeLa cells expressing SERT and intact rat basophilic leukemia cells, we show that agents such as Na(+) and cocaine that stabilize outward-open conformations of SERT decreased phosphorylation and agents that stabilize inward-open conformations (e.g., 5-HT, ibogaine) increased phosphorylation. The opposing effects of the inhibitors cocaine and ibogaine were each reversed by an excess of the other inhibitor. Inhibition of phosphorylation by Na(+) and stimulation by ibogaine occurred at concentrations that induced outward opening and inward opening, respectively, as measured by the accessibility of cysteine residues in the extracellular and cytoplasmic permeation pathways, respectively. The results are consistent with a mechanism of SERT regulation that is activated by the transport of 5-HT, which increases the level of inward-open SERT and may lead to unwinding of the TM5 helix to allow phosphorylation.
Jacobsen, Jacob P.R.; Plenge, Per; Sachs, Benjamin D.; Pehrson, Alan L.; Cajina, Manuel; Du, Yunzhi; Roberts, Wendy; Rudder, Meghan L.; Dalvi, Prachiti; Robinson, Taylor J.; O’Neill, Sharon P.; Khoo, King S.; Morillo, Connie Sanchez; Zhang, Xiaodong; Caron, Marc G.
2015-01-01
Rationale Escitalopram is a superior antidepressant to racemic citalopram. It has been hypothesized that binding of R-citalopram to the serotonin transporter (SERT) antagonizes escitalopram binding to and inhibition of the SERT, curtailing the elevation of extracellular 5-hydroxytryptamine (5-HTExt), and antidepressant efficacy. Further, it has been suggested that a putative allosteric binding site is important for binding of escitalopram to the primary, orthosteric, site, and for R-citalopram’s inhibition hereof. Objectives Primary: Investigate at the human (h)SERT, at clinical relevant doses, whether R-citalopram antagonizes escitalopram-induced 5-HTExt elevation. Secondary: Investigate whether abolishing the putative allosteric site affects escitalopram-induced 5-HTExt elevation and/or modulates the effect of R-citalopram. Methods Recombinant technology; in vivo microdialysis; receptor binding; pharmacokinetics; 5-HT sensitive behaviors (tail suspension, marble burying). Results We generated mice expressing either the wild-type human SERT (hSERTWT) or hSERT carrying amino acid substitutions (A505V, L506F, I507L, S574T and I575T) collectively abolishing the putative allosteric site (hSERTALI/VFL+SI/TT). One mg/kg escitalopram yielded clinical relevant plasma levels and brain levels consistent with therapeutic SERT occupancy. Importantly, escitalopram-induced 5-HTExt elevation was not decreased by R-citalopram co-treatment. Further, escitalopram-induced 5-HTExt elevation was not affected by loss of the allosteric site. The behavioral effects of the clinically relevant escitalopram dose were small, tending to be enhanced by R-citalopram co-administration. Conclusions We find no evidence that R-citalopram directly antagonizes escitalopram or that the putative allosteric site is important for hSERT inhibition by escitalopram. Our findings points to mechanisms for R-citalopram antagonism of escitalopram’s antidepressant action other than direct antagonistic binding interactions at the hSERT. PMID:24810106
NASA Technical Reports Server (NTRS)
Howell, Joe; Sanders, Clark W.
2000-01-01
The University of Alabama in Huntsville's (UAH) Propulsion Research Center hosted the Space Solar Power Exploratory Research & Technology (SERT) Technical Interchange Meeting TIM) 2 in Huntsville, Alabama December 7-10. 1999 with 126 people in attendance. The SERT program includes both competitively procured activities. which are being implemented through a portfolio of focused R&D investments--with the maximum leveraging of existing resources inside and outside NASA. and guided by these system studies. Axel Roth. Director of the Flight Projects Directorate NASA MSFC, welcomed the SERT TIM 2 participants and challenged them to develop the necessary technologies and demonstrations that will lead to Space Solar Power (SSP) International implementation. Joe Howell, NASA MSFC, reiterated the SERT TIM 2 objectives: 1) Refining and modeling systems approaches for the utilization of SSP concepts and technologies, ranging, from the near-term e.g. for space science, exploration and commercial space applications to the far-term (e. g. SSP for terrestrial markets), including systems concepts, technology, infrastructure (i.g., transportation), and economics. 2) Conducting technology research, development and demonstration activities to produce "proof- of-concept" validation of critical SSP elements for both the nearer and farther-term applications. 3) Initiating partnerships Nationality and Internationally that could be expanded, as appropriate, to pursue later SSP technology and applications (e.g., space science. colonization, etc.). Day one began with the NASA Centers presenting their SERT activities summary since SERT TIM 1 and wound up with a presentation by Masahiro Mori, NASDA titled "NASDA In-house Study for SSP". Demonstration for the Near-Term. Day two began with the SERT Systems Studies and Analysis reports resulting from NRA 8-23 followed by presentations of SERT Technology Demonstrations reports resulting from NRA 8-23. Day two closed with John Mankins presentation on "Technology Roadmapping" and the delivery of the charge to the Work Breakout Sessions. Day three began with the eleven Work Breakout Session which was the major function of this TIM 2 and day three ended with reports by the Chairs of the eleven Work Breakdown Sessions. Day four began with the six Integrated Product Team OPT) meetings and ended with closing plenary panel sessions.
Layunta, Elena; Latorre, Eva; Forcén, Raquel; Grasa, Laura; Castro, Marta; Arias, Maykel A; Alcalde, Ana I; Mesonero, José Emilio
2018-06-15
Serotonin (5-HT) is a chief modulator of intestinal activity. The effects of 5-HT depend on its extracellular availability, which is mainly controlled by serotonin transporter (SERT), expressed in enterocytes. On the other hand, innate immunity, mediated by Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), is known to control intestinal microbiota and maintain intestinal homeostasis. The dysregulation of the intestinal serotonergic system and innate immunity has been observed in inflammatory bowel diseases (IBD), the incidence of which has severely increased all over the world. The aim of the present study, therefore, was to analyze the effect of NOD2 on intestinal SERT activity and expression, as well as to study the crosstalk of NOD2 with TLR2 and TLR4. Intestinal epithelial cell line Caco-2/TC7 was used to analyze SERT activity and SERT, NOD2, TLR2 and TLR4 molecular expression by real-time PCR and western blotting. Moreover, intestinal tract (ileum and colon) from mice deficient in TLR2, TLR4 or TLR2/4 receptors was used to test the interdependence of NOD2 with these TLR receptors. NOD2 activation inhibits SERT activity in Caco-2/TC7 cells, mainly due to the decrement of SERT molecular expression, with RIP2/RICK being the intracellular pathway involved in this effect. This inhibitory effect on SERT would yield an increment of extracellular 5-HT availability. In this sense, 5-HT strongly inhibits NOD2 expression. In addition, NOD2 showed greater interdependence with TLR2 than with TLR4. Indeed, NOD2 expression significantly increased in both cells treated with TLR2 agonists and the intestinal tract of Tlr2-/- mice. It may be inferred from our data that NOD2 could play a role in intestinal pathophysiology not only through its inherent innate immune role but also due to its interaction with other receptors as TLR2 and the modulation of the intestinal serotonergic system decreasing SERT activity and expression. © 2018 The Author(s). Published by S. Karger AG, Basel.
Meta-analysis of molecular imaging of serotonin transporters in ecstasy/polydrug users.
Roberts, Carl Alexander; Jones, Andrew; Montgomery, Catharine
2016-04-01
We conducted a meta-analysis on the available data from studies investigating SERTs in ecstasy users and polydrug using controls. From 7 studies we compared data from 157 ecstasy users and 148 controls across 14 brain regions. The main effect suggested ecstasy/MDMA related SERT reductions (SMD=0.52, 95% CIs [0.40, 0.65]; Z=8.36, p<.01, I(2)=89%). A significant effect of subgroups (X(2)=37.41, df=13, p<.01, I(2)=65.3%) suggested differential effects across brain ROIs. Ecstasy users showed significant SERT reductions in 11 out of the 14 regions, including every neocortical and limbic region analysed. Greatest effects were observed in the occipital cortex (SMD=1.09, 95% CIs [0.70, 1.48]). No group effects were observed in subcortical areas of the caudate, putamen and midbrain. Literature on Postsynaptic 5HT2A receptor imaging was synthesised with these results. We conclude that, in line with preclinical data, serotonin axons with the longest projections from the raphe nuclei appear to be most affected by ecstasy/MDMA use. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhong, Huailing; Hansen, Kasper B; Boyle, Noel J; Han, Kiho; Muske, Galina; Huang, Xinyan; Egebjerg, Jan; Sánchez, Connie
2009-10-25
The human serotonin transporter (hSERT) has primary and allosteric binding sites for escitalopram and R-citalopram. Previous studies have established that the interaction of these two compounds at a low affinity allosteric binding site of hSERT can affect the dissociation of [(3)H]escitalopram from hSERT. The allosteric binding site involves a series of residues in the 10th, 11th, and 12th trans-membrane domains of hSERT. The low affinity allosteric activities of escitalopram and R-citalopram are essentially eliminated in a mutant hSERT with changes in some of these residues, namely A505V, L506F, I507L, S574T, I575T, as measured in dissociation binding studies. We confirm that in association binding experiments, R-citalopram at clinically relevant concentrations reduces the association rate of [(3)H]escitalopram as a ligand to wild type hSERT. We demonstrate that the ability of R-citalopram to reduce the association rate of escitalopram is also abolished in the mutant hSERT (A505V, L506F, I507L, S574T, I575T), along with the expected disruption the low affinity allosteric function on dissociation binding. This suggests that the allosteric binding site mediates both the low affinity and higher affinity interactions between R-citalopram, escitalopram, and hSERT. Our data add an additional structural basis for the different efficacies of escitalopram compared to racemic citalopram reported in animal studies and clinical trials, and substantiate the hypothesis that hSERT has complex allosteric mechanisms underlying the unexplained in vivo activities of its inhibitors.
El-Kasaby, Ali; Koban, Florian; Sitte, Harald H.; Freissmuth, Michael; Sucic, Sonja
2014-01-01
Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90β. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90β by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90β. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay. PMID:25202009
Górska, Anna Maria; Kamińska, Katarzyna; Wawrzczak-Bargieła, Agnieszka; Costa, Giulia; Morelli, Micaela; Przewłocki, Ryszard; Kreiner, Grzegorz; Gołembiowska, Krystyna
2018-04-01
MDMA (3,4-methylenedioxymethamphetamine) is a psychostimulant popular as a recreational drug because of its effect on mood and social interactions. MDMA acts at dopamine (DA) transporter (DAT) and serotonin (5-HT) transporter (SERT) and is known to induce damage of dopamine and serotonin neurons. MDMA is often ingested with caffeine. Caffeine as a non-selective adenosine A1/A2A receptor antagonist affects dopaminergic and serotonergic transmissions. The aim of the present study was to determine the changes in DA and 5-HT release in the mouse striatum induced by MDMA and caffeine after their chronic administration. To find out whether caffeine aggravates MDMA neurotoxicity, the content of DA and 5-HT, density of brain DAT and SERT, and oxidative damage of nuclear DNA were determined. Furthermore, the effect of caffeine on MDMA-induced changes in striatal dynorphin and enkephalin and on behavior was assessed. The DA and 5-HT release was determined with in vivo microdialysis, and the monoamine contents were measured by HPLC with electrochemical detection. DNA damage was assayed with the alkaline comet assay. DAT and SERT densities were determined by immunohistochemistry, while prodynorphin (PDYN) and proenkephalin were determined by quantitative PCR reactions. The behavioral changes were measured by the open-field (OF) test and novel object recognition (NOR) test. Caffeine potentiated MDMA-induced DA release while inhibiting 5-HT release in the mouse striatum. Caffeine also exacerbated the oxidative damage of nuclear DNA induced by MDMA but diminished DAT decrease in the striatum and worsened a decrease in SERT density produced by MDMA in the frontal cortex. Neither the striatal PDYN expression, increased by MDMA, nor exploratory and locomotor activities of mice, decreased by MDMA, were affected by caffeine. The exploration of novel object in the NOR test was diminished by MDMA and caffeine. Our data provide evidence that long-term caffeine administration has a powerful influence on functions of dopaminergic and serotonergic neurons in the mouse brain and on neurotoxic effects evoked by MDMA.
Methylene blue inhibits function of the 5-HT transporter
Oz, Murat; Isaev, Dmytro; Lorke, Dietrich E; Hasan, Muhammed; Petroianu, Georg; Shippenberg, Toni S
2012-01-01
BACKGROUND AND PURPOSE Methylene blue (MB) is commonly employed as a treatment for methaemoglobinaemia, malaria and vasoplegic shock. An increasing number of studies indicate that MB can cause 5-HT toxicity when administered with a 5-HT reuptake inhibitor. MB is a potent inhibitor of monoamine oxidases, but other targets that may contribute to MB toxicity have not been identified. Given the role of the 5-HT transporter (SERT) in the regulation of extracellular 5-HT concentrations, the present study aimed to characterize the effect of MB on SERT. EXPERIMENTAL APPROACH Live cell imaging, in conjunction with the fluorescent SERT substrate 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP+), [3H]5-HT uptake and whole-cell patch-clamp techniques were employed to examine the effects of MB on SERT function. KEY RESULTS In EM4 cells expressing GFP-tagged human SERT (hSERT), MB concentration-dependently inhibited ASP+ accumulation (IC50: 1.4 ± 0.3 µM). A similar effect was observed in N2A cells. Uptake of [3H]5-HT was decreased by MB pretreatment. Furthermore, patch-clamp studies in hSERT expressing cells indicated that MB significantly inhibited 5-HT-evoked ion currents. Pretreatment with 8-Br-cGMP did not alter the inhibitory effect of MB on hSERT activity, and intracellular Ca2+ levels remained unchanged during MB application. Further experiments revealed that ASP+ binding to cell surface hSERT was reduced after MB treatment. In whole-cell radioligand experiments, exposure to MB (10 µM; 10 min) did not alter surface binding of the SERT ligand [125I]RTI-55. CONCLUSIONS AND IMPLICATIONS MB modulated SERT function and suggested that SERT may be an additional target upon which MB acts to produce 5-HT toxicity. PMID:21542830
Parrott, Andrew C
2013-09-01
Serotonergic neurotoxicity following MDMA is well-established in laboratory animals, and neuroimaging studies have found lower serotonin transporter (SERT) binding in abstinent Ecstasy/MDMA users. Serotonin is a modulator for many different psychobiological functions, and this review will summarize the evidence for equivalent functional deficits in recreational users. Declarative memory, prospective memory, and higher cognitive skills are often impaired. Neurocognitive deficits are associated with reduced SERT in the hippocampus, parietal cortex, and prefrontal cortex. EEG and ERP studies have shown localised reductions in brain activity during neurocognitive performance. Deficits in sleep, mood, vision, pain, psychomotor skill, tremor, neurohormonal activity, and psychiatric status, have also been demonstrated. The children of mothers who take Ecstasy/MDMA during pregnancy have developmental problems. These psychobiological deficits are wide-ranging, and occur in functions known to be modulated by serotonin. They are often related to lifetime dosage, with light users showing slight changes, and heavy users displaying more pronounced problems. In summary, abstinent Ecstasy/MDMA users can show deficits in a wide range of biobehavioral functions with a serotonergic component. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jacobsen, Jacob P.R.; Krystal, Andrew D.; Krishnan, K. Ranga R.; Caron, Marc G.
2017-01-01
Serotonin transporter (SERT) inhibitors treat depression by elevating brain extracellular 5-hydroxytryptamine (5-HTExt). However, only one-third of patients respond adequately. Treatment-resistant depression (TRD) is a major unmet need. Interestingly, elevating 5-HTExt beyond what is achieved by a SERT inhibitor appears to treat TRD. Adjunctive administration of 5-hydroxytryptophan (5-HTP) safely elevates 5-HTExt beyond the SERT inhibitor effect in humans; but, 5-HTP cannot be a clinically viable drug because of its poor pharmacokinetics. A slow-release (SR) delivery mode would be predicted to overcome the pharmacokinetic limitations of 5-HTP, substantially enhance the pharmacological action, and transform 5-HTP into a clinically viable drug. Animal studies bear out this prediction. Thus, adjunct 5-HTP SR could be an important new treatment for TRD. Here we review the clinical and preclinical evidence. PMID:27692695
El-Kasaby, Ali; Koban, Florian; Sitte, Harald H; Freissmuth, Michael; Sucic, Sonja
2014-10-17
Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90β. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90β by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90β. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Jaiswal, Preeti; Mohanakumar, Kochupurackal P; Rajamma, Usha
2015-08-01
Serotonergic system has long been implicated in the aetiology of autism spectrum disorders (ASD), since platelet hyperserotonemia is consistently observed in a subset of autistic patients, who respond well to selective serotonin reuptake inhibitors. Apart from being a neurotransmitter, serotonin functions as a neurotrophic factor directing brain development and as an immunoregulator modulating immune responses. Serotonin transporter (SERT) regulates serotonin level in lymphoid tissues to ensure its proper functioning in innate and adaptive responses. Immunological molecules such as cytokines in turn regulate the transcription and activity of SERT. Dysregulation of serotonergic system could trigger signalling cascades that affect normal neural-immune interactions culminating in neurodevelopmental and neural connectivity defects precipitating behavioural abnormalities, or the disease phenotypes. Therefore, we suggest that a better understanding of the cross talk between serotonergic genes, immune systems and serotonergic neurotransmission will open wider avenues to develop pharmacological leads for addressing the core ASD behavioural deficits. Copyright © 2015 Elsevier Ltd. All rights reserved.
McLaughlin, Gavin; Morris, Noreen; Kavanagh, Pierce V.; Power, John D.; Dowling, Geraldine; Twamley, Brendan; O'Brien, John; Talbot, Brian; Walther, Donna; Partilla, John S.; Baumann, Michael H.; Brandt, Simon D.
2017-01-01
3-Methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone) appeared in 2015 and was advertised by UK Internet retailers as a non-controlled mephedrone derivative (2-(methylamino)-1-(4-methylphenyl)propan-1-one), which was of particular interest to countries who operate generic drugs legislation. This study describes the synthesis and analytical characterization of mexedrone and the differentiation from its isomer, N-methoxymephedrone, which was predicted to be a suitable candidate before the identity of mexedrone was revealed. A full analytical characterization is described using various chromatographic, spectroscopic and mass spectrometric platforms and X-ray crystal structure analysis. The analytical data obtained for a vendor sample were consistent with the synthesized mexedrone reference standard and analytical differentiation between the mexedrone and N-methoxymephedrone positional isomers was achieved. Furthermore, α-chloromethylmephedrone was identified as a by-product during mexedrone synthesis. All three substances were also studied for their uptake and releasing properties at dopamine transporters (DAT), norepinephrine transporters (NET) and serotonin transporters (SERT) using in vitro monoamine transporter assays in rat brain synaptosomes and compared to mephedrone. Mexedrone was a weak non-selective uptake blocker with IC50 values in the low μM range. It was also devoid of releasing activity at DAT and NET but displayed weak releasing activity at SERT (EC50= 2.5 μM). The isomer N-methoxymephedrone was found to be a weak uptake blocker at DAT, NET and SERT, as well as a fully efficacious substrate-type releasing agent across all three transporters with EC50 values in the low micromolar range. The synthesis by-product α-chloromethylmephedrone was inactive in all assays. PMID:27524685
McLaughlin, Gavin; Morris, Noreen; Kavanagh, Pierce V; Power, John D; Dowling, Geraldine; Twamley, Brendan; O'Brien, John; Talbot, Brian; Walther, Donna; Partilla, John S; Baumann, Michael H; Brandt, Simon D
2017-03-01
3-Methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one (mexedrone) appeared in 2015 and was advertised by UK Internet retailers as a non-controlled mephedrone derivative (2-(methylamino)-1-(4-methylphenyl)propan-1-one), which was of particular interest to countries who operate generic drugs legislation. This study describes the synthesis and analytical characterization of mexedrone and the differentiation from its isomer, N-methoxymephedrone, which was predicted to be a suitable candidate before the identity of mexedrone was revealed. A full analytical characterization is described using various chromatographic, spectroscopic and mass spectrometric platforms and X-ray crystal structure analysis. The analytical data obtained for a vendor sample were consistent with the synthesized mexedrone reference standard and analytical differentiation between the mexedrone and N-methoxymephedrone positional isomers was achieved. Furthermore, α-chloromethylmephedrone was identified as a by-product during mexedrone synthesis. All three substances were also studied for their uptake and releasing properties at dopamine transporters (DAT), norepinephrine transporters (NET) and serotonin transporters (SERT) using in vitro monoamine transporter assays in rat brain synaptosomes and compared to mephedrone. Mexedrone was a weak non-selective uptake blocker with IC 50 values in the low μM range. It was also devoid of releasing activity at DAT and NET but displayed weak releasing activity at SERT (EC 50 = 2.5 μM). The isomer N-methoxymephedrone was found to be a weak uptake blocker at DAT, NET and SERT, as well as a fully efficacious substrate-type releasing agent across all three transporters with EC 50 values in the low micromolar range. The synthesis by-product α-chloromethylmephedrone was inactive in all assays. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Müller, Heidi Kaastrup; Kragballe, Marie; Fjorback, Anja Winther; Wiborg, Ove
2014-01-01
The serotonin transporter (SERT) is a key regulator of serotonergic signalling as it mediates the re-uptake of synaptic serotonin into nerve terminals, thereby terminating or modulating its signal. It is well-known that SERT regulation is a dynamic process orchestrated by a wide array of proteins and mechanisms. However, molecular details on possible coordinated regulation of SERT activity and 5-HT release are incomplete. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, interacts with SERT. This was documented in vitro, through GST pull-down assays, by co-immunoprecipitation experiments on heterologous cells and rat hippocampal synaptosomes, and with FRET analysis in live transfected HEK-293 MSR cells. The related isoforms VAMP1 and VAMP3 also physically interact with SERT. However, comparison of the three VAMP isoforms shows that only VAMP2 possesses a functionally distinct role in relation to SERT. VAMP2 influences 5-HT uptake, cell surface expression and the delivery rate of SERT to the plasma membrane differentially in HEK-293 MSR and PC12 cells. Moreover, siRNA-mediated knock-down of endogenous VAMP2 reduces 5-HT uptake in CAD cells stably expressing low levels of heterologous SERT. Deletion and mutant analysis suggest a role for the isoform specific C-terminal domain of VAMP2 in regulating SERT function. Our data identify a novel interaction between SERT and a synaptic vesicle protein and support a link between 5-HT release and re-uptake. PMID:24878716
The serotonin system in autism spectrum disorder: from biomarker to animal models
Muller, Christopher L.; Anacker, Allison M.J.; Veenstra-VanderWeele, Jeremy
2015-01-01
Elevated whole blood serotonin, or hyperserotonemia, was the first biomarker identified in autism spectrum disorder (ASD) and is present in more than 25% of affected children. The serotonin system is a logical candidate for involvement in ASD due to its pleiotropic role across multiple brain systems both dynamically and across development. Tantalizing clues connect this peripheral biomarker with changes in brain and behavior in ASD, but the contribution of the serotonin system to ASD pathophysiology remains incompletely understood. Studies of whole blood serotonin levels in ASD and in a large founder population indicate greater heritability than for the disorder itself and suggest an association with recurrence risk. Emerging data from both neuroimaging and postmortem samples also indicate changes in the brain serotonin system in ASD. Genetic linkage and association studies of both whole blood serotonin levels and of ASD risk point to the chromosomal region containing the serotonin transporter (SERT) gene in males but not in females. In ASD families with evidence of linkage to this region, multiple rare SERT amino acid variants lead to a convergent increase in serotonin uptake in cell models. A knock-in mouse model of one of these variants, SERT Gly56Ala, recapitulates the hyperserotonemia biomarker and shows increased brain serotonin clearance, increased serotonin receptor sensitivity, and altered social, communication, and repetitive behaviors. Data from other rodent models also suggest an important role for the serotonin system in social behavior, in cognitive flexibility, and in sensory development. Recent work indicates that reciprocal interactions between serotonin and other systems, such as oxytocin, may be particularly important for social behavior. Collectively, these data point to the serotonin system as a prime candidate for treatment development in a subgroup of children defined by a robust, heritable biomarker. PMID:26577932
Pratuangdejkul, J; Schneider, B; Launay, J-M; Kellermann, O; Manivet, P
2008-01-01
Serotonin (5-hydroxytryptamine, 5-HT), a monoamine neurotransmitter of the central nervous and peripheral systems (CNS), plays a critical role in a wide variety of physiological and behavioral processes. In the serotonergic system, deregulation of the tightly controlled extracellular concentration of 5-HT appears to be at the origin of a host of metabolic and psychiatric disorders. A key step that regulates 5-HT external level is the re-uptake of 5-HT into cells by the 5-HT transporter (SERT), which is besides the target of numerous drugs interacting with the serotonergic system. Therapeutic strategies have mainly focused on the development of compounds that block the activity of SERT, for instance reuptake inhibitors (e.g. tricyclics, "selective" serotonin reuptake inhibitors) and in the past, specific substrate-type releasers (e.g. amphetamine and cocaine derivatives). Today, generation of new drugs targetting SERT with enhanced selectivity and reduced toxicity is one of the most challenging tasks in drug design. In this context, studies aiming at characterizing the physicochemical properties of 5-HT as well as the biological active conformation of SERT are a prerequisite to the design of new leads. However, the absence of a high-resolution 3D-structure for SERT has hampered the design of new transporter inhibitors. Using computational approaches, numerous efforts were made to shed light on the structure of 5-HT and its transporter. In this review, we compared several in silico methods dedicated to the modeling of 5-HT and SERT with an emphasis on i) quantum chemistry for study of 5-HT conformation and ii) ligand-based (QSAR and pharmacophore models) and transporter-based (homology models) approaches for studying SERT molecule. In addition, we discuss some methodological aspects of the computational work in connection with the construction of putative but reliable 3D structural models of SERT that may help to predict the mechanisms of neurotransmitter transport.
Cocaine Modulates Mammalian Circadian Clock Timing by Decreasing Serotonin Transport in the SCN
Prosser, Rebecca A.; Stowie, Adam; Amicarelli, Mario; Nackenoff, Alex G.; Blakely, Randy D.; Glass, J. David
2014-01-01
Cocaine abuse disrupts reward and homeostatic processes through diverse processes, including those involved in circadian clock regulation. Recently we showed that cocaine administration to mice disrupts nocturnal photic phase resetting of the suprachiasmatic (SCN) circadian clock, whereas administration during the day induces non-photic phase shifts. Importantly, the same effects are seen when cocaine is applied to the SCN in vitro, where it blocks photic-like (glutamate-induced) phase shifts at night and induces phase advances during the day. Furthermore, our previous data suggest that cocaine acts in the SCN by enhancing serotonin (5-HT) signaling. For example, the in vitro actions of cocaine mimic those of 5-HT and are blocked by the 5-HT antagonist, metergoline, but not the dopamine receptor antagonist, fluphenazine. Although our data are consistent with cocaine acting through enhance 5-HT signaling, the nonselective actions of cocaine as an antagonist of monoamine transporters raises the question of whether inhibition of the 5-HT transporter (SERT) is key to its circadian effects. Here we investigate this issue using transgenic mice expressing a SERT that exhibits normal 5-HT recognition and transport but significantly reduced cocaine potency (SERT Met172). Circadian patterns of SCN behavioral and neuronal activity did not differ between WT and SERT Met172 mice, nor did they differ in the ability of the 5-HT1A,2,7 receptor agonist, 8-OH-DPAT to reset SCN clock phase, consistent with the normal SERT expression and activity in the transgenic mice. However, 1) cocaine administration does not induce phase advances when administered in vivo or in vitro in SERT Met172 mice; 2) cocaine does not block photic or glutamate-induced (phase shifts in SERT Met172 mice; and 3) cocaine does not induce long-term changes in free-running period in SERT Met172 mice. We conclude that SERT antagonism is required for the phase shifting of the SCN circadian clock induced by cocaine. PMID:24950119
Zhang, Peng; Cyriac, George; Kopajtic, Theresa; Zhao, Yongfang; Javitch, Jonathan A.; Katz, Jonathan L.; Newman, Amy Hauck
2010-01-01
(±)-Citalopram (1, 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile), and its eutomer, escitalopram (S(+)-1) are selective serotonin reuptake inhibitors (SSRIs) that are used clinically to treat anxiety and depression. To further explore structure-activity relationships at the serotonin transporter (SERT), a series of (±)-4- and 5-substituted citalopram analogues were designed, synthesized and evaluated for binding at the SERT, dopamine transporter (DAT) and norepinephrine transporter (NET) in native rodent tissue. Many of these analogues showed high SERT binding affinities (Ki = 1–40 nM) and selectivities over both NET and DAT. Selected enantiomeric pairs of analogues were synthesized and both retained enantioselectivity as with S- and R-1, wherein S > R at the SERT. In addition, the enantiomeric pairs of 1 and 5 were tested for binding at the homologous bacterial Leucine transporter (LeuT), wherein low affinities and the absence of enantioselectivity suggested distinctive binding sites for these compounds at SERT as compared to LeuT. These novel ligands will provide molecular tools to elucidate drug-protein interactions at the SERT and to relate those to behavioral actions, in vivo. PMID:20672825
Cerebral glucose utilisation in hepatitis C virus infection-associated encephalopathy.
Heeren, Meike; Weissenborn, Karin; Arvanitis, Dimitrios; Bokemeyer, Martin; Goldbecker, Annemarie; Tountopoulou, Argyro; Peschel, Thomas; Grosskreutz, Julian; Hecker, Hartmut; Buchert, Ralph; Berding, Georg
2011-11-01
Patients with hepatitis C virus (HCV) infection frequently show neuropsychiatric symptoms. This study aims to help clarify the neurochemical mechanisms behind these symptoms and to add further proof to the hypothesis that HCV may affect brain function. Therefore, 15 patients who reported increasing chronic fatigue, mood alterations, and/or cognitive decline since their HCV infection underwent neurologic and neuropsychological examination, magnetic resonance imaging, (18)F-fluoro-deoxy-glucose positron emission tomography of the brain, and single photon emission tomography of striatal dopamine and midbrain serotonin transporter (SERT) availability. None of the patients had liver cirrhosis. Patients' data were compared with data of age-matched controls. In addition, regression analysis was performed between cognitive deficits, and mood and fatigue scores as dependent variables, and cerebral glucose metabolism, dopamine, or SERT availability as predictors. Patients showed significant cognitive deficits, significantly decreased striatal dopamine and midbrain SERT availability, and significantly reduced glucose metabolism in the limbic association cortex, and in the frontal, parietal, and superior temporal cortices, all of which correlated with dopamine transporter availability and psychometric results. Thus, the study provides further evidence of central nervous system affection in HCV-afflicted patients with neuropsychiatric symptoms. Data indicate alteration of dopaminergic neurotransmission as a possible mechanism of cognitive decline.
Rizvi, Syed Mohd Danish; Shaikh, Sibhghatulla; Khan, Mahiuddin; Biswas, Deboshree; Hameed, Nida; Shakil, Shazi
2014-01-01
Pharmacological management of Major Depressive Disorder includes the use of serotonin reuptake inhibitors which targets serotonin transporters (SERT) to increase the synaptic concentrations of serotonin. Beta-site amyloid precursor protein cleaving enzyme-1 (BACE-1) is responsible for amyloid β plaque formation. Hence it is an interesting target for Alzheimer's disease (AD) therapy. This study describes molecular interactions of a new Food and Drug Administration approved antidepressant drug named 'Fetzima' with BACE-1 and SERT. Fetzima is chemically known as levomilnacipran. The study has explored a possible link between the treatment of Depression and AD. 'Autodock 4.2' was used for docking study. The free energy of binding (ΔG) values for 'levomilnacipran-SERT' interaction and 'levomilnacipran-BACE1' interaction were found to be -7.47 and -8.25 kcal/mol, respectively. Levomilnacipran was found to interact with S438, known to be the most important amino acid residue of serotonin binding site of SERT during 'levomilnacipran-SERT' interaction. In the case of 'levomilnacipran-BACE1' interaction, levomilnacipran interacted with two very crucial aspartic acid residues of BACE-1, namely, D32 and D228. These residues are accountable for the cleavage of amyloid precursor protein and the subsequent formation of amyloid β plaques in AD brain. Hence, Fetzima (levomilnacipran) might act as a potent dual inhibitor of SERT and BACE-1 and expected to form the basis of a future dual therapy against depression and AD. It is an established fact that development of AD is associated with Major Depressive Disorder. Therefore, the design of new BACE-1 inhibitors based on antidepressant drug scaffolds would be particularly beneficial.
Kreilgaard, M; Smith, D G; Brennum, L T; Sánchez, C
2008-01-01
Background and purpose: Bridging the gap between preclinical research and clinical trials is vital for drug development. Predicting clinically relevant steady-state drug concentrations (Css) in serum from preclinical animal models may facilitate this transition. Here we used a pharmacokinetic/pharmacodynamic (PK/PD) modelling approach to evaluate the predictive validity of 5-hydroxytryptamine (5-HT; serotonin) transporter (SERT) occupancy and 5-hydroxytryptophan (5-HTP)-potentiated behavioral syndrome induced by 5-HT reuptake inhibitor (SRI) antidepressants in mice. Experimental approach: Serum and whole brain drug concentrations, cortical SERT occupancy and 5-HTP-potentiated behavioral syndrome were measured over 6 h after a single subcutaneous injection of escitalopram, paroxetine or sertraline. [3H]2-(2-dimethylaminomethylphenylsulphanyl)-5-methyl-phenylamine ([3H]MADAM) was used to assess SERT occupancy. For PK/PD modelling, an effect-compartment model was applied to collapse the hysteresis and predict the steady-state relationship between drug exposure and PD response. Key results: The predicted Css for escitalopram, paroxetine and sertraline at 80% SERT occupancy in mice are 18 ng mL−1, 18 ng mL−1 and 24 ng mL−1, respectively, with corresponding responses in the 5-HTP behavioral model being between 20–40% of the maximum. Conclusions and implications: Therapeutically effective SERT occupancy for SRIs in depressed patients is approximately 80%, and the corresponding plasma Css are 6–21 ng mL−1, 21-95 ng mL−1 and 20–48 ng mL−1 for escitalopram, paroxetine and sertraline, respectively. Thus, PK/PD modelling using SERT occupancy and 5-HTP-potentiated behavioral syndrome as response markers in mice may be a useful tool to predict clinically relevant plasma Css values. PMID:18552871
Park, Hyun Soo; Jung, In Soon; Lim, Nam Hee; Sung, Ji Hyun; Lee, Sukhyang; Moon, Byung Seok; Lee, Byung Chul; Kang, Kyung Koo; Kim, Sang Eun
2014-07-01
To investigate the efficacy of DA-8031, a novel compound for the treatment of premature ejaculation, we measured serotonin transporter (SERT) occupancy by DA-8031, as well as DA-8031-induced changes in extracellular serotonin levels, in the rat brain using positron emission tomography (PET) and 11C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine ([11C]DASB) and in vivo microdialysis, respectively. [11C]DASB PET scans were performed in rats with graded doses of DA-8031 (vehicle: 10, 30, and 100 mg/kg). SERT occupancy in the midbrain was determined using binding potentials for [11C]DASB calculated by the multilinear reference tissue model. Extracellular serotonin levels were monitored in the dorsal raphe nucleus of rats after the administration of DA-8031 (10-100 mg/kg) using in vivo microdialysis. PET data indicated a reduction of [11C]DASB binding to SERTs in the midbrain as a function of DA-8031 dose. SERT occupancy for each DA-8031 dose (10-100 mg/kg) ranged between 31% and 84%. The drug dose required for 50% occupancy of SERT was 13.5 mg/kg in the midbrain, comparable with previous preclinical behavioral data (∼10-30 mg/kg). In vivo microdialysis showed that DA-8031 produced a dose-dependent increase in extracellular serotonin levels in the dorsal raphe nucleus (33%-81% increase for doses of 10-100 mg/kg). These preclinical data provide a proof of mechanism for DA-8031 as a novel compound of targeting the SERT for the treatment of premature ejaculation, warranting further clinical trials. They also offer insight into the optimal drug dose needed to exert therapeutic effects while minimizing adverse effects in humans. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kharkar, Prashant S.; Reith, Maarten E. A.; Dutta, Aloke K.
2008-01-01
Three-dimensional quantitative structure-activity relationship (3D QSAR) using comparative molecular field analysis (CoMFA) was performed on a series of substituted tetrahydropyran (THP) derivatives possessing serotonin (SERT) and norepinephrine (NET) transporter inhibitory activities. The study aimed to rationalize the potency of these inhibitors for SERT and NET as well as the observed selectivity differences for NET over SERT. The dataset consisted of 29 molecules, of which 23 molecules were used as the training set for deriving CoMFA models for SERT and NET uptake inhibitory activities. Superimpositions were performed using atom-based fitting and 3-point pharmacophore-based alignment. Two charge calculation methods, Gasteiger-Hückel and semiempirical PM3, were tried. Both alignment methods were analyzed in terms of their predictive abilities and produced comparable results with high internal and external predictivities. The models obtained using the 3-point pharmacophore-based alignment outperformed the models with atom-based fitting in terms of relevant statistics and interpretability of the generated contour maps. Steric fields dominated electrostatic fields in terms of contribution. The selectivity analysis (NET over SERT), though yielded models with good internal predictivity, showed very poor external test set predictions. The analysis was repeated with 24 molecules after systematically excluding so-called outliers (5 out of 29) from the model derivation process. The resulting CoMFA model using the atom-based fitting exhibited good statistics and was able to explain most of the selectivity (NET over SERT)-discriminating factors. The presence of -OH substituent on the THP ring was found to be one of the most important factors governing the NET selectivity over SERT. Thus, a 4-point NET-selective pharmacophore, after introducing this newly found H-bond donor/acceptor feature in addition to the initial 3-point pharmacophore, was proposed.
Zubkov, Eugene A; Zorkina, Yana A; Orshanskaya, Elena V; Khlebnikova, Nadezhda N; Krupina, Natalia A; Chekhonin, Vladimir P
2017-01-01
Previous studies have shown the development of emotional and motivational disorders, such as anxiety-depression-like disorders with increased aggression in adolescent and adult Wistar rats, occurs after neonatal exposure to the dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) inhibitors diprotin A and sitagliptin (postnatal days 5-18). In this study, using real-time PCR, we evaluated changes in the gene expression of serine protease DPP-IV and prolyl endopeptidase (PREP, EC 3.4.21.26; dpp4 and prep genes), monoamine oxidase А (maoA) and B (maoB), and serotonin transporter (SERT; sert) in the brain structures from 3-month-old rats after postnatal action of DPP-IV inhibitors diprotin A and sitagliptin. Dpp4, sert, and maoB gene expression increased and maoA gene expression changed with a tendency to increase in the striatum of rats with neonatal sitagliptin action. The increase of maoA gene expression was also shown in the amygdala. An increase in prep gene expression was found in the striatum of rats with the neonatal action of diprotin A, and a decrease in maoB gene expression was observed in the amygdala. We detected a significant downward trend in sert gene expression in the frontal cortex and amygdala, as well as a tendency to increase in maoA gene expression in the hypothalamus. These findings suggest that changes in the expression of the abovementioned genes are associated with the development of anxiety and depression, with increased aggression caused by the neonatal action of diprotin A and sitagliptin. © 2018 S. Karger AG, Basel.
Koopman, K E; Roefs, A; Elbers, D C E; Fliers, E; Booij, J; Serlie, M J; la Fleur, S E
2016-06-01
In rodents, the striatal dopamine (DA) system and the (hypo)thalamic serotonin (5-HT) system are involved in the regulation of feeding behavior. In lean humans, little is known about the relationship between these brain neurotransmitter systems and feeding. We studied the relationship between striatal DA transporters (DAT) and diencephalic 5-HT transporters (SERT), behavioral tasks and questionnaires, and food intake. We measured striatal DAT and diencephalic SERT binding with [123I]FP-CIT SPECT in 36 lean male subjects. Visual attention bias for food (detection speed and distraction time) and degree of impulsivity were measured using response-latency-based computer tasks. Craving and emotional eating were assessed with questionnaires and ratings of hunger by means of VAS scores. Food intake was assessed through a self-reported online diet journal. Striatal DAT and diencephalic SERT binding negatively correlated with food detection speed (p = 0.008, r = -0.50 and p = 0.002, r = -0.57, respectively), but not with food distraction time, ratings of hunger, craving or impulsivity. Striatal DAT and diencephalic SERT binding did not correlate with free choice food intake, whereas food detection speed positively correlated with total caloric intake (p = 0.001, r = 0.60), protein intake (p = 0.01, r = 0.44), carbohydrate intake (p = 0.03, r = 0.39) and fat intake (p = 0.06, r = 0.35). These results indicate a role for the central 5-HT and DA system in the regulation of visual attention bias for food, which contributes to the motivation to eat, in non-obese, healthy humans. In addition, this study confirms that food detection speed, measured with the latency-based computer task, positively correlates with total food and macronutrient intake.
Wong, Dean F; Brasić, James R; Singer, Harvey S; Schretlen, David J; Kuwabara, Hiroto; Zhou, Yun; Nandi, Ayon; Maris, Marika A; Alexander, Mohab; Ye, Weiguo; Rousset, Olivier; Kumar, Anil; Szabo, Zsolt; Gjedde, Albert; Grace, Anthony A
2008-05-01
Tourette syndrome (TS) is a neuropsychiatric disorder with childhood onset characterized by motor and phonic tics. Obsessive-compulsive disorder (OCD) is often concomitant with TS. Dysfunctional tonic and phasic dopamine (DA) and serotonin (5-HT) metabolism may play a role in the pathophysiology of TS. We simultaneously measured the density, affinity, and brain distribution of dopamine D2 receptors (D2-R's), dopamine transporter binding potential (BP), and amphetamine-induced dopamine release (DA(rel)) in 14 adults with TS and 10 normal adult controls. We also measured the brain distribution and BP of serotonin 5-HT2A receptors (5-HT2AR), and serotonin transporter (SERT) BP, in 11 subjects with TS and 10 normal control subjects. As compared with controls, DA rel was significantly increased in the ventral striatum among subjects with TS. Adults with TS+OCD exhibited a significant D(2)-R increase in left ventral striatum. SERT BP in midbrain and caudate/putamen was significantly increased in adults with TS (TS+OCD and TS-OCD). In three subjects with TS+OCD, in whom D2-R, 5-HT2AR, and SERT were measured within a 12-month period, there was a weakly significant elevation of DA rel and 5-HT2A BP, when compared with TS-OCD subjects and normal controls. The current study confirms, with a larger sample size and higher resolution PET scanning, our earlier report that elevated DA rel is a primary defect in TS. The finding of decreased SERT BP, and the possible elevation in 5-HT2AR in individuals with TS who had increased DA rel, suggest a condition of increased phasic DA rel modulated by low 5-HT in concomitant OCD.
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W. (Principal Investigator)
1996-01-01
The plasma properties and magnetic field structure of the solar corona were determined using coordinated observations obtained with NASA/GSFC's Solar EUV Rocket Telescope and Spectrograph (SERTS), the Very Large Array (VLA), and Kitt Peak photospheric longitudinal magnetograms. A problem was identified with the SERTS calibration as determined from laboratory measurements. A revised calibration curve was derived by requiring that the numerous available measured line intensity ratios agreed with their respective theoretical values. Densities were derived from line intensity ratios, and active region densities were found to typically exceed quiet Sun densities by factors of only about 2. The active region density was found to remain constant across the SERTS slit, despite the fact that the emission line intensities vary significantly. This indicates that the product of the path length and the volume filling factor must vary significantly from the active region outskirts to the central core. Filling factors were derived and found to range from much less than one to nearly unity. Wavelength shifts were examined along the SERTS slit in the spatially resolved spectra, but no evidence was found for significant Doppler shifts in active region 7563 or in the quiet Sun. The numerical procedure developed by Monsignori-Fossi and Landini was used to derive the active region and quiet sun differential emission measure (DEM) from the spatially averaged spectra. A DEM was estimated for each spatial pixel in the two dimensional active region images by scaling the averaged active region DEM based upon corresponding pixel intensities of SERTS Mg IX, Fe XV, and Fe XVI images. These results, along with density measurements, were used in an IDL computer code which calculated the temperature dependence of the coronal magnetic field in each spatial pixel by minimizing the difference between the observed and calculated 20 and 6 cm microwave brightness temperatures.
Kogen, Hiroshi; Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio
2002-10-03
Highly efficient acetylcholinesterase (AChE) and serotonin transporter (SERT) dual inhibitors, (S)-4 and (R)-13 were designed and synthesized on the basis of the hypothetical model of AChE active site. Both compounds showed potent inhibitory activities against AChE and SERT. [structure: see text
Toda, Narihiro; Tago, Keiko; Marumoto, Shinji; Takami, Kazuko; Ori, Mayuko; Yamada, Naho; Koyama, Kazuo; Naruto, Shunji; Abe, Kazumi; Yamazaki, Reina; Hara, Takao; Aoyagi, Atsushi; Abe, Yasuyuki; Kaneko, Tsugio; Kogen, Hiroshi
2003-10-01
Alzheimer's disease (AD) has been treated with acetylcholinesterase (AChE) inhibitors such as donepezil. However, the clinical usefulness of AChE inhibitors is limited mainly due to their adverse peripheral effects. Depression seen in AD patients has been treated with serotonin transporter (SERT) inhibitors. We considered that combining SERT and AChE inhibition could improve the clinical usefulness of AChE inhibitors. In a previous paper, we found a potential dual inhibitor, 1, of AChE (IC50=101 nM) and SERT (IC50=42 nM), but its AChE inhibition activity was less than donepezil (IC50=10 nM). Here, we report the conformationally restricted (R)-18a considerably enhanced inhibitory activity against AChE (IC50=14 nM) and SERT (IC50=6 nM).
Reliability evaluation of I-123 ADAM SPECT imaging using SPM software and AAL ROI methods
NASA Astrophysics Data System (ADS)
Yang, Bang-Hung; Tsai, Sung-Yi; Wang, Shyh-Jen; Su, Tung-Ping; Chou, Yuan-Hwa; Chen, Chia-Chieh; Chen, Jyh-Cheng
2011-08-01
The level of serotonin was regulated by serotonin transporter (SERT), which is a decisive protein in regulation of serotonin neurotransmission system. Many psychiatric disorders and therapies were also related to concentration of cerebral serotonin. I-123 ADAM was the novel radiopharmaceutical to image SERT in brain. The aim of this study was to measure reliability of SERT densities of healthy volunteers by automated anatomical labeling (AAL) method. Furthermore, we also used statistic parametric mapping (SPM) on a voxel by voxel analysis to find difference of cortex between test and retest of I-123 ADAM single photon emission computed tomography (SPECT) images.Twenty-one healthy volunteers were scanned twice with SPECT at 4 h after intravenous administration of 185 MBq of 123I-ADAM. The image matrix size was 128×128 and pixel size was 3.9 mm. All images were obtained through filtered back-projection (FBP) reconstruction algorithm. Region of interest (ROI) definition was performed based on the AAL brain template in PMOD version 2.95 software package. ROI demarcations were placed on midbrain, pons, striatum, and cerebellum. All images were spatially normalized to the SPECT MNI (Montreal Neurological Institute) templates supplied with SPM2. And each image was transformed into standard stereotactic space, which was matched to the Talairach and Tournoux atlas. Then differences across scans were statistically estimated on a voxel by voxel analysis using paired t-test (population main effect: 2 cond's, 1 scan/cond.), which was applied to compare concentration of SERT between the test and retest cerebral scans.The average of specific uptake ratio (SUR: target/cerebellum-1) of 123I-ADAM binding to SERT in midbrain was 1.78±0.27, pons was 1.21±0.53, and striatum was 0.79±0.13. The cronbach's α of intra-class correlation coefficient (ICC) was 0.92. Besides, there was also no significant statistical finding in cerebral area using SPM2 analysis. This finding might help us to understand reliability of I-123 ADAM SPECT imaging and further develop new strategy for the treatment of psychiatric disorders.
Degnan, Andrew P; Tora, George O; Han, Ying; Rajamani, Ramkumar; Bertekap, Robert; Krause, Rudolph; Davis, Carl D; Hu, Joanna; Morgan, Daniel; Taylor, Sarah J; Krause, Kelly; Li, Yu-Wen; Mattson, Gail; Cunningham, Melissa A; Taber, Matthew T; Lodge, Nicholas J; Bronson, Joanne J; Gillman, Kevin W; Macor, John E
2015-08-01
Depression is a serious illness that affects millions of patients. Current treatments are associated with a number of undesirable side effects. Neurokinin 1 receptor (NK1R) antagonists have recently been shown to potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs) in a number of animal models. Herein we describe the optimization of a biaryl chemotype to provide a series of potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors. Through the choice of appropriate substituents, the SERT/NK1R ratio could be tuned to afford a range of target selectivity profiles. This effort culminated in the identification of an analog that demonstrated oral bioavailability, favorable brain uptake, and efficacy in the gerbil foot tap model. Ex vivo occupancy studies with compound 58 demonstrated the ability to maintain NK1 receptor saturation (>88% occupancy) while titrating the desired level of SERT occupancy (11-84%) via dose selection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Monoamine Reuptake Inhibitors in Parkinson's Disease
Huot, Philippe; Fox, Susan H.; Brotchie, Jonathan M.
2015-01-01
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia. PMID:25810948
Browne, Caleb J; Fletcher, Paul J
2016-09-01
Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner.
Gutiérrez, Blanca; Bellón, Juan Á; Rivera, Margarita; Molina, Esther; King, Michael; Marston, Louise; Torres-González, Francisco; Moreno-Küstner, Berta; Moreno-Peral, Patricia; Motrico, Emma; Montón-Franco, Carmen; GildeGómez-Barragán, María J; Sánchez-Celaya, Marta; Díaz-Barreiros, Miguel Á; Vicens, Catalina; de Dios Luna, Juan; Nazareth, Irwin; Cervilla, Jorge
2015-05-01
There is limited evidence for a moderating role of both serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) genes on the risk for major depression (MD) developing after childhood maltreatment. However, research on this topic remains inconclusive, and there is a lack of data from longitudinal studies with large and representative population samples. Our study aimed to clarify whether, in the presence of previous childhood maltreatment, individuals carrying low functional alleles for both SERT 5-HTTLPR and BDNF Val66Met polymorphisms had a higher risk for MD. We explored 2- and 3-way gene (SERT and BDNF) × environment (childhood maltreatment) interactions in a large sample of Spanish adults who were followed up over a 3-year period and assessed in person for both DSM-IV MD and exposure to childhood maltreatment. Our study included 2679 participants. Those with both the 5-HTTLPR s allele and the BDNF Met allele showed the highest risk of MD if they had previously experienced emotional (z = 2.08, p = 0.037), sexual (z = 2.19, p = 0.029) or any kind of childhood abuse (z = 2.37, p = 0.018). These 3-way interactions remained significant regardless of whether the 5-HTTLPR triallelic or the 5-HTTLPR biallelic polymorphisms were included in the analyses. Retrospective assessment of childhood maltreatment may have resulted in a moderate degree of recall bias. Our results confirm that the risk of depression conferred by childhood maltreatment is modified by variation at both SERT and BDNF genes.
Gutiérrez, Blanca; Bellón, Juan Ángel; Rivera, Margarita; Molina, Esther; King, Michael; Marston, Louise; Torres-González, Francisco; Moreno-Küstner, Berta; Moreno-Peral, Patricia; Motrico, Emma; Montón-Franco, Carmen; GildeGómez-Barragán, María Josefa; Sánchez-Celaya, Marta; Díaz-Barreiros, Miguel Ángel; Vicens, Catalina; de Dios Luna, Juan; Nazareth, Irwin; Cervilla, Jorge
2015-01-01
Background There is limited evidence for a moderating role of both serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) genes on the risk for major depression (MD) developing after childhood maltreatment. However, research on this topic remains inconclusive, and there is a lack of data from longitudinal studies with large and representative population samples. Our study aimed to clarify whether, in the presence of previous childhood maltreatment, individuals carrying low functional alleles for both SERT 5-HTTLPR and BDNF Val66Met polymorphisms had a higher risk for MD. Methods We explored 2- and 3-way gene (SERT and BDNF) × environment (childhood maltreatment) interactions in a large sample of Spanish adults who were followed up over a 3-year period and assessed in person for both DSM-IV MD and exposure to childhood maltreatment. Results Our study included 2679 participants. Those with both the 5-HTTLPR s allele and the BDNF Met allele showed the highest risk of MD if they had previously experienced emotional (z = 2.08, p = 0.037), sexual (z = 2.19, p = 0.029) or any kind of childhood abuse (z = 2.37, p = 0.018). These 3-way interactions remained significant regardless of whether the 5-HTTLPR triallelic or the 5-HTTLPR biallelic polymorphisms were included in the analyses. Limitations Retrospective assessment of childhood maltreatment may have resulted in a moderate degree of recall bias. Conclusion Our results confirm that the risk of depression conferred by childhood maltreatment is modified by variation at both SERT and BDNF genes. PMID:25510949
Kaufmann, Kristian W.; Dawson, Eric S.; Henry, L. Keith; Field, Julie R.; Blakely, Randy D.; Meiler, Jens
2009-01-01
To identify potential determinants of substrate selectivity in serotonin (5-HT) transporters (SERT), models of human and Drosophila serotonin transporters (hSERT, dSERT) were built based on the leucine transporter (LeuTAa) structure reported by Yamashita et al. (Nature 2005;437:215–223), PBDID 2A65. Although the overall amino acid identity between SERTs and the LeuTAa is only 17%, it increases to above 50% in the first shell of the putative 5-HT binding site, allowing de novo computational docking of tryptamine derivatives in atomic detail. Comparison of hSERT and dSERT complexed with substrates pinpoints likely structural determinants for substrate binding. Forgoing the use of experimental transport and binding data of tryptamine derivatives for construction of these models enables us to cHitically assess and validate their predictive power: A single 5-HT binding mode was identified that retains the amine placement observed in the LeuTAa structure, matches site-directed mutagenesis and substituted cysteine accessibility method (SCAM) data, complies with support vector machine derived relations activity relations, and predicts computational binding energies for 5-HT analogs with a significant correlation coefficient (R = 0.72). This binding mode places 5-HT deep in the binding pocket of the SERT with the 5-position near residue hSERT A169/dSERT D164 in transmembrane helix 3, the indole nitrogen next to residue Y176/Y171, and the ethylamine tail under residues F335/F327 and S336/S328 within 4 Å of residue D98. Our studies identify a number of potential contacts whose contribution to substrate binding and transport was previously unsuspected. PMID:18704946
Baskar, Kannan; Sur, Swastika; Selvaraj, Vithyalakashmi; Agrawal, Devendra K.
2015-01-01
Human coronary artery smooth muscle cells (HCASMCs) play an important role in the pathogenesis of coronary atherosclerosis and coronary artery diseases (CAD). Serotonin is a mediator known to produce vascular smooth muscle cell (VSMC) mitogenesis and contribute to coronary atherosclerosis. We hypothesize that the human coronary artery smooth muscle cell possesses certain functional constituents of the serotonergic system such as: tryptophan hydroxylase and serotonin transporter. Our aim was to examine the presence of functional tryptophan hydroxylase-1 (TPH1) and serotonin transporter (SERT) in HCASMCs. The mRNA transcripts by qPCR and protein expression by Western blot of TPH1 and SERT were examined. The specificity and accuracy of the primers were verified using DNA gel electrophoresis and sequencing of qPCR products. The functionality of SERT was examined using a fluorescence dye-based serotonin transporter assay. The enzymatic activity of TPH was evaluated using UPLC. The HCASMCs expressed both mRNA transcripts and protein of SERT and TPH. The qPCR showed a single melt curve peak for both transcripts and in sequence analysis the amplicons were aligned with the respective genes. SERT and TPH enzymatic activity was present in the HCASMCs. Taken together, both TPH and SERT are functionally expressed in HCASMCs. These findings are novel and represent an initial step in examining the clinical relevance of the serotonergic system in HCASMCs and its role in the pathogenesis of coronary atherosclerosis and CAD. PMID:25861735
Klein, N; Sacher, J; Geiss-Granadia, T; Attarbaschi, T; Mossaheb, N; Lanzenberger, R; Pötzi, C; Holik, A; Spindelegger, C; Asenbaum, S; Dudczak, R; Tauscher, J; Kasper, S
2006-10-01
Escitalopram is a dual serotonin reuptake inhibitor (SSRI) approved for the treatment of depression and anxiety disorders. It is the S-enantiomer of citalopram, and is responsible for the serotonin reuptake activity, and thus for its pharmacological effects. Previous studies pointed out that clinically efficacious doses of other SSRIs produce an occupancy of the serotonin reuptake transporter (SERT) of about 80% or more. The novel radioligand [123I]ADAM and single photon emission computer tomography (SPECT) were used to measure midbrain SERT occupancies for different doses of escitalopram and citalopram. Twenty-five healthy subjects received a single dose of escitalopram [5 mg (n=5), 10 mg (n=5), and 20 mg (n=5)] or citalopram [(10 mg (n=5) and 20 mg (n=5)]. Midbrain SERT binding was measured with [(123)I]ADAM and SPECT on two study days, once without study drug and once 6 h after single dose administration of the study drug. The ratio of midbrain-cerebellum/cerebellum was the outcome measure (V3") for specific binding to SERT in midbrain. Subsequently, SERT occupancy levels were calculated using the untreated baseline level for each subject. An Emax model was used to describe the relationship between S-citalopram concentrations and SERT occupancy values. Additionally, four subjects received placebo to determine test-retest variability. Single doses of 5, 10, or 20 mg escitalopram led to a mean SERT occupancy of 60+/-6, 64+/-6, and 75+/-5%, respectively. SERT occupancies for subjects treated with single doses of 10 and 20 mg citalopram were 65+/-10 and 70+/-6%, respectively. A statistically significant difference was found between SERT occupancies after application of 10 and 20 mg escitalopram, but not for 10 and 20 mg citalopram. There was no statistically significant difference between the SERT occupancies of either 10 mg citalopram or 10 mg escitalopram, or between 20 mg citalopram and 20 mg escitalopram. Emax was slightly higher after administration of citalopram (84%) than escitalopram (79%). In the test-retest study, a mean SERT "occupancy" of 4% was found after administration of placebo, the intraclass correlation coefficient was 0.92, and the repeatability coefficient was 0.25. SPECT and [123I]ADAM were used to investigate SERT occupancies after single doses of escitalopram or citalopram. The test-retest study revealed good reproducibility of SERT quantification. Similar SERT occupancies were found after administration of equal doses (in respect to mg) of escitalopram and citalopram, giving indirect evidence for a fractional blockade of SERT by the inactive R-citalopram.
5-HT Radioligands for Human Brain Imaging With PET and SPECT
Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.
2014-01-01
The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551
Dinardokanshones C-E, isonardoeudesmols A-D and nardoeudesmol D from Nardostachys jatamansi DC.
Wu, Hong-Hua; Deng, Xu; Zhang, Hu; Chen, Ying-Peng; Ying, Shu-Song; Wu, Yi-Jing; Liu, Yan-Ting; Zhu, Yan; Gao, Xiu-Mei; Xu, Yan-Tong; Li, Li
2018-06-01
Dinardokanshones C-E, three sesquiterpenoid dimers comprising an unusual nornardosinane-type sesquiterpenoid core and an aristolane-type sesquiterpenoid unit conjugated by an extra pyran or furan ring, together with monomeric sesquiterpenoids isonardoeudesmols A-D and nardoeudesmol D, were isolated from the underground parts of Nardostachys jatamansi DC. Structures of the eight compounds were elucidated by analysis of the extensive spectroscopic data, and their absolute configurations were established by analysis of NOESY and X-ray diffraction data, combined with computational electronic circular dichroism (ECD) calculations. The results of SERT activity assay revealed that isonardoeudesmol D and nardoeudesmol D significantly inhibited SERT activity, while dinardokanshones D-E and isonardoeudesmols B-C significantly enhanced SERT activity, among which dinardokanshone D exhibited the strongest effect. Copyright © 2018 Elsevier Ltd. All rights reserved.
NATURAL AND ENGINEERED CODING VARIATION IN ANTIDEPRESSANT-SENSITIVE SEROTONIN TRANSPORTERS
YE, R.; BLAKELY, R. D.
2013-01-01
The presynaptic serotonin (5-HT) transporter (SERT) is a key regulator of 5-HT signaling and is a major target for antidepressant medications and psychostimulants. In recent years, studies of natural and engineered genetic variation in SERT have provided new opportunities to understand structural dimensions of drug interactions and regulation of the transporter, to explore 5-HT contributions to antidepressant action, and to assess the impact of SERT-mediated 5-HT contributions to neuropsychiatric disorders. Here we review three examples from our recent studies where genetic changes in SERT, identified or engineered, have led to new models, findings, and theories that cast light on new dimensions of 5-HT action in the CNS and periphery. First, we review our work to identify specific residues through which SERT recognizes antagonists, and the conversion of this knowledge to the creation of mice lacking high-affinity antidepressant and cocaine sensitivity. Second, we discuss our studies of functional coding variation in SERT that exists in commonly used strains of inbred mice, and how this variation is beginning to reveal novel 5-HT-associated phenotypes. Third, we review our identification and functional characterization of multiple, hyperactive SERT coding variants in subjects with autism. Each of these activities has driven the development of new model systems that can be further exploited to understand the contribution of 5-HT signaling to risk for neuropsychiatric disorders and their treatment. PMID:21893166
Ratner, Cecilia; Ettrup, Anders; Bueter, Marco; Haahr, Mette E.; Compan, Valérie; le Roux, Carel W.; Levin, Barry; Hansen, Henrik H.; Knudsen, Gitte M.
2013-01-01
Food intake and body weight are regulated by a complex system of neural and hormonal signals, of which the anorexigenic neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) is central. In this study, rat models of obesity and weight loss intervention were compared with regard to several 5-HT markers. Using receptor autoradiography, brain regional-densities of the serotonin transporter (SERT) and the 5-HT2A and 5-HT4 receptors were measured in (i) selectively bred polygenic diet-induced obese (pgDIO) rats, (ii) outbred DIO rats, and (iii) Roux-en-Y gastric bypass (RYGB)-operated rats. pgDIO rats had higher 5-HT4 and 5-HT2A receptor binding and lower SERT binding when compared to polygenic diet-resistant (pgDR) rats. The most pronounced difference between pgDIO and pgDR rats was observed in the nucleus accumbens shell (NAcS), a brain region regulating reward aspects of feeding. No differences were found in the 5-HT markers between DIO rats, chow-fed control rats, and DIO rats experiencing a weight loss. The 5-HT markers were also similar in RYGB and sham-operated rats except for a downregulation of 5-HT2A receptors in the NAcS. The higher receptor and lower SERT binding in pgDIO as compared to pgDR rats corresponds to what is reported in overweight humans and suggests that the dysfunctions of the 5-HT system associated with overeating or propensity to become overweight are polygenically determined. Our results support that the obesity-prone rat model has high translational value and suggests that susceptibility to develop obesity is associated with changed 5-HT tone in the brain that may also regulate hedonic aspects of feeding. PMID:22450706
Brandt, Simon D; Baumann, Michael H; Partilla, John S; Kavanagh, Pierce V; Power, John D; Talbot, Brian; Twamley, Brendan; Mahony, Olivia; O'Brien, John; Elliott, Simon P; Archer, Roland P; Patrick, Julian; Singh, Kuldip; Dempster, Nicola M; Cosbey, Simon H
2014-01-01
During the second half of 2013, a total of 26 deaths involving para-methyl-4-methylaminorex (4,4'-DMAR) were reported to the European Monitoring Centre for Drugs and Drug Addiction. While aminorex and 4-methylaminorex (4-MAR) are known psychostimulants, nothing is known about the comparatively new para-methyl analog. Analytical characterization of two independent samples obtained from online vendors confirmed the presence of the (±)-cis isomer that also appeared to be associated with at least 18 of the 26 deaths. Extensive characterizations included crystal structure analysis, single, tandem, and high-resolution mass spectrometry, liquid and gas chromatography, and nuclear magnetic resonance spectroscopy. For the work described here, both the (±)-cis and (±)-trans racemates were also synthesized, confirming that the differentiation between these two forms was straight-forward. Monoamine transporter activity was studied using rat brain synaptosomes which included the comparison with d-amphetamine, aminorex and (±)-cis-4-MAR. (±)-cis-4,4'-DMAR was a potent, efficacious substrate-type releaser at transporters for dopamine, norepinephrine and serotonin with EC50 values of 8.6 ± 1.1 nM (DAT), 26.9 ± 5.9 nM (NET) and 18.5 ± 2.8 nM (SERT), respectively. The potency of (±)-cis-4,4'-DMAR at DAT and NET rivalled that of other psychomotor stimulant drugs like d-amphetamine and aminorex. However, (±)-cis-4,4'-DMAR had much more potent actions at SERT and activity at SERT varied more than 100-fold across the four drugs. The potent releasing activity of (±)-cis-4,4'-DMAR at all three monoamine transporters predicts a potential for serious side-effects such as psychotic symptoms, agitation, hyperthermia and cardiovascular stimulation, especially after high-dose exposure or following combination with other psychostimulants. Copyright © 2014 John Wiley & Sons, Ltd.
Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Arapulisamy, Obulakshmi; Shippenberg, Toni S.; Jayanthi, Lankupalle D.
2012-01-01
The serotonin (5-HT) transporter (SERT) regulates serotoninergic neurotransmission by clearing 5-HT released into the synaptic space. Phosphorylation of SERT on serine and threonine mediates SERT regulation. Whether tyrosine phosphorylation regulates SERT is unknown. Here, we tested the hypothesis that tyrosine-phosphorylation of SERT regulates 5-HT transport. In support of this, alkali-resistant 32P-labeled SERT was found in rat platelets, and Src-tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4,d]pyrimidine (PP2) decreased platelet SERT function and expression. In human placental trophoblast cells expressing SERT, PP2 reduced transporter function, expression, and stability. Although siRNA silencing of Src expression decreased SERT function and expression, coexpression of Src resulted in PP2-sensitive increases in SERT function and expression. PP2 treatment markedly decreased SERT protein stability. Compared with WT-SERT, SERT tyrosine mutants Y47F and Y142F exhibited reduced 5-HT transport despite their higher total and cell surface expression levels. Moreover, Src-coexpression increased total and cell surface expression of Y47F and Y142F SERT mutants without affecting their 5-HT transport capacity. It is noteworthy that Y47F and Y142F mutants exhibited higher protein stability compared with WT-SERT. However, similar to WT-SERT, PP2 treatment decreased the stability of Y47F and Y142F mutants. Furthermore, compared with WT-SERT, Y47F and Y142F mutants exhibited lower basal tyrosine phosphorylation and no further enhancement of tyrosine phosphorylation in response to Src coexpression. These results provide the first evidence that SERT tyrosine phosphorylation supports transporter protein stability and 5HT transport. PMID:21992875
Wu, Chih-Hsing; Chang, Chin-Sung; Yang, Yen Kuang; Shen, Lie-Hang; Yao, Wei-Jen
2017-01-01
Cerebral serotonin metabolism has an important but controversial role in obesity. However, it is not given enough attention in morbidly obese young adults. We used single photon emission computed tomography (SPECT) with [I-123]-labeled 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM) to investigate changes in serotonin transporter (SERT) availability in 10 morbidly obese young adults without an eating disorder (M/F = 5/5, body mass index (BMI): 40.3 ± 4.1 kg/m2, percentage of body fat (BF%): 46.0 ± 3.9%) and 10 age- and sex-matched non-obese controls (BMI: 20.3 ± 1.2 kg/m2, BF%: 20.6 ± 8.9%). All participants underwent SPECT at 10 min and 6 h after an injection of 200 MBq of [I-123]-ADAM. The SERT binding site (midbrain) was drawn with cerebellum normalization. The BF% and fat distribution were measured using dual-energy X-ray absorptiometry. The midbrain/cerebellum SERT binding ratios (2.49 ± 0.46 vs. 2.47 ± 0.47; p = 0.912) at 6 h were not significantly different between groups, nor was the distribution of the summed images at 10 min (1.36 ± 0.14 vs. 1.35 ± 0.11; p = 0.853). There were no significant correlations between midbrain/cerebellum SERT binding ratio and age, BMI, BF%, or fat distribution. No significant difference in SERT availability in the midbrain between morbidly obese and non-obese young adults without an eating disorder indicates an unmet need for investigating the role of cerebral serotonin in obesity. PMID:28182708
Gross, Noah B; Duncker, Patrick C; Marshall, John F
2011-11-01
Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.
Zwartsen, Anne; Verboven, Anouk H A; van Kleef, Regina G D M; Wijnolts, Fiona M J; Westerink, Remco H S; Hondebrink, Laura
2017-12-01
The prevalence and use of new psychoactive substances (NPS) is increasing and currently over 600 NPS exist. Many illicit drugs and NPS increase brain monoamine levels by inhibition and/or reversal of monoamine reuptake transporters (DAT, NET and SERT). This is often investigated using labor-intensive, radiometric endpoint measurements. We investigated the applicability of a novel and innovative assay that is based on a fluorescent monoamine mimicking substrate. DAT, NET or SERT-expressing human embryonic kidney (HEK293) cells were exposed to common drugs (cocaine, dl-amphetamine or MDMA), NPS (4-fluoroamphetamine, PMMA, α-PVP, 5-APB, 2C-B, 25B-NBOMe, 25I-NBOMe or methoxetamine) or the antidepressant fluoxetine. We demonstrate that this fluorescent microplate reader-based assay detects inhibition of different transporters by various drugs and discriminates between drugs. Most IC 50 values were in line with previous results from radiometric assays and within estimated human brain concentrations. However, phenethylamines showed higher IC 50 values on hSERT, possibly due to experimental differences. Compared to radiometric assays, this high-throughput fluorescent assay is uncomplicated, can measure at physiological conditions, requires no specific facilities and allows for kinetic measurements, enabling detection of transient effects. This assay is therefore a good alternative for radiometric assays to investigate effects of illicit drugs and NPS on monoamine reuptake transporters. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Natural and engineered coding variation in antidepressant-sensitive serotonin transporters.
Ye, R; Blakely, R D
2011-12-01
The presynaptic serotonin (5-HT) transporter (SERT) is a key regulator of 5-HT signaling and is a major target for antidepressant medications and psychostimulants. In recent years, studies of natural and engineered genetic variation in SERT have provided new opportunities to understand structural dimensions of drug interactions and regulation of the transporter, to explore 5-HT contributions to antidepressant action, and to assess the impact of SERT-mediated 5-HT contributions to neuropsychiatric disorders. Here we review three examples from our recent studies where genetic changes in SERT, identified or engineered, have led to new models, findings, and theories that cast light on new dimensions of 5-HT action in the CNS and periphery. First, we review our work to identify specific residues through which SERT recognizes antagonists, and the conversion of this knowledge to the creation of mice lacking high-affinity antidepressant and cocaine sensitivity. Second, we discuss our studies of functional coding variation in SERT that exists in commonly used strains of inbred mice, and how this variation is beginning to reveal novel 5-HT-associated phenotypes. Third, we review our identification and functional characterization of multiple, hyperactive SERT coding variants in subjects with autism. Each of these activities has driven the development of new model systems that can be further exploited to understand the contribution of 5-HT signaling to risk for neuropsychiatric disorders and their treatment. Copyright © 2011. Published by Elsevier Ltd.
Yoshinaga, Hidefumi; Masumoto, Shuji; Koyama, Koji; Kinomura, Naoya; Matsumoto, Yuji; Kato, Taro; Baba, Satoko; Matsumoto, Kenji; Horisawa, Tomoko; Oki, Hitomi; Yabuuchi, Kazuki; Kodo, Toru
2017-01-01
We report the discovery of a novel benzylpiperidine derivative with serotonin transporter (SERT) inhibitory activity and 5-HT 1A receptor weak partial agonistic activity showing the antidepressant-like effect. The 3-methoxyphenyl group and the phenethyl group of compound 1, which has weak SERT binding activity, but potent 5-HT 1A binding activity, were optimized, leading to compound 35 with potent and balanced dual SERT and 5-HT 1A binding activity, but also potent CYP2D6 inhibitory activity. Replacement of the methoxy group in the left part of compound 35 with a larger alkoxy group, such as ethoxy, isopropoxy or methoxy-ethoxy group ameliorated CYP2D6 inhibition, giving SMP-304 as a candidate. SMP-304 with serotonin uptake inhibitory activity and 5-HT 1A weak partial agonistic activity, which could work as a 5-HT 1A antagonist, displayed faster onset of antidepressant-like effect than a representative SSRI paroxetine in an animal model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Piper, Brian J; Meyer, Jerrold S
2004-12-01
3,4-Methylenedioxymethamphetamine (MDMA, or "Ecstasy") is a popular recreational drug among adolescents that is often taken primarily on weekends. The goals of this study were to develop a model of the typical intermittent pattern of human MDMA use in periadolescent rats and to determine the behavioral consequences of MDMA exposure in this model. Male Sprague-Dawley rats received s.c. injections of 10 mg/kg of MDMA or saline twice daily with an interdose interval of 4 h. Treatments were given every fifth day from postnatal day (PD) 35 to PD 60. Beginning at PD 65, the animals were tested for open-field activity, object recognition memory, and anxiety-related behaviors in the elevated plus-maze. Brain tissues were collected at PD 70 for determination of radiolabeled paroxetine binding to the serotonin transporter (SERT) in the neocortex and hippocampus. Repeated MDMA administration led to a reduced rate of weight gain that was evident by PD 50. There was no treatment effect on ambulatory behavior in the open-field. However, the MDMA group displayed an impairment of object recognition memory and reduced anxiety as indicated by a twofold increase in open-arm duration in the elevated plus-maze. Only modest decreases in SERT binding were observed, although there was a significant negative correlation between hippocampal SERT levels and open-arm duration within the MDMA group. These findings demonstrate that intermittent MDMA exposure during the adolescent period of development can influence subsequent cognitive and affective functioning in the absence of severe serotonergic damage.
Enhanced activity of human serotonin transporter variants associated with autism.
Prasad, Harish C; Steiner, Jennifer A; Sutcliffe, James S; Blakely, Randy D
2009-01-27
Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.
Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob; Gether, Ulrik; Jørgensen, Trine Nygaard
2014-01-01
The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the “long loop” recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the β2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation. PMID:24973209
Zhu, Qi; Wang, Jing; Lai, Hua-mei
2008-09-01
To explore the mechanism and efficiency of Changji'an (CJA) in treating irritable bowel syndrome through studying the relationship between serotonin transporter (SERT) and visceral hypersensitivity in rats. Male SD rats were randomly divided into 4 groups: the normal control group, the model group, the high-dosage and low-dosage CJA (CJAH and CJAL) groups. Visceral hypersensitivity model was established by colorectal distension. Normal saline and different doses of CJA were administrated to rats respectively, starting from the 10th day of modeling for 10 days. After then, the abdominal withdrawal reflex (AWR) was scored for semi-quantitative estimation of visceral sensitivity, and tissues of brain and colon were harvested for detecting expressions of SERT and serotonin (5-HT) with Western blot, real-time PCR and immunohistochemistry. As compared with the normal controls, in model rats, the AWR score and content of 5-HT in intestinal mucosa were higher (P < 0.05), protein and mRNA expressions of SERT in colon and nucleus raphes dorsalis (NRD) were lower (P < 0.05), but all these indexes were improved significantly after CJA treatment, either in the CJAH or CJAL group (all P < 0.05). Besides, the number of 5-HT energic neuron in the model group and CJA groups was lower than that in the normal control group (P < 0.05). CJA has therapeutic effect for improving visceral hypersensitivity in irritable bowel syndrome by way of regulating colonic expression of SERT and content of 5-HT.
Mitchell, Nathan C; Gould, Georgianna G; Koek, Wouter; Daws, Lynette C
2016-08-01
Depression is a disabling affective disorder for which the majority of patients are not effectively treated. This problem is exacerbated in children and adolescents for whom only two antidepressants are approved, both of which are selective serotonin reuptake inhibitor (SSRIs). Unfortunately SSRIs are often less effective in juveniles than in adults; however, the mechanism(s) underlying age-dependent responses to SSRIs is unknown. To this end, we compared the antidepressant-like response to the SSRI escitalopram using the tail suspension test and saturation binding of [(3)H]citalopram to the serotonin transporter (SERT), the primary target of SSRIs, in juvenile [postnatal day (P)21], adolescent (P28), and adult (P90) wild-type (SERT+/+) mice. In addition, to model individuals carrying low-expressing SERT variants, we studied mice with reduced SERT expression (SERT+/-) or lacking SERT (SERT-/-). Maximal antidepressant-like effects were less in P21 mice relative to P90 mice. This was especially apparent in SERT+/- mice. However, the potency for escitalopram to produce antidepressant-like effects in SERT+/+ and SERT+/- mice was greater in P21 and P28 mice than in adults. SERT expression increased with age in terminal regions and decreased with age in cell body regions. Binding affinity values did not change as a function of age or genotype. As expected, in SERT-/- mice escitalopram produced no behavioral effects, and there was no specific [(3)H]citalopram binding. These data reveal age- and genotype-dependent shifts in the dose-response for escitalopram to produce antidepressant-like effects, which vary with SERT expression, and may contribute to the limited therapeutic response to SSRIs in juveniles and adolescents. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Frameworking memory and serotonergic markers.
Meneses, Alfredo
2017-07-26
The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals' species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7 receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L
2007-06-01
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.
Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects.
Reneman, Liesbeth; de Win, Maartje M L; van den Brink, Wim; Booij, Jan; den Heeten, Gerard J
2006-03-01
Users of ecstasy (3,4-methylenedioxymethamphetamine; MDMA) may be at risk of developing MDMA-induced injury to the serotonin (5-HT) system. Previously, there were no methods available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivoneuroimaging tools have begun to provide insights into the effects of ecstasy on the human brain. Single photon emission computed tomography (SPECT), positron emission computed tomography (PET) and proton magnetic resonance spectroscopy (1H-MRS) studies which have evaluated ecstasy's neurotoxic potential will be reviewed and discussed in terms of technical aspects, conceptual issues and future prospects. Although PET and SPECT may be limited by several factors such as the low cortical uptake and the use of a non-optimal reference region (cerebellum) the few studies conducted so far provide suggestive evidence that people who heavily use ecstasy are at risk of developing subcortical, and probably also cortical reductions in serotonin transporter (SERT) densities, a marker of 5-HT neurotoxicity. There seem to be dose-dependent and transient reductions in SERT for which females may be more vulnerable than males. 1H-MRS appears to be a less sensitive technique for studying ecstasy's neurotoxic potential. Whether individuals with a relatively low ecstasy exposure also demonstrate loss of SERT needs to be determined. Because most studies have had a retrospective design, in which evidence is indirect and differs in the degree to which any causal links can be implied, longitudinal studies in human ecstasy users are needed to draw definite conclusions.
Serotonin is an endogenous regulator of intestinal CYP1A1 via AhR.
Manzella, Christopher; Singhal, Megha; Alrefai, Waddah A; Saksena, Seema; Dudeja, Pradeep K; Gill, Ravinder K
2018-04-17
Aryl hydrocarbon receptor (AhR) is a nuclear receptor that controls xenobiotic detoxification via induction of cytochrome P450 1A1 (CYP1A1) and regulates immune responses in the intestine. Metabolites of L-tryptophan activate AhR, which confers protection against intestinal inflammation. We tested the hypothesis that serotonin (5-HT) is an endogenous activator of AhR in intestinal epithelial cells. Treatment of Caco-2 monolayers with 5-HT induced CYP1A1 mRNA in a time- and concentration-dependent manner and also stimulated CYP1A1 activity. CYP1A1 induction by 5-HT was dependent upon uptake via serotonin transporter (SERT). Antagonism of AhR and knockdown of AhR and its binding partner aryl hydrocarbon receptor nuclear translocator (ARNT) attenuated CYP1A1 induction by 5-HT. Activation of AhR was evident by its nuclear translocation after 5-HT treatment and by induction of an AhR-responsive luciferase reporter. In vivo studies showed a dramatic decrease in CYP1A1 expression and other AhR target genes in SERT KO ileal mucosa by microarray analysis. These results suggest that intracellular accumulation of 5-HT via SERT induces CYP1A1 expression via AhR in intestinal epithelial cells, and SERT deficiency in vivo impairs activation of AhR. Our studies provide a novel link between the serotonergic and AhR pathways which has implications in xenobiotic metabolism and intestinal inflammation.
Layunta, Elena; Latorre, Eva; Forcén, Raquel; Grasa, Laura; Plaza, Miguel A; Arias, Maykel; Alcalde, Ana I; Mesonero, José E
2018-05-01
Serotonin (5-HT) is an essential gastrointestinal modulator whose effects regulate the intestinal physiology. 5-HT effects depend on extracellular 5-HT bioavailability, which is controlled by the serotonin transporter (SERT) expressed in both the apical and basolateral membranes of enterocytes. SERT is a critical target for regulating 5-HT levels and consequently, modulating the intestinal physiology. The deregulation of innate immune receptors has been extensively studied in inflammatory bowel diseases (IBD), where an exacerbated defense response to commensal microbiota is observed. Interestingly, many innate immune receptors seem to affect the serotonergic system, demonstrating a new way in which microbiota could modulate the intestinal physiology. Therefore, our aim was to analyze the effects of NOD1 activation on SERT function, as well as NOD1's interaction with other immune receptors such as TLR2 and TLR4. Our results showed that NOD1 activation inhibits SERT activity and expression in Caco-2/TC7 cells through the extracellular signal-regulated kinase (ERK) signaling pathway. A negative feedback between 5-HT and NOD1 expression was also described. The results showed that TLR2 and TLR4 activation seems to regulate NOD1 expression in Caco-2/TC7 cells. To assess the extend of cross-talk between NOD1 and TLRs, NOD1 expression was measured in the intestinal tract (ileum and colon) of wild type mice and mice with individual knockouts of TLR2, and TLR4 as well as double knockout TLR2/TLR4 mice. Hence, we demonstrate that NOD1 acts on the serotonergic system decreasing SERT activity and molecular expression. Additionally, NOD1 expression seems to be modulated by 5-HT and other immune receptors as TLR2 and TLR4. This study could clarify the relation between both the intestinal serotonergic system and innate immune system, and their implications in intestinal inflammation. © 2017 Wiley Periodicals, Inc.
Itoi, Fumiaki; Asano, Yukiko; Shimizu, Masashi; Honnma, Hiroyuki; Murata, Yasutaka
2016-01-01
There have been no studies analyzing the effect of large aggregates of tubular smooth endoplasmic reticulum (aSERT) after conventional in vitro fertilization (cIVF). The aim of this study was to investigate whether aSERT can be identified after cIVF and the association between the embryological outcomes of oocytes in cycles with aSERT. This is a retrospective study examining embryological data from cIVF cycles showing the presence of aSERT in oocytes 5-6 h after cIVF. To evaluate embryo quality, cIVF cycles with at least one aSERT-metaphase II (MII) oocyte observed (cycles with aSERT) were compared to cycles with normal-MII oocytes (control cycles). Among the 4098 MII oocytes observed in 579 cycles, aSERT was detected in 100 MII oocytes in 51 cycles (8.8%). The fertilization rate, the rate of embryo development on day 3 and day 5-6 did not significantly differ between cycles with aSERT and control group. However, aSERT-MII oocytes had lower rates for both blastocysts and good quality blastocysts (p < 0.05). aSERT can be detected in the cytoplasm by removing the cumulus cell 5 h after cIVF. However, aSERT-MII oocytes do not affect other normal-MII oocytes in cycles with aSERT.
Tsuruoka, Nobuo; Beppu, Yoshinori; Koda, Hirofumi; Doe, Nobutaka; Watanabe, Hiroshi; Abe, Keiichi
2012-01-01
Diketopiperazines (DKPs) are naturally-occurring cyclic dipeptides with a small structure and are found in many organisms and in large amounts in some foods and beverages. We found that a chicken essence beverage, which is popular among Southeast Asians as a traditional remedy and a rich source of DKPs, inhibited the serotonin transporter (SERT) and suppressed serotonin uptake from rat brain synaptosomes, which prompted us to isolate and identify the active substance(s). We purified a SERT inhibitor from the chicken essence beverage and identified it as the DKP cyclo(L-Phe-L-Phe). Interestingly, it was a naturally occurring dual inhibitor that inhibited both SERT and acetylcholinesterase (AChE) in vitro. The DKP increased extracellular levels of the cerebral monoamines serotonin, norepinephrine, and dopamine in the medial prefrontal cortex and acetylcholine in the ventral hippocampus of freely moving rats when administered orally. Moreover, cyclo(L-Phe-L-Phe) significantly shortened escape latency in the water maze test in depressed mice previously subjected to a repeated open-space swimming task, which induces a depression-like state. Cyclo(L-Phe-L-Phe) also significantly improved accuracy rates in a radial maze test in rats and increased step-through latencies in a passive avoidance test in mice with scopolamine-induced amnesia. These animal test results suggest that cyclo(L-Phe-L-Phe), which is present abundantly in some foods such as chicken essence, may abrogate the onset of depression and, thus, contribute to preventing the development of Alzheimer’s disease and other dementia, because senile depression is a risk factor for dementia. PMID:23209830
Meredith, Elizabeth J; Holder, Michelle J; Chamba, Anita; Challa, Anita; Drake-Lee, Adrian; Bunce, Christopher M; Drayson, Mark T; Pilkington, Geoffrey; Blakely, Randy D; Dyer, Martin J S; Barnes, Nicholas M; Gordon, John
2005-07-01
Following our previous description of the serotonin transporter (SERT) acting as a conduit to 5-hydroxytryptamine (5-HT)-mediated apoptosis, specifically in Burkitt's lymphoma, we now detail its expression among a broad spectrum of B cell malignancy, while exploring additional SERT substrates for potential therapeutic activity. SERT was readily detected in derived B cell lines with origins as diverse as B cell precursor acute lymphoblastic leukemia, mantle cell lymphoma, diffuse large B cell lymphoma, and multiple myeloma. Concentration and timecourse kinetics for the antiproliferative and proapoptotic activities of the amphetamine derivatives fenfluramine (an appetite suppressant) and 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") revealed them as being similar to the endogenous indoleamine. A tricyclic antidepressant, clomipramine, instead mirrored the behavior of the selective serotonin reuptake inhibitor fluoxetine, both being effective in the low micromolar range. A majority of neoplastic clones were sensitive to one or more of the serotonergic compounds. Dysregulated bcl-2 expression, either by t(14;18)(q32;q21) translocation or its introduction as a constitutively active transgene, provided protection from proapoptotic but not antiproliferative outcomes. These data indicate a potential for SERT as a novel anti-tumor target for amphetamine analogs, while evidence is presented that the seemingly more promising antidepressants are likely impacting malignant B cells independently of the transporter itself.
Regulation of the serotonin transporter in the pathogenesis of irritable bowel syndrome.
Jin, Duo-Chen; Cao, Hai-Long; Xu, Meng-Que; Wang, Si-Nan; Wang, Yu-Ming; Yan, Fang; Wang, Bang-Mao
2016-09-28
Serotonin (5-HT) and the serotonin transporter (SERT) have earned a tremendous amount of attention regarding the pathogenesis of irritable bowel syndrome (IBS). Considering that enteric 5-HT is responsible for the secretion, motility and perception of the bowel, the involvement of altered enteric 5-HT metabolism in the pathogenesis of IBS has been elucidated. Higher 5-HT availability is commonly associated with depressed SERT mRNA in patients with IBS compared with healthy controls. The expression difference of SERT between IBS patients and healthy controls might suggest that SERT plays an essential role in IBS pathogenesis, and SERT was expected to be a novel therapeutic target for IBS. Progress in this area has begun to illuminate the complex regulatory mechanisms of SERT in the etiology of IBS. In this article, current insights regarding the regulation of SERT in IBS are provided, including aspects of SERT gene polymorphisms, microRNAs, immunity and inflammation, gut microbiota, growth factors, among others. Potential SERT-directed therapies for IBS are also described. The potential regulators of SERT are of clinical importance and are important for better understanding IBS pathophysiology and therapeutic strategies.
Sealover, Natalie R; Felts, Bruce; Kuntz, Charles P; Jarrard, Rachel E; Hockerman, Gregory H; Lamb, Patrick W; Barker, Eric L; Henry, L Keith
2016-11-15
The substituted amphetamine, 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy), is a widely used drug of abuse that induces non-exocytotic release of serotonin, dopamine, and norepinephrine through their cognate transporters as well as blocking the reuptake of neurotransmitter by the same transporters. The resulting dramatic increase in volume transmission and signal duration of neurotransmitters leads to psychotropic, stimulant, and entactogenic effects. The mechanism by which amphetamines drive reverse transport of the monoamines remains largely enigmatic, however, promising outcomes for the therapeutic utility of MDMA for post-traumatic stress disorder and the long-time use of the dopaminergic and noradrenergic-directed amphetamines in treatment of attention-deficit hyperactivity disorder and narcolepsy increases the importance of understanding this phenomenon. Previously, we identified functional differences between the human and Drosophila melanogaster serotonin transporters (hSERT and dSERT, respectively) revealing that MDMA is an effective substrate for hSERT but not dSERT even though serotonin is a potent substrate for both transporters. Chimeric dSERT/hSERT transporters revealed that the molecular components necessary for recognition of MDMA as a substrate was linked to regions of the protein flanking transmembrane domains (TM) V through IX. Here, we performed species-scanning mutagenesis of hSERT, dSERT and C. elegans SERT (ceSERT) along with biochemical and electrophysiological analysis and identified a single amino acid in TM10 (Glu394, hSERT; Asn484, dSERT, Asp517, ceSERT) that is primarily responsible for the differences in MDMA recognition. Our findings reveal that an acidic residue is necessary at this position for MDMA recognition as a substrate and serotonin releaser. Copyright © 2016 Elsevier Inc. All rights reserved.
Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen
2015-01-01
Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630
Nackenoff, Alex G; Simmler, Linda D; Baganz, Nicole L; Pehrson, Alan L; Sánchez, Connie; Blakely, Randy D
2017-05-17
Selective serotonin (5-HT, SERT) reuptake inhibitors (SSRIs) are the most commonly prescribed treatments for depression. However, they have delayed efficacy and can induce side-effects that can encourage discontinuation. Recently, agents have been developed, including vortioxetine (Trintellix), that augment SERT blockade with interactions at other targets. At therapeutic doses, vortioxetine interacts with SERT as well as 5-HT 1A , 5-HT 1B , 5-HT 3 , and 5-HT 7 receptors. We assessed the SERT-dependency of vortioxetine action using the SERT Met172 mouse model, which disrupts high-affinity interactions of many antidepressants with the transporter. We demonstrate that the SERT Met172 substitution induces an ∼19-fold loss in vortioxetine potency for SERT inhibition in midbrain synaptosomes. Moreover, in these mice, we observed reduced SERT occupancy, a diminished ability to prolong 5-HT clearance, and a reduced capacity to elevate extracellular 5-HT. Despite reduced interactions with SERT, vortioxetine maintained its ability to enhance mobility in tail suspension and forced swim tests, reduce consumption latency in the novelty induced hypophagia test, and promoted proliferation and survival of subgranular zone hippocampal stem cells. Our findings suggest that the antidepressant actions of vortioxetine may be SERT-independent, and encourage consideration of agents that mimic one or more actions of the drug in the development of improved depression treatments.
Matsui, Fumihiro; Hecht, Patrick; Yoshimoto, Kanji; Watanabe, Yoshihisa; Morimoto, Masafumi; Fritsche, Kevin; Will, Matthew; Beversdorf, David
2018-02-10
Autism Spectrum Disorder (ASD) is characterized by impairments in social interaction, social communication, and repetitive and stereotyped behaviors. Recent work has begun to explore gene × environmental interactions in the etiology of ASD. We previously reported that prenatal stress exposure in stress-susceptible heterozygous serotonin transporter (SERT) KO pregnant dams in a mouse model resulted in autism-like behavior in the offspring (SERT/S mice). The association between prenatal stress and ASD appears to be affected by maternal SERT genotype in clinical populations as well. Using the mouse model, we examined autistic-like behaviors in greater detail, and additionally explored whether diet supplementation with docosahexaenoic acid (DHA) may mitigate the behavioral changes. Only male SERT/S mice showed social impairment and stereotyped behavior, and DHA supplementation ameliorated some of these behaviors. We also measured monoamine levels in the SERT/S mice after three treatment paradigms: DHA-rich diet continuously from breeding (DHA diet), DHA-rich diet only after weaning (CTL/DHA diet) and control diet only (CTL diet). The dopamine (DA) content in the striatum was significantly increased in the SERT/S mice compared with wild-type (WT) mice, whereas no difference was observed with noradrenaline and serotonin content. Moreover, DA content in the striatum was significantly reduced in the SERT/S mice with the DHA-rich diet provided continuously from breeding. The results indicate that autism-associated behaviors and changes in the dopaminergic system in this setting can be mitigated with DHA supplementation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Larsen, Mads Breum; Sonders, Mark S.; Mortensen, Ole Valente; Larson, Gaynor A.; Zahniser, Nancy R.; Amara, Susan G.
2011-01-01
The serotonin transporter (SERT) is the principal mechanism for terminating serotonin (5HT) signals in the nervous system and is a site of action for a variety of psychoactive drugs including antidepressants, amphetamines, and cocaine. Here we show that human SERTs (hSERTs) and rat SERTs are capable of robust dopamine (DA) uptake through a process that differs mechanistically from 5HT transport in several unanticipated ways. DA transport by hSERT has a higher maximum velocity than 5HT transport, requires significantly higher Na+ and Cl− concentrations to sustain transport, is inhibited non-competitively by 5HT and is more sensitive to SERT inhibitors, including selective serotonin reuptake inhibitors (SSRIs). We use a thiol reactive methane thiosulfonate (MTS) reagent to modify a conformationally-sensitive cysteine residue to demonstrate that hSERT spends more time in an outward facing conformation when transporting DA than when transporting 5HT. Co-transfection of an inactive or an MTS-sensitive SERT with wild type SERT subunits reveals an absence of cooperative interactions between subunits during DA, but not 5HT transport. To establish the physiological relevance of this mechanism for DA clearance, we show using in vivo high-speed chronoamperometry that SERT has the capacity to clear extracellularly applied DA in the hippocampal CA3 region of anesthetized rats. Together, these observations suggest the possibility that SERT serves as a DA transporter in vivo and highlight the idea that there can be distinct modes of transport of alternative physiological substrates by SERT. PMID:21525301
Werner, Anna M.; Cuboni, Serena; Rudolf, Georg C.; Höfner, Georg; Wanner, Klaus T.; Sieber, Stephan A.; Schmidt, Ulrike; Holsboer, Florian; Rein, Theo; Hausch, Felix
2016-01-01
The aim of this study was to design, synthesize and validate a multifunctional antidepressant probe that is modified at two distinct positions. The purpose of these modifications was to allow covalent linkage of the probe to interaction partners, and decoration of probe-target complexes with fluorescent reporter molecules. The strategy for the design of such a probe (i.e., azidobupramine) was guided by the need for the introduction of additional functional groups, conveying the required properties while keeping the additional moieties as small as possible. This should minimize the risk of changing antidepressant-like properties of the new probe azidobupramine. To control for this, we evaluated the binding parameters of azidobupramine to known target sites such as the transporters for serotonin (SERT), norepinephrine (NET), and dopamine (DAT). The binding affinities of azidobupramine to SERT, NET, and DAT were in the range of structurally related and clinically active antidepressants. Furthermore, we successfully visualized azidobupramine-SERT complexes not only in SERT-enriched protein material but also in living cells stably overexpressing SERT. To our knowledge, azidobupramine is the first structural analogue of a tricyclic antidepressant that can be covalently linked to target structures and further attached to reporter molecules while preserving antidepressant-like properties and avoiding radioactive isotopes. PMID:26863431
The Serotonin Transporter and Early Life Stress: Translational Perspectives
Houwing, Danielle J.; Buwalda, Bauke; van der Zee, Eddy A.; de Boer, Sietse F.; Olivier, Jocelien D. A.
2017-01-01
The interaction between the serotonin transporter (SERT) linked polymorphic region (5-HTTLPR) and adverse early life stressing (ELS) events is associated with enhanced stress susceptibility and risk to develop mental disorders like major depression, anxiety, and aggressiveness. In particular, human short allele carriers are at increased risk. This 5-HTTLPR polymorphism is absent in the rodent SERT gene, but heterozygous SERT knockout rodents (SERT+/−) show several similarities to the human S-allele carrier, therefore creating an animal model of the human situation. Many rodent studies investigated ELS interactions in SERT knockout rodents combined with ELS. However, underlying neuromolecular mechanisms of the (mal)adaptive responses to adversity displayed by SERT rodents remain to be elucidated. Here, we provide a comprehensive review including studies describing mechanisms underlying SERT variation × ELS interactions in rodents. Alterations at the level of translation and transcription but also epigenetic alterations considerably contribute to underlying mechanisms of SERT variation × ELS interactions. In particular, SERT+/− rodents exposed to adverse early rearing environment may be of high translational and predictive value to the more stress sensitive human short-allele carrier, considering the similarity in neurochemical alterations. Therefore, SERT+/− rodents are highly relevant in research that aims to unravel the complex psychopathology of mental disorders. So far, most studies fail to show solid evidence for increased vulnerability to develop affective-like behavior after ELS in SERT+/− rodents. Several reasons may underlie these failures, e.g., (1) stressors used might not be optimal or severe enough to induce maladaptations, (2) effects in females are not sufficiently studied, and (3) few studies include both behavioral manifestations and molecular correlates of ELS-induced effects in SERT+/− rodents. Of course, one should not exclude the (although unlikely) possibility of SERT+/− rodents not being sensitive to ELS. In conclusion, future studies addressing ELS-induced effects in the SERT+/− rodents should extensively study both long-term behavioral and (epi)genetic aspects in both sexes. Finally, further research is warranted using more severe stressors in animal models. From there on, we should be able to draw solid conclusions whether the SERT+/− exposed to ELS is a suitable translational animal model for studying 5-HTTLPR polymorphism and stress interactions. PMID:28491024
Disturbed Neurotransmitter Transporter Expression in Alzheimer Disease Brain
Chen, Kevin H.; Reese, Edmund A.; Kim, Hyung-Wook; Rapoport, Stanley I.; Rao, Jagadeesh S.
2011-01-01
Alzheimer disease (AD) is a neurodegenerative disorder characterized by memory loss and behavioral and psychological symptoms of dementia. An imbalance of different neurotransmitters – glutamate, acetylcholine, dopamine, and serotonin - has been proposed as the neurobiological basis of behavioral symptoms in AD. The molecular changes associated with neurotransmission imbalance in AD are not clear. We hypothesized that altered reuptake of neurotransmitters by vesicular glutamate transporters (VGLUTs), excitatory amino acid transporters (EAATs), the vesicular acetylcholine transporter (VAChT), the serotonin reuptake transporter (SERT), or the dopamine reuptake transporter (DAT)) are involved in the neurotransmission imbalance in AD. We tested this hypothesis by examining protein and mRNA levels of these transporters in postmortem prefrontal cortex from 10 AD patients and 10 matched non-AD controls. Compared with controls, protein and mRNA levels of VGLUTs, EAAT1–3, VAChT, and SERT were reduced significantly in AD. Expression of DAT and catechol O-methyltransferase (COMT) was unchanged. Reduced VGLUTs and EAATs may contribute to an alteration in glutamatergic recycling, and reduced SERT could exacerbate depressive symptoms in AD. The reduced VAChT expression could contribute to the recognized cholinergic deficit in AD. Altered neurotransmitter transporters could contribute to the pathophysiology of AD and are potential targets for therapy. PMID:21743130
Ito, Mikiko; Haito, Sakiko; Furumoto, Mari; Kawai, Yoshichika; Terao, Junji; Miyamoto, Ken-ichi
2005-11-01
Serotonin transporters (SERTs) are pre-synaptic proteins specialized for the clearance of serotonin following vesicular release at central nervous system (CNS) and enteric nervous system synapses. SERTs are high affinity targets in vivo for antidepressants such as serotonin selective reuptake inhibitors (SSRIs). These include 'medical' psychopharmacological agents such as analgesics and antihistamines, a plant extract called St John's Wort (Hypericum). Osteoclasts are the primary cells responsible for bone resorption. They arise by the differentiation of osteoclast precursors of the monocyte/macrophage lineage. The expression of SERTs was increased in RANKL-induced osteoclast-like cells. Using RANKL stimulation of RAW264.7 cells as a model system for osteoclast differentiation, we studied the direct effects of food factor on serotonin uptake. The SSRIs (fluoxetine and fluvoxamine) inhibited markedly (approximately 95%) in serotonin transport in differentiated osteoclast cells. The major components of St. John's Wort, hyperforin and hypericine were significantly decreased in serotonin transport activity. Thus, a new in vitro model using RANKL-induced osteoclast-like cells may be useful to analyze the regulation of SERT by food factors and SSRIs.
Serotonin-Labeled CdSe Nanocrystals: Applications for Neuroscience
NASA Astrophysics Data System (ADS)
Kippeny, Tadd; Adkins, Erika; Adams, Scott; Thomlinson, Ian; Schroeter, Sally; Defelice, Louis; Blakely, Randy; Rosenthal, Sandra
2000-03-01
Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter which has been linked to the regulation of critical behaviors including sleep, appetite, and mood. The serotonin transporter (SERT) is a 12-transmembrane domain protein responsible for clearance of serotonin from extracellular spaces following release. In order to assess the potential for use of ligand-conjugated nanocrystals to target cell surface receptors, ion channels, and transporters we have measured the ability of serotonin-labeled CdSe nanocrystals (SNACs) to block the uptake of tritiated serotonin by the human and Drosophila serotonin transporters (hSERT and dSERT). Estimated Ki values, the SNAC concentration at which half of the serotonin transport activity is blocked, were determined by nonlinear regression to be Ki (hSERT ) = 74uM and Ki (dSERT ) = 29uM. These values and our inability to detect free serotonin indicate that SNACs selectively interact with the serotonin recognition site of the transporter. We have also exposed the SNACs to cells containing ionotropic serotonin receptors and have measured the electrical response of the cell using a two microelectrode voltage clamp. We find that serotonin receptors do respond to the SNACs and we measure currents similar to the free serotonin response. These results indicate that ligand-conjugated nanocrystals can be used to label both receptor and transporter proteins. Initial fluorescence labeling experiments will be discussed.
Brusov, O S; Faktor, M I; Zlobina, G P; Bologov, P V; Kaleda, V G; Oleĭchik, I V; Korenev, A N; Piatnitskiĭ, A N; Dupin, A M; Katasonov, A B; Morozova, M A; Beniashvili, A G; Lozier, R Kh; Pavlova, E V; Segal, O L; Massino, Iu S; Dmitriev, A D
2001-01-01
Polyclonal (PAb) and monoclonal (MAb) antibodies to CT2-epitope of the C-terminal fragment of serotonin transporter (SERT) protein were used to study the levels and molecular heterogeneity of platelet SERT in healthy donors and patients with affective (AD) and somatoform (SD) disorders, schizoaffective disorder (SAD) and schizophrenia. SERT was found to exist as high molecular wight (HMW) and low molecular weight (LMW) forms separated after electrophoresis. The levels of HMW and LMW forms of SERT were significantly, decreased in mentally ill patients as compared to healthy individuals. Unlike PAb, horse radish peroxidase (HRP)-conjugated MAbs were more sensitive and specific to SERT and could detect the LMW form of SERT as a duplet protein form with MW about 40 and 43 kDa. The MAb to CT2 C-terminal fragment of SERT conjugated with HRP is considered to be a new valuable tool for further investigation of SERT expression, properties, and posttranslation modification in the controls and in patients with different psychopathology.
Chan, Johnny S W; Snoeren, Eelke M S; Cuppen, Edwin; Waldinger, Marcel D; Olivier, Berend; Oosting, Ronald S
2011-01-01
Serotonin (5-HT) is an important neurotransmitter for sexual behaviors. Heterozygous (+/-) serotonin transporter (SERT) rats and SERT knockout rats (-/-) have serotonergic disturbances with significant elevations of basal extracellular 5-HT levels. To investigate the putative role of the SERT in male sexual behavior. After extensive sexual training, the effects of the 5-HT(1A/7) receptor agonist ± 8-OH-DPAT, the 5-HT(1A) receptor antagonist WAY100 635 and a combination of both on sexual behaviors of SERT(-/-) and SERT(+/-) knockout and wildtype (SERT(+/+) ) male Wistar rats were examined. Male rat sexual behaviors of mounts, intromissions, and ejaculations. SERT(-/-) had lower basal ejaculation frequencies than SERT(+/-) and SERT(+/+) animals. ± 8-OH-DPAT enhanced sexual performance in all three genotypes to the same extent. WAY100635 dose-dependently inhibited sexual behavior in all three genotypes with significant dose to genotype interactions. WAY100635 exerted the strongest effects in SERT(-/-) animals. The combination of a dose range of ± 8-OH-DPAT and a selected dose of WAY100635 revealed only partial antagonism by ± 8-OH-DPAT of the sexual inhibitory effects of WAY100635. Absence of the serotonin transporter reduces basal ejaculatory performance in male rats. Pharmacological experiments suggest that separate pools of 5-HT(1A) receptors regulate different aspects of sexual performance in male rats. 5-HT(7) receptors may play a minor role in the partial recovery of sexual behavior after combination of ± 8-OH-DPAT and WAY100635. The SERT(-/-) rat may be a model for chronic SSRI treatment, delayed ejaculation, anorgasmia, and/or low libido. © 2010 International Society for Sexual Medicine.
Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne
2015-10-01
The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
The roles of sex and serotonin transporter levels in age- and stress-related emotionality in mice.
Joeyen-Waldorf, Jennifer; Edgar, Nicole; Sibille, Etienne
2009-08-25
Mood disorders are influenced by genetic make-up and differentially affect men and women. The s/l promoter polymorphism in the serotonin transporter (SERT) gene moderates both trait emotion and the vulnerability to develop depressive states in humans. Similarly, male mice lacking SERT (Knockout/KO) display an elevated emotionality phenotype. We now report that the SERT-KO phenotype is maintained throughout late-adulthood, and that female KO mice develop a larger emotionality phenotype with increasing age. Thus, to test the hypothesis that these findings reflected a putative sexual dimorphism in SERT-mediated modulation of emotionality, we submitted adult male and female wild-type, heterozygous (HZ) and KO mice to unpredictable chronic mild stress (UCMS) and assessed behavioral changes. In males, the elevated SERT-KO emotion-related behavior converged with other groups after UCMS. Conversely, female SERT-KO displayed a normal non-stressed baseline, but highest UCMS-induced emotionality. SERT-HZ displayed variable and intermediate phenotypes in both experiments. Thus, consistent results across different biological modalities (age, stress) revealed a high contribution of SERT genotype for baseline "trait" emotionality in males, and low contribution for females. In contrast, age-correlated and stress-induced behavioral changes resulted in a high SERT genotype-mediated behavioral variance in females, but low in males. This suggests that high emotionality states associated with low SERT were differentially achieved in males (high baseline/trait) compared to females (increased vulnerability to develop high emotionality). This sex-by-SERT double dissociation provides a framework to investigate molecular substrates of emotionality regulation in concert with serotonin function and may contribute to the sexually dimorphic features of mood disorders.
Gryglewski, G; Rischka, L; Philippe, C; Hahn, A; James, G M; Klebermass, E; Hienert, M; Silberbauer, L; Vanicek, T; Kautzky, A; Berroterán-Infante, N; Nics, L; Traub-Weidinger, T; Mitterhauser, M; Wadsak, W; Hacker, M; Kasper, S; Lanzenberger, R
2017-04-01
In-vivo quantification of serotonin transporters (SERT) in human brain has been a mainstay of molecular imaging in the field of neuropsychiatric disorders and helped to explore the underpinnings of several medical conditions, therapeutic and environmental influences. The emergence of PET/MR hybrid systems and the heterogeneity of SERT binding call for the development of efficient methods making the investigation of larger or vulnerable populations with limited scanner time and simultaneous changes in molecular and functional measures possible. We propose [ 11 C]DASB bolus plus constant infusion for these applications and validate it against standard analyses of dynamic PET data. [ 11 C]DASB bolus/infusion optimization was performed on data acquired after [ 11 C]DASB bolus in 8 healthy subjects. Subsequently, 16 subjects underwent one scan using [ 11 C]DASB bolus plus constant infusion with K bol 160-179min and one scan after [ 11 C]DASB bolus for inter-method reliability analysis. Arterial blood sampling and metabolite analysis were performed for all scans. Distribution volumes (V T ) were obtained using Logan plots for bolus scans and ratios between tissue and plasma parent activity for bolus plus infusion scans for different time spans of the scan (V T-70 for 60-70min after start of tracer infusion, V T-90 for 75-90min, V T-120 for 100-120min) in 9 subjects. Omitting blood data, binding potentials (BP ND ) obtained using multilinear reference tissue modeling (MRTM2) and cerebellar gray matter as reference region were compared in 11 subjects. A K bol of 160min was observed to be optimal for rapid equilibration in thalamus and striatum. V T-70 showed good intraclass correlation coefficients (ICCs) of 0.61-0.70 for thalamus, striatal regions and olfactory cortex with bias ≤5.1% compared to bolus scans. ICCs increased to 0.72-0.78 for V T-90 and 0.77-0.93 for V T-120 in these regions. BP ND-90 had negligible bias ≤2.5%, low variability ≤7.9% and ICCs of 0.74-0.87; BP ND-120 had ICCs of 0.73-0.90. Low-binding cortical regions and cerebellar gray matter showed a positive bias of ~8% and ICCs 0.57-0.68 at V T-90 . Cortical BP ND suffered from high variability and bias, best results were obtained for olfactory cortex and anterior cingulate cortex with ICC=0.74-0.75 for BP ND-90 . High-density regions amygdala and midbrain had a negative bias of -5.5% and -22.5% at V T-90 with ICC 0.70 and 0.63, respectively. We have optimized the equilibrium method with [ 11 C]DASB bolus plus constant infusion and demonstrated good inter-method reliability with accepted standard methods and for SERT quantification using both V T and BP ND in a range of different brain regions. With as little as 10-15min of scanning valid estimates of SERT V T and BP ND in thalamus, amygdala, striatal and high-binding cortical regions could be obtained. Blood sampling seems vital for valid quantification of SERT in low-binding cortical regions. These methods allow the investigation of up to three subjects with a single radiosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
McNamara, Danielle S.
2017-01-01
This study demonstrates the generalization of previous laboratory results showing the benefits of self-explanation reading training (SERT) to college students' course exam performance. The participants were 265 students enrolled in an Introductory Biology course, 59 of whom were provided with SERT training. The results showed that SERT benefited…
ERIC Educational Resources Information Center
McNamara, Danielle S.
2017-01-01
This study demonstrates the generalization of previous laboratory results showing the benefits of Self-Explanation Reading Training (SERT) to college students' course exam performance. The participants were 265 students enrolled in an Introductory Biology course, 59 of whom were provided with SERT. The results showed that SERT benefited students…
Brindley, Rebecca L; Bauer, Mary Beth; Blakely, Randy D; Currie, Kevin P M
2016-11-01
Adrenal chromaffin cells (ACCs), the neuroendocrine arm of the sympathetic nervous system, secrete catecholamines to mediate the physiological response to stress. Although ACCs do not synthesize 5-HT, they express the serotonin transporter (SERT). Genetic variations in SERT are linked to several CNS disorders but the role(s) of SERT/5-HT in ACCs has remained unclear. Adrenal glands from wild-type mice contained 5-HT at ≈ 750 fold lower abundance than adrenaline, and in SERT(-/-) mice this was reduced by ≈80% with no change in catecholamines. Carbon fibre amperometry showed that SERT modulated the ability of 5-HT1A receptors to inhibit exocytosis. 5-HT reduced the number of amperometric spikes (vesicular fusion events) evoked by KCl in SERT(-/-) cells and wild-type cells treated with escitalopram, a SERT antagonist. The 5-HT1A receptor antagonist WAY100635 blocked the inhibition by 5-HT which was mimicked by the 5-HT1A agonist 8-OH-DPAT but not the 5-HT1B agonist CP93129. There was no effect on voltage-gated Ca(2+) channels, K(+) channels, or intracellular [Ca(2+)] handling, showing the 5-HT receptors recruit an atypical inhibitory mechanism. Spike charge and kinetics were not altered by 5-HT receptors but were reduced in SERT(-/-) cells compared to wild-type cells. Our data reveal a novel role for SERT and suggest that adrenal chromaffin cells might be a previously unrecognized hub for serotonergic control of the sympathetic stress response. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hadden, Coedy; Fahmi, Tariq; Cooper, Anthonya; Savenka, Alena V; Lupashin, Vladimir V; Roberts, Drucilla J; Maroteaux, Luc; Hauguel-de Mouzon, Sylvie; Kilic, Fusun
2017-12-01
Serotonin (5-HT) and its specific transporter, SERT play important roles in pregnancy. Using placentas dissected from 18d gestational SERT-knock out (KO), peripheral 5-HT (TPH1)-KO, and wild-type (WT) mice, we explored the role of 5-HT and SERT in placental functions in detail. An abnormal thick band of fibrosis and necrosis under the giant cell layer in SERT-KO placentas appeared only moderately in TPH1-KO and minimally present in WT placentas. The majority of the changes were located at the junctional zone of the placentas in SERT. The etiology of these findings was tested with TUNEL assays. The placentas from SERT-KO and TPH1-KO showed 49- and 8-fold increase in TUNEL-positive cells without a concurrent change in the DNA repair or cell proliferation compared to WT placentas. While the proliferation rate in the embryos of TPH1-KO mice was 16-fold lower than the rate in gestational age matched embryos of WT or SERT-KO mice. These findings highlight an important role of continuous 5-HT signaling on trophoblast cell viability. SERT may contribute to protecting trophoblast cells against cell death via terminating the 5-HT signaling which changes cell death ratio in trophoblast as well as proliferation rate in embryos. However, the cell death in SERT-KO placentas is in caspase 3-independent pathway. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
1974-01-01
The SERT C (Space Electric Rocket Test - C) project study defines a spacecraft mission that would demonstrate the technology readiness of ion thruster systems for primary propulsion and station keeping applications. As a low cost precursor, SERT C develops the components and systems required for subsequent Solar Electric Propulsion (SEP) applications. The SERT C mission requirements and preliminary spacecraft and subsystem design are described.
Using Strong Solar Coronal Emission Lines as Coronal Flux Proxies
NASA Technical Reports Server (NTRS)
Falconer, David A.; Jordan, Studart D.; Davila, Joseph M.; Thomas, Roger J.; Andretta, Vincenzo; Brosius, Jeffrey W.; Hara, Hirosha
1997-01-01
A comparison of Skylab results with observations of the strong EUV lines of Fe XVI at 335 A and 361 A from the Goddard Solar EUV Rocket Telescope and Spectrograph (SERTS) flight of 1989 suggests that these lines, and perhaps others observed with SERTS, might offer good proxies for estimating the total coronal flux over important wavelength ranges. In this paper, we compare SERTS observations from a later, 1993 flight with simultaneous cospatial Yohkoh soft X-ray observations to test this suggestion over the energy range of the Soft X-ray Telescope (SXT) on Yohkoh. Both polynomial and power-law fits are obtained, and errors are estimated, for the SERTS lines of Fe XVI 335 A and 361 A, Fe XV 284 A and 417 A, and Mg IX 368 A. It is found that the power-law fits best cover the full range of solar conditions from quiet Sun through active region, though not surprisingly the 'cooler' Mg IX 368 A line proves to be a poor proxy. The quadratic polynomial fits yield fair agreement over a large range for all but the Mg IX line, but the linear fits fail conspicuously when extrapolated into the quiet Sun regime. The implications of this work for the He 11 304 A line formation problem are briefly considered. The paper concludes with a discussion of the value of these iron lines observed with SERTS for estimating stellar coronal fluxes, as observed for example with the EUVE satellite.
Fox, Meredith A.; Jensen, Catherine L.; Murphy, Dennis L.
2009-01-01
The serotonin syndrome is a potential side effect of serotonin-enhancing drugs, including antidepressants such as selective serotonin reuptake inhibitors (SSRIs) and monoamine oxidase inhibitors (MAOIs). We recently reported a genetic mouse model for the serotonin syndrome, as serotonin transporter (SERT)-deficient mice have exaggerated serotonin syndrome behavioral responses to the MAOI tranylcypromine and the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP). As numerous case reports implicate the atypical opioids tramadol and meperidine in the development of the human serotonin syndrome, we examined tramadol and meperidine as possible causative drugs in the rodent model of the serotonin syndrome in SERT wildtype (+/+), heterozygous (+/−) and knockout (−/−) mice. Comparisons were made to SERT mice treated with either vehicle or morphine, an opioid not implicated in the serotonin syndrome in humans. Here we show that tramadol and meperidine, but not morphine, induce serotonin syndrome-like behaviors in mice, and we show that this response is exaggerated in mice lacking one or two copies of SERT. The exaggerated response to tramadol in SERT −/− mice was blocked by pretreatment with the 5-HT1A antagonist WAY 100635. Further, we show that morphine-, meperidine- and tramadol-induced analgesia is markedly decreased in SERT −/− mice. These studies suggest that caution seems warranted in prescribing or not warning patients receiving SSRIs or MAOIs, that dangerous side effects may occur during concurrent use of tramadol and similar agents. These findings suggest that it is conceivable that there might be increased vulnerability in individuals with SERT polymorphisms that may reduce SERT by more than 50%, the level in SERT +/− mice. PMID:19275775
[The pharmacological basis of the serotonin system: Application to antidepressant response].
David, D J; Gardier, A M
2016-06-01
If serotonin (5-hydroxytryptamin [5-HT]) is well known for its role in mood regulation, it also impacts numerous physiological functions at periphery. Serotonin is synthetized at the periphery into the gut by intestinal enterochromaffin cells and in the central nervous system (CNS) in the raphe nucleus from the essential amino acid tryptophan. Physiological effects of 5-HT are mediated by about 15 serotoninergic receptors grouped into seven broad families (5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6, 5-HT7 receptor families). Except 5-HT3 receptor, a ligand-gated ion channels, all the others are G protein-coupled receptors. Serotonin's homeostasis involves serotoninergic autoreceptor such as 5-HT1A, 5-HT1B, 5-HT1D, the enzymatic degradation of serotonin by monoamine oxidase A (MAO-A), and a transporter (serotoninergic transporter [SERT]). In the CNS, the SERT is a key target for various antidepressant drugs such as Selective Serotonin Reuptake Inhibitors (SSRI), Serotonin Norepinephrin Reuptake Inhibitors (SNRI) and tricyclics family. However, antidepressant activity of SERT inhibitors is not directly mediated by the SERT inhibition, but a consequence of postsynaptic 5-HT receptor activation following the increase in 5-HT levels in the synaptic cleft. In pharmacology, SSRIs are defined as indirect agonist of postsynaptic receptor. Among all the 5-HT receptors, 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B and 5-HT4 receptors activation would mediate antidepressant effects. In the meanwhile, 5-HT2A, 5-HT2C, 5-HT3, 5-HT6 and 5-HT7 receptors activation would induce opposite effects. The best serotoninergic antidepressant would directly activate 5-HT1A, 5-HT1B, 5-HT1D, 5-HT2B and 5-HT4 and would block 5-HT2A, 5-HT2C, 5-HT3, 5-HT6 and 5-HT7 receptor. If the chemical synthesis of such a compound may be compromised, SERT inhibition associated with the blockade of some but not all 5-HT receptor could shorten onset of action and/or improve antidepressant efficacy on the overall symptomatology of depression. Copyright © 2016 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Wolfrum, Katherine M.; Reed, John F.; Kim, Sunyoung O.; Swanson, Tracy; Johnson, Robert A.; Janowsky, Aaron
2017-01-01
Synthetic cathinones are components of “bath salts” and have physical and psychologic side effects, including hypertension, paranoia, and hallucinations. Here, we report interactions of 20 “bath salt” components with human dopamine, serotonin, and norepinephrine transporters [human dopamine transporter (hDAT), human serotonin transporter (hSERT), and human norepinephrine transporter (hNET), respectively] heterologously expressed in human embryonic kidney 293 cells. Transporter inhibitors had nanomolar to micromolar affinities (Ki values) at radioligand binding sites, with relative affinities of hDAT>hNET>hSERT for α-pyrrolidinopropiophenone (α-PPP), α-pyrrolidinobutiophenone, α-pyrrolidinohexiophenone, 1-phenyl-2-(1-pyrrolidinyl)-1-heptanone, 3,4-methylenedioxy-α-pyrrolidinopropiophenone, 3,4-methylenedioxy-α-pyrrolidinobutiophenone, 4-methyl-α-pyrrolidinopropiophenone, α-pyrrolidinovalerophenone, 4-methoxy-α-pyrrolidinovalerophenone, α-pyrrolidinopentiothiophenone (alpha-PVT), and α-methylaminovalerophenone, and hDAT>hSERT>hNET for methylenedioxypentedrone. Increasing the α-carbon chain length increased the affinity and potency of the α-pyrrolidinophenones. Uptake inhibitors had relative potencies of hDAT>hNET>hSERT except α-PPP and α-PVT, which had highest potencies at hNET. They did not induce [3H]neurotransmitter release. Substrates can enter presynaptic neurons via transporters, and the substrates methamphetamine and 3,4-methylenedioxymethylamphetamine are neurotoxic. We determined that 3-fluoro-, 4-bromo-, 4-chloro-methcathinone, and 4-fluoroamphetamine were substrates at all three transporters; 5,6-methylenedioxy-2-aminoindane (MDAI) and 4-methylethcathinone (4-MEC) were substrates primarily at hSERT and hNET; and 3,4-methylenedioxy-N-ethylcathinone (ethylone) and 5-methoxy-methylone were substrates only at hSERT and induced [3H]neurotransmitter release. Significant correlations between potencies for inhibition of uptake and for inducing release were observed for these and additional substrates. The excellent correlation of efficacy at stimulating release versus Ki/IC50 ratios suggested thresholds of binding/uptake ratios above which compounds were likely to be substrates. Based on their potencies at hDAT, most of these compounds have potential for abuse and addiction. 4-Bromomethcathinone, 4-MEC, 5-methoxy-methylone, ethylone, and MDAI, which have higher potencies at hSERT than hDAT, may have empathogen psychoactivity. PMID:27799294
Cerebral serotonin transporter binding is inversely related to body mass index.
Erritzoe, D; Frokjaer, V G; Haahr, M T; Kalbitzer, J; Svarer, C; Holst, K K; Hansen, D L; Jernigan, T L; Lehel, S; Knudsen, G M
2010-08-01
Overweight and obesity is a health threat of increasing concern and understanding the neurobiology behind obesity is instrumental to the development of effective treatment regimes. Serotonergic neurotransmission is critically involved in eating behaviour; cerebral level of serotonin (5-HT) in animal models is inversely related to food intake and body weight and some effective anti-obesity agents involve blockade of the serotonin transporter (SERT). We investigated in 60 healthy volunteers body mass index (BMI) and regional cerebral SERT binding as measured with [(11)C]DASB PET. In a linear regression model with adjustment for relevant covariates, we found that cortical and subcortical SERT binding was negatively correlated to BMI (-0.003 to -0.012 BP(ND) unit per kg/m(2)). Tobacco smoking and alcohol consumption did not affect cerebral SERT binding. Several effective anti-obesity drugs encompass blockade of the SERT; yet, our study is the first to demonstrate an abnormally decreased cerebral SERT binding in obese individuals. Whether the SERT has a direct role in the regulation of appetite and eating behaviour or whether the finding is due to a compensatory downregulation of SERT secondary to other dysfunction(s) in the serotonergic transmitter system, such as low baseline serotonin levels, remains to be established. Copyright 2010 Elsevier Inc. All rights reserved.
2013-01-01
The diagnosis of autism spectrum disorder (ASD) during early childhood has a profound effect not only on young children but on their families. Aside from the physical and behavioural issues that need to be dealt with, there are significant emotional and financial costs associated with living with someone diagnosed with ASD. Understanding how autism occurs will assist in preparing families to deal with ASD, if not preventing or lessening its occurrence. Serotonin plays a vital role in the development of the brain during the prenatal and postnatal periods, yet very little is known about the serotonergic systems that affect children with ASD. This review seeks to provide an understanding of the biochemistry and physiological actions of serotonin and its termination of action through the serotonin reuptake transporter (SERT). Epidemiological studies investigating prenatal conditions that can increase the risk of ASD describe a number of factors which elevate plasma cortisol levels causing such symptoms during pregnancy such as hypertension, gestational diabetes and depression. Because cortisol plays an important role in driving dysregulation of serotonergic signalling through elevating SERT production in the developing brain, it is also necessary to investigate the physiological functions of cortisol, its action during gestation and metabolic syndromes. PMID:24103554
Antidepressant Specificity of Serotonin Transporter Suggested by Three LeuT-SSRI Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z.; Zhen, J; Karpowich, N
2009-01-01
Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP)more » in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.« less
Preliminary Results From NASA's Space Solar Power Exploratory Research and Technology Program
NASA Technical Reports Server (NTRS)
Howell, Joe T.; Mankins, John C.
2000-01-01
Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, during 1999-2000, NASA has been conducting the SSP Exploratory Research and Technology (SERT) program. The goal of the SERT activity has been to conduct preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). In pursuing that goal, the SERT: (1) refined and modeled systems approaches for the utilization of SSP concepts and technologies, ranging from the near-term (e.g., for space science, exploration and commercial space applications) to the far-term (e.g., SSP for terrestrial markets), including systems concepts, architectures, technology, infrastructure (e.g. transportation), and economics; (2) conducted technology research, development and demonstration activities to produce "proof-of-concept" validation of critical SSP elements for both nearer and farther-term applications; and (3) engendered the beginnings of partnerships (nationally and internationally) that could be expanded, as appropriate, to pursue later SSP technology and applications. Through these efforts, the SERT should allow better informed future decisions regarding further SSP and related technology research and development investments by both NASA and prospective partners, and guide further definition of technology roadmaps - including performance objectives, resources and schedules, as well as "multi-purpose" applications (e.g., commerce, science, and government). This paper presents preliminary results from the SERT effort at a summary level, including the study approach, SPS concepts, applications findings, and concludes with a revised assessment of the prospects for solar power satellites using SSP technologies and systems.
Cozzi, Nicholas V; Gopalakrishnan, Anupama; Anderson, Lyndsey L; Feih, Joel T; Shulgin, Alexander T; Daley, Paul F; Ruoho, Arnold E
2009-12-01
N,N-dimethyltryptamine (DMT) is a potent plant hallucinogen that has also been found in human tissues. When ingested, DMT and related N,N-dialkyltryptamines produce an intense hallucinogenic state. Behavioral effects are mediated through various neurochemical mechanisms including activity at sigma-1 and serotonin receptors, modification of monoamine uptake and release, and competition for metabolic enzymes. To further clarify the pharmacology of hallucinogenic tryptamines, we synthesized DMT, N-methyl-N-isopropyltryptamine (MIPT), N,N-dipropyltryptamine (DPT), and N,N-diisopropyltryptamine. We then tested the abilities of these N,N-dialkyltryptamines to inhibit [(3)H]5-HT uptake via the plasma membrane serotonin transporter (SERT) in human platelets and via the vesicle monoamine transporter (VMAT2) in Sf9 cells expressing the rat VMAT2. The tryptamines were also tested as inhibitors of [(3)H]paroxetine binding to the SERT and [(3)H]dihydrotetrabenazine binding to VMAT2. Our results show that DMT, MIPT, DPT, and DIPT inhibit [(3)H]5-HT transport at the SERT with K ( I ) values of 4.00 +/- 0.70, 8.88 +/- 4.7, 0.594 +/- 0.12, and 2.32 +/- 0.46 microM, respectively. At VMAT2, the tryptamines inhibited [(3)H]5-HT transport with K ( I ) values of 93 +/- 6.8, 20 +/- 4.3, 19 +/- 2.3, and 19 +/- 3.1 muM, respectively. On the other hand, the tryptamines were very poor inhibitors of [(3)H]paroxetine binding to SERT and of [(3)H]dihydrotetrabenazine binding to VMAT2, resulting in high binding-to-uptake ratios. High binding-to-uptake ratios support the hypothesis that the tryptamines are transporter substrates, not uptake blockers, at both SERT and VMAT2, and also indicate that there are separate substrate and inhibitor binding sites within these transporters. The transporters may allow the accumulation of tryptamines within neurons to reach relatively high levels for sigma-1 receptor activation and to function as releasable transmitters.
In Vivo Investigation of Escitalopram’s Allosteric Site on the Serotonin Transporter
Murray, Karen E.; Ressler, Kerry J.; Owens, Michael J.
2015-01-01
Escitalopram is a commonly prescribed antidepressant of the selective serotonin reuptake inhibitor class. Clinical evidence and mapping of the serotonin transporter (SERT) identified that escitalopram, in addition to its binding to a primary uptake-blocking site, is capable of binding to the SERT via an allosteric site that is hypothesized to alter escitalopram’s kinetics at the SERT. The studies reported here examined the in vivo role of the SERT allosteric site in escitalopram action. A knockin mouse model that possesses an allosteric-null SERT was developed. Autoradiographic studies indicated that the knockin protein was expressed at a lower density than endogenous mouse SERT (approximately 10–30% of endogenous mouse SERT), but the knockin mice are a viable tool to study the allosteric site. Microdialysis studies in the ventral hippocampus found no measurable decrease in extracellular serotonin response after local escitalopram challenge in mice without the allosteric site compared to mice with the site (p = 0.297). In marble burying assays there was a modest effect of the absence of the allosteric site, with a larger systemic dose of escitalopram (10-fold) necessary for the same effect as in mice with intact SERT (p = 0.023). However, there was no effect of the allosteric site in the tail suspension test. Together these data suggest that there may be a regional specificity in the role of the allosteric site. The lack of a robust effect overall suggests that the role of the allosteric site for escitalopram on the SERT may not produce meaningful in vivo effects. PMID:26621784
Oestrogen receptor alpha in pulmonary hypertension.
Wright, Audrey F; Ewart, Marie-Ann; Mair, Kirsty; Nilsen, Margaret; Dempsie, Yvonne; Loughlin, Lynn; Maclean, Margaret R
2015-05-01
Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2(+/-) mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression. By immunohistochemistry, we showed that ERα, ERβ, and G-protein-coupled receptors are expressed in human pulmonary arteries localizing mainly to the smooth muscle layer which also expresses the serotonin transporter (SERT). Protein expression of ERα protein was higher in female PAH patient hPASMCs compared with male and serotonin also increased the expression of ERα. 17β-estradiol induced proliferation of hPASMCs via ERα activation and this engaged mitogen-activated protein kinase and Akt signalling. Female mice over-expressing SERT (SERT(+) mice) develop PH and the ERα antagonist MPP attenuated the development of PH in normoxic and hypoxic female SERT(+) mice. The therapeutic effects of MPP were accompanied by increased expression of BMPR2 in mouse lung. ERα is highly expressed in female hPASMCs from PAH patients and mediates oestrogen-induced proliferation of hPASMCs via mitogen-activated protein kinase and Akt signalling. Serotonin can increase ERα expression in hPASMCs and antagonism of ERα reverses serotonin-dependent PH in the mouse and increases BMPR2 expression. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Sakloth, F; Kolanos, R; Mosier, P D; Bonano, J S; Banks, M L; Partilla, J S; Baumann, M H; Negus, S S; Glennon, R A
2015-01-01
Background and Purpose There is growing concern over the abuse of certain psychostimulant methcathinone (MCAT) analogues. This study extends an initial quantitative structure–activity relationship (QSAR) investigation that demonstrated important steric considerations of seven 4- (or para-)substituted analogues of MCAT. Specifically, the steric character (Taft's steric ES) of the 4-position substituent affected in vitro potency to induce monoamine release via dopamine and 5-HT transporters (DAT and SERT) and in vivo modulation of intracranial self-stimulation (ICSS). Here, we have assessed the effects of other steric properties of the 4-position substituents. Experimental Approach Definitive steric parameters that more explicitly focus on the volume, width and length of the MCAT 4-position substituents were assessed. In addition, homology models of human DAT and human SERT based upon the crystallized Drosophila DAT were constructed and docking studies were performed, followed by hydropathic interaction (HINT) analysis of the docking results. Key Results The potency of seven MCAT analogues at DAT was negatively correlated with the volume and maximal width of their 4-position substituents, whereas potency at SERT increased as substituent volume and length increased. SERT/DAT selectivity, as well as abuse-related drug effects in the ICSS procedure, also correlated with the same parameters. Docking solutions offered a means of visualizing these findings. Conclusions and Implications These results suggest that steric aspects of the 4-position substituents of MCAT analogues are key determinants of their action and selectivity, and that the hydrophobic nature of these substituents is involved in their potency at SERT. PMID:25522019
Sanders, Amy Cecilia; Hussain, Ali J; Hen, René; Zhuang, Xiaoxi
2007-11-01
The therapeutic effects of chronic selective serotonin reuptake inhibitors (SSRIs) are well documented, yet the elementary behavioral processes that are affected by such treatment have not been fully investigated. We report here the effects of chronic fluoxetine treatment and genetic deletion of the serotonin transporter (SERT) on food reinforced behavior in three paradigms: the progressive ratio operant task, the concurrent choice operant task, and the Pavlovian-to-Instrumental transfer task. We consistently find that chronic pharmacological blockade or genetic deletion of SERT result in similar behavioral consequences: reduced operant responding for natural reward. This is in line with previous studies reporting declines in operant responding for drugs and intracranial self-stimulation with fluoxetine treatment, suggesting that the effect of SERT blockade can be generalized to different reward types. Detailed analyses of behavioral parameters indicate that this reduction in operant responding affect both goal-directed and non-goal-directed behaviors without affecting the Pavlovian cue-triggered excessive operant responding. In addition, both pharmacological and genetic manipulations reduce locomotor activity in the open field novel environment. Our data contrast with the effect of dopamine in increasing operant responding for natural reward specifically in goal-directed behaviors and in increasing Pavlovian cue-triggered excessive operant responding. Serotonin and dopamine have been proposed to serve opposing functions in motivational processes. Our data suggest that their interactions do not result in simple opponency. The fact that pharmacological blockade and genetic deletion of SERT have similar behavioral consequences reinforces the utility of the SERT null mice for investigation of the mechanisms underlying chronic SSRIs treatment.
2014-01-01
Background Forced swimming test (FST) is an animal model which evaluates behavioral despair and the effect of antidepressants such as the selective serotonin reuptake inhibitors; the FST modifies the expression of some receptors related to antidepressant response, but it is not known whether serotonin transporter (SERT), their main target, is affected by this test in animals of different ages. Antidepressant response has shown age-dependent variations which could be associated with SERT expression. The aim of the present study was to analyze changes in the SERT immunoreactivity (SERT-IR) in dorsal raphe and lateral septum of male rats from different age groups with or without behavioral despair induced by their exposure to the FST, since these two structures are related to the expression of this behavior. Methods Prepubertal (24 PN), pubertal (40 PN), young adult (3–5 months) and middle-aged (12 months) male rats were assigned to a control group (non-FST) or depressed group (FST, two sessions separated by 24 h). Changes in SERT-IR in dorsal raphe and lateral septum were determined with immunofluorescence. Results Pubertal and middle-aged rats showed higher levels of immobility behavior compared to prepubertal rats on the FST. SERT-IR showed an age-dependent increase followed by a moderate decrease in middle-aged rats in both structures; a decreased in SERT-IR in lateral septum and dorsal raphe of pubertal rats was observed after the FST. Conclusions Age differences were observed in the SERT-IR of structures related to behavioral despair; SERT expression was modified by the FST in lateral septum and dorsal raphe of pubertal rats. PMID:24490994
Degnan, Andrew P; Tora, George O; Huang, Hong; Conlon, David A; Davis, Carl D; Hanumegowda, Umesh M; Hou, Xiaoping; Hsiao, Yi; Hu, Joanna; Krause, Rudolph; Li, Yu-Wen; Newton, Amy E; Pieschl, Rick L; Raybon, Joseph; Rosner, Thorsten; Sun, Jung-Hui; Taber, Matthew T; Taylor, Sarah J; Wong, Michael K; Zhang, Huiping; Lodge, Nicholas J; Bronson, Joanne J; Macor, John E; Gillman, Kevin W
2016-12-21
Combination studies of neurokinin 1 (NK1) receptor antagonists and serotonin-selective reuptake inhibitors (SSRIs) have shown promise in preclinical models of depression. Such a combination may offer important advantages over the current standard of care. Herein we describe the discovery and optimization of an indazole-based chemotype to provide a series of potent dual NK1 receptor antagonists/serotonin transporter (SERT) inhibitors to overcome issues of ion channel blockade. This effort culminated in the identification of compound 9, an analogue that demonstrated favorable oral bioavailability, excellent brain uptake, and robust in vivo efficacy in a validated depression model. Over the course of this work, a novel heterocycle-directed asymmetric hydrogenation was developed to facilitate installation of the key stereogenic center.
Aerobic exercise upregulates the BDNF-Serotonin systems and improves the cognitive function in rats.
Pietrelli, A; Matković, L; Vacotto, M; Lopez-Costa, J J; Basso, N; Brusco, A
2018-05-23
Aerobic exercise (AE) benefits brain health and behavior. Serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) are known to mediate and shape cognitive processes. Both systems share some actions: BDNF is involved in the maturation and function of 5-HT neurons. In turn, 5-HT is involved in neuroplasticity phenomena mediated by BDNF and stimulated by exercise. The aim of this work was to study the long-term effects of AE on BDNF- 5-HT systems and cognitive function in rats at different ages. A lifelong moderate-intensity aerobic training program was designed, in which aerobically exercised (E) and sedentary control (C) rats were studied at middle (8 months) and old age (18 months) by means of biochemical, immunohistochemical and behavioral assays. The levels and expression of BDNF, 5-HT, serotonin transporter (SERT) and 5-HT 1A receptor were determined in selected brain areas involved in memory and learning. Immunopositive cells to neuronal nuclear protein (NeuN) in the hippocampus CA1 area were also quantified. The cognitive function was evaluated by the object recognition test (ORT). Results indicate that AE enhanced spatial and non-spatial memory systems, modulated by age. This outcome temporarily correlated with a significant upregulation of cortical, hippocampal and striatal BDNF levels in parallel with an increase in the number of hippocampal CA1-mature neurons. AE also increased brain and raphe 5-HT levels, as well as the expression of SERT and 5-HT 1A receptor in the cortex and hippocampus. Old AE rats showed a highly conserved response, indicating a remarkable protective effect of exercise on both systems. In summary, lifelong AE positively affects BDNF-5-HT systems, improves cognitive function and protects the brain against the deleterious effects of sedentary life and aging. Copyright © 2018 Elsevier Inc. All rights reserved.
Genetic Variation in Serotonin Transporter Modulates Tactile Hyperresponsiveness in ASD
Schauder, Kimberly B.; Muller, Christopher L.; Veenstra-VanderWeele, Jeremy; Cascio, Carissa J.
2014-01-01
Several lines of evidence implicate dysfunction of the serotonin (5-HT) system in autism spectrum disorder (ASD). Specifically, the serotonin transporter (5-HTT, SERT) has been scrutinized as an ASD candidate risk gene. SERT plays key roles in the development of circuits that underlie sensory function, particularly in the somatosensory system. One previous study in ASD found association of a rare, hyperfunctional SERT variant with sensory aversion, but studies of common SERT variants have never examined sensory symptoms in ASD. Using standardized caregiver assessments of sensory function in children, we evaluated patterns of sensory responsiveness in 47 children with ASD and 38 typically developing (TD) children. Study participants were genotyped for the functional SERT promoter polymorphisms, 5-HTTLPR and rs25531, to test the hypothesis that the higher expressing genotypes would be associated with hyperresponsiveness to touch, a common sensory aversion in ASD. All measures of sensory hypo- and hyperresponsiveness were increased in children with ASD, with hyporesponsive sensory patterns negatively correlated to age and hyperresponsive sensory patterns positively correlated to repetitive behavior. Strikingly, high-expressing SERT genotypes were associated with increased tactile hyperresponsiveness in the ASD group. Our findings indicate genetic variation that increases SERT function may specifically impact somatosensory processing in ASD. PMID:25558276
Brindley, Rebecca L; Bauer, Mary Beth; Blakely, Randy D; Currie, Kevin P M
2017-05-17
Serotonin (5-HT) is an important neurotransmitter in the central nervous system where it modulates circuits involved in mood, cognition, movement, arousal, and autonomic function. The 5-HT transporter (SERT; SLC6A4) is a key regulator of 5-HT signaling, and genetic variations in SERT are associated with various disorders including depression, anxiety, and autism. This review focuses on the role of SERT in the sympathetic nervous system. Autonomic/sympathetic dysfunction is evident in patients with depression, anxiety, and other diseases linked to serotonergic signaling. Experimentally, loss of SERT function (SERT knockout mice or chronic pharmacological block) has been reported to augment the sympathetic stress response. Alterations to serotonergic signaling in the CNS and thus central drive to the peripheral sympathetic nervous system are presumed to underlie this augmentation. Although less widely recognized, SERT is robustly expressed in chromaffin cells of the adrenal medulla, the neuroendocrine arm of the sympathetic nervous system. Adrenal chromaffin cells do not synthesize 5-HT but accumulate small amounts by SERT-mediated uptake. Recent evidence demonstrated that 5-HT 1A receptors inhibit catecholamine secretion from adrenal chromaffin cells via an atypical mechanism that does not involve modulation of cellular excitability or voltage-gated Ca 2+ channels. This raises the possibility that the adrenal medulla is a previously unrecognized peripheral hub for serotonergic control of the sympathetic stress response. As a framework for future investigation, a model is proposed in which stress-evoked adrenal catecholamine secretion is fine-tuned by SERT-modulated autocrine 5-HT signaling.
Klein, Nikolas; Sacher, Julia; Geiss-Granadia, Thomas; Mossaheb, Nilufar; Attarbaschi, Trawat; Lanzenberger, Rupert; Spindelegger, Christoph; Holik, Alexander; Asenbaum, Susanne; Dudczak, Robert; Tauscher, Johannes; Kasper, Siegfried
2007-04-01
Previous studies have investigated the occupancy of the serotonin reuptake transporter (SERT) after clinical doses of citalopram and other selective serotonin reuptake inhibitors. In the present study, the occupancies of SERT after multiple doses of escitalopram and citalopram were compared using the radioligand [(123)I]ADAM and single photon emission computed tomography (SPECT). Fifteen healthy subjects received escitalopram 10 mg/day (n = 6) or citalopram 20 mg/day (n = 9) for a total of 10 days. SERT occupancies in midbrain were determined with SPECT and [(123)I]ADAM at three different time points: at baseline (no medication) and at 6 and 54 h after last drug intake. At 6 h after the last dose, mean SERT occupancies were 81.5 +/- 5.4% (mean+/-SD) for escitalopram and 64.0 +/- 12.7% for citalopram (p < 0.01). At 54 h after the last dose, mean SERT occupancies were 63.3 +/- 12.1% for escitalopram and 49.0 +/- 11.7% for citalopram (p < 0.05). The plasma concentrations of the S-enantiomer were of the same magnitude in both substances. For both drugs, the elimination rate of the S-enantiomer in plasma was markedly higher than the occupancy decline rate in the midbrain. The significantly higher occupancy of SERT after multiple doses of escitalopram compared to citalopram indicates an increased inhibition of SERT by escitalopram. The results can also be explained by an attenuating effect of R-citalopram on the occupancy of S-citalopram at the SERT.
Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob
2015-01-01
The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu406 is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. PMID:25903124
SERT D spacecraft study. [project planning and objectives
NASA Technical Reports Server (NTRS)
1974-01-01
The SERT D (Space Electric Rocket Test - D) study defines a possible spacecraft project that would demonstrate the use of electric ion thrusters for long-term (5 yr) station keeping and attitude control of a synchronous orbit satellite. Other mission objectives included in the study were: station walking to satellite rendezvous and inspection, use of low cost attitude sensing system, use of an advanced solar array orientation and slip ring system, and an ion thruster integrated directly with a solar array power source. The SERT D spacecraft, if launched, will become SERT 3 the third space electric thruster test.
Neurotoxic Effects of 5-MeO-DIPT: A Psychoactive Tryptamine Derivative in Rats.
Noworyta-Sokołowska, Karolina; Kamińska, Katarzyna; Kreiner, Grzegorz; Rogóż, Zofia; Gołembiowska, Krystyna
2016-11-01
5-Methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT, 'foxy') is one of the most popular tryptamine hallucinogens in the illicit drug market. It produces serious adverse effects, but its pharmacological profile is not well recognized. In vitro data have shown that 5-MeO-DIPT acts as a potent serotonin transporter (SERT) inhibitor and displays high affinity at serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptors. In this study, using microdialysis in freely moving rats, we examined the effect of 5-MeO-DIPT on dopamine (DA), serotonin (5-HT), and glutamate release in the rat striatum, nucleus accumbens, and frontal cortex. In search of a possible neurotoxic effect of 5-MeO-DIPT, we measured DA and 5-HT tissue content in the above rat brain regions and also determined the oxidative DNA damage with the comet assay. Moreover, we tested drug-elicited head-twitch response and a forepaw treading induced by 8-OH-DPAT. 5-MeO-DIPT at doses of 5, 10, and 20 mg/kg increased extracellular DA, 5-HT, and glutamate level but the differences in the potency were found between brain regions. 5-MeO-DIPT increased 5-HT and decreased 5-HIAA tissue content which seems to result from SERT inhibition. On the other hand, a decrease in DA, DOPAC, and HVA tissue contents suggests possible adaptive changes in DA turnover or damage of DA terminals by 5-MeO-DIPT. DNA single and double-strand breaks persisted up to 60 days after the treatment, indicating marked neurotoxicity of 5-MeO-DIPT. The induction of head-twitch response and potentiation of forepaw treading induced by 8-OH-DPAT indicate that hallucinogenic activity seems to be mediated through the stimulation of 5-HT2A and 5-HT1A receptors by 5-MeO-DIPT.
Bhat, Shreyas; Hasenhuetl, Peter S.; Kasture, Ameya; El-Kasaby, Ali; Baumann, Michael H.; Blough, Bruce E.; Sucic, Sonja; Sandtner, Walter; Freissmuth, Michael
2017-01-01
Point mutations in SLC6 transporters cause misfolding, which can be remedied by pharmacochaperones. The serotonin transporter (SERT/SLC6A4) has a rich pharmacology including inhibitors, releasers (amphetamines, which promote the exchange mode), and more recently, discovered partial substrates. We hypothesized that partial substrates trapped the transporter in one or several states of the transport cycle. This conformational trapping may also be conducive to folding. We selected naphthylpropane-2-amines of the phenethylamine library (PAL) including the partial substrate PAL1045 and its congeners PAL287 and PAL1046. We analyzed their impact on the transport cycle of SERT by biochemical approaches and by electrophysiological recordings; substrate-induced peak currents and steady-state currents monitored the translocation of substrate and co-substrate Na+ across the lipid bilayer and the transport cycle, respectively. These experiments showed that PAL1045 and its congeners bound with different affinities (ranging from nm to μm) to various conformational intermediates of SERT during the transport cycle. Consistent with the working hypothesis, PAL1045 was the most efficacious compound in restoring surface expression and transport activity to the folding-deficient mutant SERT-601PG602-AA. These experiments provide a proof-of-principle for a rational search for pharmacochaperones, which may be useful to restore function to clinically relevant folding-deficient transporter mutants. PMID:28842491
Muller, Christopher L; Anacker, Allison MJ; Rogers, Tiffany D; Goeden, Nick; Keller, Elizabeth H; Forsberg, C Gunnar; Kerr, Travis M; Wender, Carly LA; Anderson, George M; Stanwood, Gregg D; Blakely, Randy D; Bonnin, Alexandre; Veenstra-VanderWeele, Jeremy
2017-01-01
Biomarker, neuroimaging, and genetic findings implicate the serotonin transporter (SERT) in autism spectrum disorder (ASD). Previously, we found that adult male mice expressing the autism-associated SERT Ala56 variant have altered central serotonin (5-HT) system function, as well as elevated peripheral blood 5-HT levels. Early in gestation, before midbrain 5-HT projections have reached the cortex, peripheral sources supply 5-HT to the forebrain, suggesting that altered maternal or placenta 5-HT system function could impact the developing embryo. We therefore used different combinations of maternal and embryo SERT Ala56 genotypes to examine effects on blood, placenta and embryo serotonin levels and neurodevelopment at embryonic day E14.5, when peripheral sources of 5-HT predominate, and E18.5, when midbrain 5-HT projections have reached the forebrain. Maternal SERT Ala56 genotype was associated with decreased placenta and embryonic forebrain 5-HT levels at E14.5. Low 5-HT in the placenta persisted, but forebrain levels normalized by E18.5. Maternal SERT Ala56 genotype effects on forebrain 5-HT levels were accompanied by a broadening of 5-HT-sensitive thalamocortical axon projections. In contrast, no effect of embryo genotype was seen in concepti from heterozygous dams. Blood 5-HT levels were dynamic across pregnancy and were increased in SERT Ala56 dams at E14.5. Placenta RNA sequencing data at E14.5 indicated substantial impact of maternal SERT Ala56 genotype, with alterations in immune and metabolic-related pathways. Collectively, these findings indicate that maternal SERT function impacts offspring placental 5-HT levels, forebrain 5-HT levels, and neurodevelopment. PMID:27550733
Stórustovu, Signe í; Sánchez, Connie; Pörzgen, Peter; Brennum, Lise T; Larsen, Anna Kirstine; Pulis, Monica; Ebert, Bjarke
2004-01-01
Clinical observations with the selective serotonin reuptake inhibitor (SSRI), S-citalopram, indicate that S-citalopram is more efficacious and produces earlier symptom relief than RS-citalopram. Since R-citalopram is at least 20-fold weaker than S-citalopram as inhibitor of the 5-HT transporter (SERT) in preclinical studies, the clinical data suggest an unexpected antagonistic interaction between the two enantiomers. We therefore characterised the interaction of R- and S-citalopram with the SERT in in vivo and in vitro assays. In both behavioural (potentiation of 5-hydroxytryptophan (5-HTP)-induced behaviour) and electrophysiological studies (inhibition of 5-HT-elicited ion currents in Xenopus oocytes expressing the human SERT (hSERT) R-citalopram inhibited the effects of S-citalopram in a dose-dependent manner. With S-citalopram : R-citalopram ratios of 1 : 2 and 1 : 4, 5-HTP potentiation was significantly smaller than with S-citalopram alone. emsp;R-citalopram did not antagonise the effects of another SSRI (fluoxetine) in either behavioural or electrophysiological studies. In oocytes, inhibition of hSERT-mediated currents by R-citalopram was almost completely reversible and characterised by fast on- and off-sets of action. In contrast, the off-set for S-citalopram was 35-fold slower than for R-citalopram. Kinetic analysis of the oocyte experiments suggests that S-citalopram binding to SERT induces a long-lasting, inhibited state of the transporter and that coapplication of R-citalopram partially relieves SERT of this persistent inhibition. We propose that the kinetic interaction of R- and S-citalopram with SERT is a critical factor contributing to the antagonistic effects of R-citalopram on S-citalopram in vitro and in vivo. PMID:15037515
SERT Ileu425Val in autism, Asperger syndrome and obsessive-compulsive disorder.
Wendland, Jens R; DeGuzman, Theresa B; McMahon, Francis; Rudnick, Gary; Detera-Wadleigh, Sevilla D; Murphy, Dennis L
2008-02-01
SERT I425V, an uncommon missense single nucleotide polymorphism producing a gain-of-function of the serotonin transporter (SERT), was originally found to segregate with a primarily obsessive-compulsive disorder (OCD) but complexly comorbid phenotype in two unrelated families. As two individuals with SERT I425V and OCD also had Asperger syndrome (AS), an autism spectrum disorder, and as other rare SERT variants have recently shown significant associations with autism, we set out to extend our original OCD study by genotyping additional autism/AS and OCD samples. Case-control association study of SERT I425V in 210 AS/autism probands and 215 controls, plus 335 OCD probands and their family members. SERT I425V was not found in any of the individuals with AS/autism, OCD alone or OCD comorbid with AS and other disorders, or in controls. This results in new estimates of SERT I425V having a 1.5% prevalence in 530 individuals with OCD from five unrelated families genotyped by us and by one other group and a 0.23% frequency in four control populations totaling 1300 individuals, yielding a continuing significant OCD-control difference (Fisher's exact test corrected for family coefficient of identity P=0.004, odds ratio=6.54). As several other uncommon, less well quantitated genetic variations occur with an OCD phenotype, including chromosomal anomalies and some other rare gene variants (SGCE, GCH1 and SLITRK1), a tentative conclusion is that OCD resembles other complex disorders in being etiologically heterogeneous and in having both highly penetrant familial subtypes associated with rare alleles or chromosomal anomalies, as well as having a more common, polygenetic form that may involve polymorphisms in such genes as BDNF, COMT, GRIN2beta, TPH2, HTR2A and SLC1A1.
Minakuchi, Hajime; Sogawa, Chiharu; Hara, Emilio Satoshi; Miki, Haruna; Maekawa, Kenji; Sogawa, Norio; Kitayama, Shigeo; Matsuka, Yoshizo; Clark, Glenn T; Kuboki, Takuo
2014-10-01
The aim of this study was to evaluate the correlation between sleep bruxism (SB) frequency and serotonin transporter (SERT)-driven serotonin (5-HT)-uptake in platelets. Subjects were dental trainee residents and faculty members of Okayama University Hospital who were aware of having severe or no SB. SB frequency was assessed for 3-consecutive nights by a self-contained electromyographic detector/analyzer, which indicated individual SB levels as one of four grades (score 0, 1, 2 and 3). Subjects were classified as normal control (NC) when SB scores indicated only 0 or 1 during the 3 nights, or as severe SB for scores 2 or 3. Those subjects whose scores fluctuated from 0 to 3 during the 3 nights were omitted from further analysis. Fasting peripheral venous blood samples were collected in the morning following the final SB assessment. Amounts of SERTs proteins collected from peripheral platelets were quantified using ELISA, and SERTs transport activity was assessed by uptake assay using [3H]-5-HT. Thirteen severe SB subjects and 7 NC subjects were eligible. Gender distribution, mean age, 5-HT concentration and total amounts of SERT protein in platelets showed no significant differences between NC and severe SB (p=0.85: Chi-squared test; p=0.64, 0.26, 0.46: t-test). However, [3H]-5-HT uptake by platelets was significantly greater in NC compared to severe SB subjects (12.79±1.97, 8.27±1.91 fmol/10(5) platelets/min, p<0.001, t-test). The results of this pilot study suggest a possible correlation between peripheral platelet serotonin transporter uptake ability and SB severity. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Li, Yu-Wen; Langdon, Shaun; Pieschl, Rick; Strong, Todd; Wright, Robert N; Rohrbach, Kenneth; Lelas, Snjezana; Lodge, Nicholas J
2014-08-15
Sibutramine was formerly marketed as an anti-obesity agent. The current study investigated the relationships between monoamine reuptake site occupancy for sibutramine and both its antidepressant-like efficacy and thermogenic effects. Sibutramine's effects on locomotor activity (LMA) and food intake were also evaluated. Sibutramine occupied monoamine reuptake binding sites with the rank order of potency of NET>SERT>DAT; at 10mg/kg, po, occupancy was 95% NET, 81% SERT and 73% DAT. Sibutramine produced antidepressant-like behavior in the forced swim test; at the lowest effective dose (3mg/kg, po) occupancy was 61%, 90% and 23% at SERT, NET and DAT sites, respectively. Sibutramine also increased body core temperature in a dose- and time-dependent manner; at the lowest effective dose (30mg/kg) SERT, NET and DAT occupancies were respectively 78%, 86% and 59%. A significant decrease in food consumption was observed at 3 and 10mg/kg, po. LMA was increased at ≥10mg/kg, sc. The relationship between efficacy in the FST and occupancy was also determined for citalopram, fluoxetine and reboxetine. Similarly, the relationship between thermogenesis and target occupancy for several single or double/triple reuptake inhibitors was measured and showed that >40-50% DAT binding was required for thermogenesis. Thermogenesis was blocked by the D1 antagonist SCH39166 (3mg/kg, sc). Our findings indicate that the antidepressant-like effect of sibutramine may result from additive or synergistic actions on the three reuptake binding targets. At higher doses, sibutramine produces thermogenesis; DAT inhibition and activation of dopamine D1 receptors are required for this effect. Published by Elsevier B.V.
Riga, Maurizio S; Teruel-Martí, Vicent; Sánchez, Connie; Celada, Pau; Artigas, Francesc
2017-02-01
Vortioxetine (VOR) is a multimodal antidepressant drug. VOR is a 5-HT 3 -R, 5-HT 7 -R and 5-HT 1D -R antagonist, 5-HT 1B -R partial agonist, 5-HT 1A -R agonist, and serotonin transporter (SERT) inhibitor. VOR shows pro-cognitive activity in animal models and beneficial effects on cognitive dysfunction in major depressive patients. Here we compared the effects of 14-day treatments with VOR and escitalopram (ESC, selective serotonin reuptake inhibitor) on neuronal activity in the medial prefrontal cortex (mPFC). Ten groups of rats (5 standard, 5 depleted of 5-HT with p-chlorophenylalanine -pCPA-, used as model of cognitive impairment) were fed with control food or with two doses of VOR-containing food. Four groups were implanted with minipumps delivering vehicle or ESC 10 mg/kg·day s.c. The two VOR doses enable occupation by VOR of SERT+5-HT 3 -R and all targets, respectively, and correspond to SERT occupancies in patients treated with 5 and 20 VOR mg/day, respectively. Putative pyramidal neurons (n = 985) were recorded extracellularly in the mPFC of anesthetized rats. Sub-chronic VOR administration (but not ESC) significantly increased neuronal discharge in standard and 5-HT-depleted conditions, with a greater effect of the low VOR dose in standard rats. VOR increased neuronal discharge in infralimbic (IL) and prelimbic (PrL) cortices. Hence, oral VOR doses evoking SERT occupancies similar to those in treated patients increase mPFC neuronal discharge. The effect in 5-HT-depleted rats cannot be explained by an antagonist action of VOR at 5-HT 3 -R and suggests a non-canonical interaction of VOR with 5-HT 3 -R. These effects may underlie the superior pro-cognitive efficacy of VOR compared with SSRIs in animal models. Copyright © 2016 Elsevier Ltd. All rights reserved.
The SERTS-97 Rocket Experiment on Study Activity on the Sun: Flight 36.167-GS on 1997 November 18
NASA Technical Reports Server (NTRS)
Swartz, Marvin; Condor, Charles E.; Davila, Joseph M.; Haas, J. Patrick; Jordan, Stuart D.; Linard, David L.; Miko, Joseph J.; Nash, I. Carol; Novello, Joseph; Payne, Leslie J.;
1999-01-01
This paper describes mainly the 1997 version of the Solar EUV Rocket Telescope and Spectrograph (SERTS-97), a scientific experiment that operated on NASA's suborbital rocket flight 36.167-GS. Its function was to study activity on the Sun and to provide a cross calibration for the CDS instrument on the SOHO satellite. The experiment was designed, built, and tested by the Solar Physics Branch of the Laboratory for Astronomy and Solar Physics at the Goddard Space Flight Center (GSFC). Other essential sections of the rocket were built under the management of the Sounding Rockets Program Office. These sections include the electronics, timers, IGN despin, the SPARCS pointing controls, the S-19 flight course correction section, the rocket motors, the telemetry, ORSA, and OGIVE.
Long-term sequelae of perinatal asphyxia in the aging rat.
Weitzdoerfer, R; Gerstl, N; Hoeger, H; Mosgoeller, W; Dreher, W; Engidawork, E; Overgaard-Larsen, J; Lubec, B
2002-03-01
Information on the consequences of perinatal asphyxia (PA) on brain morphology and function in the aging rat is missing although several groups have hypothesized that PA may be responsible for neurological and psychiatric deficits in the adult. We therefore decided to study the effects of PA on the central nervous system (CNS) in terms of morphology, immunohistochemistry, neurology and behavior in the aging animal. Hippocampus and cerebellum were evaluated morphologically by histological, immunohistochemical and magnetic resonance imaging and cerebellum also by stereological tests. Neurological function was tested by an observational test battery and rota rod test. Cognitive functions were examined by multiple-T-maze and the Morris water maze (MWM). Increased serotonin transporter (SERT) immunoreactivity in the CA2 region of the hippocampus and a significant difference in the escape latency, when the platform of the MWM was moved to a new location, were observed in asphyxiated rats. We showed that deteriorated cognitive functions accompanied by aberrant expression of hippocampal SERT and impaired relearning are long-term sequelae of perinatal asphyxia, a finding that may form the basis for understanding CNS pathology in the aging subject, animal or human.
The mechanistic basis for noncompetitive ibogaine inhibition of serotonin and dopamine transporters.
Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter
2012-05-25
Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study.
The Mechanistic Basis for Noncompetitive Ibogaine Inhibition of Serotonin and Dopamine Transporters*
Bulling, Simon; Schicker, Klaus; Zhang, Yuan-Wei; Steinkellner, Thomas; Stockner, Thomas; Gruber, Christian W.; Boehm, Stefan; Freissmuth, Michael; Rudnick, Gary; Sitte, Harald H.; Sandtner, Walter
2012-01-01
Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study. PMID:22451652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Jerry; Tomlinson, Ian; Warnement, Michael
2011-01-01
The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) protein plays a central role in terminating 5-HT neurotransmission and is the most important therapeutic target for the treatment of major depression and anxiety disorders. We report an innovative, versatile, and target-selective quantum dot (QD) labeling approach for SERT in single Xenopus oocytes that can be adopted as a drug-screening platform. Our labeling approach employs a custom-made, QD-tagged indoleamine derivative ligand, IDT318, that is structurally similar to 5-HT and accesses the primary binding site with enhanced human SERT selectivity. Incubating QD-labeled oocytes with paroxetine (Paxil), a high-affinity SERT-specific inhibitor, showed a concentration- and time-dependentmore » decrease in QD fluorescence, demonstrating the utility of our approach for the identification of SERT modulators. Furthermore, with the development of ligands aimed at other pharmacologically relevant targets, our approach may potentially form the basis for a multitarget drug discovery platform.« less
X-ray structures and mechanism of the human serotonin transporter.
Coleman, Jonathan A; Green, Evan M; Gouaux, Eric
2016-04-21
The serotonin transporter (SERT) terminates serotonergic signalling through the sodium- and chloride-dependent reuptake of neurotransmitter into presynaptic neurons. SERT is a target for antidepressant and psychostimulant drugs, which block reuptake and prolong neurotransmitter signalling. Here we report X-ray crystallographic structures of human SERT at 3.15 Å resolution bound to the antidepressants (S)-citalopram or paroxetine. Antidepressants lock SERT in an outward-open conformation by lodging in the central binding site, located between transmembrane helices 1, 3, 6, 8 and 10, directly blocking serotonin binding. We further identify the location of an allosteric site in the complex as residing at the periphery of the extracellular vestibule, interposed between extracellular loops 4 and 6 and transmembrane helices 1, 6, 10 and 11. Occupancy of the allosteric site sterically hinders ligand unbinding from the central site, providing an explanation for the action of (S)-citalopram as an allosteric ligand. These structures define the mechanism of antidepressant action in SERT, and provide blueprints for future drug design.
DAT/SERT Selectivity of Flexible GBR 12909 Analogs Modeled Using 3D-QSAR Methods
Gilbert, Kathleen M.; Boos, Terrence L.; Dersch, Christina M.; Greiner, Elisabeth; Jacobson, Arthur E.; Lewis, David; Matecka, Dorota; Prisinzano, Thomas E.; Zhang, Ying; Rothman, Richard B.; Rice, Kenner C.; Venanzi, Carol A.
2007-01-01
The dopamine reuptake inhibitor GBR 12909 (1-{2-[bis(4-fluorophenyl)methoxy]ethyl}-4-(3-phenylpropyl)piperazine, 1) and its analogs have been developed as tools to test the hypothesis that selective dopamine transporter (DAT) inhibitors will be useful therapeutics for cocaine addiction. This 3D-QSAR study focuses on the effect of substitutions in the phenylpropyl region of 1. CoMFA and CoMSIA techniques were used to determine a predictive and stable model for the DAT/serotonin transporter (SERT) selectivity (represented by pKi (DAT/SERT)) of a set of flexible analogs of 1, most of which have eight rotatable bonds. In the absence of a rigid analog to use as a 3D-QSAR template, six conformational families of analogs were constructed from six pairs of piperazine and piperidine template conformers identified by hierarchical clustering as representative molecular conformations. Three models stable to y-value scrambling were identified after a comprehensive CoMFA and CoMSIA survey with Region Focusing. Test set correlation validation led to an acceptable model, with q2 = 0.508, standard error of prediction = 0.601, two components, r2 = 0.685, standard error of estimate = 0.481, F value = 39, percent steric contribution = 65, and percent electrostatic contribution = 35. A CoMFA contour map identified areas of the molecule that affect pKi (DAT/SERT). This work outlines a protocol for deriving a stable and predictive model of the biological activity of a set of very flexible molecules. PMID:17127069
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carneiro, Ana; Airey, David; Thompson, Brent
The human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT, SLC6A4) figures prominently in the etiology or treatment of many prevalent neurobehavioral disorders including anxiety, alcoholism, depression, autism and obsessive-compulsive disorder (OCD). Here we utilize naturally occurring polymorphisms in recombinant inbred (RI) lines to identify novel phenotypes associated with altered SERT function. The widely used mouse strain C57BL/6J, harbors a SERT haplotype defined by two nonsynonymous coding variants (Gly39 and Lys152 (GK)). At these positions, many other mouse lines, including DBA/2J, encode Glu39 and Arg152 (ER haplotype), assignments found also in hSERT. Synaptosomal 5-HT transport studies revealed reduced uptake associated with the GKmore » variant. Heterologous expression studies confirmed a reduced SERT turnover rate for the GK variant. Experimental and in silico approaches using RI lines (C57Bl/6J X DBA/2J=BXD) identifies multiple anatomical, biochemical and behavioral phenotypes specifically impacted by GK/ER variation. Among our findings are multiple traits associated with anxiety and alcohol consumption, as well as of the control of dopamine (DA) signaling. Further bioinformatic analysis of BXD phenotypes, combined with biochemical evaluation of SERT knockout mice, nominates SERT-dependent 5-HT signaling as a major determinant of midbrain iron homeostasis that, in turn, dictates ironregulated DA phenotypes. Our studies provide a novel example of the power of coordinated in vitro, in vivo and in silico approaches using murine RI lines to elucidate and quantify the system-level impact of gene variation.« less
[Sertürner and morphine--a historical vignette].
Jurna, I
2003-08-01
Friedrich Wilhelm Sertürner was born near Paderborn in 1783. At the age of twenty he passed examinations as a pharmacist's assistant in Paderborn. In a letter to the editor of Trommsdorffs Journal der Pharmacie Vol 13 (1805) he reported on the isolation of a substance from opium which showed alkaline character and was later called by him "morphine". In 1806, Sertürner moved to Einbeck where he first worked as assistant to the tenant of the magistrate's pharmacy. In 1809, he became pharmacist and, since the tenant was already 75 years old, he intended to take charge of the pharmacy. However,he was not successful. During the invasion of Napoleon Bonaparte's troops into Europe, French legislation became valid in those parts which fell under French government. According to French law, Sertürner was allowed to open a second pharmacy. In Einbeck, Sertürner continued research work on morphine and published the results in two papers. In one of these (1817), he introduced observations made with the drug in humans and for the first time called it "morphine". The French chemist Gay-Lussac showed interest in that publication and ordered a translation into French which earned Sertürner the scientific break-through. His was the first achievement in alkaloid research, and for that he received a doctor degree from the university of Jena in 1817.When Napoleon was finally defeated, Sertürner had to close his pharmacy in Einbeck and found another one in Hameln. When asiatic cholera spread in Germany in 1831, he postulated that cholera is caused by a poisonous,animated reproducing organism and made suggestions to avoid infection which are still valid today.Sertürner was honoured by many institutions but still felt not properly esteemed. His behavior become odd and he debilitated. He died in 1841 and was buried in Einbeck.
Psychoactive “bath salts”: not so soothing
Baumann, Michael H.; Partilla, John S.; Lehner, Kurt R.
2012-01-01
Recently there has been a dramatic rise in the abuse of so-called “bath salts” products that are purchased as legal alternatives to illicit drugs like cocaine and 3,4-methylenedioxymethamphetamine (MDMA). Baths salts contain one or more synthetic derivatives of the naturally-occurring stimulant cathinone. Low doses of bath salts produce euphoria and increase alertness, but high doses or chronic use can cause serious adverse effects such as hallucinations, delirium, hyperthermia and tachycardia. Owing to the risks posed by bath salts, the governments of many countries have made certain cathinones illegal, namely: 4-methylmethcathinone (mephedrone), 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV). Similar to other psychomotor stimulants, synthetic cathinones target plasma membrane transporters for dopamine (i.e., DAT), norepinephrine (i.e., NET) and serotonin (i.e, SERT). Mephedrone and methylone act as non-selective transporter substrates, thereby stimulating non-exocytotic release of dopamine, norepinephrine and serotonin. By contrast, MDPV acts as a potent blocker at DAT and NET, with little effect at SERT. Administration of mephedrone or methylone to rats increases extracellular concentrations of dopamine and serotonin in the brain, analogous to the effects of MDMA. Not surprisingly, synthetic cathinones elicit locomotor activation in rodents. Stimulation of dopamine transmission by synthetic cathinones predicts a high potential for addiction and may underlie clinical adverse effects. As popular synthetic cathinones are rendered illegal, new replacement cathinones are appearing in the marketplace. More research on the pharmacology and toxicology of abused cathinones is needed to inform public health policy and develop strategies for treating medical consequence of bath salts abuse. PMID:23178799
Dissociable roles of dopamine and serotonin transporter function in a rat model of negative urgency.
Yates, Justin R; Darna, Mahesh; Gipson, Cassandra D; Dwoskin, Linda P; Bardo, Michael T
2015-09-15
Negative urgency is a facet of impulsivity that reflects mood-based rash action and is associated with various maladaptive behaviors in humans. However, the underlying neural mechanisms of negative urgency are not fully understood. Several brain regions within the mesocorticolimbic pathway, as well as the neurotransmitters dopamine (DA) and serotonin (5-HT), have been implicated in impulsivity. Extracellular DA and 5-HT concentrations are regulated by DA transporters (DAT) and 5-HT transporters (SERT); thus, these transporters may be important molecular mechanisms underlying individual differences in negative urgency. The current study employed a reward omission task to model negative urgency in rats. During reward trials, a cue light signaled the non-contingent delivery of one sucrose pellet; immediately following the non-contingent reward, rats responded on a lever to earn sucrose pellets (operant phase). Omission trials were similar to reward trials, except that non-contingent sucrose was omitted following the cue light prior to the operant phase. As expected, contingent responding was higher following omission of expected reward than following delivery of expected reward, thus reflecting negative urgency. Upon completion of behavioral training, Vmax and Km were obtained from kinetic analysis of [(3)H]DA and [(3)H]5-HT uptake using synaptosomes prepared from nucleus accumbens (NAc), dorsal striatum (Str), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC) isolated from individual rats. Vmax for DAT in NAc and for SERT in OFC were positively correlated with negative urgency scores. The current findings suggest that mood-based impulsivity (negative urgency) is associated with enhanced DAT function in NAc and SERT function in OFC. Copyright © 2015 Elsevier B.V. All rights reserved.
Mayer, Felix P; Burchardt, Nadine V; Decker, Ann M; Partilla, John S; Li, Yang; McLaughlin, Gavin; Kavanagh, Pierce V; Sandtner, Walter; Blough, Bruce E; Brandt, Simon D; Baumann, Michael H; Sitte, Harald H
2018-05-15
A variety of new psychoactive substances (NPS) are appearing in recreational drug markets worldwide. NPS are compounds that target various receptors and transporters in the central nervous system to achieve their psychoactive effects. Chemical modifications of existing drugs can generate NPS that are not controlled by current legislation, thereby providing legal alternatives to controlled substances such as cocaine or amphetamine. Recently, 3-fluorophenmetrazine (3-FPM), a derivative of the anorectic compound phenmetrazine, appeared on the recreational drug market and adverse clinical effects have been reported. Phenmetrazine is known to elevate extracellular monoamine concentrations by an amphetamine-like mechanism. Here we tested 3-FPM and its positional isomers, 2-FPM and 4-FPM, for their abilities to interact with plasma membrane monoamine transporters for dopamine (DAT), norepinephrine (NET) and serotonin (SERT). We found that 2-, 3- and 4-FPM inhibit uptake mediated by DAT and NET in HEK293 cells with potencies comparable to cocaine (IC 50 values < 2.5 μM), but display less potent effects at SERT (IC 50 values >80 μM). Experiments directed at identifying transporter-mediated reverse transport revealed that FPM isomers induce efflux via DAT, NET and SERT in HEK293 cells, and this effect is augmented by the Na + /H + ionophore monensin. Each FPM evoked concentration-dependent release of monoamines from rat brain synaptosomes. Hence, this study reports for the first time the mode of action for 2-, 3- and 4-FPM and identifies these NPS as monoamine releasers with marked potency at catecholamine transporters implicated in abuse and addiction. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.' Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yang, Tae Young; Jang, Eun Young; Ryu, Yeonhee; Lee, Gyu Won; Lee, Eun Byeol; Chang, Suchan; Lee, Jong Han; Koo, Jin Suk; Yang, Chae Ha; Kim, Hee Young
2017-12-11
Acupuncture has been used as a common therapeutic tool in many disorders including anxiety and depression. Serotonin transporter (SERT) plays an important role in the pathology of anxiety and other mood disorders. The aim of this study was to evaluate the effects of acupuncture on lipopolysaccharide (LPS)-induced anxiety-like behaviors and SERT in the dorsal raphe nuclei (DRN). Rats were given acupuncture at ST41 (Jiexi), LI11 (Quchi) or SI3 (Houxi) acupoint in LPS-treated rats. Anxiety-like behaviors of elevated plus maze (EPM) and open field test (OFT) were measured and expressions of SERT and/or c-Fos were also examined in the DRN using immunohistochemistry. The results showed that 1) acupuncture at ST41 acupoint, but neither LI11 nor SI3, significantly attenuated LPS-induced anxiety-like behaviors in EPM and OFT, 2) acupuncture at ST41 decreased SERT expression increased by LPS in the DRN. Our results suggest that acupuncture can ameliorate anxiety-like behaviors, possibly through regulation of SERT in the DRN.
Plasma physics analysis of SERT-2 operation
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1980-01-01
An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.
Tomlinson, Ian D; Mason, John N; Blakely, Randy D; Rosenthal, Sandra J
2005-12-01
There is a growing demand for compounds with specificity for the serotonin transporter protein (SERT) that can be conjugated to cadmium selenide/zinc sulfide core shell nanocrystals. This letter describes the design and synthesis of two different biotinylated SERT antagonists that can be attached to streptavidin-coated cadmium selenide/zinc sulfide core shell nanocrystals.
Mechanical design of SERT 2 thruster system
NASA Technical Reports Server (NTRS)
Zavesky, R. J.; Hurst, E. B.
1972-01-01
The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.
Hasenhuetl, Peter S; Freissmuth, Michael; Sandtner, Walter
2016-12-09
The plasmalemmal monoamine transporters clear the extracellular space from their cognate substrates and sustain cellular monoamine stores even during neuronal activity. In some instances, however, the transporters enter a substrate-exchange mode, which results in release of intracellular substrate. Understanding what determines the switch between these two transport modes demands time-resolved measurements of intracellular (co-)substrate binding and release. Here, we report an electrophysiological investigation of intracellular solute-binding to the human serotonin transporter (SERT) expressed in HEK-293 cells. We measured currents induced by rapid application of serotonin employing varying intracellular (co-)substrate concentrations and interpreted the data using kinetic modeling. Our measurements revealed that the induction of the substrate-exchange mode depends on both voltage and intracellular Na + concentrations because intracellular Na + release occurs before serotonin release and is highly electrogenic. This voltage dependence was blunted by electrogenic binding of intracellular K + and, notably, also H + In addition, our data suggest that Cl - is bound to SERT during the entire catalytic cycle. Our experiments, therefore, document an essential role of electrogenic binding of K + or of H + to the inward-facing conformation of SERT in (i) cancelling out the electrogenic nature of intracellular Na + release and (ii) in selecting the forward-transport over the substrate-exchange mode. Finally, the kinetics of intracellular Na + release and K + (or H + ) binding result in a voltage-independent rate-limiting step where SERT may return to the outward-facing state in a KCl- or HCl-bound form. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Sleep bruxism frequency and platelet serotonin transporter activities in young adult subjects.
Minakuchi, Hajime; Sogawa, Chiharu; Miki, Haruna; Hara, Emilio S; Maekawa, Kenji; Sogawa, Norio; Kitayama, Shigeo; Matsuka, Yoshizo; Clark, Glenn Thomas; Kuboki, Takuo
2016-03-01
To evaluate correlations between serotonin transporter (SERT) uptake ability in human peripheral platelets and sleep bruxism (SB) frequency. Subjects were consecutively recruited from sixth-year students at Okayama University Dental School. Subjects were excluded if they (1) were receiving orthodontic treatment, (2) had a dermatological disease, (3) had taken an antidepressant within 6 months, or (4) had used an oral appliance within 6 months. SB frequency was determined as the summary score of three consecutive night assessments using a self-contained electromyography detector/analyzer in their home. Fasting peripheral venous blood samples were collected in the morning following the final SB assessment. SERT amount and platelet number were quantified via an ELISA assay and flow cytometry, respectively. Functional SERT characterization, 5-hydroxytryptamine (5-HT) uptake, maximum velocity (V max), and an affinity constant (K m ) were assessed with a [(3)H] 5-HT uptake assay. The correlations between these variables and SB level were evaluated. Among 50 eligible subjects (26 males, mean age 25.4 ± 2.41 years), 7 were excluded because of venipuncture failure, smoking, and alcohol intake during the experimental period. A small but significant negative correlation between SB level and [(3)H] 5-HT uptake was observed (Spearman's correlation R (2) = 0.063, p = 0.04). However, there were no significant correlations between SB level and total platelet amount, SERT, V max, and K m values (p = 0.08, 0.12, 0.71, and 0.68, respectively). Platelet serotonin uptake is significantly associated with SB frequency, yet only explains a small amount of SB variability.
Zhong, Huailing; Haddjeri, Nasser; Sánchez, Connie
2012-01-01
Escitalopram is a widely used antidepressant for the treatment of patients with major depression. It is the pure S-enantiomer of racemic citalopram. Several clinical trials and meta-analyses indicate that escitalopram is quantitatively more efficacious than many other antidepressants with a faster onset of action. This paper reviews current knowledge about the mechanism of action of escitalopram. The primary target for escitalopram is the serotonin transporter (SERT), which is responsible for serotonin (or 5-hydroxytryptamine [5-HT]) reuptake at the terminals and cell bodies of serotonergic neurons. Escitalopram and selective serotonin reuptake inhibitors bind with high affinity to the 5-HT binding site (orthosteric site) on the transporter. This leads to antidepressant effects by increasing extracellular 5-HT levels which enhance 5-HT neurotransmission. SERT also has one or more allosteric sites, binding to which modulates activity at the orthosteric binding site but does not directly affect 5-HT reuptake by the transporter. In vitro studies have shown that through allosteric binding, escitalopram decreases its own dissociation rate from the orthosteric site on the SERT. R-citalopram, the nontherapeutic enantiomer in citalopram, is also an allosteric modulator of SERT but can inhibit the actions of escitalopram by interfering negatively with its binding. Both nonclinical studies and some clinical investigations have demonstrated the cellular, neurochemical, neuroadaptive, and neuroplastic changes induced by escitalopram with acute and chronic administration. The findings from binding, neurochemical, and neurophysiological studies may provide a mechanistic rationale for the clinical difference observed with escitalopram compared to other antidepressant therapies.
Boos, Terrence L; Greiner, Elisabeth; Calhoun, W Jason; Prisinzano, Thomas E; Nightingale, Barbara; Dersch, Christina M; Rothman, Richard B; Jacobson, Arthur E; Rice, Kenner C
2006-06-01
A series of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-(substituted benzyl) piperidines with substituents at the ortho and meta positions in the aromatic ring of the N-benzyl side chain were synthesized and their affinities and selectivities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) were determined. One analogue, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine (the C(2)-trifluoromethyl substituted compound), has been found to act as an allosteric modulator of hSERT binding and function. It had little affinity for any of the transporters. Several compounds showed affinity for the DAT in the low nanomolar range and displayed a broad range of SERT/DAT selectivity ratios and very little affinity for the NET. The pharmacological tools provided by the availability of compounds with varying transporter affinity and selectivity could be used to obtain additional information about the properties a compound should have to act as a useful pharmacotherapeutic agent for cocaine addiction and help unravel the pharmacological mechanisms relevant to stimulant abuse.
Malikowska, Natalia; Fijałkowski, Łukasz; Nowaczyk, Alicja; Popik, Piotr; Sałat, Kinga
2017-10-15
Post-traumatic stress disorder (PTSD) is a growing issue worldwide characterized by stress and anxiety in response to re-experiencing traumatic events which strongly impair patient's quality of life and social functions. Available antidepressant and anxiolytic drugs are not efficacious in the majority of treated individuals. This necessitates a significant medical demand to develop novel therapeutic strategies for PTSD. Animal model of PTSD was induced using a mouse single prolonged stress protocol (mSPS). To assess the activity of venlafaxine and clonidine, the forced swim test (FST) was used repeatedly 24h, 3days, 8days, 15days and 25days after mSPS. To get insight into a possible mechanism of anti-PTSD action, molecular docking procedure was utilized for the most active drug. This in silico part comprised molecular docking of enantiomers of venlafaxine to human transporters for serotonin (hSERT), norepinephrine (hNET) and dopamine (hDAT). In mSPS-subjected mice FST revealed the effectiveness of venlafaxine, however in non SPS-subjected mice both venlafaxine and clonidine were active. Molecular docking studies indicated that the affinity of venlafaxine to monoamine transporters is growing in the following rank order: hDAT
Rudnick, G
2006-01-01
Serotonin transporter (SERT) serves the important function of taking up serotonin (5-HT) released during serotonergic neurotransmission. It is the target for important therapeutic drugs and psychostimulants. SERT catalyzes the influx of 5-HT together with Na+ and Cl- in a 1:1:1 stoichiometry. In the same catalytic cycle, there is coupled efflux of one K+ ion. SERT is one member of a large family of amino acid and amine transporters that is believed to utilize similar mechanisms of transport. A bacterial member of this family was recently crystallized, revealing the structural basis of these transporters. In light of the new structure, previous results with SERT have been re-interpreted, providing new insight into the substrate binding site, the permeation pathway, and the conformational changes that occur during the transport cycle.
Chamba, Anita; Holder, Michelle J; Jarrett, Ruth F; Shield, Lesley; Toellner, Kai M; Drayson, Mark T; Barnes, Nicholas M; Gordon, John
2010-08-01
B-cell lines of diverse neoplastic origin express the serotonin transporter (SERT/SLC6A4) and growth arrest in response to SERT-ligands, including the antidepressants chlomipramine and fluoxetine. Here we detail SLC6A4 transcript (Q-PCR) and protein (FACS) expression in primary cells from patients with: chronic lymphocytic leukaemia; mantle cell lymphoma; follicular lymphoma; Burkitt's lymphoma; and diffuse large B-cell lymphoma. The ability of the SERT-binding antidepressants to impact the growth of these cells when sustained on CD154-transfected fibroblasts was also determined. The results reveal a broad spectrum of primary B-cell malignancies expressing SLC6A4 with a proportion additionally displaying growth arrest on SERT-ligand exposure. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Pharmacological examination of trifluoromethyl ring-substituted methcathinone analogs.
Cozzi, Nicholas V; Brandt, Simon D; Daley, Paul F; Partilla, John S; Rothman, Richard B; Tulzer, Andreas; Sitte, Harald H; Baumann, Michael H
2013-01-15
Cathinones are a class of drugs used to treat various medical conditions including depression, obesity, substance abuse, and muscle spasms. Some "designer" cathinones, such as methcathinone, mephedrone, and methylone, are used nonclinically for their stimulant or entactogenic properties. Given the recent rise in nonmedical use of designer cathinones, we aimed to improve understanding of cathinone pharmacology by investigating analogs of methcathinone with a CF(3) substituent at the 2-, 3-, or 4-position of the phenyl ring (TFMAPs). We compared the TFMAPs with methcathinone for effects on monoamine uptake transporter function in vitro and in vivo, and for effects on locomotor activity in rats. At the serotonin transporter (SERT), 3-TFMAP and 4-TFMAP were 10-fold more potent than methcathinone as uptake inhibitors and as releasing agents, but 2-TFMAP was both a weak uptake inhibitor and releaser. At the norepinephrine and dopamine transporters (NET and DAT), all TFMAP isomers were less potent than methcathinone as uptake inhibitors and releasers. In vivo, 4-TFMAP released 5-HT, but not dopamine, in rat nucleus accumbens and did not affect locomotor activity, whereas methcathinone increased both 5-HT and dopamine and produced locomotor stimulation. These experiments reveal that TFMAPs are substrates for the monoamine transporters and that phenyl ring substitution at the 3- or 4-position increases potency at SERT but decreases potency at NET and DAT, resulting in selectivity for SERT. The TFMAPs might have a therapeutic value for a variety of medical and psychiatric conditions and may have lower abuse liability compared to methcathinone due to their decreased DAT activity. Copyright © 2012 Elsevier B.V. All rights reserved.
Daniali, Samira; Nahavandi, Arezo; Madjd, Zahra; Shahbazi, Ali; Niknazar, Somayeh; Shahbazzadeh, Delavar
2013-01-01
Background: Ritalin has high tendency to be abused. It has been the main indication to control attention deficit hyperactivity disorder. The college students may seek for it to improve their memory, decrease the need for sleep (especially during exams), which at least partially, can be related to serotonergic system. Therefore, it seems worthy to evaluate the effect of Ritalin intake on mature brain. There are many studies on Ritalin effect on developing brain, but only few studies on adults are available. This study was undertaken to find Ritalin effect on serotonin transporter (SERT) density in medial frontal cortex (MFC) of mature rat. Methods: Thirty male Wistar rats were used in the study. Rats were assigned into five groups (n = 6 per group): one control, two Ritalin and two vehicle groups. Twelve rats received Ritalin (20 mg/kg/twice a day) orally for eleven continuous days. After one week of withdrawal and another two weeks of rest, in order to evaluate short-term effects of Ritalin, six rats were sacrificed. Another six rats were studied to detect the long-term effects of Ritalin; therefore, they were sacrificed 12 weeks after the previous group. The immunohistochemistry was performed to evaluate the results. Results: Immunohistochemistry studies showed a higher density of SERT in both 2 and 12 weeks after withdrawal from Ritalin intake in MFC of rat and there was no significant difference between these two groups. Conclusions: Our findings demonstrated both short- and long-term effects of Ritalin on frontal serotonergic system after withdrawal period. PMID:23748891
Thomasius, R; Zapletalova, P; Petersen, K; Buchert, R; Andresen, B; Wartberg, L; Nebeling, B; Schmoldt, A
2006-03-01
Although 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is a known serotonergic neurotoxin in different animal species, there is to date no conclusive evidence of its neurotoxicity in humans. MDMA use was associated with impairments of psychological well-being, verbal memory and altered serotonergic functioning in a number of cross-sectional studies. Due to inherent methodological limitations, such as the notorious polydrug use of ecstasy users and lack of control of possible pre-existing differences between ecstasy users and control participants, researchers have called for well-controlled, prospective longitudinal studies to shed more light on the issue of MDMA neurotoxicity to the human brain. This longitudinal study investigated whether mood, cognition and central serotonin transporters (SERT) would deteriorate with continued MDMA use and whether or not they would recover over increasing periods of MDMA abstinence. In a repeated-measures design, 11 current and ten ex-ecstasy users, and 11 polydrug (but not MDMA) and 15 drug-naive controls participated three times within approximately two years. Both ecstasy user groups reported a polydrug use pattern besides heavy ecstasy use. Subjective reports of ecstasy use or abstinence were verified by toxicological analyses. On each trial, the participants underwent a cognitive test battery and filled in the Symptom Check List. The availability of central SERT was assessed with positron emission tomography using the McN5652 ligand for all groups at t1, and only for the ecstasy user groups on follow-ups. The factor Group yielded significant results in the SCL-90 scales Global Severity Index, Anxiety, Obsessive/compulsive and Interpersonal sensitivity, with the ex-ecstasy users reporting the highest symptom scores. There were significant Group effects in all measures of verbal memory, with the lowest performance in the group of ex-ecstasy users. The repeated-measures analyses yielded no significant Group x Time interactions in any SCL-90 scales or measures of memory performance, with the exception of AVLT 1 immediate recall. Thus the ex-ecstasy users' psychopathological symptoms and memory performance failed to improve, and the current ecstasy users' failed to deteriorate, over time relative to the other groups. While there was a significant effect of Group in all brain regions examined (except the control region white matter), the current users' SERT availability seems to have recovered in the mesencephalon, as indicated by a significant Group x Time interaction. Reduced SERT availability might be a transient effect of heavy ecstasy use, since it partially recovered as the current users reduced their MDMA use. However, this measure may not necessarily be a valid indicator of the number or integrity of serotonergic neurons. Ex-ecstasy users' verbal memory showed no sign of improvement even after over 2.5 years of abstinence and thus may represent persistent functional consequences of MDMA neurotoxicity. However, alternative causes such as pre-existing group differences cannot be completely ruled out in spite of the longitudinal design.
Riga, Maurizio S; Sánchez, Connie; Celada, Pau; Artigas, Francesc
2016-09-01
The antidepressant vortioxetine is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin (5-HT) transporter (SERT) inhibitor. Vortioxetine occupies all targets at high therapeutic doses and only SERT and 5-HT3-R at low doses. Vortioxetine increases extracellular monoamine concentrations in rat forebrain more than selective serotonin reuptake inhibitors (SSRI) and shows pro-cognitive activity in preclinical models. Given its high affinity for 5-HT3-R (Ki = 3.7 nM), selectively expressed in GABA interneurons, we hypothesized that vortioxetine may disinhibit glutamatergic and monoaminergic neurotransmission following 5-HT3-R blockade. Here we assessed vortioxetine effect on pyramidal neuron activity and extracellular 5-HT concentration using in vivo extracellular recordings of rat medial prefrontal cortex (mPFC) pyramidal neurons and microdialysis in mPFC and ventral hippocampus (vHPC). Vortioxetine, but not escitalopram, increased pyramidal neuron discharge in mPFC. This effect was prevented by SR57227A (5-HT3-R agonist) and was mimicked by ondansetron (5-HT3-R antagonist) and by escitalopram/ondansetron combinations. In microdialysis experiments, ondansetron augmented the 5-HT-enhancing effect of escitalopram in mPFC and vHPC. Local ondansetron in vHPC augmented escitalopram effect, indicating the participation of intrinsic mechanisms. Since 5-HT neurons express GABAB receptors, we examined their putative involvement in controlling 5-HT release after 5-HT3-R blockade. Co-perfusion of baclofen (but not muscimol) reversed the increased 5-HT levels produced by vortioxetine and escitalopram/ondansetron combinations in vHPC. The present results suggest that vortioxetine increases glutamatergic and serotonergic neurotransmission in rat forebrain by blocking 5-HT3 receptors in GABA interneurons. Copyright © 2016. Published by Elsevier Ltd.
Development and flight history of SERT 2 spacecraft
NASA Technical Reports Server (NTRS)
Kerslake, William R.; Ignaczak, Louis R.
1992-01-01
A 25-year historical review of the Space Electric Rocket Test 2 (SERT 2) mission is presented. The Agena launch vehicle; the SERT 2 spacecraft; and mission-peculiar spacecraft hardware, including two ion thruster systems, are described. The 3 1/2-year development period, from 1966 to 1970, that was needed to design, fabricate, and qualify the ion thruster system and the supporting spacecraft components, is documented. Major testing of two ion thruster systems and related auxiliary experiments that were conducted in space after the 3 Feb. 1970, launch are reviewed. Extended ion thruster restarts from 1973 to 1981 are reported, in addition to cross-neutralization tests. Tests of a reflector erosion experiment were continued in 1989 to 1991. The continuing performance of spacecraft subsystems, including the solar arrays, over the 1970-1991 period is summarized. Finally, the knowledge of thruster-spacecraft interactions learned from SERT 2 is listed.
Klumpers, Floris; Heitland, Ivo; Oosting, Ronald S; Kenemans, J Leon; Baas, Johanna M P
2012-02-01
The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability in the basic reflex physiology of defense. Healthy subjects (N=82) were presented with clearly instructed cues of shock threat and safety to induce robust anxiety reactions. Subjects carrying at least one short allele for the 5-HTTLPR polymorphism showed stronger fear-potentiated startle compared to long allele homozygotes. However, short allele carriers showed no deficit in the downregulation of fear after the offset of threat. These results suggest that natural variation in SERT function affects the magnitude of defensive reactions while not affecting the capacity for fear regulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Jacobs, Miriam T; Zhang, Yuan-Wei; Campbell, Scott D; Rudnick, Gary
2007-10-05
Ibogaine, a hallucinogenic alkaloid with purported anti-addiction properties, inhibited serotonin transporter (SERT) noncompetitively by decreasing V(max) with little change in the K(m) for serotonin (5-HT). Ibogaine also inhibited binding to SERT of the cocaine analog 2beta-2-carbomethoxy-3-(4-[(125)I]iodophenyl)tropane. However, inhibition of binding was competitive, increasing the apparent K(D) without much change in B(max). Ibogaine increased the reactivity of cysteine residues positioned in the proposed cytoplasmic permeation pathway of SERT but not at nearby positions out of that pathway. In contrast, cysteines placed at positions in the extracellular permeation pathway reacted at slower rates in the presence of ibogaine. These results are consistent with the proposal that ibogaine binds to and stabilizes the state of SERT from which 5-HT dissociates to the cytoplasm, in contrast with cocaine, which stabilizes the state that binds extracellular 5-HT.
NASA Astrophysics Data System (ADS)
Jean, Bernandie
The monoamine transporter (MAT) proteins responsible for the reuptake of the neurotransmitter substrates, dopamine, serotonin, and norepinephrine, are drug targets for the treatment of psychiatric disorders including depression, anxiety, and attention deficit hyperactivity disorder. Small molecules that inhibit these proteins can serve as useful therapeutic agents. However, some dopamine transporter (DAT) inhibitors, such as cocaine and methamphetamine, are highly addictive and abusable. Efforts have been made to develop small molecules that will inhibit the transporters and elucidate specific binding site interactions. This work provides knowledge of molecular interactions associated with MAT inhibitors by offering an atomistic perspective that can guide designs of new pharmacotherapeutics with enhanced activity. The work described herein evaluates intermolecular interactions using computational methods to reveal the mechanistic detail of inhibitors binding in the DAT. Because cocaine recognizes the extracellular-facing or outward-facing (OF) DAT conformation and benztropine recognizes the intracellular-facing or inward-facing (IF) conformation, it was postulated that behaviorally "typical" (abusable, locomotor psychostimulant) inhibitors stabilize the OF DAT and "atypical" (little or no abuse potential) inhibitors favor IF DAT. Indeed, behaviorally-atypical cocaine analogs have now been shown to prefer the OF DAT conformation. Specifically, the binding interactions of two cocaine analogs, LX10 and LX11, were studied in the OF DAT using molecular dynamics simulations. LX11 was able to interact with residues of transmembrane helix 8 and bind in a fashion that allowed for hydration of the primary binding site (S1) from the intracellular space, thus impacting the intracellular interaction network capable of regulating conformational transitions in DAT. Additionally, a novel serotonin transporter (SERT) inhibitor previously discovered through virtual screening at the SERT secondary binding site (S2) was studied. Intermolecular interactions between SM11 and SERT have been assessed using binding free energy calculations to predict the ligand-binding site and optimize ligand-binding interactions. Results indicate the addition of atoms to the 4-chlorobenzyl moiety were most energetically favorable. The simulations carried out in DAT and SERT were supported by experimental results. Furthermore, the co-crystal structures of DAT and SERT share similar ligand-binding interactions with the homology models used in this study.
Age is no barrier: predictors of academic success in older learners
NASA Astrophysics Data System (ADS)
Imlach, Abbie-Rose; Ward, David D.; Stuart, Kimberley E.; Summers, Mathew J.; Valenzuela, Michael J.; King, Anna E.; Saunders, Nichole L.; Summers, Jeffrey; Srikanth, Velandai K.; Robinson, Andrew; Vickers, James C.
2017-11-01
Although predictors of academic success have been identified in young adults, such predictors are unlikely to translate directly to an older student population, where such information is scarce. The current study aimed to examine cognitive, psychosocial, lifetime, and genetic predictors of university-level academic performance in older adults (50-79 years old). Participants were mostly female (71%) and had a greater than high school education level (M = 14.06 years, SD = 2.76), on average. Two multiple linear regression analyses were conducted. The first examined all potential predictors of grade point average (GPA) in the subset of participants who had volunteered samples for genetic analysis (N = 181). Significant predictors of GPA were then re-examined in a second multiple linear regression using the full sample (N = 329). Our data show that the cognitive domains of episodic memory and language processing, in conjunction with midlife engagement in cognitively stimulating activities, have a role in predicting academic performance as measured by GPA in the first year of study. In contrast, it was determined that age, IQ, gender, working memory, psychosocial factors, and common brain gene polymorphisms linked to brain function, plasticity and degeneration (APOE, BDNF, COMT, KIBRA, SERT) did not influence academic performance. These findings demonstrate that ageing does not impede academic achievement, and that discrete cognitive skills as well as lifetime engagement in cognitively stimulating activities can promote academic success in older adults.
Bai, Yang; Wang, Han-Ming; Liu, Ming; Wang, Yun; Lian, Guo-Chao; Zhang, Xin-Hua; Kang, Jian; Wang, Huai-Liang
2014-02-01
The present study was performed to investigate the effects of 4-chloro-DL-phenylalanine (PCPA), a tryptophan hydroxylase (Tph) inhibitor (TphI), on pulmonary vascular remodeling and lung inflammation in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Animal models of PAH were established using Sprague-Dawley (SD) rats by a single intraperitoneal injection of MCT (60 mg/kg). PCPA (50 or 100 mg/kg/day) was administered to the rats with PAH. On day 22, hemodynamic measurements and morphological observations of the lung tissues were performed. The levels of Tph-1 and serotonin transporter (SERT) in the lungs were analyzed by immunohistochemistry and western blot analysis. The expression of matrix metalloproteinase (MMP)-2 and MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 and inflammatory cytokines were assayed by western blot analysis. The activity of MMP-2 and MMP-9 was evaluated by gelatin zymography (GZ). MCT markedly promoted PAH, increased the right ventricular hypertrophy index, pulmonary vascular remodeling, lung inflammation and mortality, which was associated with the increased expression of Tph-1, SERT, MMP-2/-9, TIMP-1/-2 and inflammatory cytokines. PCPA markedly attenuated MCT-induced pulmonary vascular remodeling and lung inflammation, inhibited the expression of Tph-1 and SERT and suppressed the expression of MMP-2/-9, TIMP-1/-2, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1). These findings suggest that the amelioration of MCT-induced pulmonary vascular remodeling and lung inflammation by PCPA is associated with the downregulation of Tph-1, SERT, MMP/TIMP and inflammatory cytokine expression in rats.
1970-02-04
The Thorad-Agena launch vehicle with the SERT-2 (Space Electric Rocket Test-2) spacecraft on launch pad at the Western Test Range in California. The SERT-2 was launched on February 4, 1970 and tested the capability of an electric ion thruster system.
No Association between Personality and Candidate Gene Polymorphisms in a Wild Bird Population
Durieux, Gillian; Burke, Terry; Dugdale, Hannah L.
2015-01-01
Consistency of between-individual differences in behaviour or personality is a phenomenon in populations that can have ecological consequences and evolutionary potential. One way that behaviour can evolve is to have a genetic basis. Identifying the molecular genetic basis of personality could therefore provide insight into how and why such variation is maintained, particularly in natural populations. Previously identified candidate genes for personality in birds include the dopamine receptor D4 (DRD4), and serotonin transporter (SERT). Studies of wild bird populations have shown that exploratory and bold behaviours are associated with polymorphisms in both DRD4 and SERT. Here we tested for polymorphisms in DRD4 and SERT in the Seychelles warbler (Acrocephalus sechellensis) population on Cousin Island, Seychelles, and then investigated correlations between personality and polymorphisms in these genes. We found no genetic variation in DRD4, but identified four polymorphisms in SERT that clustered into five haplotypes. There was no correlation between bold or exploratory behaviours and SERT polymorphisms/haplotypes. The null result was not due to lack of power, and indicates that there was no association between these behaviours and variation in the candidate genes tested in this population. These null findings provide important data to facilitate representative future meta-analyses on candidate personality genes. PMID:26473495
Aided and Unaided Speech Perception by Older Hearing Impaired Listeners
Woods, David L.; Arbogast, Tanya; Doss, Zoe; Younus, Masood; Herron, Timothy J.; Yund, E. William
2015-01-01
The most common complaint of older hearing impaired (OHI) listeners is difficulty understanding speech in the presence of noise. However, tests of consonant-identification and sentence reception threshold (SeRT) provide different perspectives on the magnitude of impairment. Here we quantified speech perception difficulties in 24 OHI listeners in unaided and aided conditions by analyzing (1) consonant-identification thresholds and consonant confusions for 20 onset and 20 coda consonants in consonant-vowel-consonant (CVC) syllables presented at consonant-specific signal-to-noise (SNR) levels, and (2) SeRTs obtained with the Quick Speech in Noise Test (QSIN) and the Hearing in Noise Test (HINT). Compared to older normal hearing (ONH) listeners, nearly all unaided OHI listeners showed abnormal consonant-identification thresholds, abnormal consonant confusions, and reduced psychometric function slopes. Average elevations in consonant-identification thresholds exceeded 35 dB, correlated strongly with impairments in mid-frequency hearing, and were greater for hard-to-identify consonants. Advanced digital hearing aids (HAs) improved average consonant-identification thresholds by more than 17 dB, with significant HA benefit seen in 83% of OHI listeners. HAs partially normalized consonant-identification thresholds, reduced abnormal consonant confusions, and increased the slope of psychometric functions. Unaided OHI listeners showed much smaller elevations in SeRTs (mean 6.9 dB) than in consonant-identification thresholds and SeRTs in unaided listening conditions correlated strongly (r = 0.91) with identification thresholds of easily identified consonants. HAs produced minimal SeRT benefit (2.0 dB), with only 38% of OHI listeners showing significant improvement. HA benefit on SeRTs was accurately predicted (r = 0.86) by HA benefit on easily identified consonants. Consonant-identification tests can accurately predict sentence processing deficits and HA benefit in OHI listeners. PMID:25730423
Riyahi, Sepand; Sánchez-Delgado, Marta; Calafell, Francesc; Monk, David; Senar, Juan Carlos
2015-01-01
DNA methylation is one of the main epigenetic mechanisms that can regulate gene expression and is an important means for creating phenotypic variation. In the present study, we performed methylation profiling of 2 candidate genes for personality traits, namely DRD4 and SERT, in the great tit Parus major to ascertain whether personality traits and behavior within different habitats have evolved with the aid of epigenetic variation. We applied bisulphite PCR and strand-specific sequencing to determine the methylation profile of the CpG dinucleotides in the DRD4 and SERT promoters and also in the CpG island overlapping DRD4 exon 3. Furthermore, we performed pyrosequencing to quantify the total methylation levels at each CpG location. Our results indicated that methylation was ∼1–4% higher in urban than in forest birds, for all loci and tissues analyzed, suggesting that this epigenetic modification is influenced by environmental conditions. Screening of genomic DNA sequence revealed that the SERT promoter is CpG poor region. The methylation at a single CpG dinucleotide located 288 bp from the transcription start site was related to exploration score in urban birds. In addition, the genotypes of the SERT polymorphism SNP234 located within the minimal promoter were significantly correlated with novelty seeking behavior in captivity, with the allele increasing this behavior being more frequent in urban birds. As a conclusion, it seems that both genetic and methylation variability of the SERT gene have an important role in shaping personality traits in great tits, whereas genetic and methylation variation at the DRD4 gene is not strongly involved in behavior and personality traits. PMID:25933062
Veenstra-VanderWeele, Jeremy; Muller, Christopher L; Iwamoto, Hideki; Sauer, Jennifer E; Owens, W Anthony; Shah, Charisma R; Cohen, Jordan; Mannangatti, Padmanabhan; Jessen, Tammy; Thompson, Brent J; Ye, Ran; Kerr, Travis M; Carneiro, Ana M; Crawley, Jacqueline N; Sanders-Bush, Elaine; McMahon, Douglas G; Ramamoorthy, Sammanda; Daws, Lynette C; Sutcliffe, James S; Blakely, Randy D
2012-04-03
Fifty years ago, increased whole-blood serotonin levels, or hyperserotonemia, first linked disrupted 5-HT homeostasis to Autism Spectrum Disorders (ASDs). The 5-HT transporter (SERT) gene (SLC6A4) has been associated with whole blood 5-HT levels and ASD susceptibility. Previously, we identified multiple gain-of-function SERT coding variants in children with ASD. Here we establish that transgenic mice expressing the most common of these variants, SERT Ala56, exhibit elevated, p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia. These effects are accompanied by altered basal firing of raphe 5-HT neurons, as well as 5HT(1A) and 5HT(2A) receptor hypersensitivity. Strikingly, SERT Ala56 mice display alterations in social function, communication, and repetitive behavior. Our efforts provide strong support for the hypothesis that altered 5-HT homeostasis can impact risk for ASD traits and provide a model with construct and face validity that can support further analysis of ASD mechanisms and potentially novel treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faivre, V.; Manivet, P.; Callaway, J.C.
2000-06-01
The purified serotonin transporter (SERT) was spread at the air/water interface and the effects both of its surface density and of the temperature on its interfacial behavior were studied. The recorded isotherms evidenced the existence of a stable monolayer undergoing a lengthy rearrangement. SERT/ligand interactions appeared to be dependent on the nature of the studied molecules. Whereas an unrelated drug (chlorcyclizine) did not bind to the spread SERT, it interacted with its specific ligands. Compared to heterocyclic drugs, for which binding appeared to be concentration-dependent, a 'two-site' mechanism was evidenced for pinoline and imipramine.
SERT: Self-Explanation Reading Training
ERIC Educational Resources Information Center
McNamara, Danielle S.
2004-01-01
This study examined the effects of providing reading strategy instruction to improve the effectiveness of self-explanation (i.e., explaining the meaning of information to oneself while reading). The effects of the reading strategy instruction, called Self-Explanation Reading Training (SERT), were examined both in terms of comprehension scores and…
Urwin, Ruth Elizabeth; Nunn, Kenneth Patrick
2005-03-01
The serotonin (5-HT) and norepinephrine (NE) systems are likely involved in the aetiology of anorexia nervosa (AN) as sufferers are premorbidly anxious. Specifically, we hypothesize that genes encoding proteins, which clear 5-HT and NE from the synapse, are prime candidates for affecting susceptibility to AN. Supporting our hypothesis, we earlier showed that the NE transporter (NET) and monoamine oxidase A (MAOA) genes appear to contribute additively to increased risk of developing restricting AN (AN-R). With regard to the MAOA gene, a sequence variant that increases MAOA activity and has suggested association with the anxiety condition, panic disorder was preferentially transmitted from parents to affected children. Here we provide evidence in support of interaction between the MAOA and serotonin transporter (SERT) genes in 114 AN nuclear families (patient with AN plus biological parents). A SERT gene genotype with no apparent individual effect on risk and known to be associated with anxiety is preferentially transmitted to children with AN (chi2 trend=9.457, 1 df, P=0.0021) and AN-R alone (chi2 trend=7.477, 1 df, P=0.0063) when the 'more active' MAOA gene variant is also transmitted. The increased risk of developing the disorder is up to eight times greater than the risk imposed by the MAOA gene variant alone--an example of synergistic epistatic interaction. If independently replicated, our findings to date suggest that we may have identified three genes affecting susceptibility to AN, particularly AN-R: the MAOA, SERT, and NET genes.
Kasper, Siegfried; Sacher, Julia; Klein, Nikolas; Mossaheb, Nilufar; Attarbaschi-Steiner, Trawat; Lanzenberger, Rupert; Spindelegger, Christoph; Asenbaum, Susanne; Holik, Alexander; Dudczak, Robert
2009-05-01
Escitalopram the S-enantiomer of the racemate citalopram, is clinically more effective than citalopram in the treatment of major depressive disorder. However, the precise mechanism by which escitalopram achieves superiority over citalopram is yet to be determined. It has been hypothesized that the therapeutically inactive R-enantiomer competes with the serotonin-enhancing S-enantiomer at a low-affinity allosteric site on serotonin reuptake transporters (SERTs), and reduces the effectiveness of the S-enantiomer at the primary, high-affinity serotonin-binding site. This study summarizes the results of two recent single-photon emission computerized tomography studies measuring SERT occupancy in citalopram-treated and escitalopram-treated healthy volunteers, after a single dose and multiple doses (i.e. under steady-state conditions). The single-dose study showed no attenuating effect of R-citalopram. After multiple dosing, however, SERT occupancy was significantly reduced in the presence of R-citalopram. Under steady-state conditions, R-enantiomer concentrations were greater than for the S-enantiomer because of slower clearance of R-citalopram. A pooled analysis suggests that build-up of the R-enantiomer after repeated citalopram dosing may lead to increased inhibition of S-enantiomer occupancy of SERT. This review adds to the growing body of evidence regarding differences in the dynamics of SERT occupancy, that is, molecular mechanisms underlying the often-observed superior clinical efficacy of escitalopram compared with citalopram in major depressive disorder.
Mencucci, Rita; Favuzza, Eleonora; Salvatici, Maria Cristina; Spadea, Leopoldo; Allen, David
2018-02-01
To evaluate by Environmental Scanning Electron Microscopy (ESEM) the corneal incision architecture after intraocular lens (IOL) implantation in pig eyes, using manual, automated injectors or preloaded delivery systems. Twenty-four pig eyes underwent IOL implantation in the anterior chamber using three different injectors: manual (Monarch III) (n = 8), automated (AutoSert) (n = 8), or a preloaded system (UltraSert) (n = 8). Acrysof IQ IOLs, 21 Dioptres (D) (n = 12) and 27D (n = 12), were implanted through 2.2 mm clear corneal incisions. Incision width was measured using corneal calipers. The endothelial side of the incision was analyzed with ESEM. In each group, the final size of the corneal wound after IOL implantation, measured by calipers, was 2.3-2.4 mm. The incision architecture resulted more irregular in the Monarch group compared with the other injectors. In every group the 27D IOL-implanted specimens showed more alterations than in 21D IOL-implanted samples, and this was less evident in the UltraSert group. The Descemet tear length was higher in the Monarch group than AutoSert and UltraSert group. The automated and preloaded delivery systems provided a good corneal incision architecture; after high-power IOL implantation the incisions were more regular and less damaged with the preloaded system than with the other devices.
SERT Transformation Study. Technical Report No. 70.
ERIC Educational Resources Information Center
Day, Richard; And Others
This research report deals with the transformations of stimulus sentences that primary grade speakers of Hawaii Creole English (HCE) made when they were asked to repeat sentences said to them in Standard English. The test used was the Kamehameha Early Education Program (KEEP) Standard English Repetition Test (SERT) which was administered to the 21…
Veenstra-VanderWeele, Jeremy; Muller, Christopher L.; Iwamoto, Hideki; Sauer, Jennifer E.; Owens, W. Anthony; Shah, Charisma R.; Cohen, Jordan; Mannangatti, Padmanabhan; Jessen, Tammy; Thompson, Brent J.; Ye, Ran; Kerr, Travis M.; Carneiro, Ana M.; Crawley, Jacqueline N.; Sanders-Bush, Elaine; McMahon, Douglas G.; Ramamoorthy, Sammanda; Daws, Lynette C.; Sutcliffe, James S.; Blakely, Randy D.
2012-01-01
Fifty years ago, increased whole-blood serotonin levels, or hyperserotonemia, first linked disrupted 5-HT homeostasis to Autism Spectrum Disorders (ASDs). The 5-HT transporter (SERT) gene (SLC6A4) has been associated with whole blood 5-HT levels and ASD susceptibility. Previously, we identified multiple gain-of-function SERT coding variants in children with ASD. Here we establish that transgenic mice expressing the most common of these variants, SERT Ala56, exhibit elevated, p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia. These effects are accompanied by altered basal firing of raphe 5-HT neurons, as well as 5HT1A and 5HT2A receptor hypersensitivity. Strikingly, SERT Ala56 mice display alterations in social function, communication, and repetitive behavior. Our efforts provide strong support for the hypothesis that altered 5-HT homeostasis can impact risk for ASD traits and provide a model with construct and face validity that can support further analysis of ASD mechanisms and potentially novel treatments. PMID:22431635
Tavoulari, Sotiria; Forrest, Lucy R.; Rudnick, Gary
2010-01-01
Serotonin transporter (SERT) is the main target for widely used antidepressant agents. Several of these drugs, including imipramine, citalopram, sertraline, and fluoxetine (Prozac), bound more avidly to SERT in the presence of Cl–. In contrast, Cl– did not enhance cocaine or paroxetine binding. A Cl– binding site recently identified in SERT, and shown to be important for Cl– dependent transport, was also critical for the Cl– dependence of antidepressant affinity. Mutation of the residues contributing to this site eliminated the Cl–-mediated affinity increase for imipramine and fluoxetine. Analysis of ligand docking to a single state of SERT indicated only small differences in the energy of interaction between bound ligands and Cl–. These differences in interaction energy cannot account for the affinity differences observed for Cl– dependence. However, fluoxetine binding led to a conformational change, detected by cysteine accessibility experiments, that was qualitatively different from that induced by cocaine or other ligands. Given the known Cl– requirement for serotonin-induced conformational changes, we propose that Cl– binding facilitates conformational changes required for optimal binding of fluoxetine and other antidepressant drugs. PMID:19641126
Ouellet-Morin, I; Wong, C C Y; Danese, A; Pariante, C M; Papadopoulos, A S; Mill, J; Arseneault, L
2013-09-01
Childhood adverse experiences are known to induce persistent changes in the hypothalamic-pituitary-adrenal (HPA) axis reactivity to stress. However, the mechanisms by which these experiences shape the neuroendocrine response to stress remain unclear. Method We tested whether bullying victimization influenced serotonin transporter gene (SERT) DNA methylation using a discordant monozygotic (MZ) twin design. A subsample of 28 MZ twin pairs discordant for bullying victimization, with data on cortisol and DNA methylation, were identified in the Environmental Risk (E-Risk) Longitudinal Twin Study, a nationally representative 1994-1995 cohort of families with twins. Bullied twins had higher SERT DNA methylation at the age of 10 years compared with their non-bullied MZ co-twins. This group difference cannot be attributed to the children's genetic makeup or their shared familial environments because of the study design. Bullied twins also showed increasing methylation levels between the age of 5 years, prior to bullying victimization, and the age of 10 years whereas no such increase was detected in non-bullied twins across time. Moreover, children with higher SERT methylation levels had blunted cortisol responses to stress. Our study extends findings drawn from animal models, supports the hypothesis that early-life stress modifies DNA methylation at a specific cytosine-phosphate-guanine (CpG) site in the SERT promoter and HPA functioning and suggests that these two systems may be functionally associated.
Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B; Wiborg, Ove
2004-03-01
The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depression and anxiety. In the present study we have undertaken a mutational scanning of human SERT in order to identify residues that are responsible for individual differences among related monoamine transporters. One mutant, G100A, was inactive in transport. However, ligand binding affinity was similar to wild-type, suggesting that G100A amongst different possible SERT conformations is restrained to a binding conformation. We suggest that the main role of glycine-100 is to confer structural flexibility during substrate translocation. For the two single mutants, T178A and F263C, uptake rates and K(m) values were both several-fold higher than wild-type while binding affinities and inhibitory potencies decreased considerably for several drugs. Ion dependency increased and only at hyperosmotic concentrations were K(m) values partly restored. For the double mutant, T178A/F263C, shifts in uptake kinetics and ligand affinities, as well as ion dependencies, were drastic. Effects were synergistic compared to the corresponding single mutants. In conclusion, we suggest that mutating threonine-178 to an alanine and phenylalanine-263 to a cysteine mainly alter the overall uptake kinetics of SERT by affecting the conformational equilibrium of different transporter conformations.
Wang, Yun; Gu, Yu-Han; Liu, Ming; Bai, Yang; Wang, Huai-Liang
2017-02-01
Methamphetamine (MA) abuse is a major public health and safety concern throughout the world and a growing burden on healthcare costs. The purpose of the present study was to investigate the protective effect of fluoxetine against MA‑induced chronic pulmonary inflammation and to evaluate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidative stress. Wistar rats were divided into control, MA and two fluoxetine‑treated groups. Rats in the MA and the two fluoxetine‑treated groups were treated daily with intraperitoneal injection of 10 mg/kg MA twice daily. Rats in the two fluoxetine‑treated groups were injected intragastrically with fluoxetine (2 and 10 mg/kg) once daily, respectively. After 5 weeks, the rats were euthanized and hematoxylin and eosin staining, immunohistochemistry, western blot analysis and redox assay were performed. It was demonstrated that chronic exposure to MA can induce pulmonary inflammation in rats, with the symptoms of inflammatory cell infiltration, crowded lung parenchyma, thickened septum and a reduced number of alveolar sacs. Fluoxetine attenuated pulmonary inflammation and the expression of interleukin‑6 and tumor necrosis factor‑α in rat lungs. Fluoxetine inhibited MA‑induced increases in the expression levels of serotonin transporter (SERT) and p‑p38 mitogen‑activated protein kinase (MAPK), and reversed the MA‑induced decrease in nuclear Nrf2 and human heme oxygenase‑1 in lungs. Fluoxetine at 10 mg/kg significantly reversed the reduced glutathione (GSH) level, the ratio of GSH/oxidized glutathione, and the reactive oxygen species level in rat lungs from the MA group. These findings suggested that fluoxetine, a SERT inhibitor, has a protective effect against MA‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.
Kim, Jong-Hoon; Son, Young-Don; Kim, Jeong-Hee; Choi, Eun-Jung; Lee, Sang-Yoon; Joo, Yo-Han; Kim, Young-Bo; Cho, Zang-Hee
2015-12-10
Self-transcendence is an inherent human personality trait relating to the experience of spiritual aspects of the self. We examined the relationship between self-transcendence and serotonin transporter (SERT) availability in brainstem raphe nuclei, which are collections of five different serotonergic nuclei with rostro-caudal extension, using ultra-high resolution magnetic resonance imaging (MRI) and positron emission tomography (PET) with (11)C-3-amino-4-(2-dimethylaminomethylphenylthio)benzonitrile ([(11)C]DASB) to elucidate potential roles of serotonergic neuronal activities in this personality trait. Sixteen healthy subjects completed 7.0T MRI and High Resolution Research Tomograph (HRRT) PET. The regions of interest (ROIs) included the dorsal raphe nucleus (R1), median raphe nucleus (R2), raphe pontis (R3), and the caudal raphe nuclei (R4 and R5). For the estimation of SERT availability, the binding potential (BPND) was derived using the simplified reference tissue model (SRTM2). The Temperament and Character Inventory was used to measure self-transcendence. The analysis revealed that the self-transcendence total score had a significant negative correlation with the [(11)C]DASB BPND in the caudal raphe (R5). The subscale score for spiritual acceptance was significantly negatively correlated with the [(11)C]DASB BPND in the median raphe nucleus (R2). The results indicate that the self-transcendence trait is associated with SERT availability in specific raphe subnuclei, suggesting that the serotonin system may serve as an important biological basis for human self-transcendence. Based on the connections of these nuclei with cortico-limbic and visceral autonomic structures, the functional activity of these nuclei and their related neural circuitry may play a crucial role in the manifestation of self-transcendence. Copyright © 2015. Published by Elsevier B.V.
Pifl, Christian; Nagy, Gabor; Berényi, Sándor; Kattinger, Alexandra; Reither, Harald; Antus, Sándor
2005-07-01
Ecstasy samples often contain byproducts of the illegal, uncontrolled synthesis of N-methyl-3,4-methylenedioxy-amphetamine or 3,4-methylenedioxymethamphetamine (MDMA). MDMA and eight chemically defined byproducts of MDMA synthesis were investigated for their interaction with the primary sites of action of MDMA, namely the human plasmalemmal monamine transporters for norepinephrine, serotonin, and dopamine [(norepinephrine transporter (NET), serotonin transporter (SERT), and dopamine transporter (DAT)]. SK-N-MC neuroblastoma and human embryonic kidney cells stably transfected with the transporter cDNA were used for uptake and release experiments. Two of the eight compounds, 1,3-bis (3,4-methylenedioxyphenyl)-2-propanamine (12) and N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (13) had uptake inhibitory potencies with IC50 values in the low micromolar range similar to MDMA. Compounds with nitro instead of amino groups and a phenylethenyl instead of a phenylethyl structure or a formamide or acetamide modification had IC50 values beyond 100 microM. MDMA, 12, and 13 were examined for induction of carrier-mediated release by superfusion of transporter expressing cells preloaded with the metabolically inert transporter substrate [3H]1-methyl-4-phenylpyridinium. MDMA induced release mediated by NET, SERT, or DAT with EC50 values of 0.64, 1.12, and 3.24 microM, respectively. 12 weakly released from NET- and SERT-expressing cells with maximum effects less than one-tenth of that of MDMA and did not release from DAT cells. 13 had no releasing activity. 12 and 13 inhibited release induced by MDMA, and the concentration dependence of this effect correlated with their uptake inhibitory potency at the various transporters. These results do not support a neurotoxic potential of the examined ecstasy synthesis byproducts and provide interesting structure-activity relationships on the transporters.
Solar coronal temperature diagnostics using emission line from multiple stages of ionization of iron
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W.; Davila, Joseph M.; Thomas, Roger J.; Thompson, William T.
1994-01-01
We obtained spatially resolved extreme-ultraviolet (EUV) spectra of AR 6615 on 1991 May 7 with NASA/ Goddard Space Flight Center's Solar EUV Rocket Telescope and Spectrograph (SERTS). Included are emission lines from four different stages of ionization of iron: Fe(+15) lambda 335 A, Fe(+14) lambda 327 A, Fe(+13) lambda 334 A, and Fe(+12) lambda 348 A. Using intensity ratios from among these lines, we have calculated the active region coronal temperature along the Solar Extreme Ultraviolet Telescope and Spectrograph (SERTS) slit. Temperatures derived from line ratios which incorporate adjacent stages of ionization are most sensitive to measurement uncertainties and yield the largest scatter. Temperatures derived from line ratios which incorporate nonadjacent stages of ionization are less sensitive to measurement uncertainties and yield little scatter. The active region temperature derived from these latter ratios has an average value of 2.54 x 10(exp 6) K, with a standard deviation approximately 0.12 x 10(exp 6) K, and shows no significant variation with position along the slit.
Meyer, Jerrold S; Piper, Brian J; Vancollie, Valerie E
2008-10-01
Adult animals treated with high doses of MDMA ("ecstasy") either on a single day or for several consecutive days show numerous behavioral changes as well as persistent reductions in brain serotonin (5-HT) concentrations and 5-HT transporter (SERT) protein expression. However, such dosing regimens do not adequately mimic the intermittent use patterns commonly seen in adolescent recreational ecstasy users. We have developed and characterized a rat model of intermittent adolescent MDMA exposure that simulates many of the features of human weekend use. Animals treated with our dosing regimen experience only small increases in core body temperature, and their plasma MDMA levels compare favorably with the levels reported for heavy ecstasy users under naturalistic conditions when species differences in drug clearance rates are taken into account. Intermittent adolescent MDMA exposure causes later deficits in object-recognition memory, increased impulsivity in the elevated plus-maze, and reduced sensitivity to a 5-HT(1A) agonist challenge. SERT-immunoreactive fiber density is significantly reduced in the hippocampus but not the neocortex, suggesting that the hippocampus may be particularly vulnerable to moderate MDMA exposure during adolescence. Finally, adolescent MDMA-treated animals are protected (i.e., show tolerance) against the neurotoxic and depressant effects of a subsequent MDMA "binge" challenge. We believe that the present animal model has important clinical relevance based on the similarities between the model and the reported effects of regular ecstasy use.
SERT 2 1979 extended flight thruster system performance
NASA Technical Reports Server (NTRS)
Kerslake, W. R.; Ignaczak, L. R.
1979-01-01
Steady state tests of the thruster 2 system on the SERT 2 spacecraft are presented. A direct thrust measurement was obtained for the ion thruster during operations to increase the spacecraft spin rate to maintain spacecraft attitude stability. The continued restart tests of thruster 1 and a report on the general status of all spacecraft systems including the main solar array are presented.
Banala, Ashwini K.; Zhang, Peng; Plenge, Per; Cyriac, George; Kopajtic, Theresa; Katz, Jonathan L.; Loland, Claus Juul; Newman, Amy Hauck
2013-01-01
The serotonin transporter (SERT) is the primary target for antidepressant drugs. The existence of a high affinity primary orthosteric binding site (S1) and a low affinity secondary site (S2) has been described and their relation to antidepressant pharmacology has been debated. Herein, structural modifications to the N-, 4, 5, and 4’-positions of (±)citalopram (1) are reported. All of the analogues were SERT-selective and demonstrated that steric bulk was tolerated at the SERT S1 site, including two dimeric ligands (15 and 51.) In addition, 8 analogues were identified with similar potencies to S-1 for decreasing the dissociation of [3H]S-1 from the S1 site, via allosteric modulation at S2. Both dimeric compounds had similar affinities for the SERT S1 site (Ki=19.7 and 30.2 nM, respectively), whereas only the N-substituted analogue, 51, was as effective as S-1 in allosterically modulating the binding of [3H]S-1 via S2. PMID:24237160
Vinsard, Daniela Guerrero; Kandel, Pujan; Mejia Perez, Lady Katherine; Bingham, Russell L.; Lennon, Ryan J.; Woodward, Timothy A.; Gomez, Victoria; Raimondo, Massimo; Bouras, Ernest P.; Wallace, Michael B.
2018-01-01
Background and study aims Risk factors for colorectal adenoma recurrence after endoscopic mucosal resection (EMR) have been well documented. We assessed the efficacy of the newer 190 colonoscope versus the standard 180 colonoscope for complete resection of lateral spreading lesions. Patients and methods A single-center, retrospective study of patients who underwent EMR with Olympus 180 or 190 colonoscopes from January 1, 2010 to September 30, 2016. We included patients with lesions ≥ 20 mm and surveillance colonoscopy (SC1) after index EMR. A propensity score approach with inverse probability weighting was used to control for potential confounders. A secondary aim was to identify risk factors for recurrence and assess the applicability of the Sydney EMR recurrence tool (SERT) by grading each lesion of our cohort and analyzing associations with recurrence. Results Two hundred ninety-one lesions met inclusion criteria for the study. Odds ratio (OR) for recurrence with the 190 colonoscope was 1.06 ( P = .85). Adenoma size ( P = .02) and use of argon plasma coagulation (APC; P < .001) were risk factors for recurrence. Lesions with SERT scores > 0 had a higher recurrence risk during follow-up (32 % vs 21 %; OR 1.71; P = .05). Lesions with SERT scores = 0 reached a plateau for recurrence at 12 and 18 months in Kaplan-Meier curves. Conclusions The use of 190 colonoscopes did not measurably affect adenoma recurrence at SC1. Recurrence was associated with adenoma size, complementary APC for resection, and SERT scores > 0. Lesions with SERT scores = 0 that remain negative for recurrence at 18 months may return to routine surveillance. PMID:29423433
Vulnerability to mild predator stress in serotonin transporter knockout mice.
Adamec, Robert; Burton, Paul; Blundell, Jacqueline; Murphy, Dennis L; Holmes, Andrew
2006-06-03
Effect of predator stress on rat and mouse anxiety-like behavior may model aspects of post traumatic stress disorder (PTSD). A single cat exposure of wild type (C57, CFW) mice can produce lasting anxiety-like effects in the elevated plus maze, light/dark box tests and startle. In addition, female but not male C57 mice are made more anxious in the plus maze by exposure to predator odors alone, suggesting differential vulnerability to predator stressors of differing intensity. There is a link between genetic variation in the serotonin (5-HT) transporter (SERT) and anxiety in humans. This prompted the generation of SERT knockout mice [see Holmes A, Murphy DL, Crawley, JN. Biol Psychiatry 2003;54(10):953-9]. Present work used these mice to determine if there was a link between vulnerability to the anxiogenic effects of predator odors and abnormalities of 5-HT transmission induced by a life long reduction in 5-HT reuptake. Wild type (WT, C57 background), heterozygous (SERT +/-, HET) mice and homozygous knockout (SERT -/-, KO) were assigned to handled control groups or groups exposed for 10 min to a large testing room rich in cat odor. One week after handling or room exposure, anxiety testing took place in the dark phase of the light/dark cycle, in red light. Predator odor exposure was selectively anxiogenic in the plus maze and light/dark box tests in SERT -/- mice. Exposure to predator odor did not potentiate startle. Findings suggest a role for abnormalities in 5-HT transmission in vulnerability to some of the lasting anxiogenic effects of species relevant stressors and possibly in vulnerability to PTSD.
Yeh, Yi-Wei; Ho, Pei-Shen; Chen, Chun-Yen; Kuo, Shin-Chang; Liang, Chih-Sung; Ma, Kuo-Hsing; Shiue, Chyng-Yann; Huang, Wen-Sheng; Cheng, Cheng-Yi; Wang, Tzu-Yun; Lu, Ru-Band
2015-01-01
Background: Much evidence supports the role of the serotonin transporter (SERT) in the pathophysiology and pharmacotherapy of major depressive disorder (MDD) and suicidal behaviors. Methods: In this study, we recruited 17 antidepressant-naïve patients with MDD and 17 age- and gender-matched healthy controls. SERT availability was measured in vivo with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM) positron emission tomography (PET) imaging. The 21-item Hamilton Depression Rating Scale (HDRS) and Beck Scale for Suicide Ideation were used to assess the severity of depression and the intent of suicide ideation prior to PET imaging. All subjects with MDD were in a current state of depression with HDRS scores ≧18. Subjects who attempted suicide within two weeks of the study onset were recruited in the depressed suicidal group (n = 8). Subjects with MDD who denied any prior suicide attempt were recruited into the depressed non-suicidal group (n = 9). Results: A significant reduction of SERT availability in the midbrain, thalamus, and striatum was noted in the MDD group relative to the control group (Bonferroni-adjusted p-value < 0.05). Moreover, this effect was more pronounced in the depressed suicidal group compared to the control group (Bonferroni-adjusted p-value < 0.01). Relative to both the depressed non-suicidal and control groups, the depressed suicidal group showed an increased prefrontal cortex (PFC)/midbrain SERT binding ratio (Bonferroni-adjusted p-value < 0.01). Conclusions: This study suggests an incongruent reduction of PFC SERT binding relative to the midbrain might discriminate between depressed suicide attempters and non-attempters in patients with MDD and may be involved in the pathophysiology of suicide behaviors. PMID:25522405
Structure and Regulatory Interactions of the Cytoplasmic Terminal Domains of Serotonin Transporter
2014-01-01
Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein–protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional 1H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the “rocking bundle” hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains. PMID:25093911
A Synopsis of Ion Propulsion Development Projects in the United States: SERT 1 to Deep Space I
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
1999-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations were reviewed. The results of the first successful ion engine flight in 1964, SERT I which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technology employed on the early cesium engine flights. the Applications Technology Satellite (ATS) series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space I flight confirmed that these auxiliary and primary propulsion systems have advanced to a high-level of flight-readiness.
SERT II thrusters - Still ticking after eleven years
NASA Technical Reports Server (NTRS)
Kerslake, W. R.
1981-01-01
The Space Electric Rocket Test II (SERT II) spacecraft was launched in 1970 with a primary objective of demonstrating long-term operation of a space electric thruster system. An overview is presented of all the SERT II testing conducted during the time from 1970 to 1981. Thruster testing and interaction results are considered, taking into account ion beam thrusting, distant neutralization, and the plasma beam thrust. In a discussion of durability testing, attention is given to the main cathodes, the neutralizer cathodes, the main keeper insulator, the H.V. grid insulators, the neutralizer propellant tanks, and the main propellant tanks. The most important result of the study is related to the confidence gained that mercury bombardment ion thruster systems can be built and operated in space on a routine basis with the same lifetime and performance as measured in ground testing.
Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters
Bermingham, Daniel P.
2016-01-01
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies. PMID:27591044
Molecular docking and panicolytic effect of 8-prenylnaringenin in the elevated T-maze.
Bagatin, Mariane Cristovão; Tozatti, Camila Santos Suniga; Abiko, Layara Akemi; Yamazaki, Diego Alberto dos Santos; Silva, Priscila Rebeca Alves; Perego, Leonardo Martins; Audi, Elisabeth Aparecida; Seixas, Flavio Augusto Vicente; Basso, Ernani Abicht; Gauze, Gisele de Freitas
2014-01-01
The purpose of this study was to investigate the effects of the chronic administration of a racemic mixture of 8-prenylnaringenin (8-PN) on rats submitted to the elevated T-maze (ETM) model of generalized anxiety and panic disorders. The selective serotonin (SERT) reuptake inhibitor fluoxetine was used as a positive control. Rat locomotion was assessed in a circular arena following each drug treatment. The administration of racemic 8-PN for 21 d in rats increased one-way escape latencies from the ETM open arm, indicating a panicolytic effect. To evaluate the interactions of 8-PN with monoamine transporters, a docking study was performed for both the R and S configurations of 8-PN towards SERT, norepinephrine (NET) and dopamine transporters (DAT). The application of the docking protocol showed that (R)-8-PN provides greater affinity to all transporters than does the S enantiomer. This result suggests that enantiomer (R)-8-PN is the active form in the in vivo test of the racemic mixture.
Matsui, Aya; Alvarez, Veronica A
2018-06-26
The ventral pallidum (VP) is part of the basal ganglia circuitry and a target of both direct and indirect pathway projections from the nucleus accumbens. VP is important in cocaine reinforcement, and the firing of VP neurons is modulated in vivo during cocaine self-administration. This modulation of firing is thought to be indirect via cocaine actions on dopamine in the accumbens. Here, we show that cocaine directly inhibits synaptic transmission evoked by selective stimulation of indirect pathway projections to VP neurons. The inhibition is independent of dopamine receptor activation, absent in 5-HT1B knockout mice, and mimicked by a serotonin transporter (SERT) blocker. SERT-expressing neurons in dorsal raphe project to the VP. Optogenetic stimulation of these projections evokes serotonin transients and effectively inhibits GABAergic transmission to VP neurons. This study shows that cocaine increases endogenous serotonin in the VP to suppress synaptic transmission selectively from indirect pathway projections to VP neurons. Published by Elsevier Inc.
Alves, Pollianna Muniz; Queiroz, Lélia Maria Guedes; Pereira, Jozinete Vieira; Pereira, Maria do Socorro Vieira
2009-01-01
The antimicrobial, antifungal and antiadherent activity of aroeira-do-sertão, mallow and guava tree on oral biofilm microorganisms and oral candidiasis was evaluated in vitro. The extracts were shown to be effective in inhibiting the growth of bacteria of the oral biofilm and fungi of oral candidiasis, thus suggesting that these extracts can be used as alternative means of dental therapy.
The advantages of the high voltage solar array for electric propulsion
NASA Technical Reports Server (NTRS)
Sater, B. L.
1973-01-01
The high voltage solar array offers improvements in efficiency, weight, and reliability for the electric propulsion power system. Conventional power processes and problems associated with ion thruster operation using SERT 2 experience are discussed and the advantages of the HVSA concept for electric propulsion are presented. Tests conducted operating the SERT 2 thruster system in conjunction with HVSA are reported. Thruster operation was observed to be normal and in some respects improved.
Unifying concept of serotonin transporter-associated currents.
Schicker, Klaus; Uzelac, Zeljko; Gesmonde, Joan; Bulling, Simon; Stockner, Thomas; Freissmuth, Michael; Boehm, Stefan; Rudnick, Gary; Sitte, Harald H; Sandtner, Walter
2012-01-02
Serotonin (5-HT) uptake by the human serotonin transporter (hSERT) is driven by ion gradients. The stoichiometry of transported 5-HT and ions is predicted to result in electroneutral charge movement. However, hSERT mediates a current when challenged with 5-HT. This discrepancy can be accounted for by an uncoupled ion flux. Here, we investigated the mechanistic basis of the uncoupled currents and its relation to the conformational cycle of hSERT. Our observations support the conclusion that the conducting state underlying the uncoupled ion flux is in equilibrium with an inward facing state of the transporter with K+ bound. We identified conditions associated with accumulation of the transporter in inward facing conformations. Manipulations that increased the abundance of inward facing states resulted in enhanced steady-state currents. We present a comprehensive kinetic model of the transport cycle, which recapitulates salient features of the recorded currents. This study provides a framework for exploring transporter-associated currents.
Unifying Concept of Serotonin Transporter-associated Currents*
Schicker, Klaus; Uzelac, Zeljko; Gesmonde, Joan; Bulling, Simon; Stockner, Thomas; Freissmuth, Michael; Boehm, Stefan; Rudnick, Gary; Sitte, Harald H.; Sandtner, Walter
2012-01-01
Serotonin (5-HT) uptake by the human serotonin transporter (hSERT) is driven by ion gradients. The stoichiometry of transported 5-HT and ions is predicted to result in electroneutral charge movement. However, hSERT mediates a current when challenged with 5-HT. This discrepancy can be accounted for by an uncoupled ion flux. Here, we investigated the mechanistic basis of the uncoupled currents and its relation to the conformational cycle of hSERT. Our observations support the conclusion that the conducting state underlying the uncoupled ion flux is in equilibrium with an inward facing state of the transporter with K+ bound. We identified conditions associated with accumulation of the transporter in inward facing conformations. Manipulations that increased the abundance of inward facing states resulted in enhanced steady-state currents. We present a comprehensive kinetic model of the transport cycle, which recapitulates salient features of the recorded currents. This study provides a framework for exploring transporter-associated currents. PMID:22072712
2014-01-01
The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP+) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP+) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP+), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204
Plasticity of serotonergic innervation of the inferior colliculus in mice following acoustic trauma
Papesh, Melissa A.; Hurley, Laura M.
2012-01-01
Acoustic trauma often results in permanent damage to the cochlea, triggering changes in processing within central auditory structures such as the inferior colliculus (IC). The serotonergic neuromodulatory system, present in the IC, is responsive to chronic changes in the activity of sensory systems. The current study investigated whether the density of serotonergic innervation in the IC is changed following acoustic trauma. The trauma stimulus consisted of an 8 kHz pure tone presented at a level of 113 dB SPL for six consecutive hours to anesthetized CBA/J mice. Following a minimum recovery period of three weeks, serotonergic fibers were visualized via histochemical techniques targeting the serotonin reuptake transporter (SERT) and quantified using stereologic probes. SERT-positive fiber densities were then compared between the traumatized and protected hemispheres of unilaterally traumatized subjects and those of controls. A significant effect of acoustic trauma was found between the hemispheres of unilaterally traumatized subjects such that the IC contralateral to the ear of exposure contained a lower density of SERT-positive fibers than the IC ipsilateral to acoustic trauma. No significant difference in density was found between the hemispheres of control subjects. Additional dimensions of variability in serotonergic fibers were seen among subdivisions of the IC and with age. The central IC had a slightly but significantly lowered density of serotonergic fibers than other subdivisions of the IC, and serotonergic fibers also declined with age. Overall, the results indicate that acoustic trauma is capable of producing modest but significant decreases in the density of serotonergic fibers innervating the IC. PMID:22101024
Jakab, Robert L; Collaco, Anne M; Ameen, Nadia A
2012-11-01
Lubiprostone is a chloride channel activator in clinical use for the treatment of chronic constipation, but the mechanisms of action of the drug are poorly understood. The aim of this study was to determine whether lubiprostone exerts secretory effects in the intestine by membrane trafficking of ion transporters and associated machinery. Immunolabeling and quantitative fluorescence intensity were used to examine lubiprostone-induced trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR), sodium/potassium-coupled chloride co-transporter 1 (NKCC1), electrogenic sodium/bicarbonate co-transporter 1 (NBCe1), down-regulated in adenoma (DRA), putative anion transporter 1 (PAT1), sodium/proton exchanger 3 (NHE3), Ca(2+) activated chloride channel 2 (ClC-2) serotonin and its transporter SERT, E prostanoid receptors EP4 and EP1, sodium/potassium ATPase (Na-K-ATPase) and protein kinase A (PKA). The effects of lubiprostone on mucus exocytosis in rat intestine and human rectosigmoid explants were also examined. Lubiprostone induced contraction of villi and proximal colonic plicae and membrane trafficking of transporters that was more pronounced in villus/surface cells compared to the crypt. Membrane trafficking was determined by: (1) increased membrane labeling for CFTR, PAT1, NKCC1, and NBCe1 and decreased membrane labeling for NHE3, DRA and ClC-2; (2) increased serotonin, SERT, EP4, EP1 and PKA labeling in enterochromaffin cells; (3) increased SERT, EP4, EP1, PKA and Na-K-ATPase in enterocytes; and (4) increased mucus exocytosis in goblet cells. These data suggest that lubiprostone can target serotonergic, EP4/PKA and EP1 signaling in surface/villus regions; stimulate membrane trafficking of CFTR/NBCe1/NKCC1 in villus epithelia and PAT1/NBCe1/NKCC1 in colonic surface epithelia; suppress NHE3/DRA trafficking and fluid absorption; and enhance mucus-mobilization and mucosal contractility.
Jakab, Robert L.; Collaco, Anne M.; Ameen, Nadia A.
2012-01-01
Background and Aim Lubiprostone is a chloride channel activator in clinical use for the treatment of chronic constipation, but the mechanisms of action of the drug are poorly understood. The aim of this study was to determine whether lubiprostone exerts secretory effects in the intestine by membrane trafficking of ion transporters and associated machinery. Methods Immunolabeling and quantitative fluorescence intensity were used to examine lubiprostone-induced trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR), sodium/potassium-coupled chloride co-transporter 1 (NKCC1), electrogenic sodium/bicarbonate co-transporter 1 (NBCe1), down-regulated in adenoma (DRA), putative anion transporter 1 (PAT1), sodium/proton exchanger 3 (NHE3), Ca2+ activated chloride channel 2 (ClC-2) serotonin and its transporter SERT, E prostanoid receptors EP4 and EP1, sodium/potassium ATPase (Na-K-ATPase) and protein kinase A (PKA). The effects of lubiprostone on mucus exocytosis in rat intestine and human rectosigmoid explants were also examined. Results Lubiprostone induced contraction of villi and proximal colonic plicae and membrane trafficking of transporters that was more pronounced in villus/surface cells compared to the crypt. Membrane trafficking was determined by: (1) increased membrane labeling for CFTR, PAT1, NKCC1, and NBCe1 and decreased membrane labeling for NHE3, DRA and ClC-2; (2) increased serotonin, SERT, EP4, EP1 and PKA labeling in enterochromaffin cells; (3) increased SERT, EP4, EP1, PKA and Na-K-ATPase in enterocytes; (4) and increased mucus exocytosis in goblet cells. Conclusion These data suggest that lubiprostone can target serotonergic, EP4/PKA and EP1 signaling in surface/villus regions; stimulate membrane trafficking of CFTR/NBCe1/NKCC1 in villus epithelia and PAT1/NBCe1/NKCC1 in colonic surface epithelia; suppress NHE3/DRA trafficking and fluid absorption; enhance mucus-mobilization and mucosal contractility. PMID:22923315
López, Víctor; Nielsen, Birgitte; Solas, Maite; Ramírez, Maria J.; Jäger, Anna K.
2017-01-01
Lavender essential oil is traditionally used and approved by the European Medicines Agency (EMA) as herbal medicine to relieve stress and anxiety. Some animal and clinical studies reveal positive results in models of anxiety and depression although very little research has been done on molecular mechanisms. Our work consisted of evaluating the effects of lavender (Lavandula angustifolia) essential oil on central nervous system well-established targets, such as MAO-A, SERT, GABAAand NMDA receptors as well as in vitro models of neurotoxicity. The results showed that lavender essential oil and its main components exert affinity for the glutamate NMDA-receptor in a dose-dependent manner with an IC50 value of 0.04 μl/mL for lavender oil. In addition, lavender and linalool were also able to bind the serotonin transporter (SERT) whereas they did not show affinity for GABAA-benzodiazepine receptor. In three different models of neurotoxicity, lavender did not enhance the neurotoxic insult and improved viability of SH-SY5Y cells treated with hydrogen peroxide. According to our data, the anxiolytic and antidepressant-like effects attributed to lavender may be due to an antagonism on the NMDA-receptor and inhibition of SERT. This study suggests that lavender essential oil may exert pharmacological properties via modulating the NMDA receptor, the SERT as well as neurotoxicity induced by hydrogen peroxide. PMID:28579958
Rasul, Aram; El-Nour, Husameldin; Blakely, Randy D; Lonne-Rahm, Sol-Britt; Forsberg, Johan; Johansson, Björn; Theodorsson, Elvar; Nordlind, Klas
2011-11-01
Atopic eczema is often worsened by stress. While acute stress is associated with increased turnover of serotonin (5-hydroxytryptamine; 5-HT), chronic stress causes a decrease. In chronic stress, there is a decrease of the 5-HT1A receptor (R)- and an increase in the 5-HT2AR-responsiveness to 5-HT. In the present study, the impact of chronic mild stress on the expression of 5-HT1A and 5-HT2A receptors and serotonin transporter protein (SERT) was investigated in eczematous skin and brain of atopic-like NC/Nga mice. Twenty-four NC/Nga mice were subjected to chronic mild stress for 12 weeks, and eczema was induced by applying a mite antigen (Dermatophagoides pteronyssinus) on the ears for the last 4 weeks. The mice were divided into three groups, eight per group, stressed eczematous (SE), non-stressed eczematous (NSE) and stressed control (SC). The biopsies were analysed by immunohistochemistry, using a streptavidin-biotin technique. There was an increased number of 5-HT containing dermal mast cell-like mononuclear cells in the skin of mice with eczema (SE and NSE, respectively) compared with the SC, and a tendency to more 5-HT-positive cells in the SE compared with the NSE group. Increased 5-HT1AR immunoreactivity (IR) in the skin and hippocampus of the eczematous groups compared to the control group was seen, but no difference between the SE and NSE groups. The epidermal immunoreactivity for 5-HT2AR was highest in the SE and NSE compared to the SC group, and was also higher in the SE compared to NSE. 5-HT2AR expression was also seen on nerve bundles, the number and intensity of such bundles being decreased in the SE compared to the NSE group. In the CA1 area of the hippocampus, there was an increase in the quantity of cells immunoreactive for 5-HT2AR in the SE versus the NSE group and also in the SE versus the SC group. SERT-IR was found also on nerve bundles with a decreased number in the SE compared to the NSE and SC group. There is a modulation of the expression of serotonergic markers in the eczematous skin and brain of the atopic-like mouse during chronic mild stress.
Yeh, Yi-Wei; Ho, Pei-Shen; Chen, Chun-Yen; Kuo, Shin-Chang; Liang, Chih-Sung; Ma, Kuo-Hsing; Shiue, Chyng-Yann; Huang, Wen-Sheng; Cheng, Cheng-Yi; Wang, Tzu-Yun; Lu, Ru-Band; Huang, San-Yuan
2014-10-31
Much evidence supports the role of the serotonin transporter (SERT) in the pathophysiology and pharmacotherapy of major depressive disorder (MDD) and suicidal behaviors. In this study, we recruited 17 antidepressant-naïve patients with MDD and 17 age- and gender-matched healthy controls. SERT availability was measured in vivo with N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) positron emission tomography (PET) imaging. The 21-item Hamilton Depression Rating Scale (HDRS) and Beck Scale for Suicide Ideation were used to assess the severity of depression and the intent of suicide ideation prior to PET imaging. All subjects with MDD were in a current state of depression with HDRS scores ≧18. Subjects who attempted suicide within two weeks of the study onset were recruited in the depressed suicidal group (n = 8). Subjects with MDD who denied any prior suicide attempt were recruited into the depressed non-suicidal group (n = 9). A significant reduction of SERT availability in the midbrain, thalamus, and striatum was noted in the MDD group relative to the control group (Bonferroni-adjusted p-value < 0.05). Moreover, this effect was more pronounced in the depressed suicidal group compared to the control group (Bonferroni-adjusted p-value < 0.01). Relative to both the depressed non-suicidal and control groups, the depressed suicidal group showed an increased prefrontal cortex (PFC)/midbrain SERT binding ratio (Bonferroni-adjusted p-value < 0.01). This study suggests an incongruent reduction of PFC SERT binding relative to the midbrain might discriminate between depressed suicide attempters and non-attempters in patients with MDD and may be involved in the pathophysiology of suicide behaviors. © The Author 2015. Published by Oxford University Press on behalf of CINP.
A label-free approach to detect ligand binding to cell surface proteins in real time.
Burtscher, Verena; Hotka, Matej; Li, Yang; Freissmuth, Michael; Sandtner, Walter
2018-04-26
Electrophysiological recordings allow for monitoring the operation of proteins with high temporal resolution down to the single molecule level. This technique has been exploited to track either ion flow arising from channel opening or the synchronized movement of charged residues and/or ions within the membrane electric field. Here, we describe a novel type of current by using the serotonin transporter (SERT) as a model. We examined transient currents elicited on rapid application of specific SERT inhibitors. Our analysis shows that these currents originate from ligand binding and not from a long-range conformational change. The Gouy-Chapman model predicts that adsorption of charged ligands to surface proteins must produce displacement currents and related apparent changes in membrane capacitance. Here we verified these predictions with SERT. Our observations demonstrate that ligand binding to a protein can be monitored in real time and in a label-free manner by recording the membrane capacitance. © 2018, Burtscher et al.
LeuT-Desipramine Structure Reveals How Antidepressants Block Neurotransmitter Reuptake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou,Z.; Zhen, J.; Karpowich, N.
2007-01-01
Tricyclic antidepressants exert their pharmacological effect -- inhibiting the reuptake of serotonin, norepinephrine, and dopamine -- by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This bindingmore » site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.« less
Del Bello, Fabio; Sakloth, Farhana; Partilla, John S.; Baumann, Michael H.; Glennon, Richard A.
2015-01-01
N -Methyl-(3,4-methylenedioxyphenyl)-2-aminopropane (MDMA; ‘Ecstasy’; 1) and its β-keto analog methylone (MDMC; 2) are popular drugs of abuse. Little is known about their ring-expanded ethylenedioxy homologs. Here, we prepared N-methyl-(3,4-ethylenedioxyphenyl)-2-aminopropane (EDMA; 3), both of its optical isomers, and β-keto EDMA (i.e., EDMC; 4) to examine their effects at transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET). In general, ring-expansion of the methylenedioxy group led to a several-fold reduction in potency at all three transporters. With respect to EDMA (3), S(+)3 was 6-fold, 50-fold, and 8-fold more potent than its R(−) enantiomer at SERT, DAT, and NET, respectively. Overall, in the absence of a β-carbonyl group, the ethylenedioxy (i.e., 1,4-dioxane) substituent seems better accommodated at SERT than at DAT and NET. PMID:26233799
Cooper-Kazaz, Rena; van der Deure, Wendy M; Medici, Marco; Visser, Theo J; Alkelai, Ana; Glaser, Benjamin; Peeters, Robin P; Lerer, Bernard
2009-07-01
Triiodothyronine (T3) is used to potentiate the clinical effect of antidepressant drugs. Inter-individual differences in efficacy may be related to genetically-based variability in thyroid function. DNA was obtained from 64 patients treated with sertraline plus T3 (SERT-T3, N=35) or plus placebo (SERT-PLB, N=29), for 8 weeks. Antidepressant efficacy was rated with the 21 item Hamilton Rating Scale for Depression (HRSD-21). Functional polymorphisms in type 1 (DIO1-C785T, DIO1-A1814G) and type 2 deiodinase (DIO2-Thr92Ala and DIO2-ORFa-Gly3Asp) were genotyped. DIO1-C785T was associated with efficacy of T3 but not placebo supplementation, as indicated by the interaction of treatment, DIO1-C758T genotype and time (p=0.04) and a stronger effect of SERT-T3 among DIO1-758T allele carriers (p=0.01). HRSD-21 scores of DIO1-758T allele carriers declined by 68.7+26.6% (mean+SD) over 8 weeks compared to 42.9+37.8% among non-carriers (p=0.02). DIO1 plays a key-role in T4 to T3 conversion and in clearance of the inactive metabolite, rT3. Previous data associate the DIO1-785T allele with lower DIO1 activity. This is consistent with our observation that responders to T3 supplementation had lower baseline serum T3 levels than non-responders. Depressed patients, who have a genetically determined lower T4 to T3 conversion, may be more likely to benefit from T3 supplementation.
Angoa-Pérez, Mariana; Kane, Michael J.; Herrera-Mundo, Nieves; Francescutti, Dina M.; Kuhn, Donald M.
2013-01-01
Aims Mephedrone is a stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Although mephedrone does not damage dopamine nerve endings it increases the neurotoxicity of amphetamine, methamphetamine and MDMA. The effects of mephedrone on serotonin (5HT) nerve endings are not fully understood, with some investigators reporting damage while others conclude it does not. Presently, we investigate if mephedrone given alone or with methamphetamine or MDMA damages 5HT nerve endings of the hippocampus. Main methods The status of 5HT nerve endings in hippocampus of female C57BL mice was assessed through measures of 5HT by HPLC and by immunoblot analysis of serotonin transporter (SERT) and tryptophan hydroxylase 2 (TPH2), selective markers of 5HT nerve endings. Astrocytosis was assessed through measures of glial fibrillary acidic protein (GFAP) (immunoblotting) and microglial activation was determined by histochemical staining with Isolectin B4. Key findings Mephedrone alone did not cause persistent reductions in the levels of 5HT, SERT or TPH2. Methamphetamine and MDMA alone caused mild reductions in 5HT but did not change SERT and TPH2 levels. Combined treatment with mephedrone and methamphetamine or MDMA did not change the status of 5HT nerve endings to an extent that was different from either drug alone. Significance Mephedrone does not cause toxicity to 5HT nerve endings of the hippocampus. When co-administered with methamphetamine or MDMA, drugs that are often co-abused with mephedrone by humans, toxicity is not increased as is the case for dopamine nerve endings when these drugs are taken together. PMID:23892197
Baroni, S; Marazziti, D; Consoli, G; Picchetti, M; Catena-Dell'Osso, M; Galassi, A
2012-05-01
Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 30 healthy volunteers before (t0) and 30 minutes after (t1) thermal balneotherapy with ozonized water, as compared with a similar group who underwent a bath in non-mineral water. MATERIALS AN METHODS: The SERT was evaluated by means of the specific binding of 3H-paroxetine (3H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of 3H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.
Thermal balneotherapy induces changes of the platelet serotonin transporter in healthy subjects.
Marazziti, Donatella; Baroni, Stefano; Giannaccini, Gino; Catena Dell'Osso, Mario; Consoli, Giorgio; Picchetti, Michela; Carlini, Marina; Massimetti, Gabriele; Provenzano, Serafina; Galassi, Antonio
2007-10-01
Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 20 healthy volunteers before (t0) and 30 min after (t1) thermal balneotherapy with ozonized water of Montecatini spa, as compared with a similar group who underwent a bath in non-mineral water. The SERT was evaluated by means of the specific binding of (3)H-paroxetine ((3)H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of (3)H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.
Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders.
Fakhoury, Marc
2016-07-01
Major depressive disorder (MDD) is a heritable neuropsychiatric disease associated with severe changes at cellular and molecular levels. Its diagnosis mainly relies on the characterization of a wide range of symptoms including changes in mood and behavior. Despite the availability of antidepressant drugs, 10 to 30 % of patients fail to respond after a single or multiple treatments, and the recurrence of depression among responsive patients is very high. Evidence from the past decades suggests that the brain neurotransmitter serotonin (5-HT) is incriminated in MDD, and that a dysfunction of 5-HT receptors may play a role in the genesis of this disease. The 5-HT membrane transporter protein (SERT), which helps regulate the serotonergic transmission, is also implicated in MDD and is one of the main targets of antidepressant therapy. Although a number of behavioral tests and animal models have been developed to study depression, little is known about the neurobiological bases of MDD. Understanding the role of the serotonergic pathway will significantly help improve our knowledge of the pathophysiology of depression and may open up avenues for the development of new antidepressant drugs. The overarching goal of this review is to present recent findings from studies examining the serotonergic pathway in MDD, with a focus on SERT and the serotonin 1A (5-HT1A), serotonin 1B (5-HT1B), and serotonin 2A (5-HT2A) receptors. This paper also describes some of the main molecules involved in the internalization of 5-HT receptors and illustrates the changes in 5-HT neurotransmission in knockout mice and animal model of depression.
SERT 2 hollow cathode multiple restarts in space
NASA Technical Reports Server (NTRS)
Kerslake, W. R.; Finke, R. C.
1973-01-01
Future missions, both station keeping and primary electric propulsion, will require multiple thrust restarts after periods of inactivity from a few hours to over one year. Although not a part of the original SERT 2 (Space Electric Rocket Test) flight objective, the opportunity to demonstrate multiple cathode restarts in space became available following completion of thruster running. Both neutralizer and main cathodes of each flight thruster were restarted repeatedly following storage periods up to 490 days. No deterioration of cathode heaters was noted nor was any change required in starting voltages or currents.
Connors, Kristin A.; Valenti, Theodore W.; Lawless, Kelly; Sackerman, James; Onaivi, Emmanuel S.; Brooks, Bryan W.; Gould, Georgianna G.
2014-01-01
The discovery that selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine are present and bioaccumulate in aquatic ecosystems have spurred studies of fish serotonin transporters (SERTs) and changes in SSRI-sensitive behaviors as adverse outcomes relevant for risk assessment. Many SSRIs also act at serotonin 5-HT1A receptors. Since capitolizing on this action may improve treatments of clinical depression and other psychiatric disorders, novel multimodal drugs that agonize 5-HT1A and block SERT were introduced. In mammals both 5-HT1A and CB agonists, such as buspirone and WIN55,212-2, reduce anxious behaviors. Immunological and behavioral evidence suggests that 5-HT1A-like receptors may function similarly in zebrafish (Danio rerio), yet their pharmacological properties are not well characterized. Herein we compared the density of [3H] 8-hydroxy-2-di-n-propylamino tetralin (8-OH-DPAT) binding to 5-HT1A-like sites in the zebrafish brain, to that of simalarly Gαi/o-coupled cannabinoid receptors. [3H] 8-OH-DPAT specific binding was 176 ± 8, 275 ± 32, and 230 ± 36 fmol/mg protein in the hypothalamus, optic tectum, and telencephalon. [3H] WIN55,212-2 binding density was higher in those same brain regions at 6 ± 0.3, 5.5 ± 0.4 and 7.3 ± 0.3 pm/mg protein. The aquatic light-dark plus maze was used to examine behavioral effects of 5-HT1A and CB receptor agonists on zebrafish novelty-based anxiety. With acute exposure to the 5-HT1A partial-agonist buspirone (50 mg/L), or dietary exposure to WIN55,212-2 (7 μg/week) zebrafish spent more time in and/or entered white arms more often than controls (p < 0.05). Acute exposure to WIN55,212-2 at 0.5-50 mg/L, reduced mobility. These behavioral findings suggest that azipirones, like cannabinoid agonists, have anxiolytic and/or sedative properties on fish in novel environments. These observations highlight the need to consider potential ecological risks of azapirones and multimodal antidepressants in the future. PMID:24411165
Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands
Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt
2015-01-01
Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615
Vegting, Yosta; Reneman, Liesbeth; Booij, Jan
2016-10-01
Ecstasy is a commonly used psychoactive drug with 3,4-methylenedioxymethamphetamine (MDMA) as the main content. Importantly, it has been suggested that use of MDMA may be neurotoxic particularly for serotonergic (5-hydroxytryptamine (5-HT)) neurons. In the past decades, several molecular imaging studies examined directly in vivo the effects of ecstasy/MDMA on neurotransmitter systems. The objective of the present study is to review the effects of ecstasy/MDMA on neurotransmitter systems as assessed by molecular imaging studies in small animals, non-human primates and humans. A search in PubMed was performed. Eighty-eight articles were found on which inclusion and exclusion criteria were applied. Thirty-three studies met the inclusion criteria; all were focused on the 5-HT or dopamine (DA) system. Importantly, 9 out of 11 of the animal studies that examined the effects of MDMA on 5-HT transporter (SERT) availability showed a significant loss of binding potential. In human studies, this was the case for 14 out of 16 studies, particularly in heavy users. In abstinent users, significant recovery of SERT binding was found over time. Most imaging studies in humans that focused on the DA system did not find any significant effect of ecstasy/MDMA use. Preclinical and clinical molecular imaging studies on the effects of ecstasy/MDMA use/administration on neurotransmitter systems show quite consistent alterations of the 5-HT system. Particularly, in human studies, loss of SERT binding was observed in heavy ecstasy users, which might reflect 5-HT neurotoxicity, although alternative explanations (e.g. down-regulation of the SERT) cannot be excluded.
Matthaeus, Friederike; Schloss, Patrick; Lau, Thorsten
2015-12-16
The actions of the neurotransmitters serotonin, dopamine, and norepinephrine are partly terminated by diffusion and in part by their uptake into neurons via the selective, high-affinity transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET), respectively. There is also growing evidence that all three monoamines are taken up into neurons by low-affinity, high-capacity organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT). Pharmacological characterization of these low-affinity recombinant transporter proteins in heterologous expression systems has revealed that they are not antagonized by classical inhibitors of SERT, DAT, or NET but that decynium-22 (D22) antagonizes OCT3 and PMAT, whereas corticosterone and progesterone selectively inhibit OCT3. Here, we show that SERT, PMAT, and OCT3, but not OCT1 and OCT2, are coexpressed in murine stem cell-derived serotonergic neurons. Using selective antagonists, we provide evidence that uptake of the fluorescent substrates FFN511, ASP+, and 5-HT into stem cell-derived serotonergic neurons is mediated differentially by these transporters and also involves an as yet unknown transport mechanism.
Electron Bombardment Ion Thruster
1970-08-21
Researchers at the Lewis Research Center had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. Over the ensuing decades Lewis researchers continued to advance the original ion thruster concept. A Space Electric Rocket Test (SERT) spacecraft was launched in June 1964 to test Kaufman’s engine in space. SERT I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. This was followed in 1966 by the even more successful SERT II, which operated on and off for over ten years. Lewis continued studying increasingly more powerful ion thrusters. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust and are therefore not capable of lifting a spaceship from the surface of the Earth. Once lofted into orbit, however, electric engines are can produce small, continuous streams of thrust for several years.
The advantages of the high voltage solar array for electric propulsion
NASA Technical Reports Server (NTRS)
Sater, B. L.
1973-01-01
The high voltage solar array (HVSA) offers improvements in efficiency, weight, and reliability for the electric propulsion power system. The basic HVSA technology involves designing the solar array to deliver power in the form required by the ion thruster. This paper delves into conventional power processes and problems associated with ion thruster operation using SERT II experience for examples. In this light, the advantages of the HVSA concept for electric propulsion are presented. Tests conducted operating the SERT II thruster system in conjunction with HVSA are discussed. Thruster operation was observed to be normal and in some respects improved.
Federici, Lauren M.; Roth, Sarah Dorsey; Krier, Connie; Fitz, Stephanie D.; Skaar, Todd; Shekhar, Anantha; Carpenter, Janet S.; Johnson, Philip L.
2016-01-01
Objective Since longitudinal studies determined that anxiety is a strong risk factor for hot flashes, we hypothesized that an anxiogenic stimulus that signals air hunger (hypercapnic, normoxic gas) would trigger an exacerbated hot flash-associated increase in tail skin temperature (TST) in a rat ovariectomy (OVEX) model of surgical menopause and hot flashes in symptomatic menopausal women. We also assessed TST responses in OVEX serotonin transporter (SERT)+/− rats that models a common polymorphism that is associated with increased climacteric symptoms in menopausal women and increases in anxiety traits. Methods OVEX and sham-OVEX rats (initial experiment) and wildtype and SERT+/− OVEX rats (subsequent experiment) were exposed to a 5 min infusion of 20%CO2 normoxic gas while measuring TST. Menopausal women were given brief 20% and 35%CO2 challenges, and hot flashes were self-reported and objectively verified. Results Compared to controls, OVEX rats had exacerbated increases in TST, and SERT+/− OVEX rats had prolonged TST increases following CO2. Most women reported mild/moderate hot flashes after CO2 challenges, and the hot flash severity to CO2 was positively correlated with daily hot flash frequency. Conclusions The studies demonstrate that this anxiogenic stimulus is capable of inducing cutaneous vasomotor responses in OVEX rats, and eliciting hot flashes in menopausal women. In rats, the severity of the response was mediated by loss of ovarian function and increased anxiety traits (SERT+/−), and, in women, by daily hot flash frequency. These findings may provide insights into anxiety related triggers and genetic risk factors for hot flashes in thermoneutral environments. PMID:27465717
Genetic analyses of roundabout (ROBO) axon guidance receptors in autism.
Anitha, A; Nakamura, Kazuhiko; Yamada, Kazuo; Suda, Shiro; Thanseem, Ismail; Tsujii, Masatsugu; Iwayama, Yoshimi; Hattori, Eiji; Toyota, Tomoko; Miyachi, Taishi; Iwata, Yasuhide; Suzuki, Katsuaki; Matsuzaki, Hideo; Kawai, Masayoshi; Sekine, Yoshimoto; Tsuchiya, Kenji; Sugihara, Gen-Ichi; Ouchi, Yasuomi; Sugiyama, Toshiro; Koizumi, Keita; Higashida, Haruhiro; Takei, Nori; Yoshikawa, Takeo; Mori, Norio
2008-10-05
Autism is a pervasive developmental disorder diagnosed in early childhood. Abnormalities of serotonergic neurotransmission have been reported in autism. Serotonin transporter (SERT) modulates serotonin levels, and is a major therapeutic target in autism. Factors that regulate SERT expression might be implicated in the pathophysiology of autism. One candidate SERT regulatory protein is the roundabout axon guidance molecule, ROBO. SerT expression in Drosophila is regulated by robo; it plays a vital role in mammalian neurodevelopment also. Here, we examined the associations of ROBO3 and ROBO4 with autism, in a trio association study using DNA from 252 families recruited to AGRE. Four SNPs of ROBO3 (rs3923890, P = 0.023; rs7925879, P = 0.017; rs4606490, P = 0.033; and rs3802905, P = 0.049) and a single SNP of ROBO4 (rs6590109, P = 0.009) showed associations with autism; the A/A genotype of rs3923890 showed lower ADI-R_A scores, which reflect social interaction. Significant haplotype associations were also observed for ROBO3 and ROBO4. We further compared the mRNA expressions of ROBO1, ROBO2, ROBO3, and ROBO4 in the lymphocytes of 19 drug-naïve autistic patients and 20 age- and sex-matched controls. Expressions of ROBO1 (P = 0.018) and ROBO2 (P = 0.023) were significantly reduced in the autistic group; the possibility of using the altered expressions of ROBO as peripheral markers for autism, may be explored. In conclusion, we suggest a possible role of ROBO in the pathogenesis of autism. Abnormalities of ROBO may lead to autism either by interfering with serotonergic system, or by disrupting neurodevelopment. To the best of our knowledge, this is the first report relating ROBO with autism.
NASA Astrophysics Data System (ADS)
Payne, L.; Haas, J. P.; Linard, D.; White, L.
1997-12-01
The Laboratory for Astronomy and Solar Physics at Goddard Space Flight Center uses a variety imaging sensors for its instrumentation programs. This paper describes the detector system for SERTS. The SERTS rocket telescope uses an open faceplate, single plate MCP tube as the primary detector for EUV spectra from the Sun. The optical output of this detector is fiber-optically coupled to a cooled, large format CCD. This CCD is operated using a software controlled Camera controller based upon a design used for the SOHO/CDS mission. This camera is a general purpose design, with a topology that supports multiple types of imaging devices. Multiport devices (up to 4 ports) and multiphase clocks are supportable as well as variable speed operation. Clock speeds from 100KHz to 1MHz have been used, and the topology is currently being extended to support 10MHz operation. The form factor for the camera system is based on the popular VME buss. Because the tube is an open faceplate design, the detector system has an assortment of vacuum doors and plumbing to allow operation in vacuum but provide for safe storage at normal atmosphere. Vac-ion pumps (3) are used to maintain working vacuum at all times. Marshall Space Flight Center provided the SERTS programs with HVPS units for both the vac-ion pumps and the MCP tube. The MCP tube HVPS is a direct derivative of the design used for the SXI mission for NOAA. Auxiliary equipment includes a frame buffer that works either as a multi-frame storage unit or as a photon counting accumulation unit. This unit also performs interface buffering so that the camera may appear as a piece of GPIB instrumentation.
Vieira, Vanessa Diniz; Vilela, Vinícius Longo Ribeiro; Feitosa, Thais Ferreira; Athayde, Ana Célia Rodrigues; Azevedo, Sérgio Santos; Souto, Diego Vagner de Oliveira; Silveira, Gian Libânio da; Melo, Lídio Ricardo Bezerra de
2014-01-01
In this study, we aimed to establish the prevalence and risk factors relating to gastrointestinal helminthiasis, and to characterize the sanitary management practiced among sheep herds in the Sertão region of the state of Paraíba, northeastern Brazil, based on factors that condition the ways of controlling these parasites in these herds. The research was carried out between April and July 2012. We visited 54 farms, where fecal and blood samples were individually collected from 465 animals. On each farm, a questionnaire was applied to gather information on variables relating to potential risk factors. The prevalence of sheep gastrointestinal helminthiasis in the region was 75.9%. At least one animal tested positive for this helminthiasis on 53 (98.1%) of the 54 farms evaluated. The eggs per gram of feces (EPG) analysis showed the following infection burdens: 51.8% with mild infection, 27.1% moderate infection, 9.9% heavy infection and 11.2% fatal infection. Among the sheep farms visited, anthelmintics were used on 81.5% (p <0.05). The most relevant risk factor in this study was the farm area, because it defines the area available for grazing animals. Properties with many animals and little pasture area, which are the most abundant type in the Sertão region of Paraíba, tend to have high prevalence of gastrointestinal helminthiasis, because the animals are more prone to reinfection. The Sertão region of Paraíba presents high prevalence of gastrointestinal helminthiasis among sheep, and the farm area is the most relevant risk factor for the development of these parasites.
Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A
2017-01-01
Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials. PMID:28404880
Gwynne, William D; Hallett, Robin M; Girgis-Gabardo, Adele; Bojovic, Bojana; Dvorkin-Gheva, Anna; Aarts, Craig; Dias, Kay; Bane, Anita; Hassell, John A
2017-05-09
Breast tumors comprise an infrequent tumor cell population, termed breast tumor initiating cells (BTIC), which sustain tumor growth, seed metastases and resist cytotoxic therapies. Hence therapies are needed to target BTIC to provide more durable breast cancer remissions than are currently achieved. We previously reported that serotonergic system antagonists abrogated the activity of mouse BTIC resident in the mammary tumors of a HER2-overexpressing model of breast cancer. Here we report that antagonists of serotonin (5-hydroxytryptamine; 5-HT) biosynthesis and activity, including US Federal Food and Drug Administration (FDA)-approved antidepressants, targeted BTIC resident in numerous breast tumor cell lines regardless of their clinical or molecular subtype. Notably, inhibitors of tryptophan hydroxylase 1 (TPH1), required for 5-HT biosynthesis in select non-neuronal cells, the serotonin reuptake transporter (SERT) and several 5-HT receptors compromised BTIC activity as assessed by functional sphere-forming assays. Consistent with these findings, human breast tumor cells express TPH1, 5-HT and SERT independent of their molecular or clinical subtype. Exposure of breast tumor cells ex vivo to sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), reduced BTIC frequency as determined by transplanting drug-treated tumor cells into immune-compromised mice. Moreover, another SSRI (vilazodone; Viibryd) synergized with chemotherapy to shrink breast tumor xenografts in immune-compromised mice by inhibiting tumor cell proliferation and inducing their apoptosis. Collectively our data suggest that antidepressants in combination with cytotoxic anticancer therapies may be an appropriate treatment regimen for testing in clinical trials.
Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun; Budac, David; Smagin, Gennady; Sanchez, Connie; Pehrson, Alan Lars
2014-01-01
Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor partial agonist, 5-HT1A receptor agonist and 5-HT transporter (SERT) inhibitor that enhances memory in normal rats in novel object recognition (NOR) and conditioned fear (Mørk et al., 2013). We hypothesized that vortioxetine's 5-HT receptor mechanisms are involved in its memory effects, and therefore investigated these effects in 5-HT depleted rats. Four injections of the irreversible tryptophan hydroxylase inhibitor 4-chloro-dl-phenylalanine methyl ester hydrochloride (PCPA, 86mg/kg, s.c.) induced 5-HT depletion, as measured in hippocampal homogenate and microdialysate. The effects of acute challenge with vortioxetine or the 5-HT releaser fenfluramine on extracellular 5-HT were measured in PCPA-treated and control rats. PCPA's effects on NOR and spontaneous alternation (SA) performance were assessed along with the effects of acute treatment with 5-hydroxy-l-tryptophan (5-HTP), vortioxetine, the selective 5-HT reuptake inhibitor escitalopram, or the 5-HT norepinephrine reuptake inhibitor duloxetine. SERT occupancies were estimated by ex vivo autoradiography. PCPA depleted central 5-HT by >90% in tissue and microdialysate, and impaired NOR and SA performance. Restoring central 5-HT with 5-HTP reversed these deficits. At similar SERT occupancies (>90%) vortioxetine, but not escitalopram or duloxetine, restored memory performance. Acute fenfluramine significantly increased extracellular 5-HT in control and PCPA-treated rats, while vortioxetine did so only in control rats. Thus, vortioxetine restores 5-HT depletion impaired memory performance in rats through one or more of its receptor activities. © 2013 Published by Elsevier B.V. and ECNP.
Serotonin and dopamine transporter binding in children with autism determined by SPECT.
Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M; Kuikka, Jyrki T
2008-08-01
Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8 y 8 mo [SD 3 y 10 mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9 y 10 mo [SD 2 y 8 mo]) using single-photon emission computed tomography (SPECT) with [123 I] nor-beta-CIT. The children, with autism were studied during light sedation. They showed reduced serotonin transporter (SERT) binding capacity in the medial frontal cortex, midbrain, and temporal lobe areas. However, after correction due to the estimated effect of sedation, the difference remained significant only in the medial frontal cortex area (p=0.002). In the individuals with autism dopamine transporter (DAT) binding did not differ from that of the comparison group. The results indicate that SERT binding capacity is disturbed in autism. The reduction is more evident in adolescence than in earlier childhood. The low SERT binding reported here and the low serotonin synthesis capacity shown elsewhere may indicate maturation of a lesser number of serotonergic nerve terminals in individuals with autism.
Cunningham, Jacobi I; Raudensky, Jamie; Tonkiss, John; Yamamoto, Bryan K
2009-10-01
3,4-Methylenedioxymethamphetamine (MDMA) is a drug of abuse worldwide and a selective serotonin (5-HT) neurotoxin. An important factor in the risk of drug abuse and relapse is stress. Although multiple parallels exist between MDMA abuse and stress, including effects on 5-HTergic neurotransmission, few studies have investigated the consequences of combined exposure to MDMA and chronic stress. Therefore, rats were pretreated with MDMA and exposed 7 days later to 10 days of mild chronic unpredictable stress (CUS). MDMA pretreatment was hypothesized to enhance the effects of CUS leading to enhanced 5-HT transporter (SERT) depletion in the hippocampus and increased anxiety and cognitive impairment. Whereas MDMA alone increased anxiety-like behavior on the elevated plus maze, CUS alone or in combination with MDMA pretreatment did not increase anxiety-like behavior. In contrast, MDMA pretreatment led to CUS-induced learning impairment in the Morris water maze but not an enhanced depletion of hippocampal SERT protein. These results show that prior exposure to MDMA leads to stress-induced impairments in learning behavior that is not otherwise observed with stress alone and appear unrelated to an enhanced depletion of SERT.
Coetzee, Dirk D; López, Víctor; Smith, Carine
2016-01-11
Extracts from and alkaloids contained in plants in the genus Sceletium have been reported to inhibit ligand binding to serotonin transporter. From this, the conclusion was made that Sceletium products act as selective serotonin-reuptake inhibitors. However, other mechanisms which may similarly result in the anxiolytic or anti-depressant effect ascribed to Sceletium, such as monoamine release, have not been investigated. The current study investigated simultaneously and at two consecutive time points, the effect of high-mesembrine Sceletium extract on both monoamine release and serotonin reuptake into both human astrocytes and mouse hippocampal neurons, as well as potential inhibitory effects on relevant enzyme activities. Human astrocytes and mouse hippocampal cells were treated with citalopram or Sceletium extract for 15 and 30min, after which protein expression levels of serotonin transporter (SERT) and vesicular monoamine transporter-2 (VAMT-2) was assessed using fluorescent immunocytochemistry and digital image analysis. Efficacy of inhibition of acetylcholinesterase (AChE) and monoamine oxidate-A (MAO-A) activity were assessed using the Ellman and Olsen methods (and appropriate controls) respectively. We report the first investigation of mechanism of action of Sceletium extract in the context of serotonin transport, release and reuptake in a cellular model. Cell viability was not affected by Sceletium treatment. High-mesembrine Sceletium extract down-regulated SERT expression similarly to citalopram. In addition, VMAT-2 was upregulated significantly in response to Sceletium treatment. The extract showed only relatively mild inhibition of AChE and MAO-A. We conclude that the serotonin reuptake inhibition activity ascribed to the Sceletium plant, is a secondary function to the monoamine-releasing activity of high-mesembrine Sceletium extract (Trimesemine(TM)). Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Regulation of Bone Metabolism by Serotonin.
Lavoie, Brigitte; Lian, Jane B; Mawe, Gary M
2017-01-01
The processes of bone growth and turnover are tightly regulated by the actions of various signaling molecules, including hormones, growth factors, and cytokines. Imbalances in these processes can lead to skeletal disorders such as osteoporosis or high bone mass disease. It is becoming increasingly clear that serotonin can act through a number of mechanisms, and at different locations in the body, to influence the balance between bone formation and resorption. Its actions on bone metabolism can vary, based on its site of synthesis (central or peripheral) as well as the cells and subtypes of receptors that are activated. Within the central nervous system, serotonergic neurons act via the hypothalamus to suppress sympathetic input to the bone. Since sympathetic input inhibits bone formation, brain serotonin has a net positive effect on bone growth. Gut-derived serotonin is thought to inhibit bone growth by attenuating osteoblast proliferation via activation of receptors on pre-osteoblasts. There is also evidence that serotonin can be synthesized within the bone and act to modulate bone metabolism. Osteoblasts, osteoclasts, and osteocytes all have the machinery to synthesize serotonin, and they also express the serotonin-reuptake transporter (SERT). Understanding the roles of serotonin in the tightly balanced system of bone modeling and remodeling is a clinically relevant goal. This knowledge can clarify bone-related side effects of drugs that affect serotonin signaling, including serotonin-specific reuptake inhibitors (SSRIs) and receptor agonists and antagonists, and it can potentially lead to therapeutic approaches for alleviating bone pathologies.
Caloric restriction enhances fear extinction learning in mice.
Riddle, Megan C; McKenna, Morgan C; Yoon, Yone J; Pattwell, Siobhan S; Santos, Patricia Mae G; Casey, B J; Glatt, Charles E
2013-05-01
Fear extinction learning, the ability to reassess a learned cue of danger as safe when it no longer predicts aversive events, is often dysregulated in anxiety disorders. Selective serotonin reuptake inhibitors (SSRI's) enhance neural plasticity and their ability to enhance fear extinction learning may explain their anxiolytic properties. Caloric restriction (CR) has SSRI-like effects on neural plasticity and anxiety-related behavior. We implemented CR in mice to determine its effects on conditioned-fear responses. Wild type and serotonin transporter (SERT) knockout mice underwent CR for 7 days leading to significant weight loss. Mice were then tested for cued fear learning and anxiety-related behavior. CR markedly enhanced fear extinction learning and its retention in adolescent female mice, and adults of both sexes. These effects of CR were absent in SERT knockout mice. Moreover, CR phenocopied behavioral and molecular effects of chronic fluoxetine, but there was no additive effect of CR in fluoxetine-treated mice. These results demonstrate that CR enhances fear extinction learning through a SERT-dependent mechanism. These results may have implications for eating disorders such as anorexia nervosa (AN), in which there is a high prevalence of anxiety before the onset of dietary restriction and support proposals that in AN, CR is a motivated effort to control dysregulated fear responses and elevated anxiety.
Trigo, José Manuel; Renoir, Thibault; Lanfumey, Laurence; Hamon, Michel; Lesch, Klaus-Peter; Robledo, Patricia; Maldonado, Rafael
2007-09-15
The neurobiological mechanism underlying the reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) remains unclear. The aim of the present study was to determine the contribution of the serotonin transporter (SERT) in MDMA self-administration behavior by using knockout (KO) mice deficient in SERT. Knockout mice and wild-type (WT) littermates were trained to acquire intravenous self-administration of MDMA (0, .03, .06, .125, and .25 mg/kg/infusion) on a fixed ratio 1 (FR1) schedule of reinforcement. Additional groups of mice were trained to obtain food and water to rule out operant responding impairments. Microdialysis studies were performed to evaluate dopamine (DA) and serotonin (5-HT) extracellular levels in the nucleus accumbens (NAC) and prefrontal cortex (PFC), respectively, after acute MDMA (10 mg/kg). None of the MDMA doses tested maintained intravenous self-administration in KO animals, whereas WT mice acquired responding for MDMA. Acquisition of operant responding for food and water was delayed in KO mice, but no differences between genotypes were observed on the last day of training. MDMA increased DA extracellular levels to a similar extent in the NAC of WT and KO mice. Conversely, extracellular concentrations of 5-HT in the PFC were increased following MDMA only in WT mice. These findings provide evidence for the specific involvement of SERT in MDMA reinforcing properties.
Sertraline inhibits formalin-induced nociception and cardiovascular responses
Santuzzi, C.H.; Futuro Neto, H.A.; Pires, J.G.P.; Gonçalves, W.L.S.; Tiradentes, R.V.; Gouvea, S.A.; Abreu, G.R.
2011-01-01
The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT) levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g) were divided into 4 groups (N = 8 per group): sertraline-treated group (Sert + Saline (Sal) and Sert + Formalin (Form); 3 mg·kg−1·day−1, ip, for 7 days) and saline-treated group (Sal + Sal and Sal + Form). The rats were injected with 5% (50 µL) formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency), assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7%), mean arterial pressure (+1.4 ± 3 mmHg), heart rate (+13 ± 6.8 bpm), respiratory frequency (+4.6 ± 5 cpm) and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9%, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm) and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05). These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism. PMID:22086464
Speech Perception in Older Hearing Impaired Listeners: Benefits of Perceptual Training
Woods, David L.; Doss, Zoe; Herron, Timothy J.; Arbogast, Tanya; Younus, Masood; Ettlinger, Marc; Yund, E. William
2015-01-01
Hearing aids (HAs) only partially restore the ability of older hearing impaired (OHI) listeners to understand speech in noise, due in large part to persistent deficits in consonant identification. Here, we investigated whether adaptive perceptual training would improve consonant-identification in noise in sixteen aided OHI listeners who underwent 40 hours of computer-based training in their homes. Listeners identified 20 onset and 20 coda consonants in 9,600 consonant-vowel-consonant (CVC) syllables containing different vowels (/ɑ/, /i/, or /u/) and spoken by four different talkers. Consonants were presented at three consonant-specific signal-to-noise ratios (SNRs) spanning a 12 dB range. Noise levels were adjusted over training sessions based on d’ measures. Listeners were tested before and after training to measure (1) changes in consonant-identification thresholds using syllables spoken by familiar and unfamiliar talkers, and (2) sentence reception thresholds (SeRTs) using two different sentence tests. Consonant-identification thresholds improved gradually during training. Laboratory tests of d’ thresholds showed an average improvement of 9.1 dB, with 94% of listeners showing statistically significant training benefit. Training normalized consonant confusions and improved the thresholds of some consonants into the normal range. Benefits were equivalent for onset and coda consonants, syllables containing different vowels, and syllables presented at different SNRs. Greater training benefits were found for hard-to-identify consonants and for consonants spoken by familiar than unfamiliar talkers. SeRTs, tested with simple sentences, showed less elevation than consonant-identification thresholds prior to training and failed to show significant training benefit, although SeRT improvements did correlate with improvements in consonant thresholds. We argue that the lack of SeRT improvement reflects the dominant role of top-down semantic processing in processing simple sentences and that greater transfer of benefit would be evident in the comprehension of more unpredictable speech material. PMID:25730330
NASA Astrophysics Data System (ADS)
Bin, Liu; Zhengyu, Liu; Shucai, Li; Lichao, Nie; Maoxin, Su; Huaifeng, Sun; Kerui, Fan; Xinxin, Zhang; Yonghao, Pang
2017-09-01
This paper describes the application of a comprehensive surface geophysical investigation of underground karst systems ahead of the tunnel face in the Xiaoheyan section in the main line of the water supply project from Songhua River, located in Jilin, China. To make an accurate investigation, Surface Electrical Resistivity Tomography (S-ERT), Transient Electromagnetic Method (TEM), Geological Drilling (Geo-D) and Three-dimensional Cross-hole Electrical Resistivity Tomography (3D cross-hole ERT) were applied to gain a comprehensive interpretation. To begin with, S-ERT and TEM are adopted to detect and delineate the underground karst zone. Based on the detection results, surface and in-tunnel Geo-D are placed in major areas with more specific and accurate information gained. After that, survey lines of 3D cross-hole ERT are used to conduct detailed exploration towards underground karst system. In the comprehensive investigation, it is the major question to make the best of prior information so as to promote the quality of detection. The paper has put forward strategies to make the full use of effective information in data processing and the main ideas of those strategies include: (1) Take the resistivity distribution of the subsurface stratum gained by S-ERT inversion as the initial model of TEM inversion; (2) Arrange borehole positions with the results of S-ERT and TEM. After that, gain more accurate information about resistivity of subsurface stratum using those boreholes located; (3) Through the comprehensive analysis of the information about S-ERT, TEM and Geo-D, set the initial model of 3D cross-hole resistivity inversion and meanwhile, gain the variation range of stratum resistivity. At last, a 3D cross-hole resistivity inversion based on the incorporated initial model and inequality constraint is conducted. Constrained inversion and joint interpretation are realized by the effective use of prior information in comprehensive investigation, helping to suppress the non-uniqueness problem of inversion so as to raise its reliability. In this way, a 3D detailed model of underground karst system which is 30 m ahead of tunnel face is finally formed. At the end of the paper, there is a geological sketch of the revealed karst caves, which illustrates the effectiveness of the presented strategy. To sum up, in the comprehensive investigation of underground karst caves, the integrated use of prior information can help to yield more accurate and detailed results.
Sprowles, Jenna L N; Hufgard, Jillian R; Gutierrez, Arnold; Bailey, Rebecca A; Jablonski, Sarah A; Williams, Michael T; Vorhees, Charles V
2017-10-01
Most antidepressants inhibit monoamine reuptake. Selective serotonin (5-HT) reuptake inhibitors (SSRIs) act on the 5-HT transporter (SERT) whereas norepinephrine-dopamine reuptake inhibitors (NDRIs) act on the norepinephrine and dopamine transporters. Epidemiological reports link SSRI use during pregnancy to an increased prevalence of autism spectrum disorder (ASD). We previously showed that perinatal exposure to the SSRI citalopram (CIT) results in rodent offspring that exhibit a number of behaviors consistent with an ASD-like phenotype. The present study examined the effect of perinatal exposure to CIT (at a lower dose), another SSRI, fluoxetine (FLX), and an NDRI, bupropion (BUP). Gravid Sprague-Dawley rats were subcutaneously injected twice per day (6h apart) with 5mg/kg CIT, 5mg/kg FLX, 15mg/kg BUP, or saline (SAL) from embryonic day (E) 6-21, and directly to the pups from postnatal day (P) 1-20. As adults, one male/female from each litter was given one of a series of tests. Both SSRI-exposed groups showed spatial learning deficits in Morris and radial water mazes, increased marble burying, increased acoustic startle, hypoactivity, and attenuated activity to the stimulating effect of the NMDA-R antagonist MK-801. The BUP-exposed group showed a reduction in elevated zero-maze quadrant entries and increased stimulated open-field activity following (+)-amphetamine challenge. These results reinforce concern about the use of antidepressants during pregnancy and highlight how the two classes of drugs produce different constellations of effects with more effects associated with the SSRIs. Further investigation into how antidepressants alter brain development leading to enduring adverse neurobehavioral effects is warranted. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
Clark, Michael S.; McDevitt, Ross A.; Hoplight, Blair J.; Neumaier, John F.
2007-01-01
Corticotropin releasing factor (CRF) family peptides play key roles in integrating neural responses to stress. Both major CRF receptors have been pharmacologically identified in the dorsal raphe nucleus (DRN), a stress sensitive and internally heterogeneous nucleus supplying many forebrain regions with serotonergic input. Despite the involvement of chronic stress and serotonergic dysfunction in human mood and anxiety disorders, little is known about the effects of chronic CRF receptor activation on the DRN. We infused ovine CRF (1ng/hr), urocortin II (UCNII, 1ng/hr), or vehicle alone into rat DRN over 6 days. During infusion, animals were allowed to freely explore an open field for 15 minutes on each of two days, with the addition of a novel object on the second day. Following behavioral testing, 5-HT1A, 5-HT1B, serotonin transporter (SERT), and tryptophan hydroxylase-2 (Tph2) expression were examined through the DRN by in situ hybridization. Ovine CRF infusion resulted in significantly decreased novel object touches, climbs, as well as increased latency to first novel object contact. UCNII had a similar but less dramatic effect, decreasing only climbing behavior. Both ovine CRF and UCNII blunted the decrease in corner time expected on re-exposure to the open field. Both peptides also produced regionally specific changes in gene expression: 5-HT1A expression was increased 30% in the mid-rostral ventromedial DRN, while SERT was decreased by 30% in the mid-caudal shell dorsomedial DRN. There also appeared to be a shift in the relative level of Tph2 expression between the ventromedial and core dorsomedial DRN at the mid-rostral level. Changes in 5-HT1A, SERT, and relative Tph2 mRNA abundance were correlated with novel object exploration. These findings suggest chronic intra-DRN administration of CRF agonists decreases exploratory behavior, while producing subregionally limited changes in serotonergic gene expression. These studies may be relevant to mechanisms underlying behavioral changes after chronic stress. PMID:17467184
Thompson, P M; Cruz, D A; Olukotun, D Y; Delgado, P L
2012-09-01
This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels. © 2011 John Wiley & Sons A/S.
Loss aversion and 5HTT gene variants in adolescent anxiety.
Ernst, Monique; Plate, Rista C; Carlisi, Christina O; Gorodetsky, Elena; Goldman, David; Pine, Daniel S
2014-04-01
Loss aversion, a well-documented behavioral phenomenon, characterizes decisions under risk in adult populations. As such, loss aversion may provide a reliable measure of risky behavior. Surprisingly, little is known about loss aversion in adolescents, a group who manifests risk-taking behavior, or in anxiety disorders, which are associated with risk-avoidance. Finally, loss aversion is expected to be modulated by genotype, particularly the serotonin transporter (SERT) gene variant, based on its role in anxiety and impulsivity. This genetic modulation may also differ between anxious and healthy adolescents, given their distinct propensities for risk taking. The present work examines the modulation of loss aversion, an index of risk-taking, and reaction-time to decision, an index of impulsivity, by the serotonin-transporter-gene-linked polymorphisms (5HTTLPR) in healthy and clinically anxious adolescents. Findings show that loss aversion (1) does manifest in adolescents, (2) does not differ between healthy and clinically anxious participants, and (3), when stratified by SERT genotype, identifies a subset of anxious adolescents who are high SERT-expressers, and show excessively low loss-aversion and high impulsivity. This last finding may serve as preliminary evidence for 5HTTLPR as a risk factor for the development of comorbid disorders associated with risk-taking and impulsivity in clinically anxious adolescents. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rao, Jagadeesh Sridhara; Kellom, Matthew; Reese, Edmund Arthur; Rapoport, Stanley Isaac; Kim, Hyung-Wook
2012-01-01
Background Dysregulated glutamate, serotonin and dopamine neurotransmission has been reported in bipolar disorder (BD) and schizophrenia (SZ), but the underlying mechanisms of dysregulation are not clear. We hypothesized that they involve alterations in excitatory amino acid transporters (EAATs), the serotonin reuptake transporter (SERT), and the dopamine reuptake transporter (DAT). Methods To test this hypothesis, we determined protein and mRNA levels of EAAT subtypes 1–4, of the SERT and of the DAT in postmortem frontal cortex from BD (n=10) and SZ (n=10) patients and from healthy control (n=10) subjects. Results Compared to control levels, protein and mRNA levels of EAAT1 were increased significantly in cortex from both BD and SZ patients. EAAT2 protein and mRNA levels were decreased significantly in BD but not in SZ cortices. EAAT3 and EAAT 4 protein and mRNA levels were significantly higher in SZ but not in BD compared with control. DAT protein and mRNA levels were decreased significantly in both BD and SZ cortex. There was no significant change in SERT expression in either BD or SZ. Conclusions The altered EAATs and DAT expression could result in altered glutamatergic and hyperdopaminergic function in BD and SZ. Differently altered EAATs involved in glutamatergic transmission could be therapeutic targets for treating BD and SZ. PMID:21925739
Ribeiro, L B; Ferreira, A C S; Silva, D C N; Vieira, F M; Moura, G J B
2018-04-01
The lizard Nothobachia ablephara is endemic to dune areas and sandy soils adjacent to the São Francisco River in semiarid northeastern Brazil. Forty-nine lizard specimens were collected in 2 Caatinga areas in the municipality of Petrolina in Pernambuco state. Three gastrointestinal helminth taxa were identified, the nematodes Parapharyngodon alvarengai and Physaloptera sp. and the cestode Oochoristica sp. Nothobachia ablephara showed low parasite richness, but high levels of infection by P. alvarengai. There were no significant differences between the parasitism rates of the 2 study areas or between male and female lizards. This is the first study on parasitism in N. ablephara, thereby increasing knowledge of parasite fauna that infect gymnophthalmid lizards in the Sertão of Brazil.
NASA Technical Reports Server (NTRS)
Brosius, Jeffrey W.
1995-01-01
The purposes of this investigation are to use existing, calibrated, coaligned sets of coordinated multiwaveband observations of the Sun to determine the coronal magnetic field strength and structure, and interpret the collective observations in terms of a self-consistent model of the coronal plasma and magnetic field. This information is vital to understanding processes such as coronal heating, solar wind acceleration, pre-flare energy storage, and active region evolution. Understanding these processes is the central theme of Max '91, the NASA-supported series of solar observing campaigns under which the observations acquired for this work were obtained. The observations came from NASA/GSFC's Solar EUV Rocket Telescope and Spectrograph (SERTS), the Very Large Array (VLA), and magnetographs. The technique of calculating the coronal magnetic field is to establish the contributions to the microwave emission from the two main emission mechanisms: thermal bremsstrahlung and thermal gyroemission. This is done by using the EUV emission to determine values of the coronal plasma quantities needed to calculate the thermal bremsstrahlung contribution to the microwave emission. Once the microwave emission mechanism(s) are determined, the coronal magnetic field can be calculated. A comparison of the coronal magnetic field derived from the coordinated multiwaveband observations with extrapolations from photospheric magnetograms will provide insight into the nature of the coronal magnetic field.
Xu, Rong; Lord, Sarah A; Peterson, Ryan M; Fergason-Cantrell, Emily A; Lever, John R; Lever, Susan Z
2015-01-01
Two series of novel ether analogs of the sigma (σ) receptor ligand 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503) have been prepared. In one series, the alkyl portion of the 4-methoxy group was replaced with allyl, propyl, bromoethyl, benzyl, phenethyl, and phenylpropyl moieties. In the second series, the 3,4-dimethoxy was replaced with cyclic methylenedioxy, ethylenedioxy and propylenedioxy groups. These ligands, along with 4-O-des-methyl SA4503, were evaluated for σ1 and σ2 receptor affinity, and compared to SA4503 and several known ether analogs. SA4503 and a subset of ether analogs were also evaluated for dopamine transporter (DAT) and serotonin transporter (SERT) affinity. The highest σ1 receptor affinities, Ki values of 1.75-4.63 nM, were observed for 4-O-des-methyl SA4503, SA4503 and the methylenedioxy analog. As steric bulk increased, σ1 receptor affinity decreased, but only to a point. Allyl, propyl and bromoethyl substitutions gave σ1 receptor Ki values in the 20-30 nM range, while bulkier analogs having phenylalkyl, and Z- and E-iodoallyl, ether substitutions showed higher σ1 affinities, with Ki values in the 13-21 nM range. Most ligands studied exhibited comparable σ1 and σ2 affinities, resulting in little to no subtype selectivity. SA4503, the fluoroethyl analog and the methylenedioxy congener showed modest six- to fourteen-fold selectivity for σ1 sites. DAT and SERT interactions proved much more sensitive than σ receptor interactions to these structural modifications. For example, the benzyl congener (σ1Ki=20.8 nM; σ2Ki=16.4 nM) showed over 100-fold higher DAT affinity (Ki=121 nM) and 6-fold higher SERT affinity (Ki=128nM) than the parent SA4503 (DAT Ki=12650 nM; SERT Ki=760 nM). Thus, ether modifications to the SA4503 scaffold can provide polyfunctional ligands having a broader spectrum of possible pharmacological actions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Starr, M. A.; Page, M. E.
2012-01-01
3,4-Methylenedioxymethamphetamine (MDMA) is known to enhance tactile sensory perception, an effect that contributes to its popularity as a recreational drug. The neurophysiological basis for the effects of MDMA on somatosensation are unknown. However, MDMA interactions with the serotonin transporter (SERT) and subsequent enhancement of serotonin neurotransmission are well known. The rat trigeminal somatosensory system receives serotonergic afferents from the dorsal raphe nucleus. Because these fibers express SERT, they should be vulnerable to MDMA-induced effects. We found that administration of a challenge injection of MDMA (3 mg/kg i.p.) after repeated MDMA treatment (3 mg/kg per day for 4 days) elicits both serotonin and norepinephrine efflux in the ventral posterior medial (VPM) thalamus of Long-Evans hooded rats, the main relay along the lemniscal portion of the rodent trigeminal somatosensory pathway. We evaluated the potential for repeated MDMA administration to modulate whisker-evoked discharge of individual neurons in this region. After surgically implanting stainless steel eight-wire multichannel electrode bundles, we recorded spike train activity of single cells while activating the whisker pathway using a piezoelectric mechanical stimulator. We found that repeated MDMA administration increased the spontaneous firing rate but reduced both the magnitude and duration of whisker-evoked discharge in individual VPM thalamic neurons. The time course of drug action on neuronal firing patterns was generally consistent with fluctuations in neurotransmitter efflux as shown from our microdialysis studies. On the basis of these results, we propose that single use and repeated administration of MDMA may “distort,” rather than enhance, tactile experiences in humans, in part, by disrupting normal spike firing patterns through somatosensory thalamic relay circuits. PMID:21984836
Popova, Dina; Forsblad, Andréas; Hashemian, Sanaz
2016-01-01
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction. PMID:27861613
Popova, Dina; Forsblad, Andréas; Hashemian, Sanaz; Jacobsson, Stig O P
2016-01-01
3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.
Ion Propulsion Development Projects in US: Space Electric Rocket Test I to Deep Space 1
NASA Technical Reports Server (NTRS)
Sovey, James S.; Rawlin, Vincent K.; Patterson, Michael J.
2001-01-01
The historical background and characteristics of the experimental flights of ion propulsion systems and the major ground-based technology demonstrations are reviewed. The results of the first successful ion engine flight in 1964, Space Electric Rocket Test (SERT) I, which demonstrated ion beam neutralization, are discussed along with the extended operation of SERT II starting in 1970. These results together with the technologies employed on the early cesium engine flights, the applications technology satellite series, and the ground-test demonstrations, have provided the evolutionary path for the development of xenon ion thruster component technologies, control systems, and power circuit implementations. In the 1997-1999 period, the communication satellite flights using ion engine systems and the Deep Space 1 flight confirmed that these auxiliary and primary propulsion systems have advanced to a high level of flight readiness.
ChenFeng, Jessica; Kim, Lana; Wu, Yuwei; Knudson-Martin, Carmen
2017-09-01
Asian Americans juggle the intersections of multiple social identities and societal discourses as they respond to experiences of immigration, marginalization, and patriarchy, integrate collectivist and individualistic family values, and form families and intimate relationships. In this study we examine what we have learned as we apply Socio-Emotional Relationship Therapy (SERT) with heterosexual couples of Asian heritage. SERT begins with sociocultural attunement and the assumption that relationships should mutually support each partner. Drawing on case examples, we illustrate how we practice sociocultural attunement as couples respond to the relational processes that comprise the Circle of Care (mutual influence, vulnerability, attunement, and shared relational responsibility). We emphasize three key socioemotional themes that intersect with gender: (1) intangible loss; (2) quiet fortitude/not burdening others; and (3) duty to the family. © 2016 Family Process Institute.
Holtmann, B; Grosser, S; Lagisz, M; Johnson, S L; Santos, E S A; Lara, C E; Robertson, B C; Nakagawa, S
2016-02-01
Quantifying the variation in behaviour-related genes within and between populations provides insight into how evolutionary processes shape consistent behavioural traits (i.e. personality). Deliberate introductions of non-native species offer opportunities to investigate how such genes differ between native and introduced populations and how polymorphisms in the genes are related to variation in behaviour. Here, we compared the genetic variation of the two 'personality' genes, DRD4 and SERT, between a native (United Kingdom, UK) and an introduced (New Zealand, NZ) population of dunnocks, Prunella modularis. The NZ population showed a significantly lower number of single nucleotide polymorphisms (SNPs) compared to the UK population. Standardized F'st estimates of the personality genes and neutral microsatellites indicate that selection (anthropogenic and natural) probably occurred during and post the introduction event. Notably, the largest genetic differentiation was found in the intronic regions of the genes. In the NZ population, we also examined the association between polymorphisms in DRD4 and SERT and two highly repeatable behavioural traits: flight-initiation distance and mating status (promiscuous females and cobreeding males). We found 38 significant associations (for different allele effect models) between the two behavioural traits and the studied genes. Further, 22 of the tested associations showed antagonistic allele effects for males and females. Our findings illustrate how introduction events and accompanying ecological changes could influence the genetic diversity of behaviour-related genes. © 2015 John Wiley & Sons Ltd.
Space Electric Research Test in the Electric Propulsion Laboratory
1964-06-21
Technicians prepare the Space Electric Research Test (SERT-I) payload for a test in Tank Number 5 of the Electric Propulsion Laboratory at the National Aeronautics and Space Administration (NASA) Lewis Research Center. Lewis researchers had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust, but once lofted into orbit by workhorse chemical rockets, they are capable of small, continuous thrust for periods up to several years. The electron bombardment thruster operated at a 90-percent efficiency during testing in the Electric Propulsion Laboratory. The package was rapidly rotated in a vacuum to simulate its behavior in space. The SERT-I mission, launched from Wallops Island, Virginia, was the first flight test of Kaufman’s ion engine. SERT-I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. The Electric Propulsion Laboratory included two large space simulation chambers, one of which is seen here. Each uses twenty 2.6-foot diameter diffusion pumps, blowers, and roughing pumps to remove the air inside the tank to create the thin atmosphere. A helium refrigeration system simulates the cold temperatures of space.
Vieira, Vanessa Diniz; Feitosa, Thais Ferreira; Vilela, Vinícius Longo Ribeiro; Azevedo, Sérgio Santos; de Almeida Neto, João Leite; de Morais, Dayana Firmino; Ribeiro, Ana Raquel Carneiro; Athayde, Ana Célia Rodrigues
2014-02-01
Gastrointestinal helminthiasis represents an obstacle to goat raising, causing severe damage to herds such as growth retardation, weight loss, and even death. In this study, we aimed to determine the prevalence and risk factors associated to goat gastrointestinal helminthiasis in the Sertão region of Paraíba State, Brazil. A total of 256 goats from 54 farms were systematically sampled. Blood and fecal samples were collected from each animal for egg per gram (EPG), larval culture, and packed cell volume (PCV) analyses. We found that 79.3% of the goats investigated were parasitized with gastrointestinal helminths. Significant correlation (p = 0.004) was observed between the EPG and PCV of the animals studied, and it was observed that the EPG increases as the PCV decreases. In the larval culture, the most prevalent helminth was Haemonchus sp. (83.2%). Age and sex were significant variables (p ≤ 0.20) for the development of gastrointestinal helminths: 86.8% of animals over 36 months of age and 81.7% of females were infected. The variable type of animal exploitation was also significant, with 90.3% (p ≤ 0.20) of the animals presenting double suitability (milk and meat). The Sertão region of Paraíba State presents high prevalence of gastrointestinal helminthiasis in goats, and age and type of animal exploitation are the most relevant risk factors to the development of these parasites.
Lamb, R J; Daws, L C
2013-10-01
Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self-administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self-administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self-administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Strekalova, Tatyana; Evans, Matthew; Costa-Nunes, Joao; Bachurin, Sergey; Yeritsyan, Naira; Couch, Yvonne; Steinbusch, Harry M W; Eleonore Köhler, S; Lesch, Klaus-Peter; Anthony, Daniel C
2015-08-01
An association between metabolic abnormalities, hypercholesterolemia and affective disorders is now well recognized. Less well understood are the molecular mechanisms, both in brain and in the periphery, that underpin this phenomenon. In addition to hepatic lipid accumulation and inflammation, C57BL/6J mice fed a high-cholesterol diet (0.2%) to induce non-alcoholic fatty liver disease (NAFLD), exhibited behavioral despair, anxiogenic changes, and hyperlocomotion under bright light. These abnormalities were accompanied by increased expression of transcript and protein for Toll-like receptor 4, a pathogen-associated molecular pattern (PAMP) receptor, in the prefrontal cortex and the liver. The behavioral changes and Tlr4 expression were reversed ten days after discontinuation of the high-cholesterol diet. Remarkably, the dietary fat content and body mass of experimental mice were unchanged, suggesting a specific role for cholesterol in the molecular and behavioral changes. Expression of Sert and Cox1 were unaltered. Together, our study has demonstrated for the first time that high consumption of cholesterol results in depression- and anxiety-like changes in C57BL/6J mice and that these changes are unexpectedly associated with the increased expression of TLR4, which suggests that TLR4 may have a distinct role in the CNS unrelated to pathogen recognition. Copyright © 2015 Elsevier Inc. All rights reserved.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings of NASA's third Space Electrochemical Research and Technology (SERT) conference are presented. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions in the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: the electrochemical interface, the next generation in aerospace batteries and fuel cells, and electrochemistry for nonenergy storage applications.
Couch, Yvonne; Anthony, Daniel C; Dolgov, Oleg; Revischin, Alexander; Festoff, Barry; Santos, Ana Isabel; Steinbusch, Harry W; Strekalova, Tatyana
2013-03-01
A chronic stress paradigm comprising exposure to predation, tail suspension and restraint induces a depressive syndrome in C57BL/6J mice that occurs in some, but not all, animals. Here, we sought to extend our behavioural studies to investigate how susceptibility (sucrose preference<65%) or resilience (sucrose preference>65%) to stress-induced anhedonia affects the 5HT system and the expression of inflammation-related genes. All chronically stressed animals, displayed increased level of anxiety, but susceptible mice exhibited an increased propensity to float in the forced swim test and demonstrate hyperactivity under stressful lighting conditions. These changes were not present in resilient or acutely stressed animals. Compared to resilient animals, susceptible mice showed elevated expression of tumour necrosis factor alpha (TNF) and the 5-HT transporter (SERT) in the pre-frontal area. Enhanced expression of 5HT(2A) and COX-1 in the pre-frontal area was observed in all stressed animals. In turn, indoleamine-2,3-dioxygenase (IDO) was significantly unregulated in the raphe of susceptible animals. At the cellular level, increased numbers of Iba-1-positive microglial cells were also present in the prefrontal area of susceptible animals compared to resilient animals. Consequently, the susceptible animals display a unique molecular profile when compared to resilient, but anxious, animals. Unexpectedly, this altered profile provides a rationale for exploring anti-inflammatory, and possibly, TNF-targeted therapy for major depression. Copyright © 2013 Elsevier Inc. All rights reserved.
Riddick, N V; Czoty, P W; Gage, H D; Kaplan, J R; Nader, S H; Icenhower, M; Pierre, P J; Bennett, A; Garg, P K; Garg, S; Nader, M A
2009-02-18
Socially housed monkeys have been used as a model to study human diseases. The present study examined behavioral, physiological and neurochemical measures as predictors of social rank in 16 experimentally naïve, individually housed female cynomolgus monkeys (Macaca fascicularis). The two behavioral measures examined were novel object reactivity (NOR), as determined by latency to touch an opaque acrylic box placed in the home cage, and locomotor activity assessed in a novel open-field apparatus. Serum cortisol concentrations were evaluated three times per week for four consecutive weeks, and stress reactivity was assessed on one occasion by evaluating the cortisol response to adrenocorticotropic hormone (ACTH) following dexamethasone suppression. Measures of serotonin (5-HT) function included whole blood 5-HT (WBS) concentrations, cerebrospinal fluid (CSF) concentrations of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) and brain 5-HT transporter (SERT) availability obtained using positron emission tomography (PET). After baseline measures were obtained, monkeys were assigned to four social groups of four monkeys per group. The two measures that correlated with eventual social rank were CSF 5-HIAA concentrations, which were significantly higher in the animals who eventually became subordinate, and latency to touch the novel object, which was significantly lower in eventual subordinate monkeys. Measures of 5-HT function did not change as a consequence of social rank. These data suggest that levels of central 5-HIAA and measures of novel object reactivity may be trait markers that influence eventual social rank in female macaques.
Rotational Period Determination for 12 Near-Earth Asteroids
NASA Astrophysics Data System (ADS)
Monteiro, Filipe; Arcoverde, Plicida; Medeiros, Hissa; Rondon, Eduardo; Souza, Roberto; Rodrigues, Tersinha; Lazzaro, Daniela
2018-07-01
Rotational periods for 12 near-Earth asteroids (NEAs) were determined from lightcurves acquired at the Observatório Astronômico do Sertão de Itaparica (MPC Y28, OASI) between May 2016 and 2017 August.
SERT 2 thruster space restart, 1974
NASA Technical Reports Server (NTRS)
Kerslake, W. R.; Finke, R. C.
1975-01-01
The results of testing the flight thrusters on the SERT spacecraft during the 1974 test period are presented. The most notable result was the clearing of the high voltage short from thruster 2 and the successful stable operation of its ion beam. Test periods were limited to 70 minutes or less by earth eclipse of the spacecraft solar array and by ground station coverage limitations. Thruster 2 was restarted 26 times with an ion beam produced 21 times. The high voltage short remains in thruster 1, but the cathodes were restarted 12 times to demonstrate continued restart capability. The propellant feed systems, power processors, and spacecraft ancillary equipment were demonstrated to be functional after 4 1/2 years in space. In addition to the thruster tests, a neutralizer cathode was operated separately to demonstrate that the potential level of a spacecraft could be controlled by the neutralizer alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, S.; Kusakabe, T.; Yamamoto, H.
1992-12-31
In order to improve the reliability of the Steam Generator (SG), TT Alloy 690 and BEC (Broached Egg Crate) type tube support plate has been developed. Some tests are carried out to heighten the reliability for these improvements all the more and the following results are obtained. (1) SERT test (Slow Extension Rate Test) made clear that TT690 has less IGA susceptibility in comparison with MA600. (2) The alkaline susceptibility on the occurrence of IGA/SCC on TT690 and MA600 obtained by SERT corresponds to that obtained by Model Boiler test. (3) By model boiler test, superior concentration behaviors for BECmore » type tube support plate configuration have been recognized in comparison with Drill type. This result is obtained by the joint research of the five utilities (Kansai Epco, Hokkaido Epco, Shikoku Epco, Kyushu Epco, JAPCO) and MHI.« less
S-band omnidirectional antenna for the SERT-C satellite
NASA Technical Reports Server (NTRS)
Bassett, H. L.; Cofer, J. W., Jr.; Sheppard, R. R.; Sinclair, M. J.
1975-01-01
The program to design an S-band omnidirectional antenna system for the SERT-C spacecraft is discussed. The program involved the tasks of antenna analyses by computer techniques, scale model radiation pattern measurements of a number of antenna systems, full-scale RF measurements, and the recommended design, including detailed drawings. A number of antenna elements were considered: the cavity-backed spiral, quadrifilar helix, and crossed-dipoles were chosen for in-depth studies. The final design consisted of a two-element array of cavity-backed spirals mounted on opposite sides of spacecraft and fed in-phase through a hybrid junction. This antenna system meets the coverage requirement of having a gain of at least minus 10 dBi over 50 percent of a 4 pi steradian sphere with the solar panels in operation. This coverage level is increased if the ground station has the capability to change polarization.
A socio-emotional approach to couple therapy: linking social context and couple interaction.
Knudson-Martin, Carmen; Huenergardt, Douglas
2010-09-01
This paper introduces Socio-Emotional Relationship Therapy (SERT), an approach designed to intervene in socio-cultural processes that limit couples' ability to develop mutually supportive relationships, especially within heterosexual relationships. SERT integrates recent advances in neurobiology and the social context of emotion with social constructionist assumptions regarding the fluid and contextual nature of gender, culture, personal identities, and relationship patterns. It advances social constructionist practice through in-session experiential work focused on 4 conditions foundational to mutual support--mutual influence, shared vulnerability, shared relationship responsibility, and mutual attunement. In contrast to couple therapy models that mask power issues, therapist neutrality is not considered possible or desirable. Instead, therapists position themselves to counteract social inequalities. The paper illustrates how empathic engagement of a socio-culturally attuned therapist sets the stage for new socio-cultural experience as it is embodied neurologically and physically in the relationship and discusses therapy as societal intervention. 2010 © FPI, Inc.
A case history of technology transfer
NASA Technical Reports Server (NTRS)
1981-01-01
A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.
McLaughlin, Gavin; Morris, Noreen; Kavanagh, Pierce V; Power, John D; Twamley, Brendan; O'Brien, John; Talbot, Brian; Dowling, Geraldine; Mahony, Olivia; Brandt, Simon D; Patrick, Julian; Archer, Roland P; Partilla, John S; Baumann, Michael H
2015-07-01
The recent occurrence of deaths associated with the psychostimulant cis-4,4'-dimethylaminorex (4,4'-DMAR) in Europe indicated the presence of a newly emerged psychoactive substance on the market. Subsequently, the existence of 3,4-methylenedioxy-4-methylaminorex (MDMAR) has come to the authors' attention and this study describes the synthesis of cis- and trans-MDMAR followed by extensive characterization by chromatographic, spectroscopic, mass spectrometric platforms and crystal structure analysis. MDMAR obtained from an online vendor was subsequently identified as predominantly the cis-isomer (90%). Exposure of the cis-isomer to the mobile phase conditions (acetonitrile/water 1:1 with 0.1% formic acid) employed for high performance liquid chromatography analysis showed an artificially induced conversion to the trans-isomer, which was not observed when characterized by gas chromatography. Monoamine release activities of both MDMAR isomers were compared with the non-selective monoamine releasing agent (+)-3,4-methylenedioxymethamphetamine (MDMA) as a standard reference compound. For additional comparison, both cis- and trans-4,4'-DMAR, were assessed under identical conditions. cis-MDMAR, trans-MDMAR, cis-4,4'-DMAR and trans-4,4'-DMAR were more potent than MDMA in their ability to function as efficacious substrate-type releasers at the dopamine (DAT) and norepinephrine (NET) transporters in rat brain tissue. While cis-4,4'-DMAR, cis-MDMAR and trans-MDMAR were fully efficacious releasing agents at the serotonin transporter (SERT), trans-4,4'-DMAR acted as a fully efficacious uptake blocker. Currently, little information is available about the presence of MDMAR on the market but the high potency of ring-substituted methylaminorex analogues at all three monoamine transporters investigated here might be relevant when assessing the potential for serious side-effects after high dose exposure. Copyright © 2014 John Wiley & Sons, Ltd.
Weston, Hiromi I; Weston, Douglas D; Allen, Joshua L; Cory-Slechta, Deborah A
2014-09-01
A prior study demonstrated increased overall response rates on a fixed interval (FI) schedule of reward in female offspring that had been subjected to maternal lead (Pb) exposure, prenatal stress (PS) and offspring stress challenge relative to control, prenatal stress alone, lead alone and lead+prenatal stress alone (Virgolini et al., 2008). Response rates on FI schedules have been shown to directly relate to measures of self-control (impulsivity) in children and in infants (Darcheville et al., 1992, 1993). The current study sought to determine whether enhanced effects of Pb±PS would therefore be seen in a more direct measure of impulsive choice behavior, i.e., a delay discounting paradigm. Offspring of dams exposed to 0 or 50ppm Pb acetate from 2 to 3 months prior to breeding through lactation, with or without immobilization restraint stress (PS) on gestational days 16 and 17, were trained on a delay discounting paradigm that offered a choice between a large reward (three 45mg food pellets) after a long delay or a small reward (one 45mg food pellet) after a short delay, with the long delay value increased from 0s to 30s across sessions. Alterations in extinction of this performance, and its subsequent re-acquisition after reinforcement delivery was reinstated were also examined. Brains of littermates of behaviorally-trained offspring were utilized to examine corresponding changes in monoamines and in levels of brain derived neurotrophic factor (BDNF), the serotonin transporter (SERT) and the N-methyl-d-aspartate receptor (NMDAR) 2A in brain regions associated with impulsive choice behavior. Results showed that Pb±PS-induced changes in delay discounting occurred almost exclusively in males. In addition to increasing percent long delay responding at the indifference point (i.e., reduced impulsive choice behavior), Pb±PS slowed acquisition of delayed discounting performance, and increased numbers of both failures to and latencies to initiate trials. Overall, the profile of these alterations were more consistent with impaired learning/behavioral flexibility and/or with enhanced sensitivity to the downshift in reward opportunities imposed by the transition from delay discounting training conditions to delay discounting choice response contingencies. Consistent with these behavioral changes, Pb±PS treated males also showed reductions in brain serotonin function in all mesocorticolimbic regions, broad monoamine changes in nucleus accumbens, and reductions in both BDNF and NMDAR 2A levels and increases in SERT in frontal cortex, i.e., in regions and neurotransmitter systems known to mediate learning/behavioral flexibility, and which were of greater impact in males. The current findings do not fully support a generality of the enhancement of Pb effects by PS, as previously seen with FI performance in females (Virgolini et al., 2008), and suggest a dissociation of the behaviors controlled by FI and delay discounting paradigms, at least in response to Pb±PS in rats. Collectively, however, the findings remain consistent with sex-dependent differences in the impacts of both Pb and PS and with the need to understand both the role of contingencies of reinforcement and underlying neurobiological effects in these sex differences. Copyright © 2014 Elsevier Inc. All rights reserved.
Lee, Bom-Yi; Park, So-Yeon; Ryu, Hyun-Mee; Shin, Chan-Young; Ko, Ki-Nam; Han, Jung-Yeol; Koren, Gideon; Cho, Youl-Hee
2015-02-01
Alcohol exposure has been shown to cause devastating effects on neurobehavioral development in numerous animal and human studies. The alteration of DNA methylation levels in gene-specific promoter regions has been investigated in some studies of human alcoholics. This study was aimed to investigate whether social alcohol consumption during periconceptional period is associated with epigenetic alteration and its generational transmission in the blood cells. We investigated patterns of alcohol intake in a prospective cohort of 355 pairs of pregnant women and their spouses who reported alcohol intake during the periconceptional period. A subpopulation of 164 families was established for the epigenetic study based on the availability of peripheral blood and cord blood DNA. The relative methylation changes of dopamine transporter (DAT), serotonin transporter (SERT), and methyl CpG binding protein 2 (MeCP2) gene promoters were analyzed using methylation-specific endonuclease digestion followed by quantitative real-time polymerase chain reaction. The relative methylation level of the DAT gene promoter was decreased in the group of mothers reporting above moderate drinking (p = 0.029) and binge drinking (p = 0.037) during pregnancy. The relative methylation level of the DAT promoter was decreased in the group of fathers reporting heavy binge drinking (p = 0.003). The relative methylation levels of the SERT gene promoter were decreased in the group of newborns of light drinking mothers before pregnancy (p = 0.012) and during pregnancy (p = 0.003). The methylation level in the MeCP2 promoter region of babies whose mothers reported above moderate drinking during pregnancy was increased (p = 0.02). In addition, methylation pattern in the DAT promoter region of babies whose fathers reported heavy binge drinking was decreased (p = 0.049). These findings suggest that periconceptional alcohol intake may cause epigenetic changes in specific locus of parental and newborn genomes as follows: Alcohol consumption decreases the methylation level of the DAT promoter region of the parent themselves, maternal alcohol drinking during the periconceptional period decreases the methylation level of the SERT promoter region of newborns, and maternal alcohol consumption increases the methylation level of the MeCP2 promoter region of newborns. Copyright © 2015 by the Research Society on Alcoholism.
Cselényi, Zsolt; Lundberg, Johan; Halldin, Christer; Farde, Lars; Gulyás, Balázs
2004-10-01
Positron emission tomography (PET) has proved to be a highly successful technique in the qualitative and quantitative exploration of the human brain's neurotransmitter-receptor systems. In recent years, the number of PET radioligands, targeted to different neuroreceptor systems of the human brain, has increased considerably. This development paves the way for a simultaneous analysis of different receptor systems and subsystems in the same individual. The detailed exploration of the versatility of neuroreceptor systems requires novel technical approaches, capable of operating on huge parametric image datasets. An initial step of such explorative data processing and analysis should be the development of novel exploratory data-mining tools to gain insight into the "structure" of complex multi-individual, multi-receptor data sets. For practical reasons, a possible and feasible starting point of multi-receptor research can be the analysis of the pre- and post-synaptic binding sites of the same neurotransmitter. In the present study, we propose an unsupervised, unbiased data-mining tool for this task and demonstrate its usefulness by using quantitative receptor maps, obtained with positron emission tomography, from five healthy subjects on (pre-synaptic) serotonin transporters (5-HTT or SERT) and (post-synaptic) 5-HT(1A) receptors. Major components of the proposed technique include the projection of the input receptor maps to a feature space, the quasi-clustering and classification of projected data (neighbourhood formation), trans-individual analysis of neighbourhood properties (trajectory analysis), and the back-projection of the results of trajectory analysis to normal space (creation of multi-receptor maps). The resulting multi-receptor maps suggest that complex relationships and tendencies in the relationship between pre- and post-synaptic transporter-receptor systems can be revealed and classified by using this method. As an example, we demonstrate the regional correlation of the serotonin transporter-receptor systems. These parameter-specific multi-receptor maps can usefully guide the researchers in their endeavour to formulate models of multi-receptor interactions and changes in the human brain.
Space Electrochemical Research and Technology
NASA Technical Reports Server (NTRS)
1993-01-01
This document contains the proceedings of NASA's fourth Space Electrochemical Research and Technology (SERT) Conference, held at the NASA Lewis Research Center on April 14-15, 1993. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions into the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: advanced secondary batteries, fuel cells, and advanced concepts for space power. This document contains the papers presented.
EUNIS; Extreme-Ultraviolet Normal-Incidence Spectrometer
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Davila, Joseph M.; Fisher, Richard R. (Technical Monitor)
2001-01-01
GSFC is in the process of assembling an Extreme-Ultraviolet Normal Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. The instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment, which has now flown a total of ten times, most recently last summer. The new design will have somewhat improved spatial and spectral resolutions, as well as two orders of magnitude greater sensitivity, permitting high signal/noise EUV spectroscopy with a temporal resolution near 1 second for the first time ever. In order to achieve such high time cadence, a novel detector system is being developed, based on Active-Pixel-Sensor electronics, a key component of our design.
Gomez, Francisca; Venero, César; Viveros, María-Paz; García-García, Luis
2015-03-01
Fluoxetine (FLX) is prescribed to treat depression and anxiety in adolescent patients. However, FLX has anxiogenic effects during the acute phase of treatment, and caution has been raised due to increased suicidal thinking and behavior. Herein, we sought to study in adolescent (35-day-old) male rats, the effects of short-term FLX treatment (10 mg/kg/day, i.p. for 3-4 days) on hypothalamic-pituitary-adrenal axis activity, serotonin (5-hidroxytriptamine, 5-HT) transporter (SERT) mRNA expression in the dorsal raphe nucleus (DRN), energy balance-related variables and behavioral profiles in the holeboard. Our results revealed that daily FLX administration increased plasma corticosterone (B) concentrations without affecting basal gene expression of corticotrophin releasing hormone in the hypothalamic paraventricular nucleus (PVN) nor of pro-opiomelanocortin in the anterior pituitary. However, FLX had significant effects increasing the mRNA expression of PVN arginine vasopressin (AVP) and reducing SERT mRNA levels in the dorsolateral subdivision of the DRN. In the holeboard, FLX-induced anxiety/emotionality-like behaviors. As expected, FLX treatment was endowed with anorectic effects and reduced body weight gain. Altogether, our study shows that short-term FLX treatment results in physiological, neuroendocrine and behavioral stress-like effects in adolescent male rats. More importantly, considering that the AVP- and 5-HTergic systems: (1) are intimately involved in regulation of the stress response; (2) are regulated by sex hormones and (3) are related to regulation of aggressive behaviors, our results highlight the potential significance of these systems mediating the anxiogenic/emotionality/stress-like responses of adolescent male rats to short-term FLX treatment.
Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H; Henry, L Keith
2014-01-17
Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.
Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H.; Henry, L. Keith
2014-01-01
Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl−, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites. PMID:24293367
Koldsø, Heidi; Noer, Pernille; Grouleff, Julie; Autzen, Henriette Elisabeth; Sinning, Steffen; Schiøtt, Birgit
2011-01-01
Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT) is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs) 1 and 6 are identified as the helices involved in the largest movements during transport. PMID:22046120
Vercelli, Marina; Lillini, Roberto; Capocaccia, Riccardo; Quaglia, Alberto
2012-12-01
The main aim of this work is to compute expected cancer survival for Italian provinces by Socio-Economic and health Resources and Technologic Supplies (SERTS) models, based on demographic, socioeconomic variables and information describing the health care system (SEH). Five-year age-standardised relative survival rates by gender for 11 cancer sites and all cancers combined of patients diagnosed in 1995-1999, were obtained from the Italian Association of Cancer Registries (CRs) database. The SEH variables describe at provincial level macro-economy, demography, labour market, health resources in 1995-2005. A principal components factor analysis was applied to the SEH variables to control their strong mutual correlation. For every considered cancer site, linear regression models were estimated considering the 5-RS% as dependent variable and the principal components factors of the SEH variables as independent variables. The model composition was correlated to the characteristics of take in charge of patients. SEH factors were correlated with the observed survival for all cancer combined and colon-rectum in both sexes, prostate, kidney and non Hodgkin's lymphomas in men, breast, corpus uteri and melanoma in women (R(2) from 40% to 85%). In the provinces without any CR the survival was very similar with that of neighbouring provinces with analogous social, economic and health characteristics. The SERTS models allowed us to interpret the survival outcome of oncologic patients with respect to the role of the socio-economic and health related system characteristics, stressing how the peculiarities of the take in charge at the province level could address the decisions regarding the allocation of resources. Copyright © 2012 Elsevier Ltd. All rights reserved.
2012-01-01
Background Establishing the distribution of materials in paintings and that of their degradation products by imaging techniques is fundamental to understand the painting technique and can improve our knowledge on the conservation status of the painting. The combined use of chromatographic-mass spectrometric techniques, such as GC/MS or Py/GC/MS, and the chemical mapping of functional groups by imaging SR FTIR in transmission mode on thin sections and SR XRD line scans will be presented as a suitable approach to have a detailed characterisation of the materials in a paint sample, assuring their localisation in the sample build-up. This analytical approach has been used to study samples from Catalan paintings by Josep Maria Sert y Badía (20th century), a muralist achieving international recognition whose canvases adorned international buildings. Results The pigments used by the painter as well as the organic materials used as binders and varnishes could be identified by means of conventional techniques. The distribution of these materials by means of Synchrotron Radiation based techniques allowed to establish the mixtures used by the painter depending on the purpose. Conclusions Results show the suitability of the combined use of SR μFTIR and SR μXRD mapping and conventional techniques to unequivocally identify all the materials present in the sample and their localization in the sample build-up. This kind of approach becomes indispensable to solve the challenge of micro heterogeneous samples. The complementary interpretation of the data obtained with all the different techniques allowed the characterization of both organic and inorganic materials in the samples layer by layer as well as to establish the painting techniques used by Sert in the works-of-art under study. PMID:22616949
Sarker, Subhodeep; Weissensteiner, René; Steiner, Ilka; Sitte, Harald H.; Ecker, Gerhard F.; Freissmuth, Michael; Sucic, Sonja
2015-01-01
The structure of the bacterial leucine transporter from Aquifex aeolicus (LeuTAa) has been used as a model for mammalian Na+/Cl−-dependent transporters, in particular the serotonin transporter (SERT). The crystal structure of LeuTAa liganded to tricyclic antidepressants predicts simultaneous binding of inhibitor and substrate. This is incompatible with the mutually competitive inhibition of substrates and inhibitors of SERT. We explored the binding modes of tricyclic antidepressants by homology modeling and docking studies. Two approaches were used subsequently to differentiate between three clusters of potential docking poses: 1) a diagnostic SERTY95F mutation, which greatly reduced the affinity for [3H]imipramine but did not affect substrate binding; 2) competition binding experiments in the presence and absence of carbamazepine (i.e., a tricyclic imipramine analog with a short side chain that competes with [3H]imipramine binding to SERT). Binding of releasers (para-chloroamphetamine, methylene-dioxy-methamphetamine/ecstasy) and of carbamazepine were mutually exclusive, but Dixon plots generated in the presence of carbamazepine yielded intersecting lines for serotonin, MPP+, paroxetine, and ibogaine. These observations are consistent with a model, in which 1) the tricyclic ring is docked into the outer vestibule and the dimethyl-aminopropyl side chain points to the substrate binding site; 2) binding of amphetamines creates a structural change in the inner and outer vestibule that precludes docking of the tricyclic ring; 3) simultaneous binding of ibogaine (which binds to the inward-facing conformation) and of carbamazepine is indicative of a second binding site in the inner vestibule, consistent with the pseudosymmetric fold of monoamine transporters. This may be the second low-affinity binding site for antidepressants. PMID:20829432
Suda, Shiro; Segi-Nishida, Eri; Newton, Samuel S.; Duman, Ronald S.
2013-01-01
Background Postpartum depression (PPD) affects approximately 10% to 20% of women during the first 4 weeks of the postpartum period and is characterized by labile mood with prominent anxiety and irritability, insomnia,and depressive mood. During the postpartum period, elevated ovarian hormones abruptly decrease to the early follicular phase levels that are postulated to play a major role in triggering PPD. However, the underlying neurobiological mechanisms that contribute to PPD have not been determined. Methods In the present study, we examined the effect of ovarian steroids, administered at levels that occur during human pregnancy followed by rapid withdrawal to simulate postpartum conditions, on behavior and gene expression in the rat. Results The results of behavioral testing reveal that the hormone-simulated postpartum treatment results in the development of a phenotype relevant to PPD, including vulnerability for helplessness, increased anxiety, and aggression. Real-time quantitative polymerase chain reaction (PCR) demonstrated transient regulation of several genes, including Ca2+/calmodulin-dependent protein kinase II (CAMKII), serotonin transporter (SERT), myocyte enhancer factor 2A (MEF2A), brain-derived neurotrophic factor (BDNF), gamma-aminobutyric acid type A receptor α4 (GABAARA4), mothers against decapentaplegic homolog 4 (SMAD4), and aquaporin 4 (AQP4) that could underlie these behavioral effects. Conclusions These studies provide an improved understanding of the effects of withdrawal from high doses of ovarian hormones on behavior and gene expression changes in the brain that could contribute to the pathophysiology of PPD. PMID:18471802
Rocket flight of a multilayer coated high-density EUV toroidal grating
NASA Technical Reports Server (NTRS)
Keski-Kuha, Ritva A. M.; Thomas, Roger J.; Davila, Joseph M.
1992-01-01
A multilayer coated high density toroidal grating was flown on a sounding rocket experiment in the Solar EUV Rocket Telescope and Spectrograph (SERTS) instrument. To our knowledge this is the first space flight of a multilayer coated grating. Pre-flight performance evaluation showed that the application of a 10-layer Ir/Si multilayer coating to the 3600 l/mm blazed toroidal replica grating produced a factor of 9 enhancement in peak efficiency near the design wavelength around 30 nm in first order over the standard gold coating, with a measured EUV efficiency that peaked at 3.3 percent. In addition, the grating's spectral resolution of better than 5000 was maintained. The region of enhanced grating efficiency due to the multilayer coating is clearly evident in the flight data. Within the bandpass of the multilayer coating, the recorded film densities were roughly equivalent to those obtained with a factor of six longer exposure on the previous flight of the SERTS instrument.
Pictures Speak Louder than Words in ESP, Too!
ERIC Educational Resources Information Center
Erfani, Seyyed Mahdi
2012-01-01
While integrating visual features can be among the most important characteristics of English language textbooks, reviewing the current locally-produced English for Specific Purposes (ESP) ones reveals that they lack such a feature. Enjoying a rich theoretical background including Paivio's dual coding theory as well as Sert's educational semiotics,…
Space Electrochemical Research and Technology (SERT), 1989
NASA Technical Reports Server (NTRS)
Baldwin, Richard S. (Editor)
1989-01-01
The proceedings of NASA's second Space Electrochemical Research and Technology Conference are presented. The objectives of the conference were to examine current technologies, research efforts, and advanced ideas, and to identify technical barriers which affect the advancement of electrochemical energy storage systems for space applications. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, with the intention of coalescing views and findings into conclusions on progress in the field, prospects for future advances, areas overlooked, and the directions of future efforts. Related overviews were presented in the areas of NASA advanced mission models. Papers were presented and workshops conducted in four technical areas: advanced concepts, hydrogen-oxygen fuel cells and electrolyzers, the nickel electrode, and advanced rechargable batteries.
Hudon Thibeault, Andrée-Anne; Laurent, Laetitia; Vo Duy, Sung; Sauvé, Sébastien; Caron, Patrick; Guillemette, Chantal; Sanderson, J Thomas; Vaillancourt, Cathy
2017-02-15
The effects of fluoxetine, one of the most prescribed selective serotonin-reuptake inhibitors (SSRIs) during pregnancy, and its active metabolite norfluoxetine were studied on placental aromatase (CYP19) and feto-placental steroidogenesis. Fluoxetine did not alter estrogen secretion in co-culture of fetal-like adrenocortical (H295R) and trophoblast-like (BeWo) cells used as a model of the feto-placental unit, although it induced CYP19 activity, apparently mediated by the serotonin (5-HT) 2A receptor/PKC signaling pathway. Norfluoxetine decreased estrogen secretion in the feto-placental co-culture and competitively inhibited catalytic CYP19 activity in BeWo cells. Decreased serotonin transporter (SERT) activity in the co-culture was comparable to 17β-estradiol treatment of BeWo cells. This work shows that the complex interaction of fluoxetine and norfluoxetine with placental estrogen production, involves 5-HT-dependent and -independent mechanisms. Considering the crucial role of estrogens during pregnancy, our results raise concern about the impact of SSRI treatment on placental function and fetal health. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2012-01-01
Background In the upper bowel, alterations in motility and absorption of key nutrients have been observed as part of the normal ageing process. Serotonin (5-HT) is a key signalling molecule in the gastrointestinal tract and is known to influence motility, however little is known of how the ageing process alters 5-HT signalling processes in the bowel. Results An isocratic chromatographic method was able to detect all 5-HT precursors and metabolites. Using extracellular and intracellular sampling approaches, we were able to monitor all key parameters associated with the transmission process. There was no alteration in the levels of tryptophan and 5-HTP between 3 and 18 month old animals. There was a significant increase in the ratio of 5-HT:5-HTP and an increase in intracellular 5-HT between 3 and 18 month old animals suggesting an increase in 5-HT synthesis. There was also a significant increase in extracellular 5-HT with age, suggesting increased 5-HT release. There was an age-related decrease in the ratio of intracellular 5-HIAA:extracellular 5-HT, whilst the amount of 5-HIAA did not change with age. In the presence of an increase in extracellular 5-HT, the lack of an age-related change in 5-HIAA is suggestive of a decrease in re-uptake via the serotonin transporter (SERT). Conclusions We have used intracellular and extracellular sampling to provide more insight into alterations in the neurotransmission process of 5-HT during normal ageing. We observed elevated 5-HT synthesis and release and a possible decrease in the activity of SERT. Taken together these changes lead to increased 5-HT availability and may alter motility function and could lead to the changes in adsorption observed in the elderly. PMID:22494644
EUNIS: An Extreme-Ultraviolet Normal-Incidence Spectrometer
NASA Technical Reports Server (NTRS)
Thomas, Roger J.; Davila, Joseph M.; Fisher, Richard R. (Technical Monitor)
2001-01-01
GSFC is in the process of assembling an Extreme-Ultraviolet Normal-Incidence Spectrometer called EUNIS, to be flown as a sounding rocket payload. This instrument builds on the many technical innovations pioneered by our highly successful SERTS experiment over its past ten flights. The new design will have somewhat improved spatial and spectral resolutions, as well as 100 times greater sensitivity, permitting EUV spectroscopy with a temporal resolution near 1-second for the first time ever. To achieve such high time cadence, a novel Active-Pixel-Sensor detector is being developed as a key component of our design. The high sensitivity of EUNIS will allow entirely new studies of transient coronal phenomena, such as the rapid loop dynamics seen by TRACE, and searches for non-thermal motions indicative of magnetic reconnection or wave heating. The increased sensitivity will also permit useful EUV spectra at heights of 2-3-R$ \\odot$ above the limb, where the transition between the static corona and the solar wind might occur. In addition, the new design features two independent optical systems, more than doubling the spectral bandwidth covered on each flight. Its 300-370\\AA\\ bandpass includes He-II 304\\AA\\ and strong lines from Fe-XI-XVI, extending the current SERTS range of 300-355\\AA\\ to further improve our ongoing series of calibration under-flights for SOHO/CDS and EIT. The second bandpass of 170-230\\AA\\ has a sequence of very strong Fe-IX-XIV lines, and will allow under-flight support for two more channels on SOHO/EIT, two channels on TRACE, one on Solar-B/EIS, and all four channels on the STEREO/EUVI instrument. First flight of the new EUNIS payload is scheduled for 2002 October.
Murphy, Dennis L; Fox, Meredith A; Timpano, Kiara R; Moya, Pablo R; Ren-Patterson, Renee; Andrews, Anne M; Holmes, Andrew; Lesch, Klaus-Peter; Wendland, Jens R
2008-11-01
Discovered and crystallized over sixty years ago, serotonin's important functions in the brain and body were identified over the ensuing years by neurochemical, physiological and pharmacological investigations. This 2008 M. Rapport Memorial Serotonin Review focuses on some of the most recent discoveries involving serotonin that are based on genetic methodologies. These include examples of the consequences that result from direct serotonergic gene manipulation (gene deletion or overexpression) in mice and other species; an evaluation of some phenotypes related to functional human serotonergic gene variants, particularly in SLC6A4, the serotonin transporter gene; and finally, a consideration of the pharmacogenomics of serotonergic drugs with respect to both their therapeutic actions and side effects. The serotonin transporter (SERT) has been the most comprehensively studied of the serotonin system molecular components, and will be the primary focus of this review. We provide in-depth examples of gene-based discoveries primarily related to SLC6A4 that have clarified serotonin's many important homeostatic functions in humans, non-human primates, mice and other species.
Caulfield, Jasmine I.; Caruso, Michael J.; Michael, Kerry C.; Bourne, Rebecca A.; Chirichella, Nicole R.; Klein, Laura C.; Craig, Timothy; Bonneau, Robert H.; August, Avery; Cavigelli, Sonia A.
2017-01-01
Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7–57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) “Airway inflammation only”, allergen exposure 3 times/week, (2) “Labored breathing only”, methacholine exposure once/week, and (3) “Airway inflammation + Labored breathing”, allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ~20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ~30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ~50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. PMID:28284954
ERIC Educational Resources Information Center
Leyland, Christopher
2014-01-01
Recent years have seen an upsurge in interest in epistemics/knowledge in interaction (e.g., Heritage, 2012a, 2012b; Stivers, Mondada & Steensig, 2011). Insights from such research are now being used by Second Language Acquisition (SLA) researchers yielding valuable insights into teacher-student interaction (e.g., Sert, 2013) and…
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1976-01-01
Improvements in 15 cm diameter, SERT II, mercury ion thruster performance effected by the use of SHAG optics at 33 V discharge voltage were discussed. At a 200 eV/ion discharge power, 90 percent propellant utilization and 660 mA beam current condition a doubly-to-singly charged ion current ratio of about 4 percent was measured. Performance of the 15 cm multipole mercury thruster (optimized for length and the point of electron injection) was compared to that of divergent (SERT II) and cusped field designs and found to be comparable. The need for a magnetic baffle in the multipole thruster was identified and the preferred point of electron injection was at the upstream end of the discharge chamber. Results of preliminary tests on the effects of discharge voltage and total accelerating voltage on perveance and beam divergence characteristics of two grid ion optics were examined. Experimental data showing the effect of target temperature on sputtering rates in a mercury discharge environment were presented and a deficiency in the tests procedure was identified.
NASA Technical Reports Server (NTRS)
Falconer, David A.
1994-01-01
Intensities of EUV spectral lines were measured as a function of radius off the solar limb by two flights of Goddard's Solar EUV Rocket Telescope and Spectrograph (SERTS) for three quiet sun regions. The density scale height, line-ratio densities, line-ratio temperatures, and emission measures were determined. The line-ratio temperature determined from the ionization balances of Arnaud and Rothenflug (1985) were more self-consistent than the line-ratio temperatures obtained from the values of Arnaud and Raymond (1992). Limits on the filling factor were determined from the emission measure and the line-ratio densities for all three regions. The relative abundances of silicon, aluminum, and chromium to iron were determined. Results did agree with standard coronal relative elemental abundances for one observation, but did not agree for another. Aluminum was overabundant while silicon was underabundant. Heating was required above 1.15 solar radii for all three regions studied. For two regions, local nonconductive heating is needed for any filling factor, and in all three regions for filling factor of 0.1.
An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish.
McDonald, M Danielle
2017-07-01
Pharmaceuticals and personal care products (PPCPs) are found in measureable quantities within the aquatic environment. Selective serotonin reuptake inhibitor (SSRI) antidepressants are one class of pharmaceutical compound that has received a lot of attention. Consistent with most PPCPs, the pharmacokinetics and physiological impacts of SSRI treatment have been well-studied in small mammals and humans and this, combined with the evolutionary conservation of the serotonergic system across vertebrates, allows for the read-across of known SSRI effects in mammals to potential SSRI impacts on aquatic organisms. Using an Adverse Outcome Pathway (AOP) framework, this review examines the similarities and differences between the mammalian and teleost fish SSRI target, the serotonin transporter (SERT; SLC6A4), and the downstream impacts of elevated extracellular serotonin (5-HT; 5-hydroxytryptamine), the consequence of SERT inhibition, on organ systems and physiological processes within teleost fish. This review also intends to reveal potentially understudied endpoints for SSRI toxicity based on what is known to be controlled by 5-HT in fish. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
McSpadden, James; Mankins, John C.; Howell, Joe T. (Technical Monitor)
2002-01-01
The concept of placing enormous solar power satellite (SPS) systems in space represents one of a handful of new technological options that might provide large-scale, environmentally clean base load power into terrestrial markets. In the US, the SPS concept was examined extensively during the late 1970s by the U.S. Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). More recently, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the "fresh look" study, and during 1998 in an SSP "concept definition study". As a result of these efforts, in 1999-2000, NASA undertook the SSP Exploratory Research and Technology (SERT) program which pursued preliminary strategic technology research and development to enable large, multi-megawatt SSP systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). During 2001-2002, NASA has been pursuing an SSP Concept and Technology Maturation (SCTM) program follow-on to the SERT, with special emphasis on identifying new, high-leverage technologies that might advanced the feasibility of future SSP systems. In addition, in 2001, the U.S. National Research Council (NRC) released a major report providing the results of a peer review of NASA's SSP strategic research and technology (R&T) road maps. One of the key technologies needed to enable the future feasibility of SSP/SPS is that of wireless power transmission. Advances in phased array antennas and rectennas have provided the building blocks for a realizable WPT system. These key components include the dc-RF converters in the transmitter, the retrodirective beam control system, and the receiving rectenna. Each subject is briefly covered, and results from the SERT program that studied a 5.8 GHz SPS system are presented. This paper presents a summary results from NASA's SSP efforts, along with a summary of the status of microwave WPT technology development.
Reference tissue modeling with parameter coupling: application to a study of SERT binding in HIV
NASA Astrophysics Data System (ADS)
Endres, Christopher J.; Hammoud, Dima A.; Pomper, Martin G.
2011-04-01
When applicable, it is generally preferred to evaluate positron emission tomography (PET) studies using a reference tissue-based approach as that avoids the need for invasive arterial blood sampling. However, most reference tissue methods have been shown to have a bias that is dependent on the level of tracer binding, and the variability of parameter estimates may be substantially affected by noise level. In a study of serotonin transporter (SERT) binding in HIV dementia, it was determined that applying parameter coupling to the simplified reference tissue model (SRTM) reduced the variability of parameter estimates and yielded the strongest between-group significant differences in SERT binding. The use of parameter coupling makes the application of SRTM more consistent with conventional blood input models and reduces the total number of fitted parameters, thus should yield more robust parameter estimates. Here, we provide a detailed evaluation of the application of parameter constraint and parameter coupling to [11C]DASB PET studies. Five quantitative methods, including three methods that constrain the reference tissue clearance (kr2) to a common value across regions were applied to the clinical and simulated data to compare measurement of the tracer binding potential (BPND). Compared with standard SRTM, either coupling of kr2 across regions or constraining kr2 to a first-pass estimate improved the sensitivity of SRTM to measuring a significant difference in BPND between patients and controls. Parameter coupling was particularly effective in reducing the variance of parameter estimates, which was less than 50% of the variance obtained with standard SRTM. A linear approach was also improved when constraining kr2 to a first-pass estimate, although the SRTM-based methods yielded stronger significant differences when applied to the clinical study. This work shows that parameter coupling reduces the variance of parameter estimates and may better discriminate between-group differences in specific binding.
Neiens, Patrick; De Simone, Angela; Ramershoven, Anna; Höfner, Georg; Allmendinger, Lars; Wanner, Klaus T
2018-03-03
MS Binding Assays represent a label-free alternative to radioligand binding assays. In this study, we present an LC-ESI-MS/MS method for the quantification of (R,R)-4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidin-3-ol [(R,R)-D-84, (R,R)-1], (S,S)-reboxetine [(S,S)-2], and (S)-citalopram [(S)-3] employed as highly selective nonlabeled reporter ligands in MS Binding Assays addressing the dopamine [DAT, (R,R)-D-84], norepinephrine [NET, (S,S)-reboxetine] and serotonin transporter [SERT, (S)-citalopram], respectively. The developed LC-ESI-MS/MS method uses a pentafluorphenyl stationary phase in combination with a mobile phase composed of acetonitrile and ammonium formate buffer for chromatography and a triple quadrupole mass spectrometer in the multiple reaction monitoring mode for mass spectrometric detection. Quantification is based on deuterated derivatives of all three analytes serving as internal standards. The established LC-ESI-MS/MS method enables fast, robust, selective and highly sensitive quantification of all three reporter ligands in a single chromatographic run. The method was validated according to the Center for Drug Evaluation and Research (CDER) guideline for bioanalytical method validation regarding selectivity, accuracy, precision, calibration curve and sensitivity. Finally, filtration-based MS Binding Assays were performed for all three monoamine transporters based on this LC-ESI-MS/MS quantification method as read out. The affinities determined in saturation experiments for (R,R)-D-84 toward hDAT, for (S,S)-reboxetine toward hNET, and for (S)-citalopram toward hSERT, respectively, were in good accordance with results from literature, clearly demonstrating that the established MS Binding Assays have the potential to be an efficient alternative to radioligand binding assays widely used for this purpose so far. Copyright © 2018 John Wiley & Sons, Ltd.
Space Electrochemical Research and Technology. Abstracts
NASA Technical Reports Server (NTRS)
1995-01-01
This document contains abstracts of the proceedings of NASA's fifth Space Electrochemical Research and Technology (SERT) Conference, held at the NASA Lewis Research Center on May 1-3, 1995. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions into the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: (1) the electrochemical interface, (2) the next generation in aerospace batteries and fuel cells, and (3) electrochemistry for non-energy storage applications. This document contains the abstracts of the papers presented.
DRDC Starfish Acoustic Sentinel and Phase Gradient Histogram Tracking
2015-04-01
filtres exponentiels parallèles ; dans le domaine fréquentiel, l’algorithme utilise des filtres parallèles dans chaque cellule de fréquences. Un... cellule de fréquences. Une procé- dure de poursuite par histogramme sert à déterminer et à afficher les angles de route des cibles acoustiques à large
Pre- and Post-Test Results of KEEP Class 2: 1973-74. Technical Report #40.
ERIC Educational Resources Information Center
Fox, Candy
This report presents the pre-and posttest results for the kindergarten year of the Kamehameha Early Education Program (KEEP) Class 2, 1973-1974. Results are presented for the Wechsler Preschool and Primary Scale of Intelligence (WPPSI), the Metropolitan Readiness Test (MRT), and the Standard English Repetition Test (SERT). Comparisons are made…
Tosh, Dilip K; Janowsky, Aaron; Eshleman, Amy J; Warnick, Eugene; Gao, Zhan-Guo; Chen, Zhoumou; Gizewski, Elizabeth; Auchampach, John A; Salvemini, Daniela; Jacobson, Kenneth A
2017-04-13
We have repurposed (N)-methanocarba adenosine derivatives (A 3 adenosine receptor (AR) agonists) to enhance radioligand binding allosterically at the human dopamine (DA) transporter (DAT) and inhibit DA uptake. We extended the structure-activity relationship of this series with small N 6 -alkyl substitution, 5'-esters, deaza modifications of adenine, and ribose restored in place of methanocarba. C2-(5-Halothien-2-yl)-ethynyl 5'-methyl 9 (MRS7292) and 5'-ethyl 10 (MRS7232) esters enhanced binding at DAT (EC 50 ∼ 35 nM) and at the norepinephrine transporter (NET). 9 and 10 were selective for DAT compared to A 3 AR in the mouse but not in humans. At DAT, the binding of two structurally dissimilar radioligands was enhanced; NET binding of only one radioligand was enhanced; SERT radioligand binding was minimally affected. 10 was more potent than cocaine at inhibiting DA uptake (IC 50 = 107 nM). Ribose analogues were weaker in DAT interaction than the corresponding bicyclics. Thus, we enhanced the neurotransmitter transporter activity of rigid nucleosides while reducing A 3 AR affinity.
Fox, M A; Panessiti, M G; Moya, P R; Tolliver, T J; Chen, K; Shih, J C; Murphy, D L
2013-12-01
A possible side effect of serotonin-enhancing drugs is the serotonin syndrome, which can be lethal. Here we examined possible hypersensitivity to two such drugs, the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) and the atypical opioid tramadol, in mice lacking the genes for both monoamine oxidase A (MAOA) and MAOB. MAOA/B-knockout (KO) mice displayed baseline serotonin syndrome behaviors, and these behavioral responses were highly exaggerated following 5-HTP or tramadol versus baseline and wild-type (WT) littermates. Compared with MAOA/B-WT mice, baseline tissue serotonin levels were increased ∼2.6-3.9-fold in MAOA/B-KO mice. Following 5-HTP, serotonin levels were further increased ∼4.5-6.2-fold in MAOA/B-KO mice. These exaggerated responses are in line with the exaggerated responses following serotonin-enhancing drugs that we previously observed in mice lacking the serotonin transporter (SERT). These findings provide a second genetic mouse model suggestive of possible human vulnerability to the serotonin syndrome in individuals with lesser-expressing MAO or SERT polymorphisms that confer serotonergic system changes.
Fox, MA; Panessiti, MG; Moya, PR; Tolliver, TJ; Chen, K; Shih, JC; Murphy, DL
2012-01-01
A possible side effect of serotonin-enhancing drugs is the serotonin syndrome, which can be lethal. Here we examined possible hypersensitivity to two such drugs, the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) and the atypical opioid tramadol, in mice lacking the genes for both monoamine oxidase A (MAOA) and MAOB. MAOA/B-knockout (KO) mice displayed baseline serotonin syndrome behaviors, and these behavioral responses were highly exaggerated following 5-HTP or tramadol versus baseline and wild-type (WT) littermates. Compared with MAOA/B-WT mice, baseline tissue serotonin levels were increased ~2.6–3.9-fold in MAOA/B-KO mice. Following 5-HTP, serotonin levels were further increased ~4.5–6.2-fold in MAOA/B-KO mice. These exaggerated responses are in line with the exaggerated responses following serotonin-enhancing drugs that we previously observed in mice lacking the serotonin transporter (SERT). These findings provide a second genetic mouse model suggestive of possible human vulnerability to the serotonin syndrome in individuals with lesser-expressing MAO or SERT polymorphisms that confer serotonergic system changes. PMID:22964922
Caulfield, Jasmine I; Caruso, Michael J; Michael, Kerry C; Bourne, Rebecca A; Chirichella, Nicole R; Klein, Laura C; Craig, Timothy; Bonneau, Robert H; August, Avery; Cavigelli, Sonia A
2017-05-30
Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Viaggi, Cristina; Gerace, Claudio; Pardini, Carla; Corsini, Giovanni U; Vaglini, Francesca
2015-08-01
Autism spectrum disorder (ASD) is a congenital neurodevelopmental behavioral disorder that appears in early childhood. Recent human genetic studies identified the homeobox transcription factor, Engrailed 2 (EN2), as a possible ASD susceptibility gene. En2 knockout mice (En2-/-) display subtle cerebellar neuropathological changes and reduced levels of tyrosine hydroxylase, noradrenaline and serotonin in the hippocampus and cerebral cortex similar to those ones which have been observed in the ASD brain. Furthermore other similarities link En2 knockout mice to ASD patients. Several lines of evidence suggest that serotonin may play an important role in the pathophysiology of the disease. In the present study we measured, by using an HPLC, the 5-HT levels in different brain areas and at different ages in En2-/- mice. In the frontal and occipital cortex, the content of 5HT was reduced in En2-/- 1 and 3 months old mice; in 6 month old mice, the difference was still present, but it was not statistically significant. The 5-HT content of cerebellar cortex was significantly reduced at 1 month old but significantly high when the KO mice reached 3 months of age. The increase was present even at 6 months of age. A similar trend was highlighted by SERT immunolabeling in En2-/- mice compared to control in the same areas and age analyzed. Our findings, in agreement with the current knowledge on the 5-HT system alterations in ASD, confirm the early neurotransmitter deficit with a late compensatory recovery in En2 KO-mice further suggesting that this experimental animal may be considered a good predictive model for the human disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kristofova, Martina; Aher, Yogesh D; Ilic, Marija; Radoman, Bojana; Kalaba, Predrag; Dragacevic, Vladimir; Aher, Nilima Y; Leban, Johann; Korz, Volker; Zanon, Lisa; Neuhaus, Winfried; Wieder, Marcus; Langer, Thierry; Urban, Ernst; Sitte, Harald H; Hoeger, Harald; Lubec, Gert; Aradska, Jana
2018-05-02
Dopamine reuptake inhibitors have been shown to improve cognitive parameters in various tasks and animal models. We recently reported a series of modafinil analogues, of which the most promising, 5-((benzhydrylsulfinyl)methyl) thiazole (CE-123), was selected for further development. The present study aims to characterize pharmacological properties of CE-123 and to investigate the potential to enhance memory performance in a rat model. In vitro transporter assays were performed in cells expressing human transporters. CE-123 blocked uptake of [3H] dopamine (IC50 = 4.606 μM) while effects on serotonin (SERT) and the norepinephrine transporter (NET) were negligible. Blood-brain barrier and pharmacokinetic studies showed that the compound reached the brain and lower elimination than R-modafinil. The Pro-cognitive effect was evaluated in a spatial hole-board task in male Sprague-Dawley rats and CE-123 enhances memory acquisition and memory retrieval, represented by significantly increased reference memory indices and shortened latency. Since DAT blockers can be considered as indirect dopamine receptor agonists, western blotting was used to quantify protein levels of dopamine receptors D1R, D2R and D5R and DAT in the synaptosomal fraction of hippocampal subregions CA1, CA3 and dentate gyrus (DG). CE-123 administration in rats increased total DAT levels and D1R protein levels were significantly increased in CA1 and CA3 in treated/trained groups. The increase of D5R was observed in DG only. Dopamine receptors, particularly D1R, seem to play a role in mediating CE-123-induced memory enhancement. Dopamine reuptake inhibition by CE-123 may represent a novel and improved stimulant therapeutic for impairments of cognitive functions. Copyright © 2018 Elsevier B.V. All rights reserved.
Voltammetric and Mathematical Evidence for Dual Transport Mediation of Serotonin Clearance In Vivo
Wood, Kevin M.; Zeqja, Anisa; Nijhout, H. Frederik; Reed, Michael C.; Best, Janet; Hashemi, Parastoo
2014-01-01
The neurotransmitter serotonin underlies many of the brain’s functions. Understanding serotonin neurochemistry is important for improving treatments for neuropsychiatric disorders such as depression. Antidepressants commonly target serotonin clearance via serotonin transporters (SERTs) and have variable clinical effects. Adjunctive therapies, targeting other systems including serotonin autoreceptors, also vary clinically and carry adverse consequences. Fast scan cyclic voltammetry (FSCV) is particularly well suited for studying antidepressant effects on serotonin clearance and autoreceptors by providing real-time chemical information on serotonin kinetics in vivo. However, the complex nature of in vivo serotonin responses makes it difficult to interpret experimental data with established kinetic models. Here, we electrically stimulated the mouse medial forebrain bundle (MFB) to provoke and detect terminal serotonin in the substantia nigra reticulata (SNr). In response to MFB stimulation we found three dynamically distinct serotonin signals. To interpret these signals we developed a computational model that supports two independent serotonin reuptake mechanisms (high affinity, low efficiency reuptake mechanism and low affinity, high efficiency reuptake system) and bolsters an important inhibitory role for the serotonin autoreceptors. Our data and analysis, afforded by the powerful combination of voltammetric and theoretical methods, gives new understanding of the chemical heterogeneity of serotonin dynamics in the brain. This diverse serotonergic matrix likely contributes to clinical variability of antidepressants. PMID:24702305
Fukai, Mina; Hirosawa, Tetsu; Kikuchi, Mitsuru; Ouchi, Yasuomi; Takahashi, Tetsuya; Yoshimura, Yuko; Miyagishi, Yoshiaki; Kosaka, Hirotaka; Yokokura, Masamichi; Yoshikawa, Etsuji; Bunai, Tomoyasu; Minabe, Yoshio
2017-09-30
The oxytocin (OT)-related serotonergic system is thought to play an important role in the etiology and social symptoms of autism spectrum disorder (ASD). However, no evidence exists for the relation between the prosocial effect of chronic OT administration and the brain serotonergic system. Ten male subjects with ASD were administered OT for 8-10 weeks in an open-label, single-arm, non-randomized, uncontrolled manner. Before and during the OT treatment, positron emission tomography was used with the ( 11 C)-3-amino-4-(2-[(demethylamino)methyl]phenylthio)benzonitrile( 11 C-DASB) radiotracer. Then binding of serotonin transporter ( 11 C-DASB BP ND ) was estimated. The main outcome measures were changes in 11 C-DASB BP ND and changes in the emotional response to others' faces. No significant change was found in the emotional response to others' faces after the 8-10 week OT treatment. However, the increased serotonin transporter (SERT) level in the striatum after treatment was correlated significantly with increased negative emotional response to human faces. This study revealed a relation between changes in the serotonergic system and in prosociality after chronic OT administration. Additional studies must be conducted to verify the chronic OT effects on social behavior via the serotonergic system. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Cataldo, L R; Cortés, V A; Mizgier, M L; Aranda, E; Mezzano, D; Olmos, P; Galgani, J E; Suazo, J; Santos, J L
2015-09-01
Pancreatic β-cells synthetize and store Serotonin (5-Hydroxytriptamine, 5HT) which is co-released with insulin. It has been proposed that extracellular 5HT binds to specific cell surface receptors and modulate insulin secretion. On the other hand, Selective Serotonin Reuptake Inhibitor (SSRI) fluoxetine seems to reduce Glucose-Stimulated Insulin Secretion (GSIS). However, it is unknown whether this effect results from changes in extracellular 5HT concentration owed to the blockade of 5HT transporter (SERT) or from non-5HT dependent actions. The aims of this work were: 1) to quantify extracellular 5HT levels and GSIS in β-cell lines, 2) to determine whether extracellular 5HT levels and GSIS are changed by fluoxetine or 5-Hydroxytryptophan (5HTP, the immediate 5HT biosynthetic precursor), and 3) to quantify the expression of Slc6a4 gene (encoding SERT) in β-cell lines in relation to other genes involved in 5HT system. β-cell lines MIN6 and RINm5f were subjected to GSIS protocols, after treatment with fluoxetine, 5HTP or 5HT. Insulin and 5HT were quantified by ELISA and HPLC, respectively. Relative mRNA expression was quantified by RT-qPCR. MIN6 β-cells secretes 5HT in response to glucose, showing a sharp increase in 5HT release when cells were preloaded with 5HTP. Treatment with 5HT or fluoxetine reduces GSIS. Fluoxetine fails to further increases 5HTP-induced elevation of secreted 5HT. MIN6 β-cells express both isoforms of Tryptophan Hydroxylase (Tph1 and Tph2), and have high expression levels of L-Dopa decarboxylase (Ddc), both enzymes involved in 5HT biosynthetic pathway, but do not express the 5HT transporters Slc6a4 or Slc6a3 (the Dopamine-5HT transporter) genes. The inhibitory effect of fluoxetine on β-cell glucose stimulated insulin secretion is not mediated by blockage of 5HT transporter through SERT. © Georg Thieme Verlag KG Stuttgart · New York.
Vulnerability and Productivity Impacts of Farm-Level Interventions in the Brazilian Sertão
NASA Astrophysics Data System (ADS)
Burney, J. A.
2014-12-01
The Brazilian Sertão exemplifies the complex dynamics between climate, land use, agricultural production, and food security presently playing out across the world's semi-arid tropics. Regional climate change in the past half-century is some of the most dramatic in the world -- +2 degrees average warming in many districts and -300mm rainfall. Crop yields have improved weakly or remained stagnant, in stark contrast with the rest of Brazil. As a result many smallholder farmers have increasingly turned to milk production, but they remain dependent on rainfall for forage growth. During droughts they thus face a choice between overgrazing and letting their cattle die. As a result, deforestation of the native Caatinga biome has been rampant, with estimates of 85% loss. We present the results of controlled tests, conducted with over one hundred farmers, of several on-farm interventions meant to boost on-farm productivity, reduce vulnerability to rainfall shocks, and lessen the incentives for deforestation. These interventions -- water cisterns, smallholder irrigation systems, balancing of animal feed ratios, and cultivation and use of palma forrageira as cattle feed -- are described and presented with results of their impact on productivity and vulnerability/resilience metrics. Estimates of larger-scale social benefits and future land-use change impacts are also discussed.
von Moltke, L L; Greenblatt, D J; Cotreau-Bibbo, M M; Harmatz, J S; Shader, R I
1994-01-01
1. The biotransformation of the triazolobenzodiazepine alprazolam (ALP) to its hydroxylated metabolites (4-OH-ALP and alpha-OH-ALP) was evaluated in human, monkey, rat, and mouse liver microsomes. 2. In all species 4-OH-ALP was the principal metabolite, accounting for 84% of clearance in human microsomes compared with 16% for alpha-OH-ALP. 3. Among the serotonin-specific reuptake inhibitors fluoxetine (FLU) and sertraline (SERT), and their respective demethylated metabolites norfluoxetine (NOR) and desmethylsertraline (DES), NOR was the most potent inhibitor (mean Ki for 4-OH-ALP formation in humans: 11 microM), FLU the weakest (Ki = 83 microM), with SERT and DES falling in between (Ki = 24 and 20 microM). 4. The in vitro data predict 29% inhibition of ALP clearance at mean FLU and NOR plasma concentrations of 77 ng ml-1 and 72 ng ml-1, respectively, after correction for liver:water partition ratios in the range of 12-14. The observed mean degree of inhibition in a previous in vivo study was 21%. 5. Ketoconazole was a potent inhibitor of ALP metabolism in vitro (Ki = 0.046 microM), suggesting that ALP hydroxylation is mediated by the cytochrome P450-3A sub-family. Quinidine was a weak inhibitor (Ki = 626 microM). PMID:7946933
An autism-associated serotonin transporter variant disrupts multisensory processing.
Siemann, J K; Muller, C L; Forsberg, C G; Blakely, R D; Veenstra-VanderWeele, J; Wallace, M T
2017-03-21
Altered sensory processing is observed in many children with autism spectrum disorder (ASD), with growing evidence that these impairments extend to the integration of information across the different senses (that is, multisensory function). The serotonin system has an important role in sensory development and function, and alterations of serotonergic signaling have been suggested to have a role in ASD. A gain-of-function coding variant in the serotonin transporter (SERT) associates with sensory aversion in humans, and when expressed in mice produces traits associated with ASD, including disruptions in social and communicative function and repetitive behaviors. The current study set out to test whether these mice also exhibit changes in multisensory function when compared with wild-type (WT) animals on the same genetic background. Mice were trained to respond to auditory and visual stimuli independently before being tested under visual, auditory and paired audiovisual (multisensory) conditions. WT mice exhibited significant gains in response accuracy under audiovisual conditions. In contrast, although the SERT mutant animals learned the auditory and visual tasks comparably to WT littermates, they failed to show behavioral gains under multisensory conditions. We believe these results provide the first behavioral evidence of multisensory deficits in a genetic mouse model related to ASD and implicate the serotonin system in multisensory processing and in the multisensory changes seen in ASD.
Li, Wen; Arasu, Vignesh; Newitt, David C.; Jones, Ella F.; Wilmes, Lisa; Gibbs, Jessica; Kornak, John; Joe, Bonnie N.; Esserman, Laura J.; Hylton, Nola M.
2016-01-01
Functional tumor volume (FTV) measurements by dynamic contrast-enhanced magnetic resonance imaging can predict treatment outcomes for women receiving neoadjuvant chemotherapy for breast cancer. Here, we explore whether the contrast thresholds used to define FTV could be adjusted by breast cancer subtype to improve predictive performance. Absolute FTV and percent change in FTV (ΔFTV) at sequential time-points during treatment were calculated and investigated as predictors of pathologic complete response at surgery. Early percent enhancement threshold (PEt) and signal enhancement ratio threshold (SERt) were varied. The predictive performance of resulting FTV predictors was evaluated using the area under the receiver operating characteristic curve. A total number of 116 patients were studied both as a full cohort and in the following groups defined by hormone receptor (HR) and HER2 receptor subtype: 45 HR+/HER2−, 39 HER2+, and 30 triple negatives. High AUCs were found at different ranges of PEt and SERt levels in different subtypes. Findings from this study suggest that the predictive performance to treatment response by MRI varies by contrast thresholds, and that pathologic complete response prediction may be improved through subtype-specific contrast enhancement thresholds. A validation study is underway with a larger patient population. PMID:28066808
Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A
2017-12-15
A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ortega-Rojas, Jenny; Arboleda-Bustos, Carlos E; Morales, Luis; Benítez, Bruno A; Beltrán, Diana; Izquierdo, Álvaro; Arboleda, Humberto; Vásquez, Rafael
Attention deficit and hyperactive disorder (ADHD) is highly prevalent among children in Bogota City. Both genetic and environmental factors play a very important role in the etiology of ADHD. However, to date few studies have addressed the association of genetic variants and ADHD in the Colombian population. To test the genetic association between polymorphisms in the DAT1, HTTLPR, COMT and BDNF genes and ADHD in a sample from Bogota City. We genotyped the most common polymorphisms in DAT1, SERT, COMT and BDNF genes associated with ADHD using conventional PCR followed by restriction fragment length polymorphism (RFLP) in 97 trios recruited in a medical center in Bogota. The transmission disequilibrium test (TDT) was used to determine the association between such genetic variants and ADHD. The TDT analysis showed that no individual allele of any variant studied has a preferential transmission. Our results suggest that the etiology of the ADHD may be complex and involves several genetic factors. Further studies in other candidate polymorphisms in a larger sample size will improve our knowledge of the ADHD in Colombian population. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.
The Effectiveness of Acupuncture for Chronic Daily Headache: An Outcomes Study
2009-12-01
1107 -t- 3 chan- nel transcutaneous electrical nerve stimulator ( TENS ) units. The negative or black lead was clipped onto the needle in.serted at...arc easily accessible for electrical tonification, especially for acupuncture naive subjects. They can also be used during an acute headache episode...ache, warmth, tingling, pressure, or radiation). Mild electrical tonification was applied to the 2 acu- puncture needles in tbe foot, using an ITO-IC
WebWatcher: Machine Learning and Hypertext
1995-05-29
WebWatcher: Machine Learning and Hypertext Thorsten Joachims, Tom Mitchell, Dayne Freitag, and Robert Armstrong School of Computer Science Carnegie...HTML-page about machine learning in which we in- serted a hyperlink to WebWatcher (line 6). The user follows this hyperlink and gets to a page which...AND SUBTITLE WebWatcher: Machine Learning and Hypertext 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT
2005-08-01
include Palmer’s agave ( Agave palmeri), Parry’s agave (A. parryi ), de- sert agave (A. deserti), and amole (A. schotti). Amole is considered to be an...of blooming paniculate agaves (reviewed by Cockrum 1991). Actual dates of these seasonal movements by lesser long-nosed bats are rather variable...roosting colonies require extensive stands of cacti or agave for food (USFWS 1997). Therefore, destruction of food plants many miles from roost
Influence of nonylphenol and octylphenol exposure on 5-HT, 5-HT transporter, and 5-HT2A receptor.
Liu, Chunhong; Lai, Yuting; Ouyang, Junyan; Yang, Tongwang; Guo, Youting; Yang, Jie; Huang, Shaowen
2017-03-01
Nonylphenol (NP) and octylphenol (OP) are priority environmental contaminants that have a potential role as endocrine disruptors. They can be biomagnified in the food chain and pose an estrogenic health risk to human health. A 28-day oral toxicity study was performed to observe the impact of single and combined exposure to NP and OP on 5-HT transporter (SERT) as well as 5-HT 2A receptor. Results showed that the 5-HT levels in rat plasma increased with exposure to middle-dose and high-dose NP, to high-dose OP, and to low, middle, and high doses of combined NP and OP (P < 0.05), while the 5-HT levels in rat platelets increased when exposed to NP/OP or combined NP and OP of middle or high dose (P < 0.05). The expression levels of SERT in rat platelets decreased when exposed to high-dose NP/OP or high dose of combined NP and OP (P < 0.05). Meanwhile, the expression levels of 5-HT 2A in rat platelets decreased when exposed to high-dose NP/OP as well as combined NP and OP (P < 0.05). These findings suggested that exposure to NP and OP could influence the metabolic network of 5-hydroxytryptamine via transportation and receptor binding pathways.
Demonstration of Corrosion-Resistant Fire Hydrant Retrofits for Military Installations
2013-10-01
diene M-class rubber ( EPDM )/powder coated steel sleeve inserted into the top of the hy- drant barrel at the traffic breakaway allowing the seat for...The insert seat of the valve shall be made of a ethylene propylene diene M-class rubber ( EPDM )/powder coated steel sleeve in- serted into the top of...intentional water-supply contamination. The technology was installed on 90 fire hy- drants of various makes, models, and ages at Fort Leonard Wood, MO. To
1981-08-01
of Transactions ..... . 29 5.5.2 Attached Execution of Transactions ........ ... 29 5.5.3 The Choice of Transaction Execution for Access Control...basic access control mech- anism for statistical security and value-dependent security. In Section 5.5, * we describe the process of execution of ...the process of request execution with access control for in- sert and non-insert requests in MDBS. We recall again (see Chapter 4) that the process
Special Operations Forces (SOF): An Integral Part of the Theater Operating System
1994-02-08
Special Operations Forces (SOF) Operati’c-al MOUC Theater Operating Syst,:- Opelrational Fires G-eration Desert Sh.eld/;e sert Stormi Ccc.Tnd & cnrtrcl~ It...INTRODUCTION The classroom at the College of Naval Command & Staff was filled with field grade Army officers. The day’s lesson, part of the Army’s...service component SOF units; readers are inviter’ to turn to the many field manuals and publications which describe the characteristics of special
Near-IR Direct Detection of Water Vapor in Tau Bootis b
2014-02-24
transmission spectroscopy and secondary eclipses. Investigators have measured spectra of some of the larger transiting planets ( Charbonneau et al. 2002... Charbonneau , D., Désert, J.-M., et al. 2012, ApJ, 747, 35 Birkby, J. L., de Kok, R. J., Brogi, M., et al. 2013, MNRAS, 436, L35 Borucki, W. J...Williams, E., Hauser, H., & Shirts, P. 1997, ApJL, 474, L115 Butler, R. P., Wright, J. T., Marcy, G. W., et al. 2006, ApJ, 646, 505 Charbonneau , D
Space Electrochemical Research and Technology (SERT)
NASA Technical Reports Server (NTRS)
1987-01-01
The conference provided a forum to assess critical needs and technologies for the NASA electrochemical energy conversion and storage program. It was aimed at providing guidance to NASA on the appropriate direction and emphasis of that program. A series of related overviews were presented in the areas of NASA advanced mission models (space stations, low and geosynchronous Earth orbit missions, planetary missions, and space transportation). Papers were presented and workshops conducted in a variety of technical areas, including advanced rechargeables, advanced concepts, critical physical electrochemical issues, and modeling.
NASA Technical Reports Server (NTRS)
Glaese, John R.; McDonald, Emmett J.
2000-01-01
Orbiting space solar power systems are currently being investigated for possible flight in the time frame of 2015-2020 and later. Such space solar power (SSP) satellites are required to be extremely large in order to make practical the process of collection, conversion to microwave radiation, and reconversion to electrical power at earth stations or at remote locations in space. These large structures are expected to be very flexible presenting unique problems associated with their dynamics and control. The purpose of this project is to apply the expanded TREETOPS multi-body dynamics analysis computer simulation program (with expanded capabilities developed in the previous activity) to investigate the control problems associated with the integrated symmetrical concentrator (ISC) conceptual SSP system. SSP satellites are, as noted, large orbital systems having many bodies (perhaps hundreds) with flexible arrays operating in an orbiting environment where the non-uniform gravitational forces may be the major load producers on the structure so that a high fidelity gravity model is required. The current activity arises from our NRA8-23 SERT proposal. Funding, as a supplemental selection, has been provided by NASA with reduced scope from that originally proposed.
Medeiros, Andréa Dantas de; Andrade, Milena de Medeiros Clementino; Vítor, Ricardo Wagner de Almeida; Andrade-Neto, Valter Ferreira de
2014-01-01
Toxoplasmosis is caused by Toxoplasma gondii, which is the main causative agent of abortion in small ruminants. Goats are among the animals that are most susceptible to this protozoon, and the disease that it causes leads to significant economic losses and has implications for public health, since presence of the parasite in products of goat origin is one of the main sources of human infection. Because of the significant economic impact, there is an urgent need to study the prevalence of T. gondii infection among goats in Sertão do Cabugi, which is the largest goat-producing region in Rio Grande do Norte. In the present study, the ELISA assay was used to test 244 serum samples from nine farms, located in four different municipalities in the Sertão do Cabugi region, which is an important goat-rearing region. The results showed that the prevalence of anti-T. gondii antibodies was 47.1% and that there was a significant association between positivity and the variables of age (≥ 34 months), location (Lajes, Angicos and Afonso Bezerra) and farm (all the farms). The avidity test was applied to all the 115 ELISA-positive samples to distinguish between acute and chronic infection. One hundred and three samples (89.6%) displayed high-avidity antibodies, thus indicating that most of the animals presented chronic infection, with a consequent great impact on the development of the goat production system and a risk to human health.
Blom, Rianne M; Samuels, Jack F; Riddle, Mark A; Joseph Bienvenu, O; Grados, Marco A; Reti, Irving M; Eaton, William W; Liang, Kung-Yee; Nestadt, Gerald
2011-09-01
The serotonin transporter (SERT) polymorphism (5HTTLPR) has been reported to be associated with several psychiatric conditions. Specific personality disorders could be intermediate factors in the known relationship between 5HTTLPR and psychiatric disorders. This is the first study to test the association between this polymorphism and dimensions of all DSM-IV personality disorders in a community sample. 374 white participants were assessed by clinical psychologists using the International Personality Disorder Examination (IPDE). Associations between dimensions of each DSM-IV personality disorder and the long (l) and short (s) alleles of the 5HTTLPR were evaluated using non-parametric tests and regression models. The s allele of the 5HTTLPR polymorphism was significantly associated with higher avoidant personality trait scores in the whole sample. Males with the s allele had a significantly lower likelihood of higher obsessive-compulsive personality disorder (OCPD) trait scores, whereas females with the s allele were likely to have higher OCPD personality trait scores. This paper provides preliminary data on the relationship between personality disorders and the 5HTTLPR polymorphism. The relationship of the s allele and avoidant PD is consistent with findings of a nonspecific relationship of this polymorphism to anxiety and depressive disorders. Concerning the unusual sexual dimorphic result with OCPD, several hypotheses are presented. These findings need further replication, including a more detailed study of additional variants in SERT. Copyright © 2011 Elsevier Ltd. All rights reserved.
Blom, Rianne M.; Samuels, Jack F.; Riddle, Mark A.; Bienvenu, O. Joseph; Grados, Marco A.; Reti, Irving M.; Eaton, William W.; Liang, Kung-Yee; Nestadt, Gerald
2011-01-01
Background The serotonin transporter (SERT) polymorphism (5HTTLPR) has been reported to be associated with several psychiatric conditions. Specific personality disorders could be intermediate factors in the known relationship between 5HTTLPR and psychiatric disorders. This is the first study to test the association between this polymorphism and dimensions of all DSM-IV personality disorders in a community sample. Methods 374 white participants were assessed by clinical psychologists using the International Personality Disorder Examination (IPDE). Associations between dimensions of each DSM-IV personality disorder and the long (l) and short (s) alleles of the 5HTTLPR were evaluated using nonparametric tests and regression models. Results The s allele of the 5HTTLPR polymorphism was significantly associated with higher avoidant personality trait scores in the whole sample. Males with the s allele had a significantly lower likelihood of higher obsessive-compulsive personality disorder (OCPD) trait scores, whereas females with the s allele were likely to have higher OCPD personality trait scores. Conclusion This paper provides preliminary data on the relationship between personality disorders and the 5HTTLPR polymorphism. The relationship of the s allele and avoidant PD is consistent with findings of a nonspecific relationship of this polymorphism to anxiety and depressive disorders. Concerning the unusual sexual dimorphic result with OCPD, several hypotheses are presented. These findings need further replication, including a more detailed study of additional variants in SERT. PMID:21450307
Della Valle, R M; Baldoni, A; De Rossi, M; Ferri, F
1998-01-01
In this paper we will describe the SeCD (Service for the Care of Drug addicts) electronic folder, a specific application of CADMIO [1] (Computer Aided Design for Medical Information Objects) system. CADMIO is a system for the definition, construction and management of multimedia clinical folders. The Ser.T. (Servizio per la Tossicodipendenza/Service for Drug Addicts) has earned a very special place within the Italian clinical structures as well as any service for drug addicts has done in the rest of the world. Such a structure has special needs and the characteristics of its medical folders are very different from any other folder. Actually, a Ser.T. has to keep updated the patient situation either from the clinical point of view as well as the psychiatric one. Moreover, it must keep track of the clinician subjective considerations about the patient psychic state and his situation in regard of the law. So, we had to redesign some of the features of the existing CADMIO application, to accommodate such highly not structured data into objects easily manipulated by an informative system. The objectives we hope to achieve were mainly two: To show that a well designed adaptive system can be easily exploited to support even very complex and poorly structured data types and actions To design data structures able to accommodate medical, psychiatric and administrative data in an homogeneous manner.
Molecular Imaging of Transporters with Positron Emission Tomography
NASA Astrophysics Data System (ADS)
Antoni, Gunnar; Sörensen, Jens; Hall, Håkan
Positron emission tomography (PET) visualization of brain components in vivo is a rapidly growing field. Molecular imaging with PET is also increasingly used in drug development, especially for the determination of drug receptor interaction for CNS-active drugs. This gives the opportunity to relate clinical efficacy to per cent receptor occupancy of a drug on a certain targeted receptor and to relate drug pharmacokinetics in plasma to interaction with target protein. In the present review we will focus on the study of transporters, such as the monoamine transporters, the P-glycoprotein (Pgp) transporter, the vesicular monoamine transporter type 2, and the glucose transporter using PET radioligands. Neurotransmitter transporters are presynaptically located and in vivo imaging using PET can therefore be used for the determination of the density of afferent neurons. Several promising PET ligands for the noradrenaline transporter (NET) have been labeled and evaluated in vivo including in man, but a really useful PET ligand for NET still remains to be identified. The most promising tracer to date is (S,S)-[18F]FMeNER-D2. The in vivo visualization of the dopamine transporter (DAT) may give clues in the evaluation of conditions related to dopamine, such as Parkinson's disease and drug abuse. The first PET radioligands based on cocaine were not selective, but more recently several selective tracers such as [11C]PE2I have been characterized and shown to be suitable as PET radioligands. Although there are a large number of serotonin transporter inhibitors used today as SSRIs, it was not until very recently, when [11C]McN5652 was synthesized, that this transporter was studied using PET. New candidates as PET radioligands for the SERT have subsequently been developed and [11C]DASB and [11C]MADAM and their analogues are today the most promising ligands. The existing radioligands for Pgp transporters seem to be suitable tools for the study of both peripheral and central drug-Pgp interactions, although [11C]verapamil and [18F]fluoropaclitaxel are probably restricted to use in studies of the blood-brain barrier. The vesicular monoamine transporter 2 (VMAT2) is another interesting target for diagnostic imaging and [11C]DTBZ is a promising tracer. The noninvasive imaging of transporter density as a function of disease progression or availability following interaction with blocking drugs is highlighted, including the impact on both development of new therapies and the process of developing new drugs. Although CNS-related work focusing on psychiatric disorders is the main focus of this review, other applications of PET ligands, such as diagnosis of cancer, diabetes research, and drug interactions with efflux systems, are also discussed. The use of PET especially in terms of tracer development is briefly described. Finally, it can be concluded that there is an urgent need for new, selective radioligands for the study of the transporter systems in the human brain using PET.
Mapping social behavior-induced brain activation at cellular resolution in the mouse
Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel
2014-01-01
Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063
Instability and Transition on the HIFiRE-5 in a Mach-6 Quiet Tunnel
2010-08-01
sensitive paint images were recorded on Tek- tronix oscilloscopes in Hi-Res mode. When an oscilloscope is set to Hi-Res mode, it samples at its highest rate...insulators. The profilometer found root- mean-square surface finishes of 0.17–0.42 µm for the final TSP application on the HIFiRE-5. All TSP images reported...of final TSP application on spray-paint insulator 49 Instead, the decision was made to paint only the aluminum frustum (and its in- serts), leaving
A 5000-hour test of a grid-translation beam-deflection system for a 5-cm diameter Kaufman thruster
NASA Technical Reports Server (NTRS)
Lathem, W. C.
1973-01-01
A grid-translation type beam deflection system was tested on a 5-cm diameter mercury ion thruster for 5000 hours at a thrust level of about 0.36 mlb. During the first 2000 hours the beam was vectored 10 degrees in one direction. No erosion damage attributable to beam deflection was detected. Results indicate a possible lifetime of 15,000 to 20,000 hours. An optimized neutralizer position was used which eliminated the sputter erosion groove observed on the SERT 2 thrusters.
Brain Gym. Simple Activities for Whole Brain Learning.
ERIC Educational Resources Information Center
Dennison, Paul E.; Dennison, Gail E.
This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…
Fleming, W.J.
1981-01-01
Brain and plasma cholinesterase (ChE) activities were determined for mallard ducklings (Anas platyrhynchos) exposed to dicrotophos and fenthion. Recovery rates of brain ChE did not differ between ducklings administered a single oral dose vs. a 2-week dietary dose of these organophosphates. Exposure to the organophosphates, followed by recovery of brain ChE, did not significantly affect the degree of brain ChE inhibition or the recovery of ChE activity at a subsequent exposure. Recovery of brain ChE activity followed the general model Y = a + b(logX) with rapid recovery to about 50% of normal, followed by a slower rate of recovery until normal ChE activity levels were attained. Fenthion and dicrotophos-inhibited brain ChE were only slightly reactivated in vitro by pyridine-2-aldoxime methiodide, which suggested that spontaneous reactivation was not a primary method of recovery of ChE activity. Recovery of brain ChE activity can be modeled for interpretation of sublethal inhibition of brain ChE activities in wild birds following environmental applications of organophosphates. Plasma ChE activity is inferior to brain ChE activity for environmental monitoring, because of its rapid recovery and large degree of variation among individuals.
Invisible Brain: Knowledge in Research Works and Neuron Activity.
Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun
2016-01-01
If the market has an invisible hand, does knowledge creation and representation have an "invisible brain"? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an "invisible brain" or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism.
Bethea, Cynthia L.; Lima, Fernanda B.; Centeno, Maria L.; Weissheimer, Karin V.; Senashova, Olga; Reddy, Arubala P.; Cameron, Judy L.
2011-01-01
This chapter reviews the neurobiological effects of stress sensitivity and CIT treatment observed in our nonhuman primate model of Functional Hypothalamic Amenorrhea (FHA). This type of infertility, also known as stress-induced amenorrhea, is exhibited by cynomolgus macaques. In small populations, some individuals are stress sensitive (SS) and others are highly stress resilient (HSR). The SS macaques have suboptimal secretion of estrogen and progesterone during normal menstrual cycles. SS monkeys also have decreased serotonin gene expression and increased CRF expression compared to HSR monkeys. Recently, we found that s-citalopram (CIT) treatment improved ovarian steroid secretion in SS monkeys, but had no effect in HSR monkeys. Examination of the serotonin system revealed that SS monkeys had significantly lower Fev (fifth Ewing variant, rodent Pet1), TPH2 (tryptophan hydroxylase 2), 5HT1A autoreceptor and SERT (serotonin reuptake transporter) expression in the dorsal raphe than SR monkeys. However, CIT did not alter the expression of either Fev, TPH2, SERT or 5HT1A mRNAs. In contrast, SS monkeys tended to a higher density of CRF fiber innervation of the dorsal raphe than HSR monkeys, and CIT significantly decreased the CRF fiber density in SS animals. In addition, CIT increased CRF-R2 gene expression in the dorsal raphe. We speculate that in a 15-week time frame, the therapeutic effect of S-citalopram may be achieved through a mechanism involving extracellular serotonin inhibition of CRF and stimulation of CRF-R2, rather than alteration of serotonin-related gene expression. PMID:21683135
Depressive symptoms in schizophrenia and dopamine and serotonin gene polymorphisms.
Peitl, Vjekoslav; Štefanović, Mario; Karlović, Dalibor
2017-07-03
Although depressive symptoms seem to be frequent in schizophrenia they have received significantly less attention than other symptom domains. As impaired serotonergic and dopaminergic neurotransmission is implicated in the pathogenesis of depression and schizophrenia this study sought to investigate the putative association between several functional gene polymorphisms (SERT 5-HTTLPR, MAO-A VNTR, COMT Val158Met and DAT VNTR) and schizophrenia. Other objectives of this study were to closely examine schizophrenia symptom domains by performing factor analysis of the two most used instruments in this setting (Positive and negative syndrome scale - PANSS and Calgary depression rating scale - CDSS) and to examine the influence of investigated gene polymorphisms on the schizophrenia symptom domains, focusing on depressive scores. A total of 591 participants were included in the study (300 schizophrenic patients and 291 healthy volunteers). 192 (64%) of schizophrenic patients had significant depressive symptoms. Genotype distribution revealed no significant differences regarding all investigated polymorphisms except the separate gender analysis for MAO-A gene polymorphism which revealed significantly more allele 3 carriers in schizophrenic males. Factor analysis of the PANSS scale revealed the existence of five separate factors (symptom domains), while the CDSS scale revealed two distinct factors. Several investigated gene polymorphisms (mostly SERT and MAO-A, but also COMT) significantly influenced two factors from the PANSS (aggressive/impulsive and negative symptoms) and one from the CDSS scale (suicidality), respectively. Depressive symptoms in schizophrenic patients may be influenced by functional gene polymorphisms, especially those implicated in serotonergic neurotransmission. Copyright © 2017 Elsevier Inc. All rights reserved.
Greig, Chasen J; Cowles, Robert A
2017-07-01
Quantification of intestinal mucosal growth typically relies on morphometric parameters, commonly villus height, as a surrogate for presumed changes in mucosal surface area (MSA). We hypothesized that using mathematical modeling based on multiple unique measurements would improve discrimination of the effects of interventions on MSA compared to standard measures. To determine the ability of mathematical modeling to resolve differences in MSA, a mouse model with enhanced serotonin (5HT) signaling known to stimulate mucosal growth was used. 5-HT signaling is potentiated by targeting the serotonin reuptake transporter (SERT) molecule. Selective serotonin reuptake inhibitor-treated wild-type (WT-SSRI), SERT-knockout (SERTKO), and wild-type C57Bl/6 (WT) mice were used. Distal ileal sections were H&E-stained. Villus height (VH), width (VW), crypt width (CW), and bowel diameter were used to calculate surface area enlargement factor (SEF) and MSA. VH alone for SERTKO and SSRI was significantly increased compared to WT, without a difference between SERTKO and WT-SSRI. VW and CW were significantly decreased for both SERTKO and WT-SSRI compared to WT, and VW for WT-SSRI was also decreased compared to SERTKO. These changes increased SEF and MSA for SERTKO and WT-SSRI compared to WT. Additionally, SEF and MSA were significantly increased for WT-SSRI compared to SERTKO. Mathematical modeling provides a valuable tool for differentiating changes in intestinal MSA. This more comprehensive assessment of surface area does not appear to correlate linearly with standard morphometric measures and represents a more comprehensive method for discriminating between therapies aimed at increasing functional intestinal mucosa. © 2017 Wiley Periodicals, Inc.
Aher, Yogesh D.; Subramaniyan, Saraswathi; Shanmugasundaram, Bharanidharan; Sase, Ajinkya; Saroja, Sivaprakasam R.; Holy, Marion; Höger, Harald; Beryozkina, Tetyana; Sitte, Harald H.; Leban, Johann J.; Lubec, Gert
2016-01-01
Various psychostimulants targeting monoamine neurotransmitter transporters (MATs) have been shown to rescue cognition in patients with neurological disorders and improve cognitive abilities in healthy subjects at low doses. Here, we examined the effects upon cognition of a chemically synthesized novel MAT inhibiting compound 2-(benzhydrylsulfinylmethyl)-4-methylthiazole (named as CE-104). The efficacy of CE-104 in blocking MAT [dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter] was determined using in vitro neurotransmitter uptake assay. The effect of the drug at low doses (1 and 10 mg/kg) on spatial memory was studied in male rats in the radial arm maze (RAM). Furthermore, the dopamine receptor and transporter complex levels of frontal cortex (FC) tissue of trained and untrained animals treated either with the drug or vehicle were quantified on blue native PAGE (BN-PAGE). The drug inhibited dopamine (IC50: 27.88 μM) and norepinephrine uptake (IC50: 160.40 μM), but had a negligible effect on SERT. In the RAM, both drug-dose groups improved spatial working memory during the performance phase of RAM as compared to vehicle. BN-PAGE Western blot quantification of dopamine receptor and transporter complexes revealed that D1, D2, D3, and DAT complexes were modulated due to training and by drug effects. The drug’s ability to block DAT and its influence on DAT and receptor complex levels in the FC is proposed as a possible mechanism for the observed learning and memory enhancement in the RAM. PMID:26941626
Neuroimaging explanations of age-related differences in task performance.
Steffener, Jason; Barulli, Daniel; Habeck, Christian; Stern, Yaakov
2014-01-01
Advancing age affects both cognitive performance and functional brain activity and interpretation of these effects has led to a variety of conceptual research models without always explicitly linking the two effects. However, to best understand the multifaceted effects of advancing age, age differences in functional brain activity need to be explicitly tied to the cognitive task performance. This work hypothesized that age-related differences in task performance are partially explained by age-related differences in functional brain activity and formally tested these causal relationships. Functional MRI data was from groups of young and old adults engaged in an executive task-switching experiment. Analyses were voxel-wise testing of moderated-mediation and simple mediation statistical path models to determine whether age group, brain activity and their interaction explained task performance in regions demonstrating an effect of age group. Results identified brain regions whose age-related differences in functional brain activity significantly explained age-related differences in task performance. In all identified locations, significant moderated-mediation relationships resulted from increasing brain activity predicting worse (slower) task performance in older but not younger adults. Findings suggest that advancing age links task performance to the level of brain activity. The overall message of this work is that in order to understand the role of functional brain activity on cognitive performance, analysis methods should respect theoretical relationships. Namely, that age affects brain activity and brain activity is related to task performance.
Mattsson, Cecilia; Svensson, Peder; Boettcher, Henning; Sonesson, Clas
2013-05-01
To further investigate the structure-activity relationship (SAR) of the 5-hydroxytryptamine type 6 (5-HT6) receptor agonist 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (EMD386088, 6), a series of 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were synthesized, and in vitro affinity to, and functional activity at 5-HT6 receptors was tested. We focused on substituents made at the indole N(1)-, 2- and 5-positions and these were found to not only influence the affinity at 5-HT6 receptors but also the intrinsic activity leading to antagonists, partial agonists and full agonists. In order for a compound to demonstrate potent 5-HT6 receptor agonist properties, the indole N(1) should be unsubstituted, an alkyl group such as 2-methyl is needed and finally halogen substituents in the indole 5-position (fluoro, chloro or, bromo) were essential requirements. However, the introduction of a benzenesulfonyl group at N(1)-position switched the full agonist 6 to be a 5-HT6 receptor antagonist (30). A few compounds within the 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were also screened for off-targets and generally they displayed low affinity for other 5-HT subtypes and serotonin transporter protein (SERT). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Correspondence of the brain's functional architecture during activation and rest.
Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F
2009-08-04
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."
Kharkar, Prashant S.; Batman, Angela M.; Zhen, Juan; Beardsley, Patrick M.; Reith, Maarten E. A.
2012-01-01
In this report we describe synthesis and biological evaluation of a series of asymmetric 4-(2-(benzhydryloxy)ethyl)-1-((R)-2-hydroxy-2-phenylethyl)-piperidin-3-ol based dihydroxy compounds where the hydroxy groups are located both on the piperidine ring and also on the N-phenylethyl side chain exo-cyclically. In vitro uptake inhibition data indicates high affinity of these molecules for the dopamine transporter (DAT) in addition to their moderate to high affinity for the norepinephrine transporter (NET). Interestingly, compounds 9b and 9d exhibited affinities for all three monoamine transporters with highest potency at DAT and NET and moderate potency at the serotonin transporter (SERT) (Ki 2.29, 78.4 and 155 nM for 9b and 1.55, 14.1 and 259 nM for 9d, respectively). Selected compounds, 9a, 9d and 9d’ were tested for their locomotor activity effects in mice, and for their ability to occasion the cocaine discriminative stimulus in rats. These test compounds generally exhibited a much longer duration of action than cocaine for elevating locomotor activity, and dose-dependently completely generalized the cocaine discriminative stimulus. PMID:19449323
Using Brain Electrical Activity Mapping to Diagnose Learning Disabilities.
ERIC Educational Resources Information Center
Torello, Michael, W.; Duffy, Frank H.
1985-01-01
Cognitive neuroscience assumes that measurement of brain electrical activity should relate to cognition. Brain Electrical Activity Mapping (BEAM), a non-invasive technique, is used to record changes in activity from one brain area to another and is 80 to 90 percent successful in classifying subjects as dyslexic or normal. (MT)
Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li
2013-01-01
Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378
Instantaneous brain dynamics mapped to a continuous state space.
Billings, Jacob C W; Medda, Alessio; Shakil, Sadia; Shen, Xiaohong; Kashyap, Amrit; Chen, Shiyang; Abbas, Anzar; Zhang, Xiaodi; Nezafati, Maysam; Pan, Wen-Ju; Berman, Gordon J; Keilholz, Shella D
2017-11-15
Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a representative set of spatially independent components. The correlation distance over the instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to a large sample of resting-state and task-active data (acquired through the Human Connectome Project), we segment the empirical state space into a continuum of stimulus-dependent brain states. Upon observing the local neighborhood of brain-states adopted subsequent to each stimulus, we may conclude that resting brain activity includes brain states that are, at times, similar to those adopted during tasks, but that are at other times distinct from task-active brain states. As task-active brain states often populate a local neighborhood, back-projection of segments of the dynamical state space onto the brain's surface reveals the patterns of brain activity that support many experimentally-defined states. Copyright © 2017 Elsevier Inc. All rights reserved.
Network-dependent modulation of brain activity during sleep.
Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki
2014-09-01
Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.
Brain Activity and Human Unilateral Chewing
Quintero, A.; Ichesco, E.; Myers, C.; Schutt, R.; Gerstner, G.E.
2012-01-01
Brain mechanisms underlying mastication have been studied in non-human mammals but less so in humans. We used functional magnetic resonance imaging (fMRI) to evaluate brain activity in humans during gum chewing. Chewing was associated with activations in the cerebellum, motor cortex and caudate, cingulate, and brainstem. We also divided the 25-second chew-blocks into 5 segments of equal 5-second durations and evaluated activations within and between each of the 5 segments. This analysis revealed activation clusters unique to the initial segment, which may indicate brain regions involved with initiating chewing. Several clusters were uniquely activated during the last segment as well, which may represent brain regions involved with anticipatory or motor events associated with the end of the chew-block. In conclusion, this study provided evidence for specific brain areas associated with chewing in humans and demonstrated that brain activation patterns may dynamically change over the course of chewing sequences. PMID:23103631
Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko
2015-08-01
It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.
ERIC Educational Resources Information Center
Strelnikov, Kuzma
2010-01-01
There is increasing focus on the neurophysiological underpinnings of brain activations, giving birth to an emerging branch of neuroscience--neuroenergetics. However, no common definition of "brain activation" exists thus far. In this article, we define brain activation as the information-driven reorganization of energy flows in a population of…
Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy
Liu, Ning; Cui, Xu; Bryant, Daniel M.; Glover, Gary H.; Reiss, Allan L.
2015-01-01
Functional near-infrared spectroscopy (fNIRS) is an increasingly popular technology for studying brain function because it is non-invasive, non-irradiating and relatively inexpensive. Further, fNIRS potentially allows measurement of hemodynamic activity with high temporal resolution (milliseconds) and in naturalistic settings. However, in comparison with other imaging modalities, namely fMRI, fNIRS has a significant drawback: limited sensitivity to hemodynamic changes in deep-brain regions. To overcome this limitation, we developed a computational method to infer deep-brain activity using fNIRS measurements of cortical activity. Using simultaneous fNIRS and fMRI, we measured brain activity in 17 participants as they completed three cognitive tasks. A support vector regression (SVR) learning algorithm was used to predict activity in twelve deep-brain regions using information from surface fNIRS measurements. We compared these predictions against actual fMRI-measured activity using Pearson’s correlation to quantify prediction performance. To provide a benchmark for comparison, we also used fMRI measurements of cortical activity to infer deep-brain activity. When using fMRI-measured activity from the entire cortex, we were able to predict deep-brain activity in the fusiform cortex with an average correlation coefficient of 0.80 and in all deep-brain regions with an average correlation coefficient of 0.67. The top 15% of predictions using fNIRS signal achieved an accuracy of 0.7. To our knowledge, this study is the first to investigate the feasibility of using cortical activity to infer deep-brain activity. This new method has the potential to extend fNIRS applications in cognitive and clinical neuroscience research. PMID:25798327
New Perspectives on Spontaneous Brain Activity: Dynamic Networks and Energy Matter.
Tozzi, Arturo; Zare, Marzieh; Benasich, April A
2016-01-01
Spontaneous brain activity has received increasing attention as demonstrated by the exponential rise in the number of published article on this topic over the last 30 years. Such "intrinsic" brain activity, generated in the absence of an explicit task, is frequently associated with resting-state or default-mode networks (DMN)s. The focus on characterizing spontaneous brain activity promises to shed new light on questions concerning the structural and functional architecture of the brain and how they are related to "mind". However, many critical questions have yet to be addressed. In this review, we focus on a scarcely explored area, specifically the energetic requirements and constraints of spontaneous activity, taking into account both thermodynamical and informational perspectives. We argue that the "classical" definitions of spontaneous activity do not take into account an important feature, that is, the critical thermodynamic energetic differences between spontaneous and evoked brain activity. Spontaneous brain activity is associated with slower oscillations compared with evoked, task-related activity, hence it exhibits lower levels of enthalpy and "free-energy" (i.e., the energy that can be converted to do work), thus supporting noteworthy thermodynamic energetic differences between spontaneous and evoked brain activity. Increased spike frequency during evoked activity has a significant metabolic cost, consequently, brain functions traditionally associated with spontaneous activity, such as mind wandering, require less energy that other nervous activities. We also review recent empirical observations in neuroscience, in order to capture how spontaneous brain dynamics and mental function can be embedded in a non-linear dynamical framework, which considers nervous activity in terms of phase spaces, particle trajectories, random walks, attractors and/or paths at the edge of the chaos. This takes us from the thermodynamic free-energy, to the realm of "variational free-energy", a theoretical construct pertaining to probability and information theory which allows explanation of unexplored features of spontaneous brain activity.
Sakurai, Yoshio
2014-01-01
This perspective emphasizes that the brain-machine interface (BMI) research has the potential to clarify major mysteries of the brain and that such clarification of the mysteries by neuroscience is needed to develop BMIs. I enumerate five principal mysteries. The first is "how is information encoded in the brain?" This is the fundamental question for understanding what our minds are and is related to the verification of Hebb's cell assembly theory. The second is "how is information distributed in the brain?" This is also a reconsideration of the functional localization of the brain. The third is "what is the function of the ongoing activity of the brain?" This is the problem of how the brain is active during no-task periods and what meaning such spontaneous activity has. The fourth is "how does the bodily behavior affect the brain function?" This is the problem of brain-body interaction, and obtaining a new "body" by a BMI leads to a possibility of changes in the owner's brain. The last is "to what extent can the brain induce plasticity?" Most BMIs require changes in the brain's neuronal activity to realize higher performance, and the neuronal operant conditioning inherent in the BMIs further enhances changes in the activity.
Ischemic Brain Injury Leads to Brain Edema via Hyperthermia-Induced TRPV4 Activation.
Hoshi, Yutaka; Okabe, Kohki; Shibasaki, Koji; Funatsu, Takashi; Matsuki, Norio; Ikegaya, Yuji; Koyama, Ryuta
2018-06-20
Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain largely unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which male mouse brain slices were treated with oxygen-glucose deprivation (OGD) to mimic ischemia. We continuously measured the cross-sectional area of the brain slice for 150 min under macroscopic microscopy, finding that OGD induces swelling of brain slices. OGD-induced swelling was prevented by pharmacologically blocking or genetically knocking out the transient receptor potential vanilloid 4 (TRPV4), a member of the thermosensitive TRP channel family. Because TRPV4 is activated at around body temperature and its activation is enhanced by heating, we next elevated the temperature of the perfusate in the recording chamber, finding that hyperthermia induces swelling via TRPV4 activation. Furthermore, using the temperature-dependent fluorescence lifetime of a fluorescent-thermosensitive probe, we confirmed that OGD treatment increases the temperature of brain slices through the activation of glutamate receptors. Finally, we found that brain edema following traumatic brain injury was suppressed in TRPV4-deficient male mice in vivo Thus, our study proposes a novel mechanism: hyperthermia activates TRPV4 and induces brain edema after ischemia. SIGNIFICANCE STATEMENT Brain edema is characterized by an increase in net brain water content, which results in an increase in brain volume. Although brain edema is associated with a high fatality rate, the cellular and molecular processes of edema remain unclear. Here, we developed an in vitro model of ischemic stroke-induced edema in which mouse brain slices were treated with oxygen-glucose deprivation. Using this system, we showed that the increase in brain temperature and the following activation of the thermosensitive cation channel TRPV4 (transient receptor potential vanilloid 4) are involved in the pathology of edema. Finally, we confirmed that TRPV4 is involved in brain edema in vivo using TRPV4-deficient mice, concluding that hyperthermia activates TRPV4 and induces brain edema after ischemia. Copyright © 2018 the authors 0270-6474/18/385700-10$15.00/0.
He, Biyu J; Zempel, John M
2013-01-01
It is well known that even under identical task conditions, there is a tremendous amount of trial-to-trial variability in both brain activity and behavioral output. Thus far the vast majority of event-related potential (ERP) studies investigating the relationship between trial-to-trial fluctuations in brain activity and behavioral performance have only tested a monotonic relationship between them. However, it was recently found that across-trial variability can correlate with behavioral performance independent of trial-averaged activity. This finding predicts a U- or inverted-U- shaped relationship between trial-to-trial brain activity and behavioral output, depending on whether larger brain variability is associated with better or worse behavior, respectively. Using a visual stimulus detection task, we provide evidence from human electrocorticography (ECoG) for an inverted-U brain-behavior relationship: When the raw fluctuation in broadband ECoG activity is closer to the across-trial mean, hit rate is higher and reaction times faster. Importantly, we show that this relationship is present not only in the post-stimulus task-evoked brain activity, but also in the pre-stimulus spontaneous brain activity, suggesting anticipatory brain dynamics. Our findings are consistent with the presence of stochastic noise in the brain. They further support attractor network theories, which postulate that the brain settles into a more confined state space under task performance, and proximity to the targeted trajectory is associated with better performance.
Artifact suppression and analysis of brain activities with electroencephalography signals.
Rashed-Al-Mahfuz, Md; Islam, Md Rabiul; Hirose, Keikichi; Molla, Md Khademul Islam
2013-06-05
Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.
Correspondence of the brain's functional architecture during activation and rest
Smith, Stephen M.; Fox, Peter T.; Miller, Karla L.; Glahn, David C.; Fox, P. Mickle; Mackay, Clare E.; Filippini, Nicola; Watkins, Kate E.; Toro, Roberto; Laird, Angela R.; Beckmann, Christian F.
2009-01-01
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.” PMID:19620724
Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities
NASA Astrophysics Data System (ADS)
El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.
2015-01-01
Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.
Rigor, Robert R; Hawkins, Brian T; Miller, David S
2010-07-01
P-glycoprotein is an ATP (adenosine triphosphate)-driven drug efflux transporter that is highly expressed at the blood-brain barrier (BBB) and is a major obstacle to the pharmacotherapy of central nervous system diseases, including brain tumors, neuro-AIDS, and epilepsy. Previous studies have shown that P-glycoprotein transport activity in rat brain capillaries is rapidly reduced by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha) acting through protein kinase C (PKC)-dependent signaling. In this study, we used isolated rat brain capillaries to show that the TNF-alpha-induced reduction of P-glycoprotein activity was prevented by a PKCbeta(I/II) inhibitor, LY333531, and mimicked by a PKCbeta(I/II) activator, 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA). Western blotting of brain capillary extracts with phospho-specific antibodies showed that dPPA activated PKCbeta(I), but not PKCbeta(II). Moreover, in intact rats, intracarotid infusion of dPPA potently increased brain accumulation of the P-glycoprotein substrate, [(3)H]-verapamil without compromising tight junction integrity. Thus, PKCbeta(I) activation selectively reduced P-glycoprotein activity both in vitro and in vivo. Targeting PKCbeta(I) at the BBB may prove to be an effective strategy for enhancing the delivery of small molecule therapeutics to the brain.
Material and physical model for evaluation of deep brain activity contribution to EEG recordings
NASA Astrophysics Data System (ADS)
Ye, Yan; Li, Xiaoping; Wu, Tiecheng; Li, Zhe; Xie, Wenwen
2015-12-01
Deep brain activity is conventionally recorded with surgical implantation of electrodes. During the neurosurgery, brain tissue damage and the consequent side effects to patients are inevitably incurred. In order to eliminate undesired risks, we propose that deep brain activity should be measured using the noninvasive scalp electroencephalography (EEG) technique. However, the deeper the neuronal activity is located, the noisier the corresponding scalp EEG signals are. Thus, the present study aims to evaluate whether deep brain activity could be observed from EEG recordings. In the experiment, a three-layer cylindrical head model was constructed to mimic a human head. A single dipole source (sine wave, 10 Hz, altering amplitudes) was embedded inside the model to simulate neuronal activity. When the dipole source was activated, surface potential was measured via electrodes attached on the top surface of the model and raw data were recorded for signal analysis. Results show that the dipole source activity positioned at 66 mm depth in the model, equivalent to the depth of deep brain structures, is clearly observed from surface potential recordings. Therefore, it is highly possible that deep brain activity could be observed from EEG recordings and deep brain activity could be measured using the noninvasive scalp EEG technique.
Urra, Javier A; Villaroel-Espíndola, Franz; Covarrubias, Alejandra A; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I
2014-01-01
Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP(+)), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.
Covarrubias, Alejandra A.; Rodríguez-Gil, Joan Enric; Ramírez-Reveco, Alfredo; Concha, Ilona I.
2014-01-01
Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT), serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate. In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility. PMID:25402186
Laurent, Laetitia; Huang, Chunwei; Ernest, Sheila R; Berard, Anick; Vaillancourt, Cathy; Hales, Barbara F
2016-12-01
Human studies are inconsistent with respect to an association between treatment with selective serotonin and serotonin-norepinephrine reuptake inhibitors (SSRI/SNRIs) and an increase in the incidence of congenital heart defects. Here we tested the hypothesis that in utero exposure to venlafaxine, a highly prescribed SNRI, increases the incidence of fetal heart defects and alters placental and fetal heart serotonin signaling in the rat. Timed-pregnant Sprague Dawley rats were gavaged daily with venlafaxine hydrochloride (0, 3, 10, 30, or 100 mg/kg/day) from gestation day 8 to 20. On gestation day 21, fetuses were examined for external and internal malformations; placentas and fetal hearts were collected for the analysis of gene expression. Venlafaxine had no effect on the number of live fetuses, fetal body weights, or external morphology in the absence of maternal toxicity. However, venlafaxine significantly increased the placental index (fetal body/placental weight ratio) and the incidence of fetal cardiac anomalies. Venlafaxine exposure decreased placental expression of the serotonin transporter (SERT/Slc6a4) at the transcript and protein levels. In contrast, venlafaxine increased SERT expression in the hearts of female, but not male, fetuses. Expression of the serotonin 2B receptor (5-HT 2B /Htr2b) and of fibroblast growth factor 8 was induced in fetal hearts. In utero venlafaxine exposure altered the placental index and induced fetal cardiac anomalies in rats. We propose that the increased incidence of cardiac anomalies is mediated through alterations in serotonin signaling in the placenta and fetal heart. Birth Defects Research (Part A), 2016. © 2016 Wiley Periodicals, Inc. Birth Defects Research (Part A) 106:1044-1055, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mukilan, Murugan; Rajathei, David Mary; Jeyaraj, Edwin; Kayalvizhi, Nagarajan; Rajan, Koilmani Emmanuvel
2018-05-30
Earlier, we showed that micro RNA-132 (miR-132) regulate the immediate early genes (IEGs) in the olfactory bulb (OB) of fruit bat Cynopterus sphinx during olfactory learning. This study was designed to examine whether the miR-132 regulate other proteins in OB during olfactory learning. To test this, miR-132 anti-sense oligodeoxynucleotide (AS-ODN) was delivered to the OB and then trained to novel odor. The 2-dimensional gel electrophoresis analysis showed that inhibition of miR-132 altered olfactory training induced expression of 321 proteins. Further, liquid chromatography-mass spectrometry (LC-MS/MS) analysis reveals the identity of differently expressed proteins such as phosphoribosyl transferase domain containing protein (PRTFDC 1), Sorting nexin-8 (SNX8), Creatine kinase B-type (CKB) and Annexin A11 (ANX A11). Among them PRTFDC 1 showing 189 matching peptides with highest sequence coverage (67.0%) and protein-protein interaction analysis showed that PRTFDC 1 is a homolog of hypoxanthine phosphoribosyltransferase-1 (HPRT-1). Subsequent immunohistochemical analysis (IHC) showed that inhibition of miR-132 down-regulated HPRT expression in OB of C. sphinx. In addition, western blot analysis depicts that HPRT, serotonin transporter (SERT), N-methyl-d-asparate (NMDA) receptors (2A,B) were down-regulated, but not altered in OB of non-sense oligodeoxynucleotide (NS-ODN) infused groups. These analyses suggest that miR-132 regulates the process of olfactory learning and memory formation through SERT and NMDA receptors signalling, which is possibly associated with the PRTFDC1-HPRT interaction. Copyright © 2017. Published by Elsevier B.V.
Lopez-Rodriguez, Ana Belen; Llorente-Berzal, Alvaro; Garcia-Segura, Luis M; Viveros, Maria-Paz
2014-03-01
Many young people consume ecstasy as a recreational drug and often in combination with cannabis. In this study, we aimed to mimic human consumption patterns and investigated, in male and female animals, the long-term effects of Δ(9) -tetrahydrocannabinol (THC) and 3,4-methylenedioxymethamphetamine (MDMA) on diverse neuroinflammation and neurotoxic markers. Male and female Wistar rats were chronically treated with increasing doses of THC and/or MDMA during adolescence. The effects of THC and/or MDMA on glial reactivity and on serotoninergic and cannabinoid systems were assessed by immunohistochemistry in the hippocampus and parietal cortex. THC increased the area staining for glial fibrilar acidic protein in both sexes. In males, both drugs, either separately or in combination, increased the proportion of reactive microglia cells [ionized calcium binding adaptor molecule 1 (Iba-1)]. In contrast, in females, each drug, administered alone, decreased of this proportion, whereas the combination of both drugs resulted in a 'normalization' to control values. In males, MDMA reduced the number of SERT positive fibres, THC induced the opposite effect and the group receiving both drugs did not significantly differ from the controls. In females, MDMA reduced the number of SERT positive fibres and the combination of both drugs counteracted this effect. THC also reduced immunostaining for CB1 receptors in females and this effect was aggravated by the combination with MDMA. Adolescent exposure of rats to THC and/or MDMA induced long-term, sex-dependent neurochemical and glial alterations, and revealed interactions between the two drugs. This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6. © 2013 The British Pharmacological Society.
Strekalova, Tatyana; Evans, Matthew; Chernopiatko, Anton; Couch, Yvonne; Costa-Nunes, João; Cespuglio, Raymond; Chesson, Lesley; Vignisse, Julie; Steinbusch, Harry W; Anthony, Daniel C; Pomytkin, Igor; Lesch, Klaus-Peter
2015-01-15
Environmental factors can significantly affect disease prevalence, including neuropsychiatric disorders such as depression. The ratio of deuterium to protium in water shows substantial geographical variation, which could affect disease susceptibility. Thus the link between deuterium content of water and depression was investigated, both epidemiologically, and in a mouse model of chronic mild stress. We performed a correlation analysis between deuterium content of tap water and rates of depression in regions of the USA. Next, we used a 10-day chronic stress paradigm to test whether 2-week deuterium-depleted water treatment (91 ppm) affects depressive-like behavior and hippocampal SERT. The effect of deuterium-depletion on sleep electrophysiology was also evaluated in naïve mice. There was a geographic correlation between a content of deuterium and the prevalence of depression across the USA. In the chronic stress model, depressive-like features were reduced in mice fed with deuterium-depleted water, and SERT expression was decreased in mice treated with deuterium-treated water compared with regular water. Five days of predator stress also suppressed proliferation in the dentate gyrus; this effect was attenuated in mice fed with deuterium-depleted water. Finally, in naïve mice, deuterium-depleted water treatment increased EEG indices of wakefulness, and decreased duration of REM sleep, phenomena that have been shown to result from the administration of selective serotonin reuptake inhibitors (SSRI). Our data suggest that the deuterium content of water may influence the incidence of affective disorder-related pathophysiology and major depression, which might be mediated by the serotoninergic mechanisms. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Stolyarova, Alexandra; O'Dell, Steve J; Marshall, John F; Izquierdo, Alicia
2014-09-01
Learning from mistakes and prospectively adjusting behavior in response to reward feedback is an important facet of performance monitoring. Dopamine (DA) pathways play an important role in feedback learning and a growing literature has also emerged on the importance of serotonin (5HT) in reward learning, particularly during punishment or reward omission (negative feedback). Cognitive impairments resulting from psychostimulant exposure may arise from altered patterns in feedback learning, which in turn may be modulated by DA and 5HT transmission. We analyzed long-term, off-drug changes in learning from positive and negative feedback and associated striatal DA transporter (DAT) and frontocortical 5HT transporter (SERT) binding in rats pretreated with methamphetamine (mAMPH). Specifically, we assessed the reversal phase of pairwise visual discrimination learning in rats receiving single dose- (mAMPHsingle) vs. escalating-dose exposure (mAMPHescal). Using fine-grained trial-by-trial analyses, we found increased sensitivity to and reliance on positive feedback in mAMPH-pretreated animals, with the mAMPHsingle group showing more pronounced use of this type of feedback. In contrast, overall negative feedback sensitivity was not altered following any mAMPH treatment. In addition to validating the enduring effects of mAMPH on early reversal learning, we found more consecutive error commissions before the first correct response in mAMPH-pretreated rats. This behavioral rigidity was negatively correlated with subregional frontocortical SERT whereas positive feedback sensitivity negatively correlated with striatal DAT binding. These results provide new evidence for the overlapping, yet dissociable roles of DA and 5HT systems in overcoming perseveration and in learning new reward rules. Copyright © 2014 Elsevier B.V. All rights reserved.
The N Terminus of Monoamine Transporters Is a Lever Required for the Action of Amphetamines*
Sucic, Sonja; Dallinger, Stefan; Zdrazil, Barbara; Weissensteiner, René; Jørgensen, Trine N.; Holy, Marion; Kudlacek, Oliver; Seidel, Stefan; Cha, Joo Hwan; Gether, Ulrik; Newman, Amy H.; Ecker, Gerhard F.; Freissmuth, Michael; Sitte, Harald H.
2010-01-01
The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). We explored the functional importance of the N terminus in mediating the action of amphetamines by focusing initially on the highly conserved threonine residue at position 81, a candidate site for phosphorylation by protein kinase C. Molecular dynamics simulations of the wild type SERT, compared with its mutations SERTT81A and SERTT81D, suggested structural changes in the inner vestibule indicative of an opening of the inner vestibule. Predictions from this model (e.g. the preferential accumulation of SERTT81A in the inward conformation, its reduced turnover number, and a larger distance between its N and C termini) were verified. Most importantly, SERTT81A (and the homologous mutations in noradrenaline and dopamine) failed to support amphetamine-induced efflux, and this was not remedied by aspartate at this position. Amphetamine-induced currents through SERTT81A were comparable with those through the wild type transporter. Both abundant Na+ entry and accumulation of SERTT81A in the inward facing conformation ought to favor amphetamine-induced efflux. Thus, we surmised that the N terminus must play a direct role in driving the transporter into a state that supports amphetamine-induced efflux. This hypothesis was verified by truncating the first 64 amino acids and by tethering the N terminus to an additional transmembrane helix. Either modification abolished amphetamine-induced efflux. We therefore conclude that the N terminus of monoamine transporters acts as a lever that sustains reverse transport. PMID:20118234
Petrassi, Mike; Barber, Rob; Be, Celine; Beach, Sarah; Cox, Brian; D’Souza, Anne-Marie; Duggan, Nick; Hussey, Martin; Fox, Roy; Hunt, Peter; Jarai, Gabor; Kosaka, Takatoshi; Oakley, Paul; Patel, Viral; Press, Neil; Rowlands, David; Scheufler, Clemens; Schmidt, Oliver; Srinivas, Honnappa; Turner, Mary; Turner, Rob; Westwick, John; Wolfreys, Alison; Pathan, Nuzhat; Watson, Simon; Thomas, Matthew
2017-01-01
Pulmonary arterial hypertension (PAH) has demonstrated multi-serotonin receptor dependent pathologies, characterized by increased tone (5-HT1B receptor) and complex lesions (SERT, 5-HT1B, 5-HT2B receptors) of the pulmonary vasculature together with right ventricular hypertrophy, ischemia and fibrosis (5-HT2B receptor). Selective inhibitors of individual signaling elements – SERT, 5-HT2A, 5HT2B, and combined 5-HT2A/B receptors, have all been tested clinically and failed. Thus, inhibition of tryptophan hydroxylase 1 (TPH1), the rate limiting step in 5-HT synthesis, has been suggested as a more broad, and thereby more effective, mode of 5-HT inhibition. However, selectivity over non-pathogenic enzyme family members, TPH2, phenylalanine hydroxylase, and tyrosine hydroxylase has hampered therapeutic development. Here we describe the site/sequence, biochemical, and biophysical characterization of a novel allosteric site on TPH1 through which selectivity over TPH2 and related aromatic amino acid hydroxylases is achieved. We demonstrate the mechanism of action by which novel compounds selectively inhibit TPH1 using surface plasma resonance and enzyme competition assays with both tryptophan ligand and BH4 co-factor. We demonstrate 15-fold greater potency within a human carcinoid cell line versus the most potent known TPH1/2 non-specific inhibitor. Lastly, we detail a novel canine in vivo system utilized to determine effective biologic inhibition of newly synthesized 5-HT. These findings are the first to demonstrate TPH1-selective inhibition and may pave the way to a truly effective means to reduce pathologic 5-HT and thereby treat complex remodeling diseases such as PAH. PMID:28529483
Zhao, Shijie; Han, Junwei; Hu, Xintao; Jiang, Xi; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming
2018-06-01
Recently, a growing body of studies have demonstrated the simultaneous existence of diverse brain activities, e.g., task-evoked dominant response activities, delayed response activities and intrinsic brain activities, under specific task conditions. However, current dominant task-based functional magnetic resonance imaging (tfMRI) analysis approach, i.e., the general linear model (GLM), might have difficulty in discovering those diverse and concurrent brain responses sufficiently. This subtraction-based model-driven approach focuses on the brain activities evoked directly from the task paradigm, thus likely overlooks other possible concurrent brain activities evoked during the information processing. To deal with this problem, in this paper, we propose a novel hybrid framework, called extendable supervised dictionary learning (E-SDL), to explore diverse and concurrent brain activities under task conditions. A critical difference between E-SDL framework and previous methods is that we systematically extend the basic task paradigm regressor into meaningful regressor groups to account for possible regressor variation during the information processing procedure in the brain. Applications of the proposed framework on five independent and publicly available tfMRI datasets from human connectome project (HCP) simultaneously revealed more meaningful group-wise consistent task-evoked networks and common intrinsic connectivity networks (ICNs). These results demonstrate the advantage of the proposed framework in identifying the diversity of concurrent brain activities in tfMRI datasets.
AlRyalat, Saif Aldeen
2017-01-01
Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.
Kivell, Bronwyn; Uzelac, Zeljko; Sundaramurthy, Santhanalakshmi; Rajamanickam, Jeyaganesh; Ewald, Amy; Chefer, Vladimir; Jaligam, Vanaja; Bolan, Elizabeth; Simonson, Bridget; Annamalai, Balasubramaniam; Mannangatti, Padmanabhan; Prisinzano, Thomas E; Gomes, Ivone; Devi, Lakshmi A; Jayanthi, Lankupalle D; Sitte, Harald H; Ramamoorthy, Sammanda; Shippenberg, Toni S
2014-11-01
Salvinorin A (SalA), a selective κ-opioid receptor (KOR) agonist, produces dysphoria and pro-depressant like effects. These actions have been attributed to inhibition of striatal dopamine release. The dopamine transporter (DAT) regulates dopamine transmission via uptake of released neurotransmitter. KORs are apposed to DAT in dopamine nerve terminals suggesting an additional target by which SalA modulates dopamine transmission. SalA produced a concentration-dependent, nor-binaltorphimine (BNI)- and pertussis toxin-sensitive increase of ASP(+) accumulation in EM4 cells coexpressing myc-KOR and YFP-DAT, using live cell imaging and the fluorescent monoamine transporter substrate, trans 4-(4-(dimethylamino)-styryl)-N-methylpyridinium) (ASP(+)). Other KOR agonists also increased DAT activity that was abolished by BNI pretreatment. While SalA increased DAT activity, SalA treatment decreased serotonin transporter (SERT) activity and had no effect on norepinephrine transporter (NET) activity. In striatum, SalA increased the Vmax for DAT mediated DA transport and DAT surface expression. SalA up-regulation of DAT function is mediated by KOR activation and the KOR-linked extracellular signal regulated kinase-½ (ERK1/2) pathway. Co-immunoprecipitation and BRET studies revealed that DAT and KOR exist in a complex. In live cells, DAT and KOR exhibited robust FRET signals under basal conditions. SalA exposure caused a rapid and significant increase of the FRET signal. This suggests that the formation of KOR and DAT complexes is promoted in response to KOR activation. Together, these data suggest that enhanced DA transport and decreased DA release resulting in decreased dopamine signalling may contribute to the dysphoric and pro-depressant like effects of SalA and other KOR agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hashmi, Javeria A; Baliki, Marwan N; Huang, Lejian; Baria, Alex T; Torbey, Souraya; Hermann, Kristina M; Schnitzer, Thomas J; Apkarian, A Vania
2013-09-01
Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain.
Hashmi, Javeria A.; Baliki, Marwan N.; Huang, Lejian; Baria, Alex T.; Torbey, Souraya; Hermann, Kristina M.; Schnitzer, Thomas J.; Apkarian, A. Vania
2013-01-01
Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain. PMID:23983029
Test-Retest Reliability of fMRI Brain Activity during Memory Encoding
Brandt, David J.; Sommer, Jens; Krach, Sören; Bedenbender, Johannes; Kircher, Tilo; Paulus, Frieder M.; Jansen, Andreas
2013-01-01
The mechanisms underlying hemispheric specialization of memory are not completely understood. Functional magnetic resonance imaging (fMRI) can be used to develop and test models of hemispheric specialization. In particular for memory tasks however, the interpretation of fMRI results is often hampered by the low reliability of the data. In the present study we therefore analyzed the test-retest reliability of fMRI brain activation related to an implicit memory encoding task, with a particular focus on brain activity of the medial temporal lobe (MTL). Fifteen healthy subjects were scanned with fMRI on two sessions (average retest interval 35 days) using a commonly applied novelty encoding paradigm contrasting known and unknown stimuli. To assess brain lateralization, we used three different stimuli classes that differed in their verbalizability (words, scenes, fractals). Test-retest reliability of fMRI brain activation was assessed by an intraclass-correlation coefficient (ICC), describing the stability of inter-individual differences in the brain activation magnitude over time. We found as expected a left-lateralized brain activation network for the words paradigm, a bilateral network for the scenes paradigm, and predominantly right-hemispheric brain activation for the fractals paradigm. Although these networks were consistently activated in both sessions on the group level, across-subject reliabilities were only poor to fair (ICCs ≤ 0.45). Overall, the highest ICC values were obtained for the scenes paradigm, but only in strongly activated brain regions. In particular the reliability of brain activity of the MTL was poor for all paradigms. In conclusion, for novelty encoding paradigms the interpretation of fMRI results on a single subject level is hampered by its low reliability. More studies are needed to optimize the retest reliability of fMRI activation for memory tasks. PMID:24367338
Brain-Based Teaching/Learning and Implications for Religious Education.
ERIC Educational Resources Information Center
Weber, Jean Marie
2002-01-01
Argues that physical activity and water can increase brain activity, and hence, learning. Findings of neuroscientists regarding the brain can inform educators. Brain-based teaching emphasizes teamwork, cooperative learning, and global responsibility. Argues against gathering information without relevance. Connects brain-based learning concepts to…
Sakurai, Yoshio
2014-01-01
This perspective emphasizes that the brain-machine interface (BMI) research has the potential to clarify major mysteries of the brain and that such clarification of the mysteries by neuroscience is needed to develop BMIs. I enumerate five principal mysteries. The first is “how is information encoded in the brain?” This is the fundamental question for understanding what our minds are and is related to the verification of Hebb’s cell assembly theory. The second is “how is information distributed in the brain?” This is also a reconsideration of the functional localization of the brain. The third is “what is the function of the ongoing activity of the brain?” This is the problem of how the brain is active during no-task periods and what meaning such spontaneous activity has. The fourth is “how does the bodily behavior affect the brain function?” This is the problem of brain-body interaction, and obtaining a new “body” by a BMI leads to a possibility of changes in the owner’s brain. The last is “to what extent can the brain induce plasticity?” Most BMIs require changes in the brain’s neuronal activity to realize higher performance, and the neuronal operant conditioning inherent in the BMIs further enhances changes in the activity. PMID:24904323
Enzyme markers of maternal malnutrition in fetal rat brain.
Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R
1987-01-01
The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.
Williams, Gemma; Fabrizi, Lorenzo; Meek, Judith; Jackson, Deborah; Tracey, Irene; Robertson, Nicola; Slater, Rebeccah; Fitzgerald, Maria
2015-01-01
Aim Despite the importance of neonatal skin stimulation, little is known about activation of the newborn human infant brain by sensory stimulation of the skin. We carried out functional magnetic resonance imaging (fMRI) to assess the feasibility of measuring brain activation to a range of mechanical stimuli applied to the skin of neonatal infants. Methods We studied 19 term infants with a mean age of 13 days. Brain activation was measured in response to brushing, von Frey hair (vFh) punctate stimulation and, in one case, nontissue damaging pinprick stimulation of the plantar surface of the foot. Initial whole brain analysis was followed by region of interest analysis of specific brain areas. Results Distinct patterns of functional brain activation were evoked by brush and vFh punctate stimulation, which were reduced, but still present, under chloral hydrate sedation. Brain activation increased with increasing stimulus intensity. The feasibility of using pinprick stimulation in fMRI studies was established in one unsedated healthy full-term infant. Conclusion Distinct brain activity patterns can be measured in response to different modalities and intensities of skin sensory stimulation in term infants. This indicates the potential for fMRI studies in exploring tactile and nociceptive processing in the infant brain. PMID:25358870
Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes.
Renier, Nicolas; Adams, Eliza L; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E; Kadiri, Lolahon; Umadevi Venkataraju, Kannan; Zhou, Yu; Wang, Victoria X; Tang, Cheuk Y; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc
2016-06-16
Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. Copyright © 2016 Elsevier Inc. All rights reserved.
Mapping of brain activity by automated volume analysis of immediate early genes
Renier, Nicolas; Adams, Eliza L.; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E.; Kadiri, Lolahon; Venkataraju, Kannan Umadevi; Zhou, Yu; Wang, Victoria X.; Tang, Cheuk Y.; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc
2016-01-01
Summary Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization and quantification of the activity of all neurons across the entire brain, which has not to date been achieved in the mammalian brain. We introduce a pipeline for high speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to Haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Lastly, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021
CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain.
Ceni, Claire; Pochon, Nathalie; Brun, Virginie; Muller-Steffner, Hélène; Andrieux, Annie; Grunwald, Didier; Schuber, Francis; De Waard, Michel; Lund, Frances; Villaz, Michel; Moutin, Marie-Jo
2003-01-01
CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue. PMID:12403647
[Physical activity: positive impact on brain plasticity].
Achiron, Anat; Kalron, Alon
2008-03-01
The central nervous system has a unique capability of plasticity that enables a single neuron or a group of neurons to undergo functional and constructional changes that are important to learning processes and for compensation of brain damage. The current review aims to summarize recent data related to the effects of physical activity on brain plasticity. In the last decade it was reported that physical activity can affect and manipulate neuronal connections, synaptic activity and adaptation to new neuronal environment following brain injury. One of the most significant neurotrophic factors that is critical for synaptic re-organization and is influenced by physical activity is brain-derived neurotrophic factor (BDNF). The frequency of physical activity and the intensity of exercises are of importance to brain remodeling, support neuronal survival and positively affect rehabilitation therapy. Physical activity should be employed as a tool to improve neural function in healthy subjects and in patients suffering from neurological damage.
... than 65, stimulating your brain with activities and games can keep your mind sharp later in life ( ... you currently have some form of dementia, brain games and “active mind” activity can still help. There ...
Right Brain Activities to Improve Analytical Thinking.
ERIC Educational Resources Information Center
Lynch, Marion E.
Schools tend to have a built-in bias toward left brain activities (tasks that are linear and sequential in nature), so the introduction of right brain activities (functions related to music, rhythm, images, color, imagination, daydreaming, dimensions) brings a balance into the classroom and helps those students who may be right brain oriented. To…
Exercise, cognition, and the adolescent brain.
Herting, Megan M; Chu, Xiaofang
2017-12-01
Few adolescents engage in the recommended levels of physical activity, and daily exercise levels tend to drastically decrease throughout adolescence. Beyond physical health benefits, regular exercise may also have important implications for the teenage brain and cognitive and academic capabilities. This narrative review examines how physical activity and aerobic exercise relate to school performance, cognition, and brain structure and function. A number of studies have found that habitual exercise and physical activity are associated with academic performance, cognitive function, brain structure, and brain activity in adolescents. We also discuss how additional intervention studies that examine a wide range of neurological and cognitive outcomes are necessary, as well as characterizing the type, frequency, and dose of exercise and identifying individual differences that contribute to how exercise may benefit the teen brain. Routine exercise relates to adolescent brain structure and function as well as cognitive performance. Together, these studies suggest that physical activity and aerobic exercise may be important factors for optimal adolescent brain development. © 2017 Wiley Periodicals, Inc.
Real-time fMRI: a tool for local brain regulation.
Caria, Andrea; Sitaram, Ranganatha; Birbaumer, Niels
2012-10-01
Real-time fMRI permits simultaneous measurement and observation of brain activity during an ongoing task. One of the most challenging applications of real-time fMRI in neuroscientific and clinical research is the possibility of acquiring volitional control of localized brain activity using real-time fMRI-based neurofeedback protocols. Real-time fMRI allows the experimenter to noninvasively manipulate brain activity as an independent variable to observe the effects on behavior. Real-time fMRI neurofeedback studies demonstrated that learned control of the local brain activity leads to specific changes in behavior. Here, the authors describe the implementation and application of real-time fMRI with particular emphasis on the self-regulation of local brain activity and the investigation of brain-function relationships. Real-time fMRI represents a promising new approach to cognitive neuroscience that could complement traditional neuroimaging techniques by providing more causal insights into the functional role of circumscribed brain regions in behavior.
Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity.
Banerjee, Soumyabrata; Poddar, Mrinal K
2015-03-01
Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Prediction of human errors by maladaptive changes in event-related brain networks.
Eichele, Tom; Debener, Stefan; Calhoun, Vince D; Specht, Karsten; Engel, Andreas K; Hugdahl, Kenneth; von Cramon, D Yves; Ullsperger, Markus
2008-04-22
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve approximately 30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.
Prediction of human errors by maladaptive changes in event-related brain networks
Eichele, Tom; Debener, Stefan; Calhoun, Vince D.; Specht, Karsten; Engel, Andreas K.; Hugdahl, Kenneth; von Cramon, D. Yves; Ullsperger, Markus
2008-01-01
Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve ≈30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations. PMID:18427123
Scheibel, Randall S; Newsome, Mary R; Troyanskaya, Maya; Steinberg, Joel L; Goldstein, Felicia C; Mao, Hui; Levin, Harvey S
2009-09-01
Functional magnetic resonance imaging (fMRI) has revealed more extensive cognitive-control related brain activation following traumatic brain injury (TBI), but little is known about how activation varies with TBI severity. Thirty patients with moderate to severe TBI and 10 with orthopedic injury (OI) underwent fMRI at 3 months post-injury using a stimulus response compatibility task. Regression analyses indicated that lower total Glasgow Coma Scale (GCS) and GCS verbal component scores were associated with higher levels of brain activation. Brain-injured patients were also divided into three groups based upon their total GCS score (3-4, 5-8, or 9-15), and patients with a total GCS score of 8 or less produced increased, diffuse activation that included structures thought to mediate visual attention and cognitive control. The cingulate gyrus and thalamus were among the areas showing greatest increases, and this is consistent with vulnerability of these midline structures in severe, diffuse TBI. Better task performance was associated with higher activation, and there were differences in the over-activation pattern that varied with TBI severity, including greater reliance upon left-lateralized brain structures in patients with the most severe injuries. These findings suggest that over-activation is at least partially effective for improving performance and may be compensatory.
Xu, Long-Chun; Zhang, Gang; Zou, Yue; Zhang, Min-Feng; Zhang, Dong-Sheng; Ma, Hua; Zhao, Wen-Bo; Zhang, Guang-Yu
2017-10-13
The objective of the study is to provide some implications for rehabilitation of hearing impairment by investigating changes of neural activities of directional brain networks in patients with long-term bilateral hearing loss. Firstly, we implemented neuropsychological tests of 21 subjects (11 patients with long-term bilateral hearing loss, and 10 subjects with normal hearing), and these tests revealed significant differences between the deaf group and the controls. Then we constructed the individual specific virtual brain based on functional magnetic resonance data of participants by utilizing effective connectivity and multivariate regression methods. We exerted the stimulating signal to the primary auditory cortices of the virtual brain and observed the brain region activations. We found that patients with long-term bilateral hearing loss presented weaker brain region activations in the auditory and language networks, but enhanced neural activities in the default mode network as compared with normally hearing subjects. Especially, the right cerebral hemisphere presented more changes than the left. Additionally, weaker neural activities in the primary auditor cortices were also strongly associated with poorer cognitive performance. Finally, causal analysis revealed several interactional circuits among activated brain regions, and these interregional causal interactions implied that abnormal neural activities of the directional brain networks in the deaf patients impacted cognitive function.
Dong, Hongquan; Zhang, Xiang; Wang, Yiming; Zhou, Xiqiao; Qian, Yanning; Zhang, Shu
2017-03-01
Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the "first responder" in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the "mast cell degranulator" compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. "Mast cell stabilizer" disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H 1 R), histamine receptor 4 (H 4 R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient Kit W-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.
Amat, Samat; Hendrick, Steve; Moshynskyy, Igor; Simko, Elemir
2017-01-01
Sulfur-induced polioencephalomalacia (PEM) is an important disease affecting cattle in certain geographical regions. However, the pathogenesis of brain damage is not completely understood. We previously observed that excess dietary sulfur may influence thiamine status and altered thiamine metabolism may be involved in the pathogenesis of sulfur-induced PEM in cattle. In this study, we evaluated the activities of thiamine-dependent enzymes [α-ketogluterate dehydrogenase (α-KGDH) and pyruvate dehydrogenase (PDH)] and cytochrome c oxidase (COX) in the cerebral cortex of sulfur-induced PEM-affected cattle (n = 9) and clinically normal cattle (n = 8, each group) exposed to low or high dietary sulfur [LS = 0.30% versus HS = 0.67% sulfur on a dry matter (DM) basis]. Enzyme activities in PEM brains were measured from the brain tissue regions and examined using ultraviolent (UV) light illumination to show fluorescence or non-fluorescence regions. No gross changes under regular or UV light, or histopathological changes indicative of PEM were detected in the brains of cattle exposed to LS or HS diets. The PDH, α-KGDH, and COX activities did not differ between LS and HS brains, but all enzymes showed significantly lower (P < 0.05) activities in UV-positive region of PEM brains compared with LS and HS brains. The UV-negative regions of PEM brain had similar PDH activities to LS and HS brains, but the activities of α-KGDH and COX were significantly lower than in LS and HS brains. The results of this study suggest that reduced enzyme activities of brain PHD, α-KGDH, and COX are associated with the pathogenesis of sulfur-induced PEM. PMID:29081580
Studying brain organization via spontaneous fMRI signal
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-01-01
In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408
Solar electric geocentric transfer with attitude constraints: Analysis
NASA Technical Reports Server (NTRS)
Sackett, L. L.; Malchow, H. L.; Delbaum, T. N.
1975-01-01
A time optimal or nearly time optimal trajectory program was developed for solar electric geocentric transfer with or without attitude constraints and with an optional initial high thrust stage. The method of averaging reduces computation time. A nonsingular set of orbital elements is used. The constraints, which are those of one of the SERT-C designs, introduce complexities into the analysis and the solution yields possible discontinuous changes in thrust direction. The power degradation due to VanAllen radiation is modeled analytically. A wide range of solar cell characteristics is assumed. Effects such as oblateness and shadowing are included. The analysis and the results of many example runs are included.
Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy.
Lei, Jun; Calvo, Pilar; Vigh, Richard; Burd, Irina
2018-01-01
Fetal brain development is known to be affected by adverse environmental exposures during pregnancy, including infection, inflammation, hypoxia, alcohol, starvation, and toxins. These exposures are thought to alter autophagy activity in the fetal brain, leading to adverse perinatal outcomes, such as cognitive and sensorimotor deficits. This review introduces the physiologic autophagy pathways in the fetal brain. Next, methods to detect and monitor fetal brain autophagy activity are outlined. An additional discussion explores possible mechanisms by which environmental exposures during pregnancy alter fetal brain autophagy activity. In the final section, a correlation of fetal autophagy activity with the observed postnatal phenotype is attempted. Our main purpose is to provide the current understanding or a lack thereof mechanisms on autophagy, underlying the fetal brain injury exposed to environmental insults.
Estévez, Natalia; Yu, Ningbo; Brügger, Mike; Villiger, Michael; Hepp-Reymond, Marie-Claude; Riener, Robert; Kollias, Spyros
2014-11-01
In neurorehabilitation, longitudinal assessment of arm movement related brain function in patients with motor disability is challenging due to variability in task performance. MRI-compatible robots monitor and control task performance, yielding more reliable evaluation of brain function over time. The main goals of the present study were first to define the brain network activated while performing active and passive elbow movements with an MRI-compatible arm robot (MaRIA) in healthy subjects, and second to test the reproducibility of this activation over time. For the fMRI analysis two models were compared. In model 1 movement onset and duration were included, whereas in model 2 force and range of motion were added to the analysis. Reliability of brain activation was tested with several statistical approaches applied on individual and group activation maps and on summary statistics. The activated network included mainly the primary motor cortex, primary and secondary somatosensory cortex, superior and inferior parietal cortex, medial and lateral premotor regions, and subcortical structures. Reliability analyses revealed robust activation for active movements with both fMRI models and all the statistical methods used. Imposed passive movements also elicited mainly robust brain activation for individual and group activation maps, and reliability was improved by including additional force and range of motion using model 2. These findings demonstrate that the use of robotic devices, such as MaRIA, can be useful to reliably assess arm movement related brain activation in longitudinal studies and may contribute in studies evaluating therapies and brain plasticity following injury in the nervous system.
Rodrigues, Johannes; Müller, Mathias; Mühlberger, Andreas; Hewig, Johannes
2018-01-01
Frontal asymmetry has been investigated over the past 30 years, and several theories have been developed about its meaning. The original theory of Davidson and its diversification by Harmon-Jones & Allen allocated approach motivation to relative left frontal brain activity and withdrawal motivation to relative right frontal brain activity. Hewig and colleagues extended this theory by adding bilateral frontal activation representing a biological correlate of the behavioral activation system if actual behavior is shown. Wacker and colleagues formulated a theory related to the revised reinforcement sensitivity theory by Gray & McNaughton. Here, relative left frontal brain activation represents the revised behavioral activation system and behavior, while relative right frontal brain activation represents the revised behavioral inhibition system, representing the experience of conflict. These theories were investigated with a newly developed paradigm where participants were able to move around freely in a virtual T maze via joystick while having their EEG recorded. Analyzing the influence of frontal brain activation during this virtual reality task on observable behavior for 30 participants, we found more relative left frontal brain activation during approach behavior and more relative right brain activation for withdrawal behavior of any kind. Additionally, there was more bilateral frontal brain activation when participants were engaged in behavior compared to doing nothing. Hence, this study provides evidence for the idea that frontal asymmetry stands for behavioral approach or avoidance motivation, and bilateral frontal activation stands for behavior. Additionally, observable behavior is not only determined by frontal asymmetry, but also by relevant traits. © 2017 Society for Psychophysiological Research.
Invisible Brain: Knowledge in Research Works and Neuron Activity
Segev, Aviv; Curtis, Dorothy; Jung, Sukhwan; Chae, Suhyun
2016-01-01
If the market has an invisible hand, does knowledge creation and representation have an “invisible brain”? While knowledge is viewed as a product of neuron activity in the brain, can we identify knowledge that is outside the brain but reflects the activity of neurons in the brain? This work suggests that the patterns of neuron activity in the brain can be seen in the representation of knowledge-related activity. Here we show that the neuron activity mechanism seems to represent much of the knowledge learned in the past decades based on published articles, in what can be viewed as an “invisible brain” or collective hidden neural networks. Similar results appear when analyzing knowledge activity in patents. Our work also tries to characterize knowledge increase as neuron network activity growth. The results propose that knowledge-related activity can be seen outside of the neuron activity mechanism. Consequently, knowledge might exist as an independent mechanism. PMID:27439199
Buchweitz, Augusto; Keller, Timothy A.; Meyler, Ann; Just, Marcel Adam
2011-01-01
The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared to comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. PMID:21618666
Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L
2017-12-15
Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.
Chen, Feng; Hori, Tomohide; Ohashi, Norifumi; Baine, Ann-Marie; Eckman, Christopher B.; Nguyen, Justin H.
2011-01-01
Mechanisms of brain edema in acute liver failure (ALF) are not completely understood. We recently demonstrated that matrix metalloproteinase 9 (MMP-9) induces significant alterations to occludin in brain endothelial cells in vitro and in brains of mice with experimental ALF (Hepatology 50:1914, 2009). In this study, we show that MMP-9-induced transactivation of epidermal growth factor receptor (EGFR) and p38MAPK/NFκB signals participate in regulating brain endothelial occludin level. Mouse brain endothelial bEnd3 cells were exposed to MMP-9 or p38 MAPK upregulation in the presence and absence of EGFR inhibitor, p38 MAPK inhibitor, NFκB inhibitor, and/or appropriate small interfering RNA. RT-PCR and western blotting were used for mRNA and protein expression analyses. Immunohistochemical staining and confocal microscopy were used to demonstrate cellular EGFR activation. Intraperitoneal azoxymethane was use to induce ALF in mice. Brains of comatose ALF mice were processed for histological and biochemical analyses. When bEnd3 cells were exposed to MMP-9, EGFR was significantly transactivated, followed by p38 MAPK activation, IκBα degradation, NFκB activation, and suppression of occludin synthesis and expression. Similar EGFR activation and p38 MAPK/NFκB activation were found in the brains of ALF mice, and these changes were attenuated with GM6001 treatment. Conclusion EGFR activation with p38 MAPK/NFκB signaling contributes to the regulation of tight junction integrity in ALF. EGFR activation may thus play an important role in vasogenic brain edema in ALF. PMID:21480332
Alterations of brain activity in fibromyalgia patients.
Sawaddiruk, Passakorn; Paiboonworachat, Sahattaya; Chattipakorn, Nipon; Chattipakorn, Siriporn C
2017-04-01
Fibromyalgia is a chronic pain syndrome, characterized by widespread musculoskeletal pain with diffuse tenderness at multiple tender points. Despite intense investigations, the pathophysiology of fibromyalgia remains elusive. Evidence shows that it could be due to changes in either the peripheral or central nervous system (CNS). For the CNS changes, alterations in the high brain area of fibromyalgia patients have been investigated but the definite mechanisms are still unclear. Magnetic Resonance Imaging (MRI) and Functional Magnetic Resonance (fMRI) have been used to gather evidence regarding the changes of brain morphologies and activities in fibromyalgia patients. Nevertheless, due to few studies, limited knowledge for alterations in brain activities in fibromyalgia is currently available. In this review, the changes in brain activity in various brain areas obtained from reports in fibromyalgia patients are comprehensively summarized. Changes of the grey matter in multiple regions such as the superior temporal gyrus, posterior thalamus, amygdala, basal ganglia, cerebellum, cingulate cortex, SII, caudate and putamen from the MRI as well as the increase of brain activities in the cerebellum, prefrontal cortex, anterior cingulate cortex, thalamus, somatosensory cortex, insula in fMRI studies are presented and discussed. Moreover, evidence from pharmacological interventions offering benefits for fibromyalgia patients by reducing brain activity is presented. Because of limited knowledge regarding the roles of brain activity alterations in fibromyalgia, this summarized review will encourage more future studies to elucidate the underlying mechanisms involved in the brains of these patients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hagenbeek, R E; Rombouts, S A R B; Veltman, D J; Van Strien, J W; Witter, M P; Scheltens, P; Barkhof, F
2007-10-01
Changes in brain activation as a function of continuous multiparametric word recognition have not been studied before by using functional MR imaging (fMRI), to our knowledge. Our aim was to identify linear changes in brain activation and, what is more interesting, nonlinear changes in brain activation as a function of extended word repetition. Fifteen healthy young right-handed individuals participated in this study. An event-related extended continuous word-recognition task with 30 target words was used to study the parametric effect of word recognition on brain activation. Word-recognition-related brain activation was studied as a function of 9 word repetitions. fMRI data were analyzed with a general linear model with regressors for linearly changing signal intensity and nonlinearly changing signal intensity, according to group average reaction time (RT) and individual RTs. A network generally associated with episodic memory recognition showed either constant or linearly decreasing brain activation as a function of word repetition. Furthermore, both anterior and posterior cingulate cortices and the left middle frontal gyrus followed the nonlinear curve of the group RT, whereas the anterior cingulate cortex was also associated with individual RT. Linear alteration in brain activation as a function of word repetition explained most changes in blood oxygen level-dependent signal intensity. Using a hierarchically orthogonalized model, we found evidence for nonlinear activation associated with both group and individual RTs.
Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers.
Culbertson, Christopher S; Bramen, Jennifer; Cohen, Mark S; London, Edythe D; Olmstead, Richard E; Gan, Joanna J; Costello, Matthew R; Shulenberger, Stephanie; Mandelkern, Mark A; Brody, Arthur L
2011-05-01
Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Randomized, double-blind, before-after controlled trial. Academic brain imaging center. Thirty nicotine-dependent smokers (paid volunteers). Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions.
Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression.
Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M; Pradhan, Kith; Henn, Fritz A; Shea, Stephen; Osten, Pavel; Li, Bo
2016-01-01
Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP - a marker of neuronal activation - in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing "helpless" behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing "resilient" behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.
Chen, Feng; Hori, Tomohide; Ohashi, Norifumi; Baine, Ann-Marie; Eckman, Christopher B; Nguyen, Justin H
2011-04-01
Mechanisms of brain edema in acute liver failure (ALF) are not completely understood. We recently demonstrated that matrix metalloproteinase 9 (MMP-9) induces significant alterations to occludin in brain endothelial cells in vitro and in brains of mice with experimental ALF (Hepatology 2009;50:1914). In this study we show that MMP-9-induced transactivation of epidermal growth factor receptor (EGFR) and p38 MAPK/NFκB (mitogen-activated protein kinase/nuclear factor-kappa B) signals participate in regulating brain endothelial occludin level. Mouse brain endothelial bEnd3 cells were exposed to MMP-9 or p38 MAPK up-regulation in the presence and absence of EGFR inhibitor, p38 MAPK inhibitor, NFκB inhibitor, and/or appropriate small interfering RNA. Reverse-transcription polymerase chain reaction (RT-PCR) and western blotting were used for messenger RNA and protein expression analyses. Immunohistochemical staining and confocal microscopy were used to demonstrate cellular EGFR activation. Intraperitoneal azoxymethane was use to induce ALF in mice. Brains of comatose ALF mice were processed for histological and biochemical analyses. When bEnd3 cells were exposed to MMP-9, EGFR was significantly transactivated, followed by p38 MAPK activation, I-kappa B alpha (IκBα) degradation, NFκB activation, and suppression of occludin synthesis and expression. Similar EGFR activation and p38 MAPK/NFκB activation were found in the brains of ALF mice, and these changes were attenuated with GM6001 treatment. EGFR activation with p38 MAPK/NFκB signaling contributes to the regulation of tight junction integrity in ALF. EGFR activation may thus play an important role in vasogenic brain edema in ALF. 2011 American Association for the Study of Liver Diseases.
Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics.
Atasoy, Selen; Deco, Gustavo; Kringelbach, Morten L; Pearson, Joel
2018-06-01
A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at "rest." Here, we introduce the concept of harmonic brain modes-fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.
Ling, Changying; Verbny, Yakov I.; Banks, Matthew I.; Sandor, Matyas; Fabry, Zsuzsanna
2012-01-01
The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8+ T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c+ cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c+ cells stimulate Ag-specific naive CD8+ T cells locally in the CNS and may contribute to immune responses in the brain. PMID:18523307
Pollard, Amelia Kate; Craig, Emma Louise; Chakrabarti, Lisa
2016-01-01
Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70-71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions.
An Investigation of Individual Variability in Brain Activity During Episodic Encoding and Retrieval
2008-12-01
variability in mnemonic strategy use is, at least in part, related to the extensive variability observed in brain activity patterns. While a number of...1 AN INVESTIGATION OF INDIVIDUAL VARIABILITY IN BRAIN ACTIVITY DURING EPISODIC ENCODING AND RETRIEVAL C.L. Donovan*, and M.B. Miller Department of...strategy measures for predicting differences in brain activity patterns during a learning and memory task and to compare their predictive value to other
[The opiate pharmacopeia in France from its origins to the 19th century].
Warolin, Christian
2010-04-01
For thousands of years, opium was the main remedy against pain. Its analgesic properties have been known since antiquity, as well as its stupefacient, narcotic and addictive effects. A countless number of opiate galenical preparations had already been formulated by the beginning of our era. The best-known were electuaries, complex drugs combining multiple active substances, essentially plant-based, used to obtain beneficial effects for different aliments. These universal remedies were panaceas. Sonne opium--or opiate--based electuaries were recommended as antidotes to poison or snake venom. The best-known, Mithridate and Theriac Andromache (Venice Treacle), the latter also containing viper flesh, combined up to a hundred or so ingredients. However, this polypharmacy was criticized and it was an English doctor, Thomas Sydenham, to whom we owe the preparation of a liquid laudanum which was easier to administer than an electuary. Sydenham's laudanum (1683) was adopted by ail the pharmacopeias. Later, based on a traditional research approach, pharmacists attempted to isolate the active principles of opium. Seguin, but above ail the German pharmacist Sertürner (in 1805 and 1817) isolated morphine. Organic chemists took over from the analysts, and morphine derivatives were obtained by hemi-synthesis (heroin), and then central analgesics, or opioids, by total synthesis. Opium is no longer seen as the only supreme remedy for painful disorders, and its galenic forms have gradually disappeared from pharmacopeias.
Chen, Min; Yang, Weiwei; Li, Xin; Li, Xuran; Wang, Peng; Yue, Feng; Yang, Hui; Chan, Piu; Yu, Shun
2016-02-23
We previously reported that the levels of α-syn oligomers, which play pivotal pathogenic roles in age-related Parkinson's disease (PD) and dementia with Lewy bodies, increase heterogeneously in the aging brain. Here, we show that exogenous α-syn incubated with brain extracts from older cynomolgus monkeys and in Lewy body pathology (LBP)-susceptible brain regions (striatum and hippocampus) forms higher amounts of phosphorylated and oligomeric α-syn than that in extracts from younger monkeys and LBP-insusceptible brain regions (cerebellum and occipital cortex). The increased α-syn phosphorylation and oligomerization in the brain extracts from older monkeys and in LBP-susceptible brain regions were associated with higher levels of polo-like kinase 2 (PLK2), an enzyme promoting α-syn phosphorylation, and lower activity of protein phosphatase 2A (PP2A), an enzyme inhibiting α-syn phosphorylation, in these brain extracts. Further, the extent of the age- and brain-dependent increase in α-syn phosphorylation and oligomerization was reduced by inhibition of PLK2 and activation of PP2A. Inversely, phosphorylated α-syn oligomers reduced the activity of PP2A and showed potent cytotoxicity. In addition, the activity of GCase and the levels of ceramide, a product of GCase shown to activate PP2A, were lower in brain extracts from older monkeys and in LBP-susceptible brain regions. Our results suggest a role for altered intrinsic metabolic enzymes in age- and brain region-dependent α-syn oligomerization in aging brains.
Paul, Rajib; Borah, Anupom
2017-12-20
There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.
Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher
2017-09-01
Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.
Li, Qi; Hill, Zachary
2014-01-01
Despite intense recent research, the neural correlates of conscious visual perception remain elusive. The most established paradigm for studying brain mechanisms underlying conscious perception is to keep the physical sensory inputs constant and identify brain activities that correlate with the changing content of conscious awareness. However, such a contrast based on conscious content alone would not only reveal brain activities directly contributing to conscious perception, but also include brain activities that precede or follow it. To address this issue, we devised a paradigm whereby we collected, trial-by-trial, measures of objective performance, subjective awareness, and the confidence level of subjective awareness. Using magnetoencephalography recordings in healthy human volunteers, we dissociated brain activities underlying these different cognitive phenomena. Our results provide strong evidence that widely distributed slow cortical potentials (SCPs) correlate with subjective awareness, even after the effects of objective performance and confidence were both removed. The SCP correlate of conscious perception manifests strongly in its waveform, phase, and power. In contrast, objective performance and confidence were both contributed by relatively transient brain activity. These results shed new light on the brain mechanisms of conscious, unconscious, and metacognitive processing. PMID:24647958
Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approach.
Ahmad, Rana Fayyaz; Malik, Aamir Saeed; Kamel, Nidal; Reza, Faruque; Amin, Hafeez Ullah; Hussain, Muhammad
2017-01-01
Classification of the visual information from the brain activity data is a challenging task. Many studies reported in the literature are based on the brain activity patterns using either fMRI or EEG/MEG only. EEG and fMRI considered as two complementary neuroimaging modalities in terms of their temporal and spatial resolution to map the brain activity. For getting a high spatial and temporal resolution of the brain at the same time, simultaneous EEG-fMRI seems to be fruitful. In this article, we propose a new method based on simultaneous EEG-fMRI data and machine learning approach to classify the visual brain activity patterns. We acquired EEG-fMRI data simultaneously on the ten healthy human participants by showing them visual stimuli. Data fusion approach is used to merge EEG and fMRI data. Machine learning classifier is used for the classification purposes. Results showed that superior classification performance has been achieved with simultaneous EEG-fMRI data as compared to the EEG and fMRI data standalone. This shows that multimodal approach improved the classification accuracy results as compared with other approaches reported in the literature. The proposed simultaneous EEG-fMRI approach for classifying the brain activity patterns can be helpful to predict or fully decode the brain activity patterns.
BrainLiner: A Neuroinformatics Platform for Sharing Time-Aligned Brain-Behavior Data
Takemiya, Makoto; Majima, Kei; Tsukamoto, Mitsuaki; Kamitani, Yukiyasu
2016-01-01
Data-driven neuroscience aims to find statistical relationships between brain activity and task behavior from large-scale datasets. To facilitate high-throughput data processing and modeling, we created BrainLiner as a web platform for sharing time-aligned, brain-behavior data. Using an HDF5-based data format, BrainLiner treats brain activity and data related to behavior with the same salience, aligning both behavioral and brain activity data on a common time axis. This facilitates learning the relationship between behavior and brain activity. Using a common data file format also simplifies data processing and analyses. Properties describing data are unambiguously defined using a schema, allowing machine-readable definition of data. The BrainLiner platform allows users to upload and download data, as well as to explore and search for data from the web platform. A WebGL-based data explorer can visualize highly detailed neurophysiological data from within the web browser, and a data-driven search feature allows users to search for similar time windows of data. This increases transparency, and allows for visual inspection of neural coding. BrainLiner thus provides an essential set of tools for data sharing and data-driven modeling. PMID:26858636
Studying brain organization via spontaneous fMRI signal.
Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E
2014-11-19
In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.
Vascular signaling abnormalities in Alzheimer disease.
Grammas, Paula; Sanchez, Alma; Tripathy, Debjani; Luo, Ester; Martinez, Joseph
2011-08-01
Our laboratory has documented that brain microvessels derived from patients with Alzheimer disease (AD) express or release a myriad of factors that have been implicated in vascular activation and angiogenesis. In addition, we have documented that signaling cascades associated with vascular activation and angiogenesis are upregulated in AD-derived brain microvessels. These results are consistent with emerging data suggesting that factors and processes characteristic of vascular activation and angiogenesis are found in the AD brain. Despite increases in proangiogenic factors and signals in the AD brain, however, evidence for increased vascularity in AD is lacking. Cerebral hypoperfusion/hypoxia, a potent stimulus for vascular activation and angiogenesis, triggers hypometabolic, cognitive, and degenerative changes in the brain. In our working model, hypoxia stimulates the angiogenic process; yet, there is no new vessel growth. Therefore, there are no feedback signals to shut off vascular activation, and endothelial cells become irreversibly activated. This activation results in release of a large number of proteases, inflammatory proteins, and other gene products with biologic activity that can injure or kill neurons. Pathologic activation of brain vasculature may contribute noxious mediators that lead to neuronal injury and disease processes in AD brains. This concept is supported by preliminary experiments in our laboratory, which show that pharmacologic blockade of vascular activation improves cognitive function in an animal model of AD. Thus, "vascular activation" could be a novel, unexplored therapeutic target in AD.
Distinct structure and activity of monoamine oxidase in the brain of zebrafish (Danio rerio).
Anichtchik, Oleg; Sallinen, Ville; Peitsaro, Nina; Panula, Pertti
2006-10-10
Monoamine oxidase (MAO) is a mitochondrial flavoprotein involved in the metabolism of, e.g., aminergic neurotransmitters and the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). We have reported earlier MPTP-related alterations of brain catecholaminergic system in zebrafish (Danio rerio) brain. Here we describe the structural and functional properties of zebrafish MAO and the distribution of MAO mRNA and activity in zebrafish brain. The gene is located in chromosome 9 and consists of 15 exons. The amino acid composition of the active center resembles both human MAO-A and MAO-B. The enzyme displayed the highest substrate specificity for tyramine, followed by serotonin, phenylethylamine, MPTP, and dopamine; isoform-specific antagonists blocked the activity of the enzyme with equal potency. Zebrafish MAO mRNA, which was present in several tissues, and enzyme displayed differential distribution in the brain; dopaminergic cell clusters had low to moderate levels of MAO activity, whereas the highest levels of MAO activity were detected in noradrenergic and serotonergic cell groups and the habenulointerpeduncular pathway, including its caudal projection to the medial ventral rhombencephalon. The results of this study confirm the presence of functionally active MAO in zebrafish brain and other tissues and characterize the neural systems that express MAO and areas of intense activity in the brain. They also suggest that MPTP toxicity not related to MAO may affect the zebrafish brain.
Amri, Zahra; Ghorbel, Asma; Turki, Mouna; Akrout, Férièle Messadi; Ayadi, Fatma; Elfeki, Abdelfateh; Hammami, Mohamed
2017-06-27
To investigate beneficial effects of Pomegranate seeds oil (PSO), leaves (PL), juice (PJ) and (PP) on brain cholinesterase activity, brain oxidative stress and lipid profile in high-fat-high fructose diet (HFD) induced-obese rat. In vitro and in vivo cholinesterase activity, brain oxidative status, body and brain weight and plasma lipid profile were measured in control rats, HFD-fed rats and HFD-fed rats treated by PSO, PL, PJ and PP. In vitro study showed that PSO, PL, PP, PJ inhibited cholinesterase activity in dose dependant manner. PL extract displayed the highest inhibitory activity by IC50 of 151.85 mg/ml. For in vivo study, HFD regime induced a significant increase of cholinesterase activity in brain by 17.4% as compared to normal rats. However, the administration of PSO, PL, PJ and PP to HDF-rats decreased cholinesterase activity in brain respectively by 15.48%, 6.4%, 20% and 18.7% as compared to untreated HFD-rats. Moreover, HFD regime caused significant increase in brain stress, brain and body weight, and lipid profile disorders in blood. Furthermore, PSO, PL, PJ and PP modulated lipid profile in blood and prevented accumulation of lipid in brain and body evidenced by the decrease of their weights as compared to untreated HFD-rats. In addition administration of these extract protected brain from stress oxidant, evidenced by the decrease of malondialdehyde (MDA) and Protein carbonylation (PC) levels and the increase in superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. These findings highlight the neuroprotective effects of pomegranate extracts and one of mechanisms is the inhibition of cholinesterase and the stimulation of antioxidant capacity.
Motbey, Craig P; Clemens, Kelly J; Apetz, Nadine; Winstock, Adam R; Ramsey, John; Li, Kong M; Wyatt, Naomi; Callaghan, Paul D; Bowen, Michael T; Cornish, Jennifer L; McGregor, Iain S
2013-09-01
Mephedrone (MMC) is a relatively new recreational drug that has rapidly increased in popularity in recent years. This study explored the characteristics of intravenous MMC self-administration in the rat, with methamphetamine (METH) used as a comparator drug. Male Sprague-Dawley rats were trained to nose poke for intravenous MMC or METH in daily 2 h sessions over a 10 d acquisition period. Dose-response functions were then established under fixed- and progressive-ratio (FR and PR) schedules over three subsequent weeks of testing. Brains were analyzed ex vivo for striatal serotonin (5-HT) and dopamine (DA) levels and metabolites, while autoradiography assessed changes in the regional density of 5-HT and serotonin transporter (SERT) and DA transporter (DAT) and induction of the inflammation marker translocator protein (TSPO). Results showed that MMC was readily and vigorously self-administered via the intravenous route. Under a FR1 schedule, peak responding for MMC was obtained at 0.1 mg/kg/infusion, versus 0.01 mg/kg/infusion for METH. Break points under a PR schedule peaked at 1 mg/kg/infusion MMC versus 0.3 mg/kg/infusion for METH. Final intakes of MMC were 31.3 mg/kg/d compared to 4 mg/kg/d for METH. Rats self-administering MMC, but not METH, gained weight at a slower rate than control rats. METH, but not MMC, self-administration elevated TSPO receptor density in the nucleus accumbens and hippocampus, while MMC, but not METH, self-administration decreased striatal 5-hydroxyindolacetic acid (5-HIAA) concentrations. In summary, MMC supported high levels of self-administration, matching or exceeding those previously reported with other drugs of abuse.
Noninvasive near-infrared topography of human brain activity using intensity modulation spectroscopy
NASA Astrophysics Data System (ADS)
Yamashita, Yuichi; Maki, Atsushi; Ito, Yoshitoshi; Watanabe, Eiju; Mayanagi, Yoshiaki; Koizumi, Hideaki
1996-04-01
We describe the functional topography of human brain activity due to motor stimulation by using near-infrared spectroscopy. Finger motion by each hand was used as the motor stimulation, and activity in the left fronto-central region of the brain was measured. A greater change in oxyhemoglobin concentration due to brain activity during the stimulation was obtained for the right hand than for the left hand. Localization of the activity was obtained by topographically mapping the measured changes for ten positions within the region.
Chaddock-Heyman, Laura; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F
2014-12-01
In this chapter, we review literature that examines the association among physical activity, aerobic fitness, cognition, and the brain in elementary school children (ages 7-10 years). Specifically, physical activity and higher levels of aerobic fitness in children have been found to benefit brain structure, brain function, cognition, and school achievement. For example, higher fit children have larger brain volumes in the basal ganglia and hippocampus, which relate to superior performance on tasks of cognitive control and memory, respectively, when compared to their lower fit peers. Higher fit children also show superior brain function during tasks of cognitive control, better scores on tests of academic achievement, and higher performance on a real-world street crossing task, compared to lower fit and less active children. The cross-sectional findings are strengthened by a few randomized, controlled trials, which demonstrate that children randomly assigned to a physical activity intervention group show greater brain and cognitive benefits compared to a control group. Because these findings suggest that the developing brain is plastic and sensitive to lifestyle factors, we also discuss typical structural and functional brain maturation in children to provide context in which to interpret the effects of physical activity and aerobic fitness on the developing brain. This research is important because children are becoming increasingly sedentary, physically inactive, and unfit. An important goal of this review is to emphasize the importance of physical activity and aerobic fitness for the cognitive and brain health of today's youth. © 2014 The Society for Research in Child Development, Inc.
Atomic Data and Spectral Line Intensities for Ne III
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)
2001-01-01
Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.
Barker, E L; Moore, K R; Rakhshan, F; Blakely, R D
1999-06-15
Mutation of a conserved Asp (D98) in the rat serotonin (5HT) transporter (rSERT) to Glu (D98E) led to decreased 5HT transport capacity, diminished coupling to extracellular Na+ and Cl-, and a selective loss of antagonist potencies (cocaine, imipramine, and citalopram but not paroxetine or mazindol) with no change in 5HT Km value. D98E, which extends the acidic side chain by one carbon, affected the rank-order potency of substrate analogs for inhibition of 5HT transport, selectively increasing the potency of two analogs with shorter alkylamine side chains, gramine, and dihydroxybenzylamine. D98E also increased the efficacy of gramine relative to 5HT for inducing substrate-activated currents in Xenopus laevis oocytes, but these currents were noticeably dependent on extracellular medium acidification. I-V profiles for substrate-independent and -dependent currents indicated that the mutation selectively impacts ion permeation coupled to 5HT occupancy. The ability of the D98E mutant to modulate selective aspects of substrate recognition, to perturb ion dependence as well as modify substrate-induced currents, suggests that transmembrane domain I plays a critical role in defining the permeation pathway of biogenic amine transporters.
Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan
2015-01-01
Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single-unit activity for the prediction of seizure onset and closed-loop seizure intervention, we show a need for monitoring brain state to interpret correctly whether changes in neural activity before seizure onset is pathological or normal. Moreover, we also find that the brain state preceding a seizure determines the success of therapeutic interventions to curtail seizure duration. Together, these findings suggest that seizure prediction and intervention will be more successful if tailored for the specific brain states from which seizures emerge. PMID:26609157
Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway.
Guo, Hongsun; Hamilton, Mark; Offutt, Sarah J; Gloeckner, Cory D; Li, Tianqi; Kim, Yohan; Legon, Wynn; Alford, Jamu K; Lim, Hubert H
2018-06-06
Ultrasound (US) can noninvasively activate intact brain circuits, making it a promising neuromodulation technique. However, little is known about the underlying mechanism. Here, we apply transcranial US and perform brain mapping studies in guinea pigs using extracellular electrophysiology. We find that US elicits extensive activation across cortical and subcortical brain regions. However, transection of the auditory nerves or removal of cochlear fluids eliminates the US-induced activity, revealing an indirect auditory mechanism for US neural activation. Our findings indicate that US activates the ascending auditory system through a cochlear pathway, which can activate other non-auditory regions through cross-modal projections. This cochlear pathway mechanism challenges the idea that US can directly activate neurons in the intact brain, suggesting that future US stimulation studies will need to control for this effect to reach reliable conclusions. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of Bupropion Treatment on Brain Activation Induced by Cigarette-Related Cues in Smokers
Culbertson, Christopher S.; Bramen, Jennifer; Cohen, Mark S.; London, Edythe D.; Olmstead, Richard E.; Gan, Joanna J.; Costello, Matthew R.; Shulenberger, Stephanie; Mandelkern, Mark A.; Brody, Arthur L.
2011-01-01
Context Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. Objective To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Design Randomized, double-blind, before-after controlled trial. Setting Academic brain imaging center. Participants Thirty nicotine-dependent smokers (paid volunteers). Interventions Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Main Outcome Measures Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Results Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Conclusions Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions. PMID:21199957
Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.
Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level ofmore » neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. In conclusion, our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses tostress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.« less
More, Vijay R; Campos, Christopher R; Evans, Rebecca A; Oliver, Keith D; Chan, Gary NY; Miller, David S
2016-01-01
Lipid sensor peroxisome proliferator-activated receptor alpha (PPAR-α) is the master regulator of lipid metabolism. Dietary release of endogenous free fatty acids, fibrates, and certain persistent environmental pollutants, e.g. perfluoroalkyl fire-fighting foam components, are peroxisome proliferator-activated receptor alpha ligands. Here, we define a role for peroxisome proliferator-activated receptor alpha in regulating the expression of three ATP-driven drug efflux transporters at the rat and mouse blood–brain barriers: P-glycoprotein (Abcb1), breast cancer resistance protein (Bcrp/Abcg2), and multidrug resistance-associated protein 2 (Mrp2/Abcc2). Exposing isolated rat brain capillaries to linoleic acid, clofibrate, or PKAs increased the transport activity and protein expression of the three ABC transporters. These effects were blocked by the PPAR-α antagonist, GW6471. Dosing rats with 20 mg/kg or 200 mg/kg of clofibrate decreased the brain accumulation of the P-glycoprotein substrate, verapamil, by 50% (in situ brain perfusion; effects blocked by GW6471) and increased P-glycoprotein expression and activity in capillaries ex vivo. Fasting C57Bl/6 wild-type mice for 24 h increased both serum lipids and brain capillary P-glycoprotein transport activity. Fasting did not alter P-glycoprotein activity in PPAR-α knockout mice. These results indicate that hyperlipidemia, lipid-lowering fibrates and exposure to certain fire-fighting foam components activate blood–brain barrier peroxisome proliferator-activated receptor alpha, increase drug efflux transporter expression and reduce drug delivery to the brain. PMID:27193034
Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression
Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; ...
2016-02-03
Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level ofmore » neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. In conclusion, our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses tostress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses.« less
Whole-Brain Mapping of Neuronal Activity in the Learned Helplessness Model of Depression
Kim, Yongsoo; Perova, Zinaida; Mirrione, Martine M.; Pradhan, Kith; Henn, Fritz A.; Shea, Stephen; Osten, Pavel; Li, Bo
2016-01-01
Some individuals are resilient, whereas others succumb to despair in repeated stressful situations. The neurobiological mechanisms underlying such divergent behavioral responses remain unclear. Here, we employed an automated method for mapping neuronal activity in search of signatures of stress responses in the entire mouse brain. We used serial two-photon tomography to detect expression of c-FosGFP – a marker of neuronal activation – in c-fosGFP transgenic mice subjected to the learned helplessness (LH) procedure, a widely used model of stress-induced depression-like phenotype in laboratory animals. We found that mice showing “helpless” behavior had an overall brain-wide reduction in the level of neuronal activation compared with mice showing “resilient” behavior, with the exception of a few brain areas, including the locus coeruleus, that were more activated in the helpless mice. In addition, the helpless mice showed a strong trend of having higher similarity in whole-brain activity profile among individuals, suggesting that helplessness is represented by a more stereotypic brain-wide activation pattern. This latter effect was confirmed in rats subjected to the LH procedure, using 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography to assess neural activity. Our findings reveal distinct brain activity markings that correlate with adaptive and maladaptive behavioral responses to stress, and provide a framework for further studies investigating the contribution of specific brain regions to maladaptive stress responses. PMID:26869888
Keeping brains young with making music.
Rogenmoser, Lars; Kernbach, Julius; Schlaug, Gottfried; Gaser, Christian
2018-01-01
Music-making is a widespread leisure and professional activity that has garnered interest over the years due to its effect on brain and cognitive development and its potential as a rehabilitative and restorative therapy of brain dysfunctions. We investigated whether music-making has a potential age-protecting effect on the brain. For this, we studied anatomical magnetic resonance images obtained from three matched groups of subjects who differed in their lifetime dose of music-making activities (i.e., professional musicians, amateur musicians, and non-musicians). For each subject, we calculated a so-called BrainAGE score which corresponds to the discrepancy (in years) between chronological age and the "age of the brain", with negative values reflecting an age-decelerating brain and positive values an age-accelerating brain, respectively. The index of "brain age" was estimated using a machine-learning algorithm that was trained in a large independent sample to identify anatomical correlates of brain-aging. Compared to non-musicians, musicians overall had lower BrainAGE scores, with amateur musicians having the lowest scores suggesting that music-making has an age-decelerating effect on the brain. Unlike the amateur musicians, the professional musicians showed a positive correlation between their BrainAGE scores and years of music-making, possibly indicating that engaging more intensely in just one otherwise enriching activity might not be as beneficial than if the activity is one of several that an amateur musician engages in. Intense music-making activities at a professional level could also lead to stress-related interferences and a less enriched environment than that of amateur musicians, possibly somewhat diminishing the otherwise positive effect of music-making.
A brain-region-based meta-analysis method utilizing the Apriori algorithm.
Niu, Zhendong; Nie, Yaoxin; Zhou, Qian; Zhu, Linlin; Wei, Jieyao
2016-05-18
Brain network connectivity modeling is a crucial method for studying the brain's cognitive functions. Meta-analyses can unearth reliable results from individual studies. Meta-analytic connectivity modeling is a connectivity analysis method based on regions of interest (ROIs) which showed that meta-analyses could be used to discover brain network connectivity. In this paper, we propose a new meta-analysis method that can be used to find network connectivity models based on the Apriori algorithm, which has the potential to derive brain network connectivity models from activation information in the literature, without requiring ROIs. This method first extracts activation information from experimental studies that use cognitive tasks of the same category, and then maps the activation information to corresponding brain areas by using the automatic anatomical label atlas, after which the activation rate of these brain areas is calculated. Finally, using these brain areas, a potential brain network connectivity model is calculated based on the Apriori algorithm. The present study used this method to conduct a mining analysis on the citations in a language review article by Price (Neuroimage 62(2):816-847, 2012). The results showed that the obtained network connectivity model was consistent with that reported by Price. The proposed method is helpful to find brain network connectivity by mining the co-activation relationships among brain regions. Furthermore, results of the co-activation relationship analysis can be used as a priori knowledge for the corresponding dynamic causal modeling analysis, possibly achieving a significant dimension-reducing effect, thus increasing the efficiency of the dynamic causal modeling analysis.
ERIC Educational Resources Information Center
Sowman, Paul F.; Crain, Stephen; Harrison, Elisabeth; Johnson, Blake W.
2012-01-01
While stuttering is known to be characterized by anomalous brain activations during speech, very little data is available describing brain activations during stuttering. To our knowledge there are no reports describing brain activations that precede blocking. In this case report we present magnetoencephalographic data from a person who stutters…
Wong, Chelsea N.; Chaddock-Heyman, Laura; Voss, Michelle W.; Burzynska, Agnieszka Z.; Basak, Chandramallika; Erickson, Kirk I.; Prakash, Ruchika S.; Szabo-Reed, Amanda N.; Phillips, Siobhan M.; Wojcicki, Thomas; Mailey, Emily L.; McAuley, Edward; Kramer, Arthur F.
2015-01-01
Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59–80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function. PMID:26321949
Buchweitz, Augusto; Keller, Timothy A; Meyler, Ann; Just, Marcel Adam
2012-08-01
The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared with comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. Copyright © 2011 Wiley Periodicals, Inc.
Resting-State Network Topology Differentiates Task Signals across the Adult Life Span.
Chan, Micaela Y; Alhazmi, Fahd H; Park, Denise C; Savalia, Neil K; Wig, Gagan S
2017-03-08
Brain network connectivity differs across individuals. For example, older adults exhibit less segregated resting-state subnetworks relative to younger adults (Chan et al., 2014). It has been hypothesized that individual differences in network connectivity impact the recruitment of brain areas during task execution. While recent studies have described the spatial overlap between resting-state functional correlation (RSFC) subnetworks and task-evoked activity, it is unclear whether individual variations in the connectivity pattern of a brain area (topology) relates to its activity during task execution. We report data from 238 cognitively normal participants (humans), sampled across the adult life span (20-89 years), to reveal that RSFC-based network organization systematically relates to the recruitment of brain areas across two functionally distinct tasks (visual and semantic). The functional activity of brain areas (network nodes) were characterized according to their patterns of RSFC: nodes with relatively greater connections to nodes in their own functional system ("non-connector" nodes) exhibited greater activity than nodes with relatively greater connections to nodes in other systems ("connector" nodes). This "activation selectivity" was specific to those brain systems that were central to each of the tasks. Increasing age was accompanied by less differentiated network topology and a corresponding reduction in activation selectivity (or differentiation) across relevant network nodes. The results provide evidence that connectional topology of brain areas quantified at rest relates to the functional activity of those areas during task. Based on these findings, we propose a novel network-based theory for previous reports of the "dedifferentiation" in brain activity observed in aging. SIGNIFICANCE STATEMENT Similar to other real-world networks, the organization of brain networks impacts their function. As brain network connectivity patterns differ across individuals, we hypothesized that individual differences in network connectivity would relate to differences in brain activity. Using functional MRI in a group of individuals sampled across the adult life span (20-89 years), we measured correlations at rest and related the functional connectivity patterns to measurements of functional activity during two independent tasks. Brain activity varied in relation to connectivity patterns revealed by large-scale network analysis. This relationship tracked the differences in connectivity patterns accompanied by older age, providing important evidence for a link between the topology of areal connectivity measured at rest and the functional recruitment of these areas during task performance. Copyright © 2017 Chan et al.
Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.
Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M
2017-04-15
Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band. Published by Elsevier Inc.
The endocannabinoid system in brain reward processes.
Solinas, M; Goldberg, S R; Piomelli, D
2008-05-01
Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.
Altered spontaneous brain activity in Cushing's disease: a resting-state functional MRI study.
Jiang, Hong; He, Na-Ying; Sun, Yu-Hao; Jian, Fang-Fang; Bian, Liu-Guan; Shen, Jian-Kang; Yan, Fu-Hua; Pan, Si-Jian; Sun, Qing-Fang
2017-03-01
Cushing's disease (CD) provides a unique and naturalist model for studying the influence of hypercortisolism on the human brain and the reversibility of these effects after resolution of the condition. This cross-sectional study used resting-state fMRI (rs-fMRI) to investigate the altered spontaneous brain activity in CD patients and the trends for potential reversibility after the resolution of the hypercortisolism. We also aim to determine the relationship of these changes with clinical characteristics and cortisol levels. Active CD patients (n = 18), remitted CD patients (n = 14) and healthy control subjects (n = 22) were included in this study. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values were calculated to represent spontaneous brain activity. Our study resulted in three major findings: (i) active CD patients showed significantly altered spontaneous brain activity in the posterior cingulate cortex (PCC)/precuneus (PCu), occipital lobe (OC)/cerebellum, thalamus, right postcentral gyrus (PoCG) and left prefrontal cortex (PFC); (ii) trends for partial restoration of altered spontaneous brain activity after the resolution hypercortisolism were found in several brain regions; and (iii) active CD patients showed a significant correlation between cortisol levels and ALFF/ReHo values in the PCC/PCu, a small cluster in the OC and the right IPL. This study provides a new approach to investigating brain function abnormalities in patients with CD and enhances our understanding of the effect of hypercortisolism on the human brain. Furthermore, our explorative potential reversibility study of patients with CD may facilitate the development of future longitudinal studies. © 2016 John Wiley & Sons Ltd.
Maternal-fetal unit interactions and eutherian neocortical development and evolution
Montiel, Juan F.; Kaune, Heidy; Maliqueo, Manuel
2013-01-01
The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal–fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by “non-classical” endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict. PMID:23882189
Jones, Michael N.
2017-01-01
A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model—Generalized Correspondence Latent Dirichlet Allocation—that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text—enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity. PMID:29059185
Mathieu, Cécile; Duval, Romain; Cocaign, Angélique; Petit, Emile; Bui, Linh-Chi; Haddad, Iman; Vinh, Joelle; Etchebest, Catherine; Dupret, Jean-Marie; Rodrigues-Lima, Fernando
2016-11-11
Brain glycogen and its metabolism are increasingly recognized as major players in brain functions. Moreover, alteration of glycogen metabolism in the brain contributes to neurodegenerative processes. In the brain, both muscle and brain glycogen phosphorylase isozymes regulate glycogen mobilization. However, given their distinct regulatory features, these two isozymes could confer distinct metabolic functions of glycogen in brain. Interestingly, recent proteomics studies have identified isozyme-specific reactive cysteine residues in brain glycogen phosphorylase (bGP). In this study, we show that the activity of human bGP is redox-regulated through the formation of a disulfide bond involving a highly reactive cysteine unique to the bGP isozyme. We found that this disulfide bond acts as a redox switch that precludes the allosteric activation of the enzyme by AMP without affecting its activation by phosphorylation. This unique regulatory feature of bGP sheds new light on the isoform-specific regulation of glycogen phosphorylase and glycogen metabolism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Manaenko, Anatol; Lekic, Tim; Ma, Qingyi; Zhang, John H; Tang, Jiping
2013-05-01
Hydrogen inhalation was neuroprotective in several brain injury models. Its mechanisms are believed to be related to antioxidative stress. We investigated the potential neurovascular protective effect of hydrogen inhalation especially effect on mast cell activation in a mouse model of intracerebral hemorrhage. Controlled in vivo laboratory study. Animal research laboratory. One hundred seventy-one 8-week-old male CD-1 mice were used. Collagenase-induced intracerebral hemorrhage model in 8-week-old male CD-1 mice was used. Hydrogen was administrated via spontaneous inhalation. The blood-brain barrier permeability and neurologic deficits were investigated at 24 and 72 hours after intracerebral hemorrhage. Mast cell activation was evaluated by Western blot and immuno-staining. The effects of hydrogen inhalation on mast cell activation were confirmed in an autologous blood injection model intracerebral hemorrhage. At 24 and 72 hours post intracerebral hemorrhage, animals showed blood-brain barrier disruption, brain edema, and neurologic deficits, accompanied with phosphorylation of Lyn kinase and release of tryptase, indicating mast cell activation. Hydrogen treatment diminished phosphorylation of Lyn kinase and release of tryptase, decreased accumulation and degranulation of mast cells, attenuated blood-brain barrier disruption, and improved neurobehavioral function. Activation of mast cells following intracerebral hemorrhage contributed to increase of blood-brain barrier permeability and brain edema. Hydrogen inhalation preserved blood-brain barrier disruption by prevention of mast cell activation after intracerebral hemorrhage.
Brain responses differ to faces of mothers and fathers.
Arsalidou, Marie; Barbeau, Emmanuel J; Bayless, Sarah J; Taylor, Margot J
2010-10-01
We encounter many faces each day but relatively few are personally familiar. Once faces are familiar, they evoke semantic and social information known about the person. Neuroimaging studies demonstrate differential brain activity to familiar and non-familiar faces; however, brain responses related to personally familiar faces have been more rarely studied. We examined brain activity with fMRI in adults in response to faces of their mothers and fathers compared to faces of celebrities and strangers. Overall, faces of mothers elicited more activity in core and extended brain regions associated with face processing, compared to fathers, celebrity or stranger faces. Fathers' faces elicited activity in the caudate, a deep brain structure associated with feelings of love. These new findings of differential brain responses elicited by faces of mothers and fathers are consistent with psychological research on attachment, evident even during adulthood. 2010 Elsevier Inc. All rights reserved.
Measurable benefits on brain activity from the practice of educational leisure.
Requena, Carmen; López, Verónica
2014-01-01
Even if behavioral studies relate leisure practices to the preservation of memory in old persons, there is unsubstantial evidence of the import of leisure on brain activity. This study was to compare the brain activity of elderly retired people who engage in different types of leisure activities. Quasi-experimental study over a sample of 60 elderly, retired subjects distributed into three groups according to the leisure activities they practised: educational leisure (G1), memory games (G2), and card games (G3). Applied measures include the conceptual distinction between free time and leisure, the test of the organization of free time measuring 24 clock divisions, and EEG register during 12 word list memorizing. The results show that the type of leisure activity is associated with significant quantitative differences regarding the use of free time. G1 devotes more time to leisure activities than G2 (p = 0.007) and G3 (p = 0.034). G1 rests more actively than the other two groups (p = 0.001). The electrical localization of brain activity indicated a reverse tendency of activation according to the bands and groups. Engaging in educational leisure activities is a useful practice to protect healthy brain compensation strategies. Future longitudinal research may verify the causal relation between practicing educational leisure activities and functional brain aging.
Okumura, Yuka; Asano, Yoshitaka; Takenaka, Shunsuke; Fukuyama, Seisuke; Yonezawa, Shingo; Kasuya, Yukinori; Shinoda, Jun
2014-01-01
The aim of this study was to objectively evaluate the brain activity potential of patients with impaired consciousness in a chronic stage of diffuse brain injury (DBI) using functional MRI (fMRI) following music stimulation (MS). Two patients in a minimally conscious state (MCS) and five patients in a vegetative state (VS) due to severe DBI were enrolled along with 21 healthy adults. This study examined the brain regions activated by music and assessed topographical differences of the MS-activated brain among healthy adults and these patients. MS was shown to activate the bilateral superior temporal gyri (STG) of both healthy adults and patients in an MCS. In four of five patients in a VS, however, no significant activation in STG could be induced by the same MS. The remaining patient in a VS displayed the same MS-induced brain activation in STG as healthy adults and patients in an MCS and this patient's status also improved to an MCS 4 months after the study. The presence of STG activation by MS may predict a possible improvement of patients in a VS to MCS and fMRI employing MS may be a useful modality to objectively evaluate consciousness in these patients.
Gibson, William S.; Jo, Hang Joon; Testini, Paola; Cho, Shinho; Felmlee, Joel P.; Welker, Kirk M.; Klassen, Bryan T.; Min, Hoon-Ki
2016-01-01
Deep brain stimulation is an established neurosurgical therapy for movement disorders including essential tremor and Parkinson’s disease. While typically highly effective, deep brain stimulation can sometimes yield suboptimal therapeutic benefit and can cause adverse effects. In this study, we tested the hypothesis that intraoperative functional magnetic resonance imaging could be used to detect deep brain stimulation-evoked changes in functional and effective connectivity that would correlate with the therapeutic and adverse effects of stimulation. Ten patients receiving deep brain stimulation of the ventralis intermedius thalamic nucleus for essential tremor underwent functional magnetic resonance imaging during stimulation applied at a series of stimulation localizations, followed by evaluation of deep brain stimulation-evoked therapeutic and adverse effects. Correlations between the therapeutic effectiveness of deep brain stimulation (3 months postoperatively) and deep brain stimulation-evoked changes in functional and effective connectivity were assessed using region of interest-based correlation analysis and dynamic causal modelling, respectively. Further, we investigated whether brain regions might exist in which activation resulting from deep brain stimulation might correlate with the presence of paraesthesias, the most common deep brain stimulation-evoked adverse effect. Thalamic deep brain stimulation resulted in activation within established nodes of the tremor circuit: sensorimotor cortex, thalamus, contralateral cerebellar cortex and deep cerebellar nuclei (FDR q < 0.05). Stimulation-evoked activation in all these regions of interest, as well as activation within the supplementary motor area, brainstem, and inferior frontal gyrus, exhibited significant correlations with the long-term therapeutic effectiveness of deep brain stimulation (P < 0.05), with the strongest correlation (P < 0.001) observed within the contralateral cerebellum. Dynamic causal modelling revealed a correlation between therapeutic effectiveness and attenuated within-region inhibitory connectivity in cerebellum. Finally, specific subregions of sensorimotor cortex were identified in which deep brain stimulation-evoked activation correlated with the presence of unwanted paraesthesias. These results suggest that thalamic deep brain stimulation in tremor likely exerts its effects through modulation of both olivocerebellar and thalamocortical circuits. In addition, our findings indicate that deep brain stimulation-evoked functional activation maps obtained intraoperatively may contain predictive information pertaining to the therapeutic and adverse effects induced by deep brain stimulation. PMID:27329768
Intersubject synchronization of cortical activity during natural vision.
Hasson, Uri; Nir, Yuval; Levy, Ifat; Fuhrmann, Galit; Malach, Rafael
2004-03-12
To what extent do all brains work alike during natural conditions? We explored this question by letting five subjects freely view half an hour of a popular movie while undergoing functional brain imaging. Applying an unbiased analysis in which spatiotemporal activity patterns in one brain were used to "model" activity in another brain, we found a striking level of voxel-by-voxel synchronization between individuals, not only in primary and secondary visual and auditory areas but also in association cortices. The results reveal a surprising tendency of individual brains to "tick collectively" during natural vision. The intersubject synchronization consisted of a widespread cortical activation pattern correlated with emotionally arousing scenes and regionally selective components. The characteristics of these activations were revealed with the use of an open-ended "reverse-correlation" approach, which inverts the conventional analysis by letting the brain signals themselves "pick up" the optimal stimuli for each specialized cortical area.
A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke
Promjunyakul, Nutta-on; Schmit, Brian D.; Schindler-Ivens, Sheila M.
2015-01-01
The purpose of this study was to examine the feasibility of using functional magnetic resonance imaging (fMRI) to measure pedaling-related brain activation in individuals with stroke and age-matched controls. We also sought to identify stroke-related changes in brain activation associated with pedaling. Fourteen stroke and 12 control subjects were asked to pedal a custom, MRI-compatible device during fMRI. Subjects also performed lower limb tapping to localize brain regions involved in lower limb movement. All stroke and control subjects were able to pedal while positioned for fMRI. Two control subjects were withdrawn due to claustrophobia, and one control data set was excluded from analysis due to an incidental finding. In the stroke group, one subject was unable to enter the gantry due to excess adiposity, and one stroke data set was excluded from analysis due to excessive head motion. Consequently, 81% of subjects (12/14 stroke, 9/12 control) completed all procedures and provided valid pedaling-related fMRI data. In these subjects, head motion was ≤3 mm. In both groups, brain activation localized to the medial aspect of M1, S1, and Brodmann’s area 6 (BA6) and to the cerebellum (vermis, lobules IV, V, VIII). The location of brain activation was consistent with leg areas. Pedaling-related brain activation was apparent on both sides of the brain, with values for laterality index (LI) of –0.06 (0.20) in the stroke cortex, 0.05 (±0.06) in the control cortex, 0.29 (0.33) in the stroke cerebellum, and 0.04 (0.15) in the control cerebellum. In the stroke group, activation in the cerebellum – but not cortex – was significantly lateralized toward the damaged side of the brain (p = 0.01). The volume of pedaling-related brain activation was smaller in stroke as compared to control subjects. Differences reached statistical significance when all active regions were examined together [p = 0.03; 27,694 (9,608) μL stroke; 37,819 (9,169) μL control]. When individual regions were examined separately, reduced brain activation volume reached statistical significance in BA6 [p = 0.04; 4,350 (2,347) μL stroke; 6,938 (3,134) μL control] and cerebellum [p = 0.001; 4,591 (1,757) μL stroke; 8,381 (2,835) μL control]. Regardless of whether activated regions were examined together or separately, there were no significant between-group differences in brain activation intensity [p = 0.17; 1.30 (0.25)% stroke; 1.16 (0.20)% control]. Reduced volume in the stroke group was not observed during lower limb tapping and could not be fully attributed to differences in head motion or movement rate. There was a tendency for pedaling-related brain activation volume to increase with increasing work performed by the paretic limb during pedaling (p = 0.08, r = 0.525). Hence, the results of this study provide two original and important contributions. First, we demonstrated that pedaling can be used with fMRI to examine brain activation associated with lower limb movement in people with stroke. Unlike previous lower limb movements examined with fMRI, pedaling involves continuous, reciprocal, multijoint movement of both limbs. In this respect, pedaling has many characteristics of functional lower limb movements, such as walking. Thus, the importance of our contribution lies in the establishment of a novel paradigm that can be used to understand how the brain adapts to stroke to produce functional lower limb movements. Second, preliminary observations suggest that brain activation volume is reduced during pedaling post-stroke. Reduced brain activation volume may be due to anatomic, physiology, and/or behavioral differences between groups, but methodological issues cannot be excluded. Importantly, brain action volume post-stroke was both task-dependent and mutable, which suggests that it could be modified through rehabilitation. Future work will explore these possibilities. PMID:26089789
Hook, Gregory; Hook, Vivian; Kindy, Mark
2015-01-01
The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β peptides (Aβ) and improving memory in Alzheimer’s disease (AD), because reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. To evaluate that issue, we orally administered a cysteine protease inhibitor, E64d, to normal guinea pigs or transgenic mice expressing human AβPP, both of which express the human wild-type β-secretase site sequence. In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF and plasma of Aβ(40) and Aβ(42), a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ(40) and Aβ(42), amyloid plaque, brain CTFβ, and brain cathepsin B activity but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients. PMID:21613740
fMRI reveals neural activity overlap between adult and infant pain
Goksan, Sezgi; Hartley, Caroline; Emery, Faith; Cockrill, Naomi; Poorun, Ravi; Moultrie, Fiona; Rogers, Richard; Campbell, Jon; Sanders, Michael; Adams, Eleri; Clare, Stuart; Jenkinson, Mark; Tracey, Irene; Slater, Rebeccah
2015-01-01
Limited understanding of infant pain has led to its lack of recognition in clinical practice. While the network of brain regions that encode the affective and sensory aspects of adult pain are well described, the brain structures involved in infant nociceptive processing are less well known, meaning little can be inferred about the nature of the infant pain experience. Using fMRI we identified the network of brain regions that are active following acute noxious stimulation in newborn infants, and compared the activity to that observed in adults. Significant infant brain activity was observed in 18 of the 20 active adult brain regions but not in the infant amygdala or orbitofrontal cortex. Brain regions that encode sensory and affective components of pain are active in infants, suggesting that the infant pain experience closely resembles that seen in adults. This highlights the importance of developing effective pain management strategies in this vulnerable population. DOI: http://dx.doi.org/10.7554/eLife.06356.001 PMID:25895592
Evidence That Brain MAO A Activity Does Not Correspond to MAO A Genotype in Healthy Male Subjects
Fowler, Joanna S.; Alia-Klein, Nelly; Kriplani, Aarti; Logan, Jean; Williams, Benjamin; Zhu, Wei; Craig, Ian W.; Telang, Frank; Goldstein, Rita; Volkow, Nora D.; Vaska, Paul; Wang, Gene-Jack
2009-01-01
Background A functional polymorphism in the promoter region of the monoamine oxidase A (MAO A) gene has two common alleles that are referred to as the high and low MAO A genotypes. We report the first in vivo human study to determine whether there is an association between MAO A genotype and brain MAO A activity in healthy male subjects. Methods Brain MAO A activity was measured with positron emission tomography and [11C]clorgyline in 38 healthy adult male nonsmokers genotyped for MAO A polymorphism. Results There was no significant difference in brain MAO A activity between the high (n = 26) and low (n = 12) MAO A genotypes. Conclusions The lack of an association between the high and low MAO A genotype and brain MAO A activity suggests that this polymorphism by itself does not contribute to differences in brain MAO A activity in healthy adult male subjects. PMID:17141746