Sample records for brain shift compensation

  1. Retractor-induced brain shift compensation in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.

  2. Brain-shift compensation using intraoperative ultrasound and constraint-based biomechanical simulation.

    PubMed

    Morin, Fanny; Courtecuisse, Hadrien; Reinertsen, Ingerid; Le Lann, Florian; Palombi, Olivier; Payan, Yohan; Chabanas, Matthieu

    2017-08-01

    During brain tumor surgery, planning and guidance are based on preoperative images which do not account for brain-shift. However, this deformation is a major source of error in image-guided neurosurgery and affects the accuracy of the procedure. In this paper, we present a constraint-based biomechanical simulation method to compensate for craniotomy-induced brain-shift that integrates the deformations of the blood vessels and cortical surface, using a single intraoperative ultrasound acquisition. Prior to surgery, a patient-specific biomechanical model is built from preoperative images, accounting for the vascular tree in the tumor region and brain soft tissues. Intraoperatively, a navigated ultrasound acquisition is performed directly in contact with the organ. Doppler and B-mode images are recorded simultaneously, enabling the extraction of the blood vessels and probe footprint, respectively. A constraint-based simulation is then executed to register the pre- and intraoperative vascular trees as well as the cortical surface with the probe footprint. Finally, preoperative images are updated to provide the surgeon with images corresponding to the current brain shape for navigation. The robustness of our method is first assessed using sparse and noisy synthetic data. In addition, quantitative results for five clinical cases are provided, first using landmarks set on blood vessels, then based on anatomical structures delineated in medical images. The average distances between paired vessels landmarks ranged from 3.51 to 7.32 (in mm) before compensation. With our method, on average 67% of the brain-shift is corrected (range [1.26; 2.33]) against 57% using one of the closest existing works (range [1.71; 2.84]). Finally, our method is proven to be fully compatible with a surgical workflow in terms of execution times and user interactions. In this paper, a new constraint-based biomechanical simulation method is proposed to compensate for craniotomy-induced brain-shift. While being efficient to correct this deformation, the method is fully integrable in a clinical process. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A Bayesian Account of Vocal Adaptation to Pitch-Shifted Auditory Feedback

    PubMed Central

    Hahnloser, Richard H. R.

    2017-01-01

    Motor systems are highly adaptive. Both birds and humans compensate for synthetically induced shifts in the pitch (fundamental frequency) of auditory feedback stemming from their vocalizations. Pitch-shift compensation is partial in the sense that large shifts lead to smaller relative compensatory adjustments of vocal pitch than small shifts. Also, compensation is larger in subjects with high motor variability. To formulate a mechanistic description of these findings, we adapt a Bayesian model of error relevance. We assume that vocal-auditory feedback loops in the brain cope optimally with known sensory and motor variability. Based on measurements of motor variability, optimal compensatory responses in our model provide accurate fits to published experimental data. Optimal compensation correctly predicts sensory acuity, which has been estimated in psychophysical experiments as just-noticeable pitch differences. Our model extends the utility of Bayesian approaches to adaptive vocal behaviors. PMID:28135267

  4. Problem of intraoperative anatomical shift in image-guided surgery

    NASA Astrophysics Data System (ADS)

    Nauta, Haring J.; Bonnen, J. G.

    1998-06-01

    Experience with image guided, frameless stereotactic neurosurgery shows that intraoperative brain position shifts can be large enough to be problematic, and can occur in different directions at different directions at different stages of an operation. An understanding of the behavior of shifts will allow the surgeon to make the most appropriate use of the image guidance by first minimizing the shift itself, and then anticipating and compensating for any influence the remaining shift will have on the accuracy of the guidance. Three types of shift are described. Type I shift is a local outward bulging that occurs after the skull and dura are opened but before a mass lesion is resected. Type II shift is a local collapse of the brain tissue into the space previously occupied by the tumor. Type III shift is related to loss of cerebrospinal fluid or brain dehydration and is a generalized, more symmetric loss of brain volume. Strategies to minimize these types of shift include appropriate use of medical measures to reduce brain swelling early in the procedure without producing so much brain dehydration that Type II shift is accentuated later in the procedure. Other strategies include mechanical stabilization of brain position with retractors. Anticipating shift, the neurosurgeon should use the guidance as far as possible to map key boundaries early in the procedure before shift becomes more pronounced. Ultimately, however, the correction for the problem of intraoperative brain shift will require the ability to update the imaging data during the surgery.

  5. Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse brain imaging

    NASA Astrophysics Data System (ADS)

    Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2017-02-01

    Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.

  6. Interactive brain shift compensation using GPU based programming

    NASA Astrophysics Data System (ADS)

    van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf

    2009-02-01

    Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.

  7. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth

    PubMed Central

    Kotrschal, Alexander; Corral‐Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-01-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large‐ and small‐brained individuals. Instead, we found that large‐brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. PMID:26420573

  8. Compensatory Plasticity in the Deaf Brain: Effects on Perception of Music

    PubMed Central

    Good, Arla; Reed, Maureen J.; Russo, Frank A.

    2014-01-01

    When one sense is unavailable, sensory responsibilities shift and processing of the remaining modalities becomes enhanced to compensate for missing information. This shift, referred to as compensatory plasticity, results in a unique sensory experience for individuals who are deaf, including the manner in which music is perceived. This paper evaluates the neural, behavioural and cognitive evidence for compensatory plasticity following auditory deprivation and considers how this manifests in a unique experience of music that emphasizes visual and vibrotactile modalities. PMID:25354235

  9. The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth.

    PubMed

    Kotrschal, Alexander; Corral-Lopez, Alberto; Szidat, Sönke; Kolm, Niclas

    2015-11-01

    One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  10. A spherical aberration-free microscopy system for live brain imaging.

    PubMed

    Ue, Yoshihiro; Monai, Hiromu; Higuchi, Kaori; Nishiwaki, Daisuke; Tajima, Tetsuya; Okazaki, Kenya; Hama, Hiroshi; Hirase, Hajime; Miyawaki, Atsushi

    2018-06-02

    The high-resolution in vivo imaging of mouse brain for quantitative analysis of fine structures, such as dendritic spines, requires objectives with high numerical apertures (NAs) and long working distances (WDs). However, this imaging approach is often hampered by spherical aberration (SA) that results from the mismatch of refractive indices in the optical path and becomes more severe with increasing depth of target from the brain surface. Whereas a revolving objective correction collar has been designed to compensate SA, its adjustment requires manual operation and is inevitably accompanied by considerable focal shift, making it difficult to acquire the best image of a given fluorescent object. To solve the problems, we have created an objective-attached device and formulated a fast iterative algorithm for the realization of an automatic SA compensation system. The device coordinates the collar rotation and the Z-position of an objective, enabling correction collar adjustment while stably focusing on a target. The algorithm provides the best adjustment on the basis of the calculated contrast of acquired images. Together, they enable the system to compensate SA at a given depth. As proof of concept, we applied the SA compensation system to in vivo two-photon imaging with a 25 × water-immersion objective (NA, 1.05; WD, 2 mm). It effectively reduced SA regardless of location, allowing quantitative and reproducible analysis of fine structures of YFP-labeled neurons in the mouse cerebral cortical layers. Interestingly, although the cortical structure was optically heterogeneous along the z-axis, the refractive index of each layer could be assessed on the basis of the compensation degree. It was also possible to make fully corrected three-dimensional reconstructions of YFP-labeled neurons in live brain samples. Our SA compensation system, called Deep-C, is expected to bring out the best in all correction-collar-equipped objectives for imaging deep regions of heterogeneous tissues. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Early and Late Shift of Brain Laterality in STG, HG, and Cerebellum with Normal Aging during a Short-Term Memory Task

    PubMed Central

    Abdul Manan, Hanani; Yusoff, Ahmad Nazlim; Franz, Elizabeth A.; Sarah Mukari, Siti Zamratol-Mai

    2013-01-01

    Evidence suggests that cognitive performance deteriorates in noisy backgrounds and the problems are more pronounced in older people due to brain deficits and changes. The present study used functional MRI (fMRI) to investigate the neural correlates of this phenomenon during short-term memory using a forward repeat task performed in quiet (STMQ) and in noise: 5-dB SNR (STMN) on four groups of participants of different ages. The performance of short-term memory tasks was measured behaviourally. No significant difference was found across age groups in STMQ. However, older adults (50–65 year olds) performed relatively poorly on the STMN. fMRI results on the laterality index indicate changes in hemispheric laterality in the superior temporal gyrus (STG), Heschl's gyrus (HG), and cerebellum, and a leftward asymmetry in younger participants which changes to a more rightward asymmetry in older participants. The results also indicate that the onset of the laterality shift varies from one brain region to another. STG and HG show a late shift while the cerebellum shows an earlier shift. The results also reveal that noise influences this shifting. Finally, the results support the hypothesis that functional networks that underlie STG, HG, and cerebellum undergo reorganization to compensate for the neural deficit/cognitive decline. PMID:23533806

  12. Towards an Understanding of Energy Impairment in Huntington’s Disease Brain

    PubMed Central

    Dubinsky, Janet M.

    2017-01-01

    This review systematically examines the evidence for shifts in flux through energy generating biochemical pathways in Huntington’s disease (HD) brains from humans and model systems. Compromise of the electron transport chain (ETC) appears not to be the primary or earliest metabolic change in HD pathogenesis. Rather, compromise of glucose uptake facilitates glucose flux through glycolysis and may possibly decrease flux through the pentose phosphate pathway (PPP), limiting subsequent NADPH and GSH production needed for antioxidant protection. As a result, oxidative damage to key glycolytic and tricarboxylic acid (TCA) cycle enzymes further restricts energy production so that while basal needs may be met through oxidative phosphorylation, those of excessive stimulation cannot. Energy production may also be compromised by deficits in mitochondrial biogenesis, dynamics or trafficking. Restrictions on energy production may be compensated for by glutamate oxidation and/or stimulation of fatty acid oxidation. Transcriptional dysregulation generated by mutant huntingtin also contributes to energetic disruption at specific enzymatic steps. Many of the alterations in metabolic substrates and enzymes may derive from normal regulatory feedback mechanisms and appear oscillatory. Fine temporal sequencing of the shifts in metabolic flux and transcriptional and expression changes associated with mutant huntingtin expression remain largely unexplored and may be model dependent. Differences in disease progression among HD model systems at the time of experimentation and their varying states of metabolic compensation may explain conflicting reports in the literature. Progressive shifts in metabolic flux represent homeostatic compensatory mechanisms that maintain the model organism through presymptomatic and symptomatic stages. PMID:29125492

  13. Investigating the Relationship between Cerebrospinal Fluid and Magnetic Induction Phase Shift in Rabbit Intracerebral hematoma expansion Monitoring by MRI.

    PubMed

    Chen, Mingsheng; Yan, Qingguang; Sun, Jian; Jin, Gui; Qin, Mingxin

    2017-09-11

    In a prior study of intracerebral hemorrhage monitoring using magnetic induction phase shift (MIPS), we found that MIPS signal changes occurred prior to those seen with intracranial pressure. However, the characteristic MIPS alert is not yet fully explained. Combining the brain physiology and MIPS theory, we propose that cerebrospinal fluid (CSF) may be the primary factor that leads to hematoma expansion being alerted by MIPS earlier than with intracranial pressure monitoring. This paper investigates the relationship between CSF and MIPS in monitoring of rabbit intracerebral hemorrhage models, which is based on the MIPS measurements data, the quantified data on CSF from medical images and the amount of injected blood in the rabbit intracerebral hemorrhage model. In the investigated results, a R value of 0.792 with a significance of 0.019 is observed between the MIPS and CSF, which is closer than MIPS and injected blood. Before the reversal point of MIPS, CSF is the leading factor in MIPS signal changing in an early hematoma expansion stage. Under CSF compensation, CSF reduction compensates for hematoma expansion in the brain to keep intracranial pressure stable. MIPS decrease results from the reducing CSF volume. This enables MIPS to detect hematoma expansion earlier than intracranial pressure.

  14. Intraoperative brain tumor resection cavity characterization with conoscopic holography

    NASA Astrophysics Data System (ADS)

    Simpson, Amber L.; Burgner, Jessica; Chen, Ishita; Pheiffer, Thomas S.; Sun, Kay; Thompson, Reid C.; Webster, Robert J., III; Miga, Michael I.

    2012-02-01

    Brain shift compromises the accuracy of neurosurgical image-guided interventions if not corrected by either intraoperative imaging or computational modeling. The latter requires intraoperative sparse measurements for constraining and driving model-based compensation strategies. Conoscopic holography, an interferometric technique that measures the distance of a laser light illuminated surface point from a fixed laser source, was recently proposed for non-contact surface data acquisition in image-guided surgery and is used here for validation of our modeling strategies. In this contribution, we use this inexpensive, hand-held conoscopic holography device for intraoperative validation of our computational modeling approach to correcting for brain shift. Laser range scan, instrument swabbing, and conoscopic holography data sets were collected from two patients undergoing brain tumor resection therapy at Vanderbilt University Medical Center. The results of our study indicate that conoscopic holography is a promising method for surface acquisition since it requires no contact with delicate tissues and can characterize the extents of structures within confined spaces. We demonstrate that for two clinical cases, the acquired conoprobe points align with our model-updated images better than the uncorrected images lending further evidence that computational modeling approaches improve the accuracy of image-guided surgical interventions in the presence of soft tissue deformations.

  15. Stereovision-based integrated system for point cloud reconstruction and simulated brain shift validation.

    PubMed

    Yang, Xiaochen; Clements, Logan W; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C; Dawant, Benoit M; Miga, Michael I

    2017-07-01

    Intraoperative soft tissue deformation, referred to as brain shift, compromises the application of current image-guided surgery navigation systems in neurosurgery. A computational model driven by sparse data has been proposed as a cost-effective method to compensate for cortical surface and volumetric displacements. We present a mock environment developed to acquire stereoimages from a tracked operating microscope and to reconstruct three-dimensional point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. When comparing our tracked microscope stereo-pair measure of mock vessel displacements to that of the measurement determined by the independent optically tracked stylus marking, the displacement error was [Formula: see text] on average. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to laser range scanners to collect sufficient intraoperative information for brain shift correction.

  16. Image updating for brain deformation compensation in tumor resection

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Olson, Jonathan D.; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2016-03-01

    Preoperative magnetic resonance images (pMR) are typically used for intraoperative guidance in image-guided neurosurgery, the accuracy of which can be significantly compromised by brain deformation. Biomechanical finite element models (FEM) have been developed to estimate whole-brain deformation and produce model-updated MR (uMR) that compensates for brain deformation at different surgical stages. Early stages of surgery, such as after craniotomy and after dural opening, have been well studied, whereas later stages after tumor resection begins remain challenging. In this paper, we present a method to simulate tumor resection by incorporating data from intraoperative stereovision (iSV). The amount of tissue resection was estimated from iSV using a "trial-and-error" approach, and the cortical shift was measured from iSV through a surface registration method using projected images and an optical flow (OF) motion tracking algorithm. The measured displacements were employed to drive the biomechanical brain deformation model, and the estimated whole-brain deformation was subsequently used to deform pMR and produce uMR. We illustrate the method using one patient example. The results show that the uMR aligned well with iSV and the overall misfit between model estimates and measured displacements was 1.46 mm. The overall computational time was ~5 min, including iSV image acquisition after resection, surface registration, modeling, and image warping, with minimal interruption to the surgical flow. Furthermore, we compare uMR against intraoperative MR (iMR) that was acquired following iSV acquisition.

  17. Applications of Ultrasound in the Resection of Brain Tumors

    PubMed Central

    Sastry, Rahul; Bi, Wenya Linda; Pieper, Steve; Frisken, Sarah; Kapur, Tina; Wells, William; Golby, Alexandra J.

    2016-01-01

    Neurosurgery makes use of pre-operative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of pre-operative imaging for neuronavigation, however, is diminished by the well characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography have dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies. PMID:27541694

  18. SU-G-BRA-14: Dose in a Rigidly Moving Phantom with Jaw and MLC Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, E; Lucas, D

    Purpose: To validate dose calculation for a rigidly moving object with jaw motion and MLC shifts to compensate for the motion in a TomoTherapy™ treatment delivery. Methods: An off-line version of the TomoTherapy dose calculator was extended to perform dose calculations for rigidly moving objects. A variety of motion traces were added to treatment delivery plans, along with corresponding jaw compensation and MLC shift compensation profiles. Jaw compensation profiles were calculated by shifting the jaws such that the center of the treatment beam moved by an amount equal to the motion in the longitudinal direction. Similarly, MLC compensation profiles weremore » calculated by shifting the MLC leaves by an amount that most closely matched the motion in the transverse direction. The same jaw and MLC compensation profiles were used during simulated treatment deliveries on a TomoTherapy system, and film measurements were obtained in a rigidly moving phantom. Results: The off-line TomoTherapy dose calculator accurately predicted dose profiles for a rigidly moving phantom along with jaw motion and MLC shifts to compensate for the motion. Calculations matched film measurements to within 2%/1 mm. Jaw and MLC compensation substantially reduced the discrepancy between the delivered dose distribution and the calculated dose with no motion. For axial motion, the compensated dose matched the no-motion dose within 2%/1mm. For transverse motion, the dose matched within 2%/3mm (approximately half the width of an MLC leaf). Conclusion: The off-line TomoTherapy dose calculator accurately computes dose delivered to a rigidly moving object, and accurately models the impact of moving the jaws and shifting the MLC leaf patterns to compensate for the motion. Jaw tracking and MLC leaf shifting can effectively compensate for the dosimetric impact of motion during a TomoTherapy treatment delivery.« less

  19. Superficial vessel reconstruction with a multiview camera system

    PubMed Central

    Marreiros, Filipe M. M.; Rossitti, Sandro; Karlsson, Per M.; Wang, Chunliang; Gustafsson, Torbjörn; Carleberg, Per; Smedby, Örjan

    2016-01-01

    Abstract. We aim at reconstructing superficial vessels of the brain. Ultimately, they will serve to guide the deformation methods to compensate for the brain shift. A pipeline for three-dimensional (3-D) vessel reconstruction using three mono-complementary metal-oxide semiconductor cameras has been developed. Vessel centerlines are manually selected in the images. Using the properties of the Hessian matrix, the centerline points are assigned direction information. For correspondence matching, a combination of methods was used. The process starts with epipolar and spatial coherence constraints (geometrical constraints), followed by relaxation labeling and an iterative filtering where the 3-D points are compared to surfaces obtained using the thin-plate spline with decreasing relaxation parameter. Finally, the points are shifted to their local centroid position. Evaluation in virtual, phantom, and experimental images, including intraoperative data from patient experiments, shows that, with appropriate camera positions, the error estimates (root-mean square error and mean error) are ∼1  mm. PMID:26759814

  20. Compensating temperature-induced ultrasonic phase and amplitude changes

    NASA Astrophysics Data System (ADS)

    Gong, Peng; Hay, Thomas R.; Greve, David W.; Junker, Warren R.; Oppenheim, Irving J.

    2016-04-01

    In ultrasonic structural health monitoring (SHM), environmental and operational conditions, especially temperature, can significantly affect the propagation of ultrasonic waves and thus degrade damage detection. Typically, temperature effects are compensated using optimal baseline selection (OBS) or optimal signal stretch (OSS). The OSS method achieves compensation by adjusting phase shifts caused by temperature, but it does not fully compensate phase shifts and it does not compensate for accompanying signal amplitude changes. In this paper, we develop a new temperature compensation strategy to address both phase shifts and amplitude changes. In this strategy, OSS is first used to compensate some of the phase shifts and to quantify the temperature effects by stretching factors. Based on stretching factors, empirical adjusting factors for a damage indicator are then applied to compensate for the temperature induced remaining phase shifts and amplitude changes. The empirical adjusting factors can be trained from baseline data with temperature variations in the absence of incremental damage. We applied this temperature compensation approach to detect volume loss in a thick wall aluminum tube with multiple damage levels and temperature variations. Our specimen is a thick-walled short tube, with dimensions closely comparable to the outlet region of a frac iron elbow where flow-induced erosion produces the volume loss that governs the service life of that component, and our experimental sequence simulates the erosion process by removing material in small damage steps. Our results show that damage detection is greatly improved when this new temperature compensation strategy, termed modified-OSS, is implemented.

  1. Comparisons of lesion detectability in ultrasound images acquired using time-shift compensation and spatial compounding.

    PubMed

    Lacefield, James C; Pilkington, Wayne C; Waag, Robert C

    2004-12-01

    The effects of aberration, time-shift compensation, and spatial compounding on the discrimination of positive-contrast lesions in ultrasound b-scan images are investigated using a two-dimensional (2-D) array system and tissue-mimicking phantoms. Images were acquired within an 8.8 x 12-mm2 field of view centered on one of four statistically similar 4-mm diameter spherical lesions. Each lesion was imaged in four planes offset by successive 45 degree rotations about the central scan line. Images of the lesions were acquired using conventional geometric focusing through a water path, geometric focusing through a 35-mm thick distributed aberration phantom, and time-shift compensated transmit and receive focusing through the aberration phantom. The views of each lesion were averaged to form sets of water path, aberrated, and time-shift compensated 4:1 compound images and 16:1 compound images. The contrast ratio and detectability index of each image were computed to assess lesion differentiation. In the presence of aberration representative of breast or abdominal wall tissue, time-shift compensation provided statistically significant improvements of contrast ratio but did not consistently affect the detectability index, and spatial compounding significantly increased the detectability index but did not alter the contrast ratio. Time-shift compensation and spatial compounding thus provide complementary benefits to lesion detection.

  2. Using ultrasound CBE imaging without echo shift compensation for temperature estimation.

    PubMed

    Tsui, Po-Hsiang; Chien, Yu-Ting; Liu, Hao-Li; Shu, Yu-Chen; Chen, Wen-Shiang

    2012-09-01

    Clinical trials have demonstrated that hyperthermia improves cancer treatments. Previous studies developed ultrasound temperature imaging methods, based on the changes in backscattered energy (CBE), to monitor temperature variations during hyperthermia. Echo shift, induced by increasing temperature, contaminates the CBE image, and its tracking and compensation should normally ensure that estimations of CBE at each pixel are correct. To obtain a simplified algorithm that would allow real-time computation of CBE images, this study evaluated the usefulness of CBE imaging without echo shift compensation in detecting distributions in temperature. Experiments on phantoms, using different scatterer concentrations, and porcine livers were conducted to acquire raw backscattered data at temperatures ranging from 37°C to 45°C. Tissue samples of pork tenderloin were ablated in vitro by microwave irradiation to evaluate the feasibility of using the CBE image without compensation to monitor tissue ablation. CBE image construction was based on a ratio map obtained from the envelope image divided by the reference envelope image at 37°C. The experimental results demonstrated that the CBE image obtained without echo shift compensation has the ability to estimate temperature variations induced during uniform heating or tissue ablation. The magnitude of the CBE as a function of temperature obtained without compensation is stronger than that with compensation, implying that the CBE image without compensation has a better sensitivity to detect temperature. These findings suggest that echo shift tracking and compensation may be unnecessary in practice, thus simplifying the algorithm required to implement real-time CBE imaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Integrated system for point cloud reconstruction and simulated brain shift validation using tracked surgical microscope

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2017-03-01

    Intra-operative soft tissue deformation, referred to as brain shift, compromises the application of current imageguided surgery (IGS) navigation systems in neurosurgery. A computational model driven by sparse data has been used as a cost effective method to compensate for cortical surface and volumetric displacements. Stereoscopic microscopes and laser range scanners (LRS) are the two most investigated sparse intra-operative imaging modalities for driving these systems. However, integrating these devices in the clinical workflow to facilitate development and evaluation requires developing systems that easily permit data acquisition and processing. In this work we present a mock environment developed to acquire stereo images from a tracked operating microscope and to reconstruct 3D point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space in order to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. Our experimental results report approximately 2mm average displacement error compared with the optical tracking system. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to LRS to collect sufficient intraoperative information for brain shift correction.

  4. Nonlinear Bayesian cue integration explains the dynamics of vocal learning

    NASA Astrophysics Data System (ADS)

    Zhou, Baohua; Sober, Samuel; Nemenman, Ilya

    The acoustics of vocal production in songbirds is tightly regulated during both development and adulthood as birds progressively refine their song using sensory feedback to match an acoustic target. Here, we perturb this sensory feedback using headphones to shift the pitch (fundamental frequency) of song. When the pitch is shifted upwards (downwards), birds eventually learn to compensate and sing lower (higher), bringing the experienced pitch closer to the target. Paradoxically, the speed and amplitude of this motor learning decrease with increases in the introduced error size, so that birds respond rapidly to a small sensory perturbation, while seemingly never correcting a much bigger one. Similar results are observed broadly across the animal kingdom, and they do not derive from a limited plasticity of the adult brain since birds can compensate for a large error as long as the error is imposed gradually. We develop a mathematical model based on nonlinear Bayesian integration of two sensory modalities (one perturbed and the other not) that quantitatively explains all of these observations. The model makes predictions about the structure of the probability distribution of the pitches sung by birds during the pitch shift experiments, which we confirm using experimental data. This work was supported in part by James S. McDonnell Foundation Grant # 220020321, NSF Grant # IOS/1208126, NSF Grant # IOS/1456912 and NIH Grants # R01NS084844.

  5. From the left to the right: How the brain compensates progressive loss of language function.

    PubMed

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F; Heiss, Wolf-Dieter

    2006-07-01

    In normal right-handed subjects language production usually is a function oft the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the left hemisphere in normal subjects are successfully employed for compensation but this integration process may need time to develop. We investigated right-handed patients with left hemisphere brain tumors as a model of continuously progressive brain damage to left hemisphere language areas using functional neuroimaging and transcranial magnetic stimulation (TMS) to identify factors which determine successful compensation of lost language function. Only patients with slowly progressing brain lesions recovered right-sided language function as detected by TMS. In patients with rapidly progressive lesions no right-sided language function was found and language performance was linearly correlated with the lateralization of language related brain activation to the left hemisphere. It can thus be concluded that time is the factor which determines successful integration of the right hemisphere into the language network for compensation of lost left hemisphere language function.

  6. Power spectral density analysis of physiological, rest and action tremor in Parkinson’s disease patients treated with deep brain stimulation

    PubMed Central

    2013-01-01

    Background Observation of the signals recorded from the extremities of Parkinson’s disease patients showing rest and/or action tremor reveal a distinct high power resonance peak in the frequency band corresponding to tremor. The aim of the study was to investigate, using quantitative measures, how clinically effective and less effective deep brain stimulation protocols redistribute movement power over the frequency bands associated with movement, pathological and physiological tremor, and whether normal physiological tremor may reappear during those periods that tremor is absent. Methods The power spectral density patterns of rest and action tremor were studied in 7 Parkinson’s disease patients treated with (bilateral) deep brain stimulation of the subthalamic nucleus. Two tests were carried out: 1) the patient was sitting at rest; 2) the patient performed a hand or foot tapping movement. Each test was repeated four times for each extremity with different stimulation settings applied during each repetition. Tremor intermittency was taken into account by classifying each 3-second window of the recorded angular velocity signals as a tremor or non-tremor window. Results The distribution of power over the low frequency band (<3.5 Hz – voluntary movement), tremor band (3.5-7.5 Hz) and high frequency band (>7.5 Hz – normal physiological tremor) revealed that rest and action tremor show a similar power-frequency shift related to tremor absence and presence: when tremor is present most power is contained in the tremor frequency band; when tremor is absent lower frequencies dominate. Even under resting conditions a relatively large low frequency component became prominent, which seemed to compensate for tremor. Tremor absence did not result in the reappearance of normal physiological tremor. Conclusion Parkinson’s disease patients continuously balance between tremor and tremor suppression or compensation expressed by power shifts between the low frequency band and the tremor frequency band during rest and voluntary motor actions. This balance shows that the pathological tremor is either on or off, with the latter state not resembling that of a healthy subject. Deep brain stimulation can reverse the balance thereby either switching tremor on or off. PMID:23834737

  7. The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism.

    PubMed

    Mizuno, Akiko; Liu, Yanni; Williams, Diane L; Keller, Timothy A; Minshew, Nancy J; Just, Marcel Adam

    2011-08-01

    Personal pronouns, such as 'I' and 'you', require a speaker/listener to continuously re-map their reciprocal relation to their referent, depending on who is saying the pronoun. This process, called 'deictic shifting', may underlie the incorrect production of these pronouns, or 'pronoun reversals', such as referring to oneself with the pronoun 'you', which has been reported in children with autism. The underlying neural basis of deictic shifting, however, is not understood, nor has the processing of pronouns been studied in adults with autism. The present study compared the brain activation pattern and functional connectivity (synchronization of activation across brain areas) of adults with high-functioning autism and control participants using functional magnetic resonance imaging in a linguistic perspective-taking task that required deictic shifting. The results revealed significantly diminished frontal (right anterior insula) to posterior (precuneus) functional connectivity during deictic shifting in the autism group, as well as reliably slower and less accurate behavioural responses. A comparison of two types of deictic shifting revealed that the functional connectivity between the right anterior insula and precuneus was lower in autism while answering a question that contained the pronoun 'you', querying something about the participant's view, but not when answering a query about someone else's view. In addition to the functional connectivity between the right anterior insula and precuneus being lower in autism, activation in each region was atypical, suggesting over reliance on individual regions as a potential compensation for the lower level of collaborative interregional processing. These findings indicate that deictic shifting constitutes a challenge for adults with high-functioning autism, particularly when reference to one's self is involved, and that the functional collaboration of two critical nodes, right anterior insula and precuneus, may play a critical role for deictic shifting by supporting an attention shift between oneself and others.

  8. The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism

    PubMed Central

    Liu, Yanni; Williams, Diane L.; Keller, Timothy A.; Minshew, Nancy J.; Just, Marcel Adam

    2011-01-01

    Personal pronouns, such as ‘I’ and ‘you’, require a speaker/listener to continuously re-map their reciprocal relation to their referent, depending on who is saying the pronoun. This process, called ‘deictic shifting’, may underlie the incorrect production of these pronouns, or ‘pronoun reversals’, such as referring to oneself with the pronoun ‘you’, which has been reported in children with autism. The underlying neural basis of deictic shifting, however, is not understood, nor has the processing of pronouns been studied in adults with autism. The present study compared the brain activation pattern and functional connectivity (synchronization of activation across brain areas) of adults with high-functioning autism and control participants using functional magnetic resonance imaging in a linguistic perspective-taking task that required deictic shifting. The results revealed significantly diminished frontal (right anterior insula) to posterior (precuneus) functional connectivity during deictic shifting in the autism group, as well as reliably slower and less accurate behavioural responses. A comparison of two types of deictic shifting revealed that the functional connectivity between the right anterior insula and precuneus was lower in autism while answering a question that contained the pronoun ‘you’, querying something about the participant’s view, but not when answering a query about someone else’s view. In addition to the functional connectivity between the right anterior insula and precuneus being lower in autism, activation in each region was atypical, suggesting over reliance on individual regions as a potential compensation for the lower level of collaborative interregional processing. These findings indicate that deictic shifting constitutes a challenge for adults with high-functioning autism, particularly when reference to one’s self is involved, and that the functional collaboration of two critical nodes, right anterior insula and precuneus, may play a critical role for deictic shifting by supporting an attention shift between oneself and others. PMID:21733887

  9. Simulation of ultrasonic focus aberration and correction through human tissue.

    PubMed

    Tabei, Makoto; Mast, T Douglas; Waag, Robert C

    2003-02-01

    Ultrasonic focusing in two dimensions has been investigated by calculating the propagation of ultrasonic pulses through cross-sectional models of human abdominal wall and breast. Propagation calculations used a full-wave k-space method that accounts for spatial variations in density, sound speed, and frequency-dependent absorption and includes perfectly matched layer absorbing boundary conditions. To obtain a distorted receive wavefront, propagation from a point source through the tissue path was computed. Receive focusing used an angular spectrum method. Transmit focusing was accomplished by propagating a pressure wavefront from a virtual array through the tissue path. As well as uncompensated focusing, focusing that employed time-shift compensation and time-shift compensation after backpropagation was investigated in both transmit and receive and time reversal was investigated for transmit focusing in addition. The results indicate, consistent with measurements, that breast causes greater focus degradation than abdominal wall. The investigated compensation methods corrected the receive focus better than the transmit focus. Time-shift compensation after backpropagation improved the focus from that obtained using time-shift compensation alone but the improvement was less in transmit focusing than in receive focusing. Transmit focusing by time reversal resulted in lower sidelobes but larger mainlobes than the other investigated transmit focus compensation methods.

  10. Threshold-Voltage-Shift Compensation and Suppression Method Using Hydrogenated Amorphous Silicon Thin-Film Transistors for Large Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Oh, Kyonghwan; Kwon, Oh-Kyong

    2012-03-01

    A threshold-voltage-shift compensation and suppression method for active matrix organic light-emitting diode (AMOLED) displays fabricated using a hydrogenated amorphous silicon thin-film transistor (TFT) backplane is proposed. The proposed method compensates for the threshold voltage variation of TFTs due to different threshold voltage shifts during emission time and extends the lifetime of the AMOLED panel. Measurement results show that the error range of emission current is from -1.1 to +1.7% when the threshold voltage of TFTs varies from 1.2 to 3.0 V.

  11. Optimal compensation for neuron loss

    PubMed Central

    Barrett, David GT; Denève, Sophie; Machens, Christian K

    2016-01-01

    The brain has an impressive ability to withstand neural damage. Diseases that kill neurons can go unnoticed for years, and incomplete brain lesions or silencing of neurons often fail to produce any behavioral effect. How does the brain compensate for such damage, and what are the limits of this compensation? We propose that neural circuits instantly compensate for neuron loss, thereby preserving their function as much as possible. We show that this compensation can explain changes in tuning curves induced by neuron silencing across a variety of systems, including the primary visual cortex. We find that compensatory mechanisms can be implemented through the dynamics of networks with a tight balance of excitation and inhibition, without requiring synaptic plasticity. The limits of this compensatory mechanism are reached when excitation and inhibition become unbalanced, thereby demarcating a recovery boundary, where signal representation fails and where diseases may become symptomatic. DOI: http://dx.doi.org/10.7554/eLife.12454.001 PMID:27935480

  12. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning

    PubMed Central

    Anselmi, Francesca; Ventalon, Cathie; Bègue, Aurélien; Ogden, David; Emiliani, Valentina

    2011-01-01

    Access to three-dimensional structures in the brain is fundamental to probe signal processing at multiple levels, from integration of synaptic inputs to network activity mapping. Here, we present an optical method for independent three-dimensional photoactivation and imaging by combination of digital holography with remote-focusing. We experimentally demonstrate compensation of spherical aberration for out-of-focus imaging in a range of at least 300 μm, as well as scanless imaging along oblique planes. We apply this method to perform functional imaging along tilted dendrites of hippocampal pyramidal neurons in brain slices, after photostimulation by multiple spots glutamate uncaging. By bringing extended portions of tilted dendrites simultaneously in-focus, we monitor the spatial extent of dendritic calcium signals, showing a shift from a widespread to a spatially confined response upon blockage of voltage-gated Na+ channels. PMID:22074779

  13. "Circadian cortical compensation": a longitudinal study of brain function during technical and cognitive skills in acutely sleep-deprived surgical residents.

    PubMed

    Leff, Daniel Richard; Orihuela-Espina, Felipe; Athanasiou, Thanos; Karimyan, Vahe; Elwell, Clare; Wong, John; Yang, Guang-Zhong; Darzi, Ara W

    2010-12-01

    To test the hypothesis that fatigue-induced performance decline in surgical residents is associated with changes in brain function as detected by functional near-infrared spectroscopy. Surgical residents (n = 7) participated in a prospective study involving 2-hourly objective measurements of neurocognitive skill (arithmetic calculations using Nintendo "brain training"), technical performance (surgical knot tying on a trainer, and monitoring time taken, path length and number of movements), and introspective fatigue (questionnaire-based) across 10 hours of acute sleep deprivation (10:00 PM to 8:00 PM. Simultaneously, changes in cortical oxyhemoglobin (HbO₂), deoxyhemoglobin (HHb), and total hemoglobin (HbT), inferring prefrontal function, were recorded by using functional near-infrared spectroscopy. Arithmetic performance remained stable despite increasing levels of subject fatigue (time: P = 0.07, errors: P = 0.70, efficiency: P = 0.58). Technical skill improved between the first (10:00 PM and the second (12:00 AM sessions (P < 0.05) and stabilized thereafter (12:00 AM to 8:00 AM. Greater activation was required to complete cognitive versus technical drills. Stimulus type (0: cognitive, 1: technical) was found to be an independent predictor of changes in cortical excitation (HbO₂: P < 0.01, HHb: P < 0.05, HbT: P < 0.01). Cortical responses to the cognitive task increased over the course of the simulated night shift. In addition, "time interval" was observed to be an independent predictor of cortical hemodynamic change (HbO₂: P < 0.01, HbT: P < 0.01). Neurocognitive tasks may tax the sleep-deprived resident more than well-learned technical skills. Performing cognitive skills at night, such as decision making, may depend upon enhanced prefrontal recruitment indicative of a focused attentional strategy and/or compensation to sleep deprivation. Further work should focus on determining whether errors in performance are associated with attentional lapses and failure of cortical compensation.

  14. From the Left to the Right: How the Brain Compensates Progressive Loss of Language Function

    ERIC Educational Resources Information Center

    Thiel, Alexander; Habedank, Birgit; Herholz, Karl; Kessler, Josef; Winhuisen, Lutz; Haupt, Walter F.; Heiss, Wolf-Dieter

    2006-01-01

    In normal right-handed subjects language production usually is a function of the left brain hemisphere. Patients with aphasia following brain damage to the left hemisphere have a considerable potential to compensate for the loss of this function. Sometimes, but not always, areas of the right hemisphere which are homologous to language areas of the…

  15. Motion compensation and noise tolerance in phase-shifting digital in-line holography.

    PubMed

    Stenner, Michael D; Neifeld, Mark A

    2006-05-15

    We present a technique for phase-shifting digital in-line holography which compensates for lateral object motion. By collecting two frames of interference between object and reference fields with identical reference phase, one can estimate the lateral motion that occurred between frames using the cross-correlation. We also describe a very general linear framework for phase-shifting holographic reconstruction which minimizes additive white Gaussian noise (AWGN) for an arbitrary set of reference field amplitudes and phases. We analyze the technique's sensitivity to noise (AWGN, quantization, and shot), errors in the reference fields, errors in motion estimation, resolution, and depth of field. We also present experimental motion-compensated images achieving the expected resolution.

  16. Measurement of Stress Distribution Around a Circular Hole in a Plate Under Bending Moment Using Phase-shifting Method with Reflective Polariscope Arrangement

    NASA Astrophysics Data System (ADS)

    Baek, Tae Hyun

    Photoelasticity is one of the most widely used whole-field optical methods for stress analysis. The technique of birefringent coatings, also called the method of photoelastic coatings, extends the classical procedures of model photoelasticity to the measurement of surface strains in opaque models made of any structural material. Photoelastic phase-shifting method can be used for the determination of the phase values of isochromatics and isoclinics. In this paper, photoelastic phase-shifting technique and conventional Babinet-Soleil compensation method were utilized to analyze a specimen with a triangular hole and a circular hole under bending. Photoelastic phase-shifting technique is whole-field measurement. On the other hand, conventional compensation method is point measurement. Three groups of results were obtained by phase-shifting method with reflective polariscope arrangement, conventional compensation method and FEM simulation, respectively. The results from the first two methods agree with each other relatively well considering experiment error. The advantage of photoelastic phase-shifting method is that it is possible to measure the stress distribution accurately close to the edge of holes.

  17. The Polarization Orientation Shift Estimation and Compensation of PolSAR Data in Forest Area

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Chen, Erxue; Li, Zengyuan; Li, Lan; Gu, Xinzhi

    2016-08-01

    Polarization orientation angle (POA) is a major parameter of electromagnetic wave. This angle will be shift due to azimuth slopes, which will affect the radiometric quality of PolSAR data. Under the assumption of reflection symmetrical medium, the shift value of polarization orientation angle (POAs) can be estimated by Circular Polarization Method (CPM). Then, the shift angle can be used to compensate PolSAR data or extract DEM information. However, it is less effective when using high-frequency SAR (L-, C-band) in the forest area. The main reason is that the polarization orientation angle shift of forest area not only influenced by topography, but also affected by the forest canopy. Among them, the influence of the former belongs to the interference information should be removed, but the impact of the latter belongs to the polarization feature information needs to be retained. The ALOS2 PALSAR2 L-band full polarimetric SAR data was used in this study. Base on the Circular Polarization and DEM-based method, we analyzed the variation of shift value of polarization orientation angle and developed the polarization orientation shift estimation and compensation of PolSAR data in forest.

  18. Isochronic carrier-envelope phase-shift compensator.

    PubMed

    Görbe, Mihaly; Osvay, Karoly; Grebing, Christian; Steinmeyer, Günter

    2008-11-15

    A concept for orthogonal control of phase and group delay inside a laser cavity by a specially designed compensator assembly is discussed. Similar to the construction of variable polarization retarder, this assembly consists of two thin wedge prisms made from appropriately chosen optical materials. Being shifted as a whole, the assembly allows changing the phase delay with no influence on the cavity round-trip time, whereas relative shifting of the prisms enables adjustment of the latter. This scheme is discussed theoretically and verified experimentally, indicating a factor 30 reduction of the influence on the repetition rate compared to the commonly used silica wedge pair. For a 2pi adjustment of the carrier-envelope phase shift, single-pass timing differences are reduced to the single-femtosecond regime. With negligible distortions of timing and dispersion, the described compensator device greatly simplifies carrier-envelope phase control and experiments in extreme nonlinear optics. Copyright (c) 2008 Optical Society of America.

  19. Occupational disease and workers' compensation: coverage, costs, and consequences.

    PubMed

    Leigh, J Paul; Robbins, John A

    2004-01-01

    Most of the costs of occupational disease are not covered by workers' compensation. First, the authors estimated the deaths and costs for all occupational disease in 1999, using epidemiological studies. Among the greatest contributors were job-related cancer, chronic respiratory disease, and circulatory disease. Second, the authors estimated the number of workers' compensation cases, costs, and deaths for 1999, using data from up to 16 states representing all regions of the country. Unlike the epidemiological studies that emphasized fatal diseases, the workers' compensation estimates emphasized nonfatal diseases and conditions like tendonitis and hernia. Comparisons of the epidemiological and workers' compensation estimates suggest that in 1999, workers' compensation missed roughly 46,000 to 93,000 deaths and 8 billion US dollars to 23 billion US dollars in medical costs. These deaths and costs represented substantial cost shifting from workers' compensation systems to individual workers, their families, private medical insurance, and taxpayers (through Medicare and Medicaid). Designing policies to reduce the cost shifting and its associated inefficiency will be challenging.

  20. Occupational Disease and Workers’ Compensation: Coverage, Costs, and Consequences

    PubMed Central

    Leigh, J Paul; Robbins, John A

    2004-01-01

    Most of the costs of occupational disease are not covered by workers’ compensation. First, the authors estimated the deaths and costs for all occupational disease in 1999, using epidemiological studies. Among the greatest contributors were job-related cancer, chronic respiratory disease, and circulatory disease. Second, the authors estimated the number of workers’ compensation cases, costs, and deaths for 1999, using data from up to 16 states representing all regions of the country. Unlike the epidemiological studies that emphasized fatal diseases, the workers’ compensation estimates emphasized nonfatal diseases and conditions like tendonitis and hernia. Comparisons of the epidemiological and workers’ compensation estimates suggest that in 1999, workers’ compensation missed roughly 46,000 to 93,000 deaths and $8 billion to $23 billion in medical costs. These deaths and costs represented substantial cost shifting from workers’ compensation systems to individual workers, their families, private medical insurance, and taxpayers (through Medicare and Medicaid). Designing policies to reduce the cost shifting and its associated inefficiency will be challenging. PMID:15595947

  1. Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks.

    PubMed

    Aboitiz, Francisco; Ossandón, Tomás; Zamorano, Francisco; Palma, Bárbara; Carrasco, Ximena

    2014-01-01

    A cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic-phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits.

  2. Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks

    PubMed Central

    Aboitiz, Francisco; Ossandón, Tomás; Zamorano, Francisco; Palma, Bárbara; Carrasco, Ximena

    2014-01-01

    A cardinal symptom of attention deficit and hyperactivity disorder (ADHD) is a general distractibility where children and adults shift their attentional focus to stimuli that are irrelevant to the ongoing behavior. This has been attributed to a deficit in dopaminergic signaling in cortico-striatal networks that regulate goal-directed behavior. Furthermore, recent imaging evidence points to an impairment of large scale, antagonistic brain networks that normally contribute to attentional engagement and disengagement, such as the task-positive networks and the default mode network (DMN). Related networks are the ventral attentional network (VAN) involved in attentional shifting, and the salience network (SN) related to task expectancy. Here we discuss the tonic–phasic dynamics of catecholaminergic signaling in the brain, and attempt to provide a link between this and the activities of the large-scale cortical networks that regulate behavior. More specifically, we propose that a disbalance of tonic catecholamine levels during task performance produces an emphasis of phasic signaling and increased excitability of the VAN, yielding distractibility symptoms. Likewise, immaturity of the SN may relate to abnormal tonic signaling and an incapacity to build up a proper executive system during task performance. We discuss different lines of evidence including pharmacology, brain imaging and electrophysiology, that are consistent with our proposal. Finally, restoring the pharmacodynamics of catecholaminergic signaling seems crucial to alleviate ADHD symptoms; however, the possibility is open to explore cognitive rehabilitation strategies to top-down modulate network dynamics compensating the pharmacological deficits. PMID:24723897

  3. Measurement of edge residual stresses in glass by the phase-shifting method

    NASA Astrophysics Data System (ADS)

    Ajovalasit, A.; Petrucci, G.; Scafidi, M.

    2011-05-01

    Control and measurement of residual stress in glass is of great importance in the industrial field. Since glass is a birefringent material, the residual stress analysis is based mainly on the photoelastic method. This paper considers two methods of automated analysis of membrane residual stress in glass sheets, based on the phase-shifting concept in monochromatic light. In particular these methods are the automated versions of goniometric compensation methods of Tardy and Sénarmont. The proposed methods can effectively replace manual methods of compensation (goniometric compensation of Tardy and Sénarmont, Babinet and Babinet-Soleil compensators) provided by current standards on the analysis of residual stresses in glasses.

  4. Orientation of lizards in a Morris water-maze: roles of the sun compass and the parietal eye.

    PubMed

    Foà, Augusto; Basaglia, Francesca; Beltrami, Giulia; Carnacina, Margherita; Moretto, Elisa; Bertolucci, Cristiano

    2009-09-15

    The present study examined for the first time whether a Morris water-maze can be used to explore compass and other orientation mechanisms in the ruin lizard Podarcis sicula. In the open field, during sunny days, lizards were individually trained to swim from the center of the water maze onto a hidden platform (the goal), positioned at the periphery of the maze in a single compass direction. The goal was invisible because it was placed just beneath the water surface and the water was rendered opaque. The results showed that lizards learn to swim directly towards the hidden goal under the sun in the absence of visual feature cues. We further examined whether the observed orientation response would be due to lizards learning the spatial position of the goal relative to the sun's azimuth, i.e. to the use of a time-compensated sun compass. Lizards reaching learning criteria were subjected to 6 h clock-shift (fast or slow), and tested for goal orientation in the Morris water-maze. Results demonstrated that the learned orientation response is mediated by a time-compensated sun compass. Further investigations provided direct evidence that in ruin lizards an intact parietal eye is required to perform goal orientation under the sun inside a Morris water-maze, and that other brain photoreceptors, like the pineal or deep brain photoreceptors, are not involved in orientation.

  5. An Evolutionary Game Theory Model of Spontaneous Brain Functioning.

    PubMed

    Madeo, Dario; Talarico, Agostino; Pascual-Leone, Alvaro; Mocenni, Chiara; Santarnecchi, Emiliano

    2017-11-22

    Our brain is a complex system of interconnected regions spontaneously organized into distinct networks. The integration of information between and within these networks is a continuous process that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, such spontaneous dynamics show predictive value over individual cognitive profile and constitute a potential marker in neurological and psychiatric conditions, making its understanding of fundamental importance in modern neuroscience. Here we present a theoretical and mathematical model based on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in the net behavior of nodes composing resting-state networks identified using functional magnetic resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, approximate fMRI time series on the basis of initial subset of available data, as well as simulate the impact of network lesions and provide evidence of compensation mechanisms across networks. Results suggest evolutionary game theory on networks as a new potential framework for the understanding of human brain network dynamics.

  6. Results of the 2005 AORN salary survey--trends for perioperative nursing.

    PubMed

    Bacon, Donald

    2005-12-01

    AORN conducted its annual compensation survey for perioperative nurses in August 2005. A multiple regression model was used to examine how a variety of variables, including job title, education level, certification, experience, and geographic region, affect nursing compensation. This survey also examines the effect of other forms of compensation (eg, on-call compensation, overtime, bonuses, shift differential) on average base compensation rates.

  7. Results of the 2006 AORN salary survey: trends for perioperative nursing.

    PubMed

    Bacon, Donald

    2006-12-01

    AORN CONDUCTED ITS ANNUAL compensation survey for perioperative nurses in August 2006. MULTIPLE REGRESSION MODEL was used to examine how a variety of variables, including job title, education level, certification, experience, and geographic region, affect nursing compensation. THIS SURVEY ALSO EXAMINES the effect of other forms of compensation (eg, on-call compensation, overtime, bonuses, shift differential) on average base compensation rates.

  8. Perioperative Brain Shift and Deep Brain Stimulating Electrode Deformation Analysis: Implications for rigid and non-rigid devices

    PubMed Central

    Sillay, Karl A.; Kumbier, L. M.; Ross, C.; Brady, M.; Alexander, A.; Gupta, A.; Adluru, N.; Miranpuri, G. S.; Williams, J. C.

    2016-01-01

    Deep brain stimulation (DBS) efficacy is related to optimal electrode placement. Several authors have quantified brain shift related to surgical targeting; yet, few reports document and discuss the effects of brain shift after insertion. Objective: To quantify brain shift and electrode displacement after device insertion. Twelve patients were retrospectively reviewed, and one post-operative MRI and one time-delayed CT were obtained for each patient and their implanted electrodes modeled in 3D. Two competing methods were employed to measure the electrode tip location and deviation from the prototypical linear implant after the resolution of acute surgical changes, such as brain shift and pneumocephalus. In the interim between surgery and a pneumocephalus free postoperative scan, electrode deviation was documented in all patients and all electrodes. Significant shift of the electrode tip was identified in rostral, anterior, and medial directions (p < 0.05). Shift was greatest in the rostral direction, measuring an average of 1.41 mm. Brain shift and subsequent electrode displacement occurs in patients after DBS surgery with the reversal of intraoperative brain shift. Rostral displacement is on the order of the height of one DBS contact. Further investigation into the time course of intraoperative brain shift and its potential effects on procedures performed with rigid and non-rigid devices in supine and semi-sitting surgical positions is needed. PMID:23010803

  9. 77 FR 73366 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ...-connected or compensable disability, the Secretary shall pay dependency and indemnity compensation to such... 64.109, Veterans Compensation for Service-Connected Disability, and 64.110, Veterans Dependency and...

  10. Density implications of shift compensation postprocessing in holographic storage systems

    NASA Astrophysics Data System (ADS)

    Menetrier, Laure; Burr, Geoffrey W.

    2003-02-01

    We investigate the effect of data page misregistration, and its subsequent correction in postprocessing, on the storage density of holographic data storage systems. A numerical simulation is used to obtain the bit-error rate as a function of hologram aperture, page misregistration, pixel fill factors, and Gaussian additive intensity noise. Postprocessing of simulated data pages is performed by a nonlinear pixel shift compensation algorithm [Opt. Lett. 26, 542 (2001)]. The performance of this algorithm is analyzed in the presence of noise by determining the achievable areal density. The impact of inaccurate measurements of page misregistration is also investigated. Results show that the shift-compensation algorithm can provide almost complete immunity to page misregistration, although at some penalty to the baseline areal density offered by a system with zero tolerance to misalignment.

  11. Compensatory recruitment of neural resources in chronic alcoholism.

    PubMed

    Chanraud, Sandra; Sullivan, Edith V

    2014-01-01

    Functional recovery occurs with sustained sobriety, but the neural mechanisms enabling recovery are only now emerging. Theories about promising mechanisms involve concepts of neuroadaptation, where excessive alcohol consumption results in untoward structural and functional brain changes which are subsequently candidates for reversal with sobriety. Views on functional adaptation in chronic alcoholism have expanded with results from neuroimaging studies. Here, we first describe and define the concept of neuroadaptation according to emerging theories based on the growing literature in aging-related cognitive functioning. Then we describe findings as they apply to chronic alcoholism and factors that could influence compensation, such as functional brain reserve and the integrity of brain structure. Finally, we review brain plasticity based on physiologic mechanisms that could underlie mechanisms of neural compensation. Where possible, we provide operational criteria to define functional and neural compensation. © 2014 Elsevier B.V. All rights reserved.

  12. Intentional gaze shift to neglected space: a compensatory strategy during recovery after unilateral spatial neglect.

    PubMed

    Takamura, Yusaku; Imanishi, Maho; Osaka, Madoka; Ohmatsu, Satoko; Tominaga, Takanori; Yamanaka, Kentaro; Morioka, Shu; Kawashima, Noritaka

    2016-11-01

    Unilateral spatial neglect is a common neurological syndrome following predominantly right hemispheric stroke. While most patients lack insight into their neglect behaviour and do not initiate compensatory behaviours in the early recovery phase, some patients recognize it and start to pay attention towards the neglected space. We aimed to characterize visual attention capacity in patients with unilateral spatial neglect with specific focus on cortical processes underlying compensatory gaze shift towards the neglected space during the recovery process. Based on the Behavioural Inattention Test score and presence or absence of experience of neglect in their daily life from stroke onset to the enrolment date, participants were divided into USN+‰‰+ (do not compensate, n = 15), USN+ (compensate, n = 10), and right hemisphere damage groups (no neglect, n = 24). The patients participated in eye pursuit-based choice reaction tasks and were asked to pursue one of five horizontally located circular objects flashed on a computer display. The task consisted of 25 trials with 4-s intervals, and the order of highlighted objects was randomly determined. From the recorded eye tracking data, eye movement onset and gaze shift were calculated. To elucidate the cortical mechanism underlying behavioural results, electroencephalagram activities were recorded in three USN+‰‰+, 13 USN+ and eight patients with right hemisphere damage. We found that while lower Behavioural Inattention Test scoring patients (USN+‰‰+) showed gaze shift to non-neglected space, some higher scoring patients (USN+) showed clear leftward gaze shift at visual stimuli onset. Moreover, we found a significant correlation between Behavioural Inattention Test score and gaze shift extent in the unilateral spatial neglect group (r = -0.62, P < 0.01). Electroencephalography data clearly demonstrated that the extent of increase in theta power in the frontal cortex strongly correlated with the leftward gaze shift extent in the USN+‰‰+ and USN+ groups. Our results revealed a compensatory strategy (continuous attention to the neglected space) and its neural correlates in patients with unilateral spatial neglect. In conclusion, patients with unilateral spatial neglect who recognized their own neglect behaviour intentionally focused on the neglected space as a compensatory strategy to avoid careless oversight. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Results of the 2008 AORN Salary Survey.

    PubMed

    Bacon, Donald

    2008-12-01

    AORN conducted its sixth annual compensation survey for perioperative nurses in August of 2008. A multiple regression model was used to examine how a variety of variables including job title, education level, certification, experience, and geographic region affect nursing compensation. Comparisons between the 2008 and previous years' data are presented. The effects of other forms of compensation, such as on-call compensation, overtime, bonuses, and shift differentials on average base compensation rates also are examined.

  14. Let thy left brain know what thy right brain doeth: Inter-hemispheric compensation of functional deficits after brain damage.

    PubMed

    Bartolomeo, Paolo; Thiebaut de Schotten, Michel

    2016-12-01

    Recent evidence revealed the importance of inter-hemispheric communication for the compensation of functional deficits after brain damage. This review summarises the biological consequences observed using histology as well as the longitudinal findings measured with magnetic resonance imaging methods in brain damaged animals and patients. In particular, we discuss the impact of post-stroke brain hyperactivity on functional recovery in relation to time. The reviewed evidence also suggests that the proportion of the preserved functional network both in the lesioned and in the intact hemispheres, rather than the simple lesion location, determines the extent of functional recovery. Hence, future research exploring longitudinal changes in patients with brain damage may unveil potential biomarkers underlying functional recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Are pitch and roll compensations required in all pathologies? A data analysis of 2945 fractions.

    PubMed

    Mancosu, Pietro; Reggiori, Giacomo; Gaudino, Anna; Lobefalo, Francesca; Paganini, Lucia; Palumbo, Valentina; Stravato, Antonella; Tomatis, Stefano; Scorsetti, Marta

    2015-01-01

    New linear accelerators can be equipped with a 6D robotic couch, providing two additional rotational motion axes: pitch and roll. These shifts in kilo voltage-cone beam CT (kV-CBCT) image-guided radiotherapy (IGRT) were evaluated over the first 6 months of usage of a 6D robotic couch-top, ranking the treatment sites for which the two compensations are larger for patient set-up. The couch compensations of 2945 fractions for 376 consecutive patients treated on the PerfectPitch™ 6D couch (Varian(®) Medical Systems, Palo Alto, CA) were analysed. Among these patients, 169 were treated for brain, 111 for lung, 54 for liver, 26 for pancreas and 16 for prostate tumours. During the set-up, patient anatomy from planning CT was aligned to kV-CBCT, and 6D movements were executed. Information related to pitch and roll were extracted by proper querying of the Microsoft(®) SQL server (Microsoft Corporation, Redmond, WA) ARIA database (Varian Medical Systems). Mean values and standard deviations were calculated for all sites. Kolmogorov-Smirnov (KS) test was performed. Considering all the data, mean pitch and roll adjustments were -0.10° ± 0.92° and 0.12° ± 0.96°, respectively; mean absolute values for both adjustments were 0.58° ± 0.69° and 0.69° ± 0.72°, respectively. Brain treatments showed the highest mean absolute values for pitch and roll rotations (0.73° ± 0.69° and 0.80° ± 0.78°, respectively); the lowest values of 0.36° ± 0.47° and 0.49° ± 0.58° were found for pancreas. KS test was significant for brain vs liver, pancreas and prostate. Collective corrections (pitch + roll) >0.5°, >1.0° and >2.0° were observed in, respectively, 79.8%, 61.0% and 29.1% for brain and 56.7%, 39.4% and 6.7% for pancreas. Adjustments in all six dimensions, including unconventional pitch and roll rotations, improve the patient set-up in all treatment sites. The greatest improvement was observed for patients with brain tumours. To our knowledge, this is the first systematic evaluation of the clinical efficacy of a 6D Robotic couch-top in CBCT IGRT over different tumour regions.

  16. Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity.

    PubMed

    Kroemer, Nils B; Small, Dana M

    2016-08-01

    There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of Progressive Heart Failure on Cerebral Hemodynamics and Monoamine Metabolism in CNS.

    PubMed

    Mamalyga, M L; Mamalyga, L M

    2017-07-01

    Compensated and decompensated heart failure are characterized by different associations of disorders in the brain and heart. In compensated heart failure, the blood flow in the common carotid and basilar arteries does not change. Exacerbation of heart failure leads to severe decompensation and is accompanied by a decrease in blood flow in the carotid and basilar arteries. Changes in monoamine content occurring in the brain at different stages of heart failure are determined by various factors. The functional exercise test showed unequal monoamine-synthesizing capacities of the brain in compensated and decompensated heart failure. Reduced capacity of the monoaminergic systems in decompensated heart failure probably leads to overstrain of the central regulatory mechanisms, their gradual exhaustion, and failure of the compensatory mechanisms, which contributes to progression of heart failure.

  18. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Zuo, Chao; Tao, Tianyang; Hu, Yan; Zhang, Minliang; Chen, Qian; Gu, Guohua

    2018-04-01

    Phase-shifting profilometry (PSP) is a widely used approach to high-accuracy three-dimensional shape measurements. However, when it comes to moving objects, phase errors induced by the movement often result in severe artifacts even though a high-speed camera is in use. From our observations, there are three kinds of motion artifacts: motion ripples, motion-induced phase unwrapping errors, and motion outliers. We present a novel motion-compensated PSP to remove the artifacts for dynamic measurements of rigid objects. The phase error of motion ripples is analyzed for the N-step phase-shifting algorithm and is compensated using the statistical nature of the fringes. The phase unwrapping errors are corrected exploiting adjacent reliable pixels, and the outliers are removed by comparing the original phase map with a smoothed phase map. Compared with the three-step PSP, our method can improve the accuracy by more than 95% for objects in motion.

  19. A CT-based software tool for evaluating compensator quality in passively scattered proton therapy

    NASA Astrophysics Data System (ADS)

    Li, Heng; Zhang, Lifei; Dong, Lei; Sahoo, Narayan; Gillin, Michael T.; Zhu, X. Ronald

    2010-11-01

    We have developed a quantitative computed tomography (CT)-based quality assurance (QA) tool for evaluating the accuracy of manufactured compensators used in passively scattered proton therapy. The thickness of a manufactured compensator was measured from its CT images and compared with the planned thickness defined by the treatment planning system. The difference between the measured and planned thicknesses was calculated with use of the Euclidean distance transformation and the kd-tree search method. Compensator accuracy was evaluated by examining several parameters including mean distance, maximum distance, global thickness error and central axis shifts. Two rectangular phantoms were used to validate the performance of the QA tool. Nine patients and 20 compensators were included in this study. We found that mean distances, global thickness errors and central axis shifts were all within 1 mm for all compensators studied, with maximum distances ranging from 1.1 to 3.8 mm. Although all compensators passed manual verification at selected points, about 5% of the pixels still had maximum distances of >2 mm, most of which correlated with large depth gradients. The correlation between the mean depth gradient of the compensator and the percentage of pixels with mean distance <1 mm is -0.93 with p < 0.001, which suggests that the mean depth gradient is a good indicator of compensator complexity. These results demonstrate that the CT-based compensator QA tool can be used to quantitatively evaluate manufactured compensators.

  20. Time savings--realized and potential--and fair compensation for community health workers in Kenyan health facilities: a mixed-methods approach.

    PubMed

    Sander, Laura D; Holtzman, David; Pauly, Mark; Cohn, Jennifer

    2015-01-30

    Sub-Saharan Africa faces a severe health worker shortage, which community health workers (CHWs) may fill. This study describes tasks shifted from clinicians to CHWs in Kenya, places monetary valuations on CHWs' efforts, and models effects of further task shifting on time demands of clinicians and CHWs. Mixed methods were used for this study. Interviews were conducted with 28 CHWs and 19 clinicians in 17 health facilities throughout Kenya focusing on task shifting involving CHWs, time savings for clinicians as a result of task shifting, barriers and enabling factors to CHWs' work, and appropriate CHW compensation. Twenty CHWs completed task diaries over a 14-day period to examine current CHW tasks and the amount of time spent performing them. A modeling exercise was conducted examining a current task-shifting example and another scenario in which additional task shifting to CHWs has occurred. CHWs worked an average of 5.3 hours per day and spent 36% of their time performing tasks shifted from clinicians. We estimated a monthly valuation of US$ 117 per CHW. The modeling exercise demonstrated that further task shifting would reduce the number of clinicians needed while maintaining clinic productivity by significantly increasing the number of CHWs. CHWs are an important component of healthcare delivery in Kenya. Our monetary estimates of current CHW contributions provide starting points for further discussion, research and planning regarding CHW compensation and programs. Additional task shifting to CHWs may further offload overworked clinicians while maintaining overall productivity.

  1. Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT.

    PubMed

    Wei, Xiang; Camino, Acner; Pi, Shaohua; Cepurna, William; Huang, David; Morrison, John C; Jia, Yali

    2018-05-01

    Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and human retinal images acquired by a commercial system. The image quality and computational speed were significantly improved, compared to two conventional phase compensation methods.

  2. Measurement and compensation of wavefront deformations and focal shifts in high-power laser optics

    NASA Astrophysics Data System (ADS)

    Mann, K.; Schäfer, B.; Stubenvoll, M.; Hentschel, K.; Zenz, M.

    2015-11-01

    We demonstrate the feasibility of passive compensation of the thermal lens effect in fused silica optics, placing suitable optical materials with negative dn/dT in the beam path of a high power near IR fiber laser. Following a brief overview of the involved mechanisms, photo-thermal absorption measurements with a Hartmann-Shack sensor are described, from which coefficients for surface/coating and bulk absorption in various materials are determined. Based on comprehensive knowledge of the 2D wavefront deformations resulting from absorption, passive compensation of thermally induced aberrations in complex optical systems is possible, as illustrated for an F-Theta objective. By means of caustic measurements during high-power operation we are able to demonstrate a 60% reduction of the focal shift in F-Theta lenses through passive compensation.

  3. Driving Method for Compensating Reliability Problem of Hydrogenated Amorphous Silicon Thin Film Transistors and Image Sticking Phenomenon in Active Matrix Organic Light-Emitting Diode Displays

    NASA Astrophysics Data System (ADS)

    Shin, Min-Seok; Jo, Yun-Rae; Kwon, Oh-Kyong

    2011-03-01

    In this paper, we propose a driving method for compensating the electrical instability of hydrogenated amorphous silicon (a-Si:H) thin film transistors (TFTs) and the luminance degradation of organic light-emitting diode (OLED) devices for large active matrix OLED (AMOLED) displays. The proposed driving method senses the electrical characteristics of a-Si:H TFTs and OLEDs using current integrators and compensates them by an external compensation method. Threshold voltage shift is controlled a using negative bias voltage. After applying the proposed driving method, the measured error of the maximum emission current ranges from -1.23 to +1.59 least significant bit (LSB) of a 10-bit gray scale under the threshold voltage shift ranging from -0.16 to 0.17 V.

  4. The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.

    PubMed

    González, César A; Rubinsky, Boris

    2006-06-01

    The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.

  5. Research on effects of phase error in phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai

    2007-12-01

    Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.

  6. Sequential [(18)F]FDG µPET whole-brain imaging of central vestibular compensation: a model of deafferentation-induced brain plasticity.

    PubMed

    Zwergal, Andreas; Schlichtiger, Julia; Xiong, Guoming; Beck, Roswitha; Günther, Lisa; Schniepp, Roman; Schöberl, Florian; Jahn, Klaus; Brandt, Thomas; Strupp, Michael; Bartenstein, Peter; Dieterich, Marianne; Dutia, Mayank B; la Fougère, Christian

    2016-01-01

    Unilateral inner ear damage is followed by a rapid behavioural recovery due to central vestibular compensation. In this study, we utilized serial [(18)F]Fluoro-deoxyglucose ([(18)F]FDG)-µPET imaging in the rat to visualize changes in brain glucose metabolism during behavioural recovery after surgical and chemical unilateral labyrinthectomy, to determine the extent and time-course of the involvement of different brain regions in vestibular compensation and test previously described hypotheses of underlying mechanisms. Systematic patterns of relative changes of glucose metabolism (rCGM) were observed during vestibular compensation. A significant asymmetry of rCGM appeared in the vestibular nuclei, vestibulocerebellum, thalamus, multisensory vestibular cortex, hippocampus and amygdala in the acute phase of vestibular imbalance (4 h). This was followed by early vestibular compensation over 1-2 days where rCGM re-balanced between the vestibular nuclei, thalami and temporoparietal cortices and bilateral rCGM increase appeared in the hippocampus and amygdala. Subsequently over 2-7 days, rCGM increased in the ipsilesional spinal trigeminal nucleus and later (7-9 days) rCGM increased in the vestibulocerebellum bilaterally and the hypothalamus and persisted in the hippocampus. These systematic dynamic rCGM patterns during vestibular compensation, were confirmed in a second rat model of chemical unilateral labyrinthectomy by serial [(18)F]FDG-µPET. These findings show that deafferentation-induced plasticity after unilateral labyrinthectomy involves early mechanisms of re-balancing predominantly in the brainstem vestibular nuclei but also in thalamo-cortical and limbic areas, and indicate the contribution of spinocerebellar sensory inputs and vestibulocerebellar adaptation at the later stages of behavioural recovery.

  7. Partial Compensation for Altered Auditory Feedback: A Tradeoff with Somatosensory Feedback?

    ERIC Educational Resources Information Center

    Katseff, Shira; Houde, John; Johnson, Keith

    2012-01-01

    Talkers are known to compensate only partially for experimentally-induced changes to their auditory feedback. In a typical experiment, talkers might hear their F1 feedback shifted higher (so that /[epsilon]/ sounds like /[ash]/, for example), and compensate by lowering F1 in their subsequent speech by about a quarter of that distance. Here, we…

  8. Results of the 2012 AORN salary and compensation survey.

    PubMed

    Bacon, Donald R

    2012-12-01

    AORN conducted its 10th annual compensation survey for perioperative nurses in June 2012. A multiple regression model was used to examine how a number of variables, including job title, education level, certification, experience, and geographic region, affect nurse compensation. Comparisons between the 2012 data and previous years' data are presented. The effects of other forms of compensation, such as on-call compensation, overtime, bonuses, and shift differentials on base compensation rates, also are examined. Additional analyses explore the effect of the current economic downturn on the perioperative work environment. Copyright © 2012 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  9. Results of the 2016 AORN Salary and Compensation Survey.

    PubMed

    Bacon, Donald R; Stewart, Kim A

    2016-12-01

    AORN conducted its 14th annual compensation survey for perioperative nurses in June 2016. A multiple regression model was used to examine how several variables, including job title, education level, certification, experience, and geographic region, affect nurse compensation. Comparisons between the 2016 data and data from previous years are presented. The effects of other forms of compensation (eg, on-call compensation, overtime, bonuses, shift differentials, benefits) on base compensation rates also are examined. Additional analyses explore the effect of the economic downturn on the perioperative work environment. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  10. Results of the 2013 AORN Salary and Compensation Survey.

    PubMed

    Bacon, Donald R; Stewart, Kim A

    2013-12-01

    AORN conducted its 11th annual compensation survey for perioperative nurses in June 2013. A multiple regression model was used to examine how a number of variables, including job title, education level, certification, experience, and geographic region affect nurse compensation. Comparisons among the 2013 data and previous years' data are presented. The effects of other forms of compensation, such as on-call compensation, overtime, bonuses, and shift differentials on base compensation rates are also examined. Additional analyses explore the effect of the current economic downturn on the perioperative work environment. Copyright © 2013 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  11. Results of the 2017 AORN Salary and Compensation Survey.

    PubMed

    Bacon, Donald R; Stewart, Kim A

    2017-12-01

    AORN conducted its 15th annual compensation survey for perioperative nurses in June 2017. A multiple regression model was used to examine how several variables, including job title, educational level, certification, experience, and geographic region, affect nurse compensation. Comparisons between the 2017 data and data from previous years are presented. The effects of other forms of compensation (eg, on-call compensation, overtime, bonuses, shift differentials, benefits) on base compensation rates are examined. Additional analyses explore the current state of the nursing shortage and the sources of job satisfaction and dissatisfaction. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  12. Results of the 2010 AORN Salary and Compensation Survey.

    PubMed

    Bacon, Donald

    2010-12-01

    AORN conducted its eighth annual compensation survey for perioperative nurses in June and July 2010. A multiple regression model was used to examine how a number of variables, including job title, education level, certification, experience, and geographic region, affect nurse compensation. Comparisons between the 2010 data and data from previous years are presented. The effects of other forms of compensation, such as on-call compensation, overtime, bonuses, and shift differentials, on base compensation rates are also examined. Additional analyses explore the effect of the current economic downturn on the perioperative work environment. Published by Elsevier Inc. All rights reserved.

  13. Electronic behaviour of Au-Pt alloys and the 4f binding energy shift anomaly in Au bimetallics- X-ray spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Wang, Dongniu; Cui, Xiaoyu; Xiao, Qunfeng; Hu, Yongfeng; Wang, Zhiqiang; Yiu, Y. M.; Sham, T. K.

    2018-06-01

    The electronic structure and charge redistribution of 6s conduction charge and 5d charge in Au and Pt alloys, Au9Pt and AuPt9 have been investigated using a charge compensation model. It is found that, both the Au and Pt 4f binding energy (BE) exhibits a negative shift in the alloys relatively to the pure metal in apparent disagreement with electroneutrality considerations (Au is the most electronegative metallic element); more interestingly, the negative Au 4f BE shift in Au-Pt alloy is in contrast to previous observations for a large number of Au bimetallic systems with more electropositive hosts in which the more electropositive the host„ the more positive the Au 4f BE shift. This anomaly is counter intuitive to electronegativity considerations. This dilemma was resolved by the charge compensation model in which both electronegativity and charge neutrality can be satisfied and the overall charge flow δ, onto Au is small and positive and δ arises from charge flow of 6s conduction charge, Δnc onto Au site, which is partially compensated by the depletion of 6d charge Δnd at the Au site (δ = Δnc+ Δnd ˜0.1 >0). The much larger Coulomb interaction between 4f and 5d than that between 4f and 6s results in positive 4f BE shifts. The Au 4f BE shift in Au-Pt alloys together with 193Au Mössbauer data were used in the charge compensation model analysis which shows that the model is still valid in that the Au 4f shift in Au-Pt alloy arises from mainly conduction charge gain with little depletion of d charge at the Au site. The model also works for Pt. The Au and Pt 5d character in the alloys have been examined with valence band spectra which show both maintain their d characteristic in dilute alloys with Pt d piling up at the Fermi level, and the top of the Au valence band being pushed toward the Fermi level; this is confirmed with DFT densities of state calculations. When Pt is diluted in Au, it gains d charge as evident from the reduction in whiteline intensity at the Pt L3-edge XANES. What emerges from this work is a picture in which the s-d charge compensation in Au bimetallic alloys is triggered by electronegativity difference between Au and the host. For Au-Pt and Au-Pd systems, the difference in electronegativity is very small, conduction charge transfer dominates, and the Au 4f shift is negative whereas in most Au bimetallics, the larger the electronegativity difference, the larger the compensation and the larger the Au 4f shifts.

  14. Direction-dependent waist-shift-difference of Gaussian beam in a multiple-pass zigzag slab amplifier and geometrical optics compensation method.

    PubMed

    Li, Zhaoyang; Kurita, Takashi; Miyanaga, Noriaki

    2017-10-20

    Zigzag and non-zigzag beam waist shifts in a multiple-pass zigzag slab amplifier are investigated based on the propagation of a Gaussian beam. Different incident angles in the zigzag and non-zigzag planes would introduce a direction-dependent waist-shift-difference, which distorts the beam quality in both the near- and far-fields. The theoretical model and analytical expressions of this phenomenon are presented, and intensity distributions in the two orthogonal planes are simulated and compared. A geometrical optics compensation method by a beam with 90° rotation is proposed, which not only could correct the direction-dependent waist-shift-difference but also possibly average the traditional thermally induced wavefront-distortion-difference between the horizontal and vertical beam directions.

  15. Results of the 2009 AORN salary survey.

    PubMed

    Bacon, Donald

    2009-12-01

    AORN conducted its seventh annual compensation survey for perioperative nurses in August of 2009. A multiple regression model was used to examine how a variety of variables including job title, education level, certification, experience, and geographic region affect nursing compensation. Comparisons between the 2009 data and previous years' data are presented. The effects of other forms of compensation, such as on-call compensation, overtime, bonuses, and shift differentials on average base compensation rates also are examined. Additional analyses explore the effect of the current economic downturn on the perioperative work environment. (c) AORN, Inc, 2009.

  16. C145 as a short-latency electrophysiological index of cognitive compensation in Alzheimer's disease

    PubMed Central

    Chapman, Robert M.; Porsteinsson, Anton P.; Gardner, Margaret N.; Mapstone, Mark; McCrary, John W.; Sandoval, Tiffany C.; Guillily, Maria D.; DeGrush, Elizabeth; Reilly, Lindsey A.

    2012-01-01

    Brain plasticity and cognitive compensation in the elderly are of increasing interest, and Alzheimer's disease (AD) offers an opportunity to elucidate how the brain may overcome damage. We provide neurophysiological evidence of a short-latency ERP component (C145) linked to stimulus relevancy that may reflect cognitive compensation in early-stage Alzheimer's disease (AD). Thirty-six subjects with early-stage, mild AD and 36 like-aged normal elderly (Controls) had their EEG recorded while performing our Number-Letter task, a cognitive/perceptual paradigm that manipulates stimulus relevancies. ERP components, including C145, were extracted from ERPs using Principal Components Analysis. C145 amplitudes and spatial distributions were compared among Controls, AD subjects with high performance on the Number-Letter task, and AD subjects with low performance. Compared to AD subjects, Control subjects showed enhanced C145 processing of visual stimuli in the occipital region where differential processing of relevant stimuli occurred. AD high performers recruited central brain areas in processing task relevancy. Controls and AD low performers did not show a significant task relevancy effect in these areas. We conclude that short-latency ERP components can detect electrophysiological differences in early-stage AD that reflect altered cognition. Differences in C145 amplitudes between AD and normal elderly groups regarding brain locations and types of task effects suggest compensatory mechanisms can occur in the AD brain to overcome loss of normal functionality, and this early compensation may have a profound effect on the cognitive efficiency of AD individuals. PMID:22886016

  17. Preserved speech abilities and compensation following prefrontal damage.

    PubMed

    Buckner, R L; Corbetta, M; Schatz, J; Raichle, M E; Petersen, S E

    1996-02-06

    Lesions to left frontal cortex in humans produce speech production impairments (nonfluent aphasia). These impairments vary from subject to subject and performance on certain speech production tasks can be relatively preserved in some patients. A possible explanation for preservation of function under these circumstances is that areas outside left prefrontal cortex are used to compensate for the injured brain area. We report here a direct demonstration of preserved language function in a stroke patient (LF1) apparently due to the activation of a compensatory brain pathway. We used functional brain imaging with positron emission tomography (PET) as a basis for this study.

  18. Lower cognitive reserve in the aging human immunodeficiency virus-infected brain.

    PubMed

    Chang, Linda; Holt, John L; Yakupov, Renat; Jiang, Caroline S; Ernst, Thomas

    2013-04-01

    More HIV-infected individuals are living longer; however, how their brain function is affected by aging is not well understood. One hundred twenty-two men (56 seronegative control [SN] subjects, 37 HIV subjects with normal cognition [HIV+NC], 29 with HIV-associated neurocognitive disorder [HAND]) performed neuropsychological tests and had acceptable functional magnetic resonance imaging scans at 3 Tesla during tasks with increasing attentional load. With older age, SN and HIV+NC subjects showed increased activation in the left posterior (reserve, "bottom-up") attention network for low attentional-load tasks, and further increased activation in the left posterior and anterior ("top-down") attention network on intermediate (HIV+NC only) and high attentional-load tasks. HAND subjects had only age-dependent decreases in activation. Age-dependent changes in brain activation differed between the 3 groups, primarily in the left frontal regions (despite similar brain atrophy). HIV and aging act synergistically or interactively to exacerbate brain activation abnormalities in different brain regions, suggestive of a neuroadaptive mechanism in the attention network to compensate for declined neural efficiency. While the SN and HIV+NC subjects compensated for their declining attention with age by using reserve and "top-down" attentional networks, older HAND subjects were unable to compensate which resulted in cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. “Awake” intraoperative functional MRI (ai-fMRI) for mapping the eloquent cortex: Is it possible in awake craniotomy?☆

    PubMed Central

    Lu, Jun-Feng; Zhang, Han; Wu, Jin-Song; Yao, Cheng-Jun; Zhuang, Dong-Xiao; Qiu, Tian-Ming; Jia, Wen-Bin; Mao, Ying; Zhou, Liang-Fu

    2012-01-01

    As a promising noninvasive imaging technique, functional MRI (fMRI) has been extensively adopted as a functional localization procedure for surgical planning. However, the information provided by preoperative fMRI (pre-fMRI) is hampered by the brain deformation that is secondary to surgical procedures. Therefore, intraoperative fMRI (i-fMRI) becomes a potential alternative that can compensate for brain shifts by updating the functional localization information during craniotomy. However, previous i-fMRI studies required that patients be under general anesthesia, preventing the wider application of such a technique as the patients cannot perform tasks unless they are awake. In this study, we propose a new technique that combines awake surgery and i-fMRI, named “awake” i-fMRI (ai-fMRI). We introduced ai-fMRI to the real-time localization of sensorimotor areas during awake craniotomy in seven patients. The results showed that ai-fMRI could successfully detect activations in the bilateral primary sensorimotor areas and supplementary motor areas for all patients, indicating the feasibility of this technique in eloquent area localization. The reliability of ai-fMRI was further validated using intraoperative stimulation mapping (ISM) in two of the seven patients. Comparisons between the pre-fMRI-derived localization result and the ai-fMRI derived result showed that the former was subject to a heavy brain shift and led to incorrect localization, while the latter solved that problem. Additionally, the approaches for the acquisition and processing of the ai-fMRI data were fully illustrated and described. Some practical issues on employing ai-fMRI in awake craniotomy were systemically discussed, and guidelines were provided. PMID:24179766

  20. Celestial orientation with the sun not in view: lizards use a time-compensated sky polarization compass.

    PubMed

    Maoret, Francesco; Beltrami, Giulia; Bertolucci, Cristiano; Foà, Augusto

    2014-04-01

    The present investigation was aimed at testing whether the lizard sky polarization compass is time compensated. For this purpose, ruin lizards, Podarcis sicula, were both trained and tested for orientation inside a Morris water maze under clear skies with the sun not in view. During training, lizards showed a striking bimodal orientation along the training axis, demonstrating their capability of determining the symmetry plane of the sky polarization pattern and thus the use of polarization information in orientation. After reaching criteria, lizards were kept 7 days in a 6-h fast clock-shift treatment and then released with the sun not in view. Six-hour clock-shifted lizards showed a bimodal distribution of directional choices, which was oriented perpendicularly to the training axis, as it was expected on the basis of the clock-shift. The results show that the only celestial diurnal compass mechanism that does not need a direct vision of the sun disk (i.e., the sky polarization compass) is a time-compensated compass.

  1. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  2. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  3. Results of the 2014 AORN Salary and Compensation Survey.

    PubMed

    Bacon, Donald R; Stewart, Kim A

    2014-12-01

    AORN conducted its 12th annual compensation survey for perioperative nurses in June and July 2014. A multiple regression model was used to examine how a number of variables, including job title, education level, certification, experience, and geographic region, affect nurse compensation. Comparisons between the data from 2014 and data from previous years are presented. The effects of other forms of compensation (eg, on-call compensation, overtime, bonuses, shift differentials) on base compensation rates also are examined. Additional analyses explore the effect of the economic downturn on the perioperative work environment. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  4. Results of the 2015 AORN Salary and Compensation Survey.

    PubMed

    Bacon, Donald R; Stewart, Kim A

    2015-12-01

    AORN conducted its 13th annual compensation survey for perioperative nurses in June and July 2015. A multiple regression model was used to examine how a number of variables, including job title, education level, certification, experience, and geographic region, affect nurse compensation. Comparisons between the 2015 data and data from previous years are presented. The effects of other forms of compensation (eg, on-call compensation, overtime, bonuses, shift differentials, benefits) on base compensation rates also are examined. Additional analyses explore the effect of the economic downturn on the perioperative work environment. Copyright © 2015 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  5. Results of the 2011 AORN Salary and Compensation Survey.

    PubMed

    Bacon, Donald

    2011-12-01

    AORN conducted its ninth annual compensation survey for perioperative nurses in June and July 2011. A multiple regression model was used to examine how a number of variables, including job title, education level, certification, experience, and geographic region, affect nurse compensation. Comparisons between the 2011 data and data from previous years are presented. The effects of other forms of compensation, such as on-call compensation, overtime, bonuses, and shift differentials, on base compensation rates also are examined. Additional analyses explore the effect of the current economic downturn on the perioperative work environment. Copyright © 2011 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  6. Interpretation of the function of the striate cortex

    NASA Astrophysics Data System (ADS)

    Garner, Bernardette M.; Paplinski, Andrew P.

    2000-04-01

    Biological neural networks do not require retraining every time objects move in the visual field. Conventional computer neural networks do not share this shift-invariance. The brain compensates for movements in the head, body, eyes and objects by allowing the sensory data to be tracked across the visual field. The neurons in the striate cortex respond to objects moving across the field of vision as is seen in many experiments. It is proposed, that the neurons in the striate cortex allow continuous angle changes needed to compensate for changes in orientation of the head, eyes and the motion of objects in the field of vision. It is hypothesized that the neurons in the striate cortex form a system that allows for the translation, some rotation and scaling of objects and provides a continuity of objects as they move relative to other objects. The neurons in the striate cortex respond to features which are fundamental to sight, such as orientation of lines, direction of motion, color and contrast. The neurons that respond to these features are arranged on the cortex in a way that depends on the features they are responding to and on the area of the retina from which they receive their inputs.

  7. Active-Matrix Organic Light Emission Diode Pixel Circuit for Suppressing and Compensating for the Threshold Voltage Degradation of Hydrogenated Amorphous Silicon Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Shin, Hee-Sun; Lee, Won-Kyu; Park, Sang-Guen; Kuk, Seung-Hee; Han, Min-Koo

    2009-03-01

    A new hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT) pixel circuit for active-matrix organic light emission diodes (AM-OLEDs), which significantly compensates the OLED current degradation by memorizing the threshold voltage of driving TFT and suppresses the threshold voltage shift of a-Si:H TFTs by negative bias annealing, is proposed and fabricated. During the first half of each frame, the driving TFT of the proposed pixel circuit supplies current to the OLED, which is determined by modified data voltage in the compensation scheme. The proposed pixel circuit was able to compensate the threshold voltage shift of the driving TFT as well as the OLED. During the remaining half of each frame, the proposed pixel circuit induces the recovery of the threshold voltage degradation of a-Si:H TFTs owing to the negative bias annealing. The experimental results show that the proposed pixel circuit was able to successfully compensate for the OLED current degradation and suppress the threshold voltage degradation of the driving TFT.

  8. Improved frame-based estimation of head motion in PET brain imaging.

    PubMed

    Mukherjee, J M; Lindsay, C; Mukherjee, A; Olivier, P; Shao, L; King, M A; Licho, R

    2016-05-01

    Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.

  9. Asleep Deep Brain Stimulation Reduces Incidence of Intracranial Air during Electrode Implantation.

    PubMed

    Ko, Andrew L; Magown, Philippe; Ozpinar, Alp; Hamzaoglu, Vural; Burchiel, Kim J

    2018-05-30

    Asleep deep brain stimulation (aDBS) implantation replaces microelectrode recording for image-guided implantation, shortening the operative time and reducing cerebrospinal fluid egress. This may decrease pneumocephalus, thus decreasing brain shift during implantation. To compare the incidence and volume of pneumocephalus during awake (wkDBS) and aDBS procedures. A retrospective review of bilateral DBS cases performed at Oregon Health & Science University from 2009 to 2017 was undertaken. Postimplantation imaging was reviewed to determine the presence and volume of intracranial air and measure cortical brain shift. Among 371 patients, pneumocephalus was noted in 66% of wkDBS and 15.6% of aDBS. The average volume of air was significantly higher in wkDBS than aDBS (8.0 vs. 1.8 mL). Volumes of air greater than 7 mL, which have previously been linked to brain shift, occurred significantly more frequently in wkDBS than aDBS (34 vs 5.6%). wkDBS resulted in significantly larger cortical brain shifts (5.8 vs. 1.2 mm). We show that aDBS reduces the incidence of intracranial air, larger air volumes, and cortical brain shift. Large volumes of intracranial air have been correlated to shifting of brain structures during DBS procedures, a variable that could impact accuracy of electrode placement. © 2018 S. Karger AG, Basel.

  10. Short-term saccadic adaptation in the macaque monkey: a binocular mechanism

    PubMed Central

    Schultz, K. P.

    2013-01-01

    Saccadic eye movements are rapid transfers of gaze between objects of interest. Their duration is too short for the visual system to be able to follow their progress in time. Adaptive mechanisms constantly recalibrate the saccadic responses by detecting how close the landings are to the selected targets. The double-step saccadic paradigm is a common method to simulate alterations in saccadic gain. While the subject is responding to a first target shift, a second shift is introduced in the middle of this movement, which masks it from visual detection. The error in landing introduced by the second shift is interpreted by the brain as an error in the programming of the initial response, with gradual gain changes aimed at compensating the apparent sensorimotor mismatch. A second shift applied dichoptically to only one eye introduces disconjugate landing errors between the two eyes. A monocular adaptive system would independently modify only the gain of the eye exposed to the second shift in order to reestablish binocular alignment. Our results support a binocular mechanism. A version-based saccadic adaptive process detects postsaccadic version errors and generates compensatory conjugate gain alterations. A vergence-based saccadic adaptive process detects postsaccadic disparity errors and generates corrective nonvisual disparity signals that are sent to the vergence system to regain binocularity. This results in striking dynamical similarities between visually driven combined saccade-vergence gaze transfers, where the disparity is given by the visual targets, and the double-step adaptive disconjugate responses, where an adaptive disparity signal is generated internally by the saccadic system. PMID:23076111

  11. Servomechanism for Doppler shift compensation in optical correlator for synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Constaninides, N. J.; Bicknell, T. J. (Inventor)

    1980-01-01

    A method and apparatus for correcting Doppler shifts in synthetic aperture radar data is described. An optical correlator for synthetic aperture radar data has a means for directing a laser beam at a signal film having radar return pulse intensity information recorded on it. A resultant laser beam passes through a range telescope, an azimuth telescope, and a Fourier transform filter located between the range and azimuth telescopes, and forms an image for recording on an image film. A compensation means for Doppler shift in the radar return pulse intensity information includes a beam splitter for reflecting the modulated laser beam, after having passed through the Fourier transform filter, to a detection screen having two photodiodes mounted on it.

  12. Holographic motion picture camera with Doppler shift compensation

    NASA Technical Reports Server (NTRS)

    Kurtz, R. L. (Inventor)

    1976-01-01

    A holographic motion picture camera is reported for producing three dimensional images by employing an elliptical optical system. There is provided in one of the beam paths (the object or reference beam path) a motion compensator which enables the camera to photograph faster moving objects.

  13. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  14. Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization.

    PubMed

    Repp, B H

    2001-06-01

    Recent studies of synchronized finger tapping have shown that perceptually subliminal phase shifts in an auditory sequence are rapidly compensated for in the motor activity (B. H. Repp, 2000a). Experiment 1 used a continuation-tapping task to confirm that this compensation is indeed a phase correction, not an adjustment of the central timekeeper period. Experiments 2-5 revealed that this phase correction occurs even when there is no ordinary sensorimotor asynchrony--when the finger taps are in antiphase or arbitrary phase relative to the auditory sequence (Experiments 2 and 3) or when the tap coinciding with the sequence phase shift is withheld (Experiments 4 and 5). The phase correction observed in the latter conditions was instantaneous, which suggests that phase resetting occurs when the motor activity is discontinuous. A prolonged phase shift suggestive of overcompensation was observed in some conditions, which poses a challenge to pure phase correction models.

  15. A novel post-weld-shift measurement and compensation technique in butterfly-type laser module packages

    NASA Astrophysics Data System (ADS)

    Hsu, Yi-Cheng, Sr.; Tsai, Y. C.; Hung, Y. S.; Cheng, W. H.

    2005-08-01

    One of the greatest challenges in the packaging of laser modules using laser welding technique is to use a reliable and accurate joining process. However, during welding, due to the material property difference between welded components, the rapid solidification of the welded region and the associated material shrinkage often introduced a post-weld-shift (PWS) between welded components. For a typical single-mode fiber application, if the PWS induced fiber alignment shift by the laser welding joining process is even a few micrometers, up to 50 % or greater loss in the coupled power may occur. The fiber alignment shift of the PWS effect in the laser welding process has a significant impact on the laser module package yield. Therefore, a detailed understanding of the effects of PWS on the fiber alignment shifts in laser-welded laser module packages and then the compensation of the fiber alignment shifts due to PWS effects are the key research subjects in laser welding techniques for optoelectronic packaging applications. Previously, the power losses due to PWS in butterfly-type laser module packages have been qualitatively corrected by applying the laser hammering technique to the direction of the detected shift. Therefore, by applying an elastic deformation to the welded components and by observing the corresponding power variation, the direction and magnitude of the PWS may be predicted. Despite numerous studies on improving the fabrication yields of laser module packaging using the PWS correction in laser welding techniques by a qualitative estimate, limited information is available for the quantitative understanding of the PWS induced fiber alignment shift which can be useful in designing and fabricating high-yield and high-performance laser module packages. The purpose of this paper is to present a quantitative probing of the PWS induced fiber alignment shift in laser-welded butterfly-type laser module packaging by employing a novel technique of a high-magnification camera with image capture system (HMCICS). The benefit of using the HMCICS technique to determine the fiber alignment shift are quantitatively measure and compensate the PWS direction and magnitude during the laser-welded laser module packages. This study makes it possible to probe the nonlinear behavior of the PWS by using a novel HMCICS technique that results in a real time quantitative compensation of the PWS in butterfly-type laser module packages, when compared to the currently available qualitatively estimated techniques to correct the PWS2. Therefore, the reliable butterfly-type laser modules with high yield and high performance used in lightwave transmission systems may thus be developed and fabricated.

  16. Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery

    PubMed Central

    Pallavaram, Srivatsan; Remple, Michael S.; Neimat, Joseph S.; Kao, Chris; Konrad, Peter E.; D’Haese, Pierre-François

    2011-01-01

    Purpose In the recent past many groups have tried to build functional atlases of the deep brain using intra-operatively acquired information such as stimulation responses or micro-electrode recordings. An underlying assumption in building such atlases is that anatomical structures do not move between pre-operative imaging and intra-operative recording. In this study, we present evidences that this assumption is not valid. We quantify the effect of brain shift between pre-operative imaging and intra-operative recording on the creation of functional atlases using intra-operative somatotopy recordings and stimulation response data. Methods A total of 73 somatotopy points from 24 bilateral subthalamic nucleus (STN) implantations and 52 eye deviation stimulation response points from 17 bilateral STN implantations were used. These points were spatially normalized on a magnetic resonance imaging (MRI) atlas using a fully automatic non-rigid registration algorithm. Each implantation was categorized as having low, medium or large brain shift based on the amount of pneumocephalus visible on post-operative CT. The locations of somatotopy clusters and stimulation maps were analyzed for each category. Results The centroid of the large brain shift cluster of the somatotopy data (posterior, lateral, inferior: 3.06, 11.27, 5.36 mm) was found posterior, medial and inferior to that of the medium cluster (2.90, 13.57, 4.53 mm) which was posterior, medial and inferior to that of the low shift cluster (1.94, 13.92, 3.20 mm). The coordinates are referenced with respect to the mid-commissural point. Euclidean distances between the centroids were 1.68, 2.44 and 3.59 mm, respectively for low-medium, medium-large and low-large shift clusters. We found similar trends for the positions of the stimulation maps. The Euclidian distance between the highest probability locations on the low and medium-large shift maps was 4.06 mm. Conclusion The effect of brain shift in deep brain stimulation (DBS) surgery has been demonstrated using intra-operative somatotopy recordings as well as stimulation response data. The results not only indicate that considerable brain shift happens before micro-electrode recordings in DBS but also that brain shift affects the creation of accurate functional atlases. Therefore, care must be taken when building and using such atlases of intra-operative data and also when using intra-operative data to validate anatomical atlases. PMID:20033503

  17. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury

    PubMed Central

    Iraji, Armin; Chen, Hanbo; Wiseman, Natalie; Welch, Robert D.; O'Neil, Brian J.; Haacke, E. Mark; Liu, Tianming; Kou, Zhifeng

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4–6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that “Action” and “Cognition” are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances. PMID:26819765

  18. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury.

    PubMed

    Iraji, Armin; Chen, Hanbo; Wiseman, Natalie; Welch, Robert D; O'Neil, Brian J; Haacke, E Mark; Liu, Tianming; Kou, Zhifeng

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4-6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that "Action" and "Cognition" are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances.

  19. Word Memory Test Predicts Recovery in Claimants With Work-Related Head Injury.

    PubMed

    Colangelo, Annette; Abada, Abigail; Haws, Calvin; Park, Joanne; Niemeläinen, Riikka; Gross, Douglas P

    2016-05-01

    To investigate the predictive validity of the Word Memory Test (WMT), a verbal memory neuropsychological test developed as a performance validity measure to assess memory, effort, and performance consistency. Cohort study with 1-year follow-up. Workers' compensation rehabilitation facility. Participants included workers' compensation claimants with work-related head injury (N=188; mean age, 44y; 161 men [85.6%]). Not applicable. Outcome measures for determining predictive validity included days to suspension of wage replacement benefits during the 1-year follow-up and work status at discharge in claimants undergoing rehabilitation. Analysis included multivariable Cox and logistic regression. Better WMT performance was significantly but weakly correlated with younger age (r=-.30), documented brain abnormality (r=.28), and loss of consciousness at the time of injury (r=.25). Claimants with documented brain abnormalities on diagnostic imaging scans performed better (∼9%) on the WMT than those without brain abnormalities. The WMT predicted days receiving benefits (adjusted hazard ratio, 1.13; 95% confidence interval, 1.04-1.24) and work status outcome at program discharge (adjusted odds ratio, 1.62; 95% confidence interval, 1.13-2.34). Our results provide evidence for the predictive validity of the WMT in workers' compensation claimants. Younger claimants and those with more severe brain injuries performed better on the WMT. It may be that financial incentives or other factors related to the compensation claim affected the performance. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Congratulations, You're Pregnant! Now About Your Shifts . . . : The State of Maternity Leave Attitudes and Culture in EM.

    PubMed

    MacVane, Casey Z; Fix, Megan L; Strout, Tania D; Zimmerman, Kate D; Bloch, Rebecca B; Hein, Christine L

    2017-08-01

    Increasing attention has been focused on parental leave, but little is known about early leave and parental experiences for male and female attending physicians. Our goal was to describe and quantify the parental leave experiences of a nationally representative sample of emergency physicians (EP). We conducted a web-based survey, distributed via emergency medicine professional organizations, discussion boards, and listservs, to address study objectives. We analyzed data from 464 respondents; 56% were women. Most experienced childbirth while employed as an EP. Fifty-three percent of women and 60% of men reported working in a setting with a formal maternity leave policy; however, 36% of women and 18% of men reported dissatisfaction with these policies. Most reported that other group members cover maternity-related shift vacancies; a minority reported that pregnant partners work extra shifts prior to leave. Leave duration and compensation varied widely, ranging from no compensated leave (18%) to 12 or more weeks at 100% salary (7%). Supportive attitudes were reported during pregnancy (53%) and, to a lesser degree (43%), during leave. Policy improvement suggestions included the development of clear, formal policies; improving leave duration and compensation; adding paternity and adoption leave; providing support for physicians working extra to cover colleagues' leave; and addressing breastfeeding issues. In this national sample of EPs, maternity leave policies varied widely. The duration and compensation during leave also had significant variation. Participants suggested formalizing policies, increasing leave duration and compensation, adding paternity leave, and changing the coverage for vacancies to relieve burden on physician colleagues.

  1. Congratulations, You’re Pregnant! Now About Your Shifts . . . : The State of Maternity Leave Attitudes and Culture in EM

    PubMed Central

    MacVane, Casey Z.; Fix, Megan L.; Strout, Tania D.; Zimmerman, Kate D.; Bloch, Rebecca B.; Hein, Christine L.

    2017-01-01

    Introduction Increasing attention has been focused on parental leave, but little is known about early leave and parental experiences for male and female attending physicians. Our goal was to describe and quantify the parental leave experiences of a nationally representative sample of emergency physicians (EP). Methods We conducted a web-based survey, distributed via emergency medicine professional organizations, discussion boards, and listservs, to address study objectives. Results We analyzed data from 464 respondents; 56% were women. Most experienced childbirth while employed as an EP. Fifty-three percent of women and 60% of men reported working in a setting with a formal maternity leave policy; however, 36% of women and 18% of men reported dissatisfaction with these policies. Most reported that other group members cover maternity-related shift vacancies; a minority reported that pregnant partners work extra shifts prior to leave. Leave duration and compensation varied widely, ranging from no compensated leave (18%) to 12 or more weeks at 100% salary (7%). Supportive attitudes were reported during pregnancy (53%) and, to a lesser degree (43%), during leave. Policy improvement suggestions included the development of clear, formal policies; improving leave duration and compensation; adding paternity and adoption leave; providing support for physicians working extra to cover colleagues’ leave; and addressing breastfeeding issues. Conclusion In this national sample of EPs, maternity leave policies varied widely. The duration and compensation during leave also had significant variation. Participants suggested formalizing policies, increasing leave duration and compensation, adding paternity leave, and changing the coverage for vacancies to relieve burden on physician colleagues. PMID:28874931

  2. Disrupted Structural and Functional Networks and Their Correlation with Alertness in Right Temporal Lobe Epilepsy: A Graph Theory Study.

    PubMed

    Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou

    2017-01-01

    Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.

  3. Nursing performance under high workload: a diary study on the moderating role of selection, optimization and compensation strategies.

    PubMed

    Baethge, Anja; Müller, Andreas; Rigotti, Thomas

    2016-03-01

    The aim of this study was to investigate whether selective optimization with compensation constitutes an individualized action strategy for nurses wanting to maintain job performance under high workload. High workload is a major threat to healthcare quality and performance. Selective optimization with compensation is considered to enhance the efficient use of intra-individual resources and, therefore, is expected to act as a buffer against the negative effects of high workload. The study applied a diary design. Over five consecutive workday shifts, self-report data on workload was collected at three randomized occasions during each shift. Self-reported job performance was assessed in the evening. Self-reported selective optimization with compensation was assessed prior to the diary reporting. Data were collected in 2010. Overall, 136 nurses from 10 German hospitals participated. Selective optimization with compensation was assessed with a nine-item scale that was specifically developed for nursing. The NASA-TLX scale indicating the pace of task accomplishment was used to measure workload. Job performance was assessed with one item each concerning performance quality and forgetting of intentions. There was a weaker negative association between workload and both indicators of job performance in nurses with a high level of selective optimization with compensation, compared with nurses with a low level. Considering the separate strategies, selection and compensation turned out to be effective. The use of selective optimization with compensation is conducive to nurses' job performance under high workload levels. This finding is in line with calls to empower nurses' individual decision-making. © 2015 John Wiley & Sons Ltd.

  4. Improved frame-based estimation of head motion in PET brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition ismore » uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.« less

  5. Improved frame-based estimation of head motion in PET brain imaging

    PubMed Central

    Mukherjee, J. M.; Lindsay, C.; Mukherjee, A.; Olivier, P.; Shao, L.; King, M. A.; Licho, R.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. Conclusions: The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type. PMID:27147355

  6. Sex Differences in Intelligence and Brain Size: A Developmental Theory.

    ERIC Educational Resources Information Center

    Lynn, Richard

    1999-01-01

    Proposes a developmental theory of sex differences in intelligence that states that the faster maturation and brain size growth in girls up to age 15 compensates for their smaller brain size so that sex differences in intelligence are very small. Discusses evidence that supports this theory. (SLD)

  7. Mechanical design of deformation compensated flexural pivots structured for linear nanopositioning stages

    DOEpatents

    Shu, Deming; Kearney, Steven P.; Preissner, Curt A.

    2015-02-17

    A method and deformation compensated flexural pivots structured for precision linear nanopositioning stages are provided. A deformation-compensated flexural linear guiding mechanism includes a basic parallel mechanism including a U-shaped member and a pair of parallel bars linked to respective pairs of I-link bars and each of the I-bars coupled by a respective pair of flexural pivots. The basic parallel mechanism includes substantially evenly distributed flexural pivots minimizing center shift dynamic errors.

  8. Occupational Psychiatric Disorders in Korea

    PubMed Central

    Kang, Seong-Kyu

    2010-01-01

    We searched databases and used various online resources to identify and systematically review all articles on occupational psychiatric disorders among Korean workers published in English and Korean before 2009. Three kinds of occupational psychiatric disorders were studied: disorders related to job stress and mental illness, psychiatric symptoms emerging in victims of industrial injuries, and occupational psychiatric disorders compensated by Industrial Accident Compensation Insurance (IACI). Korea does not maintain official statistical records for occupational psychiatric disorders, but several studies have estimated the number of occupational psychiatric disorders using the Korea Workers' Compensation and Welfare Service (COMWEL, formerly KLWC) database. The major compensated occupational psychiatric disorders in Korea were "personality and behavioral disorders due to brain disease, damage, and dysfunction", "other mental disorders due to brain damage and dysfunction and to physical diseases", "reactions to severe stress and adjustment disorders", and "depressive episodes". The most common work-related psychiatric disorders, excluding accidents, were "neurotic, stress-related, and somatoform disorders" followed by "mood disorders". PMID:21258596

  9. Intraspinal Rewiring of the Corticospinal Tract Requires Target-Derived Brain-Derived Neurotrophic Factor and Compensates Lost Function after Brain Injury

    ERIC Educational Resources Information Center

    Ueno, Masaki; Hayano, Yasufumi; Nakagawa, Hiroshi; Yamashita, Toshihide

    2012-01-01

    Brain injury that results in an initial behavioural deficit is frequently followed by spontaneous recovery. The intrinsic mechanism of this functional recovery has never been fully understood. Here, we show that reorganization of the corticospinal tract induced by target-derived brain-derived neurotrophic factor is crucial for spontaneous recovery…

  10. Control of a haptic gear shifting assistance device utilizing a magnetorheological clutch

    NASA Astrophysics Data System (ADS)

    Han, Young-Min; Choi, Seung-Bok

    2014-10-01

    This paper proposes a haptic clutch driven gear shifting assistance device that can help when the driver shifts the gear of a transmission system. In order to achieve this goal, a magnetorheological (MR) fluid-based clutch is devised to be capable of the rotary motion of an accelerator pedal to which the MR clutch is integrated. The proposed MR clutch is then manufactured, and its transmission torque is experimentally evaluated according to the magnetic field intensity. The manufactured MR clutch is integrated with the accelerator pedal to transmit a haptic cue signal to the driver. The impending control issue is to cue the driver to shift the gear via the haptic force. Therefore, a gear-shifting decision algorithm is constructed by considering the vehicle engine speed concerned with engine combustion dynamics, vehicle dynamics and driving resistance. Then, the algorithm is integrated with a compensation strategy for attaining the desired haptic force. In this work, the compensator is also developed and implemented through the discrete version of the inverse hysteretic model. The control performances, such as the haptic force tracking responses and fuel consumption, are experimentally evaluated.

  11. Validation of model-based brain shift correction in neurosurgery via intraoperative magnetic resonance imaging: preliminary results

    NASA Astrophysics Data System (ADS)

    Luo, Ma; Frisken, Sarah F.; Weis, Jared A.; Clements, Logan W.; Unadkat, Prashin; Thompson, Reid C.; Golby, Alexandra J.; Miga, Michael I.

    2017-03-01

    The quality of brain tumor resection surgery is dependent on the spatial agreement between preoperative image and intraoperative anatomy. However, brain shift compromises the aforementioned alignment. Currently, the clinical standard to monitor brain shift is intraoperative magnetic resonance (iMR). While iMR provides better understanding of brain shift, its cost and encumbrance is a consideration for medical centers. Hence, we are developing a model-based method that can be a complementary technology to address brain shift in standard resections, with resource-intensive cases as referrals for iMR facilities. Our strategy constructs a deformation `atlas' containing potential deformation solutions derived from a biomechanical model that account for variables such as cerebrospinal fluid drainage and mannitol effects. Volumetric deformation is estimated with an inverse approach that determines the optimal combinatory `atlas' solution fit to best match measured surface deformation. Accordingly, preoperative image is updated based on the computed deformation field. This study is the latest development to validate our methodology with iMR. Briefly, preoperative and intraoperative MR images of 2 patients were acquired. Homologous surface points were selected on preoperative and intraoperative scans as measurement of surface deformation and used to drive the inverse problem. To assess the model accuracy, subsurface shift of targets between preoperative and intraoperative states was measured and compared to model prediction. Considering subsurface shift above 3 mm, the proposed strategy provides an average shift correction of 59% across 2 cases. While further improvements in both the model and ability to validate with iMR are desired, the results reported are encouraging.

  12. Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms.

    PubMed

    Chapman, Heidi L; Eramudugolla, Ranmalee; Gavrilescu, Maria; Strudwick, Mark W; Loftus, Andrea; Cunnington, Ross; Mattingley, Jason B

    2010-07-01

    Visuomotor adaptation to a shift in visual input produced by prismatic lenses is an example of dynamic sensory-motor plasticity within the brain. Prism adaptation is readily induced in healthy individuals, and is thought to reflect the brain's ability to compensate for drifts in spatial calibration between different sensory systems. The neural correlate of this form of functional plasticity is largely unknown, although current models predict the involvement of parieto-cerebellar circuits. Recent studies that have employed event-related functional magnetic resonance imaging (fMRI) to identify brain regions associated with prism adaptation have discovered patterns of parietal and cerebellar modulation as participants corrected their visuomotor errors during the early part of adaptation. However, the role of these regions in the later stage of adaptation, when 'spatial realignment' or true adaptation is predicted to occur, remains unclear. Here, we used fMRI to quantify the distinctive patterns of parieto-cerebellar activity as visuomotor adaptation develops. We directly contrasted activation patterns during the initial error correction phase of visuomotor adaptation with that during the later spatial realignment phase, and found significant recruitment of the parieto-cerebellar network--with activations in the right inferior parietal lobe and the right posterior cerebellum. These findings provide the first evidence of both cerebellar and parietal involvement during the spatial realignment phase of prism adaptation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. [Tumor segmentation of brain MRI with adaptive bandwidth mean shift].

    PubMed

    Hou, Xiaowen; Liu, Qi

    2014-10-01

    In order to get the adaptive bandwidth of mean shift to make the tumor segmentation of brain magnetic resonance imaging (MRI) to be more accurate, we in this paper present an advanced mean shift method. Firstly, we made use of the space characteristics of brain image to eliminate the impact on segmentation of skull; and then, based on the characteristics of spatial agglomeration of different tissues of brain (includes tumor), we applied edge points to get the optimal initial mean value and the respectively adaptive bandwidth, in order to improve the accuracy of tumor segmentation. The results of experiment showed that, contrast to the fixed bandwidth mean shift method, the method in this paper could segment the tumor more accurately.

  14. A proposed method for electronic feedback compensation of damping in ferromagnetic resonance

    DOE PAGES

    Zohar, S.; Sterbinsky, G. E.

    2017-07-10

    Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  15. A proposed method for electronic feedback compensation of damping in ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Zohar, S.; Sterbinsky, G. E.

    2017-12-01

    We propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π / 2 , amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  16. Gaze Compensation as a Technique for Improving Hand–Eye Coordination in Prosthetic Vision

    PubMed Central

    Titchener, Samuel A.; Shivdasani, Mohit N.; Fallon, James B.; Petoe, Matthew A.

    2018-01-01

    Purpose Shifting the region-of-interest within the input image to compensate for gaze shifts (“gaze compensation”) may improve hand–eye coordination in visual prostheses that incorporate an external camera. The present study investigated the effects of eye movement on hand-eye coordination under simulated prosthetic vision (SPV), and measured the coordination benefits of gaze compensation. Methods Seven healthy-sighted subjects performed a target localization-pointing task under SPV. Three conditions were tested, modeling: retinally stabilized phosphenes (uncompensated); gaze compensation; and no phosphene movement (center-fixed). The error in pointing was quantified for each condition. Results Gaze compensation yielded a significantly smaller pointing error than the uncompensated condition for six of seven subjects, and a similar or smaller pointing error than the center-fixed condition for all subjects (two-way ANOVA, P < 0.05). Pointing error eccentricity and gaze eccentricity were moderately correlated in the uncompensated condition (azimuth: R2 = 0.47; elevation: R2 = 0.51) but not in the gaze-compensated condition (azimuth: R2 = 0.01; elevation: R2 = 0.00). Increased variability in gaze at the time of pointing was correlated with greater reduction in pointing error in the center-fixed condition compared with the uncompensated condition (R2 = 0.64). Conclusions Eccentric eye position impedes hand–eye coordination in SPV. While limiting eye eccentricity in uncompensated viewing can reduce errors, gaze compensation is effective in improving coordination for subjects unable to maintain fixation. Translational Relevance The results highlight the present necessity for suppressing eye movement and support the use of gaze compensation to improve hand–eye coordination and localization performance in prosthetic vision. PMID:29321945

  17. An achromatic four-mirror compensator for spectral ellipsometers

    NASA Astrophysics Data System (ADS)

    Kovalev, V. I.; Rukovishnikov, A. I.; Kovalev, S. V.; Kovalev, V. V.; Rossukanyi, N. M.

    2017-07-01

    Measurement and calculation results are presented that confirm that design four-mirror compensators can be designed for the spectral range of 200-2000 nm that is widely used in modern spectral ellipsometers. Measurements and calculations according to standard ellipsometric programs have been carried out on a broadband LED spectral ellipsometer with switching of orthogonal polarization states. Mirrors with the structure of glass substrate/Al2O3 layer (20-30 nm thick)/Al layer (150 nm thick)/upper Al2O3 layer (with specified thickness d) have been prepared by vacuum-evaporation method. It is shown that the phase-shift spectra of a four-mirror compensator, two mirrors of which have a native oxide 5.5 nm thick and the two others of which have an oxide layer 36 nm thick, measured on the ellipsometer, are flattened in comparison with similar spectra of a compensator, all four mirrors of which have a native oxide, especially in the short-wavelength spectral region. The results of calculating the phase-shift spectra of the four-mirror compensator with six variable parameters (angles of incidence of radiation on the mirrors and thicknesses of oxide layers on four mirrors) are presented. High-quality achromatization in a wide spectral range can be achieved for certain sets of parameters.

  18. Limbic hyperconnectivity in the vegetative state.

    PubMed

    Di Perri, Carol; Bastianello, Stefano; Bartsch, Andreas J; Pistarini, Caterina; Maggioni, Giorgio; Magrassi, Lorenzo; Imberti, Roberto; Pichiecchio, Anna; Vitali, Paolo; Laureys, Steven; Di Salle, Francesco

    2013-10-15

    To investigate functional connectivity between the default mode network (DMN) and other networks in disorders of consciousness. We analyzed MRI data from 11 patients in a vegetative state and 7 patients in a minimally conscious state along with age- and sex-matched healthy control subjects. MRI data analysis included nonlinear spatial normalization to compensate for disease-related anatomical distortions. We studied brain connectivity data from resting-state MRI temporal series, combining noninferential (independent component analysis) and inferential (seed-based general linear model) methods. In DMN hypoconnectivity conditions, a patient's DMN functional connectivity shifts and paradoxically increases in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and the ventral tegmental area. Concurrently with DMN hypoconnectivity, we report limbic hyperconnectivity in patients in vegetative and minimally conscious states. This hyperconnectivity may reflect the persistent engagement of residual neural activity in self-reinforcing neural loops, which, in turn, could disrupt normal patterns of connectivity.

  19. Age-related changes in brain activation associated with dimensional shifts of attention: an fMRI study.

    PubMed

    Morton, J Bruce; Bosma, Rachael; Ansari, Daniel

    2009-05-15

    Brain activation associated with dimensional shifts of attention was measured in 14 children and 13 adults using 4 T fMRI. Across all participants, dimensional shifting was associated with activity in a distributed frontoparietal network, including superior parietal cortex, dorsolateral prefrontal cortex, inferior frontal junction, and the pre-supplementary motor region. There were also age-related differences in brain activity, with children but not adults showing an effect of dimension shifting in the right superior frontal sulcus, and adults but not children showing an effect of dimension shifting in the left superior parietal cortex and the right thalamus. These differences were likely not attributable to behavioral differences as children and adults performed comparably. Implications for neurodevelopmental accounts of shifting are discussed.

  20. Exercise challenge in Gulf War Illness reveals two subgroups with altered brain structure and function.

    PubMed

    Rayhan, Rakib U; Stevens, Benson W; Raksit, Megna P; Ripple, Joshua A; Timbol, Christian R; Adewuyi, Oluwatoyin; VanMeter, John W; Baraniuk, James N

    2013-01-01

    Nearly 30% of the approximately 700,000 military personnel who served in Operation Desert Storm (1990-1991) have developed Gulf War Illness, a condition that presents with symptoms such as cognitive impairment, autonomic dysfunction, debilitating fatigue and chronic widespread pain that implicate the central nervous system. A hallmark complaint of subjects with Gulf War Illness is post-exertional malaise; defined as an exacerbation of symptoms following physical and/or mental effort. To study the causal relationship between exercise, the brain, and changes in symptoms, 28 Gulf War veterans and 10 controls completed an fMRI scan before and after two exercise stress tests to investigate serial changes in pain, autonomic function, and working memory. Exercise induced two clinical Gulf War Illness subgroups. One subgroup presented with orthostatic tachycardia (n = 10). This phenotype correlated with brainstem atrophy, baseline working memory compensation in the cerebellar vermis, and subsequent loss of compensation after exercise. The other subgroup developed exercise induced hyperalgesia (n = 18) that was associated with cortical atrophy and baseline working memory compensation in the basal ganglia. Alterations in cognition, brain structure, and symptoms were absent in controls. Our novel findings may provide an understanding of the relationship between the brain and post-exertional malaise in Gulf War Illness.

  1. B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils.

    PubMed

    Weavers, Paul T; Tao, Shengzhen; Trzasko, Joshua D; Frigo, Louis M; Shu, Yunhong; Frick, Matthew A; Lee, Seung-Kyun; Foo, Thomas K-F; Bernstein, Matt A

    2018-03-01

    Imaging gradients result in the generation of concomitant fields, or Maxwell fields, which are of increasing importance at higher gradient amplitudes. These time-varying fields cause additional phase accumulation, which must be compensated for to avoid image artifacts. In the case of gradient systems employing symmetric design, the concomitant fields are well described with second-order spatial variation. Gradient systems employing asymmetric design additionally generate concomitant fields with global (zeroth-order or B 0 ) and linear (first-order) spatial dependence. This work demonstrates a general solution to eliminate the zeroth-order concomitant field by applying the correct B 0 frequency shift in real time to counteract the concomitant fields. Results are demonstrated for phase contrast, spiral, echo-planar imaging (EPI), and fast spin-echo imaging. A global phase offset is reduced in the phase-contrast exam, and blurring is virtually eliminated in spiral images. The bulk image shift in the phase-encode direction is compensated for in EPI, whereas signal loss, ghosting, and blurring are corrected in the fast-spin echo images. A user-transparent method to compensate the zeroth-order concomitant field term by center frequency shifting is proposed and implemented. This solution allows all the existing pulse sequences-both product and research-to be retained without any modifications. Magn Reson Med 79:1538-1544, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning

    PubMed Central

    McGregor, Heather R.; Mohatarem, Ayman

    2017-01-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634

  3. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.

    PubMed

    Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L

    2017-07-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.

  4. The Diploma in Rehabilitation Studies--The Birth of a New Form of Industry-Driven Learning.

    ERIC Educational Resources Information Center

    Leberman, Sarah I.

    The Accident Rehabilitation and Compensation Insurance Corporation (ARCIC) provides no-fault rehabilitation and compensation to all New Zealanders. In order to meet the training needs created by ARCIC's recent shift to a case management approach, the Victoria University of Wellington instituted a program to train case managers. The 27-week program…

  5. New Pay: Compensation as a Strategic Tool. Workforce Brief #5.

    ERIC Educational Resources Information Center

    Mitchell, Stephen

    Although what the work companies do and how they do it have shifted significantly, companies' reward and salary structures have remained largely the same; however, a properly designed compensation and pay system can be a strategic tool to enhance a firm's competitiveness. New approaches tie pay more closely to performance, rather than to tenure…

  6. Learning a common dictionary for subject-transfer decoding with resting calibration.

    PubMed

    Morioka, Hiroshi; Kanemura, Atsunori; Hirayama, Jun-ichiro; Shikauchi, Manabu; Ogawa, Takeshi; Ikeda, Shigeyuki; Kawanabe, Motoaki; Ishii, Shin

    2015-05-01

    Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Toward a preoperative planning tool for brain tumor resection therapies.

    PubMed

    Coffey, Aaron M; Miga, Michael I; Chen, Ishita; Thompson, Reid C

    2013-01-01

    Neurosurgical procedures involving tumor resection require surgical planning such that the surgical path to the tumor is determined to minimize the impact on healthy tissue and brain function. This work demonstrates a predictive tool to aid neurosurgeons in planning tumor resection therapies by finding an optimal model-selected patient orientation that minimizes lateral brain shift in the field of view. Such orientations may facilitate tumor access and removal, possibly reduce the need for retraction, and could minimize the impact of brain shift on image-guided procedures. In this study, preoperative magnetic resonance images were utilized in conjunction with pre- and post-resection laser range scans of the craniotomy and cortical surface to produce patient-specific finite element models of intraoperative shift for 6 cases. These cases were used to calibrate a model (i.e., provide general rules for the application of patient positioning parameters) as well as determine the current model-based framework predictive capabilities. Finally, an objective function is proposed that minimizes shift subject to patient position parameters. Patient positioning parameters were then optimized and compared to our neurosurgeon as a preliminary study. The proposed model-driven brain shift minimization objective function suggests an overall reduction of brain shift by 23 % over experiential methods. This work recasts surgical simulation from a trial-and-error process to one where options are presented to the surgeon arising from an optimization of surgical goals. To our knowledge, this is the first realization of an evaluative tool for surgical planning that attempts to optimize surgical approach by means of shift minimization in this manner.

  8. The Accuracy and Precision of Flow Measurements Using Phase Contrast Techniques

    NASA Astrophysics Data System (ADS)

    Tang, Chao

    Quantitative volume flow rate measurements using the magnetic resonance imaging technique are studied in this dissertation because the volume flow rates have a special interest in the blood supply of the human body. The method of quantitative volume flow rate measurements is based on the phase contrast technique, which assumes a linear relationship between the phase and flow velocity of spins. By measuring the phase shift of nuclear spins and integrating velocity across the lumen of the vessel, we can determine the volume flow rate. The accuracy and precision of volume flow rate measurements obtained using the phase contrast technique are studied by computer simulations and experiments. The various factors studied include (1) the partial volume effect due to voxel dimensions and slice thickness relative to the vessel dimensions; (2) vessel angulation relative to the imaging plane; (3) intravoxel phase dispersion; (4) flow velocity relative to the magnitude of the flow encoding gradient. The partial volume effect is demonstrated to be the major obstacle to obtaining accurate flow measurements for both laminar and plug flow. Laminar flow can be measured more accurately than plug flow in the same condition. Both the experiment and simulation results for laminar flow show that, to obtain the accuracy of volume flow rate measurements to within 10%, at least 16 voxels are needed to cover the vessel lumen. The accuracy of flow measurements depends strongly on the relative intensity of signal from stationary tissues. A correction method is proposed to compensate for the partial volume effect. The correction method is based on a small phase shift approximation. After the correction, the errors due to the partial volume effect are compensated, allowing more accurate results to be obtained. An automatic program based on the correction method is developed and implemented on a Sun workstation. The correction method is applied to the simulation and experiment results. The results show that the correction significantly reduces the errors due to the partial volume effect. We apply the correction method to the data of in vivo studies. Because the blood flow is not known, the results of correction are tested according to the common knowledge (such as cardiac output) and conservation of flow. For example, the volume of blood flowing to the brain should be equal to the volume of blood flowing from the brain. Our measurement results are very convincing.

  9. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    PubMed

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  10. Thermally controlled femtosecond pulse shaping using metasurface based optical filters

    NASA Astrophysics Data System (ADS)

    Rahimi, Eesa; Şendur, Kürşat

    2018-02-01

    Shaping of the temporal distribution of the ultrashort pulses, compensation of pulse deformations due to phase shift in transmission and amplification are of interest in various optical applications. To address these problems, in this study, we have demonstrated an ultra-thin reconfigurable localized surface plasmon (LSP) band-stop optical filter driven by insulator-metal phase transition of vanadium dioxide. A Joule heating mechanism is proposed to control the thermal phase transition of the material. The resulting permittivity variation of vanadium dioxide tailors spectral response of the transmitted pulse from the stack. Depending on how the pulse's spectrum is located with respect to the resonance of the band-stop filter, the thin film stack can dynamically compress/expand the output pulse span up to 20% or shift its phase up to 360°. Multi-stacked filters have shown the ability to dynamically compensate input carrier frequency shifts and pulse span variations besides their higher span expansion rates.

  11. Astrometric "Core-shifts" at the Highest Frequencies

    NASA Technical Reports Server (NTRS)

    Rioja, Maria; Dodson, Richard

    2010-01-01

    We discuss the application of a new VLBI astrometric method named "Source/Frequency Phase Referencing" to measurements of "core-shifts" in radio sources used for geodetic observations. We detail the reasons that astrometrical observations of 'core-shifts' have become critical in the era of VLBI2010. We detail how this new method allows the problem to be addressed at the highest frequencies and outline its superior compensation of tropospheric errors.

  12. Knockout of the Gnrh genes in zebrafish: effects on reproduction and potential compensation by reproductive and feeding-related neuropeptides.

    PubMed

    Marvel, Miranda; Spicer, Olivia Smith; Wong, Ten-Tsao; Zmora, Nilli; Zohar, Yonathan

    2018-04-04

    Gonadotropin-releasing hormone (GnRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a non-cell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.

  13. Atypical temporal activation pattern and central-right brain compensation during semantic judgment task in children with early left brain damage.

    PubMed

    Chang, Yi-Tzu; Lin, Shih-Che; Meng, Ling-Fu; Fan, Yang-Teng

    In this study we investigated the event-related potentials (ERPs) during the semantic judgment task (deciding if the two Chinese characters were semantically related or unrelated) to identify the timing of neural activation in children with early left brain damage (ELBD). The results demonstrated that compared with the controls, children with ELBD had (1) competitive accuracy and reaction time in the semantic judgment task, (2) weak operation of the N400, (3) stronger, earlier and later compensational positivities (referred to the enhanced P200, P250, and P600 amplitudes) in the central and right region of the brain to successfully engage in semantic judgment. Our preliminary findings indicate that temporally postlesional reorganization is in accordance with the proposed right-hemispheric organization of speech after early left-sided brain lesion. During semantic processing, the orthography has a greater effect on the children with ELBD, and a later semantic reanalysis (P600) is required due to the less efficient N400 at the former stage for semantic integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Determination of surgical variables for a brain shift correction pipeline using an Android application

    NASA Astrophysics Data System (ADS)

    Vijayan, Rohan; Conley, Rebekah H.; Thompson, Reid C.; Clements, Logan W.; Miga, Michael I.

    2016-03-01

    Brain shift describes the deformation that the brain undergoes from mechanical and physiological effects typically during a neurosurgical or neurointerventional procedure. With respect to image guidance techniques, brain shift has been shown to compromise the fidelity of these approaches. In recent work, a computational pipeline has been developed to predict "brain shift" based on preoperatively determined surgical variables (such as head orientation), and subsequently correct preoperative images to more closely match the intraoperative state of the brain. However, a clinical workflow difficulty in the execution of this pipeline has been acquiring the surgical variables by the neurosurgeon prior to surgery. In order to simplify and expedite this process, an Android, Java-based application designed for tablets was developed to provide the neurosurgeon with the ability to orient 3D computer graphic models of the patient's head, determine expected location and size of the craniotomy, and provide the trajectory into the tumor. These variables are exported for use as inputs for the biomechanical models of the preoperative computing phase for the brain shift correction pipeline. The accuracy of the application's exported data was determined by comparing it to data acquired from the physical execution of the surgeon's plan on a phantom head. Results indicated good overlap of craniotomy predictions, craniotomy centroid locations, and estimates of patient's head orientation with respect to gravity. However, improvements in the app interface and mock surgical setup are needed to minimize error.

  15. Bite or brain: Implication of sensorimotor regulation and neuroplasticity in oral rehabilitation procedures.

    PubMed

    Kumar, A; Kothari, M; Grigoriadis, A; Trulsson, M; Svensson, P

    2018-04-01

    Tooth loss, decreased mass and strength of the masticatory muscles leading to difficulty in chewing have been suggested as important determinants of eating and nutrition in the elderly. To compensate for the loss of teeth, in particular, a majority of the elderly rely on dental prosthesis for chewing. Chewing function is indeed an important aspect of oral health, and therefore, oral rehabilitation procedures should aim to restore or maintain adequate function. However, even if the possibilities to anatomically restore lost teeth and occlusion have never been better; conventional rehabilitation procedures may still fail to optimally restore oral functions. Perhaps this is due to the lack of focus on the importance of the brain in the rehabilitation procedures. Therefore, the aim of this narrative review was to discuss the importance of maintaining or restoring optimum chewing function in the superageing population and to summarise the emerging studies on oral motor task performance and measures of cortical neuroplasticity induced by systematic training paradigms in healthy participants. Further, brain imaging studies in patients undergoing or undergone oral rehabilitation procedures will be discussed. Overall, this information is believed to enhance the understanding and develop better rehabilitative strategies to exploit training-induced cortical neuroplasticity in individuals affected by impaired oral motor coordination and function. Training or relearning of oral motor tasks could be important to optimise masticatory performance in dental prosthesis users and may represent a much-needed paradigm shift in the approach to oral rehabilitation procedures. © 2018 John Wiley & Sons Ltd.

  16. Composite pulsed field gradients with refocused chemical shifts and short recovery time.

    PubMed

    Hu, H; Shaka, A J

    1999-01-01

    An improved self-compensating pulsed field gradient (PFG) technique that combines antiphase gradient pairs with broadband frequency-modulated 180 degrees pulses is proposed. The antiphase gradient pairs lead to superb system recovery. In addition, evolution under chemical shift and heteronuclear J coupling are refocused during the PFG, making it appear effectively instantaneous. This new approach makes it possible to obtain high-resolution phase-sensitive 2D spectra for the PFG version of many experiments such as COSY, DQF-COSY, and HSQC without adding extra compensating delays or pulses. While reasonable suppression of unwanted magnetization is achieved, this method also gives satisfactory retention of desired signals. As a bonus, the field-frequency lock is not perturbed during the experiments. Copyright 1999 Academic Press.

  17. Robust energy-absorbing compensators for the ACTEX II test article

    NASA Astrophysics Data System (ADS)

    Blaurock, Carl A.; Miller, David W.; Nye, Ted

    1995-05-01

    The paper addresses the problem of satellite solar panel vibration. A multi-layer vibration control scheme is investigated using a flight test article. Key issues in the active control portion are presented in the paper. The paper discusses the primary control design drivers, which are the time variations in modal frequencies due to configuration and thermal changes. A local control design approach is investigated, but found to be unworkable due to sensor/actuator non-collocation. An alternate design process uses linear robust control techniques, by describing the modal shifts as uncertainties. Multiple modal design, alpha- shifted multiple model, and a feedthrough compensation scheme are examined. Ground and simulation tests demonstrate that the resulting controllers provide significant vibration reduction in the presence of expected system variations.

  18. Increases in both cerebral glucose utilization and blood flow during execution of a somatosensory task.

    PubMed

    Ginsberg, M D; Chang, J Y; Kelley, R E; Yoshii, F; Barker, W W; Ingenito, G; Boothe, T E

    1988-02-01

    To investigate local metabolic and hemodynamic interrelationships during functional activation of the brain, paired studies of local cerebral glucose utilization (lCMRGlc) and blood flow (lCBF) were carried out in 10 normal subjects (9 right-handed, 1 ambidextrous) at rest and during a unilateral discriminative somatosensory/motor task--palpation and sorting of mah-jongg tiles by engraved design. The extent of activation was assessed on the basis of percentage difference images following normalization to compensate for global shifts. The somatosensory stimulus elevated lCMRGlc by 16.9 +/- 3.5% (mean +/- standard deviation) and lCBF by 26.5 +/- 5.1% in the contralateral sensorimotor cortical focus; smaller increments were noted in the homologous ipsilateral site. The increments of lCMRGlc and lCBF correlated poorly with one another in individual subjects. Stimulation of the right hand resulted in significantly higher contralateral lCMRGlc activation (19.6%) than did stimulation of the left hand (14.1%) (p less than 0.005), whereas the lCBF response was independent of the hand stimulated. Our results indicate that both glycolytic metabolism and blood flow increase locally with the execution of an active sensorimotor task and suggest that both measures may serve as reliable markers of functional activation of the normal brain.

  19. Benthic algae compensate for phytoplankton losses in large aquatic ecosystems.

    PubMed

    Brothers, Soren; Vadeboncoeur, Yvonne; Sibley, Paul

    2016-12-01

    Anthropogenic activities can induce major trophic shifts in aquatic systems, yet we have an incomplete understanding of the implication of such shifts on ecosystem function and on primary production (PP) in particular. In recent decades, phytoplankton biomass and production in the Laurentian Great Lakes have declined in response to reduced nutrient concentrations and invasive mussels. However, the increases in water clarity associated with declines in phytoplankton may have positive effects on benthic PP at the ecosystem scale. Have these lakes experienced oligotrophication (a reduction of algal production), or simply a shift in autotrophic structure with no net decline in PP? Benthic contributions to ecosystem PP are rarely measured in large aquatic systems, but our calculations based on productivity rates from the Great Lakes indicate that a significant proportion (up to one half, in Lake Huron) of their whole-lake production may be benthic. The large declines (5-45%) in phytoplankton production in the Great Lakes from the 1970s to 2000s may be substantially compensated by benthic PP, which increased by up to 190%. Thus, the autotrophic productive capacity of large aquatic ecosystems may be relatively resilient to shifts in trophic status, due to a redirection of production to the near-shore benthic zone, and large lakes may exhibit shifts in autotrophic structure analogous to the regime shifts seen in shallow lakes. © 2016 John Wiley & Sons Ltd.

  20. Hemiparetic stepping to the beat: asymmetric response to metronome phase shift during treadmill gait.

    PubMed

    Pelton, Trudy A; Johannsen, Leif; Huiya Chen; Wing, Alan M

    2010-06-01

    Walking in time with a metronome is associated with improved spatiotemporal parameters in hemiparetic gait; however, the mechanism linking auditory and motor systems is poorly understood. Hemiparetic cadence control with metronome synchronization was examined to determine specific influences of metronome timing on treadmill walking. A within-participant experiment examined correction processes used to maintain heel strike synchrony with the beat by applying perturbations to the timing of a metronome. Eight chronic hemiparetic participants (mean age = 70 years; standard deviation = 12) were required to synchronize heel strikes with metronome pulses set according to each individual's comfortable speed (mean 0.4 m/s). During five 100-pulse trials, a fixed-phase baseline was followed by 4 unpredictable metronome phase shifts (20% of the interpulse interval), which amounted to 10 phase shifts on each foot. Infrared cameras recorded the motion of bilateral heel markers at 120 Hz. Relative asynchrony between heel strike responses and metronome pulses was used to index compensation for metronome phase shifts. Participants demonstrated compensation for phase shifts with convergence back to pre-phase shift asynchrony. This was significantly slower when the error occurred on the nonparetic side (requiring initial correction with the paretic limb) compared with when the error occurred on the paretic side (requiring initial nonparetic correction). Although phase correction of gait is slowed when the phase shift is delivered to the nonparetic side compared with the paretic side, phase correction is still present. This may underlie the utility of rhythmic auditory cueing in hemiparetic gait rehabilitation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigt, Aiko; Pincus, Robert; Stevens, Bjorn

    Previous modeling work showed that aerosol can affect the position of the tropical rain belt, i.e., the intertropical convergence zone (ITCZ). Yet it remains unclear which aspects of the aerosol impact are robust across models, and which are not. Here we present simulations with seven comprehensive atmosphere models that study the fast and slow impacts of an idealized anthropogenic aerosol on the zonal-mean ITCZ position. The fast impact, which results from aerosol atmospheric heating and land cooling before sea-surface temperature (SST) has time to respond, causes a northward ITCZ shift. Yet the fast impact is compensated locally by decreased evaporationmore » over the ocean, and a clear northward shift is only found for an unrealistically large aerosol forcing. The local compensation implies that while models differ in atmospheric aerosol heating, this does not contribute to model differences in the ITCZ shift. The slow impact includes the aerosol impact on the ocean surface energy balance and is mediated by SST changes. The slow impact is an order of magnitude more effective than the fast impact and causes a clear southward ITCZ shift for realistic aerosol forcing. Models agree well on the slow ITCZ shift when perturbed with the same SST pattern. However, an energetic analysis suggests that the slow ITCZ shifts would be substantially more model-dependent in interactive-SST setups due to model differences in clear-sky radiative transfer and clouds. In conclusion, we also discuss implications for the representation of aerosol in climate models and attributions of recent observed ITCZ shifts to aerosol.« less

  2. Perceptions of health stakeholders on task shifting and motivation of community health workers in different socio demographic contexts in Kenya (nomadic, peri-urban and rural agrarian).

    PubMed

    Ochieng, Beverly; Akunja, Edith; Edwards, Nancy; Mombo, Diana; Marende, Leah; Kaseje, Dan C O

    2014-01-01

    The shortage of health professionals in low income countries is recognized as a crisis. Community health workers are part of a "task-shift" strategy to address this crisis. Task shifting in this paper refers to the delegation of tasks from health professionals to lay, trained volunteers. In Kenya, there is a debate as to whether these volunteers should be compensated, and what motivation strategies would be effective in different socio-demographic contexts, based type of tasks shifted. The purpose of this study was to find out, from stakeholders' perspectives, the type of tasks to be shifted to community health workers and the appropriate strategies to motivate and retain them. This was an analytical comparative study employing qualitative methods: key informant interviews with health policy makers, managers, and service providers, and focus group discussions with community health workers and service consumers, to explore their perspectives on tasks to be shifted and appropriate motivation strategies. The study found that there were tasks to be shifted and motivation strategies that were common to all three contexts. Common tasks were promotive, preventive, and simple curative services. Common motivation strategies were supportive supervision, means of identification, equitable allocation of resources, training, compensation, recognition, and evidence based community dialogue. The study concluded that inclusion of curative tasks for community health workers, particularly in nomadic contexts, is inevitable but raises the need for accreditation of their training and regulation of their tasks.

  3. The Correlation Between Cognitive and Movement Shifting and Brain Activity in Children With ADHD.

    PubMed

    Kang, Kyoung Doo; Han, Doug Hyun; Kim, Sun Mi; Bae, Sujin; Renshaw, Perry F

    2018-05-01

    We assessed the correlation between the deficits of cognition, movement, and brain activity in children with Attention Deficit Hyperactvity Disorder (ADHD). We recruited 15 children with ADHD and 15 age- and sex-matched healthy control participants. Clinical symptoms, cognitive shifting, movement shifting, and brain activity were assessed using the Korean ADHD Rating Scale, the Wisconsin Card Sorting Test (WCST), the 7- and 14-ring drill test with hop jumps (7 HJ and 14 HJ), and 3.0 Tesla functional magnetic resonance imaging scanner, respectively. ADHD children showed an increased distance traveled and decreased speed on the 14 HJ task. In response to the WCST task, ADHD children showed decreased activation within right gyrus. Total distance on the 14 HJ task was negatively correlated with the mean β value of Cluster 2 in ADHD children. These results suggested that children with ADHD showed difficulty with attention shifting as well as with movement shifting.

  4. The Effect of Concomitant Fields in Fast Spin Echo Acquisition on Asymmetric MRI Gradient Systems

    PubMed Central

    Tao, Shengzhen; Weavers, Paul T.; Trzasko, Joshua D.; Huston, John; Shu, Yunhong; Gray, Erin M.; Foo, Thomas K.F.; Bernstein, Matt A.

    2017-01-01

    Purpose To investigate the effect of the asymmetric gradient concomitant fields (CF) with zeroth and first-order spatial dependence on fast/turbo spin-echo acquisitions, and to demonstrate the effectiveness of their real-time compensation. Methods After briefly reviewing the CF produced by asymmetric gradients, the effects of the additional zeroth and first-order CFs on these systems are investigated using extended-phase graph simulations. Phantom and in vivo experiments are performed to corroborate the simulation. Experiments are performed before and after the real-time compensations using frequency tracking and gradient pre-emphasis to demonstrate their effectiveness in correcting the additional CFs. The interaction between the CFs and prescan-based correction to compensate for eddy currents is also investigated. Results It is demonstrated that, unlike the second-order CFs on conventional gradients, the additional zeroth/first-order CFs on asymmetric gradients cause substantial signal loss and dark banding in fast spin-echo acquisitions within a typical brain-scan field of view. They can confound the prescan correction for eddy currents and degrade image quality. Performing real-time compensation successfully eliminates the artifacts. Conclusions We demonstrate that the zeroth/first-order CFs specific to asymmetric gradients can cause substantial artifacts, including signal loss and dark bands for brain imaging. These effects can be corrected using real-time compensation. PMID:28643408

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Sterbinsky, G. E.

    Here, we propose an experimental technique for extending feedback compensation of dissipative radiation used in nuclear magnetic resonance (NMR) to encompass ferromagnetic resonance (FMR). This method uses a balanced microwave power detector whose output is phase shifted π/2, amplified, and fed back to drive precession. Using classical control theory, we predict an electronically controllable narrowing of field swept FMR line-widths. This technique is predicted to compensate other sources of spin dissipation in addition to radiative loss.

  6. The Behavior-Physiology Nexus: Behavioral and Physiological Compensation Are Relied on to Different Extents between Seasons.

    PubMed

    Basson, Christine H; Clusella-Trullas, Susana

    2015-01-01

    Environmental variability occurring at different timescales can significantly reduce performance, resulting in evolutionary fitness costs. Shifts in thermoregulatory behavior, metabolism, and water loss via phenotypic plasticity can compensate for thermal variation, but the relative contribution of each mechanism and how they may influence each other are largely unknown. Here, we take an ecologically relevant experimental approach to dissect these potential responses at two temporal scales: weather transients and seasons. Using acclimation to cold, average, or warm conditions in summer and winter, we measure the direction and magnitude of plasticity of resting metabolic rate (RMR), water loss rate (WLR), and preferred body temperature (Tpref) in the lizard Cordylus oelofseni within and between seasons. In summer, lizards selected lower Tpref when acclimated to warm versus cold but had no plasticity of either RMR or WLR. By contrast, winter lizards showed partial compensation of RMR but no behavioral compensation. Between seasons, both behavioral and physiological shifts took place. By integrating ecological reality into laboratory assays, we demonstrate that behavioral and physiological responses of C. oelofseni can be contrasting, depending on the timescale investigated. Incorporating ecologically relevant scenarios and the plasticity of multiple traits is thus essential when attempting to forecast extinction risk to climate change.

  7. Fast and slow shifts of the zonal-mean intertropical convergence zone in response to an idealized anthropogenic aerosol

    DOE PAGES

    Voigt, Aiko; Pincus, Robert; Stevens, Bjorn; ...

    2017-04-03

    Previous modeling work showed that aerosol can affect the position of the tropical rain belt, i.e., the intertropical convergence zone (ITCZ). Yet it remains unclear which aspects of the aerosol impact are robust across models, and which are not. Here we present simulations with seven comprehensive atmosphere models that study the fast and slow impacts of an idealized anthropogenic aerosol on the zonal-mean ITCZ position. The fast impact, which results from aerosol atmospheric heating and land cooling before sea-surface temperature (SST) has time to respond, causes a northward ITCZ shift. Yet the fast impact is compensated locally by decreased evaporationmore » over the ocean, and a clear northward shift is only found for an unrealistically large aerosol forcing. The local compensation implies that while models differ in atmospheric aerosol heating, this does not contribute to model differences in the ITCZ shift. The slow impact includes the aerosol impact on the ocean surface energy balance and is mediated by SST changes. The slow impact is an order of magnitude more effective than the fast impact and causes a clear southward ITCZ shift for realistic aerosol forcing. Models agree well on the slow ITCZ shift when perturbed with the same SST pattern. However, an energetic analysis suggests that the slow ITCZ shifts would be substantially more model-dependent in interactive-SST setups due to model differences in clear-sky radiative transfer and clouds. In conclusion, we also discuss implications for the representation of aerosol in climate models and attributions of recent observed ITCZ shifts to aerosol.« less

  8. Brain cancer probed by native fluorescence and stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2012-12-01

    Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).

  9. Midline Shift is Unrelated to Subjective Pupillary Reactivity Assessment on Admission in Moderate and Severe Traumatic Brain Injury.

    PubMed

    Nourallah, Basil; Menon, David K; Zeiler, Frederick A

    2018-04-04

    This study aims to determine the relationship between pupillary reactivity, midline shift and basal cistern effacement on brain computed tomography (CT) in moderate-to-severe traumatic brain injury (TBI). All are important diagnostic and prognostic measures, but their relationship is unclear. A total of 204 patients with moderate-to-severe TBI, documented pupillary reactivity, and archived neuroimaging were included. Extent of midline shift and basal cistern effacement were extracted from admission brain CT. Mean midline shift was calculated for each ordinal category of pupillary reactivity and basal cistern effacement. Sequential Chi-square analysis was used to calculate a threshold midline shift for pupillary abnormalities and basal cistern effacement. Univariable and multiple logistic regression analyses were performed. Pupils were bilaterally reactive in 163 patients, unilaterally reactive in 24, and bilaterally unreactive in 17, with mean midline shift (mm) of 1.96, 3.75, and 2.56, respectively (p = 0.14). Basal cisterns were normal in 118 patients, compressed in 45, and absent in 41, with mean midline shift (mm) of 0.64, 2.97, and 5.93, respectively (p < 0.001). Sequential Chi-square analysis identified a threshold for abnormal pupils at a midline shift of 7-7.25 mm (p = 0.032), compressed basal cisterns at 2 mm (p < 0.001), and completely effaced basal cisterns at 7.5 mm (p < 0.001). Logistic regression revealed no association between midline shift and pupillary reactivity. With effaced basal cisterns, the odds ratio for normal pupils was 0.22 (95% CI 0.08-0.56; p = 0.0016) and for at least one unreactive pupil was 0.061 (95% CI 0.012-0.24; p < 0.001). Basal cistern effacement strongly predicted midline shift (OR 1.27; 95% CI 1.17-1.40; p < 0.001). Basal cistern effacement alone is associated with pupillary reactivity and is closely associated with midline shift. It may represent a uniquely useful neuroimaging marker to guide intervention in traumatic brain injury.

  10. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies

    PubMed Central

    Guerra, Patrick A; Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2014-01-01

    To navigate during their long-distance migration, monarch butterflies (Danaus plexippus) use a time-compensated sun compass. The sun compass timing elements reside in light-entrained circadian clocks in the antennae. Here we show that either antenna is sufficient for proper time compensation. However, migrants with either antenna painted black (to block light entrainment) and the other painted clear (to permit light entrainment) display disoriented group flight. Remarkably, when the black-painted antenna is removed, re-flown migrants with a single, clear-painted antenna exhibit proper orientation behaviour. Molecular correlates of clock function reveal that period and timeless expression is highly rhythmic in brains and clear-painted antennae, while rhythmic clock gene expression is disrupted in black-painted antennae. Our work shows that clock outputs from each antenna are processed and integrated together in the monarch time-compensated sun compass circuit. This dual timing system is a novel example of the regulation of a brain-driven behaviour by paired organs. PMID:22805565

  11. Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii.

    PubMed

    Strobel, Anneli; Leo, Elettra; Pörtner, Hans O; Mark, Felix C

    2013-09-01

    Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We therefore measured activities of key mitochondrial enzymes (citrate synthase (CS), cytochrome c oxidase (COX)) from heart, red muscle, white muscle and liver in the Antarctic fish Notothenia rossii after warm- (7°C) and hypercapnia- (0.2kPa CO2) acclimation vs. control conditions (1°C, 0.04kPa CO2). In heart, enzymes showed elevated activities after cold-hypercapnia acclimation, and a warm-acclimation-induced upward shift in thermal optima. The strongest increase in enzyme activities in response to hypercapnia occurred in red muscle. In white muscle, enzyme activities were temperature-compensated. CS activity in liver decreased after warm-normocapnia acclimation (temperature-compensation), while COX activities were lower after cold- and warm-hypercapnia exposure, but increased after warm-normocapnia acclimation. In conclusion, warm-acclimated N. rossii display low thermal compensation in response to rising energy demand in highly aerobic tissues, such as heart and red muscle. Chronic environmental hypercapnia elicits increased enzyme activities in these tissues, possibly to compensate for an elevated energy demand for acid-base regulation or a compromised mitochondrial metabolism, that is predicted to occur in response to hypercapnia exposure. This might be supported by enhanced metabolisation of liver energy stores. These patterns reflect a limited capacity of N. rossii to reorganise energy metabolism in response to rising temperature and PCO2. © 2013.

  12. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer's mouse brain: implication for bioenergetic intervention.

    PubMed

    Ding, Fan; Yao, Jia; Rettberg, Jamaica R; Chen, Shuhua; Brinton, Roberta Diaz

    2013-01-01

    We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3-15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6-9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential targets for preventing shifts to less efficient bioenergetic fuels and transition to the ketogenic phenotype of the Alzheimer's brain.

  13. Homing Pigeons Respond to Time-Compensated Solar Cues Even in Sight of the Loft

    PubMed Central

    Armstrong, Chris; Wilkinson, Helen; Meade, Jessica; Biro, Dora; Freeman, Robin; Guilford, Tim

    2013-01-01

    The sun has long been thought to guide bird navigation as the second step in a two-stage process, in which determining position using a map is followed by course setting using a compass, both over unfamiliar and familiar terrain. The animal’s endogenous clock time-compensates the solar compass for the sun’s apparent movement throughout the day, and this allows predictable deflections in orientation to test for the compass’ influence using clock-shift manipulations. To examine the influence of the solar compass during a highly familiar navigational task, 24 clock-shifted homing pigeons were precision-tracked from a release site close to and in sight of their final goal, the colony loft. The resulting trajectories displayed significant partial deflection from the loft direction as predicted by either fast or slow clock-shift treatments. The partial deflection was also found to be stable along the entire trajectory indicating regular updating of orientation via input from the solar compass throughout the final approach flight to the loft. Our results demonstrate that time-compensated solar cues are deeply embedded in the way birds orient during homing flight, are accessed throughout the journey and on a remarkably fine-grained scale, and may be combined effectively simultaneously with direct guidance from familiar landmarks, even when birds are flying towards a directly visible goal. PMID:23717401

  14. A Decrease in Ambient Temperature Induces Post-Mitotic Enlargement of Palisade Cells in North American Lake Cress.

    PubMed

    Amano, Rumi; Nakayama, Hokuto; Morohoshi, Yurika; Kawakatsu, Yaichi; Ferjani, Ali; Kimura, Seisuke

    2015-01-01

    In order to maintain organs and structures at their appropriate sizes, multicellular organisms orchestrate cell proliferation and post-mitotic cell expansion during morphogenesis. Recent studies using Arabidopsis leaves have shown that compensation, which is defined as post-mitotic cell expansion induced by a decrease in the number of cells during lateral organ development, is one example of such orchestration. Some of the basic molecular mechanisms underlying compensation have been revealed by genetic and chimeric analyses. However, to date, compensation had been observed only in mutants, transgenics, and γ-ray-treated plants, and it was unclear whether it occurs in plants under natural conditions. Here, we illustrate that a shift in ambient temperature could induce compensation in Rorippa aquatica (Brassicaceae), a semi-aquatic plant found in North America. The results suggest that compensation is a universal phenomenon among angiosperms and that the mechanism underlying compensation is shared, in part, between Arabidopsis and R. aquatica.

  15. A Decrease in Ambient Temperature Induces Post-Mitotic Enlargement of Palisade Cells in North American Lake Cress

    PubMed Central

    Morohoshi, Yurika; Kawakatsu, Yaichi; Ferjani, Ali; Kimura, Seisuke

    2015-01-01

    In order to maintain organs and structures at their appropriate sizes, multicellular organisms orchestrate cell proliferation and post-mitotic cell expansion during morphogenesis. Recent studies using Arabidopsis leaves have shown that compensation, which is defined as post-mitotic cell expansion induced by a decrease in the number of cells during lateral organ development, is one example of such orchestration. Some of the basic molecular mechanisms underlying compensation have been revealed by genetic and chimeric analyses. However, to date, compensation had been observed only in mutants, transgenics, and γ-ray–treated plants, and it was unclear whether it occurs in plants under natural conditions. Here, we illustrate that a shift in ambient temperature could induce compensation in Rorippa aquatica (Brassicaceae), a semi-aquatic plant found in North America. The results suggest that compensation is a universal phenomenon among angiosperms and that the mechanism underlying compensation is shared, in part, between Arabidopsis and R. aquatica. PMID:26569502

  16. Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery

    PubMed Central

    Ji, Songbai; Wu, Ziji; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2008-01-01

    An image-based re-registration scheme has been developed and evaluated that uses fiducial registration as a starting point to maximize the normalized mutual information (nMI) between intraoperative ultrasound (iUS) and preoperative magnetic resonance images (pMR). We show that this scheme significantly (p⪡0.001) reduces tumor boundary misalignment between iUS pre-durotomy and pMR from an average of 2.5 mm to 1.0 mm in six resection surgeries. The corrected tumor alignment before dural opening provides a more accurate reference for assessing subsequent intraoperative tumor displacement, which is important for brain shift compensation as surgery progresses. In addition, we report the translational and rotational capture ranges necessary for successful convergence of the nMI registration technique (5.9 mm and 5.2 deg, respectively). The proposed scheme is automatic, sufficiently robust, and computationally efficient (<2 min), and holds promise for routine clinical use in the operating room during image-guided neurosurgical procedures. PMID:18975707

  17. Non-Data Aided Doppler Shift Estimation for Underwater Acoustic Communication

    DTIC Science & Technology

    2014-05-01

    in underwater acoustic wireless sensor networks . We analyzed the data collected from our experiments using non-data aided (blind) techniques such as...investigated different methods for blind Doppler shift estimation and compensation for a single carrier in underwater acoustic wireless sensor ...distributed underwater sensor networks . Detailed experimental and simulated results based on second order cyclostationary features of the received signals

  18. Education, the Brain and Dementia: Neuroprotection or Compensation?

    ERIC Educational Resources Information Center

    Brayne, Carol; Ince, Paul G.; Keage, Hannah A. D.; McKeith, Ian G.; Matthews, Fiona E.; Polvikoski, Tuomo; Sulkava, Raimo

    2010-01-01

    The potential protective role of education for dementia is an area of major interest. Almost all older people have some pathology in their brain at death but have not necessarily died with dementia. We have explored these two observations in large population-based cohort studies (Epidemiological Clinicopathological Studies in Europe; EClipSE) in…

  19. Optimising rigid motion compensation for small animal brain PET imaging

    NASA Astrophysics Data System (ADS)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  20. Potential predictors for the amount of intra-operative brain shift during deep brain stimulation surgery

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-03-01

    A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.

  1. Ultrasound thermography: A new temperature reconstruction model and in vivo results

    NASA Astrophysics Data System (ADS)

    Bayat, Mahdi; Ballard, John R.; Ebbini, Emad S.

    2017-03-01

    The recursive echo strain filter (RESF) model is presented as a new echo shift-based ultrasound temperature estimation model. The model is shown to have an infinite impulse response (IIR) filter realization of a differentitor-integrator operator. This model is then used for tracking sub-therapeutic temperature changes due to high intensity focused ultrasound (HIFU) shots in the hind limb of the Copenhagen rats in vivo. In addition to the reconstruction filter, a motion compensation method is presented which takes advantage of the deformation field outside the region of interest to correct the motion errors during temperature tracking. The combination of the RESF model and motion compensation algorithm is shown to greatly enhance the accuracy of the in vivo temperature estimation using ultrasound echo shifts.

  2. Modeling eye-head gaze shifts in multiple contexts without motor planning

    PubMed Central

    Haji-Abolhassani, Iman; Guitton, Daniel

    2016-01-01

    During gaze shifts, the eyes and head collaborate to rapidly capture a target (saccade) and fixate it. Accordingly, models of gaze shift control should embed both saccadic and fixation modes and a mechanism for switching between them. We demonstrate a model in which the eye and head platforms are driven by a shared gaze error signal. To limit the number of free parameters, we implement a model reduction approach in which steady-state cerebellar effects at each of their projection sites are lumped with the parameter of that site. The model topology is consistent with anatomy and neurophysiology, and can replicate eye-head responses observed in multiple experimental contexts: 1) observed gaze characteristics across species and subjects can emerge from this structure with minor parametric changes; 2) gaze can move to a goal while in the fixation mode; 3) ocular compensation for head perturbations during saccades could rely on vestibular-only cells in the vestibular nuclei with postulated projections to burst neurons; 4) two nonlinearities suffice, i.e., the experimentally-determined mapping of tectoreticular cells onto brain stem targets and the increased recruitment of the head for larger target eccentricities; 5) the effects of initial conditions on eye/head trajectories are due to neural circuit dynamics, not planning; and 6) “compensatory” ocular slow phases exist even after semicircular canal plugging, because of interconnections linking eye-head circuits. Our model structure also simulates classical vestibulo-ocular reflex and pursuit nystagmus, and provides novel neural circuit and behavioral predictions, notably that both eye-head coordination and segmental limb coordination are possible without trajectory planning. PMID:27440248

  3. Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17β-HSD type 4

    PubMed Central

    2010-01-01

    Background Steroids affect many tissues, including the brain. In the zebra finch, the estrogenic steroid estradiol (E2) is especially effective at promoting growth of the neural circuit specialized for song. In this species, only the males sing and they have a much larger and more interconnected song circuit than females. Thus, it was surprising that the gene for 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4), an enzyme that converts E2 to a less potent estrogen, had been mapped to the Z sex chromosome. As a consequence, it was likely that HSD17B4 was differentially expressed in males (ZZ) and females (ZW) because dosage compensation of Z chromosome genes is incomplete in birds. If a higher abundance of HSD17B4 mRNA in males than females was translated into functional enzyme in the brain, then contrary to expectation, males could produce less E2 in their brains than females. Results Here, we used molecular and biochemical techniques to confirm the HSD17B4 Z chromosome location in the zebra finch and to determine that HSD17B4 mRNA and activity were detectable in the early developing and adult brain. As expected, HSD17B4 mRNA expression levels were higher in males compared to females. This provides further evidence of the incomplete Z chromosome inactivation mechanisms in birds. We detected HSD17B4 mRNA in regions that suggested a role for this enzyme in the early organization and adult function of song nuclei. We did not, however, detect significant sex differences in HSD17B4 activity levels in the adult brain. Conclusions Our results demonstrate that the HSD17B4 gene is expressed and active in the zebra finch brain as an E2 metabolizing enzyme, but that dosage compensation of this Z-linked gene may occur via post-transcriptional mechanisms. PMID:20359329

  4. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  5. Demographic compensation and tipping points in climate-induced range shifts.

    PubMed

    Doak, Daniel F; Morris, William F

    2010-10-21

    To persist, species are expected to shift their geographical ranges polewards or to higher elevations as the Earth's climate warms. However, although many species' ranges have shifted in historical times, many others have not, or have shifted only at the high-latitude or high-elevation limits, leading to range expansions rather than contractions. Given these idiosyncratic responses to climate warming, and their varied implications for species' vulnerability to climate change, a critical task is to understand why some species have not shifted their ranges, particularly at the equatorial or low-elevation limits, and whether such resilience will last as warming continues. Here we show that compensatory changes in demographic rates are buffering southern populations of two North American tundra plants against the negative effects of a warming climate, slowing their northward range shifts, but that this buffering is unlikely to continue indefinitely. Southern populations of both species showed lower survival and recruitment but higher growth of individual plants, possibly owing to longer, warmer growing seasons. Because of these and other compensatory changes, the population growth rates of southern populations are not at present lower than those of northern ones. However, continued warming may yet prove detrimental, as most demographic rates that improved in moderately warmer years declined in the warmest years, with the potential to drive future population declines. Our results emphasize the need for long-term, range-wide measurement of all population processes to detect demographic compensation and to identify nonlinear responses that may lead to sudden range shifts as climatic tipping points are exceeded.

  6. Dynamic multi-coil technique (DYNAMITE) shimming for echo-planar imaging of the human brain at 7 Tesla.

    PubMed

    Juchem, Christoph; Umesh Rudrapatna, S; Nixon, Terence W; de Graaf, Robin A

    2015-01-15

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity in vivo. As such, DYNAMITE shimming has the potential to replace conventional SH shim systems in human MR scanners. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large-scale brain connectivity in vivo. As such, DYNAMITE shimming has the potential to replace conventional SH shim systems in human MR scanners. PMID:25462795

  8. The role of visual deprivation and experience on the performance of sensory substitution devices.

    PubMed

    Stronks, H Christiaan; Nau, Amy C; Ibbotson, Michael R; Barnes, Nick

    2015-10-22

    It is commonly accepted that the blind can partially compensate for their loss of vision by developing enhanced abilities with their remaining senses. This visual compensation may be related to the fact that blind people rely on their other senses in everyday life. Many studies have indeed shown that experience plays an important role in visual compensation. Numerous neuroimaging studies have shown that the visual cortices of the blind are recruited by other functional brain areas and can become responsive to tactile or auditory input instead. These cross-modal plastic changes are more pronounced in the early blind compared to late blind individuals. The functional consequences of cross-modal plasticity on visual compensation in the blind are debated, as are the influences of various etiologies of vision loss (i.e., blindness acquired early or late in life). Distinguishing between the influences of experience and visual deprivation on compensation is especially relevant for rehabilitation of the blind with sensory substitution devices. The BrainPort artificial vision device and The vOICe are assistive devices for the blind that redirect visual information to another intact sensory system. Establishing how experience and different etiologies of vision loss affect the performance of these devices may help to improve existing rehabilitation strategies, formulate effective selection criteria and develop prognostic measures. In this review we will discuss studies that investigated the influence of training and visual deprivation on the performance of various sensory substitution approaches. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Disorders of Acid-Base Balance: New Perspectives

    PubMed Central

    Seifter, Julian L.; Chang, Hsin-Yun

    2017-01-01

    Background Disorders of acid-base involve the complex interplay of many organ systems including brain, lungs, kidney, and liver. Compensations for acid-base disturbances within the brain are more complete, while limitations of compensations are more apparent for most systemic disorders. However, some of the limitations on compensations are necessary to survival, in that preservation of oxygenation, energy balance, cognition, electrolyte, and fluid balance are connected mechanistically. Summary This review aims to give new and comprehensive perspective on understanding acid-base balance and identifying associated disorders. All metabolic acid-base disorders can be approached in the context of the relative losses or gains of electrolytes or a change in the anion gap in body fluids. Acid-base and electrolyte balance are connected not only at the cellular level but also in daily clinical practice. Urine chemistry is essential to understanding electrolyte excretion and renal compensations. Key Messages Many constructs are helpful to understand acid-base, but these models are not mutually exclusive. Electroneutrality and the close interconnection between electrolyte and acid-base balance are important concepts to apply in acid-base diagnoses. All models have complexity and shortcuts that can help in practice. There is no reason to dismiss any of the present constructs, and there is benefit in a combined approach. PMID:28232934

  10. Confidence in the Knowledge Base of English Language Learners Studying Science: Using Agency to Compensate for the Lack of Adequate Linguistic Identity

    ERIC Educational Resources Information Center

    Hayes, Aneta L.; Mansour, Nasser

    2017-01-01

    Changes in the cultural and linguistic environments of learners are often associated with identity shifts. The aim of this study was to explore what identity shifts occur when science students from Bahraini national schools transition to an international university. The role of two aspects of learner identity--that is, English proficiency and…

  11. Warming combined with more extreme precipitation regimes modifies the water sources used by trees.

    PubMed

    Grossiord, Charlotte; Sevanto, Sanna; Dawson, Todd E; Adams, Henry D; Collins, Adam D; Dickman, Lee T; Newman, Brent D; Stockton, Elizabeth A; McDowell, Nate G

    2017-01-01

    The persistence of vegetation under climate change will depend on a plant's capacity to exploit water resources. We analyzed water source dynamics in piñon pine and juniper trees subjected to precipitation reduction, atmospheric warming, and to both simultaneously. Piñon and juniper exhibited different and opposite shifts in water uptake depth in response to experimental stress and background climate over 3 yr. During a dry summer, juniper responded to warming with a shift to shallow water sources, whereas piñon pine responded to precipitation reduction with a shift to deeper sources in autumn. In normal and wet summers, both species responded to precipitation reduction, but juniper increased deep water uptake and piñon increased shallow water uptake. Shifts in the utilization of water sources were associated with reduced stomatal conductance and photosynthesis, suggesting that belowground compensation in response to warming and water reduction did not alleviate stress impacts for gas exchange. We have demonstrated that predicted climate change could modify water sources of trees. Warming impairs juniper uptake of deep sources during extended dry periods. Precipitation reduction alters the uptake of shallow sources following extended droughts for piñon. Shifts in water sources may not compensate for climate change impacts on tree physiology. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  12. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  13. Perceptual Shift in Bilingualism: Brain Potentials Reveal Plasticity in Pre-Attentive Colour Perception

    ERIC Educational Resources Information Center

    Athanasopoulos, Panos; Dering, Benjamin; Wiggett, Alison; Kuipers, Jan-Rouke; Thierry, Guillaume

    2010-01-01

    The validity of the linguistic relativity principle continues to stimulate vigorous debate and research. The debate has recently shifted from the behavioural investigation arena to a more biologically grounded field, in which tangible physiological evidence for language effects on perception can be obtained. Using brain potentials in a colour…

  14. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations.

    PubMed

    Mandonnet, Emmanuel; Winkler, Peter A; Duffau, Hugues

    2010-02-01

    While the fundamental and clinical contribution of direct electrical stimulation (DES) of the brain is now well acknowledged, its advantages and limitations have not been re-evaluated for a long time. Here, we critically review exactly what DES can tell us about cerebral function. First, we show that DES is highly sensitive for detecting the cortical and axonal eloquent structures. Moreover, DES also provides a unique opportunity to study brain connectivity, since each area responsive to stimulation is in fact an input gate into a large-scale network rather than an isolated discrete functional site. DES, however, also has a limitation: its specificity is suboptimal. Indeed, DES may lead to interpretations that a structure is crucial because of the induction of a transient functional response when stimulated, whereas (1) this effect is caused by the backward spreading of the electro-stimulation along the network to an essential area and/or (2) the stimulated region can be functionally compensated owing to long-term brain plasticity mechanisms. In brief, although DES is still the gold standard for brain mapping, its combination with new methods such as perioperative neurofunctional imaging and biomathematical modeling is now mandatory, in order to clearly differentiate those networks that are actually indispensable to function from those that can be compensated.

  15. Electromagnetic organ tracking allows for real-time compensation of tissue shift in image-guided laparoscopic rectal surgery: results of a phantom study.

    PubMed

    Wagner, M; Gondan, M; Zöllner, C; Wünscher, J J; Nickel, F; Albala, L; Groch, A; Suwelack, S; Speidel, S; Maier-Hein, L; Müller-Stich, B P; Kenngott, H G

    2016-02-01

    Laparoscopic resection is a minimally invasive treatment option for rectal cancer but requires highly experienced surgeons. Computer-aided technologies could help to improve safety and efficiency by visualizing risk structures during the procedure. The prerequisite for such an image guidance system is reliable intraoperative information on iatrogenic tissue shift. This could be achieved by intraoperative imaging, which is rarely available. Thus, the aim of the present study was to develop and validate a method for real-time deformation compensation using preoperative imaging and intraoperative electromagnetic tracking (EMT) of the rectum. Three models were compared and evaluated for the compensation of tissue deformation. For model A, no compensation was performed. Model B moved the corresponding points rigidly to the motion of the EMT sensor. Model C used five nested linear regressions with increasing level of complexity to compute the deformation (C1-C5). For evaluation, 14 targets and an EMT organ sensor were fit into a silicone-molded rectum of the OpenHELP phantom. Following a computed tomography, the image guidance was initiated and the rectum was deformed in the same way as during surgery in a total of 14 experimental runs. The target registration error (TRE) was measured for all targets in different positions of the rectum. The mean TRE without correction (model A) was 32.8 ± 20.8 mm, with only 19.6% of the measurements below 10 mm (80.4% above 10 mm). With correction, the mean TRE could be reduced using the rigid correction (model B) to 6.8 ± 4.8 mm with 78.7% of the measurements being <10 mm. Using the most complex linear regression correction (model C5), the error could be reduced to 2.9 ± 1.4 mm with 99.8% being below 10 mm. In laparoscopic rectal surgery, the combination of electromagnetic organ tracking and preoperative imaging is a promising approach to compensating for intraoperative tissue shift in real-time.

  16. A novel craniotomy simulation system for evaluation of stereo-pair reconstruction fidelity and tracking

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Conley, Rebekah H.; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2016-03-01

    Brain shift compensation using computer modeling strategies is an important research area in the field of image-guided neurosurgery (IGNS). One important source of available sparse data during surgery to drive these frameworks is deformation tracking of the visible cortical surface. Possible methods to measure intra-operative cortical displacement include laser range scanners (LRS), which typically complicate the clinical workflow, and reconstruction of cortical surfaces from stereo pairs acquired with the operating microscopes. In this work, we propose and demonstrate a craniotomy simulation device that permits simulating realistic cortical displacements designed to measure and validate the proposed intra-operative cortical shift measurement systems. The device permits 3D deformations of a mock cortical surface which consists of a membrane made of a Dragon Skin® high performance silicone rubber on which vascular patterns are drawn. We then use this device to validate our stereo pair-based surface reconstruction system by comparing landmark positions and displacements measured with our systems to those positions and displacements as measured by a stylus tracked by a commercial optical system. Our results show a 1mm average difference in localization error and a 1.2mm average difference in displacement measurement. These results suggest that our stereo-pair technique is accurate enough for estimating intra-operative displacements in near real-time without affecting the surgical workflow.

  17. Brain shift computation using a fully nonlinear biomechanical model.

    PubMed

    Wittek, Adam; Kikinis, Ron; Warfield, Simon K; Miller, Karol

    2005-01-01

    In the present study, fully nonlinear (i.e. accounting for both geometric and material nonlinearities) patient specific finite element brain model was applied to predict deformation field within the brain during the craniotomy-induced brain shift. Deformation of brain surface was used as displacement boundary conditions. Application of the computed deformation field to align (i.e. register) the preoperative images with the intraoperative ones indicated that the model very accurately predicts the displacements of gravity centers of the lateral ventricles and tumor even for very limited information about the brain surface deformation. These results are sufficient to suggest that nonlinear biomechanical models can be regarded as one possible way of complementing medical image processing techniques when conducting nonrigid registration. Important advantage of such models over the linear ones is that they do not require unrealistic assumptions that brain deformations are infinitesimally small and brain tissue stress-strain relationship is linear.

  18. Multisensory Self-Motion Compensation During Object Trajectory Judgments

    PubMed Central

    Dokka, Kalpana; MacNeilage, Paul R.; DeAngelis, Gregory C.; Angelaki, Dora E.

    2015-01-01

    Judging object trajectory during self-motion is a fundamental ability for mobile organisms interacting with their environment. This fundamental ability requires the nervous system to compensate for the visual consequences of self-motion in order to make accurate judgments, but the mechanisms of this compensation are poorly understood. We comprehensively examined both the accuracy and precision of observers' ability to judge object trajectory in the world when self-motion was defined by vestibular, visual, or combined visual–vestibular cues. Without decision feedback, subjects demonstrated no compensation for self-motion that was defined solely by vestibular cues, partial compensation (47%) for visually defined self-motion, and significantly greater compensation (58%) during combined visual–vestibular self-motion. With decision feedback, subjects learned to accurately judge object trajectory in the world, and this generalized to novel self-motion speeds. Across conditions, greater compensation for self-motion was associated with decreased precision of object trajectory judgments, indicating that self-motion compensation comes at the cost of reduced discriminability. Our findings suggest that the brain can flexibly represent object trajectory relative to either the observer or the world, but a world-centered representation comes at the cost of decreased precision due to the inclusion of noisy self-motion signals. PMID:24062317

  19. New tax laws require slight shifts in hospitals' funding strategies.

    PubMed

    Bromberg, R S

    1979-07-16

    Recent tax laws that affect hospitals' deferred compensation plans, employment taxes, annuities, foundation grants, unrelated business income, and gifts of appreciated property will not seriously affect charitable giving to hospitals.

  20. Perceptions of health stakeholders on task shifting and motivation of community health workers in different socio demographic contexts in Kenya (nomadic, peri-urban and rural agrarian)

    PubMed Central

    2014-01-01

    Background The shortage of health professionals in low income countries is recognized as a crisis. Community health workers are part of a “task-shift” strategy to address this crisis. Task shifting in this paper refers to the delegation of tasks from health professionals to lay, trained volunteers. In Kenya, there is a debate as to whether these volunteers should be compensated, and what motivation strategies would be effective in different socio-demographic contexts, based type of tasks shifted. The purpose of this study was to find out, from stakeholders’ perspectives, the type of tasks to be shifted to community health workers and the appropriate strategies to motivate and retain them. Methods This was an analytical comparative study employing qualitative methods: key informant interviews with health policy makers, managers, and service providers, and focus group discussions with community health workers and service consumers, to explore their perspectives on tasks to be shifted and appropriate motivation strategies. Results The study found that there were tasks to be shifted and motivation strategies that were common to all three contexts. Common tasks were promotive, preventive, and simple curative services. Common motivation strategies were supportive supervision, means of identification, equitable allocation of resources, training, compensation, recognition, and evidence based community dialogue. Further, in the nomadic and peri-urban sites, community health workers had assumed curative services beyond the range provided for in the Kenyan task shifting policy. This was explained to be influenced by lack of access to care due to distance to health facilities, population movement, and scarcity of health providers in the nomadic setting and the harsh economic realities in peri-urban set up. Therefore, their motivation strategies included training on curative skills, technical support, and resources for curative care. Data collection was viewed as an important task in the rural site, but was not recognized as priority in nomadic and peri-urban sites, where they sought monetary compensation for data collection. Conclusions The study concluded that inclusion of curative tasks for community health workers, particularly in nomadic contexts, is inevitable but raises the need for accreditation of their training and regulation of their tasks. PMID:25079588

  1. Early Decline in Glucose Transport and Metabolism Precedes Shift to Ketogenic System in Female Aging and Alzheimer's Mouse Brain: Implication for Bioenergetic Intervention

    PubMed Central

    Ding, Fan; Yao, Jia; Rettberg, Jamaica R.; Chen, Shuhua; Brinton, Roberta Diaz

    2013-01-01

    We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3–15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6–9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential targets for preventing shifts to less efficient bioenergetic fuels and transition to the ketogenic phenotype of the Alzheimer's brain. PMID:24244584

  2. Using a two-lens afocal compensator for thermal defocus correction of catadioptric system

    NASA Astrophysics Data System (ADS)

    Ivanov, S. E.; Romanova, G. E.; Bakholdin, A. V.

    2017-08-01

    The work associates with the catadioptric systems with two-component afocal achromatic compensator. The most catadioptric systems with afocal compensator have the power mirror part and the correctional lens part. The correctional lens part can be in parallel, in convergent beam or in both. One of the problems of such systems design is the thermal defocus by reason of the thermal aberration and the housing thermal expansion. We introduce the technique of thermal defocus compensation by choosing the optical material of the afocal compensator components. The components should be made from the optical materials with thermo-optical characteristics so after temperature changing the compensator should become non-afocal with the optical power enough to compensate the image plane thermal shift. Abbe numbers of the components should also have certain values for correction chromatic aberrations that reduces essentially the applicable optical materials quantity. The catalogues of the most vendors of optical materials in visible spectral range are studied for the purpose of finding the suitable couples for the technique. As a result, the advantages and possibilities of the plastic materials application in combination with optical glasses are shown. The examples of the optical design are given.

  3. Straightness measurement using laser beam straight datum

    NASA Astrophysics Data System (ADS)

    Uchikoshi, Junichi; Shimada, Shoichi; Ikawa, Naoya; Komura, Akio

    1995-08-01

    Using the direction stabilized laser beam as a physical straight datum, instead of the tangible reference surface, a method is proposed for the measurement of an error motion of a slide table and/or surface profile of mechanical components. A specially designed 2D position sensor/compensator for laser beam center is developed combining a quadrant photo-diode (QPD) position sensor for beam center and the piezo-compensator which compensates the beam shift from the center of QPD. By the use the sensor/compensator proposed, the positional and angular fluctuations of laser beam path is evaluated with nanometric resolution. Combining the sensor with the piezo-driven mirror compensator, the directional stabilizer for the laser beam is also designed in the same manner as the sensor/compensator. The stabilized He-Ne laser beam can be used as the metrological datum of straightness within the accuracy of 2 X 10 -8 rad. By mounting the position sensor/compensator on a slide table, the carriage with working distance of 1 m is so designed and built as to move straight along the stabilized laser beam. The carriage can be used as a mechanical straight datum with the accuracy equivalent to the laser beam stability.

  4. The Whole-Brain “Global” Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism

    PubMed Central

    Thompson, Garth J.; Grimmer, Timo; Drzezga, Alexander; Herman, Peter

    2016-01-01

    Abstract The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI “nuisance signals” were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a “nuisance signal,” also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states. PMID:27029438

  5. The Whole-Brain "Global" Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism.

    PubMed

    Thompson, Garth J; Riedl, Valentin; Grimmer, Timo; Drzezga, Alexander; Herman, Peter; Hyder, Fahmeed

    2016-07-01

    The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI "nuisance signals" were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a "nuisance signal," also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states.

  6. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.

    PubMed

    Colwell, Robert K; Brehm, Gunnar; Cardelús, Catherine L; Gilman, Alex C; Longino, John T

    2008-10-10

    Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.

  7. Revisiting the cognitive buffer hypothesis for the evolution of large brains

    PubMed Central

    Sol, Daniel

    2008-01-01

    Why have some animals evolved large brains despite substantial energetic and developmental costs? A classic answer is that a large brain facilitates the construction of behavioural responses to unusual, novel or complex socioecological challenges. This buffer effect should increase survival rates and favour a longer reproductive life, thereby compensating for the costs of delayed reproduction. Although still limited, evidence in birds and mammals is accumulating that a large brain facilitates the construction of novel and altered behavioural patterns and that this ability helps dealing with new ecological challenges more successfully, supporting the cognitive-buffer interpretation of the evolution of large brains. PMID:19049952

  8. Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval

    PubMed Central

    Ries, Stephanie K.; Dronkers, Nina F.; Knight, Robert T.

    2015-01-01

    Language is considered to be one of the most lateralized human brain functions. Left hemisphere dominance for language has been consistently confirmed in clinical and experimental settings and constitutes one of the main axioms of neurology and neuroscience. However, functional neuroimaging studies are finding that the right hemisphere also plays a role in diverse language functions. Critically, the right hemisphere may also compensate for the loss or degradation of language functions following extensive stroke-induced damage to the left hemisphere. Here, we review studies that focus on our ability to choose words as we speak. Although fluidly performed in individuals with intact language, this process is routinely compromised in aphasic patients. We suggest that parceling word retrieval into its sub-processes—lexical activation and lexical selection—and examining which of these can be compensated for after left hemisphere stroke can advance the understanding of the lateralization of word retrieval in speech production. In particular, the domain-general nature of the brain regions associated with each process may be a helpful indicator of the right hemisphere's propensity for compensation. PMID:26766393

  9. Temperature compensated liquid level sensor using FBGs and a Bourdon tube

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Shankar, M. Sai; Rao, P. Vengal; Reddy, P. Saidi; Sai Prasad, R. L. N.; Kishore, P.; Srimannarayana, K.

    2011-12-01

    A temperature compensated liquid level sensor using FBGs and a bourdon tube that works on hydrostatic pressure is presented. An FBG (FBG1) is fixed between free end and a fixed end of the bourdon tube. When hydrostatic pressure applied to the bourdon tube FBG1 experience an axial strain due to the movement of free end. Experimental result shows, a good linearity in shift in Bragg wavelength with the applied pressure. The performance of this arrangement is tested for 21metre water column pressure. Another FBG (FBG2) is included for temperature compensation. The design of the sensor head is simple and easy mountable external to any tank for liquid level measurements.

  10. Performance of synchronous optical receivers using atmospheric compensation techniques.

    PubMed

    Belmonte, Aniceto; Khan, Joseph

    2008-09-01

    We model the impact of atmospheric turbulence-induced phase and amplitude fluctuations on free-space optical links using synchronous detection. We derive exact expressions for the probability density function of the signal-to-noise ratio in the presence of turbulence. We consider the effects of log-normal amplitude fluctuations and Gaussian phase fluctuations, in addition to local oscillator shot noise, for both passive receivers and those employing active modal compensation of wave-front phase distortion. We compute error probabilities for M-ary phase-shift keying, and evaluate the impact of various parameters, including the ratio of receiver aperture diameter to the wave-front coherence diameter, and the number of modes compensated.

  11. Bit-error rate for free-space adaptive optics laser communications.

    PubMed

    Tyson, Robert K

    2002-04-01

    An analysis of adaptive optics compensation for atmospheric-turbulence-induced scintillation is presented with the figure of merit being the laser communications bit-error rate. The formulation covers weak, moderate, and strong turbulence; on-off keying; and amplitude-shift keying, over horizontal propagation paths or on a ground-to-space uplink or downlink. The theory shows that under some circumstances the bit-error rate can be improved by a few orders of magnitude with the addition of adaptive optics to compensate for the scintillation. Low-order compensation (less than 40 Zernike modes) appears to be feasible as well as beneficial for reducing the bit-error rate and increasing the throughput of the communication link.

  12. 40  Gb/s DWDM Structure with Optical Phase Configuration for Long-Haul Transmission System

    NASA Astrophysics Data System (ADS)

    Lin, Hsiu-Sheng; Lai, Po-Chou

    2017-06-01

    We propose the experimental transport of 48 channels with 40 Gbit/s dense wavelength-division multiplexing (DWDM) system that uses single-mode fiber (SMF) in combination with dispersion compensation fiber (DCF) which is a dispersion compensation device, in C and L band wavelength range to solve the dispersion program. The DWDM system scheme employing single Mach-Zehnder modulation (MZM) return-to-zero differential phase-shift keying (RZ-DPSK) modulation format with hybrid Raman/EDFA (Erbium-doped fiber amplifier) configuration to improve transmission signal, and employing an optical phase conjugation (OPC) configuration in the middle line. That can compensate for dispersion impairment and improve nonlinear effects to investigate transmission distance performances.

  13. Mercury Trapped Ion Frequency Standard for Ultra-Stable Reference Applications

    NASA Technical Reports Server (NTRS)

    Larsen, Kameron (Inventor); Burt, Eric A. (Inventor); Tjoelker, Robert L. (Inventor); Hamell, Robert L. (Inventor); Tucker, Blake C. (Inventor)

    2017-01-01

    An atomic clock including an ion trap assembly, a C-field coil positioned for generating a first magnetic field in the interrogation region of the ion trap assembly, a compensation coil positioned for generating a second magnetic field in the interrogation region, wherein the combination of the first and second magnetic fields produces an ion number-dependent second order Zeeman shift (Zeeman shift) in the resonance frequency that is opposite in sign to an ion number-dependent second order Doppler shift (Doppler shift) in the resonance frequency, the C-field coil has a radius selected using data indicating how changes in the radius affect an ion-number-dependent shift in the resonance frequency, such that a difference in magnitude between the Doppler shift and the Zeeman shift is controlled or reduced, and the resonance frequency, including the adjustment by the Zeeman shift, is used to obtain the frequency standard.

  14. Early Brain Damage and the Development of Motor Behavior in Children: Clues for Therapeutic Intervention?

    PubMed Central

    Hadders-Algra, Mijna

    2001-01-01

    The Neuronal Group Selection Theory (NGST) could offer new insights into the mechanisms directing motor disorders, such as cerebral palsy and developmental coordination disorder. According to NGST, normal motor development is characterized by two phases of variability. Variation is not at random but determined by criteria set by genetic information. Development starts with the phase of primary variability,during which variation in motor behavior is not geared to external conditions. At function-specific ages secondary variability starts, during which motor performance can be adapted to specific situations. In both forms, of variability, selection on the basis of afferent information plays a significant role. From the NGST point of view, children with pre- or perinatally acquired brain damage, such as children with cerebral palsy and part of the children with developmental coordination disorder, suffer from stereotyped motor behavior, produced by a limited repertoire or primary (sub)cortical neuronal networks. These children also have roblems in selecting the most efficient neuronal activity, due to deficits in the processing of sensory information. Therefore, NGST suggests that intervention in these children at early age should aim at an enlargement of the primary neuronal networks. With increasing age, the emphasis of intervention could shift to the provision of ample opportunities for active practice, which might form a compensation for the impaired selection. PMID:11530887

  15. Simultaneous 3D MR elastography of the in vivo mouse brain

    NASA Astrophysics Data System (ADS)

    Kearney, Steven P.; Majumdar, Shreyan; Royston, Thomas J.; Klatt, Dieter

    2017-10-01

    The feasibility of sample interval modulation (SLIM) magnetic resonance elastography (MRE) for the in vivo mouse brain is assessed, and an alternative SLIM-MRE encoding method is introduced. In SLIM-MRE, the phase accumulation for each motion direction is encoded simultaneously by varying either the start time of the motion encoding gradient (MEG), SLIM-phase constant (SLIM-PC), or the initial phase of the MEG, SLIM-phase varying (SLIM-PV). SLIM-PC provides gradient moment nulling, but the mutual gradient shift necessitates increased echo time (TE). SLIM-PV requires no increased TE, but exhibits non-uniform flow compensation. Comparison was to conventional MRE using six C57BL/6 mice. For SLIM-PC, the Spearman’s rank correlation to conventional MRE for the shear storage and loss modulus images were 80% and 76%, respectively, and likewise for SLIM-PV, 73% and 69%, respectively. The results of the Wilcoxon rank sum test showed that there were no statistically significant differences between the spatially averaged shear moduli derived from conventional-MRE, SLIM-PC, and SLIM-PV acquisitions. Both SLIM approaches were comparable to conventional MRE scans with Spearman’s rank correlation of 69%-80% and with 3 times reduction in scan time. The SLIM-PC method had the best correlation, and SLIM-PV may be a useful tool in experimental conditions, where both measurement time and T2 relaxation is critical.

  16. Simultaneous 3D MR elastography of the in vivo mouse brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, Steven P.; Majumdar, Shreyan; Royston, Thomas J.

    The feasibility of sample interval modulation (SLIM) magnetic resonance elastography (MRE) for the in vivo mouse brain is assessed, and an alternative SLIM-MRE encoding method is introduced. In SLIMMRE, the phase accumulation for each motion direction is encoded simultaneously by varying either the start time of the motion encoding gradient (MEG), SLIM-phase constant (SLIM-PC), or the initial phase of the MEG, SLIM-phase varying (SLIM-PV). SLIM-PC provides gradient moment nulling, but the mutual gradient shift necessitates increased echo time (TE). SLIM-PV requires no increased TE, but exhibits nonuniform flow compensation. Comparison was to conventional MRE using six C57BL/6 mice. For SLIMPC,more » the Spearman’s rank correlation to conventional MRE for the shear storage and loss modulus images were 80% and 76%, respectively, and likewise for SLIM-PV, 73% and 69%, respectively. The results of the Wilcoxon rank sum test showed that there were no statistically significant differences between the spatially averaged shear moduli derived from conventional-MRE, SLIM-PC, and SLIM-PV acquisitions. Both SLIM approaches were comparable to conventional MRE scans with Spearman’s rank correlation of 69%-80% and with 3 times reduction in scan time. As a result, the SLIM-PC method had the best correlation, and SLIM-PV may be a useful tool in experimental conditions, where both measurement time and T2 relaxation is critical.« less

  17. Simultaneous 3D MR elastography of the in vivo mouse brain

    DOE PAGES

    Kearney, Steven P.; Majumdar, Shreyan; Royston, Thomas J.; ...

    2017-09-15

    The feasibility of sample interval modulation (SLIM) magnetic resonance elastography (MRE) for the in vivo mouse brain is assessed, and an alternative SLIM-MRE encoding method is introduced. In SLIMMRE, the phase accumulation for each motion direction is encoded simultaneously by varying either the start time of the motion encoding gradient (MEG), SLIM-phase constant (SLIM-PC), or the initial phase of the MEG, SLIM-phase varying (SLIM-PV). SLIM-PC provides gradient moment nulling, but the mutual gradient shift necessitates increased echo time (TE). SLIM-PV requires no increased TE, but exhibits nonuniform flow compensation. Comparison was to conventional MRE using six C57BL/6 mice. For SLIMPC,more » the Spearman’s rank correlation to conventional MRE for the shear storage and loss modulus images were 80% and 76%, respectively, and likewise for SLIM-PV, 73% and 69%, respectively. The results of the Wilcoxon rank sum test showed that there were no statistically significant differences between the spatially averaged shear moduli derived from conventional-MRE, SLIM-PC, and SLIM-PV acquisitions. Both SLIM approaches were comparable to conventional MRE scans with Spearman’s rank correlation of 69%-80% and with 3 times reduction in scan time. As a result, the SLIM-PC method had the best correlation, and SLIM-PV may be a useful tool in experimental conditions, where both measurement time and T2 relaxation is critical.« less

  18. The sensitivity of auditory-motor representations to subtle changes in auditory feedback while singing

    PubMed Central

    Keough, Dwayne; Jones, Jeffery A.

    2009-01-01

    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers’ and untrained singers’ (nonsingers’) sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel ∕ta∕ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers’ F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers’ models appear to be more sensitive in response to subtle discrepancies in auditory feedback. PMID:19640048

  19. The sensitivity of auditory-motor representations to subtle changes in auditory feedback while singing.

    PubMed

    Keough, Dwayne; Jones, Jeffery A

    2009-08-01

    Singing requires accurate control of the fundamental frequency (F0) of the voice. This study examined trained singers' and untrained singers' (nonsingers') sensitivity to subtle manipulations in auditory feedback and the subsequent effect on the mapping between F0 feedback and vocal control. Participants produced the consonant-vowel /ta/ while receiving auditory feedback that was shifted up and down in frequency. Results showed that singers and nonsingers compensated to a similar degree when presented with frequency-altered feedback (FAF); however, singers' F0 values were consistently closer to the intended pitch target. Moreover, singers initiated their compensatory responses when auditory feedback was shifted up or down 6 cents or more, compared to nonsingers who began compensating when feedback was shifted up 26 cents and down 22 cents. Additionally, examination of the first 50 ms of vocalization indicated that participants commenced subsequent vocal utterances, during FAF, near the F0 value on previous shift trials. Interestingly, nonsingers commenced F0 productions below the pitch target and increased their F0 until they matched the note. Thus, singers and nonsingers rely on an internal model to regulate voice F0, but singers' models appear to be more sensitive in response to subtle discrepancies in auditory feedback.

  20. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    PubMed Central

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  1. Effect of coulomb correlations on luminescence and absorption in compensated semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogoslovskiy, N. A., E-mail: nikitabogoslovskiy@gmail.com; Petrov, P. V.; Ivánov, Yu. L.

    2016-07-15

    The spectra of donor–acceptor light absorption and luminescence in lightly doped and lightly compensated semiconductors are calculated. In the photoluminescence calculation, two limiting cases of long and short carrier lifetimes relative to the carrier-energy relaxation time are considered. It is shown that, at long lifetimes, the photoluminescence spectrum is significantly shifted toward longer wavelengths due to the relaxation of minority charge carriers. At intermediate lifetimes, the photoluminescence spectrum consists of two peaks, which is in good agreement with the experimental data.

  2. A Confirmatory Factor Analysis of the California Verbal Learning Test-Second Edition (CVLT-II) in a Traumatic Brain Injury Sample

    ERIC Educational Resources Information Center

    DeJong, Joy; Donders, Jacobus

    2009-01-01

    The latent structure of the California Verbal Learning Test-Second Edition (CVLT-II) was examined in a clinical sample of 223 persons with traumatic brain injury that had been screened to remove individuals with complicating premorbid (e.g., psychiatric) or comorbid (e.g., financial compensation seeking) histories. Analyses incorporated the…

  3. Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe?

    PubMed Central

    2017-01-01

    There is a dire need to discover new targets for Alzheimer's disease (AD) drug development. Decreased neuronal glucose metabolism that occurs in AD brain could play a central role in disease progression. Little is known about the compensatory neuronal changes that occur to attempt to maintain energy homeostasis. In this review using the PubMed literature database, we summarize evidence that amino acid oxidation can temporarily compensate for the decreased glucose metabolism, but eventually altered amino acid and amino acid catabolite levels likely lead to toxicities contributing to AD progression. Because amino acids are involved in so many cellular metabolic and signaling pathways, the effects of altered amino acid metabolism in AD brain are far-reaching. Possible pathological results from changes in the levels of several important amino acids are discussed. Urea cycle function may be induced in endothelial cells of AD patient brains, possibly to remove excess ammonia produced from increased amino acid catabolism. Studying AD from a metabolic perspective provides new insights into AD pathogenesis and may lead to the discovery of dietary metabolite supplements that can partially compensate for alterations of enzymatic function to delay AD or alleviate some of the suffering caused by the disease. PMID:28261376

  4. Learning to Predict and Control the Physics of Our Movements

    PubMed Central

    2017-01-01

    When we hold an object in our hand, the mass of the object alters the physics of our arm, changing the relationship between motor commands that our brain sends to our arm muscles and the resulting motion of our hand. If the object is unfamiliar to us, our first movement will exhibit an error, producing a trajectory that is different from the one we had intended. This experience of error initiates learning in our brain, making it so that on the very next attempt our motor commands partially compensate for the unfamiliar physics, resulting in smaller errors. With further practice, the compensation becomes more complete, and our brain forms a model that predicts the physics of the object. This model is a motor memory that frees us from having to relearn the physics the next time that we encounter the object. The mechanism by which the brain transforms sensory prediction errors into corrective motor commands is the basis for how we learn the physics of objects with which we interact. The cerebellum and the motor cortex appear to be critical for our ability to learn physics, allowing us to use tools that extend our capabilities, making us masters of our environment. PMID:28202784

  5. Sum-over-states density functional perturbation theory: Prediction of reliable 13C, 15N, and 17O nuclear magnetic resonance chemical shifts

    NASA Astrophysics Data System (ADS)

    Olsson, Lars; Cremer, Dieter

    1996-11-01

    Sum-over-states density functional perturbation theory (SOS-DFPT) has been used to calculate 13C, 15N, and 17O NMR chemical shifts of 20 molecules, for which accurate experimental gas-phase values are available. Compared to Hartree-Fock (HF), SOS-DFPT leads to improved chemical shift values and approaches the degree of accuracy obtained with second order Møller-Plesset perturbation theory (MP2). This is particularly true in the case of 15N chemical shifts where SOS-DFPT performs even better than MP2. Additional improvements of SOS-DFPT chemical shifts can be obtained by empirically correcting diamagnetic and paramagnetic contributions to compensate for deficiencies which are typical of DFT.

  6. Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals.

    PubMed

    Schnitzler, Hans-Ulrich; Denzinger, Annette

    2011-05-01

    Rhythmical modulations in insect echoes caused by the moving wings of fluttering insects are behaviourally relevant information for bats emitting CF-FM signals with a high duty cycle. Transmitter and receiver of the echolocation system in flutter detecting foragers are especially adapted for the processing of flutter information. The adaptations of the transmitter are indicated by a flutter induced increase in duty cycle, and by Doppler shift compensation (DSC) that keeps the carrier frequency of the insect echoes near a reference frequency. An adaptation of the receiver is the auditory fovea on the basilar membrane, a highly expanded frequency representation centred to the reference frequency. The afferent projections from the fovea lead to foveal areas with an overrepresentation of sharply tuned neurons with best frequencies near the reference frequency throughout the entire auditory pathway. These foveal neurons are very sensitive to stimuli with natural and simulated flutter information. The frequency range of the foveal areas with their flutter processing neurons overlaps exactly with the frequency range where DS compensating bats most likely receive echoes from fluttering insects. This tight match indicates that auditory fovea and DSC are adaptations for the detection and evaluation of insects flying in clutter.

  7. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System.

    PubMed

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko; Onimaru, Rikiya; Katoh, Norio; Inoue, Tetsuya; Sutherland, Kenneth Lee; Suzuki, Ryusuke; Shirato, Hiroki; Shimizu, Shinichi

    2016-01-01

    To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch position correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), -1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.

    PubMed

    O'Shea, Jacinta; Gaveau, Valérie; Kandel, Matthieu; Koga, Kazuo; Susami, Kenji; Prablanc, Claude; Rossetti, Yves

    2014-03-01

    This study investigated the motor control mechanisms that enable healthy individuals to adapt their pointing movements during prism exposure to a rightward optical shift. In the prism adaptation literature, two processes are typically distinguished. Strategic motor adjustments are thought to drive the pattern of rapid endpoint error correction typically observed during the early stage of prism exposure. This is distinguished from so-called 'true sensorimotor realignment', normally measured with a different pointing task, at the end of prism exposure, which reveals a compensatory leftward 'prism after-effect'. Here, we tested whether each mode of motor compensation - strategic adjustments versus 'true sensorimotor realignment' - could be distinguished, by analyzing patterns of kinematic change during prism exposure. We hypothesized that fast feedforward versus slower feedback error corrective processes would map onto two distinct phases of the reach trajectory. Specifically, we predicted that feedforward adjustments would drive rapid compensation of the initial (acceleration) phase of the reach, resulting in the rapid reduction of endpoint errors typically observed early during prism exposure. By contrast, we expected visual-proprioceptive realignment to unfold more slowly and to reflect feedback influences during the terminal (deceleration) phase of the reach. The results confirmed these hypotheses. Rapid error reduction during the early stage of prism exposure was achieved by trial-by-trial adjustments of the motor plan, which were proportional to the endpoint error feedback from the previous trial. By contrast, compensation of the terminal reach phase unfolded slowly across the duration of prism exposure. Even after 100 trials of pointing through prisms, adaptation was incomplete, with participants continuing to exhibit a small rightward shift in both the reach endpoints and in the terminal phase of reach trajectories. Individual differences in the degree of adaptation of the terminal reach phase predicted the magnitude of prism after-effects. In summary, this study identifies distinct kinematic signatures of fast strategic versus slow sensorimotor realignment processes, which combine to adjust motor performance to compensate for a prismatic shift. © 2013 Elsevier Ltd. All rights reserved.

  9. A combined registration and finite element analysis method for fast estimation of intraoperative brain shift; phantom and animal model study.

    PubMed

    Mohammadi, Amrollah; Ahmadian, Alireza; Rabbani, Shahram; Fattahi, Ehsan; Shirani, Shapour

    2017-12-01

    Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Brain Evolution and Human Neuropsychology: The Inferential Brain Hypothesis

    PubMed Central

    Koscik, Timothy R.; Tranel, Daniel

    2013-01-01

    Collaboration between human neuropsychology and comparative neuroscience has generated invaluable contributions to our understanding of human brain evolution and function. Further cross-talk between these disciplines has the potential to continue to revolutionize these fields. Modern neuroimaging methods could be applied in a comparative context, yielding exciting new data with the potential of providing insight into brain evolution. Conversely, incorporating an evolutionary base into the theoretical perspectives from which we approach human neuropsychology could lead to novel hypotheses and testable predictions. In the spirit of these objectives, we present here a new theoretical proposal, the Inferential Brain Hypothesis, whereby the human brain is thought to be characterized by a shift from perceptual processing to inferential computation, particularly within the social realm. This shift is believed to be a driving force for the evolution of the large human cortex. PMID:22459075

  11. Nurses wanted Is the job too harsh or is the wage too low?

    PubMed

    Di Tommaso, M L; Strøm, S; Saether, E M

    2009-05-01

    When entering the job market, nurses choose among different kind of jobs. Each of these jobs is characterized by wage, sector (primary care or hospital) and shift (daytime work or shift). This paper estimates a multi-sector-job-type random utility model of labor supply on data for Norwegian registered nurses (RNs) in 2000. The empirical model implies that labor supply is rather inelastic; 10% increase in the wage rates for all nurses is estimated to yield 3.3% increase in overall labor supply. This modest response shadows for much stronger inter-job-type responses. Our approach differs from previous studies in two ways: First, to our knowledge, it is the first time that a model of labor supply for nurses is estimated taking explicitly into account the choices that RN's have regarding work place and type of job. Second, it differs from previous studies with respect to the measurement of the compensations for different types of work. So far, it has been focused on wage differentials. But there are more attributes of a job than the wage. Based on the estimated random utility model we therefore calculate the expected value of compensation that makes a utility maximizing agent indifferent between types of jobs, here between shift work and daytime work. It turns out that Norwegian nurses working shifts may be willing to work shift relative to daytime work for a lower wage than the current one.

  12. Metabolically induced heteroplasmy shifting and L-arginine treatment reduce the energetic defect in a neuronal-like model of MELAS

    PubMed Central

    Desquiret-Dumas, Valerie; Gueguen, Naig; Barth, Magalie; Chevrollier, Arnaud; Hancock, Saege; Wallace, Douglas C; Amati-Bonneau, Patrizia; Henrion, Daniel; Bonneau, Dominique; Reynier, Pascal; Procaccio, Vincent

    2012-01-01

    The m.3243A>G variant in the mitochondrial tRNALeu (UUR) gene is a common mitochondrial DNA (mtDNA) mutation. Phenotypic manifestations depend mainly on the heteroplasmy, i.e. the ratio of mutant to normal mtDNA copies. A high percentage of mutant mtDNA is associated with a severe, life-threatening neurological syndrome known as MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). MELAS is described as a neurovascular disorder primarily affecting the brain and blood vessels, but the pathophysiology of the disease is poorly understood. We developed a series of cybrid cell lines at two different mutant loads: 70% and 100% in the nuclear background of a neuroblastoma cell line (SH-SY5Y). We investigated the impact of the mutation on the metabolism and mitochondrial respiratory chain activity of the cybrids. The m.3243A>G mitochondrial mutation induced a metabolic switch towards glycolysis in the neuronal cells and produced severe defects in respiratory chain assembly and activity. We used two strategies to compensate for the biochemical defects in the mutant cells: one consisted of lowering the glucose content in the culture medium, and the other involved the addition of L-arginine. The reduction of glucose significantly shifted the 100% mutant cells towards the wild-type, reaching a 90% mutant level and restoring respiratory chain complex assembly. The addition of L-arginine, a nitric oxide (NO) donor, improved complex I activity in the mutant cells in which the defective NO metabolism had led to a relative shortage of NO. Thus, metabolically induced heteroplasmy shifting and L-arginine therapy may constitute promising therapeutic strategies against MELAS. PMID:22306605

  13. Multichannel analyzers at high rates of input

    NASA Technical Reports Server (NTRS)

    Rudnick, S. J.; Strauss, M. G.

    1969-01-01

    Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.

  14. Integrating Retraction Modeling Into an Atlas-Based Framework for Brain Shift Prediction

    PubMed Central

    Chen, Ishita; Ong, Rowena E.; Simpson, Amber L.; Sun, Kay; Thompson, Reid C.

    2015-01-01

    In recent work, an atlas-based statistical model for brain shift prediction, which accounts for uncertainty in the intraoperative environment, has been proposed. Previous work reported in the literature using this technique did not account for local deformation caused by surgical retraction. It is challenging to precisely localize the retractor location prior to surgery and the retractor is often moved in the course of the procedure. This paper proposes a technique that involves computing the retractor-induced brain deformation in the operating room through an active model solve and linearly superposing the solution with the precomputed deformation atlas. As a result, the new method takes advantage of the atlas-based framework’s accounting for uncertainties while also incorporating the effects of retraction with minimal intraoperative computing. This new approach was tested using simulation and phantom experiments. The results showed an improvement in average shift correction from 50% (ranging from 14 to 81%) for gravity atlas alone to 80% using the active solve retraction component (ranging from 73 to 85%). This paper presents a novel yet simple way to integrate retraction into the atlas-based brain shift computation framework. PMID:23864146

  15. The corpus callosum in primates: processing speed of axons and the evolution of hemispheric asymmetry

    PubMed Central

    Phillips, Kimberley A.; Stimpson, Cheryl D.; Smaers, Jeroen B.; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R.; Sherwood, Chet C.

    2015-01-01

    Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry. PMID:26511047

  16. Compressing the fluctuation of the magnetic field by dynamic compensation

    NASA Astrophysics Data System (ADS)

    Wang, Wenli; Dong, Richang; Wei, Rong; Chen, Tingting; Wang, Qian; Wang, Yuzhu

    2018-03-01

    We present a dynamic compensation method to compress the spatial fluctuation of the static magnetic field (C-field) that provides a quantization axis in the atomic fountain clock. The coil current of the C-field is point-by-point modulated in accordance with the atoms probing the magnetic field along the flight trajectory. A homogeneous field with a 0.2 nT inhomogeneity is produced compared to a 5 nT under the static magnetic field with a constant current during the Ramsey interrogation. The corresponding uncertainty associated with the second-order Zeeman shift that we calculate is improved by one order of magnitude. The technique provides an alternative method to improve the uniformity of the magnetic field, particularly for large-scale equipment that is difficult to construct with an effective magnetic shielding. Our method is simple, robust, and essentially important in frequency evaluations concerning the dominant uncertainty contribution due to the quadratic Zeeman shift.

  17. Work-Related Pain and Injury and Barriers to Workers’ Compensation Among Las Vegas Hotel Room Cleaners

    PubMed Central

    Scherzer, Teresa; Rugulies, Reiner; Krause, Niklas

    2005-01-01

    Objectives. We examined the prevalence of work-related pain and injury and explored barriers to and experiences of reporting among workers. Methods. We surveyed 941 unionized hotel room cleaners about work-related pain, injury, disability, and reporting. Results. During the past 12 months, 75% of workers in our study experienced work-related pain, and 31% reported it to management; 20% filed claims for workers’ compensation as a result of work-related injury, and 35% of their claims were denied. Barriers to reporting injury included “It would be too much trouble” (43%), “I was afraid” (26%), and “I didn’t know how” (18%). An estimated 69% of medical costs were shifted from employers to workers. Conclusions. The reasons for underreporting and the extent of claim denial warrant further investigation. Implications for worker health and the precise quantification of shifting costs to workers also should be addressed. PMID:15727981

  18. Eddy current compensated double diffusion encoded (DDE) MRI.

    PubMed

    Mueller, Lars; Wetscherek, Andreas; Kuder, Tristan Anselm; Laun, Frederik Bernd

    2017-01-01

    Eddy currents might lead to image distortions in diffusion-weighted echo planar imaging. A method is proposed to reduce their effects on double diffusion encoding (DDE) MRI experiments and the thereby derived microscopic fractional anisotropy (μFA). The twice-refocused spin echo scheme was adapted for DDE measurements. To assess the effect of individual diffusion encodings on the image distortions, measurements of a grid of plastic rods in water were performed. The effect of eddy current compensation on μFA measurements was evaluated in the brains of six healthy volunteers. The use of an eddy current compensation reduced the signal variation. As expected, the distortions caused by the second encoding were larger than those of the first encoding, entailing a stronger need to compensate for them. For an optimal result, however, both encodings had to be compensated. The artifact reduction strongly improved the measurement of the μFA in ventricles and gray matter by reducing the overestimation. An effect of the compensation on absolute μFA values in white matter was not observed. It is advisable to compensate both encodings in DDE measurements for eddy currents. Magn Reson Med 77:328-335, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Improvement of Hand Movement on Visual Target Tracking by Assistant Force of Model-Based Compensator

    NASA Astrophysics Data System (ADS)

    Ide, Junko; Sugi, Takenao; Nakamura, Masatoshi; Shibasaki, Hiroshi

    Human motor control is achieved by the appropriate motor commands generating from the central nerve system. A test of visual target tracking is one of the effective methods for analyzing the human motor functions. We have previously examined a possibility for improving the hand movement on visual target tracking by additional assistant force through a simulation study. In this study, a method for compensating the human hand movement on visual target tracking by adding an assistant force was proposed. Effectiveness of the compensation method was investigated through the experiment for four healthy adults. The proposed compensator precisely improved the reaction time, the position error and the variability of the velocity of the human hand. The model-based compensator proposed in this study is constructed by using the measurement data on visual target tracking for each subject. The properties of the hand movement for different subjects can be reflected in the structure of the compensator. Therefore, the proposed method has possibility to adjust the individual properties of patients with various movement disorders caused from brain dysfunctions.

  20. Top-down approach to vestibular compensation: translational lessons from vestibular rehabilitation

    PubMed Central

    Balaban, Carey D.; Hoffer, Michael E.; Gottshall, Kim R.

    2012-01-01

    This review examines vestibular compensation and vestibular rehabilitation from a unified translational research perspective. Laboratory studies illustrate neurobiological principles of vestibular compensation at the molecular, cellular and systems levels in animal models that inform vestibular rehabilitation practice. However, basic research has been hampered by an emphasis on ‘naturalistic’ recovery, with time after insult and drug interventions as primary dependent variables. The vestibular rehabilitation literature, on the other hand, provides information on how the degree of compensation can be shaped by specific activity regimens. The milestones of the early spontaneous static compensation mark the re-establishment of static gaze stability, which provides a common coordinate frame for the brain to interpret residual vestibular information in the context of visual, somatosensory and visceral signals that convey gravitoinertial information. Stabilization of the head orientation and the eye orientation (suppression of spontaneous nystagmus) appear to be necessary by not sufficient conditions for successful rehabilitation, and define a baseline for initiating retraining. The lessons from vestibular rehabilitation in animal models offer the possibility of shaping the recovery trajectory to identify molecular and genetic factors that can improve vestibular compensation. PMID:22981400

  1. Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.

    PubMed

    Hibino, Kenichi; Kim, Yangjin

    2016-08-10

    In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error.

  2. Flexible Redistribution in Cognitive Networks.

    PubMed

    Hartwigsen, Gesa

    2018-06-15

    Previous work has emphasized that cognitive functions in the human brain are organized into large-scale networks. However, the mechanisms that allow these networks to compensate for focal disruptions remain elusive. I suggest a new perspective on the compensatory flexibility of cognitive networks. First, I demonstrate that cognitive networks can rapidly change the functional weight of the relative contribution of different regions. Second, I argue that there is an asymmetry in the compensatory potential of different kinds of networks. Specifically, recruitment of domain-general functions can partially compensate for focal disruptions of specialized cognitive functions, but not vice versa. Considering the compensatory potential within and across networks will increase our understanding of functional adaptation and reorganization after brain lesions and offers a new perspective on large-scale neural network (re-)organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Fronto-Parietal Subnetworks Flexibility Compensates For Cognitive Decline Due To Mental Fatigue.

    PubMed

    Taya, Fumihiko; Dimitriadis, Stavros I; Dragomir, Andrei; Lim, Julian; Sun, Yu; Wong, Kian Foong; Thakor, Nitish V; Bezerianos, Anastasios

    2018-04-24

    Fronto-parietal subnetworks were revealed to compensate for cognitive decline due to mental fatigue by community structure analysis. Here, we investigate changes in topology of subnetworks of resting-state fMRI networks due to mental fatigue induced by prolonged performance of a cognitively demanding task, and their associations with cognitive decline. As it is well established that brain networks have modular organization, community structure analyses can provide valuable information about mesoscale network organization and serve as a bridge between standard fMRI approaches and brain connectomics that quantify the topology of whole brain networks. We developed inter- and intramodule network metrics to quantify topological characteristics of subnetworks, based on our hypothesis that mental fatigue would impact on functional relationships of subnetworks. Functional networks were constructed with wavelet correlation and a data-driven thresholding scheme based on orthogonal minimum spanning trees, which allowed detection of communities with weak connections. A change from pre- to posttask runs was found for the intermodule density between the frontal and the temporal subnetworks. Seven inter- or intramodule network metrics, mostly at the frontal or the parietal subnetworks, showed significant predictive power of individual cognitive decline, while the network metrics for the whole network were less effective in the predictions. Our results suggest that the control-type fronto-parietal networks have a flexible topological architecture to compensate for declining cognitive ability due to mental fatigue. This community structure analysis provides valuable insight into connectivity dynamics under different cognitive states including mental fatigue. © 2018 Wiley Periodicals, Inc.

  4. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system.

    PubMed Central

    Inoué, S; Fuseler, J; Salmon, E D; Ellis, G W

    1975-01-01

    Equilibrium between mitotic microtubules and tubulin is analyzed, using birefringence of mitotic spindle to measure microtubule concentration in vivo. A newly designed temperature-controlled slide and miniature, thermostated hydrostatic pressure chamber permit rapid alteration of temperature and of pressure. Stress birefringence of the windows is minimized, and a system for rapid recording of compensation is incorporated, so that birefringence can be measured to 0.1 nm retardation every few seconds. Both temperature and pressure data yield thermodynamic values (delta H similar to 35 kcal/mol, delta S similar to 120 entropy units [eu], delta V similar to 400 ml/mol of subunit polymerized) consistent with the explanation that polymerization of tubulin is entropy driven and mediated by hydrophobic interactions. Kinetic data suggest pseudo-zero-order polymerization and depolymerization following rapid temperature shifts, and a pseudo-first-order depolymerization during anaphase at constant temperature. The equilibrium properties of the in vivo mitotic microtubules are compared with properties of isolated brain tubules. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 19 PMID:1139037

  5. Effort test failure: toward a predictive model.

    PubMed

    Webb, James W; Batchelor, Jennifer; Meares, Susanne; Taylor, Alan; Marsh, Nigel V

    2012-01-01

    Predictors of effort test failure were examined in an archival sample of 555 traumatically brain-injured (TBI) adults. Logistic regression models were used to examine whether compensation-seeking, injury-related, psychological, demographic, and cultural factors predicted effort test failure (ETF). ETF was significantly associated with compensation-seeking (OR = 3.51, 95% CI [1.25, 9.79]), low education (OR:. 83 [.74, . 94]), self-reported mood disorder (OR: 5.53 [3.10, 9.85]), exaggerated displays of behavior (OR: 5.84 [2.15, 15.84]), psychotic illness (OR: 12.86 [3.21, 51.44]), being foreign-born (OR: 5.10 [2.35, 11.06]), having sustained a workplace accident (OR: 4.60 [2.40, 8.81]), and mild traumatic brain injury severity compared with very severe traumatic brain injury severity (OR: 0.37 [0.13, 0.995]). ETF was associated with a broader range of statistical predictors than has previously been identified and the relative importance of psychological and behavioral predictors of ETF was evident in the logistic regression model. Variables that might potentially extend the model of ETF are identified for future research efforts.

  6. Who pays for agricultural injury care?

    PubMed

    Costich, Julia

    2010-01-01

    Analysis of 295 agricultural injury hospitalizations in a single state's hospital discharge database found that workers' compensation covered only 5% of the inpatient stays. Other sources were commercial health insurance (47%), Medicare (31%), and Medicaid (7%); 9% were uninsured. Estimated mean hospital and physician payments (not costs or charges) were $12,056 per hospitalization. Nearly one sixth (16%) of hospitalizations were either unreimbursed or covered by Medicaid, indicating a substantial cost-shift to public funding sources. Problems in characterizing agricultural injuries and states' exceptions to workers' compensation coverage mandates point to the need for comprehensive health coverage.

  7. Do neotropical migrant butterflies navigate using a solar compass?

    PubMed

    Oliveira; Srygley; Dudley

    1998-12-01

    Many tropical butterfly species are well-known for their migratory behaviour. Although these insects can maintain a constant direction throughout the day, the physiological mechanisms of orientation are unknown. It has been argued that tropical migrant butterflies must use a time-compensated sun compass to accomplish their journey, but the crucial experimental manipulations to test this hypothesis have not been conducted. This study reports the results of clock-shift experiments performed with two species of migrating butterflies (Pieridae: Aphrissa statira and Phoebis argante) captured during flight across Lake Gatun, Panama. The observed constant flight bearing of natural controls suggests that these species are capable of performing time-compensated celestial navigation. Our clock-shift experiments suggest that a sun compass is involved. Individuals submitted to a 4 h advance shift took significantly different mean orientations on release compared with control butterflies. The direction of this difference was consistent with the use of a sun compass. The magnitude was approximately half the predicted value if the vanishing bearing of released butterflies was used as the variable to evaluate the effect of time-shifting and approximately three-quarters of that predicted if the estimated heading was the variable used. Mean vanishing bearings of control and experimental butterflies did not correspond to predicted values. This difference can be attributed largely to the combined effects of wind and handling.

  8. Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity

    DOE PAGES

    Parise, M.

    2018-05-18

    The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less

  9. Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parise, M.

    The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less

  10. Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity

    NASA Astrophysics Data System (ADS)

    Parise, M.

    2018-05-01

    The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effective tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.

  11. Prediction of the Lorentz Force Detuning and Pressure Sensitivity for a Pillbox Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parise, M.

    2018-04-23

    The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less

  12. Neural Correlates of Prosocial Behavior: Compensating Social Exclusion in a Four-Player Cyberball Game

    PubMed Central

    van der Meulen, Mara; van IJzendoorn, Marinus H.; Crone, Eveline A.

    2016-01-01

    Prior studies demonstrated contributions of the insula and dorsal anterior cingulate cortex (dACC) for both experiencing and observing social exclusion, but it is not yet well understood how the brain processes the compensation of exclusion, as is observed in prosocial helping. Here, we tested if social brain regions, specifically the medial prefrontal cortex (mPFC) and temporal parietal junction (TPJ) are involved when individuals show prosocial behavior towards excluded others. For this purpose, 23 female participants played a four-player Cyberball Game in which participants could toss balls to each other. During the exclusion game, two players excluded one of the other players. When participants observed exclusion by others, they showed elevated activity in the insula, consistent with prior studies. However, when they tossed the ball to the excluded player, they showed increased activation in the TPJ, consistent with the hypothesis that prosocial behavior is associated with social reasoning. In addition, tossing to the excluded player was associated with increased activity in the nucleus accumbens (NAcc). Given that prior studies reported that the NAcc is involved in experiencing rewards, this may suggest a warm glow for showing prosocial compensation behavior when helping excluded others. PMID:27391364

  13. Evidence for hysteresis in the cerebral pressure-flow relationship in healthy men.

    PubMed

    Brassard, Patrice; Ferland-Dutil, Hélène; Smirl, Jonathan D; Paquette, Myriam; Le Blanc, Olivier; Malenfant, Simon; Ainslie, Philip N

    2017-04-01

    The cerebrovasculature is more efficient at compensating for pharmacologically induced transient hypertension versus transient hypotension. Whether this phenomenon exists during nonpharmacologically induced hypertension and hypotension is currently unknown. We compared the percent change in mean velocity in the middle cerebral artery (MCAvmean) per percent change in mean arterial pressure (MAP) (%ΔMCAVmean/%ΔMAP) during transient hypertension and hypotension induced during squat-stand maneuvers performed at 0.05 Hz (20-s cycles) and 0.10 Hz (10-s cycles) in 58 male volunteers. %ΔMCAvmean/%ΔMAP was attenuated by 25% ( P = 0.03, 0.05 Hz) and 47% ( P < 0.0001, 0.10 Hz) during transient hypertension versus hypotension. Thus, these findings indicate that the brain in healthy men is better adapted to compensate for physiologically relevant transient hypertension than hypotension. NEW & NOTEWORTHY The novel finding of this study is that the change in middle cerebral artery mean flow velocity is attenuated during hypertension compared with hypotension physiologically induced by oscillations in blood pressure in men. These results support that the human brain is more effective at compensating for transient hypertension than hypotension. Copyright © 2017 the American Physiological Society.

  14. Real-time monitoring of human blood-brain barrier disruption

    PubMed Central

    Kiviniemi, Vesa; Korhonen, Vesa; Kortelainen, Jukka; Rytky, Seppo; Keinänen, Tuija; Tuovinen, Timo; Isokangas, Matti; Sonkajärvi, Eila; Siniluoto, Topi; Nikkinen, Juha; Alahuhta, Seppo; Tervonen, Osmo; Turpeenniemi-Hujanen, Taina; Myllylä, Teemu; Kuittinen, Outi; Voipio, Juha

    2017-01-01

    Chemotherapy aided by opening of the blood-brain barrier with intra-arterial infusion of hyperosmolar mannitol improves the outcome in primary central nervous system lymphoma. Proper opening of the blood-brain barrier is crucial for the treatment, yet there are no means available for its real-time monitoring. The intact blood-brain barrier maintains a mV-level electrical potential difference between blood and brain tissue, giving rise to a measurable electrical signal at the scalp. Therefore, we used direct-current electroencephalography (DC-EEG) to characterize the spatiotemporal behavior of scalp-recorded slow electrical signals during blood-brain barrier opening. Nine anesthetized patients receiving chemotherapy were monitored continuously during 47 blood-brain barrier openings induced by carotid or vertebral artery mannitol infusion. Left or right carotid artery mannitol infusion generated a strongly lateralized DC-EEG response that began with a 2 min negative shift of up to 2000 μV followed by a positive shift lasting up to 20 min above the infused carotid artery territory, whereas contralateral responses were of opposite polarity. Vertebral artery mannitol infusion gave rise to a minimally lateralized and more uniformly distributed slow negative response with a posterior-frontal gradient. Simultaneously performed near-infrared spectroscopy detected a multiphasic response beginning with mannitol-bolus induced dilution of blood and ending in a prolonged increase in the oxy/deoxyhemoglobin ratio. The pronounced DC-EEG shifts are readily accounted for by opening and sealing of the blood-brain barrier. These data show that DC-EEG is a promising real-time monitoring tool for blood-brain barrier disruption augmented drug delivery. PMID:28319185

  15. Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia.

    PubMed

    Träger, Ulrike; Homberg, Uwe

    2011-02-09

    Many animal species, in particular insects, exploit the E-vector pattern of the blue sky for sun compass navigation. Like other insects, locusts detect dorsal polarized light via photoreceptors in a specialized dorsal rim area of the compound eye. Polarized light information is transmitted through several processing stages to the central complex, a brain area involved in the control of goal-directed orientation behavior. To investigate how polarized light information is transmitted to thoracic motor circuits, we studied the responses of locust descending neurons to polarized light. Three sets of polarization-sensitive descending neurons were characterized through intracellular recordings from axonal fibers in the neck connectives combined with single-cell dye injections. Two descending neurons from the brain, one with ipsilaterally and the second with contralaterally descending axon, are likely to bridge the gap between polarization-sensitive neurons in the brain and thoracic motor centers. In both neurons, E-vector tuning changed linearly with daytime, suggesting that they signal time-compensated spatial directions, an important prerequisite for navigation using celestial signals. The third type connects the suboesophageal ganglion with the prothoracic ganglion. It showed no evidence for time compensation in E-vector tuning and might play a role in flight stabilization and control of head movements.

  16. Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background

    PubMed Central

    Glabinski, Andrzej

    2015-01-01

    Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets. PMID:26229689

  17. 48 CFR 722.103-2 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Most contracts covered by this regulation call for the performance of professional or technical services overseas on a cost-reimbursement basis. The compensation for employees performing such services is... not expected that these employees will receive additional pay, overtime or shift premiums, or...

  18. Comparison of proton therapy techniques for treatment of the whole brain as a component of craniospinal radiation.

    PubMed

    Dinh, Jeffrey; Stoker, Joshua; Georges, Rola H; Sahoo, Narayan; Zhu, X Ronald; Rath, Smruti; Mahajan, Anita; Grosshans, David R

    2013-12-17

    For treatment of the entire cranium using passive scattering proton therapy (PSPT) compensators are often employed in order to reduce lens and cochlear exposure. We sought to assess the advantages and consequences of utilizing compensators for the treatment of the whole brain as a component of craniospinal radiation (CSI) with PSPT. Moreover, we evaluated the potential benefits of spot scanning beam delivery in comparison to PSPT. Planning computed tomography scans for 50 consecutive CSI patients were utilized to generate passive scattering proton therapy treatment plans with and without Lucite compensators (PSW and PSWO respectively). A subset of 10 patients was randomly chosen to generate scanning beam treatment plans for comparison. All plans were generated using an Eclipse treatment planning system and were prescribed to a dose of 36 Gy(RBE), delivered in 20 fractions, to the whole brain PTV. Plans were normalized to ensure equal whole brain target coverage. Dosimetric data was compiled and statistical analyses performed using a two-tailed Student's t-test with Bonferroni corrections to account for multiple comparisons. Whole brain target coverage was comparable between all methods. However, cribriform plate coverage was superior in PSWO plans in comparison to PSW (V95%; 92.9 ± 14 vs. 97.4 ± 5, p < 0.05). As predicted, PSWO plans had significantly higher lens exposure in comparison to PSW plans (max lens dose Gy(RBE): left; 24.8 ± 0.8 vs. 22.2 ± 0.7, p < 0.05, right; 25.2 ± 0.8 vs. 22.8 ± 0.7, p < 0.05). However, PSW plans demonstrated no significant cochlear sparing vs. PSWO (mean cochlea dose Gy(RBE): 36.4 ± 0.2 vs. 36.7 ± 0.1, p = NS). Moreover, dose homogeneity was inferior in PSW plans in comparison to PSWO plans as reflected by significant alterations in both whole brain and brainstem homogeneity index (HI) and inhomogeneity coefficient (IC). In comparison to both PSPT techniques, multi-field optimized intensity modulated (MFO-IMPT) spot scanning treatment plans displayed superior sparing of both lens and cochlea (max lens: 12.5 ± 0.6 and 12.9 ± 0.7 right and left respectively; mean cochlea 28.6 ± 0.5 and 27.4 ± 0.2), although heterogeneity within target volumes was comparable to PSW plans. For PSPT treatments, the addition of a compensator imparts little clinical advantage. In contrast, the incorporation of spot scanning technology as a component of CSI treatments, offers additional normal tissue sparing which is likely of clinical significance.

  19. Valence-band-edge shift due to doping in p + GaAs

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-05-01

    Accurate knowledge of the shifts in valence- and conduction-band edges due to heavy doping effects is crucial in modeling GaAs device structures that utilize heavily doped layers. X-ray photoemission spectroscopy was used to deduce the shift in the valence-band-edge induced by carbon (p type) doping to a carrier density of 1×1020 cm-3 based on a determination of the bulk binding energy of the Ga and As core levels in this material. Analysis of the data indicates that the shift of the valence-band maximum into the gap and the penetration of the Fermi level into the valence bands exactly compensate at this degenerate carrier concentration, to give ΔEv =0.12±0.05 eV.

  20. Pixel-based absolute surface metrology by three flat test with shifted and rotated maps

    NASA Astrophysics Data System (ADS)

    Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang

    2018-03-01

    In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.

  1. Performance Evaluation and Nonlinear Mitigation through DQPSK Modulation in 32 × 40 Gbps Long-Haul DWDM Systems

    NASA Astrophysics Data System (ADS)

    Sharan, Lucky; Agrawal, Vaibhav M.; Chaubey, V. K.

    2017-08-01

    Higher spectral efficiency and greater data rate per channel are the most cost-effective strategies to meet the exponential demand of data traffic in the optical core network. Multilevel modulation formats being spectrally efficient enhance the transmission capacity by coding information in the amplitude, phase, polarization or a combination of all. This paper presents the design architecture of a 32-channel dense wavelength division multiplexed (DWDM) system, where each channel operates with multi-level phase modulation formats at 40 Gbps. The proposed design has been simulated for 50 GHz channel spacing to numerically compute the performance of both differential phase-shift keying (DPSK) and differential quadrature phase-shift keying (DQPSK) modulation formats in such high-speed DWDM system. The transmission link is analyzed with perfect dispersion compensation and also with under-compensation scheme. The link performance in terms of quality factor (Q) for varying input powers with different dispersion compensation schemes has been evaluated. The simulation study shows significant nonlinear mitigation for both DPSK- and DQPSK-based DWDM systems up to 1,000 km and beyond. It is concluded that at higher power levels DQPSK format having a narrower spectrum shows better tolerance to dispersion and nonlinearities than DPSK format.

  2. Omnidirectional color filters capitalizing on a nano-resonator of Ag-TiO2-Ag integrated with a phase compensating dielectric overlay

    NASA Astrophysics Data System (ADS)

    Park, Chul-Soon; Shrestha, Vivek Raj; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-02-01

    We present a highly efficient omnidirectional color filter that takes advantage of an Ag-TiO2-Ag nano-resonator integrated with a phase-compensating TiO2 overlay. The dielectric overlay substantially improves the angular sensitivity by appropriately compensating for the phase pertaining to the structure and suppresses unwanted optical reflection so as to elevate the transmission efficiency. The filter is thoroughly designed, and it is analyzed in terms of its reflection, optical admittance, and phase shift, thereby highlighting the origin of the omnidirectional resonance leading to angle-invariant characteristics. The polarization dependence of the filter is explored, specifically with respect to the incident angle, by performing experiments as well as by providing the relevant theoretical explanation. We could succeed in demonstrating the omnidirectional resonance for the incident angles ranging to up to 70°, over which the center wavelength is shifted by below 3.5% and the peak transmission efficiency is slightly degraded from 69%. The proposed filters incorporate a simple multi-layered structure and are expected to be utilized as tri-color pixels for applications that include image sensors and display devices. These devices are expected to allow good scalability, not requiring complex lithographic processes.

  3. Manatee (Trichechus manatus) vocalization usage in relation to environmental noise levels.

    PubMed

    Miksis-Olds, Jennifer L; Tyack, Peter L

    2009-03-01

    Noise can interfere with acoustic communication by masking signals that contain biologically important information. Communication theory recognizes several ways a sender can modify its acoustic signal to compensate for noise, including increasing the source level of a signal, its repetition, its duration, shifting frequency outside that of the noise band, or shifting the timing of signal emission outside of noise periods. The extent to which animals would be expected to use these compensation mechanisms depends on the benefit of successful communication, risk of failure, and the cost of compensation. Here we study whether a coastal marine mammal, the manatee, can modify vocalizations as a function of behavioral context and ambient noise level. To investigate whether and how manatees modify their vocalizations, natural vocalization usage and structure were examined in terms of vocalization rate, duration, frequency, and source level. Vocalizations were classified into two call types, chirps and squeaks, which were analyzed independently. In conditions of elevated noise levels, call rates decreased during feeding and social behaviors, and the duration of each call type was differently influenced by the presence of calves. These results suggest that ambient noise levels do have a detectable effect on manatee communication and that manatees modify their vocalizations as a function of noise in specific behavioral contexts.

  4. Scalp-recorded slow EEG responses generated in response to hemodynamic changes in the human brain.

    PubMed

    Vanhatalo, S; Tallgren, P; Becker, C; Holmes, M D; Miller, J W; Kaila, K; Voipio, J

    2003-09-01

    To study whether hemodynamic changes in human brain generate scalp-EEG responses. Direct current EEG (DC-EEG) was recorded from 12 subjects during 5 non-invasive manipulations that affect intracranial hemodynamics by different mechanisms: bilateral jugular vein compression (JVC), head-up tilt (HUT), head-down tilt (HDT), Valsalva maneuver (VM), and Mueller maneuver (MM). DC shifts were compared to changes in cerebral blood volume (CBV) measured by near-infrared spectroscopy (NIRS). DC shifts were observed during all manipulations with highest amplitudes (up to 250 microV) at the midline electrodes, and the most pronounced changes (up to 15 microV/cm) in the DC voltage gradient around vertex. In spite of inter-individual variation in both amplitude and polarity, the DC shifts were consistent and reproducible for each subject and they showed a clear temporal correlation with changes in CBV. Our results indicate that hemodynamic changes in human brain are associated with marked DC shifts that cannot be accounted for by intracortical neuronal or glial currents. Instead, the data are consistent with a non-neuronal generator mechanism that is associated with the blood-brain barrier. These findings have direct implications for mechanistic interpretation of slow EEG responses in various experimental paradigms.

  5. The neuropathology of morality: Germany 1930-1960.

    PubMed

    Schirmann, Felix

    2014-01-01

    This article analyzes brain scientists' attempts to trace morality in the brain in Germany from 1930 to 1960. The debate around Karl Kleist's localization of the Gemeinschafts-Ich [community-I] in the 1930s is depicted in order to illustrate the central arguments for and against localizations of morality. The focus of this article is on the period 1936-1960 in which experts put forth specific ideas on morality's cerebral underpinnings that mirror the larger theoretical shift from strict localization doctrine to a more holistic understanding of the brain. As a result of this shift, experts avoided exact localizations of morality. Instead, they posited correlations between brain areas and morality. The analysis illustrates the dependence of neuropathological research on morality on general theories of brain functioning and marks a first contribution to the history of the neuroscience of morality for the time after 1930.

  6. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  7. Gaze stabilization in chronic vestibular-loss and in cerebellar ataxia: interactions of feedforward and sensory feedback mechanisms.

    PubMed

    Sağlam, M; Lehnen, N

    2014-01-01

    During gaze shifts, humans can use visual, vestibular, and proprioceptive feedback, as well as feedforward mechanisms, for stabilization against active and passive head movements. The contributions of feedforward and sensory feedback control, and the role of the cerebellum, are still under debate. To quantify these contributions, we increased the head moment of inertia in three groups (ten healthy, five chronic vestibular-loss and nine cerebellar-ataxia patients) while they performed large gaze shifts to flashed targets in darkness. This induces undesired head oscillations. Consequently, both active (desired) and passive (undesired) head movements had to be compensated for to stabilize gaze. All groups compensated for active and passive head movements, vestibular-loss patients less than the other groups (P < 0.001, passive/active compensatory gains: vestibular-loss 0.23 ± 0.09/0.43 ± 0.12, healthy 0.80 ± 0.17/0.83 ± 0.15, cerebellar-ataxia 0.68 ± 0.17/0.77 ± 0.30, mean ± SD). The compensation gain ratio against passive and active movements was smaller than one in vestibular-loss patients (0.54 ± 0.10, P=0.001). Healthy and cerebellar-ataxia patients did not differ in active and passive compensation. In summary, vestibular-loss patients can better stabilize gaze against active than against passive head movements. Therefore, feedforward mechanisms substantially contribute to gaze stabilization. Proprioception alone is not sufficient (gain 0.2). Stabilization against active and passive head movements was not impaired in our cerebellar ataxia patients.

  8. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies.

    PubMed

    Merlin, Christine; Gegear, Robert J; Reppert, Steven M

    2009-09-25

    During their fall migration, Eastern North American monarch butterflies (Danaus plexippus) use a time-compensated Sun compass to aid navigation to their overwintering grounds in central Mexico. It has been assumed that the circadian clock that provides time compensation resides in the brain, although this assumption has never been examined directly. Here, we show that the antennae are necessary for proper time-compensated Sun compass orientation in migratory monarch butterflies, that antennal clocks exist in monarchs, and that they likely provide the primary timing mechanism for Sun compass orientation. These unexpected findings pose a novel function for the antennae and open a new line of investigation into clock-compass connections that may extend widely to other insects that use this orientation mechanism.

  9. Predictors of invalid neuropsychological test performance after traumatic brain injury.

    PubMed

    Moore, Bret A; Donders, Jacobus

    2004-10-01

    To investigate the usefulness of the Test of Memory Malingering (TOMM) and the California Verbal Learning Test-Second Edition (CVLT-II) in assessing invalid test performance after traumatic brain injury (TBI). Consecutive 3-year series of rehabilitation referrals (n = 132). Percentage of participants who failed validity criteria was determined. Hierarchical logistic regression analysis and odds ratios were used to identify predictors of invalid test performance. Twenty patients (15%) performed in the invalid range when held to a priori specified criteria for invalid test performance (i.e. TOMM <45/50 on Trial 2 or CVLT-II <15/16 on Forced-Choice recognition trial). Both psychiatric history and financial compensation seeking were associated with an almost 4-fold increase in likelihood of invalid responding. The TOMM and CVLT-II are sensitive to the potential impact of current financial compensation seeking and prior psychiatric history on neuropsychological test performance after TBI.

  10. Metaphoric identity mapping: facilitating goal setting and engagement in rehabilitation after traumatic brain injury.

    PubMed

    Ylvisaker, Mark; McPherson, Kathryn; Kayes, Nicola; Pellett, Ellen

    2008-01-01

    Difficulty re-establishing an organised and compelling sense of personal identity has increasingly been identified as a critical theme in outcome studies of individuals with severe traumatic brain injury (TBI) and a serious obstacle to active engagement in rehabilitation. There exists little empirical support for approaches to identity reconstruction that address common impairments associated with TBI. Similarly, there is as yet little empirical support for theoretically sound approaches to promoting engagement in goal setting for this population. This article has two purposes. First, theory and procedures associated with metaphoric identity mapping are discussed in relation to goal setting in TBI rehabilitation. Second, the results of a qualitative pilot study are presented. The study explored metaphoric identity mapping as a facilitator of personally meaningful goal setting with five individuals with significant disability many years after their injury. Drawing on principles of grounded theory, the investigators extracted data from semi-structured interviews with clients and clinicians, from focus groups with the clinicians, and from observation of client-clinician interaction. Analysis of the data yielded five general themes concerning the use of this approach: All clients and clinicians found identity mapping to be an acceptable process and also useful for deriving meaningful rehabilitation goals. Both clients and clinicians saw client-centred goals as important. Cognitive impairments posed obstacles to this goal-setting intervention and mandated creative compensations. And finally, identity-related goal setting appeared to require a "mind shift" for some clinicians and demanded clinical skills not uniformly distributed among rehabilitation professionals.

  11. The Faculty at Risk.

    ERIC Educational Resources Information Center

    Schuster, Jack H.; Bowen, Howard R.

    1985-01-01

    Recent changes in the quality of faculty life were traced, and the consequences of these changes for the future of higher education are assessed. Shifts in the faculty's demographic characteristics, compensation, work environment, status, and morale, and in the quality of new faculty are discussed. (MLW)

  12. Ovariectomy induces a shift in fuel availability and metabolism in the hippocampus of the female transgenic model of familial Alzheimer's.

    PubMed

    Ding, Fan; Yao, Jia; Zhao, Liqin; Mao, Zisu; Chen, Shuhua; Brinton, Roberta Diaz

    2013-01-01

    Previously, we demonstrated that reproductive senescence in female triple transgenic Alzheimer's (3×TgAD) mice was paralleled by a shift towards a ketogenic profile with a concomitant decline in mitochondrial activity in brain, suggesting a potential association between ovarian hormone loss and alteration in the bioenergetic profile of the brain. In the present study, we investigated the impact of ovariectomy and 17β-estradiol replacement on brain energy substrate availability and metabolism in a mouse model of familial Alzheimer's (3×TgAD). Results of these analyses indicated that ovarian hormones deprivation by ovariectomy (OVX) induced a significant decrease in brain glucose uptake indicated by decline in 2-[(18)F]fluoro-2-deoxy-D-glucose uptake measured by microPET-imaging. Mechanistically, OVX induced a significant decline in blood-brain-barrier specific glucose transporter expression, hexokinase expression and activity. The decline in glucose availability was accompanied by a significant rise in glial LDH5 expression and LDH5/LDH1 ratio indicative of lactate generation and utilization. In parallel, a significant rise in ketone body concentration in serum occurred which was coupled to an increase in neuronal MCT2 expression and 3-oxoacid-CoA transferase (SCOT) required for conversion of ketone bodies to acetyl-CoA. In addition, OVX-induced decline in glucose metabolism was paralleled by a significant increase in Aβ oligomer levels. 17β-estradiol preserved brain glucose-driven metabolic capacity and partially prevented the OVX-induced shift in bioenergetic substrate as evidenced by glucose uptake, glucose transporter expression and gene expression associated with aerobic glycolysis. 17β-estradiol also partially prevented the OVX-induced increase in Aβ oligomer levels. Collectively, these data indicate that ovarian hormone loss in a preclinical model of Alzheimer's was paralleled by a shift towards the metabolic pathway required for metabolism of alternative fuels in brain with a concomitant decline in brain glucose transport and metabolism. These findings also indicate that estrogen plays a critical role in sustaining brain bioenergetic capacity through preservation of glucose metabolism.

  13. No Escaping the Rat Race: Simulated Night Shift Work Alters the Time-of-Day Variation in BMAL1 Translational Activity in the Prefrontal Cortex.

    PubMed

    Marti, Andrea R; Patil, Sudarshan; Mrdalj, Jelena; Meerlo, Peter; Skrede, Silje; Pallesen, Ståle; Pedersen, Torhild T; Bramham, Clive R; Grønli, Janne

    2017-01-01

    Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA "cap". In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats ( n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m 7 GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC, together with significant reduction in the synaptic plasticity associated protein activity-regulatedcytoskeleton-associated protein (Arc). Our results indicate considerable time-of-day and brain-region specific variation in cap-dependent translation initiation. We concludethat simulated night shift work in rats disrupts the pathways regulating the circadian component of the translation of mRNA in the PFC, and that this may partly explain impaired waking function during night shift work.

  14. Correcting for compensating mechanisms related to productivity costs in economic evaluations of health care programmes.

    PubMed

    Jacob-Tacken, Karin H M; Koopmanschap, Marc A; Meerding, Willem Jan; Severens, Johan L

    2005-05-01

    In the economic evaluation of health care programmes, productivity costs are often estimated using patients' wages for the period of absence. However, the use of such methods for short periods of absence is controversial. A previous study found that short-term absence is often compensated for during normal working hours and therefore does not lead to productivity losses. As such, the application of any approach almost certainly overestimates productivity costs. In this study, we examined the productivity costs for five different patient populations and one employee population, using the classical method and by identifying when extra effort was needed. In general, the results showed that productivity costs based on identifying extra effort were 25-30% of the classical estimates. For absences of just one day, productivity costs were relevant in only 17-19% of cases. For absences of two weeks or longer, productivity costs were relevant in 35-39% of cases. Measurement of the compensating mechanisms seemed to be valid, since there is considerable agreement between the opinion of supervisors and their employees about whether compensation covers productivity costs. There was much less agreement between supervisors and their employees on specific compensating mechanisms, however. The measurement of compensating mechanisms also seemed to be valid, because--as expected--different compensating mechanisms were reported for different occupations. In our study populations, compensating mechanisms appeared to differ with occupational characteristics, like part-time work, managerial work and shift work. Copyright 2004 John Wiley & Sons, Ltd

  15. The relationship between motivation, monetary compensation, and data quality among US- and India-based workers on Mechanical Turk.

    PubMed

    Litman, Leib; Robinson, Jonathan; Rosenzweig, Cheskie

    2015-06-01

    In this study, we examined data quality among Amazon Mechanical Turk (MTurk) workers based in India, and the effect of monetary compensation on their data quality. Recent studies have shown that work quality is independent of compensation rates, and that compensation primarily affects the quantity but not the quality of work. However, the results of these studies were generally based on compensation rates below the minimum wage, and far below a level that was likely to play a practical role in the lives of workers. In this study, compensation rates were set around the minimum wage in India. To examine data quality, we developed the squared discrepancy procedure, which is a task-based quality assurance approach for survey tasks whose goal is to identify inattentive participants. We showed that data quality is directly affected by compensation rates for India-based participants. We also found that data were of a lesser quality among India-based than among US participants, even when optimal payment strategies were utilized. We additionally showed that the motivation of MTurk users has shifted, and that monetary compensation is now reported to be the primary reason for working on MTurk, among both US- and India-based workers. Overall, MTurk is a constantly evolving marketplace where multiple factors can contribute to data quality. High-quality survey data can be acquired on MTurk among India-based participants when an appropriate pay rate is provided and task-specific quality assurance procedures are utilized.

  16. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    PubMed

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  17. Scaling of echolocation call parameters in bats.

    PubMed

    Jones, G

    1999-12-01

    I investigated the scaling of echolocation call parameters (frequency, duration and repetition rate) in bats in a functional context. Low-duty-cycle bats operate with search phase cycles of usually less than 20 %. They process echoes in the time domain and are therefore intolerant of pulse-echo overlap. High-duty-cycle (>30 %) species use Doppler shift compensation, and they separate pulse and echo in the frequency domain. Call frequency scales negatively with body mass in at least five bat families. Pulse duration scales positively with mass in low-duty-cycle quasi-constant-frequency (QCF) species because the large aerial-hawking species that emit these signals fly fast in open habitats. They therefore detect distant targets and experience pulse-echo overlap later than do smaller bats. Pulse duration also scales positively with mass in the Hipposideridae, which show at least partial Doppler shift compensation. Pulse repetition rate corresponds closely with wingbeat frequency in QCF bat species that fly relatively slowly. Larger, fast-flying species often skip pulses when detecting distant targets. There is probably a trade-off between call intensity and repetition rate because 'whispering' bats (and hipposiderids) produce several calls per predicted wingbeat and because batches of calls are emitted per wingbeat during terminal buzzes. Severe atmospheric attenuation at high frequencies limits the range of high-frequency calls. Low-duty-cycle bats that call at high frequencies must therefore use short pulses to avoid pulse-echo overlap. Rhinolophids escape this constraint by Doppler shift compensation and, importantly, can exploit advantages associated with the emission of both high-frequency and long-duration calls. Low frequencies are unsuited for the detection of small prey, and low repetition rates may limit prey detection rates. Echolocation parameters may therefore constrain maximum body size in aerial-hawking bats.

  18. The sun compass revisited

    PubMed Central

    Guilford, Tim; Taylor, Graham K.

    2014-01-01

    Many animals, and birds in particular, are thought to use directional information from the sun in the form of a time-compensated sun compass, with predictably deviated orientation under clock shift being regarded as the litmus test of this. We suggest that this paradigm obscures a number of other ways in which solar-derived information could be important in animal orientation. We distinguish between the known use of the sun's azimuth to provide absolute geographical direction (compass mechanism) and its possible use to detect changes in heading (heading indicator mechanism). Just as in an aircraft, these two kinds of information may be provided by separate mechanisms and used for different functions, for example for navigation versus steering. We also argue that although a solar compass must be time-referenced to account for the sun's apparent diurnal movement, this need not entail full time compensation. This is because animals might also use time-dependent solar information in an associatively acquired, and hence time-limited, way. Furthermore, we show that a solar heading indicator, when used on a sufficiently short timescale, need not require time compensation at all. Finally, we suggest that solar-derived cues, such as shadows, could also be involved in navigation in ways that depend explicitly upon position, and are therefore not strictly compass-related. This could include giving directionality to landmarks, or acting as time-dependent landmarks involved in place recognition. We conclude that clock shift experiments alone are neither necessary nor sufficient to identify the occurrence of all conceivable uses of solar information in animal orientation, so that a predictable response to clock shift should not be regarded as an acid test of the use of solar information in navigation. PMID:25389374

  19. Intrafractional Baseline Shift or Drift of Lung Tumor Motion During Gated Radiation Therapy With a Real-Time Tumor-Tracking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takao, Seishin; Miyamoto, Naoki; Matsuura, Taeko

    2016-01-01

    Purpose: To investigate the frequency and amplitude of baseline shift or drift (shift/drift) of lung tumors in stereotactic body radiation therapy (SBRT), using a real-time tumor-tracking radiation therapy (RTRT) system. Methods and Materials: Sixty-eight patients with peripheral lung tumors were treated with SBRT using the RTRT system. One of the fiducial markers implanted near the tumor was used for the real-time monitoring of the intrafractional tumor motion every 0.033 seconds by the RTRT system. When baseline shift/drift is determined by the system, the position of the treatment couch is adjusted to compensate for the shift/drift. Therefore, the changes in the couch positionmore » correspond to the baseline shift/drift in the tumor motion. The frequency and amount of adjustment to the couch positions in the left-right (LR), cranio-caudal (CC), and antero-posterior (AP) directions have been analyzed for 335 fractions administered to 68 patients. Results: The average change in position of the treatment couch during the treatment time was 0.45 ± 2.23 mm (mean ± standard deviation), −1.65 ± 5.95 mm, and 1.50 ± 2.54 mm in the LR, CC, and AP directions, respectively. Overall the baseline shift/drift occurs toward the cranial and posterior directions. The incidence of baseline shift/drift exceeding 3 mm was 6.0%, 15.5%, 14.0%, and 42.1% for the LR, CC, AP, and for the square-root of sum of 3 directions, respectively, within 10 minutes of the start of treatment, and 23.0%, 37.6%, 32.5%, and 71.6% within 30 minutes. Conclusions: Real-time monitoring and frequent adjustments of the couch position and/or adding appropriate margins are suggested to be essential to compensate for possible underdosages due to baseline shift/drift in SBRT for lung cancers.« less

  20. A case study of a team-based, quality-focused compensation model for primary care providers.

    PubMed

    Greene, Jessica; Hibbard, Judith H; Overton, Valerie

    2014-06-01

    In 2011, Fairview Health Services began replacing their fee-for-service compensation model for primary care providers (PCPs), which included an annual pay-for-performance bonus, with a team-based model designed to improve quality of care, patient experience, and (eventually) cost containment. In-depth interviews and an online survey of PCPs early after implementation of the new model suggest that it quickly changed the way many PCPs practiced. Most PCPs reported a shift in orientation toward quality of care, working more collaboratively with their colleagues and focusing on their full panel of patients. The majority reported that their quality of care had improved because of the model and that their colleagues' quality had to. The comprehensive change did, however, result in lower fee-for-service billing and reductions in PCP satisfaction. While Fairview's compensation model is still a work in progress, their early experiences can provide lessons for other delivery systems seeking to reform PCP compensation.

  1. Work first then play: Prior task difficulty increases motivation-related brain responses in a risk game.

    PubMed

    Schmidt, Barbara; Mussel, Patrick; Osinsky, Roman; Rasch, Björn; Debener, Stefan; Hewig, Johannes

    2017-05-01

    Task motivation depends on what we did before. A recent theory differentiates between tasks that we want to do and tasks that we have to do. After a have-to task, motivation shifts towards a want-to task. We measured this shift of motivation via brain responses to monetary feedback in a risk game that was used as want-to task in our study. We tested 20 healthy participants that were about 28 years old in a within-subjects design. Participants worked on a Stroop task (have-to task) or an easier version of the Stroop task as a control condition and played a risk game afterwards (want-to task). After the Stroop task, brain responses to monetary feedback in the risk game were larger compared to the easier control task, especially for feedback indicating higher monetary rewards. We conclude that higher amplitudes of feedback-related brain responses in the risk game reflect the shift of motivation after a have-to task towards a want-to task. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Understanding the positive effect of financial compensation on trust after norm violations: Evidence from fMRI in favor of forgiveness.

    PubMed

    Haesevoets, Tessa; De Cremer, David; Van Hiel, Alain; Van Overwalle, Frank

    2018-05-01

    Norm violations are ubiquitous in organizations and often result in tangible harm and a loss of trust. One possible response to enhance trust involves the provision of financial compensation. Unfortunately, little is known about the processes that underlie the effect of such a tangible response to increase trust. We employed techniques in cognitive neuroscience (functional magnetic resonance imaging) to examine these processes. Participants placed in the scanner played the role of recipient in a series of dictator games with different allocators who (unknown to them) were preprogrammed. An unequal division of resources was used as a norm violation that resulted in a financial loss. Afterward the inflicted harm was restored through equal financial compensation. Our neuroimaging data indicate that financial compensation activates forgiveness-related brain areas and that this activation mediates the positive effect of financial compensation on trust. We discuss the theoretical and managerial implications of using tangible responses to increase trust in organizational settings. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Illuminating the circadian clock in monarch butterfly migration.

    PubMed

    Froy, Oren; Gotter, Anthony L; Casselman, Amy L; Reppert, Steven M

    2003-05-23

    Migratory monarch butterflies use a time-compensated Sun compass to navigate to their overwintering grounds in Mexico. Here, we report that constant light, which disrupts circadian clock function at both the behavioral and molecular levels in monarchs, also disrupts the time-compensated component of flight navigation. We further show that ultraviolet light is important for flight navigation but is not required for photic entrainment of circadian rhythms. Tracing these distinct light-input pathways into the brain should aid our understanding of the clock-compass mechanisms necessary for successful migration.

  4. [Effects of planning and executive functions on young children's script change strategy: A developmental perspective].

    PubMed

    Yanaoka, Kaichi

    2016-02-01

    This research examined the effects of planning and executive functions on young children's (ages 3-to 5-years) strategies in changing scripts. Young children (N = 77) performed a script task (doll task), three executive function tasks (DCCS, red/blue task, and nine box task), a planning task, and a receptive vocabulary task. In the doll task, young children first enacted a "changing clothes" script, and then faced a situation in which some elements of the script were inappropriate. They needed to enact a script by compensating inappropriate items for the other-script items or by changing to the other script in advance. The results showed that shifting, a factor of executive function, had a positive influence on whether young children could compensate inappropriate items. In addition, planning was also an important factor that helped children to change to the other script in advance. These findings suggest that shifting and planning play different roles in using the two strategies appropriately when young children enact scripts in unexpected situations.

  5. Compensating amplitude-dependent tune-shift without driving fourth-order resonances

    NASA Astrophysics Data System (ADS)

    Ögren, J.; Ziemann, V.

    2017-10-01

    If octupoles are used in a ring to correct the amplitude-dependent tune-shift one normally tries to avoid that the octupoles drive additional resonances. Here we consider the optimum placement of octupoles that only affects the amplitude-dependent tune-shift, but does not drive fourth-order resonances. The simplest way turns out to place three equally powered octupoles with 60 ° phase advance between adjacent magnets. Using two such octupole triplets separated by a suitable phase advance cancels all fourth-order resonance driving terms and forms a double triplet we call a six-pack. Using three six-packs at places with different ratios of the beta functions allows to independently control all amplitude-dependent tune-shift terms without exciting additional fourth-order resonances in first order of the octupole excitation.

  6. Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements.

    PubMed

    Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis

    2011-02-28

    We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.

  7. Measurement of residual chemical shift anisotropies in compressed polymethylmethacrylate gels. Automatic compensation of gel isotropic shift contribution.

    PubMed

    Hallwass, Fernando; Teles, Rubens R; Hellemann, Erich; Griesinger, Christian; Gil, Roberto R; Navarro-Vázquez, Armando

    2018-05-01

    Mechanical compression of polymer gels provides a simple way for the measurement of residual chemical shift anisotropies, which then can be employed, on its own, or in combination with residual dipolar couplings, for structural elucidation purposes. Residual chemical shift anisotropies measured using compression devices needed a posteriori correction to account for the increase of the polymer to solvent ratio inside the swollen gel. This correction has been cast before in terms of a single-free parameter which, as shown here, can be simultaneously optimized along with the components of the alignment tensor while still retaining discriminating power of the different relative configurations as illustrated in the stereochemical analysis of α-santonin and 10-epi-8-deoxycumambrin B. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Chronic Glucose Exposure Systematically Shifts the Oscillatory Threshold of Mouse Islets: Experimental Evidence for an Early Intrinsic Mechanism of Compensation for Hyperglycemia

    PubMed Central

    Glynn, Eric; Thompson, Benjamin; Vadrevu, Suryakiran; Lu, Shusheng; Kennedy, Robert T.; Ha, Joon; Sherman, Arthur

    2016-01-01

    Mouse islets exhibit glucose-dependent oscillations in electrical activity, intracellular Ca2+ and insulin secretion. We developed a mathematical model in which a left shift in glucose threshold helps compensate for insulin resistance. To test this experimentally, we exposed isolated mouse islets to varying glucose concentrations overnight and monitored their glucose sensitivity the next day by measuring intracellular Ca2+, electrical activity, and insulin secretion. Glucose sensitivity of all oscillation modes was increased when overnight glucose was greater than 2.8mM. To determine whether threshold shifts were a direct effect of glucose or involved secreted insulin, the KATP opener diazoxide (Dz) was coapplied with glucose to inhibit insulin secretion. The addition of Dz or the insulin receptor antagonist s961 increased islet glucose sensitivity, whereas the KATP blocker tolbutamide tended to reduce it. This suggests insulin and glucose have opposing actions on the islet glucose threshold. To test the hypothesis that the threshold shifts were due to changes in plasma membrane KATP channels, we measured cell KATP conductance, which was confirmed to be reduced by high glucose pretreatment and further reduced by Dz. Finally, treatment of INS-1 cells with glucose and Dz overnight reduced high affinity sulfonylurea receptor (SUR1) trafficking to the plasma membrane vs glucose alone, consistent with insulin increasing KATP conductance by altering channel number. The results support a role for metabolically regulated KATP channels in the maintenance of glucose homeostasis. PMID:26697721

  9. Volumetric Integral Phase-shift Spectroscopy for Noninvasive Detection of Hemispheric Bioimpedance Asymmetry in Acute Brain Pathology

    ClinicalTrials.gov

    2018-05-10

    Stroke; Stroke, Acute; Ischemic Stroke; Hemorrhage; Clot (Blood); Brain; Subarachnoid Hemorrhage; Cerebral Infarction; Cerebral Hemorrhage; Cerebral Stroke; Intracerebral Hemorrhage; Intracerebral Injury

  10. Brain Specialization Research and the Teaching of Nonverbal Communication.

    ERIC Educational Resources Information Center

    Jensen, Marvin D.

    1980-01-01

    The connectionist theory of brain functioning, which holds that specialization exists within the brain, has three implications for teachers of nonverbal communication. One implication involves the relative emphasis to be placed on linguistic/linear versus nonlinguistic/nonlinear mental processing. Teachers can shift emphasis to nonlinguistic…

  11. Diagnosing Developmental Dyscalculia on the Basis of Reliable Single Case FMRI Methods: Promises and Limitations

    PubMed Central

    Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten Jr, Jan Willem

    2013-01-01

    FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used. PMID:24349547

  12. Diagnosing developmental dyscalculia on the basis of reliable single case FMRI methods: promises and limitations.

    PubMed

    Dinkel, Philipp Johannes; Willmes, Klaus; Krinzinger, Helga; Konrad, Kerstin; Koten, Jan Willem

    2013-01-01

    FMRI-studies are mostly based on a group study approach, either analyzing one group or comparing multiple groups, or on approaches that correlate brain activation with clinically relevant criteria or behavioral measures. In this study we investigate the potential of fMRI-techniques focusing on individual differences in brain activation within a test-retest reliability context. We employ a single-case analysis approach, which contrasts dyscalculic children with a control group of typically developing children. In a second step, a support-vector machine analysis and cluster analysis techniques served to investigate similarities in multivariate brain activation patterns. Children were confronted with a non-symbolic number comparison and a non-symbolic exact calculation task during fMRI acquisition. Conventional second level group comparison analysis only showed small differences around the angular gyrus bilaterally and the left parieto-occipital sulcus. Analyses based on single-case statistical procedures revealed that developmental dyscalculia is characterized by individual differences predominantly in visual processing areas. Dyscalculic children seemed to compensate for relative under-activation in the primary visual cortex through an upregulation in higher visual areas. However, overlap in deviant activation was low for the dyscalculic children, indicating that developmental dyscalculia is a disorder characterized by heterogeneous brain activation differences. Using support vector machine analysis and cluster analysis, we tried to group dyscalculic and typically developing children according to brain activation. Fronto-parietal systems seem to qualify for a distinction between the two groups. However, this was only effective when reliable brain activations of both tasks were employed simultaneously. Results suggest that deficits in number representation in the visual-parietal cortex get compensated for through finger related aspects of number representation in fronto-parietal cortex. We conclude that dyscalculic children show large individual differences in brain activation patterns. Nonetheless, the majority of dyscalculic children can be differentiated from controls employing brain activation patterns when appropriate methods are used.

  13. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Furukawa, H.

    2018-04-01

    The resolution of multichannel Fourier transform (McFT) spectroscopy is insufficient for many applications despite its extreme advantage of high throughput. We propose an improved configuration to realise both performance using a two-dimensional area sensor. For the spectral resolution, we obtained the interferogram of a larger optical path difference by shifting the area sensor without altering any optical components. The non-linear phase error of the interferometer was successfully corrected using a phase-compensation calculation. Warping compensation was also applied to realise a higher throughput to accumulate the signal between vertical pixels. Our approach significantly improved the resolution and signal-to-noise ratio by factors of 1.7 and 34, respectively. This high-resolution and high-sensitivity McFT spectrometer will be useful for detecting weak light signals such as those in non-invasive diagnosis.

  14. Compensated second-order recoupling: application to third spin assisted recoupling†

    PubMed Central

    Giffard, Mathilde; Hediger, Sabine; Lewandowski, Józef R.; Bardet, Michel; Simorre, Jean-Pierre; Griffin, Robert G.; De Paëpe, Gaël

    2015-01-01

    We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei (13C–13C, 15N–15N, 15N–13C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U–[15N, 13C]-YajG) at high magnetic fields (up to 900 MHz 1H frequency) and fast sample spinning (up to 65 kHz MAS frequency). PMID:22513727

  15. Compensation for pitch-shifted auditory feedback during the production of Mandarin tone sequences

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Larson, Charles R.; Bauer, Jay J.; Hain, Timothy C.

    2004-08-01

    Recent research has found that while speaking, subjects react to perturbations in pitch of voice auditory feedback by changing their voice fundamental frequency (F0) to compensate for the perceived pitch-shift. The long response latencies (150-200 ms) suggest they may be too slow to assist in on-line control of the local pitch contour patterns associated with lexical tones on a syllable-to-syllable basis. In the present study, we introduced pitch-shifted auditory feedback to native speakers of Mandarin Chinese while they produced disyllabic sequences /ma ma/ with different tonal combinations at a natural speaking rate. Voice F0 response latencies (100-150 ms) to the pitch perturbations were shorter than syllable durations reported elsewhere. Response magnitudes increased from 50 cents during static tone to 85 cents during dynamic tone productions. Response latencies and peak times decreased in phrases involving a dynamic change in F0. The larger response magnitudes and shorter latency and peak times in tasks requiring accurate, dynamic control of F0, indicate this automatic system for regulation of voice F0 may be task-dependent. These findings suggest that auditory feedback may be used to help regulate voice F0 during production of bi-tonal Mandarin phrases.

  16. Magnetic Compensation for Second-Order Doppler Shift in LITS

    NASA Technical Reports Server (NTRS)

    Burt, Eric; Tjoelker, Robert

    2008-01-01

    The uncertainty in the frequency of a linear-ion-trap frequency standard (LITS) can be reduced substantially by use of a very small magnetic inhomogeneity tailored to compensate for the residual second-order Doppler shift. An effect associated with the relativistic time dilatation, one cause of the second-order Doppler shift, is ion motion that is attributable to the trapping radio-frequency (RF)electromagnetic field used to trap ions. The second-order Doppler shift is reduced by using a multi-pole trap; however it is still the largest source of systematic frequency shift in the latest generation of LITSs, which are among the most stable clocks in the world. The present compensation scheme reduces the frequency instability of the affected LITS to about a tenth of its previous value. The basic principles of prior generation LITSs were discussed in several prior NASA Tech Briefs articles. Below are recapitulated only those items of basic information necessary to place the present development in context. A LITS includes a microwave local oscillator, the frequency of which is stabilized by comparison with the frequency of the ground state hyperfine transition of 199Hg+ ions. The comparison involves a combination of optical and microwave excitation and interrogation of the ions in a linear ion trap in the presence of a nominally uniform magnetic field. In the current version of the LITS, there are two connected traps (see figure): (1) a quadrupole trap wherein the optical excitation and measurement take place and (2) a 12-pole trap (denoted the resonance trap), wherein the microwave interrogation takes place. The ions are initially loaded into the quadrupole trap and are thereafter shuttled between the two traps. Shuttling ions into the resonance trap allows sensitive microwave interrogation to take place well away from loading interference. The axial magnetic field for the resonance trap is generated by an electric current in a finely wound wire coil surrounded by magnetic shields. In the quadrupole and 12-pole traps, the potentials are produced by RF voltages applied to even numbers (4 and 12, respectively) of parallel rods equally spaced around a circle. The polarity of the voltage on each rod is opposite that of the voltage on the adjacent rod. As a result, the amplitude of the RF trapping field is zero along the centerline and increases, with radius, to a maximum value near the rods.

  17. Velocity encoding with the slice select refocusing gradient for faster imaging and reduced chemical shift-induced phase errors.

    PubMed

    Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B

    2014-06-01

    To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.

  18. The Hidden Lives of Nurses' Cognitive Artifacts.

    PubMed

    Blaz, Jacquelyn W; Doig, Alexa K; Cloyes, Kristin G; Staggers, Nancy

    2016-09-07

    Standardizing nursing handoffs at shift change is recommended to improve communication, with electronic tools as the primary approach. However, nurses continue to rely on personally created paper-based cognitive artifacts - their "paper brains" - to support handoffs, indicating a deficiency in available electronic versions. The purpose of this qualitative study was to develop a deep understanding of nurses' paper-based cognitive artifacts in the context of a cancer specialty hospital. After completing 73 hours of hospital unit field observations, 13 medical oncology nurses were purposively sampled, shadowed for a single shift and interviewed using a semi-structured technique. An interpretive descriptive study design guided analysis of the data corpus of field notes, transcribed interviews, images of nurses' paper-based cognitive artifacts, and analytic memos. Findings suggest nurses' paper brains are personal, dynamic, living objects that undergo a life cycle during each shift and evolve over the course of a nurse's career. The life cycle has four phases: Creation, Application, Reproduction, and Destruction. Evolution in a nurse's individually styled, paper brain is triggered by a change in the nurse's environment that reshapes cognitive needs. If a paper brain no longer provides cognitive support in the new environment, it is modified into (adapted) or abandoned (made extinct) for a different format that will provide the necessary support. The "hidden lives" - the life cycle and evolution - of paper brains have implications for the design of successful electronic tools to support nursing practice, including handoff. Nurses' paper brains provide cognitive support beyond the context of handoff. Information retrieval during handoff is undoubtedly an important function of nurses' paper brains, but tools designed to standardize handoff communication without accounting for cognitive needs during all phases of the paper brain life cycle or the ability to evolve with changes to those cognitive needs will be underutilized.

  19. Prism adaptation in the healthy brain: the shift in line bisection judgments is long lasting and fluctuates.

    PubMed

    Schintu, Selene; Pisella, Laure; Jacobs, Stéphane; Salemme, Romeo; Reilly, Karen T; Farnè, Alessandro

    2014-01-01

    Rightward prism adaptation has been shown to ameliorate visuospatial biases in right brain-damaged patients with neglect, and a single session of prism adaptation can lead to improvements that last up to several hours. Leftward prism adaptation in neurologically healthy individuals induces neglect-like biases in visuospatial tasks. The duration of these effects in healthy individuals, typically assumed to be ephemeral, has never been investigated. Here we assessed the time-course of the adaptation-induced modifications in a classical perceptual line bisection task that was repeatedly administered for approximately 40min after a single session of adaptation to either a leftward or rightward prismatic deviation. Consistent with previous reports, only adaptation to leftward-deviating prisms induced a visuospatial shift on perceptual line bisection judgments. The typical pattern of pseudoneglect was counteracted by a rightward shift in midline judgments, which became significant between 5 and 10 min after adaptation, fluctuated between being significant or not several times in the 40 min following adaptation, and was present as late as 35 min. In contrast, the sensorimotor aftereffect was present immediately after adaptation to both rightward and leftward deviating prisms, decayed initially then remained stable until 40 min. These results demonstrate that both the sensorimotor and visuospatial effects last for at least 35 min, but that the visuospatial shift needs time to fully develop and fluctuates. By showing that the effects of prism adaptation in the undamaged brain are not ephemeral, these findings reveal the presence of another, so-far neglected dimension in the domain of the cognitive effects induced by prism adaptation, namely time. The prolonged duration of the induced visuospatial shift, previously considered to be a feature of prism adaptation unique to brain-damaged subjects, also applies to the normal brain. © 2013 Published by Elsevier Ltd.

  20. Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats

    PubMed Central

    Elsherbiny, Marwa E.; Goruk, Susan; Monckton, Elizabeth A.; Richard, Caroline; Brun, Miranda; Emara, Marwan; Field, Catherine J.; Godbout, Roseline

    2015-01-01

    Arachidonic (AA) and docosahexaenoic acid (DHA) brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7), a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains. PMID:26506385

  1. Compensation for unfavorable characteristics of irregular individual shift rotas.

    PubMed

    Knauth, Peter; Jung, Detlev; Bopp, Winfried; Gauderer, Patric C; Gissel, Andreas

    2006-01-01

    Some employees of TV companies, such as those who produce remote TV programs, have to cope with very irregular rotas and many short-term schedule deviations. Many of these employees complain about the negative effects of such on their wellbeing and private life. Therefore, a working group of employers, council representatives, and researchers developed a so-called bonus system. Based on the criteria of the BESIAK system, the following list of criteria for the ergonomic assessment of irregular shift systems was developed: proportion of night hours worked between 22 : 00 and 01 : 00 h and between 06 : 00 and 07 : 00 h, proportion of night hours worked between 01 : 00 and 06 : 00 h, number of successive night shifts, number of successive working days, number of shifts longer than 9 h, proportion of phase advances, off hours on weekends, work hours between 17 : 00 and 23 : 00 h from Monday to Friday, number of working days with leisure time at remote places, and sudden deviations from the planned shift rota. Each individual rota was evaluated in retrospect. If pre-defined thresholds of criteria were surpassed, bonus points were added to the worker's account. In general, more bonus points add up to more free time. Only in particular cases was monetary compensation possible for some criteria. The bonus point system, which was implemented in the year 2002 for about 850 employees of the TV company, has the advantages of more transparency concerning the unfavorable characteristics of working-time arrangements, incentive for superiors to design "good" rosters that avoid the bonus point thresholds (to reduce costs), positive short-term effects on the employee social life, and expected positive long-term effects on the employee health. In general, the most promising approach to cope with the problems of shift workers in irregular and flexible shift systems seems to be to increase their influence on the arrangement of working times. If this is not possible, bonus point systems may help to achieve greater transparency and fairness in the distribution of unfavorable working-time arrangements within a team, and even reduce the unnecessary unfavorable aspects of shift systems.

  2. Sun-compass orientation in homing pigeons: compensation for different rates of change in azimuth?

    PubMed

    Wiltschko, R; Walker, M; Wiltschko, W

    2000-03-01

    Birds using their sun compass must compensate for the apparent movement of the sun with the help of their internal clock. The movement of the sun is not uniform, being much faster around noon than near sunrise and sunset. If the sun-compass mechanisms are not adjusted to these variations, considerable errors might arise. To learn whether birds are able to take the different rates of sun azimuth change into account, we subjected homing pigeons to a 4 h fast clock-shift. The experiments were performed near Auckland, New Zealand, at a latitude of 37 degrees S, where the expected deflections for a 4 h shift in summer vary from less than 40 degrees to more than 120 degrees, depending on time of day. One group of birds was released just after sunrise or during the corresponding period in the afternoon when the expected deflections were minimal, the other group during late morning when they were maximal. The different sizes of the observed deflections - between 26 degrees and 51 degrees in the first group, and between 107 degrees and 153 degrees in the second group - clearly show that the birds' compensation mechanisms are closely tuned to the varying rates of change in sun azimuth. The results suggest that pigeons have a rather precise internal representation of the sun curve, which makes the avian sun compass a highly accurate mechanism of direction finding.

  3. Unwrapping eddy current compensation: improved compensation of eddy current induced baseline shifts in high-resolution phase-contrast MRI at 9.4 Tesla.

    PubMed

    Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar

    2014-10-01

    Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.

  4. The effect of mannitol on intraoperative brain relaxation in patients undergoing supratentorial tumor surgery: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background The risk of brain swelling after dural opening is high in patients with midline shift undergoing supratentorial tumor surgery. Brain swelling may result in increased intracranial pressure, impeded tumor exposure, and adverse outcomes. Mannitol is recommended as a first-line dehydration treatment to reduce brain edema and enable brain relaxation during neurosurgery. Research has indicated that mannitol enhanced brain relaxation in patients undergoing supratentorial tumor surgery; however, these results need further confirmation, and the optimal mannitol dose has not yet been established. We propose to examine whether different doses of 20% mannitol improve brain relaxation in a dose-dependent manner when administered at the time of incision. We will examine patients with preexisting mass effects and midline shift undergoing elective supratentorial brain tumor surgery. Methods This is a single-center, randomized controlled, parallel group trial that will be carried out at Beijing Tiantan Hospital, Capital Medical University. Randomization will be achieved using a computer-generated table. The study will include 220 patients undergoing supratentorial tumor surgery whose preoperative computed tomography/magnetic resonance imaging results indicate a brain midline shift. Patients in group A, group B, and group C will receive dehydration treatment at incision with 20% mannitol solutions of 0.7, 1.0, and 1.4 g/kg, respectively, at a rate of 600 mL/h. The patients in the control group will not receive mannitol. The primary outcome is an improvement in intraoperative brain relaxation and dura tension after dehydration with mannitol. Secondary outcomes are postoperative outcomes and the incidence of mannitol side effects. Discussion The aim of this study is to determine the optimal dose of 20% mannitol for intraoperative infusion. We will examine brain relaxation and outcome in patients undergoing supratentorial tumor surgery. If our results are positive, the study will indicate the optimal dose of mannitol to improve brain relaxation and avoid side effects during brain tumor surgery. Trial registration The study is registered with the registry website http://www.chictr.org with the registration number ChiCTRTRC13003984 (17 December 2013). PMID:24884731

  5. Generalized Autobalanced Ramsey Spectroscopy of Clock Transitions

    NASA Astrophysics Data System (ADS)

    Yudin, V. I.; Taichenachev, A. V.; Basalaev, M. Yu.; Zanon-Willette, T.; Pollock, J. W.; Shuker, M.; Donley, E. A.; Kitching, J.

    2018-05-01

    When performing precision measurements, the quantity being measured is often perturbed by the measurement process itself. Such measurements include precision frequency measurements for atomic clock applications carried out with Ramsey spectroscopy. With the aim of eliminating probe-induced perturbations, a method of generalized autobalanced Ramsey spectroscopy (GABRS) is presented and rigorously substantiated. The usual local-oscillator frequency control loop is augmented with a second control loop derived from secondary Ramsey sequences interspersed with the primary sequences and with a different Ramsey period. This second loop feeds back to a secondary clock variable and ultimately compensates for the perturbation of the clock frequency caused by the measurements in the first loop. We show that such a two-loop scheme can lead to perfect compensation for measurement-induced light shifts and does not suffer from the effects of relaxation, time-dependent pulse fluctuations and phase-jump modulation errors that are typical of other hyper-Ramsey schemes. Several variants of GABRS are explored based on different secondary variables including added relative phase shifts between Ramsey pulses, external frequency-step compensation, and variable second-pulse duration. We demonstrate that a universal antisymmetric error signal, and hence perfect compensation at a finite modulation amplitude, is generated only if an additional frequency step applied during both Ramsey pulses is used as the concomitant variable parameter. This universal technique can be applied to the fields of atomic clocks, high-resolution molecular spectroscopy, magnetically induced and two-photon probing schemes, Ramsey-type mass spectrometry, and the field of precision measurements. Some variants of GABRS can also be applied for rf atomic clocks using coherent-population-trapping-based Ramsey spectroscopy of the two-photon dark resonance.

  6. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy

    NASA Astrophysics Data System (ADS)

    Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven

    2008-05-01

    Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed. The wedge gives a more uniform dose distribution than commonly used techniques. Further development and shape optimization may be necessary prior to clinical implementation.

  7. Midline shift and lateral guidance angle in adults with unilateral posterior crossbite.

    PubMed

    Rilo, Benito; da Silva, José Luis; Mora, María Jesús; Cadarso-Suárez, Carmen; Santana, Urbano

    2008-06-01

    Unilateral posterior crossbite is a malocclusion that, if not corrected during infancy, typically causes permanent asymmetry. Our aims in this study were to evaluate various occlusal parameters in a group of adults with uncorrected unilateral posterior crossbite and to compare findings with those obtained in a group of normal subjects. Midline shift at maximum intercuspation, midline shift at maximum aperture, and lateral guidance angle in the frontal plane were assessed in 25 adults (ages, 17-26 years; mean, 19.6 years) with crossbites. Midline shift at maximum intercuspation was zero (ie, centric midline) in 36% of the crossbite subjects; the remaining subjects had a shift toward the crossbite side. Midline shift at maximum aperture had no association with crossbite side. Lateral guidance angle was lower on the crossbite side than on the noncrossbite side. No parameter studied showed significant differences with respect to the normal subjects. Adults with unilateral posterior crossbite have adaptations that compensate for the crossbite and maintain normal function.

  8. Postural stability in a population of dancers, healthy non-dancers, and vestibular neuritis patients.

    PubMed

    Martin-Sanz, Eduardo; Ortega Crespo, Isabel; Esteban-Sanchez, Jonathan; Sanz, Ricardo

    2017-09-01

    Several studies have indicated better balance control in dancers than in control participants, but some controversy remains. The aim of our study is to evaluate the postural stability in a cohort of dancers, non-dancers, compensated, and non-compensated unilateral vestibular neuritis (VN). This is a prospective study of control subjects, dancers, and VN patients between June 2009 and December 2015. Dancers from the Dance Conservatory of Madrid and VN patients were referred to our department for analysis. After the clinical history, neuro-otological examination, audiogram, and caloric tests, the diagnosis was done. Results from clinical examination were used for the categorization of compensation situation. A computerized dynamic posturography was performed to every subject. Forty dancers and 38 women formed both 'dancer' and 'normal' cohorts. Forty-two compensated and 39 uncompensated patients formed both 'compensated' and 'uncompensated' cohorts. Dancers had significantly greater antero-posterior (AP) body sway than controls during condition 5 and 6 in the Sensory Organization Test (SOT) (p < .05). When we compared the uncompensated cohort with both control and dancers groups, we found significant greater body sway in every SOT studied condition (p < .05). While mean AP body say in SOT 5 and 6, showed greater values in compensated patients than the control group, the mean analysis did not show any statistical difference between the compensated and dancer groups, in such SOT conditions. Dancers demonstrated greater sways than non-dancers when they relied their postural control on vestibular input alone. Compensated patients had a similar posturographic pattern that the dancers cohort, suggesting a similar shift from visual to somatosensory information.

  9. Seismic Full Waveform Modeling & Imaging in Attenuating Media

    NASA Astrophysics Data System (ADS)

    Guo, Peng

    Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than the attenuating wavefield, and introduce unwanted phase shift. Numerical examples show that there are phase (depth) shifts in the Q-compensated RTM images from the GSLS equation. An adjoint-based least-squares reverse-time migration is proposed for viscoelastic media (Q-LSRTM), to compensate the attenuation losses in P and S images. The viscoelastic adjoint operator, and the P and S modulus perturbation imaging conditions are derived using the adjoint-state method and an augmented Lagrangian functional. Q-LSRTM solves the viscoelastic linearized modeling operator for synthetic data, and the adjoint operator is used for back propagating the data residual. Q-LSRTM is capable of iteratively updating the P and S modulus perturbations,in the direction of minimizing data residuals, and attenuation loss is iteratively compensated. A novel Q compensation approach is developed for adjoint seismic imaging by pseudodifferential scaling. With a correct Q model included in the migration algorithm, propagation effects, including the Q effects, can be compensated with the application of the inverse Hessian to the RTM image. Pseudodifferential scaling is used to efficiently approximate the action of the inverse Hessian. Numerical examples indicate that the adjoint RTM images with pseudodifferential scaling approximate the true model perturbation, and can be used as well-conditioned gradients for least-squares imaging.

  10. Genetic variability, individuality and the evolution of the mammalian brain.

    PubMed

    Lipp, H P

    1995-12-01

    The neo-Darwinian theory of evolution has difficulty in explaining the rapid evolution of mammalian brain and behavior. I shall argue that the plasticity mechanisms of the brain (i.e., system homeostasis, developmental reorganization, structural adult plasticity, and cognition and learning) have evolved primarily as genetic buffer systems which protect subtle mutations influencing brain structures from natural selection. These buffer systems permit accumulation of genetic variation in the higher system levels of the brain (simply defined as structures with late differentiation), while low-level systems are kept constant by natural selection. The organization of this intrinsic genetic buffering system provides several features facilitating neo-Darwinian evolution: In conclusion, the evolutionary appearance of cognition and intelligence is an ordinary biological mechanism compensating evolutionary drags such as long lifespans and fewer offspring. The concept has heuristic value for identifying gene-brain-behavior relationships and for explaining behavioral consequences of artifical gene deletions.

  11. Processing verbal morphology in patients with congenital left-hemispheric brain lesions.

    PubMed

    Knecht, Marion; Lidzba, Karen

    2016-01-01

    The goal of this study was to test whether children, teenagers and adults with congenital left-hemispheric brain lesions master the regularities of German verbal inflectional morphology. Thirteen patients and 35 controls without brain damage participated in three experiments. A grammaticality judgment task, a participle inflection task and a nonce-verb inflection task revealed significant differences between patients and controls. In addition, a main effect of verb type could be observed as patients and controls made more mistakes with irregular than with regular verbs. The findings indicate that the congenitally damaged brain not only has difficulties with complex syntactic structures during language development, as reported by earlier studies, but also has persistent deficits on the morphological level. These observations suggest that the plasticity of the developing brain cannot fully compensate for congenital brain damage which affects regions associated with language functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. [Physical activity: positive impact on brain plasticity].

    PubMed

    Achiron, Anat; Kalron, Alon

    2008-03-01

    The central nervous system has a unique capability of plasticity that enables a single neuron or a group of neurons to undergo functional and constructional changes that are important to learning processes and for compensation of brain damage. The current review aims to summarize recent data related to the effects of physical activity on brain plasticity. In the last decade it was reported that physical activity can affect and manipulate neuronal connections, synaptic activity and adaptation to new neuronal environment following brain injury. One of the most significant neurotrophic factors that is critical for synaptic re-organization and is influenced by physical activity is brain-derived neurotrophic factor (BDNF). The frequency of physical activity and the intensity of exercises are of importance to brain remodeling, support neuronal survival and positively affect rehabilitation therapy. Physical activity should be employed as a tool to improve neural function in healthy subjects and in patients suffering from neurological damage.

  13. Note: Rapid offset reduction of impedance bridges taking into account instrumental damping and phase shifting.

    PubMed

    van der Wel, C M; Kortschot, R J; Bakelaar, I A; Erné, B H; Kuipers, B W M

    2013-03-01

    The sensitivity of an imperfectly balanced impedance bridge is limited by the remaining offset voltage. Here, we present a procedure for offset reduction in impedance measurements using a lock-in amplifier, by applying a complex compensating voltage external to the bridge. This procedure takes into account instrumental damping and phase shifting, which generally occur at the high end of the operational frequency range. Measurements demonstrate that the output of the circuit rapidly converges to the instrumentally limited noise at any frequency.

  14. Strong-field two-photon transition by phase shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkyung; Lim, Jongseok; Ahn, Jaewook

    2010-08-15

    We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom interaction.

  15. Microglia During Development and Aging

    PubMed Central

    Harry, G. Jean

    2013-01-01

    Microglia are critical nervous system-specific cells influencing brain development, maintenance of the neural environment, response to injury, and repair. They contribute to neuronal proliferation and differentiation, pruning of dying neurons, synaptic remodeling and clearance of debris and aberrant proteins. Colonization of the brain occurs during gestation with an expansion following birth with localization stimulated by programmed neuronal death, synaptic pruning, andaxonal degeneration. Changes inmicroglia phenotype relate to cellular processes including specific neurotransmitter, pattern recognition, or immune-related receptor activation. Upon activation, microglia cells have the capacity to release a number of substances, e.g., cytokines, chemokines, nitric oxide, and reactive oxygen species, which could be detrimental or beneficial to the surrounding cells. With aging, microglia shift their morphology and may display diminished capacity for normal functions related to migration, clearance, and the ability to shift from a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This shift in microgliapotentially contributes to increased susceptibility and neurodegeneration as a function of age. In the current review, information is provided on the colonization of the brain by microglia, the expression of various pattern recognition receptors to regulate migration and phagocytosis, and the shift in related functions that occur in normal aging. PMID:23644076

  16. Functional Compensation of Motor Function in Pre-Symptomatic Huntington's Disease

    ERIC Educational Resources Information Center

    Kloppel, Stefan; Draganski, Bogdan; Siebner, Hartwig R.; Tabrizi, Sarah J.; Weiller, Cornelius; Frackowiak, Richard S. J.

    2009-01-01

    Involuntary choreiform movements are a clinical hallmark of Huntington's disease. Studies in clinically affected patients suggest a shift of motor activations to parietal cortices in response to progressive neurodegeneration. Here, we studied pre-symptomatic gene carriers to examine the compensatory mechanisms that underlie the phenomenon of…

  17. Two-pass-internal second-harmonic generation using a prism coupler.

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. G.; Nieh, S. T. K.; Steier, W. H.

    1973-01-01

    A dispersive quartz prism is used to couple the total second harmonic generated in both directions by an internal cavity frequency doubler. The study shows that the dispersion of air and mirror reflection phase shifts can be compensated for by a slight nonphase match condition in the doubler.

  18. The Shift in Assistive Technology

    ERIC Educational Resources Information Center

    Vlasak, Erin; Ranaldo, Michelle

    2012-01-01

    It is becoming increasingly clear that executive functioning deficits are a common area of concern for students and young adults with a variety of different intellectual disabilities. Assistive technology can be invaluable in aiding students and young adults in compensating for these deficits. The Assistive Technology Act of 1998, and the IDEA…

  19. The Time-Crunch Paradox

    ERIC Educational Resources Information Center

    Gimenez-Nadal, Jose Ignacio; Sevilla-Sanz, Almudena

    2011-01-01

    Previous research has shown little difference in the average leisure time of men and women. This finding is a challenge to the "second shift" argument, which suggests that increases in female labor market hours have not been compensated by equal decreases in household labor. This paper presents time-use and leisure satisfaction data for…

  20. Alternative neural circuitry that might be impaired in the development of Alzheimer disease.

    PubMed

    Avila, Jesus; Perry, George; Strange, Bryan A; Hernandez, Felix

    2015-01-01

    It is well established that some individuals with normal cognitive capacity have abundant senile plaques in their brains. It has been proposed that those individuals are resilient or have compensation factors to prevent cognitive decline. In this comment, we explore an alternative mechanism through which cognitive capacity is maintained. This mechanism could involve the impairment of alternative neural circuitry. Also, the proportion of molecules such as Aβ or tau protein present in different areas of the brain could be important.

  1. The social brain in psychiatric and neurological disorders

    PubMed Central

    Kennedy, Daniel P.; Adolphs, Ralph

    2013-01-01

    Psychiatric and neurological disorders have historically provided key insights into the structure-function relationships that subserve human social cognition and behavior, informing the concept of the ‘social brain’. In this review, we take stock of the current status of this concept, retaining a focus on disorders that impact social behavior. We discuss how the social brain, social cognition, and social behavior are interdependent, and emphasize the important role of development and compensation. We suggest that the social brain, and its dysfunction and recovery, must be understood not in terms of specific structures, but rather in terms of their interaction in large-scale networks. PMID:23047070

  2. Large Sex Differences in Chicken Behavior and Brain Gene Expression Coincide with Few Differences in Promoter DNA-Methylation

    PubMed Central

    Nätt, Daniel; Agnvall, Beatrix; Jensen, Per

    2014-01-01

    While behavioral sex differences have repeatedly been reported across taxa, the underlying epigenetic mechanisms in the brain are mostly lacking. Birds have previously shown to have only limited dosage compensation, leading to high sex bias of Z-chromosome gene expression. In chickens, a male hyper-methylated region (MHM) on the Z-chromosome has been associated with a local type of dosage compensation, but a more detailed characterization of the avian methylome is limiting our interpretations. Here we report an analysis of genome wide sex differences in promoter DNA-methylation and gene expression in the brain of three weeks old chickens, and associated sex differences in behavior of Red Junglefowl (ancestor of domestic chickens). Combining DNA-methylation tiling arrays with gene expression microarrays we show that a specific locus of the MHM region, together with the promoter for the zinc finger RNA binding protein (ZFR) gene on chromosome 1, is strongly associated with sex dimorphism in gene expression. Except for this, we found few differences in promoter DNA-methylation, even though hundreds of genes were robustly differentially expressed across distantly related breeds. Several of the differentially expressed genes are known to affect behavior, and as suggested from their functional annotation, we found that female Red Junglefowl are more explorative and fearful in a range of tests performed throughout their lives. This paper identifies new sites and, with increased resolution, confirms known sites where DNA-methylation seems to affect sexually dimorphic gene expression, but the general lack of this association is noticeable and strengthens the view that birds do not have dosage compensation. PMID:24782041

  3. Approximate reasoning by pairwise comparisons. "Topodynamics of metastable brains" by Arturo Tozzi, et al.

    NASA Astrophysics Data System (ADS)

    Kakiashvili, Tamar; Koczkodaj, Waldemar W.; Magnot, Jean-Pierre

    2017-07-01

    The innovative approach in [1], ;Topodynamics of Metastable Brains; by Arturo Tozzi, James Peters, Andrew Fingelkurts, Alexander Fingelkurts, and Pedro Marijuan has a high potential of becoming a paradigm shift in the brain research. It seems that this study has successfully explored the possibility of applying a celebrated Borsuk-Ulam theorem to the operational architectonics of the fundamental brain-mind processes.

  4. Evaluation of photomask flatness compensation for extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Ballman, Katherine; Lee, Christopher; Zimmerman, John; Dunn, Thomas; Bean, Alexander

    2016-10-01

    As the semiconductor industry continues to strive towards high volume manufacturing for EUV, flatness specifications for photomasks have decreased to below 10nm for 2018 production, however the current champion masks being produced report P-V flatness values of roughly 50nm. Write compensation presents the promising opportunity to mitigate pattern placement errors through the use of geometrically adjusted target patterns which counteract the reticle's flatness induced distortions and address the differences in chucking mechanisms between e-beam write and electrostatic clamping during scan. Compensation relies on high accuracy flatness data which provides the critical topographical components of the reticle to the write tool. Any errors included in the flatness data file are translated to the pattern during the write process, which has now driven flatness measurement tools to target a 6σ reproducibility <1nm. Using data collected from a 2011 Sematech study on the Alpha Demo Tool, the proposed methodology for write compensation is validated against printed wafer results. Topographic features which lack compensation capability must then be held to stringent specifications in order to limit their contributions to the final image placement error (IPE) at wafer. By understanding the capabilities and limitations of write compensation, it is then possible to shift flatness requirements towards the "non-correctable" portion of the reticle's profile, potentially relieving polishers from having to adhere to the current single digit flatness specifications.

  5. A bilateral cortical network responds to pitch perturbations in speech feedback

    PubMed Central

    Kort, Naomi S.; Nagarajan, Srikantan S.; Houde, John F.

    2014-01-01

    Auditory feedback is used to monitor and correct for errors in speech production, and one of the clearest demonstrations of this is the pitch perturbation reflex. During ongoing phonation, speakers respond rapidly to shifts of the pitch of their auditory feedback, altering their pitch production to oppose the direction of the applied pitch shift. In this study, we examine the timing of activity within a network of brain regions thought to be involved in mediating this behavior. To isolate auditory feedback processing relevant for motor control of speech, we used magnetoencephalography (MEG) to compare neural responses to speech onset and to transient (400ms) pitch feedback perturbations during speaking with responses to identical acoustic stimuli during passive listening. We found overlapping, but distinct bilateral cortical networks involved in monitoring speech onset and feedback alterations in ongoing speech. Responses to speech onset during speaking were suppressed in bilateral auditory and left ventral supramarginal gyrus/posterior superior temporal sulcus (vSMG/pSTS). In contrast, during pitch perturbations, activity was enhanced in bilateral vSMG/pSTS, bilateral premotor cortex, right primary auditory cortex, and left higher order auditory cortex. We also found speaking-induced delays in responses to both unaltered and altered speech in bilateral primary and secondary auditory regions, the left vSMG/pSTS and right premotor cortex. The network dynamics reveal the cortical processing involved in both detecting the speech error and updating the motor plan to create the new pitch output. These results implicate vSMG/pSTS as critical in both monitoring auditory feedback and initiating rapid compensation to feedback errors. PMID:24076223

  6. Self-Control and the Developing Brain

    ERIC Educational Resources Information Center

    Tarullo, Amanda R.; Obradovic, Jelena; Gunnar, Megan R.

    2009-01-01

    Self-control is a skill that children need to succeed academically, socially, and emotionally. Brain regions essential to self-control are immature at birth and develop slowly throughout childhood. From ages 3 to 6 years, as these brain regions become more mature, children show improved ability to control impulses, shift their attention flexibly,…

  7. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.

    PubMed

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-10

    Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Cognitive specialization for learning faces is associated with shifts in the brain transcriptome of a social wasp.

    PubMed

    Berens, Ali J; Tibbetts, Elizabeth A; Toth, Amy L

    2017-06-15

    The specialized ability to learn and recall individuals based on distinct facial features is known in only a few, large-brained social taxa. Social paper wasps in the genus Polistes are the only insects known to possess this form of cognitive specialization. We analyzed genome-wide brain gene expression during facial and pattern training for two species of paper wasps ( P. fuscatus , which has face recognition, and P. metricus , which does not) using RNA sequencing. We identified 237 transcripts associated with face specialization in P. fuscatus , including some transcripts involved in neuronal signaling (serotonin receptor and tachykinin). Polistes metricus that learned faces (without specialized learning) and P. fuscatus in social interactions with familiar partners (from a previous study) showed distinct sets of brain differentially expressed transcripts. These data suggest face specialization in P. fuscatus is related to shifts in the brain transcriptome associated with genes distinct from those related to general visual learning and social interactions. © 2017. Published by The Company of Biologists Ltd.

  9. Effects of Aging on the Neural Correlates of Successful Item and Source Memory Encoding

    PubMed Central

    Dennis, Nancy A.; Hayes, Scott M.; Prince, Steven E.; Madden, David J.; Huettel, Scott A.; Cabeza, Roberto

    2009-01-01

    To investigate the neural basis of age-related source memory (SM) deficits, young and older adults were scanned with fMRI while encoding faces, scenes, and face-scene pairs. Successful encoding activity was identified by comparing encoding activity for subsequently remembered versus forgotten items or pairs. Age deficits in successful encoding activity in hippocampal and prefrontal regions were more pronounced for SM (pairs) compared to item memory (faces and scenes). Age-related reductions were also found in regions specialized in processing faces (fusiform face area) and scenes (parahippocampal place area), but these reductions were similar for item and SM. Functional connectivity between the hippocampus and the rest of the brain was also affected by aging; whereas connections with posterior cortices were weaker in older adults, connections with anterior cortices including prefrontal regions were stronger in older adults. Taken together, the results provide a link between SM deficits in older adults and reduced recruitment of hippocampal and prefrontal regions during encoding. The functional connectivity findings are consistent with a posterior-anterior shift with aging (PASA), previously reported in several cognitive domains and linked to functional compensation. PMID:18605869

  10. Compensation issues tough to navigate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, Alison L.

    2012-02-12

    Monthly economic diversity column for the Tri-City Herald - excerpt pasted below: Most industries out there are feeling the shift to a more educated, thus more empowered consumer. The legal field is no exception, which is why it's no surprise that lawsuits are on the rise. Today's society is one in which people are more aware than ever of their rights, and often equally convinced of their entitlements in a number of areas. For business owners, employees represent a major source of potential lawsuits. And compensation is an area of particular concern given that many complaints against employers revolve aroundmore » it in some way.« less

  11. SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM

    DOEpatents

    Plotkin, M.; Raka, E.C.; Snyder, H.S.

    1963-05-01

    A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)

  12. Compensation for z-directional non-uniformity of a monopole antenna at 7T MRI

    NASA Astrophysics Data System (ADS)

    Kim, Nambeom; Woo, Myung-Kyun; Kang, Chang-Ki

    2016-06-01

    The research was conducted to find ways to compensate for z-directional non-uniformity at a monopole antenna array (MA) coil by using a tilted optimized non-saturating excitation (TONE) pulse and to evaluate the feasibility of using the MA coil with the TONE pulse for anatomical and angiographic imaging. The sensitivity of a MA coil along the z-direction was measured by using an actual flip angle imaging pulse sequence with an oil phantom to evaluate the flip angle distributions of the MA coil for 7T magnetic resonance imaging (MRI). The effects on the z-directional uniformity were examined by using slow and fast TONE pulses, i.e., TONE SLOW and TONE FAST. T1- and T2* -weighted images of the human brain were also examined. The z-directional profiles of the TONE pulses were analyzed by using the average signal intensity throughout the brain. The effect of the TONE pulses on cerebral vessels was further examined by analyzing maximal intensity projections of T1-weighted images. With increasing the applied flip angles, the sensitivity slope slightly increased (0.044 per degree). For the MA coil, the TONE SLOWpulse yielded a compensated profile along the z-direction while the TONE HIGH pulse, which has a flat excitation profile along the z-direction, exhibited a tilted signal intensity toward the coil end, clearly indicating an intrinsic property of the MA coil. Similar to the phantom study, human brain images revealed z-directional symmetry around the peak value for the averaged signal intensity of the TONE SLOW pulse while the TONE HIGH pulse exhibited a tilted signal intensity toward the coil end. In vascular system imaging, the MA coil also clearly demonstrated a beneficial effect on the cerebral vessels, either with or without the TONE pulses. This study demonstrates that TONE pulses could compensate for the intrinsic z-directional non-uniformity of MA coils that exhibit strong uniformity in the x-y plane. Furthermore, tilted pulses, such as TONE pulses, were utilized for visualizing small vessels. Appropriately combining MA coils and TONE pulses could help advance micro-vessel visualization.

  13. Sensor Drift Compensation Algorithm based on PDF Distance Minimization

    NASA Astrophysics Data System (ADS)

    Kim, Namyong; Byun, Hyung-Gi; Persaud, Krishna C.; Huh, Jeung-Soo

    2009-05-01

    In this paper, a new unsupervised classification algorithm is introduced for the compensation of sensor drift effects of the odor sensing system using a conducting polymer sensor array. The proposed method continues updating adaptive Radial Basis Function Network (RBFN) weights in the testing phase based on minimizing Euclidian Distance between two Probability Density Functions (PDFs) of a set of training phase output data and another set of testing phase output data. The output in the testing phase using the fixed weights of the RBFN are significantly dispersed and shifted from each target value due mostly to sensor drift effect. In the experimental results, the output data by the proposed methods are observed to be concentrated closer again to their own target values significantly. This indicates that the proposed method can be effectively applied to improved odor sensing system equipped with the capability of sensor drift effect compensation

  14. A Preliminary Experience with Use of Intraoperative Magnetic Resonance Imaging in Thalamic Glioma Surgery: A Case Series of 38 Patients.

    PubMed

    Zheng, Xuan; Xu, Xinghua; Zhang, Hui; Wang, Qun; Ma, Xiaodong; Chen, Xiaolei; Sun, Guochen; Zhang, Jiashu; Jiang, Jinli; Xu, Bainan; Zhang, Jun

    2016-05-01

    Thalamic gliomas are rare tumors that constitute 1%-5% of all central nervous system tumors. Despite advanced techniques and equipment, surgical resection remains challenging because of the vital structures adjacent to the tumor. Intraoperative magnetic resonance imaging (MRI) might play an active role during brain tumor surgery because it compensates for brain shift or operation-induced hemorrhage, which are challenging issues for neurosurgeons. We reviewed 38 patients treated surgically under intraoperative MRI guidance between January 2008 and July 2015 at our center. Preoperative, intraoperative, and postoperative MRI scans were reviewed. Preoperative and postoperative motor power, morbidity and mortality, resection rate, surgical approach, pathologic results, and patient demographics were also reviewed. Mean patient age was 37 years ± 18; 12 patients were included in the low-grade group, and 26 patients were included in the high-grade group. Under intraoperative MRI guidance, the gross total resection rate was increased from 16 (42.1%) to 26 (68.4%), and the near-total or subtotal resection rate was increased from 5 (13.2%) to 9 (23.7%). Hematoma formation was discovered in 3 patients on intraoperative MRI scan; each patient underwent a hemostatic operation immediately. With improvements in neurosurgical techniques and equipment, surgical resection is considered feasible in patients with thalamic gliomas. Intraoperative MRI may be helpful in achieving the maximal resection rate with minimal surgical-related morbidity. However, because of severe disease progression, the overall prognosis is unfavorable. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Paradoxical visuomotor adaptation to reversed visual input is predicted by BDNF Val66Met polymorphism

    PubMed Central

    Barton, Brian; Treister, Andrew; Humphrey, Melanie; Abedi, Garen; Cramer, Steven C.; Brewer, Alyssa A.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the brain, influencing neural development, plasticity, and repair (Chen et al., 2004; Thoenen, 1995). The BDNF gene contains a single-nucleotide polymorphism (SNP) called Val66Met. The Met allele interferes with intracellular BDNF-trafficking, decreases activity-dependent BDNF secretion, and consequently is often associated with a shift from plasticity to stability in neural circuits (Egan et al., 2003). We investigated the behavioral consequences of the presence of the Met allele by comparing how 40 heterozygous subjects with the Val/Met genotype and 35 homozygous subjects with the Val/Val genotype performed on visuomotor tasks (reaching and navigation) under two conditions: normal vision and completely left-right reversed vision. As expected, subjects did not differ in their short-term ability to learn the tasks with normal vision (p = 0.58). Intuitively, it would be expected that homozygous Val/Val subjects with a propensity for greater BDNF-induced activity-dependent plasticity would learn new tasks more quickly than heterozygous Val/Met subjects with decreased BDNF secretion (Gilbert, Li, & Piech, 2009). However, we found the opposite here. When short-term mechanisms of visuomotor adaptation were engaged to compensate for the misalignment of visual and somatomotor information created by the left-right reversal of vision, heterozygous Val/Met subjects learned significantly more quickly than their homozygous Val/Val counterparts (p = 0.027). Our results demonstrate the paradoxical finding that the presence of the Met allele, which is thought to promote cortical stability, here improves immediate visuomotor adaptation to left–right-reversed visual input. PMID:25104829

  16. Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer's Disease.

    PubMed

    Croteau, Etienne; Castellano, Christian-Alexandre; Richard, Marie Anne; Fortier, Mélanie; Nugent, Scott; Lepage, Martin; Duchesne, Simon; Whittingstall, Kevin; Turcotte, Éric E; Bocti, Christian; Fülöp, Tamàs; Cunnane, Stephen C

    2018-06-09

    In Alzheimer's disease (AD), it is unknown whether the brain can utilize additional ketones as fuel when they are derived from a medium chain triglyceride (MCT) supplement. To assess whether brain ketone uptake in AD increases in response to MCT as it would in young healthy adults. Mild-moderate AD patients sequentially consumed 30 g/d of two different MCT supplements, both for one month: a mixture of caprylic (55%) and capric acids (35%) (n = 11), followed by a wash-out and then tricaprylin (95%; n = 6). Brain ketone (11C-acetoacetate) and glucose (FDG) uptake were quantified by PET before and after each MCT intervention. Brain ketone consumption doubled on both types of MCT supplement. The slope of the relationship between plasma ketones and brain ketone uptake was the same as in healthy young adults. Both types of MCT increased total brain energy metabolism by increasing ketone supply without affecting brain glucose utilization. Ketones from MCT compensate for the brain glucose deficit in AD in direct proportion to the level of plasma ketones achieved.

  17. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less

  18. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases

    DOE PAGES

    Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; ...

    2015-02-18

    During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less

  19. Presurgical localization and spatial shift of resting state networks in patients with brain metastases.

    PubMed

    Ding, Ju-Rong; Zhu, Fangmei; Hua, Bo; Xiong, Xingzhong; Wen, Yuqiao; Ding, Zhongxiang; Thompson, Paul M

    2018-04-02

    Brain metastases are the most prevalent cerebral tumors. Resting state networks (RSNs) are involved in multiple perceptual and cognitive functions. Therefore, precisely localizing multiple RSNs may be extremely valuable before surgical resection of metastases, to minimize neurocognitive impairments. Here we aimed to investigate the reliability of independent component analysis (ICA) for localizing multiple RSNs from resting-state functional MRI (rs-fMRI) data in individual patients, and further evaluate lesion-related spatial shifts of the RSNs. Twelve patients with brain metastases and 14 healthy controls were recruited. Using an improved automatic component identification method, we successfully identified seven common RSNs, including: the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN), language network (LN), sensorimotor network (SMN), auditory network (AN) and visual network (VN), in both individual patients and controls. Moreover, the RSNs in the patients showed a visible spatial shift compared to those in the controls, and the spatial shift of some regions was related to the tumor location, which may reflect a complicated functional mechanism - functional disruptions and reorganizations - caused by metastases. Besides, higher cognitive networks (DMN, ECN, DAN and LN) showed significantly larger spatial shifts than perceptual networks (SMN, AN and VN), supporting a functional dichotomy between the two network groups even in pathologic alterations associated with metastases. Overall, our findings provide evidence that ICA is a promising approach for presurgical localization of multiple RSNs from rs-fMRI data in individual patients. More attention should be paid to the spatial shifts of the RSNs before surgical resection.

  20. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits.

    PubMed

    Hashmi, Javeria A; Baliki, Marwan N; Huang, Lejian; Baria, Alex T; Torbey, Souraya; Hermann, Kristina M; Schnitzer, Thomas J; Apkarian, A Vania

    2013-09-01

    Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain.

  1. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits

    PubMed Central

    Hashmi, Javeria A.; Baliki, Marwan N.; Huang, Lejian; Baria, Alex T.; Torbey, Souraya; Hermann, Kristina M.; Schnitzer, Thomas J.; Apkarian, A. Vania

    2013-01-01

    Chronic pain conditions are associated with abnormalities in brain structure and function. Moreover, some studies indicate that brain activity related to the subjective perception of chronic pain may be distinct from activity for acute pain. However, the latter are based on observations from cross-sectional studies. How brain activity reorganizes with transition from acute to chronic pain has remained unexplored. Here we study this transition by examining brain activity for rating fluctuations of back pain magnitude. First we compared back pain-related brain activity between subjects who have had the condition for ∼2 months with no prior history of back pain for 1 year (early, acute/subacute back pain group, n = 94), to subjects who have lived with back pain for >10 years (chronic back pain group, n = 59). In a subset of subacute back pain patients, we followed brain activity for back pain longitudinally over a 1-year period, and compared brain activity between those who recover (recovered acute/sub-acute back pain group, n = 19) and those in which the back pain persists (persistent acute/sub-acute back pain group, n = 20; based on a 20% decrease in intensity of back pain in 1 year). We report results in relation to meta-analytic probabilistic maps related to the terms pain, emotion, and reward (each map is based on >200 brain imaging studies, derived from neurosynth.org). We observed that brain activity for back pain in the early, acute/subacute back pain group is limited to regions involved in acute pain, whereas in the chronic back pain group, activity is confined to emotion-related circuitry. Reward circuitry was equally represented in both groups. In the recovered acute/subacute back pain group, brain activity diminished in time, whereas in the persistent acute/subacute back pain group, activity diminished in acute pain regions, increased in emotion-related circuitry, and remained unchanged in reward circuitry. The results demonstrate that brain representation for a constant percept, back pain, can undergo large-scale shifts in brain activity with the transition to chronic pain. These observations challenge long-standing theoretical concepts regarding brain and mind relationships, as well as provide important novel insights regarding definitions and mechanisms of chronic pain. PMID:23983029

  2. Fabricating fiber Bragg gratings with two phase masks based on reconstruction-equivalent-chirp technique.

    PubMed

    Gao, Liang; Chen, Xiangfei; Xiong, Jintian; Liu, Shengchun; Pu, Tao

    2012-01-30

    Based on reconstruction-equivalent-chirp (REC) technique, a novel solution for fabricating low-cost long fiber Bragg gratings (FBGs) with desired properties is proposed and initially studied. A proof-of-concept experiment is demonstrated with two conventional uniform phase masks and a submicron-precision translation stage, successfully. It is shown that the original phase shift (OPS) caused by phase mismatch of the two phase masks can be compensated by the equivalent phase shift (EPS) at the ±1st channels of sampled FBGs, separately. Furthermore, as an example, a π phase-shifted FBG of about 90 mm is fabricated by using these two 50mm-long uniform phase masks based on the presented method.

  3. Amphetamines and pH-shift agents for brain imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biersack, H.J.; Winkler, C.

    1986-01-01

    This book gives a review of the results of experimental and clinical research on both I-amphetamine derivatives and pH-shift agents. Virtually all relevant working groups from the USA and Europe have contributed to this volume. The pharmacology of amphetamine and the corresponding receptor theories are described in detail, whereas other chapters deal with the labeling as well as the metabolic process of this drug. In addition to this, new amphetamine derivatives are presented together with other essential products which play a significant role in scintigraphy of the brain function. Finally, there are two chapters on instrumentation problems followed by eightmore » contributions on the clinical results of amphetamine scintigraphy in cerebral vascular diseases, epilepsy, migraine and brain tumors.« less

  4. Visual attention in preterm born adults: specifically impaired attentional sub-mechanisms that link with altered intrinsic brain networks in a compensation-like mode.

    PubMed

    Finke, Kathrin; Neitzel, Julia; Bäuml, Josef G; Redel, Petra; Müller, Hermann J; Meng, Chun; Jaekel, Julia; Daamen, Marcel; Scheef, Lukas; Busch, Barbara; Baumann, Nicole; Boecker, Henning; Bartmann, Peter; Habekost, Thomas; Wolke, Dieter; Wohlschläger, Afra; Sorg, Christian

    2015-02-15

    Although pronounced and lasting deficits in selective attention have been observed for preterm born individuals it is unknown which specific attentional sub-mechanisms are affected and how they relate to brain networks. We used the computationally specified 'Theory of Visual Attention' together with whole- and partial-report paradigms to compare attentional sub-mechanisms of pre- (n=33) and full-term (n=32) born adults. Resting-state fMRI was used to evaluate both between-group differences and inter-individual variance in changed functional connectivity of intrinsic brain networks relevant for visual attention. In preterm born adults, we found specific impairments of visual short-term memory (vSTM) storage capacity while other sub-mechanisms such as processing speed or attentional weighting were unchanged. Furthermore, changed functional connectivity was found in unimodal visual and supramodal attention-related intrinsic networks. Among preterm born adults, the individual pattern of changed connectivity in occipital and parietal cortices was systematically associated with vSTM in such a way that the more distinct the connectivity differences, the better the preterm adults' storage capacity. These findings provide first evidence for selectively changed attentional sub-mechanisms in preterm born adults and their relation to altered intrinsic brain networks. In particular, data suggest that cortical changes in intrinsic functional connectivity may compensate adverse developmental consequences of prematurity on visual short-term storage capacity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Global Dosage Compensation Is Ubiquitous in Lepidoptera, but Counteracted by the Masculinization of the Z Chromosome

    PubMed Central

    Huylmans, Ann Kathrin; Macon, Ariana; Vicoso, Beatriz

    2017-01-01

    Abstract While chromosome-wide dosage compensation of the X chromosome has been found in many species, studies in ZW clades have indicated that compensation of the Z is more localized and/or incomplete. In the ZW Lepidoptera, some species show complete compensation of the Z chromosome, while others lack full equalization, but what drives these inconsistencies is unclear. Here, we compare patterns of male and female gene expression on the Z chromosome of two closely related butterfly species, Papilio xuthus and Papilio machaon, and in multiple tissues of two moths species, Plodia interpunctella and Bombyx mori, which were previously found to differ in the extent to which they equalize Z-linked gene expression between the sexes. We find that, while some species and tissues seem to have incomplete dosage compensation, this is in fact due to the accumulation of male-biased genes and the depletion of female-biased genes on the Z chromosome. Once this is accounted for, the Z chromosome is fully compensated in all four species, through the up-regulation of Z expression in females and in some cases additional down-regulation in males. We further find that both sex-biased genes and Z-linked genes have increased rates of expression divergence in this clade, and that this can lead to fast shifts in patterns of gene expression even between closely related species. Taken together, these results show that the uneven distribution of sex-biased genes on sex chromosomes can confound conclusions about dosage compensation and that Z chromosome-wide dosage compensation is not only possible but ubiquitous among Lepidoptera. PMID:28957502

  6. Effects of modifications to the health and social sector's collective agreement on the objective characteristics of working hours.

    PubMed

    Ropponen, Annina; Vanttola, Päivi; Koskinen, Aki; Hakola, Tarja; Puttonen, Sampsa; Härmä, Mikko

    2017-08-08

    This study aimed to evaluate the effects of an intervention on objective working-hour characteristics. The intervention involved making modifications to the collective agreement that would limit employees' entitlement to time off as compensation. The intervention group consisted of 493 and the control group of 2,303 health and social care shift workers, respectively. We analysed the objective pay roll-based working-hour data for 2012-2013, which we obtained from employers' records, using the repeated measures mixed model. The changes in objective working-hour characteristics were small, but systematic. The intervention had some positive effects: the amount of short recovery periods (<28 h) after the last night shift decreased from 5% to 3%, and the amount of working weeks of over 48 h decreased from 19% to 17%. The realization of employees' shift preferences increased from 18% to 20%. However, in contrast, consecutive work shifts and the number of scheduled absences increased and days off decreased, suggesting less time for recovery and thus a negative trend in shift ergonomics. When planning shifts, nursing management should avoid regulations that promote specific unhealthy shift characteristics, that is, consecutive work shifts and less days off.

  7. Effects of modifications to the health and social sector’s collective agreement on the objective characteristics of working hours

    PubMed Central

    ROPPONEN, Annina; VANTTOLA, Päivi; KOSKINEN, Aki; HAKOLA, Tarja; PUTTONEN, Sampsa; HÄRMÄ, Mikko

    2017-01-01

    This study aimed to evaluate the effects of an intervention on objective working-hour characteristics. The intervention involved making modifications to the collective agreement that would limit employees’ entitlement to time off as compensation. The intervention group consisted of 493 and the control group of 2,303 health and social care shift workers, respectively. We analysed the objective pay roll-based working-hour data for 2012–2013, which we obtained from employers’ records, using the repeated measures mixed model. The changes in objective working-hour characteristics were small, but systematic. The intervention had some positive effects: the amount of short recovery periods (<28 h) after the last night shift decreased from 5% to 3%, and the amount of working weeks of over 48 h decreased from 19% to 17%. The realization of employees’ shift preferences increased from 18% to 20%. However, in contrast, consecutive work shifts and the number of scheduled absences increased and days off decreased, suggesting less time for recovery and thus a negative trend in shift ergonomics. When planning shifts, nursing management should avoid regulations that promote specific unhealthy shift characteristics, that is, consecutive work shifts and less days off. PMID:28420807

  8. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table.

    PubMed

    Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo

    2013-05-06

    A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.

  9. Number Line Estimation in Children with Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Sella, Francesco; Berteletti, Ilaria; Martina, Brazzolotto; Lucangeli, Daniela; Zorzi, Marco

    2013-01-01

    In the number to position task, several studies have shown that typically developing children shift from a biased (logarithmic) to an accurate (linear) mapping of symbolic digits onto a spatial position on a line. The initial pattern of overestimation of small numbers and the underestimation of larger numbers is compensated by means of age and…

  10. Designing and Implementing Human Capital Management Systems in Educator Evaluation

    ERIC Educational Resources Information Center

    Kraemer, Sara; Milanowski, Anthony; Scott, Jenna; Adrien, Richard; Fairbairn, Shane; Bourn, Ronda; Hill, Marsha

    2015-01-01

    The Department of Education's Teacher Incentive Fund (TIF) 4 program represents a programmatic shift away from educator compensation reform as the primary lever of change for teacher performance and student learning. The TIF 4 program is designed to encourage the use of educator effectiveness measures to support the strategic instructional vision…

  11. 29 CFR 553.225 - Early relief.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Early relief. 553.225 Section 553.225 Labor Regulations... Enforcement Employees of Public Agencies Tour of Duty and Compensable Hours of Work Rules § 553.225 Early... employees on the previous shift prior to the scheduled starting time. Such early relief time may occur...

  12. 29 CFR 553.225 - Early relief.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Early relief. 553.225 Section 553.225 Labor Regulations... Enforcement Employees of Public Agencies Tour of Duty and Compensable Hours of Work Rules § 553.225 Early... employees on the previous shift prior to the scheduled starting time. Such early relief time may occur...

  13. Piezoelectric drive circuit

    DOEpatents

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  14. Piezoelectric drive circuit

    DOEpatents

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  15. Long-term functional recovery and compensation after cerebral ischemia in rats.

    PubMed

    Girard, Sylvie; Murray, Katie N; Rothwell, Nancy J; Metz, Gerlinde A S; Allan, Stuart M

    2014-08-15

    Cerebral ischemia is one of the most common causes of disabilities in adults and leads to long-term motor and cognitive impairments with limited therapeutic possibilities. Treatment options have proven efficient in preclinical models of cerebral ischemia but have failed in the clinical setting. This limited translation may be due to the suitability of models used and outcomes measured as most studies have focused on the early period after injury with gross motor scales, which have limited correlation to the clinical situation. The aim of this study was to determine long-term functional outcomes after cerebral ischemia in rats, focusing on fine motor function, social and depressive behavior as clinically relevant measures. A secondary objective was to evaluate the effects of an anti-inflammatory treatment (interleukin-1 receptor antagonist (IL-1Ra)) on functional recovery and compensation. Infarct volume was correlated with long-term (25 days) impairments in fine motor skills, but not with emotional components of behavior. Motor impairments could not be detected using conventional neurological tests and only detailed analysis allowed differentiation between recovery and compensation. Acute systemic administration of IL-1Ra (at reperfusion) led to a faster and more complete recovery, but delayed (24h) IL-1Ra treatment had no effect. In summary functional assessment after brain injury requires detailed motor tests in order to address long-term impairments and compensation processes that are mediated by intact tissues. Functional deficits in skilled movement after brain injury represent ideal predictors of long-term outcomes and should become standard measures in the assessment of preclinical animal models. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve

    PubMed Central

    Barulli, Daniel; Stern, Yaakov

    2013-01-01

    Cognitive reserve (CR) is a concept meant to account for the frequent discrepancy between an individual’s measured level of brain pathology and her expected cognitive performance. It is particularly important within the context of aging and dementia, but has wider applicability to all forms of brain damage. As such, it has intimate links to related compensatory and neuroprotective concepts, as well as to the related notion of brain reserve. In this article, we introduce the concept of cognitive reserve and explicate its potential cognitive neural implementation. We conclude that cognitive reserve is compatible and complementary with many related concepts, but that each much draw sharper conceptual boundaries in order to truly explain preserved cognitive function in the face of aging or brain damage. PMID:24018144

  17. Contrasting patterns of care for musculoskeletal disorders and injuries of the upper extremity and knee through workers' compensation and private health care insurance among union carpenters in Washington State, 1989 to 2008.

    PubMed

    Lipscomb, Hester J; Schoenfisch, Ashley L; Cameron, Wilfrid; Kucera, Kristen L; Adams, Darrin; Silverstein, Barbara A

    2015-09-01

    Musculoskeletal symptoms and disorders (MSDIs) are common reasons for visits to medical providers in the general population and they are common work-related complaints. Prior reports raise concerns as to whether declines in workers' compensation (WC) rates represent true improvement in occupational health and safety or shifting of care to other payment systems. By linking administrative records, we compared patterns of WC claims and private health care utilization for disorders of the upper extremity (UE) and knee among a large cohort of union carpenters over a 20-year period. As WC claim rates declined, private health care utilization increased. The increase was muted somewhat but sustained when adjusting for other patterns of health care utilization. Findings suggest the decline of WC claim rates do not solely represent improved occupational safety in this population, but also a considerable shifting of care to their private insurance coverage over time. © 2015 Wiley Periodicals, Inc.

  18. Quantification and Compensation of Eddy-Current-Induced Magnetic Field Gradients

    PubMed Central

    Spees, William M.; Buhl, Niels; Sun, Peng; Ackerman, Joseph J.H.; Neil, Jeffrey J.; Garbow, Joel R.

    2011-01-01

    Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or 6-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom’s free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner’s gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. PMID:21764614

  19. Quantification and compensation of eddy-current-induced magnetic-field gradients.

    PubMed

    Spees, William M; Buhl, Niels; Sun, Peng; Ackerman, Joseph J H; Neil, Jeffrey J; Garbow, Joel R

    2011-09-01

    Two robust techniques for quantification and compensation of eddy-current-induced magnetic-field gradients and static magnetic-field shifts (ΔB0) in MRI systems are described. Purpose-built 1-D or six-point phantoms are employed. Both procedures involve measuring the effects of a prior magnetic-field-gradient test pulse on the phantom's free induction decay (FID). Phantom-specific analysis of the resulting FID data produces estimates of the time-dependent, eddy-current-induced magnetic field gradient(s) and ΔB0 shift. Using Bayesian methods, the time dependencies of the eddy-current-induced decays are modeled as sums of exponentially decaying components, each defined by an amplitude and time constant. These amplitudes and time constants are employed to adjust the scanner's gradient pre-emphasis unit and eliminate undesirable eddy-current effects. Measurement with the six-point sample phantom allows for simultaneous, direct estimation of both on-axis and cross-term eddy-current-induced gradients. The two methods are demonstrated and validated on several MRI systems with actively-shielded gradient coil sets. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals.

    PubMed

    Demanuele, Charmaine; James, Christopher J; Sonuga-Barke, Edmund Js

    2007-12-10

    It has been acknowledged that the frequency spectrum of measured electromagnetic (EM) brain signals shows a decrease in power with increasing frequency. This spectral behaviour may lead to difficulty in distinguishing event-related peaks from ongoing brain activity in the electro- and magnetoencephalographic (EEG and MEG) signal spectra. This can become an issue especially in the analysis of low frequency oscillations (LFOs) - below 0.5 Hz - which are currently being observed in signal recordings linked with specific pathologies such as epileptic seizures or attention deficit hyperactivity disorder (ADHD), in sleep studies, etc. In this work we propose a simple method that can be used to compensate for this 1/f trend hence achieving spectral normalisation. This method involves filtering the raw measured EM signal through a differentiator prior to further data analysis. Applying the proposed method to various exemplary datasets including very low frequency EEG recordings, epileptic seizure recordings, MEG data and Evoked Response data showed that this compensating procedure provides a flat spectral base onto which event related peaks can be clearly observed. Findings suggest that the proposed filter is a useful tool for the analysis of physiological data especially in revealing very low frequency peaks which may otherwise be obscured by the 1/f spectral activity inherent in EEG/MEG recordings.

  1. Age, Intelligence, and Event-Related Brain Potentials during Late Childhood: A Longitudinal Study.

    ERIC Educational Resources Information Center

    Stauder, Johannes E. A.; van der Molen, Maurits W.; Molenaar, Peter C. M.

    2003-01-01

    Studied the relationship between event-related brain activity, age, and intelligence using a visual oddball task presented to girls at 9, 10, and 11 years of age. Findings for 26 girls suggest a qualitative shift in the relation between event-related brain activity and intelligence between 9 and 10 years of age. (SLD)

  2. Frequency Invariability of (Pb,La)(Zr,Ti)O₃ Antiferroelectric Thick-Film Micro-Cantilevers.

    PubMed

    An, Kun; Jin, Xuechen; Meng, Jiang; Li, Xiao; Ren, Yifeng

    2018-05-13

    Micro-electromechanical systems comprising antiferroelectric layers can offer both actuation and transduction to integrated technologies. Micro-cantilevers based on the (Pb 0.97 La 0.02 )(Zr 0.95 Ti 0.05 )O₃ (PLZT) antiferroelectric thick film are fabricated by the micro-nano manufacturing process, to utilize the effect of phase transition induced strain and sharp phase switch of antiferroelectric materials. When micro-cantilevers made of antiferroelectric thick films were driven by sweep voltages, there were two resonant peaks corresponding to the natural frequency shift from 27.8 to 27.0 kHz, before and after phase transition. This is the compensation principle for the PLZT micro-cantilever to tune the natural frequency by the amplitude modulation of driving voltage, rather than of frequency modulation. Considering the natural frequency shift about 0.8 kHz and the frequency tuning ability about 156 Hz/V before the phase transition, this can compensate the frequency shift caused by increasing temperature by tuning only the amplitude of driving voltage, when the ultrasonic micro-transducer made of antiferroelectric thick films works for such a long period. Therefore, antiferroelectric thick films with hetero-structures incorporated into PLZT micro-cantilevers not only require a lower driving voltage (no more than 40 V) than rival bulk piezoelectric ceramics, but also exhibit better performance of frequency invariability, based on the amplitude modulation.

  3. Cortical surface shift estimation using stereovision and optical flow motion tracking via projection image registration

    PubMed Central

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2014-01-01

    Stereovision is an important intraoperative imaging technique that captures the exposed parenchymal surface noninvasively during open cranial surgery. Estimating cortical surface shift efficiently and accurately is critical to compensate for brain deformation in the operating room (OR). In this study, we present an automatic and robust registration technique based on optical flow (OF) motion tracking to compensate for cortical surface displacement throughout surgery. Stereo images of the cortical surface were acquired at multiple time points after dural opening to reconstruct three-dimensional (3D) texture intensity-encoded cortical surfaces. A local coordinate system was established with its z-axis parallel to the average surface normal direction of the reconstructed cortical surface immediately after dural opening in order to produce two-dimensional (2D) projection images. A dense displacement field between the two projection images was determined directly from OF motion tracking without the need for feature identification or tracking. The starting and end points of the displacement vectors on the two cortical surfaces were then obtained following spatial mapping inversion to produce the full 3D displacement of the exposed cortical surface. We evaluated the technique with images obtained from digital phantoms and 18 surgical cases – 10 of which involved independent measurements of feature locations acquired with a tracked stylus for accuracy comparisons, and 8 others of which 4 involved stereo image acquisitions at three or more time points during surgery to illustrate utility throughout a procedure. Results from the digital phantom images were very accurate (0.05 pixels). In the 10 surgical cases with independently digitized point locations, the average agreement between feature coordinates derived from the cortical surface reconstructions was 1.7–2.1 mm relative to those determined with the tracked stylus probe. The agreement in feature displacement tracking was also comparable to tracked probe data (difference in displacement magnitude was <1 mm on average). The average magnitude of cortical surface displacement was 7.9 ± 5.7 mm (range 0.3–24.4 mm) in all patient cases with the displacement components along gravity being 5.2 ± 6.0 mm relative to the lateral movement of 2.4 ± 1.6 mm. Thus, our technique appears to be sufficiently accurate and computationally efficiency (typically ~15 s), for applications in the OR. PMID:25077845

  4. Minimizing brain shift during functional neurosurgical procedures - a simple burr hole technique that can decrease CSF loss and intracranial air.

    PubMed

    Coenen, V A; Abdel-Rahman, A; McMaster, J; Bogod, N; Honey, C R

    2011-11-01

    Exact stereotactic placement of deep brain stimulation electrodes during functional stereotactic neurosurgical procedures can be impeded by intraoperative brain shift. Brain shift has been shown to correlate with the amount of intracranial (subdural) air detected on early postoperative imaging studies. We report a simple burr hole technique that reduces the loss of cerebrospinal fluid (CSF) and has the potential to significantly reduce the amount of postoperative intracranial air. A total of 16 patients were studied with half (group 2) receiving the burr hole technique designed to seal the CSF space and thereby reducing CSF loss. The other 8 patients (group 1) received the standard burr hole technique. The 2 groups were of similar age, gender, diagnosis (Parkinson's disease, n=14; cervical dystonia n=2), and surgical targets. All patients received bilateral electrodes either in the subthalamic nucleus (STN, n=14) or in the globus pallidum internus (GPi, n=2) avoiding transventricular trajectories. Early postoperative 3-dimensional computed tomography (3D CT) was used to check for possible bleeding, DBS lead location, and the amount of intracranial air. Intracranial air was assessed manually in a volumetric slice-by-slice approach in the individual postoperative CT and the groups compared by t-test. Group 2 showed significantly lower postoperative intracranial air volumes (4.86 ± 4.35cc) as compared to group 1 (27.59 ± 17.80 cc, p=0.0083*). The duration of surgery, however, was significantly longer for group 1 (435 ± 56.05 min) as compared to group 2 (316 ± 34.79 min,p=0.00015*).The time span between the conclusion of the operation and postoperative 3DCT was similar for both groups. This new and simple burr hole technique was associated with a significant reduction in postoperative intracranial air. Reduction of intracranial air will ultimately reduce brain shift. That total operation time does not influence intracranial air is discussed as well as the limitations of this pilot series. In the authors' opinion, this straightforward and cost-effective technique has the potential to reduce brain shift and to increase DBS placement accuracy during functional stereotactic neurosurgical procedures performed in the seated or half-sitting position. A larger more standardized patient series is necessary to substantiate the findings. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Perivascular Accumulation of β-Sheet-Rich Proteins in Offspring Brain following Maternal Exposure to Carbon Black Nanoparticles.

    PubMed

    Onoda, Atsuto; Kawasaki, Takayasu; Tsukiyama, Koichi; Takeda, Ken; Umezawa, Masakazu

    2017-01-01

    Environmental stimulation during brain development is an important risk factor for the development of neurodegenerative disease. Clinical evidence indicates that prenatal exposure to particulate air pollutants leads to diffuse damage to the neurovascular unit in the developing brain and accelerates neurodegeneration. Maternal exposure to carbon black nanoparticles (CB-NPs), used as a model for particulate air pollution, induces long-lasting diffuse perivascular abnormalities. We aimed to comprehensively characterize the perivascular abnormalities related to maternal NPs exposure using Fourier transform infrared microspectroscopy ( in situ FT-IR) and classical staining analysis. Pregnant ICR mice were intranasally treated with a CB-NPs suspension (95 μg/kg at a time) on gestational days 5 and 9. Brains were collected 6 weeks after birth and sliced to prepare 10-μm-thick serial sections. Reflective spectra of in situ FT-IR were acquired using lattice measurements ( x -axis: 7, y -axis: 7, 30-μm apertures) around a centered blood vessel. We also performed mapping analysis of protein secondary structures. Serial sections were stained with using periodic acid-Schiff or immunofluorescence to examine the phenotypes of the perivascular areas. Peaks of amide I bands in spectra from perivascular areas were shifted by maternal NPs exposure. However, there were two types of peak-shift in one mouse in the exposure group. Some vessels had a large peak-shift and others had a small peak-shift. In situ FT-IR combined with traditional staining revealed that the large peak-shift was induced around blood vessel adjacent to astrocytes with glial fibrillary acidic protein and aquaporin-4 over-expression and perivascular macrophages (PVMs) with enlarged lysosome granules. Furthermore, protein secondary structural analysis indicated that maternal NPs exposure led to increases in β-sheet content and decreases in α-helix content in areas that are mostly close to the centered blood vessel displaying histopathological changes. These results suggest that β-sheet-rich waste proteins, which are denatured by maternal NPs exposure, likely accumulate in the perivascular space as they are processed by the clearance systems in the brain. This may in turn lead the denaturation of PVMs and astrocyte activation. The risk of neurodegeneration may be enhanced by exposure to particulate air pollutants during brain development following the perivascular accumulation of β-sheet-rich waste proteins.

  6. Using regional homogeneity to reveal altered spontaneous activity in patients with mild cognitive impairment.

    PubMed

    Wang, Yumei; Zhao, Xiaochuan; Xu, Shunjiang; Yu, Lulu; Wang, Lan; Song, Mei; Yang, Linlin; Wang, Xueyi

    2015-01-01

    Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer's disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI.

  7. Using Regional Homogeneity to Reveal Altered Spontaneous Activity in Patients with Mild Cognitive Impairment

    PubMed Central

    Wang, Yumei; Zhao, Xiaochuan; Xu, Shunjiang; Yu, Lulu; Wang, Lan; Song, Mei; Yang, Linlin; Wang, Xueyi

    2015-01-01

    Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer's disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI. PMID:25738156

  8. Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis

    PubMed Central

    Granato, Michael

    2016-01-01

    During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator. PMID:27855159

  9. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  10. The detection of chronic cerebral hemorrhage in rabbits with magnetic induction

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Jin, Gui; Qin, Mingxin; Wan, Zibing; Wang, Jinbao; ChaoWang; Guo, Wanyou; Xu, Lin; Ning, Xu; Xu, Jia; Pu, Xianjie; Chen, Mingsheng; Zhao, Hongmei

    2012-12-01

    Chronic cerebral hemorrhage (CCH) in the brain is an important clinical problem that is often monitored and studied with expensive devices such as MRI and PET, which are not readily available in low economical resource parts of the world. We have developed a less expensive tool for non-contact monitoring of CCH in the brain. The system measures the phase shift between the electromagnetic signals on the two coils. CCH was induced in the brain of rabbits by stereotactic method. Intracranial pressure (ICP) and Electrocardiograph (ECG) of subjects were monitored for 1.5h. Signals were continuously monitored up to t=1.5h at exciting frequency 10.7MHz. From 0.8 to 2.4 ml of autologous blood was injected (each injection quantity of 0.8 ml, the interval time for 30 minutes). The results show significant phase shifts increase as a function of injection volume. ICP and phase shift were directly proportional to the related, while HRV were stable around 200beats*min-1. Our system has high sensitivity that even 0.8 ml can also be detected. In this study, the curves of inductive phase shift are significantly related to ICP. This observation suggests that the method could be valuable, in addition to continuous monitoring, also for early warning in emergency medicine and critical care units.

  11. Abuse of Amphetamines and Structural Abnormalities in Brain

    PubMed Central

    Berman, Steven; O’Neill, Joseph; Fears, Scott; Bartzokis, George; London, Edythe D.

    2009-01-01

    We review evidence that structural brain abnormalities are associated with abuse of amphetamines. A brief history of amphetamine use/abuse, and evidence for toxicity is followed by a summary of findings from structural magnetic resonance imaging (MRI) studies of human subjects who had abused amphetamines and children who were exposed to amphetamines in utero. Evidence comes from studies that used a variety of techniques that include manual tracing, pattern matching, voxel-based, tensor-based, or cortical thickness mapping, quantification of white matter signal hyperintensities, and diffusion tensor imaging. Ten studies compared controls to individuals who were exposed to methamphetamine. Three studies assessed individuals exposed to 3-4-methylenedioxymethamphetamine (MDMA). Brain structural abnormalities were consistently reported in amphetamine abusers, as compared to control subjects. These included lower cortical gray matter volume and higher striatal volume than control subjects. These differences might reflect brain features that could predispose to substance dependence. High striatal volumes might also reflect compensation for toxicity in the dopamine-rich basal ganglia. Prenatal exposure was associated with striatal volume that was below control values, suggesting that such compensation might not occur in utero. Several forms of white matter abnormality are also common, and may involve gliosis. Many of the limitations and inconsistencies in the literature relate to techniques and cross-sectional designs, which cannot infer causality. Potential confounding influences include effects of pre-existing risk/protective factors, development, gender, severity of amphetamine abuse, abuse of other drugs, abstinence, and differences in lifestyle. Longitudinal designs in which multimodal datasets are acquired and are subjected to multivariate analyses would enhance our ability to provide general conclusions regarding the associations between amphetamine abuse and brain structure. PMID:18991959

  12. TEMPORAL PATTERNS OF LIPOPEROXIDATION AND ANTIOXIDANT ENZYMES ARE MODIFIED IN THE HIPPOCAMPUS OF VITAMIN A-DEFICIENT RATS

    PubMed Central

    Navigatore Fonzo, Lorena S.; Golini, Rebeca S.; Delgado, Silvia M.; Ponce, Ivana T.; Bonomi, Myrta R.; Rezza, Irma G.; Gimenez, María S.; Anzulovich, Ana C.

    2011-01-01

    Animals can adapt their behavior to predictable temporal fluctuations in the environment through both, memory-and-learning processes and an endogenous time-keeping mechanism. Hippocampus plays a key role in memory and learning and is especially susceptible to oxidative stress. In compensation, antioxidant enzymes activity, such as Catalase (CAT) and Glutathione peroxidase (GPx), has been detected in this brain region. Daily rhythms of antioxidant enzymes activitiy, as well as of glutathione and lipid peroxides levels, have been described in brain. Here, we investigate day/night variations in lipoperoxidation, CAT and GPx expression and activity, as well as the temporal fluctuations of two key components of the endogenous clock, BMAL1 and PER1, in the rat hippocampus and evaluate to which extent vitamin A deficiency may affect their amplitude or phase. Holtzman male rats from control, vitamin A-deficient and vitamin A-refed groups were sacrificed throughout a 24-h period. Daily levels of clock proteins, lipoperoxidation, CAT and GPx mRNA, protein, and activity, were determined in the rat hippocampus obtained every 4 or 5 h. Gene expression of RARα and RXRβ was also quantified in the hippocampus of the three groups of rats. Our results show significant daily variations of BMAL1 and PER1 protein expression. Rhythmic lipoperoxidation, CAT, and GPx, expression and activity, were also observed in the rat hippocampus. Vitamin A deficiency reduced RXRβ mRNA level, as well as the amplitude of BMAL1 and PER1 daily oscillation, phase-shifted the daily peak of lipoperoxidation, and had a differential effect on the oscillating CAT and GPx mRNA, protein, and activity. Learning how vitamin A deficiency affects the circadian gene expression in the hippocampus may have an impact on the neurobiology, nutritional and chronobiology fields, emphasizing for the first time the importance of nutritional factors, such as dietary micronutrients, in the regulation of circadian parameters in this brain memory-and-learning-related region. PMID:19308957

  13. SU-E-T-268: Proton Radiosurgery End-To-End Testing Using Lucy 3D QA Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, D; Gordon, I; Ghebremedhin, A

    2014-06-01

    Purpose: To check the overall accuracy of proton radiosurgery treatment delivery using ready-made circular collimator inserts and fixed thickness compensating boluses. Methods: Lucy 3D QA phantom (Standard Imaging Inc. WI, USA) inserted with GaFchromicTM film was irradiated with laterally scattered and longitudinally spread-out 126.8 MeV proton beams. The tests followed every step in the proton radiosurgery treatment delivery process: CT scan (GE Lightspeed VCT), target contouring, treatment planning (Odyssey 5.0, Optivus, CA), portal calibration, target localization using robotic couch with image guidance and dose delivery at planned gantry angles. A 2 cm diameter collimator insert in a 4 cm diametermore » radiosurgery cone and a 1.2 cm thick compensating flat bolus were used for all beams. Film dosimetry (RIT114 v5.0, Radiological Imaging Technology, CO, USA) was used to evaluate the accuracy of target localization and relative dose distributions compared to those calculated by the treatment planning system. Results: The localization accuracy was estimated by analyzing the GaFchromic films irradiated at gantry 0, 90 and 270 degrees. We observed 0.5 mm shift in lateral direction (patient left), ±0.9 mm shift in AP direction and ±1.0 mm shift in vertical direction (gantry dependent). The isodose overlays showed good agreement (<2mm, 50% isodose lines) between measured and calculated doses. Conclusion: Localization accuracy depends on gantry sag, CT resolution and distortion, DRRs from treatment planning computer, localization accuracy of image guidance system, fabrication of ready-made aperture and cone housing. The total deviation from the isocenter was 1.4 mm. Dose distribution uncertainty comes from distal end error due to bolus and CT density, in addition to localization error. The planned dose distribution was well matched (>90%) to the measured values 2%/2mm criteria. Our test showed the robustness of our proton radiosurgery treatment delivery system using ready-made collimator inserts and fixed thickness compensating boluses.« less

  14. Irradiation of the prostate and pelvic lymph nodes with an adaptive algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, A. B.; Chen, J.; Nguyen, T. B.

    2012-02-15

    Purpose: The simultaneous treatment of pelvic lymph nodes and the prostate in radiotherapy for prostate cancer is complicated by the independent motion of these two target volumes. In this work, the authors study a method to adapt intensity modulated radiation therapy (IMRT) treatment plans so as to compensate for this motion by adaptively morphing the multileaf collimator apertures and adjusting the segment weights. Methods: The study used CT images, tumor volumes, and normal tissue contours from patients treated in our institution. An IMRT treatment plan was then created using direct aperture optimization to deliver 45 Gy to the pelvic lymphmore » nodes and 50 Gy to the prostate and seminal vesicles. The prostate target volume was then shifted in either the anterior-posterior direction or in the superior-inferior direction. The treatment plan was adapted by adjusting the aperture shapes with or without re-optimizing the segment weighting. The dose to the target volumes was then determined for the adapted plan. Results: Without compensation for prostate motion, 1 cm shifts of the prostate resulted in an average decrease of 14% in D-95%. If the isocenter is simply shifted to match the prostate motion, the prostate receives the correct dose but the pelvic lymph nodes are underdosed by 14% {+-} 6%. The use of adaptive morphing (with or without segment weight optimization) reduces the average change in D-95% to less than 5% for both the pelvic lymph nodes and the prostate. Conclusions: Adaptive morphing with and without segment weight optimization can be used to compensate for the independent motion of the prostate and lymph nodes when combined with daily imaging or other methods to track the prostate motion. This method allows the delivery of the correct dose to both the prostate and lymph nodes with only small changes to the dose delivered to the target volumes.« less

  15. Robustness of Fat Quantification using Chemical Shift Imaging

    PubMed Central

    Hansen, Katie H; Schroeder, Michael E; Hamilton, Gavin; Sirlin, Claude B; Bydder, Mark

    2011-01-01

    This purpose of this study was to investigate the effect of parameter changes that can potentially lead to unreliable measurements in fat quantification. Chemical shift imaging was performed using spoiled gradient echo sequences with systematic variations in the following: 2D/3D sequence, number of echoes, delta echo time, fractional echo factor, slice thickness, repetition time, flip angle, bandwidth, matrix size, flow compensation and field strength. Results indicated no significant (or significant but small) changes in fat fraction with parameter. The significant changes can be attributed to known effects of T1 bias and the two forms of noise bias. PMID:22055856

  16. Computation of pattern invariance in brain-like structures.

    PubMed

    Ullman, S; Soloviev, S

    1999-10-01

    A fundamental capacity of the perceptual systems and the brain in general is to deal with the novel and the unexpected. In vision, we can effortlessly recognize a familiar object under novel viewing conditions, or recognize a new object as a member of a familiar class, such as a house, a face, or a car. This ability to generalize and deal efficiently with novel stimuli has long been considered a challenging example of brain-like computation that proved extremely difficult to replicate in artificial systems. In this paper we present an approach to generalization and invariant recognition. We focus our discussion on the problem of invariance to position in the visual field, but also sketch how similar principles could apply to other domains.The approach is based on the use of a large repertoire of partial generalizations that are built upon past experience. In the case of shift invariance, visual patterns are described as the conjunction of multiple overlapping image fragments. The invariance to the more primitive fragments is built into the system by past experience. Shift invariance of complex shapes is obtained from the invariance of their constituent fragments. We study by simulations aspects of this shift invariance method and then consider its extensions to invariant perception and classification by brain-like structures.

  17. 66 FR 13540 - Proposed Vaccine Information Materials for Pneumococcal Conjugate, Diphtheria, Tetanus, Acellular...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2001-03-06

    .... (Meningitis is a serious infection of the covering of the brain). Each year pneumococcal disease causes in... pneumococcal disease, such as meningitis and blood infections. It also prevents some ear infections. But ear... Vaccine Injury Compensation Program: hepatitis B, haemophilus influenzae type b (Hib), and varicella...

  18. A calibration-free electrode compensation method

    PubMed Central

    Rossant, Cyrille; Fontaine, Bertrand; Magnusson, Anna K.

    2012-01-01

    In a single-electrode current-clamp recording, the measured potential includes both the response of the membrane and that of the measuring electrode. The electrode response is traditionally removed using bridge balance, where the response of an ideal resistor representing the electrode is subtracted from the measurement. Because the electrode is not an ideal resistor, this procedure produces capacitive transients in response to fast or discontinuous currents. More sophisticated methods exist, but they all require a preliminary calibration phase, to estimate the properties of the electrode. If these properties change after calibration, the measurements are corrupted. We propose a compensation method that does not require preliminary calibration. Measurements are compensated offline by fitting a model of the neuron and electrode to the trace and subtracting the predicted electrode response. The error criterion is designed to avoid the distortion of compensated traces by spikes. The technique allows electrode properties to be tracked over time and can be extended to arbitrary models of electrode and neuron. We demonstrate the method using biophysical models and whole cell recordings in cortical and brain-stem neurons. PMID:22896724

  19. Inhomogeneity compensation for MR brain image segmentation using a multi-stage FCM-based approach.

    PubMed

    Szilágyi, László; Szilágyi, Sándor M; Dávid, László; Benyó, Zoltán

    2008-01-01

    Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a multiple stage fuzzy c-means (FCM) based algorithm for the estimation and compensation of the slowly varying additive or multiplicative noise, supported by a pre-filtering technique for Gaussian and impulse noise elimination. The slowly varying behavior of the bias or gain field is assured by a smoothening filter that performs a context dependent averaging, based on a morphological criterion. The experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent support for 3-D registration and segmentation techniques.

  20. Oxalate-curcumin-based probe for micro- and macroimaging of reactive oxygen species in Alzheimer's disease.

    PubMed

    Yang, Jian; Zhang, Xueli; Yuan, Peng; Yang, Jing; Xu, Yungen; Grutzendler, Jaime; Shao, Yihan; Moore, Anna; Ran, Chongzhao

    2017-11-21

    Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that has a progression that is closely associated with oxidative stress. It has long been speculated that the reactive oxygen species (ROS) level in AD brains is much higher than that in healthy brains. However, evidence from living beings is scarce. Inspired by the "chemistry of glow stick," we designed a near-IR fluorescence (NIRF) imaging probe, termed CRANAD-61, for sensing ROS to provide evidence at micro- and macrolevels. In CRANAD-61, an oxalate moiety was utilized to react with ROS and to consequentially produce wavelength shifting. Our in vitro data showed that CRANAD-61 was highly sensitive and rapidly responsive to various ROS. On reacting with ROS, its excitation and emission wavelengths significantly shifted to short wavelengths, and this shifting could be harnessed for dual-color two-photon imaging and transformative NIRF imaging. In this report, we showed that CRANAD-61 could be used to identify "active" amyloid beta (Aβ) plaques and cerebral amyloid angiopathy (CAA) surrounded by high ROS levels with two-photon imaging (microlevel) and to provide relative total ROS concentrations in AD brains via whole-brain NIRF imaging (macrolevel). Lastly, we showed that age-related increases in ROS levels in AD brains could be monitored with our NIRF imaging method. We believe that our imaging with CRANAD-61 could provide evidence of ROS at micro- and macrolevels and could be used for monitoring ROS changes under various AD pathological conditions and during drug treatment.

  1. [The end of discrimination in social security for the elderly? Some remarks on the consequences of the paradigm shift in a life course perspective on gender].

    PubMed

    Fachinger, Uwe

    2008-10-01

    Trying to analyse the effects of the paradigm shift in the old age social security system in Germany (GRV) from a life cycle gender perspective yields light and shade - it is a conglomeration of individual- and family-specific transfers, financed by a mix of contributions and taxes, and with measures of explicit and implicit, intended and not intended ex-post and ex-ante redistribution and discrimination.The paradigm shift has increased the complexity of the system and created additional elements of gender specific discrimination as well as reduced established elements of the so called "social compensation". Furthermore, the relevance of complementary private and occupational pensions will increase absolute and relative due to the reduction of the pension level. This will raise the importance of earnings in old age especially those that are without any elements of social security compensation or without elements of recognition of activities beside employment. Overall the paradigm shift has intensified the discrimination of women in two ways and the pension privatisation has caused redistribution from the bottom to the top. In other words, there is an increase in inter- and intra-gender discrimination. Due to the changes and the emphasis of aspects of an independent old age security savings for women the norm of the "male breadwinner model" has increased. The importance of "providing one's own pension" additionally creates distribution conflicts within a partnership. Because of the necessity of constant payments over time within a private insurance and the changes of an individual income and gender-specific life cycle, conflicts may occur time and again. The dependence of life-long partnerships on each other is not reduced or abolished with the strengthening of the individualistic model of protection, but is qualitatively and quantitatively improved. Against this background, the measures of the statutory pension system which are aimed towards the situation of a woman's life are important factors to combat the disadvantages of private funded pension systems of which mainly women are affected in building up rights to future benefits. The analysis shows that the paradigm shift primarily brings disadvantages to women. They disproportionally depend on statutory pension system benefits, and therefore also on compensating benefits of the negative consequences of private and occupational pension systems. For the future an increase in poverty of older people - and especially women - can be seen to emerge because of pension privatisation and the reduction of the pension level in the German social security system.

  2. Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating

    NASA Astrophysics Data System (ADS)

    Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.

    2018-06-01

    In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.

  3. Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Nie, Liming; Schoonover, Robert W.; Guo, Zijian; Schirra, Carsten O.; Anastasio, Mark A.; Wang, Lihong V.

    2012-06-01

    A challenge in photoacoustic tomography (PAT) brain imaging is to compensate for aberrations in the measured photoacoustic data due to their propagation through the skull. By use of information regarding the skull morphology and composition obtained from adjunct x-ray computed tomography image data, we developed a subject-specific imaging model that accounts for such aberrations. A time-reversal-based reconstruction algorithm was employed with this model for image reconstruction. The image reconstruction methodology was evaluated in experimental studies involving phantoms and monkey heads. The results establish that our reconstruction methodology can effectively compensate for skull-induced acoustic aberrations and improve image fidelity in transcranial PAT.

  4. Low brain magnesium in migraine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramadan, N.M.; Halvorson, H.; Vande-Linde, A.

    1989-10-01

    Brain magnesium was measured in migraine patients and control subjects using in vivo 31-Phosphorus Nuclear Magnetic Resonance Spectroscopy. pMg and pH were calculated from the chemical shifts between Pi, PCr and ATP signals. Magnesium levels were low during a migraine attack without changes in pH. We hypothesize that low brain magnesium is an important factor in the mechanism of the migraine attack.

  5. Nonlinear Pressure-Flow Relationship Is Able to Detect Asymmetry of Brain Blood Circulation Associated with Midline Shift

    PubMed Central

    Lo, Men-Tzung; Peng, C.K.; Novak, Vera; Schmidt, Eric A.; Kumar, Ajay; Czosnyka, Marek

    2009-01-01

    Abstract Reliable and noninvasive assessment of cerebral blood flow regulation is a major challenge in acute care monitoring. This study assessed dynamics of flow regulation and its relationship to asymmetry of initial computed tomography (CT) scan using multimodal pressure flow (MMPF) analysis. Data of 27 patients (38 ± 15 years old) with traumatic brain injury (TBI) were analyzed. Patients were selected from bigger cohort according to criteria of having midline shift on initial CT scan and intact skull (no craniotomy or bone flap). The MMPF analysis was used to extract the oscillations in cerebral perfusion pressure (CPP) and blood flow velocity (BFV) signals at frequency of artificial ventilation, and to calculate the instantaneous phase difference between CPP and BFV oscillations. Mean CPP-BFV phase difference was used to quantify pressure and flow relationship. The TBI subjects had smaller mean BP-BFV phase shifts (left, 8.7 ± 9.6; right 10.2 ± 8.3 MCAs, mean ± SD) than values previously obtained in healthy subjects (left, 37.3 ± 7.6 degrees; right, 38.0 ± 8.9 degrees; p < 0.0001), suggesting impaired blood flow regulation after TBI. The difference in phase shift between CPP and BFV in the left and right side was strongly correlated to the midline shift (R = 0.78; p < 0.0001). These findings indicate that the MMPF method allows reliable assessment of alterations in pressure and flow relationship after TBI. Moreover, mean pressure-flow phase shift is sensitive to the displacement of midline of the brain, and may potentially serve as a marker of asymmetry of cerebral autoregulation. PMID:19196074

  6. Functional compensation in the ventromedial prefrontal cortex improves memory-dependent decisions in older adults.

    PubMed

    Lighthall, Nichole R; Huettel, Scott A; Cabeza, Roberto

    2014-11-19

    Everyday consumer choices frequently involve memory, as when we retrieve information about consumer products when making purchasing decisions. In this context, poor memory may affect decision quality, particularly in individuals with memory decline, such as older adults. However, age differences in choice behavior may be reduced if older adults can recruit additional neural resources that support task performance. Although such functional compensation is well documented in other cognitive domains, it is presently unclear whether it can support memory-guided decision making and, if so, which brain regions play a role in compensation. The current study engaged younger and older humans in a memory-dependent choice task in which pairs of consumer products from a popular online-shopping site were evaluated with different delays between the first and second product. Using functional imaging (fMRI), we found that the ventromedial prefrontal cortex (vmPFC) supports compensation as defined by three a priori criteria: (1) increased vmPFC activation was observed in older versus younger adults; (2) age-related increases in vmPFC activity were associated with increased retrieval demands; and (3) increased vmPFC activity was positively associated with performance in older adults-evidence of successful compensation. Extending these results, we observed evidence for compensation in connectivity between vmPFC and the dorsolateral PFC during memory-dependent choice. In contrast, we found no evidence for age differences in value-related processing or age-related compensation for choices without delayed retrieval. Together, these results converge on the conclusion that age-related decline in memory-dependent choice performance can be minimized via functional compensation in vmPFC. Copyright © 2014 the authors 0270-6474/14/3415648-10$15.00/0.

  7. Functional Compensation in the Ventromedial Prefrontal Cortex Improves Memory-Dependent Decisions in Older Adults

    PubMed Central

    Huettel, Scott A.; Cabeza, Roberto

    2014-01-01

    Everyday consumer choices frequently involve memory, as when we retrieve information about consumer products when making purchasing decisions. In this context, poor memory may affect decision quality, particularly in individuals with memory decline, such as older adults. However, age differences in choice behavior may be reduced if older adults can recruit additional neural resources that support task performance. Although such functional compensation is well documented in other cognitive domains, it is presently unclear whether it can support memory-guided decision making and, if so, which brain regions play a role in compensation. The current study engaged younger and older humans in a memory-dependent choice task in which pairs of consumer products from a popular online-shopping site were evaluated with different delays between the first and second product. Using functional imaging (fMRI), we found that the ventromedial prefrontal cortex (vmPFC) supports compensation as defined by three a priori criteria: (1) increased vmPFC activation was observed in older versus younger adults; (2) age-related increases in vmPFC activity were associated with increased retrieval demands; and (3) increased vmPFC activity was positively associated with performance in older adults—evidence of successful compensation. Extending these results, we observed evidence for compensation in connectivity between vmPFC and the dorsolateral PFC during memory-dependent choice. In contrast, we found no evidence for age differences in value-related processing or age-related compensation for choices without delayed retrieval. Together, these results converge on the conclusion that age-related decline in memory-dependent choice performance can be minimized via functional compensation in vmPFC. PMID:25411493

  8. Age, sex, and the changing disability burden of compensated work-related musculoskeletal disorders in Canada and Australia.

    PubMed

    Macpherson, Robert A; Lane, Tyler J; Collie, Alex; McLeod, Christopher B

    2018-06-19

    The objectives of this study were (1) to identify age and sex trends in the disability burden of compensated work-related musculoskeletal disorders (MSDs) in Canada and Australia; and (2) to demonstrate a means of comparing workers' compensation data internationally. All non-fatal, work-related MSD claims with at least one day of compensated time-loss were extracted for workers aged 15-80 during a 10-year period (2004-2013) using workers' compensation data from five Canadian and eight Australian jurisdictions. Disability burden was calculated for both countries by sex, age group, and injury classification, using cumulative compensated time-loss payments of up to two years post-injury. A total of 1.2 million MSD claims were compensated for time-loss in the Canadian and Australian jurisdictions during 2004-2013. This resulted in time-loss equivalent to 239,345 years in the Canadian jurisdictions and 321,488 years in the Australian jurisdictions. The number of time-loss years declined overall among male and female workers, but greater declines were observed for males and younger workers. The proportion of the disability burden grew among older workers (aged 55+), particularly males in the Canadian jurisdictions (Annual Percent Change [APC]: 7.2, 95% CI 6.7 to 7.7%) and females in the Australian jurisdictions (APC: 7.5, 95% CI 6.2 to 8.9%). The compensated disability burden of work-related MSDs is shifting towards older workers and particularly older females in Australia and older males in Canada. Employers and workers' compensation boards should consider the specific needs of older workers to reduce injuries and time off work. Comparative research made possible through research-stakeholder partnerships offers a unique opportunity to use existing administrative data to identify long-term trends in disability burden. Future research can apply similar approaches for estimating long-term trends in occupational health.

  9. Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones

    PubMed Central

    Shera, Christopher A.; Abdala, Carolina

    2016-01-01

    When distortion-product otoacoustic emissions (DPOAEs) are evoked using stimuli whose instantaneous frequencies change rapidly and continuously with time (swept tones), the oscillatory interference pattern known as distortion-product fine structure shifts slightly along the frequency axis in the same direction as the sweep. By analogy with the temporal mechanisms thought to underlie the differing efficacies of up- and down-swept stimuli as perceptual maskers (e.g., Schroeder-phase complexes), fine-structure shifts have been ascribed to the phase distortion associated with dispersive wave propagation in the cochlea. This paper tests an alternative hypothesis and finds that the observed shifts arise predominantly as a methodological side effect of the analysis procedures commonly used to extract delayed emissions from the measured time waveform. Approximate expressions for the frequency shifts of DPOAE distortion and reflection components are derived, validated with computer simulations, and applied to account for DPOAE fine-structure shifts measured in human subjects. Component magnitudes are shown to shift twice as much as component phases. Procedures for compensating swept-tone measurements to obtain estimates of the total DPOAE and its components measured at other sweep rates or in the sinusoidal steady state are presented. PMID:27586726

  10. Prolonged Heavy Vehicle Driving Performance: Effects of Unpredictable Shift Onset and Duration and Convoy versus Independent Driving Conditions

    DTIC Science & Technology

    1983-09-01

    increase time headway. An impli- cation of this interpretation for driving safety is that where fatigued driv- ers are unable to compensate in this way...of driving safety these results provide an indi- cation of circumstances in which time headway is particularly short. Not surprisingly this measure is

  11. Transcranial Photoacoustic Measurements of Cold-Injured Brains in Rats

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshinori; Sato, Shunichi; Hasegawa, Makoto; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Ashida, Hiroshi; Obara, Minoru

    2005-09-01

    We performed transcranial photoacoustic measurements of cold-injured brains in rats. Before inducing injury, a signal peak was observed at two locations corresponding to the surfaces of the skull and brain, while after injury, a third peak appeared at a location corresponding to the back surface of the skull; the third peak was found to be caused by subdural hematoma. The signal peak for the brain surface shifted to a deeper region with elapse of time after injury, indicating deformation of the brain. These findings suggest that small hemorrhage and morphological change of the brain can be transcranially detected by photoacoustic measurement.

  12. Tissue specific resonance frequencies of water and metabolites within the human brain

    NASA Astrophysics Data System (ADS)

    Chadzynski, Grzegorz L.; Bender, Benjamin; Groeger, Adriane; Erb, Michael; Klose, Uwe

    2011-09-01

    Chemical shift imaging (CSI) without water suppression was used to examine tissue-specific resonance frequencies of water and metabolites within the human brain. The aim was to verify if there are any regional differences in those frequencies and to determine the influence of chemical shift displacement in slice-selection direction. Unsuppressed spectra were acquired at 3 T from nine subjects. Resonance frequencies of water and after water signal removal of total choline, total creatine and NAA were estimated. Furthermore, frequency distances between the water and those resonances were calculated. Results were corrected for chemical shift displacement. Frequency distances between water and metabolites were consistent and greater for GM than for WM. The highest value of WM to GM difference (14 ppb) was observed for water to NAA frequency distance. This study demonstrates that there are tissue-specific differences between frequency distances of water and metabolites. Moreover, the influence of chemical shift displacement in slice-selection direction is showed to be negligible.

  13. Tissue specific resonance frequencies of water and metabolites within the human brain.

    PubMed

    Chadzynski, Grzegorz L; Bender, Benjamin; Groeger, Adriane; Erb, Michael; Klose, Uwe

    2011-09-01

    Chemical shift imaging (CSI) without water suppression was used to examine tissue-specific resonance frequencies of water and metabolites within the human brain. The aim was to verify if there are any regional differences in those frequencies and to determine the influence of chemical shift displacement in slice-selection direction. Unsuppressed spectra were acquired at 3T from nine subjects. Resonance frequencies of water and after water signal removal of total choline, total creatine and NAA were estimated. Furthermore, frequency distances between the water and those resonances were calculated. Results were corrected for chemical shift displacement. Frequency distances between water and metabolites were consistent and greater for GM than for WM. The highest value of WM to GM difference (14ppb) was observed for water to NAA frequency distance. This study demonstrates that there are tissue-specific differences between frequency distances of water and metabolites. Moreover, the influence of chemical shift displacement in slice-selection direction is showed to be negligible. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. The detection of brain ischaemia in rats by inductive phase shift spectroscopy.

    PubMed

    González, C A; Villanueva, C; Vera, C; Flores, O; Reyes, R D; Rubinsky, B

    2009-08-01

    Ischaemia in the brain is an important clinical problem that is often monitored and studied with expensive devices such as MRI and PET, which are not readily available in low economical resource parts of the world. We have developed a new less expensive tool for non-invasive monitoring of ischaemia in the brain. This is a first feasibility study describing the concept. The system is based on the hypothesis that electromagnetic properties of the tissue change during ischaemia and that measuring the electromagnetic properties of the bulk of the brain with non-contact means can detect these changes. The apparatus we have built and whose design we describe here consists of two electromagnetic coils placed around the head. The system measures the bulk change in time of the phase difference between the electromagnetic signal on the two coils in a range of frequencies. A mathematical model simulating the device and the measurement is also introduced. Ischaemia was induced in the brain of rats by occlusion of the right cerebral and carotid arteries. Experimental subjects were monitored for 24 h. Inductive phase shift measurements were made at five frequencies in the range of 0.1-50 MHz eight times during the observation period. An ex vivo estimation of the percentage of necrosis in the ischemic subjects at t = 24 h was done. The mathematical model was also applied to the experimental tested situation. The results of both experiments and theory show significant phase shifts increase as a function of frequency and ischaemia time. The theoretical and experimental results suggest that the tested technique has the potential to detect the processes and level of ischaemia in the brain by non-invasive, continuous, bulk volumetric monitoring with a simple and inexpensive apparatus.

  15. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    NASA Astrophysics Data System (ADS)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  16. Assessing trait-based scaling theory in tropical and temperate forests spanning a broad temperature gradients

    NASA Astrophysics Data System (ADS)

    Enquist, B. J.

    2017-12-01

    Tropical and temperate elevation gradients are natural laboratories to assess how changing climate can influence tropical forests. However, there is a need for theory and integrated data collection to scale from traits to ecosystems. We assess predictions of a novel trait-based metabolic scaling theory including whether observed shifts in forest traits across a broad tropical temperature gradient is consistent with local phenotypic optima and adaptive compensation for temperature. We tested a new anaytical theory - Trait Driver Theory - that is capable of scaling from traits to entire stands and ecosystems across several elevation gradients spanning 3300m. Each gradient consists of thousands of tropical and temperate tree trait measures taken from forest plots. In several of these plots, in particular in southern Perú, gross and net primary productivity (GPP and NPP) were measured. We measured multiple traits linked to variation in tree growth and assessed their frequency distributions within and across the elevation gradient. We paired these trait measures across individuals within forests with simultaneous measures of ecosystem net and gross primary productivity. Consistent with theory, variation in forest NPP and GPP primarily scaled with forest biomass but the secondary effect of temperature on productivity was much less than expected. This weak temperature dependency appears to reflect directional shifts in several mean community traits that underlie tree growth with decreases in site temperature. The observed shift in traits of trees that dominant more cold environments appear to reflect `adaptive/acclimatory' compensation for the kinetic effects of temperature on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed peaked and skewed distributions, consistent with the importance of local filtering of optimal growth traits and recent shifts in species composition and dominance due to warming from climate change. Trait-based metabolic scaling theory provides a basis to predict how shifts in climate have and will influence the trait composition and ecosystem functioning of temperate and tropical forests.

  17. The effort to rehabilitate workers' compensation.

    PubMed

    Barth, P S

    1976-06-01

    State workers' compensation laws have been subjected to criticism since their inception; pressure to change them is now increasing. Most of the current challenge arise from dissatisfaction with the level of benefits available to disabled workers or their survivors, and, to a lesser degree, with the extent of program coverage. In response to this challenge, changes will occur that my range from reform-simply raising benefit levels and extending coverage-to program redesign, implying major structural revisions or abolishment of the system. For several reasons, including public apathy, the role of interest groups, and experience with other social insurance programs, it seems likely that basic structural shifts will not occur in the near future. While the criticism of these state laws is widespread, the problems can be dealt with in the existing framework. One area, however, could conceivably arouse sufficient public and legislative interest to upset this forecast. If it develops that the system is excluding large numbers of individuals disabled or killed by occupational diseases, workers' compensation laws could be placed in jeopardy. While evidence on this is scarce, it is clear that the current system compensates only a small number of serious cases of disability arising from occupational diseases.

  18. Electron Lenses for the Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as anmore » option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.« less

  19. Modeling susceptibility difference artifacts produced by metallic implants in magnetic resonance imaging with point-based thin-plate spline image registration.

    PubMed

    Pauchard, Y; Smith, M; Mintchev, M

    2004-01-01

    Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.

  20. Compensation of long-range process effects on photomasks by design data correction

    NASA Astrophysics Data System (ADS)

    Schneider, Jens; Bloecker, Martin; Ballhorn, Gerd; Belic, Nikola; Eisenmann, Hans; Keogan, Danny

    2002-12-01

    CD requirements for advanced photomasks are getting very demanding for the 100 nm-node and below; the ITRS roadmap requires CD uniformities below 10 nm for the most critical layers. To reach this goal, statistical as well as systematic CD contributions must be minimized. Here, we focus on the reduction of systematic CD variations across the masks that may be caused by process effects, e.g. dry etch loading. We address this topic by compensating such effects via design data correction analogous to proximity correction. Dry etch loading is modeled by gaussian convolution of pattern densities. Data correction is done geometrically by edge shifting. As the effect amplitude has an order of magnitude of 10 nm this can only be done on e-beam writers with small address grids to reduce big CD steps in the design data. We present modeling and correction results for special mask patterns with very strong pattern density variations showing that the compensation method is able to reduce CD uniformity by 50-70% depending on pattern details. The data correction itself is done with a new module developed especially to compensate long-range effects and fits nicely into the common data flow environment.

  1. Neurovascular regulation in the ischemic brain.

    PubMed

    Jackman, Katherine; Iadecola, Costantino

    2015-01-10

    The brain has high energetic requirements and is therefore highly dependent on adequate cerebral blood supply. To compensate for dangerous fluctuations in cerebral perfusion, the circulation of the brain has evolved intrinsic safeguarding measures. The vascular network of the brain incorporates a high degree of redundancy, allowing the redirection and redistribution of blood flow in the event of vascular occlusion. Furthermore, active responses such as cerebral autoregulation, which acts to maintain constant cerebral blood flow in response to changing blood pressure, and functional hyperemia, which couples blood supply with synaptic activity, allow the brain to maintain adequate cerebral perfusion in the face of varying supply or demand. In the presence of stroke risk factors, such as hypertension and diabetes, these protective processes are impaired and the susceptibility of the brain to ischemic injury is increased. One potential mechanism for the increased injury is that collateral flow arising from the normally perfused brain and supplying blood flow to the ischemic region is suppressed, resulting in more severe ischemia. Approaches to support collateral flow may ameliorate the outcome of focal cerebral ischemia by rescuing cerebral perfusion in potentially viable regions of the ischemic territory.

  2. Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera.

    PubMed

    Rittschof, Clare C; Vekaria, Hemendra J; Palmer, Joseph H; Sullivan, Patrick G

    2018-04-25

    Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo , cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged time scales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts. © 2018. Published by The Company of Biologists Ltd.

  3. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series

    PubMed Central

    2011-01-01

    Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598

  4. Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series.

    PubMed

    Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp

    2011-08-18

    Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.

  5. Doubly Selective Multiple Quantum Chemical Shift Imaging and T1 Relaxation Time Measurement of Glutathione (GSH) in the Human Brain In Vivo

    PubMed Central

    Choi, In-Young; Lee, Phil

    2012-01-01

    Mapping of a major antioxidant, glutathione (GSH), was achieved in the human brain in vivo using a doubly selective multiple quantum filtering based chemical shift imaging (CSI) of GSH at 3 T. Both in vivo and phantom tests in CSI and single voxel measurements were consistent with excellent suppression of overlapping signals from creatine, γ-Amino butyric acid (GABA) and macromolecules. The GSH concentration in the fronto-parietal region was 1.20 ± 0.16 µmol/g (mean ± SD, n = 7). The longitudinal relaxation time (T1) of GSH in the human brain was 397 ± 44 ms (mean ± SD, n = 5), which was substantially shorter than those of other metabolites. This GSH CSI method permits us to address regional differences of GSH in the human brain with conditions where oxidative stress has been implicated, including multiple sclerosis, aging and neurodegenerative diseases. PMID:22730142

  6. Chemical characterization of a prominent phosphomonoester resonance from mammalian brain. 31P and 1H NMR analysis at 4.7 and 14.1 tesla

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Kopp, S. J.; Dadok, J.; Minshew, N. J.; Feliksik, J. M.; Glonek, T.; Cohen, M. M.

    A prominent 31P NMR resonance at 3.84 ppm in mammalian brain has been identified as ethanolamine phosphate. The identification was based on 1H and 31P NMR findings (including pH titrations) at 4.7 and 14.1 T, as well as thin-layer chromatography studies. We previously incorrectly assigned the 3.84 ppm resonance to ribose-5-phosphate. The incorrect assignment occurred because the two compounds have very similar 31P chemical shifts, and because we did not carefully consider the effects of counter ions and ionic strengths when interpreting the 31P chemical shifts. In separate preliminary studies we have demonstrated ethanolamine phosphate to be high in immature developing brain and in the degenerating brain of Alzheimer's and Huntington's disease patients. Ethanolamine phosphate may therefore serve as a sensitive marker of membrane phospholipid turnover for both in vitro and in vivo31P NMR studies.

  7. [Conjunct changes in the resistance and engorgement of the cerebral vessels in shifts in the blood gas composition].

    PubMed

    Krasil'nikov, V G; Artem'eva, A I

    1982-08-01

    In anesthetized cats, under perfusion and with constant volume of the hemodynamically isolated brain, hypercapnia and hypoxia led to a decrease of cerebral vessels resistance and to a reduction of the brain blood flow, whereas a decrease in the PCO2 and an increase in the PO2 in the blood exerted on opposite effect. The different responses of the vessels had some similar features in respect to threshold changes of the PCO2 and PO2, to potentiation of effects of both parts of the brain vascular system on increased shifts of the blood gas tension, to greater sensitivity of both parts to PCO2 changes, to effect of the blood gas tension on reactivity of both parts to noradrenaline. The authors suggest a possibility of alterations of the filter-absorption interrelationships in the brain due to different responses of arterial and venous vessels to changes of the blood gas tension.

  8. [The search of the "intact" structural and functional brain systems as a paradigm shift in schizophrenia research].

    PubMed

    Lebedeva, I S

    2015-01-01

    The search of the structural and functional brain characteristics is one of the most studied directions in the modern biological psychiatry. However, in spite of the numerous studies the results are still controversial. As the necessity of the shift of the current paradigm in schizophrenia research evolves it has been suggested to discriminate not only abnormal but stable functioning neuronal circuits as well. Consequently, the aim is formulated as the search of the minimal brain damage sufficient for disease development. Author analyzed the auditory oddball P300 latency (as a marker of information processing speed), N-acetylaspartate level in the dorsolateral prefrontal cortex (as a marker of neuronal integrity in this brain area) and fractional anisotropy of the fasciculus uncindtus which connects the frontal and temporal lobes (as a marker of white matter bundles microstructure) in 30 patients with schizophrenia and 27 healthy people. The findings showed that all the tested characteristics are not "obligatory" for schizophrenia.

  9. Effects of stinger axial dynamics and mass compensation methods on experimental modal analysis

    NASA Astrophysics Data System (ADS)

    Hu, Ximing

    1992-06-01

    A longitudinal bar model that includes both stinger elastic and inertia properties is used to analyze the stinger's axial dynamics as well as the mass compensation that is required to obtain accurate input forces when a stinger is installed between the excitation source, force transducer, and the structure under test. Stinger motion transmissibility and force transmissibility, axial resonance and excitation energy transfer problems are discussed in detail. Stinger mass compensation problems occur when the force transducer is mounted on the exciter end of the stinger. These problems are studied theoretically, numerically, and experimentally. It is found that the measured Frequency Response Function (FRF) can be underestimated if mass compensation is based on the stinger exciter-end acceleration and can be overestimated if the mass compensation is based on the structure-end acceleration due to the stinger's compliance. A new mass compensation method that is based on two accelerations is introduced and is seen to improve the accuracy considerably. The effects of the force transducer's compliance on the mass compensation are also discussed. A theoretical model is developed that describes the measurement system's FRD around a test structure's resonance. The model shows that very large measurement errors occur when there is a small relative phase shift between the force and acceleration measurements. These errors can be in hundreds of percent corresponding to a phase error on the order of one or two degrees. The physical reasons for this unexpected error pattern are explained. This error is currently unknown to the experimental modal analysis community. Two sample structures consisting of a rigid mass and a double cantilever beam are used in the numerical calculations and experiments.

  10. SU-E-J-47: Comparison of Online Image Registrations of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac Imaging Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J; Shi, W; Andrews, D

    2015-06-15

    Purpose To compare online image registrations of TrueBeam cone-beam CT (CBCT) and BrainLab ExacTrac imaging systems. Methods Tests were performed on a Varian TrueBeam STx linear accelerator (Version 2.0), which is integrated with a BrainLab ExacTrac imaging system (Version 6.0.5). The study was focused on comparing the online image registrations for translational shifts. A Rando head phantom was placed on treatment couch and immobilized with a BrainLab mask. The phantom was shifted by moving the couch translationally for 8 mm with a step size of 1 mm, in vertical, longitudinal, and lateral directions, respectively. At each location, the phantom wasmore » imaged with CBCT and ExacTrac x-ray. CBCT images were registered with TrueBeam and ExacTrac online registration algorithms, respectively. And ExacTrac x-ray image registrations were performed. Shifts calculated from different registrations were compared with nominal couch shifts. Results The averages and ranges of absolute differences between couch shifts and calculated phantom shifts obtained from ExacTrac x-ray registration, ExacTrac CBCT registration with default window, ExaxTrac CBCT registration with adjusted window (bone), Truebeam CBCT registration with bone window, and Truebeam CBCT registration with soft tissue window, were: 0.07 (0.02–0.14), 0.14 (0.01–0.35), 0.12 (0.02–0.28), 0.09 (0–0.20), and 0.06 (0–0.10) mm, in vertical direction; 0.06 (0.01–0.12), 0.27 (0.07–0.57), 0.23 (0.02–0.48), 0.04 (0–0.10), and 0.08 (0– 0.20) mm, in longitudinal direction; 0.05 (0.01–0.21), 0.35 (0.14–0.80), 0.25 (0.01–0.56), 0.19 (0–0.40), and 0.20 (0–0.40) mm, in lateral direction. Conclusion The shifts calculated from ExacTrac x-ray and TrueBeam CBCT registrations were close to each other (the differences between were less than 0.40 mm in any direction), and had better agreements with couch shifts than those from ExacTrac CBCT registrations. There were no significant differences between TrueBeam CBCT registrations using different windows. In ExacTrac CBCT registrations, using bone window led to better agreements than using default window.« less

  11. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancari, Giulio

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complementmore » the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.« less

  12. The burden of traumatic brain injury among adolescent and young adult workers in Washington State.

    PubMed

    Graves, Janessa M; Sears, Jeanne M; Vavilala, Monica S; Rivara, Frederick P

    2013-06-01

    This study describes injury characteristics and costs of work-related traumatic brain injury (WRTBI) among 16-24 year olds in Washington State between 1998 and 2008. WRTBIs were identified in the Washington Trauma Registry (WTR) and linked to workers' compensation (WC) claims data. Medical and time-loss compensation costs were compared between workers with isolated TBI and TBI with other trauma. Of 273 WRTBI cases identified, most (61.5%) were TBI with other trauma. One-third of WRTBI did not link to a WC claim. Medical costs averaged $88,307 (median $16,426) for isolated TBI cases, compared to $73,669 (median $41,167) for TBI with other trauma. Results highlight the financial impact of WRTBI among young workers. Multiple data sources provided a more comprehensive picture than a single data source alone. This linked-data approach holds great potential for future traumatic occupational injury research. TBI among young workers not only involves long-term health and psychological impacts, but is costly as well. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  13. Monetary reward suppresses anterior insula activity during social pain

    PubMed Central

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François

    2015-01-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. PMID:25964499

  14. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons.

    PubMed

    Ghosh, Debolina; Levault, Kelsey R; Brewer, Gregory J

    2014-08-01

    Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg-AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg-AD neurons. We also observed an age-dependent loss of gene expression of key redox-dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age-related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age-related declines in NAD(P)H. Our data indicate that in aging and more so in AD-like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Large-brained frogs mature later and live longer.

    PubMed

    Yu, Xin; Zhong, Mao Jun; Li, Da Yong; Jin, Long; Liao, Wen Bo; Kotrschal, Alexander

    2018-05-01

    Brain sizes vary substantially across vertebrate taxa, yet, the evolution of brain size appears tightly linked to the evolution of life histories. For example, larger brained species generally live longer than smaller brained species. A larger brain requires more time to grow and develop at a cost of exceeded gestation period and delayed weaning age. The cost of slower development may be compensated by better homeostasis control and increased cognitive abilities, both of which should increase survival probabilities and hence life span. To date, this relationship between life span and brain size seems well established in homoeothermic animals, especially in mammals. Whether this pattern occurs also in other clades of vertebrates remains enigmatic. Here, we undertake the first comparative test of the relationship between life span and brain size in an ectothermic vertebrate group, the anuran amphibians. After controlling for the effects of shared ancestry and body size, we find a positive correlation between brain size, age at sexual maturation, and life span across 40 species of frogs. Moreover, we also find that the ventral brain regions, including the olfactory bulbs, are larger in long-lived species. Our results indicate that the relationship between life history and brain evolution follows a general pattern across vertebrate clades. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  16. Nonlinear gamma correction via normed bicoherence minimization in optical fringe projection metrology

    NASA Astrophysics Data System (ADS)

    Kamagara, Abel; Wang, Xiangzhao; Li, Sikun

    2018-03-01

    We propose a method to compensate for the projector intensity nonlinearity induced by gamma effect in three-dimensional (3-D) fringe projection metrology by extending high-order spectra analysis and bispectral norm minimization to digital sinusoidal fringe pattern analysis. The bispectrum estimate allows extraction of vital signal information features such as spectral component correlation relationships in fringe pattern images. Our approach exploits the fact that gamma introduces high-order harmonic correlations in the affected fringe pattern image. Estimation and compensation of projector nonlinearity is realized by detecting and minimizing the normed bispectral coherence of these correlations. The proposed technique does not require calibration information and technical knowledge or specification of fringe projection unit. This is promising for developing a modular and calibration-invariant model for intensity nonlinear gamma compensation in digital fringe pattern projection profilometry. Experimental and numerical simulation results demonstrate this method to be efficient and effective in improving the phase measuring accuracies with phase-shifting fringe pattern projection profilometry.

  17. Tracking the will to attend: Cortical activity indexes self-generated, voluntary shifts of attention.

    PubMed

    Gmeindl, Leon; Chiu, Yu-Chin; Esterman, Michael S; Greenberg, Adam S; Courtney, Susan M; Yantis, Steven

    2016-10-01

    The neural substrates of volition have long tantalized philosophers and scientists. Over the past few decades, researchers have employed increasingly sophisticated technology to investigate this issue, but many studies have been limited considerably by their reliance on intrusive experimental procedures (e.g., abrupt instructional cues), measures of brain activity contaminated by overt behavior, or introspective self-report techniques of questionable validity. Here, we used multivoxel pattern time-course analysis of functional magnetic resonance imaging data to index voluntary, covert perceptual acts-shifts of visuospatial attention-in the absence of instructional cues, overt behavioral indices, and self-report. We found that these self-generated, voluntary attention shifts were time-locked to activity in the medial superior parietal lobule, supporting the hypothesis that this brain region is engaged in voluntary attentional reconfiguration. Self-generated attention shifts were also time-locked to activity in the basal ganglia, a novel finding that motivates further research into the role of the basal ganglia in acts of volition. Remarkably, prior to self-generated shifts of attention, we observed early and selective increases in the activation of medial frontal (dorsal anterior cingulate) and lateral prefrontal (right middle frontal gyrus) cortex-activity that likely reflects processing related to the intention or preparation to reorient attention. These findings, which extend recent evidence on freely chosen motor movements, suggest that dorsal anterior cingulate and lateral prefrontal cortices play key roles in both overt and covert acts of volition, and may constitute core components of a brain network underlying the will to attend.

  18. Tracking the Will to Attend: Cortical Activity Indexes Self-Generated, Voluntary Shifts of Attention

    PubMed Central

    Gmeindl, Leon; Chiu, Yu-Chin; Esterman, Michael S.; Greenberg, Adam S.; Courtney, Susan M.; Yantis, Steven

    2016-01-01

    The neural substrates of volition have long tantalized philosophers and scientists. Over the past few decades, researchers have employed increasingly sophisticated technology to investigate this issue, but many studies have been limited considerably by their reliance on intrusive experimental procedures (e.g., abrupt instructional cues), measures of brain activity contaminated by overt behavior, or introspective self-report techniques of questionable validity. Here, we used multivoxel-pattern time-course analysis of functional magnetic resonance imaging data to index voluntary, covert perceptual acts—shifts of visuospatial attention—in the absence of instructional cues, overt behavioral indices, and self-report. We found that these self-generated, voluntary attention shifts were time-locked to activity in the medial superior parietal lobule, supporting the hypothesis that this brain region is engaged in voluntary attentional reconfiguration. Self-generated attention shifts were also time-locked to activity in the basal ganglia, a novel finding that motivates further research into the role of the basal ganglia in acts of volition. Remarkably, prior to self-generated shifts of attention we observed early and selective increases in activation of medial frontal (dorsal anterior cingulate) and lateral prefrontal cortex (right middle frontal gyrus)—activity that likely reflects processing related to the intention or preparation to reorient attention. These findings, which extend recent evidence on freely chosen motor movements, suggest that dorsal anterior cingulate and lateral prefrontal cortices play key roles in both overt and covert acts of volition, and may constitute core components of a brain network underlying the will to attend. PMID:27301353

  19. Colour or shape: examination of neural processes underlying mental flexibility in posttraumatic stress disorder.

    PubMed

    Pang, E W; Sedge, P; Grodecki, R; Robertson, A; MacDonald, M J; Jetly, R; Shek, P N; Taylor, M J

    2014-08-05

    Posttraumatic stress disorder (PTSD) is a mental disorder that stems from exposure to one or more traumatic events. While PTSD is thought to result from a dysregulation of emotional neurocircuitry, neurocognitive difficulties are frequently reported. Mental flexibility is a core executive function that involves the ability to shift and adapt to new information. It is essential for appropriate social-cognitive behaviours. Magnetoencephalography (MEG), a neuroimaging modality with high spatial and temporal resolution, has been used to track the progression of brain activation during tasks of mental flexibility called set-shifting. We hypothesized that the sensitivity of MEG would be able to capture the abnormal neurocircuitry implicated in PTSD and this would negatively impact brain regions involved in set-shifting. Twenty-two soldiers with PTSD and 24 matched control soldiers completed a colour-shape set-shifting task. MEG data were recorded and source localized to identify significant brain regions involved in the task. Activation latencies were obtained by analysing the time course of activation in each region. The control group showed a sequence of activity that involved dorsolateral frontal cortex, insula and posterior parietal cortices. The soldiers with PTSD showed these activations but they were interrupted by activations in paralimbic regions. This is consistent with models of PTSD that suggest dysfunctional neurocircuitry is driven by hyper-reactive limbic areas that are not appropriately modulated by prefrontal cortical control regions. This is the first study identifying the timing and location of atypical neural responses in PTSD with set-shifting and supports the model that hyperactive limbic structures negatively impact cognitive function.

  20. Cerebral fat embolism syndrome causing brain death after long-bone fractures and acetazolamide therapy.

    PubMed

    Walshe, Criona M; Cooper, James D; Kossmann, Thomas; Hayes, Ivan; Iles, Linda

    2007-06-01

    A 19-year-old woman with multiple fractures and mild brain injury developed severe cerebral fat embolism syndrome after "damage control" orthopaedic surgery. Acetazolamide therapy to manage ocular trauma, in association with hyperchloraemia, caused a profound metabolic acidosis with appropriate compensatory hypocapnia. During ventilator weaning, unexpected brainstem coning followed increased sedation and brief normalisation of arterial carbon dioxide concentration. Autopsy found severe cerebral fat embolism and brain oedema. In patients with multiple trauma, cerebral fat embolism syndrome is difficult to diagnose, and may be more common after delayed fixation of long-bone fractures. Acetazolamide should be used with caution, as sudden restoration of normocapnia during compensated metabolic acidosis in patients with raised intracranial pressure may precipitate coning.

  1. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the developmentmore » and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.« less

  2. Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S; Benveniste, Helene; Tomasi, Dardo

    2015-02-18

    During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. Copyright © 2015 the authors 0270-6474/15/353248-08$15.00/0.

  3. The Hidden Lives of Nurses’ Cognitive Artifacts

    PubMed Central

    Doig, Alexa K.; Cloyes, Kristin G.; Staggers, Nancy

    2016-01-01

    Summary Background Standardizing nursing handoffs at shift change is recommended to improve communication, with electronic tools as the primary approach. However, nurses continue to rely on personally created paper-based cognitive artifacts – their “paper brains” – to support handoffs, indicating a deficiency in available electronic versions. Objective The purpose of this qualitative study was to develop a deep understanding of nurses’ paper-based cognitive artifacts in the context of a cancer specialty hospital. Methods After completing 73 hours of hospital unit field observations, 13 medical oncology nurses were purposively sampled, shadowed for a single shift and interviewed using a semi-structured technique. An interpretive descriptive study design guided analysis of the data corpus of field notes, transcribed interviews, images of nurses’ paper-based cognitive artifacts, and analytic memos. Results Findings suggest nurses’ paper brains are personal, dynamic, living objects that undergo a life cycle during each shift and evolve over the course of a nurse’s career. The life cycle has four phases: Creation, Application, Reproduction, and Destruction. Evolution in a nurse’s individually styled, paper brain is triggered by a change in the nurse’s environment that reshapes cognitive needs. If a paper brain no longer provides cognitive support in the new environment, it is modified into (adapted) or abandoned (made extinct) for a different format that will provide the necessary support. Conclusions The “hidden lives“ – the life cycle and evolution – of paper brains have implications for the design of successful electronic tools to support nursing practice, including handoff. Nurses’ paper brains provide cognitive support beyond the context of handoff. Information retrieval during handoff is undoubtedly an important function of nurses’ paper brains, but tools designed to standardize handoff communication without accounting for cognitive needs during all phases of the paper brain life cycle or the ability to evolve with changes to those cognitive needs will be underutilized. PMID:27602412

  4. A comparison of equivolume, equiosmolar solutions of hypertonic saline and mannitol for brain relaxation during elective supratentorial craniotomy.

    PubMed

    Hernández-Palazón, Joaquín; Fuentes-García, Diego; Doménech-Asensi, Paloma; Piqueras-Pérez, Claudio; Falcón-Araña, Luis; Burguillos-López, Sebastián

    2016-01-01

    Hyperosmolar solutions have been used in neurosurgery to reduce brain volume and facilitate surgical exposure. The purpose of this study was to compare the effects of equivolume, equiosmolar solutions of mannitol and hypertonic saline (HS) on brain relaxation, intensive care unit (ICU) and hospital stay, postoperative outcomes and incidence of side-effects in patients undergoing elective supratentorial craniotomy. In a randomised, prospective, double-blind study, 60 patients undergoing elective supratentorial craniotomy were randomised 1:1 to receive 3 ml/kg of either 20% mannitol or 3% HS. The primary outcome was the surgical condition of the brain assessed by the neurosurgeon using a 4-point scale after opening the dura (1 = relaxed, 2 = satisfactory, 3 = firm and 4 = bulging). Secondary outcomes were electrolytes, blood gases, plasma osmolality and haemodynamic variables measured at 0 min, 30 min, 2 h and 6 h after infusion. Also, predefined postoperative complications, length of ICU and hospital stay were recorded. Appropriate statistical tests were used for comparison; p < 0.05 was considered significant. There was no difference in brain relaxation [mannitol, 1(1-3) versus HS, 1(1.4) points; p = 0.55]. Patients with brain midline shift showed a worse response to hyperosmolar solutions than those without midline shift: 37% versus 8%, respectively; OR = 6.6 (95% CI, 1.54-28.83); p = 0.006. Plasma osmolality increased during the study period (6 h) in both the groups (p < 0.05 compared with baseline). No significant differences in postoperative complications or length of ICU and hospital stay were observed between the groups. Single doses of 3 ml/kg of 20% mannitol and 3% HS are safe and effective for intraoperative brain debulking during elective supratentorial craniotomy, but less effective in patients with pre-existing mass effect and midline shift.

  5. LSD-induced entropic brain activity predicts subsequent personality change.

    PubMed

    Lebedev, A V; Kaelen, M; Lövdén, M; Nilsson, J; Feilding, A; Nutt, D J; Carhart-Harris, R L

    2016-09-01

    Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Oxalate-curcumin–based probe for micro- and macroimaging of reactive oxygen species in Alzheimer’s disease

    PubMed Central

    Yang, Jian; Zhang, Xueli; Yang, Jing; Xu, Yungen; Grutzendler, Jaime; Shao, Yihan; Moore, Anna; Ran, Chongzhao

    2017-01-01

    Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder that has a progression that is closely associated with oxidative stress. It has long been speculated that the reactive oxygen species (ROS) level in AD brains is much higher than that in healthy brains. However, evidence from living beings is scarce. Inspired by the “chemistry of glow stick,” we designed a near-IR fluorescence (NIRF) imaging probe, termed CRANAD-61, for sensing ROS to provide evidence at micro- and macrolevels. In CRANAD-61, an oxalate moiety was utilized to react with ROS and to consequentially produce wavelength shifting. Our in vitro data showed that CRANAD-61 was highly sensitive and rapidly responsive to various ROS. On reacting with ROS, its excitation and emission wavelengths significantly shifted to short wavelengths, and this shifting could be harnessed for dual-color two-photon imaging and transformative NIRF imaging. In this report, we showed that CRANAD-61 could be used to identify “active” amyloid beta (Aβ) plaques and cerebral amyloid angiopathy (CAA) surrounded by high ROS levels with two-photon imaging (microlevel) and to provide relative total ROS concentrations in AD brains via whole-brain NIRF imaging (macrolevel). Lastly, we showed that age-related increases in ROS levels in AD brains could be monitored with our NIRF imaging method. We believe that our imaging with CRANAD-61 could provide evidence of ROS at micro- and macrolevels and could be used for monitoring ROS changes under various AD pathological conditions and during drug treatment. PMID:29109280

  7. The synchronisation of lower limb responses with a variable metronome: the effect of biomechanical constraints on timing.

    PubMed

    Chen, Hui-Ya; Wing, Alan M; Pratt, David

    2006-04-01

    Stepping in time with a metronome has been reported to improve pathological gait. Although there have been many studies of finger tapping synchronisation tasks with a metronome, the specific details of the influences of metronome timing on walking remain unknown. As a preliminary to studying pathological control of gait timing, we designed an experiment with four synchronisation tasks, unilateral heel tapping in sitting, bilateral heel tapping in sitting, bilateral heel tapping in standing, and stepping on the spot, in order to examine the influence of biomechanical constraints on metronome timing. These four conditions allow study of the effects of bilateral co-ordination and maintenance of balance on timing. Eight neurologically normal participants made heel tapping and stepping responses in synchrony with a metronome producing 500 ms interpulse intervals. In each trial comprising 40 intervals, one interval, selected at random between intervals 15 and 30, was lengthened or shortened, which resulted in a shift in phase of all subsequent metronome pulses. Performance measures were the speed of compensation for the phase shift, in terms of the temporal difference between the response and the metronome pulse, i.e. asynchrony, and the standard deviation of the asynchronies and interresponse intervals of steady state synchronisation. The speed of compensation decreased with increase in the demands of maintaining balance. The standard deviation varied across conditions but was not related to the compensation speed. The implications of these findings for metronome assisted gait are discussed in terms of a first-order linear correction account of synchronisation.

  8. Adolescent occupational injuries and workplace risks: an analysis of Oregon workers' compensation data 1990-1997.

    PubMed

    McCall, Brian P; Horwitz, Irwin B; Carr, Bethanie S

    2007-09-01

    Injuries to adolescents from occupational activities has been recognized as a significant public health concern. The objective of this study was to quantify adolescent injury rates, analyze risk factors, and measure the severity of injuries sustained using Oregon workers' compensation data. From 1990-1997, a total of 8060 workers' compensation claims, submitted by claimants 16-19 years old, were accepted by Oregon and used in these analyses. Data from the Bureau of Labor Statistics were used to derive injury rates. An overall estimated claim rate of 134.2 (95% confidence interval [CI] 124.9-143.6) per 10,000 adolescent workers was found, with males having over twice the rate of females. The total average annual claim cost was $3,168,457, representing $3145 per claim. The average total temporary disability period per claim was 22.3 days. Precision production workers had the highest claim rate of 296.2 (95% CI 178.9-413.4) and highest associated costs ($8266) for all occupations, whereas those in the farming/fishing/forestry occupation had the longest average periods of indemnification with 31.6 days. Day shift workers had the highest claim rates and most severe injuries relative to other shifts. The injury rates found among adolescent workers demonstrates that continued safety interventions and increased training are needed. Because of high claim rate and injury severity, particular attention should be focused on adolescents in food service, manufacturing, and agricultural occupations. Understanding the differences of adolescent circadian rhythm patterns in establishing work schedules and supervisory practices could also prove valuable for decreasing injury risk.

  9. 75 FR 36559 - Fisheries of the Northeastern United States; Atlantic Sea Scallop Fishery; Framework Adjustment 21

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... Adjustment if Access Area Yellowtail Flounder (YTF) TAC Is Attained Under the Northeast Multispecies FMP, 10..., Delmarva, and NLAA; and limited access DAS vessels will be compensated 0.10 DAS per DAS fished during... one that would result in a 10-percent shift in baseline effort from the Mid-Atlantic during June 15...

  10. On compensation in Si-doped AlN

    NASA Astrophysics Data System (ADS)

    Harris, Joshua S.; Baker, Jonathon N.; Gaddy, Benjamin E.; Bryan, Isaac; Bryan, Zachary; Mirrielees, Kelsey J.; Reddy, Pramod; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.

    2018-04-01

    Controllable n-type doping over wide ranges of carrier concentrations in AlN, or Al-rich AlGaN, is critical to realizing next-generation applications in high-power electronics and deep UV light sources. Silicon is not a hydrogenic donor in AlN as it is in GaN; despite this, the carrier concentration should be controllable, albeit less efficiently, by increasing the donor concentration during growth. At low doping levels, an increase in the Si content leads to a commensurate increase in free electrons. Problematically, this trend does not persist to higher doping levels. In fact, a further increase in the Si concentration leads to a decrease in free electron concentration; this is commonly referred to as the compensation knee. While the nature of this decrease has been attributed to a variety of compensating defects, the mechanism and identity of the predominant defects associated with the knee have not been conclusively determined. Density functional theory calculations using hybrid exchange-correlation functionals have identified VAl+n SiAl complexes as central to mechanistically understanding compensation in the high Si limit in AlN, while secondary impurities and vacancies tend to dominate compensation in the low Si limit. The formation energies and optical signatures of these defects in AlN are calculated and utilized in a grand canonical charge balance solver to identify carrier concentrations as a function of Si content. The results were found to qualitatively reproduce the experimentally observed compensation knee. Furthermore, these calculations predict a shift in the optical emissions present in the high and low doping limits, which is confirmed with detailed photoluminescence measurements.

  11. Measurement of steep aspheric surfaces using improved two-wavelength phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Liqiong; Wang, Shaopu; Hu, Yao; Hao, Qun

    2017-10-01

    Optical components with aspheric surfaces can improve the imaging quality of optical systems, and also provide extra advantages such as lighter weight, smaller volume and simper structure. In order to satisfy these performance requirements, the surface error of aspheric surfaces, especially high departure aspheric surfaces must be measured accurately and conveniently. The major obstacle of traditional null-interferometry for aspheric surface under test is that specific and complex null optics need to be designed to fully compensate for the normal aberration of the aspheric surface under test. However, non-null interferometry partially compensating for the aspheric normal aberration can test aspheric surfaces without specific null optics. In this work, a novel non-null test approach of measuring the deviation between aspheric surfaces and the best reference sphere by using improved two-wavelength phase shifting interferometer is described. With the help of the calibration based on reverse iteration optimization, we can effectively remove the retrace error and thus improve the accuracy. Simulation results demonstrate that this method can measure the aspheric surface with the departure of over tens of microns from the best reference sphere, which introduces approximately 500λ of wavefront aberration at the detector.

  12. Research on a new type of fiber Bragg grating based corrosion sensor

    NASA Astrophysics Data System (ADS)

    Li, Peng; Song, Shide; Wang, Xiaona; Zhou, Weijie; Zhang, Zuocai

    2015-08-01

    Investigations of the corrosion of rebars in concrete structures are widely studied because of the serious damage to concrete caused by rebar corrosion. The rebar corrosion products in reinforced concrete take up 2~6 times the volume of the rebar. Based on this principle, a new type of fiber Bragg grating (FBG) corrosion sensor is proposed in this paper, which consists of two sensors, an FBG corrosion measurement sensor to measure the expansion strain caused by rebar corrosion, and a temperature compensation sensor to eliminate the cross-sensitivity of FBG corrosion sensor. The corrosion rate is derived by the wavelength shift of FBG corrosion sensor, so rebar corrosion can be monitored and assessed by the FBG wavelength shift. A customized rebar with epoxy fixing groove is designed to install a corrosion sensor on its surface and an embedded temperature compensation sensor. The corrosion sensor is embedded in cement mortar and subsequently casted in concrete. The performance of the corrosion sensor is studied in an accelerated electrochemical corrosion test. Experimental results show that the new type of corrosion sensor has advantage of relatively large measurement range of corrosion rate. The corrosion sensor is suitable to monitor slightly and moderately corroded rebars.

  13. Doppler-based motion compensation algorithm for focusing the signature of a rotorcraft.

    PubMed

    Goldman, Geoffrey H

    2013-02-01

    A computationally efficient algorithm was developed and tested to compensate for the effects of motion on the acoustic signature of a rotorcraft. For target signatures with large spectral peaks that vary slowly in amplitude and have near constant frequency, the time-varying Doppler shift can be tracked and then removed from the data. The algorithm can be used to preprocess data for classification, tracking, and nulling algorithms. The algorithm was tested on rotorcraft data. The average instantaneous frequency of the first harmonic of a rotorcraft was tracked with a fixed-lag smoother. Then, state space estimates of the frequency were used to calculate a time warping that removed the effect of a time-varying Doppler shift from the data. The algorithm was evaluated by analyzing the increase in the amplitude of the harmonics in the spectrum of a rotorcraft. The results depended upon the frequency of the harmonics and the processing interval duration. Under good conditions, the results for the fundamental frequency of the target (~11 Hz) almost achieved an estimated upper bound. The results for higher frequency harmonics had larger increases in the amplitude of the peaks, but significantly lower than the estimated upper bounds.

  14. Common Genetic Variation Near Melatonin Receptor 1A Gene Linked to Job-Related Exhaustion in Shift Workers

    PubMed Central

    Sulkava, Sonja; Ollila, Hanna M.; Alasaari, Jukka; Puttonen, Sampsa; Härmä, Mikko; Viitasalo, Katriina; Lahtinen, Alexandra; Lindström, Jaana; Toivola, Auli; Sulkava, Raimo; Kivimäki, Mika; Vahtera, Jussi; Partonen, Timo; Silander, Kaisa; Porkka-Heiskanen, Tarja

    2017-01-01

    Abstract Study Objectives: Tolerance to shift work varies; only some shift workers suffer from disturbed sleep, fatigue, and job-related exhaustion. Our aim was to explore molecular genetic risk factors for intolerance to shift work. Methods: We assessed intolerance to shift work with job-related exhaustion symptoms in shift workers using the emotional exhaustion subscale of the Maslach Burnout Inventory-General Survey, and carried out a genome-wide association study (GWAS) using Illumina’s Human610-Quad BeadChip (n = 176). The most significant findings were further studied in three groups of Finnish shift workers (n = 577). We assessed methylation in blood cells with the Illumina HumanMethylation450K BeadChip, and examined gene expression levels in the publicly available eGWAS Mayo data. Results: The second strongest signal identified in the GWAS (p = 2.3 × 10E-6) was replicated in two of the replication studies with p < .05 (p = 2.0 × 10E-4 when combining the replication studies) and indicated an association of job-related exhaustion in shift workers with rs12506228, located downstream of the melatonin receptor 1A gene (MTNR1A). The risk allele was also associated with reduced in silico gene expression levels of MTNR1A in brain tissue and suggestively associated with changes in DNA methylation in the 5' regulatory region of MTNR1A. Conclusions: These findings suggest that a variant near MTNR1A may be associated with job-related exhaustion in shift workers. The risk variant may exert its effect via epigenetic mechanisms, potentially leading to reduced melatonin signaling in the brain. These results could indicate a link between melatonin signaling, a key circadian regulatory mechanism, and tolerance to shift work. PMID:28364478

  15. Dynamic Neuroplasticity after Human Prefrontal Cortex Damage

    PubMed Central

    Voytek, Bradley; Davis, Matar; Yago, Elena; Barceló, Francisco; Vogel, Edward K.; Knight, Robert T.

    2010-01-01

    Summary Memory and attention deficits are common after prefrontal cortex (PFC) damage, yet people generally recover some function over time. Recovery is thought to be dependent upon undamaged brain regions but the temporal dynamics underlying cognitive recovery are poorly understood. Here we provide evidence that the intact PFC compensates for damage in the lesioned PFC on a trial-by-trial basis dependent on cognitive load. The extent of this rapid functional compensation is indexed by transient increases in electrophysiological measures of attention and memory in the intact PFC, detectable within a second after stimulus presentation and only when the lesioned hemisphere is challenged. These observations provide evidence supporting a dynamic and flexible model of compensatory neural plasticity. PMID:21040843

  16. Fluorescence Imaging/Agents in Tumor Resection.

    PubMed

    Stummer, Walter; Suero Molina, Eric

    2017-10-01

    Intraoperative fluorescence imaging allows real-time identification of diseased tissue during surgery without being influenced by brain shift and surgery interruption. 5-Aminolevulinic acid, useful for malignant gliomas and other tumors, is the most broadly explored compound approved for fluorescence-guided resection. Intravenous fluorescein sodium has recently received attention, highlighting tumor tissue based on extravasation at the blood-brain barrier (defective in many brain tumors). Fluorescein in perfused brain, unselective extravasation in brain perturbed by surgery, and propagation with edema are concerns. Fluorescein is not approved but targeted fluorochromes with affinity to brain tumor cells, in development, may offer future advantages. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain

    PubMed Central

    McCarthy, Margaret M.; Nugent, Bridget M.; Lenz, Kathryn M.

    2017-01-01

    The study of sex differences in the brain is a topic of neuroscientific study that has broad reaching implications for culture, society and biomedical science. Recent research in rodent models has led to dramatic shifts in our views of the mechanisms underlying the sexual differentiation of the brain. These include the surprising discoveries of a role for immune cells and inflammatory mediators in brain masculinization and a role for epigenetic suppression in brain feminization. How and to what degree these findings will translate to human brain development will be questions of central importance in future research in this field. PMID:28638119

  18. Effect of pre-donation fluid intake on fluid shift from interstitial to intravascular compartment in blood donors.

    PubMed

    Deepika, Chenna; Murugesan, Mohandoss; Shastry, Shamee

    2018-02-01

    Fluid shifts from interstitial to intravascular space during blood donation helps in compensating the lost blood volume. We aimed to determine the volume of fluid shift following donation in donors with and without pre-donation fluid intake. We studied the fluid shift in 325 blood donors prospectively. Donors were divided in groups- with no fluid intake (GI) and either water (GII) or oral rehydrating fluids (GIII) before donation. Fluid shift following donation was calculated based on the difference between the pre and post donation blood volume. The influence of oral fluid intake, age, gender and body mass index (BMI) on volume of fluid shift was analyzed. The fluid shift was significant between donors without fluids (GI: 127 ± 81 ml) and donors with fluid intake (GII & III: 96 ± 45 ml) (p < 0.05). The difference was not significant between donors with water intake (GII: 106 ± 52 ml) and oral rehydrating fluid intake (GIII: 87 ± 41 ml). The shifted fluid volume increased with increasing BMI and decreased with increasing age in females. The fluid shift increased in females than in males. The age, gender, BMI and VVR did not significantly contribute to the volume of fluid shift following donation. As per our observation, the oral fluids before donation might not contribute to increase in fluid shift in blood donors after donation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Alpha-Hydroxylation of lignoceric and nervonic acids in the brain. Effects of altered thyroid function on postnatal development of the hydroxylase activity.

    PubMed

    Murad, S; Strycharz, G D; Kishimoto, Y

    1976-09-10

    Rat brain postnuclear preparations catalyzed the alpha-hydroxylation of nervonic acid with an apparent Km of 3 muM. Evidence has been presented which suggests that nervonic acid in the brain is hydroxylated by the same enzyme system which hydroxylates lignoceric acid. The hydroxylase activity in brains of normal (euthyroid) rats increased rapidly from a low in the period immediately following birth to a maximum at the 23rd day and then declined to a low level characteristic of the mature brain. Neonatal hypothyroidism retarded the development of the activity and shifted its peak to the 39th day after birth. Conversely, neonatal hyperthyroidism accelerated the entire developmental pattern and shifted the peak to the 16th day after birth. The hydroxylase activity in mouse brain was also increased by thyroid hormone administration from the 13th through the 18th day after birth. Unlike normal mice, the low activity in jimpy mice was not affected by this treatment. It is concluded that thyroid hormones play an important role in the control of brain fatty acid alpha-hydroxylation. The stimulation of alpha-hydroxy fatty acid synthesis in response to hyperthyroidism during the early postnatal period may be one of the major effects of thyroid hormones in accelerating myelination of the central nervous system.

  20. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in brain cells in vitro

    USDA-ARS?s Scientific Manuscript database

    The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defense in brain is a critical factor in the declining neural functions and cognitive deficits accompanying age. In aging, there are noticeable alterations in the membrane microenvironment,...

  1. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  2. Enlarging the scope: grasping brain complexity

    PubMed Central

    Tognoli, Emmanuelle; Kelso, J. A. Scott

    2014-01-01

    To further advance our understanding of the brain, new concepts and theories are needed. In particular, the ability of the brain to create information flows must be reconciled with its propensity for synchronization and mass action. The theoretical and empirical framework of Coordination Dynamics, a key aspect of which is metastability, are presented as a starting point to study the interplay of integrative and segregative tendencies that are expressed in space and time during the normal course of brain and behavioral function. Some recent shifts in perspective are emphasized, that may ultimately lead to a better understanding of brain complexity. PMID:25009476

  3. Android application for determining surgical variables in brain-tumor resection procedures

    PubMed Central

    Vijayan, Rohan C.; Thompson, Reid C.; Chambless, Lola B.; Morone, Peter J.; He, Le; Clements, Logan W.; Griesenauer, Rebekah H.; Kang, Hakmook; Miga, Michael I.

    2017-01-01

    Abstract. The fidelity of image-guided neurosurgical procedures is often compromised due to the mechanical deformations that occur during surgery. In recent work, a framework was developed to predict the extent of this brain shift in brain-tumor resection procedures. The approach uses preoperatively determined surgical variables to predict brain shift and then subsequently corrects the patient’s preoperative image volume to more closely match the intraoperative state of the patient’s brain. However, a clinical workflow difficulty with the execution of this framework is the preoperative acquisition of surgical variables. To simplify and expedite this process, an Android, Java-based application was developed for tablets to provide neurosurgeons with the ability to manipulate three-dimensional models of the patient’s neuroanatomy and determine an expected head orientation, craniotomy size and location, and trajectory to be taken into the tumor. These variables can then be exported for use as inputs to the biomechanical model associated with the correction framework. A multisurgeon, multicase mock trial was conducted to compare the accuracy of the virtual plan to that of a mock physical surgery. It was concluded that the Android application was an accurate, efficient, and timely method for planning surgical variables. PMID:28331887

  4. Android application for determining surgical variables in brain-tumor resection procedures.

    PubMed

    Vijayan, Rohan C; Thompson, Reid C; Chambless, Lola B; Morone, Peter J; He, Le; Clements, Logan W; Griesenauer, Rebekah H; Kang, Hakmook; Miga, Michael I

    2017-01-01

    The fidelity of image-guided neurosurgical procedures is often compromised due to the mechanical deformations that occur during surgery. In recent work, a framework was developed to predict the extent of this brain shift in brain-tumor resection procedures. The approach uses preoperatively determined surgical variables to predict brain shift and then subsequently corrects the patient's preoperative image volume to more closely match the intraoperative state of the patient's brain. However, a clinical workflow difficulty with the execution of this framework is the preoperative acquisition of surgical variables. To simplify and expedite this process, an Android, Java-based application was developed for tablets to provide neurosurgeons with the ability to manipulate three-dimensional models of the patient's neuroanatomy and determine an expected head orientation, craniotomy size and location, and trajectory to be taken into the tumor. These variables can then be exported for use as inputs to the biomechanical model associated with the correction framework. A multisurgeon, multicase mock trial was conducted to compare the accuracy of the virtual plan to that of a mock physical surgery. It was concluded that the Android application was an accurate, efficient, and timely method for planning surgical variables.

  5. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies.

    PubMed

    Greene, Amanda E; Todorova, Mariana T; Seyfried, Thomas N

    2003-08-01

    Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.

  6. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals

    PubMed Central

    Herculano-Houzel, Suzana; Messeder, Débora J.; Fonseca-Azevedo, Karina; Pantoja, Nilma A.

    2015-01-01

    There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease. PMID:26082686

  7. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals.

    PubMed

    Herculano-Houzel, Suzana; Messeder, Débora J; Fonseca-Azevedo, Karina; Pantoja, Nilma A

    2015-01-01

    There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.

  8. Rural Development Issues in the Northeast: 2000-2005. Working Paper.

    ERIC Educational Resources Information Center

    Goetz, Stephan J.

    This paper examines social and economic forces affecting rural areas at the beginning of the 21st century and lists potential strategies to cope with those concerns. Rural development is necessary to place rural and urban areas on a more equal footing, compensate for the youth "brain drain," preserve the retirement-option value, relieve…

  9. Efficacy of Edwards' Cognitive Shift Approach to Art Education.

    ERIC Educational Resources Information Center

    Chambliss, Catherine A.; Hartl, Alan J.

    1987-01-01

    Noting the lack of experimental evidence substantiating the efficacy of educational strategies designed to exploit the right hemisphere of the brain, a study was designed to assess the cognitive shift model of the Edwards' training procedure. Results showed no difference between the Edwards' procedure and a placebo procedure. Implications for the…

  10. Suppression and Narrative Time Shifts in Adults with Right-Hemisphere Brain Damage

    ERIC Educational Resources Information Center

    Scharp, Victoria L.; Tompkins, Connie A.

    2013-01-01

    Purpose: This study examined the functioning of a central comprehension mechanism, suppression, in adults with right-hemisphere damage (RHD) while they processed narratives that cued a shift in time frame. In normal language comprehension, mental activation of concepts from a prior time frame is suppressed. The (re)activation of information…

  11. Insulin induces a shift in lipid and primary carbon metabolites in a model of fasting-induced insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Peripheral insulin resistance shifts metabolic fuel use away from carbohydrates, and towards lipids, and is most commonly associated with Type 2 diabetes mellitus. However, regulated insulin resistance is an evolved mechanism to preserve glucose for the brain in conditions of high demand or carbohy...

  12. Multimodal Integration After Unilateral Labyrinthine Lesion: Single Vestibular Nuclei Neuron Responses and Implications for Postural Compensation

    PubMed Central

    Sadeghi, Soroush G.; Minor, Lloyd B.

    2011-01-01

    Plasticity in neuronal responses is necessary for compensation following brain lesions and adaptation to new conditions and motor learning. In a previous study, we showed that compensatory changes in the vestibuloocular reflex (VOR) following unilateral vestibular loss were characterized by dynamic reweighting of inputs from vestibular and extravestibular modalities at the level of single neurons that constitute the first central stage of VOR signal processing. Here, we studied another class of neurons, i.e., the vestibular-only neurons, in the vestibular nuclei that mediate vestibulospinal reflexes and provide information for higher brain areas. We investigated changes in the relative contribution of vestibular, neck proprioceptive, and efference copy signals in the response of these neurons during compensation after contralateral vestibular loss in Macaca mulata monkeys. We show that the time course of recovery of vestibular sensitivity of neurons corresponds with that of lower extremity muscle and tendon reflexes reported in previous studies. More important, we found that information from neck proprioceptors, which did not influence neuronal responses before the lesion, were unmasked after lesion. Such inputs influenced the early stages of the compensation process evidenced by faster and more substantial recovery of the resting discharge in proprioceptive-sensitive neurons. Interestingly, unlike our previous study of VOR interneurons, the improvement in the sensitivity of the two groups of neurons did not show any difference in the early or late stages after lesion. Finally, neuronal responses during active head movements were not different before and after lesion and were attenuated relative to passive movements over the course of recovery, similar to that observed in control conditions. Comparison of compensatory changes observed in the vestibuloocular and vestibulospinal pathways provides evidence for similarities and differences between the two classes of neurons that mediate these pathways at the functional and cellular levels. PMID:21148096

  13. Multimodal integration after unilateral labyrinthine lesion: single vestibular nuclei neuron responses and implications for postural compensation.

    PubMed

    Sadeghi, Soroush G; Minor, Lloyd B; Cullen, Kathleen E

    2011-02-01

    Plasticity in neuronal responses is necessary for compensation following brain lesions and adaptation to new conditions and motor learning. In a previous study, we showed that compensatory changes in the vestibuloocular reflex (VOR) following unilateral vestibular loss were characterized by dynamic reweighting of inputs from vestibular and extravestibular modalities at the level of single neurons that constitute the first central stage of VOR signal processing. Here, we studied another class of neurons, i.e., the vestibular-only neurons, in the vestibular nuclei that mediate vestibulospinal reflexes and provide information for higher brain areas. We investigated changes in the relative contribution of vestibular, neck proprioceptive, and efference copy signals in the response of these neurons during compensation after contralateral vestibular loss in Macaca mulata monkeys. We show that the time course of recovery of vestibular sensitivity of neurons corresponds with that of lower extremity muscle and tendon reflexes reported in previous studies. More important, we found that information from neck proprioceptors, which did not influence neuronal responses before the lesion, were unmasked after lesion. Such inputs influenced the early stages of the compensation process evidenced by faster and more substantial recovery of the resting discharge in proprioceptive-sensitive neurons. Interestingly, unlike our previous study of VOR interneurons, the improvement in the sensitivity of the two groups of neurons did not show any difference in the early or late stages after lesion. Finally, neuronal responses during active head movements were not different before and after lesion and were attenuated relative to passive movements over the course of recovery, similar to that observed in control conditions. Comparison of compensatory changes observed in the vestibuloocular and vestibulospinal pathways provides evidence for similarities and differences between the two classes of neurons that mediate these pathways at the functional and cellular levels.

  14. Deorientation of PolSAR coherency matrix for volume scattering retrieval

    NASA Astrophysics Data System (ADS)

    Kumar, Shashi; Garg, R. D.; Kushwaha, S. P. S.

    2016-05-01

    Polarimetric SAR data has proven its potential to extract scattering information for different features appearing in single resolution cell. Several decomposition modelling approaches have been developed to retrieve scattering information from PolSAR data. During scattering power decomposition based on physical scattering models it becomes very difficult to distinguish volume scattering as a result from randomly oriented vegetation from scattering nature of oblique structures which are responsible for double-bounce and volume scattering , because both are decomposed in same scattering mechanism. The polarization orientation angle (POA) of an electromagnetic wave is one of the most important character which gets changed due to scattering from geometrical structure of topographic slopes, oriented urban area and randomly oriented features like vegetation cover. The shift in POA affects the polarimetric radar signatures. So, for accurate estimation of scattering nature of feature compensation in polarization orientation shift becomes an essential procedure. The prime objective of this work was to investigate the effect of shift in POA in scattering information retrieval and to explore the effect of deorientation on regression between field-estimated aboveground biomass (AGB) and volume scattering. For this study Dudhwa National Park, U.P., India was selected as study area and fully polarimetric ALOS PALSAR data was used to retrieve scattering information from the forest area of Dudhwa National Park. Field data for DBH and tree height was collect for AGB estimation using stratified random sampling. AGB was estimated for 170 plots for different locations of the forest area. Yamaguchi four component decomposition modelling approach was utilized to retrieve surface, double-bounce, helix and volume scattering information. Shift in polarization orientation angle was estimated and deorientation of coherency matrix for compensation of POA shift was performed. Effect of deorientation on RGB color composite for the forest area can be easily seen. Overestimation of volume scattering and under estimation of double bounce scattering was recorded for PolSAR decomposition without deorientation and increase in double bounce scattering and decrease in volume scattering was noticed after deorientation. This study was mainly focused on volume scattering retrieval and its relation with field estimated AGB. Change in volume scattering after POA compensation of PolSAR data was recorded and a comparison was performed on volume scattering values for all the 170 forest plots for which field data were collected. Decrease in volume scattering after deorientation was noted for all the plots. Regression between PolSAR decomposition based volume scattering and AGB was performed. Before deorientation, coefficient determination (R2) between volume scattering and AGB was 0.225. After deorientation an improvement in coefficient of determination was found and the obtained value was 0.613. This study recommends deorientation of PolSAR data for decomposition modelling to retrieve reliable volume scattering information from forest area.

  15. Towards sustainable traumatic brain injury care systems: healthcare leadership imperatives in Canada.

    PubMed

    Caro, Denis

    2011-01-01

    Traumatic brain injuries pose strategic population health challenges in the face of burgeoning clinical demands that continue to tax capital, financial, and social resource capacities. The sustainability of traumatic brain injury care systems depends on paradigmatic shifts in healthcare leadership thinking. In quest for high-performance care and sustained quality of life for traumatic brain injury patients, this article presents a unique paradigm of seven care performance layers and seven health leadership imperatives that together form the paradigm for the systemic sustainability of TBI care systems of the future.

  16. Stochastic resonance in attention control

    NASA Astrophysics Data System (ADS)

    Kitajo, K.; Yamanaka, K.; Ward, L. M.; Yamamoto, Y.

    2006-12-01

    We investigated the beneficial role of noise in a human higher brain function, namely visual attention control. We asked subjects to detect a weak gray-level target inside a marker box either in the left or the right visual field. Signal detection performance was optimized by presenting a low level of randomly flickering gray-level noise between and outside the two possible target locations. Further, we found that an increase in eye movement (saccade) rate helped to compensate for the usual deterioration in detection performance at higher noise levels. To our knowledge, this is the first experimental evidence that noise can optimize a higher brain function which involves distinct brain regions above the level of primary sensory systems -- switching behavior between multi-stable attention states -- via the mechanism of stochastic resonance.

  17. Bridging neuroscience and clinical psychology: cognitive behavioral and psychophysiological models in the evaluation and treatment of Gilles de la Tourette syndrome

    PubMed Central

    Lavoie, Marc E; Leclerc, Julie; O’Connor, Kieron P

    2013-01-01

    SUMMARY Cognitive neuroscience and clinical psychology have long been considered to be separate disciplines. However, the phenomenon of brain plasticity in the context of a psychological intervention highlights the mechanisms of brain compensation and requires linking both clinical cognition and cognitive psychophysiology. A quantifiable normalization of brain activity seems to be correlated with an improvement of the tic symptoms after cognitive behavioral therapy in patients with Gilles de la Tourette syndrome (GTS). This article presents broad outlines of the state of the current literature in the field of GTS. We present our clinical research model and methodology for the integration of cognitive neuroscience in the psychological evaluation and treatment of GTS to manage chronic tic symptoms. PMID:24795782

  18. Caffeine intake increases plasma ketones: an acute metabolic study in humans.

    PubMed

    Vandenberghe, Camille; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Hennebelle, Marie; Castellano, Christian-Alexandre; Cunnane, Stephen C

    2017-04-01

    Brain glucose uptake declines during aging and is significantly impaired in Alzheimer's disease. Ketones are the main alternative brain fuel to glucose so they represent a potential approach to compensate for the brain glucose reduction. Caffeine is of interest as a potential ketogenic agent owing to its actions on lipolysis and lipid oxidation but whether it is ketogenic in humans is unknown. This study aimed to evaluate the acute ketogenic effect of 2 doses of caffeine (2.5; 5.0 mg/kg) in 10 healthy adults. Caffeine given at breakfast significantly stimulated ketone production in a dose-dependent manner (+88%; +116%) and also raised plasma free fatty acids. Whether caffeine has long-term ketogenic effects or could enhance the ketogenic effect of medium chain triglycerides remains to be determined.

  19. Bridging neuroscience and clinical psychology: cognitive behavioral and psychophysiological models in the evaluation and treatment of Gilles de la Tourette syndrome.

    PubMed

    Lavoie, Marc E; Leclerc, Julie; O'Connor, Kieron P

    2013-02-01

    Cognitive neuroscience and clinical psychology have long been considered to be separate disciplines. However, the phenomenon of brain plasticity in the context of a psychological intervention highlights the mechanisms of brain compensation and requires linking both clinical cognition and cognitive psychophysiology. A quantifiable normalization of brain activity seems to be correlated with an improvement of the tic symptoms after cognitive behavioral therapy in patients with Gilles de la Tourette syndrome (GTS). This article presents broad outlines of the state of the current literature in the field of GTS. We present our clinical research model and methodology for the integration of cognitive neuroscience in the psychological evaluation and treatment of GTS to manage chronic tic symptoms.

  20. Probing the independence of formant control using altered auditory feedback

    PubMed Central

    MacDonald, Ewen N.; Purcell, David W.; Munhall, Kevin G.

    2011-01-01

    Two auditory feedback perturbation experiments were conducted to examine the nature of control of the first two formants in vowels. In the first experiment, talkers heard their auditory feedback with either F1 or F2 shifted in frequency. Talkers altered production of the perturbed formant by changing its frequency in the opposite direction to the perturbation but did not produce a correlated alteration of the unperturbed formant. Thus, the motor control system is capable of fine-grained independent control of F1 and F2. In the second experiment, a large meta-analysis was conducted on data from talkers who received feedback where both F1 and F2 had been perturbed. A moderate correlation was found between individual compensations in F1 and F2 suggesting that the control of F1 and F2 is processed in a common manner at some level. While a wide range of individual compensation magnitudes were observed, no significant correlations were found between individuals’ compensations and vowel space differences. Similarly, no significant correlations were found between individuals’ compensations and variability in normal vowel production. Further, when receiving normal auditory feedback, most of the population exhibited no significant correlation between the natural variation in production of F1 and F2. PMID:21361452

  1. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    Customer-sited photovoltaic (PV) systems in the United States are often compensated at the customer’s underlying retail electricity rate through net metering. Calculations of the customer economics of PV, meanwhile, often assume that retail rate structures and PV compensation mechanisms will not change and that retail electricity prices will increase (or remain constant) over time, thereby also increasing (or keeping constant) the value of bill savings from PV. Given the multitude of potential changes to retail rates and PV compensation mechanisms in the future, however, understanding how such changes might impact the value of bill savings from PV is critical formore » policymakers, regulators, utilities, the solar industry, and potential PV owners, i.e., any stakeholder interested in understanding uncertainties in and potential changes to the long-term customer economics of PV. This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV.« less

  2. Next Generation Satellite Communications: Automated Doppler Shift Compensation of PSK-31 Via Software-Defined Radio

    DTIC Science & Technology

    2014-05-09

    Interfaces Configuration – Wired Network Connections before Editing Move the cursor to the end of the line that ends with “eth0 inet dhcp ” and type...X”. This will delete text one character back from the cursor. Delete the word “ dhcp ”. Once this is done, type “a” to begin inserting text and add

  3. F-76 Lubricity Improver Additive Evaluation

    DTIC Science & Technology

    2013-09-16

    Figure 4. NCT differential water readings of 2x maximum dosage of Additive A .............................. 8 Figure 5. NCT differential water ...to compensate for the decrease in lubricity as ultra low sulfur fuels shift into focus while still retaining the fuel’s water separability traits...specification and fit-for-purpose testing, and several of these tests focused on the effects of the additives to the fuel’s water separation

  4. Information-Driven Blind Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks

    DTIC Science & Technology

    2015-08-24

    SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 15. SUBJECT TERMS b. ABSTRACT 2...network keeping constraints such as transmission rate, transmission delay, Signal-to-Interference and Noise Ratio (SINR) under consideration. Table...distances. It is advantageous to accomplish such transmission using sensors in a multi-hop relay form keeping constraints such as transmission rate

  5. On the Probability of Error and Stochastic Resonance in Discrete Memoryless Channels

    DTIC Science & Technology

    2013-12-01

    Information - Driven Doppler Shift Estimation and Compensation Methods for Underwater Wireless Sensor Networks ”, which is to analyze and develop... underwater wireless sensor networks . We formulated an analytic relationship that relates the average probability of error to the systems parameters, the...thesis, we studied the performance of Discrete Memoryless Channels (DMC), arising in the context of cooperative underwater wireless sensor networks

  6. A computational method for estimating the dosimetric effect of intra-fraction motion on step-and-shoot IMRT and compensator plans

    NASA Astrophysics Data System (ADS)

    Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.

    2010-07-01

    Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.

  7. "Use-It-or-Lose-It"? Interrogating an Educational Message from Teen Brain Research

    ERIC Educational Resources Information Center

    Payne, Monica A.

    2010-01-01

    Recent neuroimaging research has encouraged a fundamental shift in psychological thinking about cognitive development in adolescence. Challenging the existing view that early childhood was the most critical period for intellectually hard-wiring the brain, findings led researchers to speculate that early adolescence might be the more important…

  8. Polyphenol- and PUFA-rich walnuts protect against age-associated cognitive decline through epigenetic modulation

    USDA-ARS?s Scientific Manuscript database

    A demographic shift towards an aging population and the incidence of age-related brain disorders are on the rise worldwide. A rapid decline in brain health with aging is primarily caused by the brain’s exceptionally high demand for energy which drives high oxygen consumption, leading to a subsequent...

  9. Traumatic brain injury impairs small-world topology

    PubMed Central

    Pandit, Anand S.; Expert, Paul; Lambiotte, Renaud; Bonnelle, Valerie; Leech, Robert; Turkheimer, Federico E.

    2013-01-01

    Objective: We test the hypothesis that brain networks associated with cognitive function shift away from a “small-world” organization following traumatic brain injury (TBI). Methods: We investigated 20 TBI patients and 21 age-matched controls. Resting-state functional MRI was used to study functional connectivity. Graph theoretical analysis was then applied to partial correlation matrices derived from these data. The presence of white matter damage was quantified using diffusion tensor imaging. Results: Patients showed characteristic cognitive impairments as well as evidence of damage to white matter tracts. Compared to controls, the graph analysis showed reduced overall connectivity, longer average path lengths, and reduced network efficiency. A particular impact of TBI is seen on a major network hub, the posterior cingulate cortex. Taken together, these results confirm that a network critical to cognitive function shows a shift away from small-world characteristics. Conclusions: We provide evidence that key brain networks involved in supporting cognitive function become less small-world in their organization after TBI. This is likely to be the result of diffuse white matter damage, and may be an important factor in producing cognitive impairment after TBI. PMID:23596068

  10. Managing health worker migration: a qualitative study of the Philippine response to nurse brain drain

    PubMed Central

    2012-01-01

    Background The emigration of skilled nurses from the Philippines is an ongoing phenomenon that has impacted the quality and quantity of the nursing workforce, while strengthening the domestic economy through remittances. This study examines how the development of brain drain-responsive policies is driven by the effects of nurse migration and how such efforts aim to achieve mind-shifts among nurses, governing and regulatory bodies, and public and private institutions in the Philippines and worldwide. Methods Interviews and focus group discussions were conducted to elicit exploratory perspectives on the policy response to nurse brain drain. Interviews with key informants from the nursing, labour and immigration sectors explored key themes behind the development of policies and programmes that respond to nurse migration. Focus group discussions were held with practising nurses to understand policy recipients’ perspectives on nurse migration and policy. Results Using the qualitative data, a thematic framework was created to conceptualize participants’ perceptions of how nurse migration has driven the policy development process. The framework demonstrates that policymakers have recognised the complexity of the brain drain phenomenon and are crafting dynamic policies and programmes that work to shift domestic and global mindsets on nurse training, employment and recruitment. Conclusions Development of responsive policy to Filipino nurse brain drain offers a glimpse into a domestic response to an increasingly prominent global issue. As a major source of professionals migrating abroad for employment, the Philippines has formalised efforts to manage nurse migration. Accordingly, the Philippine paradigm, summarised by the thematic framework presented in this paper, may act as an example for other countries that are experiencing similar shifts in healthcare worker employment due to migration. PMID:23249411

  11. Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI.

    PubMed

    Roberts, Donna R; Albrecht, Moritz H; Collins, Heather R; Asemani, Davud; Chatterjee, A Rano; Spampinato, M Vittoria; Zhu, Xun; Chimowitz, Marc I; Antonucci, Michael U

    2017-11-02

    There is limited information regarding the effects of spaceflight on the anatomical configuration of the brain and on cerebrospinal fluid (CSF) spaces. We used magnetic resonance imaging (MRI) to compare images of 18 astronauts' brains before and after missions of long duration, involving stays on the International Space Station, and of 16 astronauts' brains before and after missions of short duration, involving participation in the Space Shuttle Program. Images were interpreted by readers who were unaware of the flight duration. We also generated paired preflight and postflight MRI cine clips derived from high-resolution, three-dimensional imaging of 12 astronauts after long-duration flights and from 6 astronauts after short-duration flights in order to assess the extent of narrowing of CSF spaces and the displacement of brain structures. We also compared preflight ventricular volumes with postflight ventricular volumes by means of an automated analysis of T 1 -weighted MRIs. The main prespecified analyses focused on the change in the volume of the central sulcus, the change in the volume of CSF spaces at the vertex, and vertical displacement of the brain. Narrowing of the central sulcus occurred in 17 of 18 astronauts after long-duration flights (mean flight time, 164.8 days) and in 3 of 16 astronauts after short-duration flights (mean flight time, 13.6 days) (P<0.001). Cine clips from a subgroup of astronauts showed an upward shift of the brain after all long-duration flights (12 astronauts) but not after short-duration flights (6 astronauts) and narrowing of CSF spaces at the vertex after all long-duration flights (12 astronauts) and in 1 of 6 astronauts after short-duration flights. Three astronauts in the long-duration group had optic-disk edema, and all 3 had narrowing of the central sulcus. A cine clip was available for 1 of these 3 astronauts, and the cine clip showed upward shift of the brain. Narrowing of the central sulcus, upward shift of the brain, and narrowing of CSF spaces at the vertex occurred frequently and predominantly in astronauts after long-duration flights. Further investigation, including repeated postflight imaging conducted after some time on Earth, is required to determine the duration and clinical significance of these changes. (Funded by the National Aeronautics and Space Administration.).

  12. Fear processing and social networking in the absence of a functional amygdala.

    PubMed

    Becker, Benjamin; Mihov, Yoan; Scheele, Dirk; Kendrick, Keith M; Feinstein, Justin S; Matusch, Andreas; Aydin, Merve; Reich, Harald; Urbach, Horst; Oros-Peusquens, Ana-Maria; Shah, Nadim J; Kunz, Wolfram S; Schlaepfer, Thomas E; Zilles, Karl; Maier, Wolfgang; Hurlemann, René

    2012-07-01

    The human amygdala plays a crucial role in processing social signals, such as face expressions, particularly fearful ones, and facilitates responses to them in face-sensitive cortical regions. This contributes to social competence and individual amygdala size correlates with that of social networks. While rare patients with focal bilateral amygdala lesion typically show impaired recognition of fearful faces, this deficit is variable, and an intriguing possibility is that other brain regions can compensate to support fear and social signal processing. To investigate the brain's functional compensation of selective bilateral amygdala damage, we performed a series of behavioral, psychophysiological, and functional magnetic resonance imaging experiments in two adult female monozygotic twins (patient 1 and patient 2) with equivalent, extensive bilateral amygdala pathology as a sequela of lipoid proteinosis due to Urbach-Wiethe disease. Patient 1, but not patient 2, showed preserved recognition of fearful faces, intact modulation of acoustic startle responses by fear-eliciting scenes, and a normal-sized social network. Functional magnetic resonance imaging revealed that patient 1 showed potentiated responses to fearful faces in her left premotor cortex face area and bilaterally in the inferior parietal lobule. The premotor cortex face area and inferior parietal lobule are both implicated in the cortical mirror-neuron system, which mediates learning of observed actions and may thereby promote both imitation and empathy. Taken together, our findings suggest that despite the pre-eminent role of the amygdala in processing social information, the cortical mirror-neuron system may sometimes adaptively compensate for its pathology. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Polarization Dependence Suppression of Optical Fiber Grating Sensor in a π-Shifted Sagnac Loop Interferometer

    PubMed Central

    Son, Jaebum; Lee, Min-Kyoung; Jeong, Myung Yung; Kim, Chang-Seok

    2010-01-01

    In the sensing applications of optical fiber grating, it is necessary to reduce the transmission-type polarization dependence to isolate the sensing parameter. It is experimentally shown that the polarization-dependent spectrum of acousto-optic long-period fiber grating sensors can be suppressed in the transmission port of a π-shifted Sagnac loop interferometer. General expressions for the transmittance and reflectance are derived for transmission-type, reflection-type, and partially reflecting/transmitting-type polarization-dependent optical devices. The compensation of polarization dependence through the counter propagation in the Sagnac loop interferometer is quantitatively measured for a commercial in-line polarizer and an acousto-optic long-period fiber grating sensor. PMID:22399884

  14. Chromatic dispersion effects in ultra-low coherence interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lychagov, V V; Ryabukho, V P

    2015-06-30

    We consider the properties of an interference signal shift from zero-path-difference position in the presence of an uncompensated dispersive layer in one of the interferometer arms. It is experimentally shown that in using an ultra-low coherence light source, the formation of the interference signal is also determined by the group velocity dispersion, which results in a nonlinear dependence of the position of the interference signal on the geometrical thickness of the dispersive layer. The discrepancy in the dispersive layer and compensator refractive indices in the third decimal place is experimentally shown to lead to an interference signal shift that ismore » an order of magnitude greater than the pulse width. (interferometry)« less

  15. Abacus in the brain: a longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion.

    PubMed

    Tanaka, Satoshi; Seki, Keiko; Hanakawa, Takashi; Harada, Madoka; Sugawara, Sho K; Sadato, Norihiro; Watanabe, Katsumi; Honda, Manabu

    2012-01-01

    The abacus, a traditional physical calculation device, is still widely used in Asian countries. Previous behavioral work has shown that skilled abacus users perform rapid and precise mental arithmetic by manipulating a mental representation of an abacus, which is based on visual imagery. However, its neurophysiological basis remains unclear. Here, we report the case of a patient who was a good abacus user, but transiently lost her "mental abacus" and superior arithmetic performance after a stroke owing to a right hemispheric lesion including the dorsal premotor cortex (PMd) and inferior parietal lobule (IPL). Functional magnetic resonance imaging experiments were conducted 6 and 13 months after her stroke. In the mental calculation task, her brain activity was shifted from the language-related areas, including Broca's area and the left dorsolateral prefrontal and IPLs, to the visuospatial-related brain areas including the left superior parietal lobule (SPL), according to the recovery of her arithmetic abilities. In the digit memory task, activities in the bilateral SPL, and right visual association cortex were also observed after recovery. The shift of brain activities was consistent with her subjective report that she was able to shift the calculation strategy from linguistic to visuospatial as her mental abacus became stable again. In a behavioral experiment using an interference paradigm, a visual presentation of an abacus picture, but not a human face picture, interfered with the performance of her digit memory, confirming her use of the mental abacus after recovery. This is the first case report on the impairment of the mental abacus by a brain lesion and on recovery-related brain activity. We named this rare case "abacus-based acalculia." Together with previous neuroimaging studies, the present result suggests an important role for the PMd and parietal cortex in the superior arithmetic ability of abacus users.

  16. A fish is not a fish: patterns in fatty acid composition of aquatic food may have had implications for hominin evolution.

    PubMed

    Joordens, Josephine C A; Kuipers, Remko S; Wanink, Jan H; Muskiet, Frits A J

    2014-12-01

    From c. 2 Ma (millions of years ago) onwards, hominin brain size and cognition increased in an unprecedented fashion. The exploitation of high-quality food resources, notably from aquatic ecosystems, may have been a facilitator or driver of this phenomenon. The aim of this study is to contribute to the ongoing debate on the possible role of aquatic resources in hominin evolution by providing a more detailed nutritional context. So far, the debate has focused on the relative importance of terrestrial versus aquatic resources while no distinction has been made between different types of aquatic resources. Here we show that Indian Ocean reef fish and eastern African lake fish yield on average similarly high amounts of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA). Hence a shift from exploiting tropical marine to freshwater ecosystems (or vice versa) would entail no material difference in dietary long-chain polyunsaturated fatty acid (LC-PUFA) availability. However, a shift to marine ecosystems would likely mean a major increase in access to brain-selective micronutrients such as iodine. Fatty fish from marine temperate/cold waters yield twice as much DHA and four times as much EPA as tropical fish, demonstrating that a latitudinal shift in exploitation of African coastal ecosystems could constitute a significant difference in LC-PUFA availability with possible implications for brain development and functioning. We conclude that exploitation of aquatic food resources could have facilitated the initial moderate hominin brain increase as observed in fossils dated to c. 2 Ma, but not the exceptional brain increase in later stages of hominin evolution. We propose that the significant expansion in hominin brain size and cognition later on may have been aided by strong directional selecting forces such as runaway sexual selection of intelligence, and nutritionally supported by exploitation of high-quality food resources in stable and productive aquatic ecosystems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Hyperconnectivity is a fundamental response to neurological disruption.

    PubMed

    Hillary, Frank G; Roman, Cristina A; Venkatesan, Umesh; Rajtmajer, Sarah M; Bajo, Ricardo; Castellanos, Nazareth D

    2015-01-01

    In the cognitive and clinical neurosciences, the past decade has been marked by dramatic growth in a literature examining brain "connectivity" using noninvasive methods. We offer a critical review of the blood oxygen level dependent functional MRI (BOLD fMRI) literature examining neural connectivity changes in neurological disorders with focus on brain injury and dementia. The goal is to demonstrate that there are identifiable shifts in local and large-scale network connectivity that can be predicted by the degree of pathology. We anticipate that the most common network response to neurological insult is hyperconnectivity but that this response depends upon demand and resource availability. To examine this hypothesis, we initially reviewed the results from 1,426 studies examining functional brain connectivity in individuals diagnosed with multiple sclerosis, traumatic brain injury, mild cognitive impairment, and Alzheimer's disease. Based upon inclusionary criteria, 126 studies were included for detailed analysis. RESULTS from 126 studies examining local and whole brain connectivity demonstrated increased connectivity in traumatic brain injury and multiple sclerosis. This finding is juxtaposed with findings in mild cognitive impairment and Alzheimer's disease where there is a shift to diminished connectivity as degeneration progresses. This summary of the functional imaging literature using fMRI methods reveals that hyperconnectivity is a common response to neurological disruption and that it may be differentially observable across brain regions. We discuss the factors contributing to both hyper- and hypoconnectivity results after neurological disruption and the implications these findings have for network plasticity. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  18. Canceling the Gravity Gradient Phase Shift in Atom Interferometry.

    PubMed

    D'Amico, G; Rosi, G; Zhan, S; Cacciapuoti, L; Fattori, M; Tino, G M

    2017-12-22

    Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.

  19. Canceling the Gravity Gradient Phase Shift in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    D'Amico, G.; Rosi, G.; Zhan, S.; Cacciapuoti, L.; Fattori, M.; Tino, G. M.

    2017-12-01

    Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry. Controlling their effects to the required stability and accuracy imposes very stringent requirements on the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein's equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers during the central π pulse, it is possible to cancel the initial position- and velocity-dependent phase shift produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along the vertical direction and demonstrate a new method for measuring local gravity gradients that does not require precise knowledge of the relative position between the atomic clouds. Based on this method, we also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm relative uncertainty.

  20. Effects of heat induced by two-photon absorption and free-carrier absorption in silicon-on-insulator nanowaveguides operating as all-optical wavelength converters.

    PubMed

    Abdollahi, Siamak; Moravvej-Farshi, Mohammad Kazem

    2009-05-01

    We propose a new numerical model to analyze heat induced by two-photon absorption and free-carrier absorption, while high intensity optical pulses propagate along silicon-on-insulator (SOI) nanowaveguides (NWGs). Using this model, we demonstrate that such induced heat causes a shift in the amount of wavelength conversion and hence deteriorates the converter output characteristics for pulses in the picosecond regime. The wavelength shift induced by a pulse with maximum input intensity and full width at half-maximum of I(max)=1.5x10(10) W x cm(-2) and T(FWHM)=30 ps, propagating along a SOI NWG with an effective cross-sectional area of a(eff)=0.15 microm(2), is shown to be Delta lambda(s) approximately 8 pm. We also demonstrate that such a shift can be compensated by tuning the pump intensity down by approximately 6.33%.

  1. Dual-phase-shift spherical Fizeau interferometer for reduction of noise due to internally scattered light

    NASA Astrophysics Data System (ADS)

    Kumagai, Toshiki; Hibino, Kenichi; Nagaike, Yasunari

    2017-03-01

    Internally scattered light in a Fizeau interferometer is generated from dust, defects, imperfect coating of the optical components, and multiple reflections inside the collimator lens. It produces additional noise fringes in the observed interference image and degrades the repeatability of the phase measurement. A method to reduce the phase measurement error is proposed, in which the test surface is mechanically translated between each phase measurement in addition to an ordinary phase shift of the reference surface. It is shown that a linear combination of several measured phases at different test surface positions can reduce the phase errors caused by the scattered light. The combination can also compensate for the nonuniformity of the phase shift that occurs in spherical tests. A symmetric sampling of the phase measurements can cancel the additional primary spherical aberrations that occur when the test surface is out of the null position of the confocal configuration.

  2. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebl, Jakob, E-mail: jakob.liebl@medaustron.at; Francis H. Burr Proton Therapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114; Department of Therapeutic Radiology and Oncology, Medical University of Graz, 8036 Graz

    2014-09-15

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patientmore » positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R{sup 2} < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe.« less

  3. The influence of patient positioning uncertainties in proton radiotherapy on proton range and dose distributions

    PubMed Central

    Liebl, Jakob; Paganetti, Harald; Zhu, Mingyao; Winey, Brian A.

    2014-01-01

    Purpose: Proton radiotherapy allows radiation treatment delivery with high dose gradients. The nature of such dose distributions increases the influence of patient positioning uncertainties on their fidelity when compared to photon radiotherapy. The present work quantitatively analyzes the influence of setup uncertainties on proton range and dose distributions. Methods: Thirty-eight clinical passive scattering treatment fields for small lesions in the head were studied. Dose distributions for shifted and rotated patient positions were Monte Carlo-simulated. Proton range uncertainties at the 50%- and 90%-dose falloff position were calculated considering 18 arbitrary combinations of maximal patient position shifts and rotations for two patient positioning methods. Normal tissue complication probabilities (NTCPs), equivalent uniform doses (EUDs), and tumor control probabilities (TCPs) were studied for organs at risk (OARs) and target volumes of eight patients. Results: The authors identified a median 1σ proton range uncertainty at the 50%-dose falloff of 2.8 mm for anatomy-based patient positioning and 1.6 mm for fiducial-based patient positioning as well as 7.2 and 5.8 mm for the 90%-dose falloff position, respectively. These range uncertainties were correlated to heterogeneity indices (HIs) calculated for each treatment field (38% < R2 < 50%). A NTCP increase of more than 10% (absolute) was observed for less than 2.9% (anatomy-based positioning) and 1.2% (fiducial-based positioning) of the studied OARs and patient shifts. For target volumes TCP decreases by more than 10% (absolute) occurred in less than 2.2% of the considered treatment scenarios for anatomy-based patient positioning and were nonexistent for fiducial-based patient positioning. EUD changes for target volumes were up to 35% (anatomy-based positioning) and 16% (fiducial-based positioning). Conclusions: The influence of patient positioning uncertainties on proton range in therapy of small lesions in the human brain as well as target and OAR dosimetry were studied. Observed range uncertainties were correlated with HIs. The clinical practice of using multiple fields with smeared compensators while avoiding distal OAR sparing is considered to be safe. PMID:25186386

  4. A programmable time alignment scheme for detector signals from the upgraded muon spectrometer at the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Wang, Jinhong; Guan, Liang; Chapman, J.; Zhou, Bing; Zhu, Junjie

    2017-11-01

    We present a programmable time alignment scheme used in an ASIC for the ATLAS forward muon trigger development. The scheme utilizes regenerated clocks with programmable phases to compensate for the timing offsets introduced by different detector trace lengths. Each ASIC used in the design has 104 input channels with delay compensation circuitry providing steps of ∼3 ns and a full range of 25 ns for each channel. Detailed implementation of the scheme including majority logic to suppress single-event effects is presented. The scheme is flexible and fully synthesizable. The approach is adaptable to other applications with similar phase shifting requirements. In addition, the design is resource efficient and is suitable for cost-effective digital implementation with a large number of channels.

  5. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  6. Precision pointing compensation for DSN antennas with optical distance measuring sensors

    NASA Technical Reports Server (NTRS)

    Scheid, R. E.

    1989-01-01

    The pointing control loops of Deep Space Network (DSN) antennas do not account for unmodeled deflections of the primary and secondary reflectors. As a result, structural distortions due to unpredictable environmental loads can result in uncompensated boresight shifts which degrade pointing accuracy. The design proposed here can provide real-time bias commands to the pointing control system to compensate for environmental effects on pointing performance. The bias commands can be computed in real time from optically measured deflections at a number of points on the primary and secondary reflectors. Computer simulations with a reduced-order finite-element model of a DSN antenna validate the concept and lead to a proposed design by which a ten-to-one reduction in pointing uncertainty can be achieved under nominal uncertainty conditions.

  7. Characterization of chromium compensated GaAs as an X-ray sensor material for charge-integrating pixel array detectors

    NASA Astrophysics Data System (ADS)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Gruner, S. M.

    2018-01-01

    We studied the properties of chromium compensated GaAs when coupled to charge integrating ASICs as a function of detector temperature, applied bias and X-ray tube energy. The material is a photoresistor and can be biased to collect either electrons or holes by the pixel circuitry. Both are studied here. Previous studies have shown substantial hole trapping. This trapping and other sensor properties give rise to several non-ideal effects which include an extended point spread function, variations in the effective pixel size, and rate dependent offset shifts. The magnitude of these effects varies with temperature and bias, mandating good temperature uniformity in the sensor and very good temperature stabilization, as well as a carefully selected bias voltage.

  8. Strain-compensated (Ga,In)N/(Al,Ga)N/GaN multiple quantum wells for improved yellow/amber light emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekhal, K.; Damilano, B., E-mail: bd@crhea.cnrs.fr; De Mierry, P.

    2015-04-06

    Yellow/amber (570–600 nm) emitting In{sub x}Ga{sub 1−x}N/Al{sub y}Ga{sub 1−y}N/GaN multiple quantum wells (QWs) have been grown by metal organic chemical vapor deposition on GaN-on- sapphire templates. When the (Al,Ga)N thickness of the barrier increases, the room temperature photoluminescence is red-shifted while its yield increases. This is attributed to an increase of the QW internal electric field and an improvement of the material quality due to the compensation of the compressive strain of the In{sub x}Ga{sub 1−x}N QWs by the Al{sub y}Ga{sub 1−y}N layers, respectively.

  9. Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage.

    PubMed

    Chung, Charlie S Y; Pollock, Alex; Campbell, Tanya; Durward, Brian R; Hagen, Suzanne

    2013-04-30

    Executive functions are the controlling mechanisms of the brain and include the processes of planning, initiation, organisation, inhibition, problem solving, self monitoring and error correction. They are essential for goal-oriented behaviour and responding to new and novel situations. A high number of people with acquired brain injury, including around 75% of stroke survivors, will experience executive dysfunction. Executive dysfunction reduces capacity to regain independence in activities of daily living (ADL), particularly when alternative movement strategies are necessary to compensate for limb weakness. Improving executive function may lead to increased independence with ADL. There are various cognitive rehabilitation strategies for training executive function used within clinical practice and it is necessary to determine the effectiveness of these interventions. To determine the effects of cognitive rehabilitation on executive dysfunction for adults with stroke or other non-progressive acquired brain injuries. We searched the Cochrane Stroke Group Trials Register (August 2012), the Cochrane Central Register of Controlled Trials (The Cochrane Library, August 2012), MEDLINE (1950 to August 2012), EMBASE (1980 to August 2012), CINAHL (1982 to August 2012), PsycINFO (1806 to August 2012), AMED (1985 to August 2012) and 11 additional databases. We also searched reference lists and trials registers, handsearched journals and conference proceedings, and contacted experts. We included randomised trials in adults after non-progressive acquired brain injury, where the intervention was specifically targeted at improving cognition including separable executive function data (restorative interventions), where the intervention was aimed at training participants in methods to compensate for lost executive function (compensative interventions) or where the intervention involved the training in the use of an adaptive technique for improving independence with ADL (adaptive interventions). The primary outcome was global executive function and the secondary outcomes were specific components of executive function, working memory, ADL, extended ADL, quality of life and participation in vocational activities. We included studies in which the comparison intervention was no treatment, a placebo intervention (i.e. a rehabilitation intervention that should not impact on executive function), standard care or another cognitive rehabilitation intervention. Two review authors independently screened abstracts, extracted data and appraised trials. We undertook an assessment of methodological quality for allocation concealment, blinding of outcome assessors, method of dealing with missing data and other potential sources of bias. Nineteen studies (907 participants) met the inclusion criteria for this review. We included 13 studies (770 participants) in meta-analyses (417 traumatic brain injury, 304 stroke, 49 other acquired brain injury) reducing to 660 participants once non-included intervention groups were removed from three and four group studies. We were unable to obtain data from the remaining six studies. Three studies (134 participants) compared cognitive rehabilitation with sensorimotor therapy. None reported our primary outcome; data from one study was available relating to secondary outcomes including concept formation and ADL. Six studies (333 participants) compared cognitive rehabilitation with no treatment or placebo. None reported our primary outcome; data from four studies demonstrated no statistically significant effect of cognitive rehabilitation on secondary outcomes. Ten studies (448 participants) compared two different cognitive rehabilitation approaches. Two studies (82 participants) reported the primary outcome; no statistically significant effect was found. Data from eight studies demonstrated no statistically significant effect on the secondary outcomes. We explored the effect of restorative interventions (10 studies, 468 participants) and compensative interventions (four studies, 128 participants) and found no statistically significant effect compared with other interventions. We identified insufficient high-quality evidence to reach any generalised conclusions about the effect of cognitive rehabilitation on executive function, or other secondary outcome measures. Further high-quality research comparing cognitive rehabilitation with no intervention, placebo or sensorimotor interventions is recommended.

  10. A unique, fast-forwards rotating schedule with 12-h long shifts prevents chronic sleep debt.

    PubMed

    Fischer, Dorothee; Vetter, Céline; Oberlinner, Christoph; Wegener, Sven; Roenneberg, Till

    2016-01-01

    Sleep debt--together with circadian misalignment--is considered a central factor for adverse health outcomes associated with shift work. Here, we describe in detail sleep-wake behavior in a fast-forward rotating 12-h shift schedule, which involves at least 24 hours off after each shift and thus allows examining the role of immediate recovery after shift-specific sleep debt. Thirty-five participants at two chemical plants in Germany were chronotyped using the Munich ChronoType Questionnaire for Shift-Workers (MCTQ(Shift)) and wore actimeters throughout the two-week study period. From these actimetry recordings, we computed sleep and nap duration, social jetlag (a measure of circadian misalignment), and the daily timing of activity and sleep (center of gravity and mid-sleep, respectively). We observed that the long off-work periods between each shift create a fast alternation between shortened (mean ± standard deviation, 5h 17min ± 56min) and extended (8h 25min ± 72min) sleep episodes resulting in immanent reductions of sleep debt. Additionally, extensive napping of early chronotypes (up to 3 hours before the night shift) statistically compensated short sleep durations after the night shift. Partial rank correlations showed chronotype-dependent patterns of sleep and activity that were similar to those previously described in 8-h schedules; however, sleep before the day shift did not differ between chronotypes. Our findings indicate that schedules preventing a build-up of chronic sleep debt may reduce detrimental effects of shift work irrespective of shift duration. Prospective studies are needed to further elucidate the relationship between sleep, the circadian system, and health and safety hazards.

  11. Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation.

    PubMed

    Murthy, Aditya; Ray, Supriya; Shorter, Stephanie M; Schall, Jeffrey D; Thompson, Kirk G

    2009-05-01

    The dynamics of visual selection and saccade preparation by the frontal eye field was investigated in macaque monkeys performing a search-step task combining the classic double-step saccade task with visual search. Reward was earned for producing a saccade to a color singleton. On random trials the target and one distractor swapped locations before the saccade and monkeys were rewarded for shifting gaze to the new singleton location. A race model accounts for the probabilities and latencies of saccades to the initial and final singleton locations and provides a measure of the duration of a covert compensation process-target-step reaction time. When the target stepped out of a movement field, noncompensated saccades to the original location were produced when movement-related activity grew rapidly to a threshold. Compensated saccades to the final location were produced when the growth of the original movement-related activity was interrupted within target-step reaction time and was replaced by activation of other neurons producing the compensated saccade. When the target stepped into a receptive field, visual neurons selected the new target location regardless of the monkeys' response. When the target stepped out of a receptive field most visual neurons maintained the representation of the original target location, but a minority of visual neurons showed reduced activity. Chronometric analyses of the neural responses to the target step revealed that the modulation of visually responsive neurons and movement-related neurons occurred early enough to shift attention and saccade preparation from the old to the new target location. These findings indicate that visual activity in the frontal eye field signals the location of targets for orienting, whereas movement-related activity instantiates saccade preparation.

  12. Assessing the Minimum Number of Synchronization Triggers Necessary for Temporal Variance Compensation in Commercial Electroencephalography (EEG) Systems

    DTIC Science & Technology

    2012-09-01

    by the ARL Translational Neuroscience Branch. It covers the Emotiv EPOC,6 Advanced Brain Monitoring (ABM) B-Alert X10,7 Quasar 8 DSI helmet-based...Systems; ARL-TR-5945; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2012 4 Ibid. 5 Ibid. 6 EPOC is a trademark of Emotiv . 7 B

  13. Modeling of inter-neuronal coupling medium and its impact on neuronal synchronization

    PubMed Central

    Iqbal, Muhammad; Hong, Keum-Shik

    2017-01-01

    In this paper, modeling of the coupling medium between two neurons, the effects of the model parameters on the synchronization of those neurons, and compensation of coupling strength deficiency in synchronization are studied. Our study exploits the inter-neuronal coupling medium and investigates its intrinsic properties in order to get insight into neuronal-information transmittance and, there from, brain-information processing. A novel electrical model of the coupling medium that represents a well-known RLC circuit attributable to the coupling medium’s intrinsic resistive, inductive, and capacitive properties is derived. Surprisingly, the integration of such properties reveals the existence of a natural three-term control strategy, referred to in the literature as the proportional integral derivative (PID) controller, which can be responsible for synchronization between two neurons. Consequently, brain-information processing can rely on a large number of PID controllers based on the coupling medium properties responsible for the coherent behavior of neurons in a neural network. Herein, the effects of the coupling model (or natural PID controller) parameters are studied and, further, a supervisory mechanism is proposed that follows a learning and adaptation policy based on the particle swarm optimization algorithm for compensation of the coupling strength deficiency. PMID:28486505

  14. Monetary reward suppresses anterior insula activity during social pain.

    PubMed

    Cristofori, Irene; Harquel, Sylvain; Isnard, Jean; Mauguière, François; Sirigu, Angela

    2015-12-01

    Social pain after exclusion by others activates brain regions also involved in physical pain. Here we evaluated whether monetary reward could compensate for the negative feeling of social pain in the brain. To address this question we used the unique technique of intracranial electroencephalography in subjects with drug resistant epilepsy. Specifically, we recorded theta activity from intracranial electrodes implanted in the insular cortex while subjects experienced conditions of social inclusion and exclusion associated with monetary gain and loss. Our study confirmed that theta rhythm in the insular cortex is the neural signature of social exclusion. We found that while monetary gain suppresses the effect of social pain in the anterior insula, there is no such effect in the posterior insula. These results imply that the anterior insula can use secondary reward signals to compensate for the negative feeling of social pain. Hence, here we propose that the anterior insula plays a pivotal role in integrating contingencies to update social pain feelings. Finally, the possibility to modulate the theta rhythm through the reward system might open new avenues of research for treating pathologies related to social exclusion. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease.

    PubMed

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre

    2016-03-01

    Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. © 2016 New York Academy of Sciences.

  16. Cross-entropy optimization for neuromodulation.

    PubMed

    Brar, Harleen K; Yunpeng Pan; Mahmoudi, Babak; Theodorou, Evangelos A

    2016-08-01

    This study presents a reinforcement learning approach for the optimization of the proportional-integral gains of the feedback controller represented in a computational model of epilepsy. The chaotic oscillator model provides a feedback control systems view of the dynamics of an epileptic brain with an internal feedback controller representative of the natural seizure suppression mechanism within the brain circuitry. Normal and pathological brain activity is simulated in this model by adjusting the feedback gain values of the internal controller. With insufficient gains, the internal controller cannot provide enough feedback to the brain dynamics causing an increase in correlation between different brain sites. This increase in synchronization results in the destabilization of the brain dynamics, which is representative of an epileptic seizure. To provide compensation for an insufficient internal controller an external controller is designed using proportional-integral feedback control strategy. A cross-entropy optimization algorithm is applied to the chaotic oscillator network model to learn the optimal feedback gains for the external controller instead of hand-tuning the gains to provide sufficient control to the pathological brain and prevent seizure generation. The correlation between the dynamics of neural activity within different brain sites is calculated for experimental data to show similar dynamics of epileptic neural activity as simulated by the network of chaotic oscillators.

  17. Supersampling multiframe blind deconvolution resolution enhancement of adaptive-optics-compensated imagery of LEO satellites

    NASA Astrophysics Data System (ADS)

    Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.

    2000-10-01

    A post-processing methodology for reconstructing undersampled image sequences with randomly varying blur is described which can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive optics compensated imagery taken by the Starfire Optical Range 3.5 meter telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques which includes a representation of spatial sampling by the focal plane array elements in the forward stochastic model of the imaging system. This generalization enables the random shifts and shape of the adaptive compensated PSF to be used to partially eliminate the aliasing effects associated with sub- Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss which occurs when imaging in wide FOV modes.

  18. Supersampling multiframe blind deconvolution resolution enhancement of adaptive optics compensated imagery of low earth orbit satellites

    NASA Astrophysics Data System (ADS)

    Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.

    2002-09-01

    We describe a postprocessing methodology for reconstructing undersampled image sequences with randomly varying blur that can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive-optics-(AO)-compensated imagery taken by the Starfire Optical Range 3.5-m telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground-based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques that include a representation of spatial sampling by the focal plane array elements based on a forward stochastic model. This generalization enables the random shifts and shape of the AO- compensated point spread function (PSF) to be used to partially eliminate the aliasing effects associated with sub-Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss that occurs when imaging in wide- field-of-view (FOV) modes.

  19. Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ma, Y. J.; Zhang, Y. G.; Gu, Y.; Xi, S. P.; Chen, X. Y.; Liang, Baolai; Juang, Bor-Chau; Huffaker, Diana L.; Du, B.; Shao, X. M.; Fang, J. X.

    2017-07-01

    We report structural properties as well as electrical and optical behaviors of beryllium (Be)-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm-3, and for Be densities below 9.5×1017 cm-3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm-3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.

  20. Over-hydration detection in brain by magnetic induction spectroscopy

    NASA Astrophysics Data System (ADS)

    González, César A.; Pérez, María; Hevia, Nidiyare; Arámbula, Fernándo; Flores, Omar; Aguilar, Eliot; Hinojosa, Ivonne; Joskowicz, Leo; Rubinsky, Boris

    2010-04-01

    Detection and continuous monitoring of edema in the brain in early stages is useful for assessment of medical condition and treatment. We have proposed a solution in which the bulk measurements of the tissue electrical properties to detect edema or in general accumulation of fluids are made through measurement of the magnetic induction phase shift between applied and measured currents at different frequencies (Magnetic Induction Spectroscopy; MIS). Magnetic Resonant Imaging (MRI) has been characterized because its capability to detect different levels of brain tissue hydration by differences in diffusion-weighted (DW) sequences and it's involve apparent diffusion coefficient (ADC). The objective of this study was to explore the viability to use measurements of the bulk tissue electrical properties to detect edema or in general accumulation of fluids by MIS. We have induced a transitory and generalized tissue over-hydration condition in ten volunteers ingesting 1.5 to 2 liters of water in ten minutes. Basal and over-hydration conditions were monitored by MIS and MRI. Changes in the inductive phase shift at certain frequencies were consistent with changes in the brain tissue hydration level observed by DW-ADC. The results suggest that MIS has the potential to detect pathologies associated to changes in the content of fluids in brain tissue such as edema and hematomas.

  1. Influence of chronobiology on the nanoparticle-mediated drug uptake into the brain.

    PubMed

    Kreuter, Jörg

    2015-02-03

    Little attention so-far has been paid to the influence of chronobiology on the processes of nanoparticle uptake and transport into the brain, even though this transport appears to be chronobiologically controlled to a significant degree. Nanoparticles with specific surface properties enable the transport across the blood-brain barrier of many drugs that normally cannot cross this barrier. A clear dependence of the central antinociceptive (analgesic) effects of a nanoparticle-bound model drug, i.e., the hexapeptide dalargin, on the time of day was observable after intravenous injection in mice. In addition to the strongly enhanced antinociceptive effect due to the binding to the nanoparticles, the minima and maxima of the pain reaction with the nanoparticle-bound drug were shifted by almost half a day compared to the normal circadian nociception: The maximum in the pain reaction after i.v. injection of the nanoparticle-bound dalargin occurred during the later rest phase of the animals whereas the normal pain reaction and that of a dalargin solution was highest during the active phase of the mice in the night. This important shift could be caused by an enhanced endo- and exocytotic particulates transport activity of the brain capillary endothelial cells or within the brain during the rest phase.

  2. Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin.

    PubMed

    Kast, Richard E; Hill, Quentin A; Wion, Didier; Mellstedt, Håkan; Focosi, Daniele; Karpel-Massler, Georg; Heiland, Tim; Halatsch, Marc-Eric

    2017-05-01

    Increased ratio of circulating neutrophils to lymphocytes is a common finding in glioblastoma and other cancers. Data reviewed establish that any damage to brain tissue tends to cause an increase in G-CSF and/or GM-CSF (G(M)-CSF) synthesized by the brain. Glioblastoma cells themselves also synthesize G(M)-CSF. G(M)-CSF synthesized by brain due to damage by a growing tumor and by the tumor itself stimulates bone marrow to shift hematopoiesis toward granulocytic lineages away from lymphocytic lineages. This shift is immunosuppressive and generates the relative lymphopenia characteristic of glioblastoma. Any trauma to brain-be it blunt, sharp, ischemic, infectious, cytotoxic, tumor encroachment, or radiation-increases brain synthesis of G(M)-CSF. G(M)-CSF are growth and motility enhancing factors for glioblastomas. High levels of G(M)-CSF contribute to the characteristic neutrophilia and lymphopenia of glioblastoma. Hematopoietic bone marrow becomes entrained with, directed by, and contributes to glioblastoma pathology. The antibiotic dapsone, the lipid-lowering agent fenofibrate, and the antiviral drug ribavirin are Food and Drug Administration- and European Medicines Agency-approved medicines that have potential to lower synthesis or effects of G(M)-CSF and thus deprive a glioblastoma of some of the growth promoting contributions of bone marrow and G(M)-CSF.

  3. The Impact of Brain-Based Instruction on Reading Achievement in a Second-Grade Classroom

    ERIC Educational Resources Information Center

    McNamee, Merideth M.

    2011-01-01

    School accountability and high-stakes testing often shift classroom focus from the use of engaging learning activities that promote critical thinking and creativity to simple test preparation practices. Using brain research as a guide, educators may be able to improve test scores, while still providing a balanced education that promotes critical…

  4. Tracking Iron in Multiple Sclerosis: A Combined Imaging and Histopathological Study at 7 Tesla

    ERIC Educational Resources Information Center

    Bagnato, Francesca; Hametner, Simon; Yao, Bing; van Gelderen, Peter; Merkle, Hellmut; Cantor, Fredric K.; Lassmann, Hans; Duyn, Jeff H.

    2011-01-01

    Previous authors have shown that the transverse relaxivity R[subscript 2][superscript *] and frequency shifts that characterize gradient echo signal decay in magnetic resonance imaging are closely associated with the distribution of iron and myelin in the brain's white matter. In multiple sclerosis, iron accumulation in brain tissue may reflect a…

  5. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator.

    PubMed

    Voipio, Juha; Tallgren, Pekka; Heinonen, Erkki; Vanhatalo, Sampsa; Kaila, Kai

    2003-04-01

    Slow shifts in the human scalp-recorded EEG, including those related to changes in brain CO(2) levels, have been generally assumed to result from changes in the level of tonic excitation of apical dendrites of cortical pyramidal neurons. We readdressed this issue using DC-EEG shifts elicited in healthy adult subjects by hypo- or hypercapnia. A 3-min period of hyperventilation resulted in a prompt negative shift with a rate of up to 10 microV/s at the vertex (Cz) and an extremely steep dependence (up to 100 microV/mmHg) on the end-tidal Pco(2). This shift had a maximum of up to -2 mV at Cz versus the temporal derivations (T3/T4). Hyperventilation-like breathing of 5% CO(2)-95% O(2), which does not lead to a significant hypocapnia, resulted in a near-complete block of the negative DC shift at Cz. Hypoventilation, or breathing 5% CO(2) in air at normal respiratory rate, induced a positive shift. The high amplitude of the voltage gradients on the scalp induced by hyperventilation is not consistent with a neuronal origin. Instead, the present data suggest that they are generated by extracortical volume currents driven by a Pco(2)-dependent potential difference across epithelia separating the cerebrospinal fluid and blood. Since changes in respiratory patterns and, hence, in the level of brain Pco(2), are likely to occur under a number of experimental conditions in which slow EEG responses have been reported (e.g., attention shifts, preparatory states, epileptic seizures, and hypoxic episodes), the present results call for a thorough reexamination of the mechanisms underlying scalp-recorded DC-EEG responses.

  6. Explaining brain size variation: from social to cultural brain.

    PubMed

    van Schaik, Carel P; Isler, Karin; Burkart, Judith M

    2012-05-01

    Although the social brain hypothesis has found near-universal acceptance as the best explanation for the evolution of extensive variation in brain size among mammals, it faces two problems. First, it cannot account for grade shifts, where species or complete lineages have a very different brain size than expected based on their social organization. Second, it cannot account for the observation that species with high socio-cognitive abilities also excel in general cognition. These problems may be related. For birds and mammals, we propose to integrate the social brain hypothesis into a broader framework we call cultural intelligence, which stresses the importance of the high costs of brain tissue, general behavioral flexibility and the role of social learning in acquiring cognitive skills. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. A study of the red-shift of a neutral donor bound exciton in GaN nanorods by hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Byung-Guon; Lee, Sang-Tae; Reddeppa, Maddaka; Kim, Moon-Deock; Oh, Jae-Eung; Lee, Sang-Kwon

    2017-09-01

    In this paper we account for the physics behind the exciton peak shift in GaN nanorods (NRs) due to hydrogenation. GaN NRs were selectively grown on a patterned Ti/Si(111) substrate using plasma-assisted molecular beam epitaxy, and the effect of hydrogenation on their optical properties was investigated in detail using low-temperature photoluminescence measurements. Due to hydrogenation, the emissions corresponding to the donor-acceptor pair and yellow luminescence in GaN NRs were strongly suppressed, while the emission corresponding to the neutral to donor bound exciton (D0X) exhibited red-shift. Thermal annealing of hydrogenated GaN NRs demonstrated the recovery of the D0X and deep level emission. To determine the nature of the D0X peak shift due to hydrogenation, comparative studies were carried out on various diameters of GaN NRs, which can be controlled by different growth conditions and wet-etching times. Our experimental results reveal that the D0X shift depends on the diameter of the GaN NRs after hydrogenation. The results clearly demonstrate that the hydrogenation leads to band bending of GaN NRs as compensated by hydrogen ions, which causes a red-shift in the D0X emission.

  8. A study of the red-shift of a neutral donor bound exciton in GaN nanorods by hydrogenation.

    PubMed

    Park, Byung-Guon; Lee, Sang-Tae; Reddeppa, Maddaka; Kim, Moon-Deock; Oh, Jae-Eung; Lee, Sang-Kwon

    2017-09-08

    In this paper we account for the physics behind the exciton peak shift in GaN nanorods (NRs) due to hydrogenation. GaN NRs were selectively grown on a patterned Ti/Si(111) substrate using plasma-assisted molecular beam epitaxy, and the effect of hydrogenation on their optical properties was investigated in detail using low-temperature photoluminescence measurements. Due to hydrogenation, the emissions corresponding to the donor-acceptor pair and yellow luminescence in GaN NRs were strongly suppressed, while the emission corresponding to the neutral to donor bound exciton (D 0 X) exhibited red-shift. Thermal annealing of hydrogenated GaN NRs demonstrated the recovery of the D 0 X and deep level emission. To determine the nature of the D 0 X peak shift due to hydrogenation, comparative studies were carried out on various diameters of GaN NRs, which can be controlled by different growth conditions and wet-etching times. Our experimental results reveal that the D 0 X shift depends on the diameter of the GaN NRs after hydrogenation. The results clearly demonstrate that the hydrogenation leads to band bending of GaN NRs as compensated by hydrogen ions, which causes a red-shift in the D 0 X emission.

  9. Can varying the number of teams in a shift schedule constitute a preventive strategy?

    PubMed

    Jeppesen, Hans Jeppe; Kleiven, Magnar; Bøggild, Henrik

    2004-12-01

    The study examines the implications for shiftworkers of applying different numbers of teams in the organization of shiftwork. The participating operators came from five different companies applying continuous shift rotation systems. The companies shared the same product organization and a common corporate culture belonging to the same multinational company. Each company had a shift system consisting of four, five or six teams, with the proportion of shifts outside day work decreasing as the number of teams increased. Questionnaire and documentary data were used as data sources. Operators in systems with additional teams had more daywork but also more irregular working hours due to both overtime and schedule changes. Operators using six teams used fewer social compensation strategies. Operators in four teams were most satisfied with their work hours. Satisfaction with the time available for various social activities outside work varied inconsistently between the groups. In rotating systems the application of more teams reduces the number of shifts outside day work. This apparent improvement for shiftworkers was counteracted by a concomitant irregularity produced by greater organizational requirements for flexibility. The balance of this interaction was found to have a critical impact on employees.

  10. Vocal emotion of humanoid robots: a study from brain mechanism.

    PubMed

    Wang, Youhui; Hu, Xiaohua; Dai, Weihui; Zhou, Jie; Kuo, Taitzong

    2014-01-01

    Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of AI robots to facilitate the communication between man-machines and human beings, especially for the vocal emotion in interactive system of future humanoid robots. This paper explored the brain mechanism of vocal emotion by studying previous researches and developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human beings.

  11. Range determination for scannerless imaging

    DOEpatents

    Muguira, Maritza Rosa; Sackos, John Theodore; Bradley, Bart Davis; Nellums, Robert

    2000-01-01

    A new method of operating a scannerless range imaging system (e.g., a scannerless laser radar) has been developed. This method is designed to compensate for nonlinear effects which appear in many real-world components. The system operates by determining the phase shift of the laser modulation, which is a physical quantity related physically to the path length between the laser source and the detector, for each pixel of an image.

  12. Assessing effects of mitigation strategies for global climate change with an intertemporal model of the U.S. forest and agriculture sectors.

    Treesearch

    Ralph J. Alig; Darius M. Adams; Bruce McCarl; J.M. Callaway; Steven Winnett

    1997-01-01

    A model of product and land markets in U.S. forest and agricultural sectors is used to examine the private forest management, land use, and market implications of carbon sequestration policies implemented in a "least social cost" fashion. Results suggest: policy-induced land use changes may generate compensating land use shifts through markets: land use...

  13. Design of a fast echo matching algorithm to reduce crosstalk with Doppler shifts in ultrasonic ranging

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Guo, Rui; Wu, Jun-an

    2017-02-01

    Crosstalk is a main factor for wrong distance measurement by ultrasonic sensors, and this problem becomes more difficult to deal with under Doppler effects. In this paper, crosstalk reduction with Doppler shifts on small platforms is focused on, and a fast echo matching algorithm (FEMA) is proposed on the basis of chaotic sequences and pulse coding technology, then verified through applying it to match practical echoes. Finally, we introduce how to select both better mapping methods for chaotic sequences, and algorithm parameters for higher achievable maximum of cross-correlation peaks. The results indicate the following: logistic mapping is preferred to generate good chaotic sequences, with high autocorrelation even when the length is very limited; FEMA can not only match echoes and calculate distance accurately with an error degree mostly below 5%, but also generates nearly the same calculation cost level for static or kinematic ranging, much lower than that by direct Doppler compensation (DDC) with the same frequency compensation step; The sensitivity to threshold value selection and performance of FEMA depend significantly on the achievable maximum of cross-correlation peaks, and a higher peak is preferred, which can be considered as a criterion for algorithm parameter optimization under practical conditions.

  14. Full path compensation laser feedback interferometry for remote sensing with recovered nanometer resolutions

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Tan, Yidong; Zhang, Shulian

    2018-03-01

    The accuracy of the existing laser feedback interferometry for measuring the remote target is limited to several microns due to environmental disturbances. A novel approach is presented in this paper based on the double-beam frequency-shift feedback of the laser, which can completely eliminate the dead path errors and measure the displacement or vibration with accuracy at nanometer scale even at a far measurement distance. The two beams emitted from one Nd:YVO4 crystal are incident on the measurement target and its adjacent reference surface, respectively. The reference surface could be taken from the nearby stationary object, without the need to put a reference mirror. The feedback paths and shift frequencies of the two beams are the same, so the air disturbances and the thermal effects in the way could be fully compensated. Under common room conditions, the displacement of a steel block at a distance of 10 m is measured, which proved that the system's stability is ±12 nm in 100 s and ±50 nm in 1000 s, the short-term resolution is better than 3 nm, and the linearity within the 300 mm range is 5 × 10-6 and within the 100 μm range is 1 × 10-4.

  15. An Approach for the Visualization of Temperature Distribution in Tissues According to Changes in Ultrasonic Backscattered Energy

    PubMed Central

    Li, Qiang; Liu, Hao-Li; Chen, Wen-Shiang

    2013-01-01

    Previous studies developed ultrasound temperature-imaging methods based on changes in backscattered energy (CBE) to monitor variations in temperature during hyperthermia. In conventional CBE imaging, tracking and compensation of the echo shift due to temperature increase need to be done. Moreover, the CBE image does not enable visualization of the temperature distribution in tissues during nonuniform heating, which limits its clinical application in guidance of tissue ablation treatment. In this study, we investigated a CBE imaging method based on the sliding window technique and the polynomial approximation of the integrated CBE (ICBEpa image) to overcome the difficulties of conventional CBE imaging. We conducted experiments with tissue samples of pork tenderloin ablated by microwave irradiation to validate the feasibility of the proposed method. During ablation, the raw backscattered signals were acquired using an ultrasound scanner for B-mode and ICBEpa imaging. The experimental results showed that the proposed ICBEpa image can visualize the temperature distribution in a tissue with a very good contrast. Moreover, tracking and compensation of the echo shift were not necessary when using the ICBEpa image to visualize the temperature profile. The experimental findings suggested that the ICBEpa image, a new CBE imaging method, has a great potential in CBE-based imaging of hyperthermia and other thermal therapies. PMID:24260041

  16. Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.

    PubMed

    Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping

    2018-04-27

    Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

  17. Half radiofrequency pulse excitation with a dedicated prescan to correct eddy current effect and gradient delay.

    PubMed

    Abe, Takayuki

    2013-03-01

    To improve the slice profile of the half radiofrequency (RF) pulse excitation and image quality of ultrashort echo time (UTE) imaging by compensating for an eddy current effect. The dedicated prescan has been developed to measure the phase accumulation due to eddy currents induced by the slice-selective gradient. The prescan measures two one-dimensional excitation k-space profiles, which can be acquired with a readout gradient in the slice-selection direction by changing the polarity of the slice-selective gradient. The time shifts due to the phase accumulation in the excitation k-space were calculated. The time shift compensated for the start time of the slice-selective gradient. The total prescan time was 6-15 s. The slice profile and the UTE image with the half RF pulse excitation were acquired to evaluate the slice selectivity and the image quality. Improved slice selectivity was obtained. The simple method proposed in this paper can eliminate eddy current effect. Good UTE images were obtained. The slice profile of the half RF pulse excitation and the image quality of UTE images have been improved by using a dedicated prescan. This method has a possibility that can improve the image quality of a clinical UTE imaging.

  18. Effect of the first night shift period on sleep in young nurse students.

    PubMed

    Fietze, Ingo; Knoop, Karsten; Glos, Martin; Holzhausen, Martin; Peter, Jan Giso; Penzel, Thomas

    2009-12-01

    In young hospital nurses being exposed to a night shift work schedule for the first time in their occupational life, sleep quality is investigated quantitatively. A main sleep period and supplementary sleep periods were defined and analyzed to investigate sleep behavior and quality. A total of 30 young nurses (26 women, 4 men), mean age 20.2 +/- 2.1 years participated. A 3 week nursing school period was followed by a 3 week work period with a 3-5 night shift sub-period and recovery days. Sleep-wake behavior was assessed with an actigraph, sleep diaries, Epworth sleepiness scale (ESS), and quality of life was assessed with a standard questionnaire (SF-36). Comparing the school period with the work shift period when excluding recovery days after night shift period significant increase of total sleep time within 24 h was found during the work days (ANOVA P < 0.05). During the night shift sub-period, there was just a small decline of the main sleep period at day (n.s.) which was not compensated by supplementary sleep episodes. The supplementary sleep during work day varied between 11 min (school period) and 18 min after recovery days from night shift (n.s.). Young healthy nurses tolerate the first night shift exposure very well, according to objective and subjective parameters related to quality of sleep. An increased sleep need during work days lead to longer total sleep time, but do not lead to longer supplementary sleep episodes. Young nurses tolerate the first rotating shift period and the first night shift period very well.

  19. Normative brain size variation and brain shape diversity in humans.

    PubMed

    Reardon, P K; Seidlitz, Jakob; Vandekar, Simon; Liu, Siyuan; Patel, Raihaan; Park, Min Tae M; Alexander-Bloch, Aaron; Clasen, Liv S; Blumenthal, Jonathan D; Lalonde, Francois M; Giedd, Jay N; Gur, Ruben C; Gur, Raquel E; Lerch, Jason P; Chakravarty, M Mallar; Satterthwaite, Theodore D; Shinohara, Russell T; Raznahan, Armin

    2018-06-15

    Brain size variation over primate evolution and human development is associated with shifts in the proportions of different brain regions. Individual brain size can vary almost twofold among typically developing humans, but the consequences of this for brain organization remain poorly understood. Using in vivo neuroimaging data from more than 3000 individuals, we find that larger human brains show greater areal expansion in distributed frontoparietal cortical networks and related subcortical regions than in limbic, sensory, and motor systems. This areal redistribution recapitulates cortical remodeling across evolution, manifests by early childhood in humans, and is linked to multiple markers of heightened metabolic cost and neuronal connectivity. Thus, human brain shape is systematically coupled to naturally occurring variations in brain size through a scaling map that integrates spatiotemporally diverse aspects of neurobiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Return-to-work challenges following a work-related mild TBI: The injured worker perspective.

    PubMed

    Mansfield, Elizabeth; Stergiou-Kita, Mary; Cassidy, John David; Bayley, Mark; Mantis, Steve; Kristman, Vicki; Kirsh, Bonnie; Gomez, Manuel; Jeschke, Mark G; Vartanian, Oshin; Moody, Joel; Colantonio, Angela

    2015-01-01

    To explore how individuals with work-related mild traumatic brain injury (wrMTBI) experience return-to-work (RTW) processes when returning to the workplace where the injury occurred. RTW experiences were explored using in-depth interviews and an inductive analytic approach. Qualitative analysis guided by the research question moved through phases of line-by-line and thematic coding through which categories and the interaction between categories emerged. Twelve workers diagnosed with a wrMTBI reported on their RTW experiences following wrMTBIs that occurred 3-5 years prior to the time of the interview. Participants perceived employer and workers' compensation factors as profoundly influencing their RTW experiences. Participants consistently reported that employers and workers' compensation representatives had an inadequate understanding of wrMTBI sequelae. Six of 12 participants were re-injured following their wrMTBI, with three of these injuries occurring at work. Employers, co-workers and workers' compensation representatives should be aware of wrMTBI sequelae so injured workers can receive appropriate supports and both stigmatization and re-injury can be mitigated. Greater attention to the structural and social elements of workplace and compensation environments could inform strategies to break down barriers to successful return-to-work following a wrMTBI.

Top