Atighechi, Saeid; Zolfaghari, Aliasghar; Baradaranfar, Mohammadhossein; Dadgarnia, Mohammadhossein
2013-01-01
Olfactory dysfunction has an incidence of 5-10% after head injury. Several objective and subjective tests had been proposed. Recent studies showed that brain single photon emission computed tomography (SPECT) and brain magnetic resonance imaging (MRI) have good diagnostic value in this era in which the most common sites of involvement were olfactory bulb and olfactory nerve in MRI and frontal lobe in SPECT. This study aimed to estimate the sensitivity and specificity of brain MRI and brain SPECT in the diagnosis of traumatic hyposmia and anosmia. From February 2009 to March 2011, 63 patients with head injury and smell complaint were selected for this study. Using an identification test and a threshold smell test, 28 were anosmic and 27 had hyposmia and the remaining 8 were normosmic. All of them underwent brain MRI and SPECT. The sensitivity of SPECT was 81.5 and 85.7% in hyposmia and anosmia, respectively. Its specificity was 87.5% in anosmia and 87.7% in anosmia. MRI sensitivity was 66.7% in hyposmia but 82.1% in anosmia. Its specificity was 85.7% in anosmia and 87.7% in anosmia. If MRI and SPECT were considered together, the sensitivity was 92.3% in hyposmia and 92% in anosmia, but the specificity was 87% in both cases. According to our study, both brain MRI and SPECT have high sensitivity and specificity in the diagnosis of traumatic anosmia, although brain SPECT is slightly superior to MRI. If the two techniques are applied together, the accuracy will be increased.
Nedd, K; Sfakianakis, G; Ganz, W; Uricchio, B; Vernberg, D; Villanueva, P; Jabir, A M; Bartlett, J; Keena, J
1993-01-01
Single photon emission computed tomography (SPECT) with Technetium-99m hexamethyl propylenamine oxime (Tc-99m-HMPAO) was used in 20 patients with mild to moderate traumatic brain injury (TBI) to evaluate the effects of brain trauma on regional cerebral blood flow (rCBF). SPECT scan was compared with CT scan in 16 patients. SPECT showed intraparenchymal differences in rCBF more often than lesions diagnosed with CT scans (87.5% vs. 37.5%). In five of six patients with lesions in both modalities, the area of involvement was relatively larger on SPECT scans than on CT scans. Contrecoup changes were seen in five patients on SPECT alone, two patients with CT alone and one patient had contrecoup lesions on CT and SPECT. Of the eight patients (50%) with skull fractures, seven (43.7%) had rCBF findings on SPECT scan and five (31.3%) demonstrated decrease in rCBF in brain underlying the fracture. All these patients with fractures had normal brain on CT scans. Conversely, extra-axial lesions and fractures evident on CT did not visualize on SPECT, but SPECT demonstrated associated changes in rCBF. Although there is still lack of clinical and pathological correlation, SPECT appears to be a promising method for a more sensitive evaluation of axial lesions in patients with mild to moderate TBI.
Audenaert, Kurt; Jansen, Hugo M L; Otte, Andreas; Peremans, Kathelijne; Vervaet, Myriam; Crombez, Roger; de Ridder, Leo; van Heeringen, Cees; Thirot, Joel; Dierckx, Rudi; Korf, Jaap
2003-10-01
Traumatic brain injury (TBI) is usually assessed with the Glasgow Coma Scale (GCS), CT and EEG. TBI can result from either the primary mechanical impact or secondary (ischemic) brain damage, in which calcium (Ca) plays a pivotal role. This study was undertaken to compare the applicability of SPECT using 57Co as a Ca-tracer in patients with mild traumatic brain injury. 8 patients with mild TBI (GCS 15) were clinically examined and studied with EEG, neuropsychological testing (NPT) and SPECT within 2 days post-TBI. After i.v.-administration of 37 MBq (1 mCi) 57Co (effective radiation dose 0.34 mSv x MBq(-1); 1.24 rem x mCi(-1); physical half-life 270 days, biological half-life 37.6 h), single-headed SPECT (12 h pi) was performed, consecutively followed by standard 925 MBq (25 mCi) Tc-99m HMPAO SPECT. In 6 of the 8 patients, baseline NPT and SPECT showed focal abnormalities in the affected frontal and temporal brain regions, which were in good topographical accordance. CT and EEG did not detect (structural) lesions in any of these cases. Single-headed 57Co-SPECT is able to show the site and extent of brain damage in patients with mild TBI, even in the absence of structural lesions. It may confirm and localize NPT findings. The predictive value of 57Co-SPECT should be assessed in larger patient series.
Atighechi, Saeid; Salari, Hadi; Baradarantar, Mohammad Hossein; Jafari, Rozita; Karimi, Ghasem; Mirjali, Mehdi
2009-01-01
Loss of smell is a problem that can occur in up to 30% of patients with head trauma. The olfactory function investigation methods so far in use have mostly relied on subjective responses given by patients. Recently, some studies have used magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) to evaluate patients with post-traumatic anosmia. The present study seeks to detect post-traumatic anosmia and the areas in the brain that are related to olfactory impairment by using SPECT and MRI as imaging techniques. The study was conducted on 21 patients suffering from head injury and consequently anosmia as defined by an olfactory identification test. Two control groups (traumatic normosmic and nontraumatic healthy individuals) were selected. Brain MRI, qualitative and semiquantitative SPECT with 99mtc-ethyl-cysteinate-dimer were taken from all the patients. Then the brain SPECT and MRI were compared with each other. Semi-quantitative assessment of the brain perfusion SPECT revealed frontal, left parietal, and left temporal hypoperfusion as compared with the two control groups. Eighty-five percent of the anosmic patients had abnormal brain MRI. Regarding the MRI, the main abnormality proved to be in the anterior inferior region of the frontal lobes and olfactory bulbs. The findings of this study suggest that damage to the frontal lobes and olfactory bulbs as shown in the brain MRI and hypoperfusion in the frontal, left parietal, and left temporal lobes in the semiquantitative SPECT corresponds to post-traumatic anosmia. Further neurophysiological and imaging studies are definitely needed to set the idea completely.
Thornton, John F; Schneider, Howard; McLean, Mary K; van Lierop, Muriel J; Tarzwell, Robert
2014-01-01
Brain single-photon emission computed tomography (SPECT) scans indirectly show functional activity via measurement of regional cerebral blood flow. Thirty patients at a community-based psychiatric clinic underwent brain SPECT scans. Changes in scoring of before-treatment and after-treatment scans correlated well with changes in patient Global Assessment of Functioning (GAF) scores before treatment and after treatment. Patients were retrospectively matched with controls with similar diagnoses and pretreatment GAF scores, and those who underwent SPECT-guided treatment improved significantly more than the control patients.
Abiko, Kagari; Ikoma, Katsunori; Shiga, Tohru; Katoh, Chietsugu; Hirata, Kenji; Kuge, Yuji; Kobayashi, Kentaro; Tamaki, Nagara
2017-12-01
Traumatic brain injury (TBI) causes brain dysfunction in many patients. Using C-11 flumazenil (FMZ) positron emission tomography (PET), we have detected and reported the loss of neuronal integrity, leading to brain dysfunction in TBI patients. Similarly to FMZ PET, I-123 iomazenil (IMZ) single photon emission computed tomography (SPECT) is widely used to determine the distribution of the benzodiazepine receptor (BZR) in the brain cortex. The purpose of this study is to examine whether IMZ SPECT is as useful as FMZ PET for evaluating the loss of neuronal integrity in TBI patients. The subjects of this study were seven patients who suffered from neurobehavioral disability. They underwent IMZ SPECT and FMZ PET. Nondisplaceable binding potential (BP ND ) was calculated from FMZ PET images. The uptake of IMZ was evaluated on the basis of lesion-to-pons ratio (LPR). The locations of low uptake levels were visually evaluated both in IMZ SPECT and FMZ PET images. We compared FMZ BP ND and (LPR-1) of IMZ SPECT. In the visual assessment, FMZ BP ND decreased in 11 regions. In IMZ SPECT, low uptake levels were observed in eight of the 11 regions. The rate of concordance between FMZ PET and IMZ SPECT was 72.7%. The mean values IMZ (LPR-1) (1.95 ± 1.01) was significantly lower than that of FMZ BP ND (2.95 ± 0.80 mL/mL). There was good correlation between FMZ BP ND and IMZ (LPR-1) (r = 0.80). IMZ SPECT findings were almost the same as FMZ PET findings in TBI patients. The results indicated that IMZ SPECT is useful for evaluating the loss of neuronal integrity. Because IMZ SPECT can be performed in various facilities, IMZ SPECT may become widely adopted for evaluating the loss of neuronal integrity.
Brain single photon emission computed tomography in neonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denays, R.; Van Pachterbeke, T.; Tondeur, M.
1989-08-01
This study was designed to rate the clinical value of ({sup 123}I)iodoamphetamine (IMP) or ({sup 99m}Tc) hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans.more » In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that ({sup 123}I)IMP or ({sup 99m}Tc)HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit.« less
Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel
2016-04-01
Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.
Ichise, M; Chung, D G; Wang, P; Wortzman, G; Gray, B G; Franks, W
1994-02-01
The purposes of this study were: (1) to compare 99mTc-hexamethylpropyleneamineoxime (HMPAO) SPECT with CT and MRI in chronic traumatic brain injury (TBI) patients and (2) to correlate both functional and structural neuroimaging measurements of brain damage with neuropsychological (NP) performance. Twenty-nine patients (minor TBI, n = 15 and major TBI, n = 14) and 17 normal controls (NC) underwent HMPAO SPECT, CT, MRI and NP testing. Imaging data were analyzed both visually and quantitatively. Nineteen (66%) patients showed 42 abnormalities on SPECT images, whereas 13 (45%) and 10 (34%) patients showed 29 abnormalities on MRI and 24 abnormalities on CT. SPECT detected relatively more abnormalities than CT or MRI in the minor TBI subgroup. The TBI group showed impairment on 11 tests for memory, attention and executive function. Of these, the anterior-posterior ratio (APR) correlated with six tests, whereas the ventricle-to-brain ratio (VBR), a known structural index of a poor NP outcome, correlated with only two tests. In evaluating chronic TBI patients, HMPAO SPECT, as a complement to CT or MRI, may play a useful role by demonstrating brain dysfunction in morphologically intact brain regions and providing objective evidence for some of the impaired NP performance.
High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.
Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro
2015-10-01
To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at central slices of the cerebrum.
SPECT brain perfusion findings in mild or moderate traumatic brain injury.
Abu-Judeh, H H; Parker, R; Aleksic, S; Singh, M L; Naddaf, S; Atay, S; Kumar, M; Omar, W; El-Zeftawy, H; Luo, J Q; Abdel-Dayem, H M
2000-01-01
The purpose of this manuscript is to present the findings in the largest series of SPECT brain perfusion imaging reported to date for mild or moderate traumatic brain injury. This is a retrospective evaluation of 228 SPECT brain perfusion-imaging studies of patients who suffered mild or moderate traumatic brain injury with or without loss of consciousness (LOC). All patients had no past medical history of previous brain trauma, neurological, or psychiatric diseases, HIV, alcohol or drug abuse. The patient population included 135 males and 93 females. The ages ranged from 11-88 years (mean 40.8). The most common complaints were characteristic of the postconcussion syndrome: headaches 139/228 (61%); dizziness 61/228 (27%); and memory problems 63/228 (28%). LOC status was reported to be positive in 121/228 (53%), negative in 41/228 (18%), and unknown for 63/228 (28%). Normal studies accounted for 52/228 (23%). For abnormal studies (176/228 or 77%) the findings were as follows: basal ganglia hypoperfusion 338 lesions (55.2%); frontal lobe hypoperfusion 146 (23.8%); temporal lobes hypoperfusion 80 (13%); parietal lobes hypoperfusion 20 (3.7%); insular and or occipital lobes hypoperfusion 28 (4.6%). Patients' symptoms correlated with the SPECT brain perfusion findings. The SPECT BPI studies in 122/228 (54%) were done early within 3 months of the date of the accident, and for the remainder, 106/228 (46%) over 3 months and less than 3 years from the date of the injury. In early imaging, 382 lesions were detected; in 92 patients (average 4.2 lesions per study) imaging after 3 months detected 230 lesions: in 84 patients (average 2.7 lesions per study). Basal ganglia hypoperfusion is the most common abnormality following mild or moderate traumatic brain injury (p = 0.006), and is more common in patients complaining of memory problem (p = 0.0005) and dizziness (p = 0.003). Early imaging can detect more lesions than delayed imaging (p = 0.0011). SPECT brain perfusion abnormalities can occur in the absence of LOC.
Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.
2010-01-01
FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137
NASA Astrophysics Data System (ADS)
Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.
2003-12-01
Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within the range of asymmetry coefficients measured on corresponding real data. The features of the proposed approach are compared with those of other methods previously described to obtain datasets appropriate for the assessment of fusion methods.
Tsai, Chung-Fen; Yip, Ping-Keung; Chen, Shao-Yuan; Lin, Jen-Cheng; Yeh, Zai-Ting; Kung, Lan-Yu; Wang, Cheng-Yi; Fan, Yu-Ming
2014-04-01
Acute carbon monoxide (CO) poisoning poses a significant threat to the central nervous system. It can cause brain injury and diverse neurological deficits including persistent neurological sequelae (PNS) and delayed neurological sequelae (DNS). The study aimed to investigate the long-term impacts of acute CO poisoning on brain perfusion and neurological function, and to explore potential differences between PNS and DNS patients. We evaluated brain perfusion using (99m)Tc ethyl cysteinate (ECD) brain single photon emission computed tomography (SPECT) and assessed clinical neurological symptoms and signs one month following acute poisoning. For DNS patients, ECD SPECT and clinical evaluation were performed when their delayed symptoms appeared. All patients had follow-up SPECT imaging, along with clinical assessments six months following poisoning. 12 PNS and 12 DNS patients were recruited between 2007 and 2010. Clinically, the main characteristic presentations were cognitive decline, emotional instability, and gait disturbance. SPECT imaging demonstrated consistent frontal hypoperfusion of varying severities in all patients, which decreased in severity at follow-up imaging. DNS patients usually had more severe symptoms and perfusion defects, along with worse clinical outcomes than the PNS group. These results suggest that acute CO poisoning might lead to long term brain injuries and neurological sequelae, particularly in DNS patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Single photon emission computed tomography (SPECT) in epilepsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, R.F.
1991-12-31
Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promotedmore » as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.« less
SPECT study of low intensity He-Ne laser intravascular irradiation therapy for brain infarction
NASA Astrophysics Data System (ADS)
Xiao, Xue-Chang; Dong, Jia-Zheng; Chu, Xiao-Fan; Jia, Shao-Wei; Liu, Timon C.; Jiao, Jian-Ling; Zheng, Xi-Yuan; Zhou, Ci-Xiong
2003-12-01
We used single photon emission computed tomography (SPECT) in brain perfusion imaging to study the changes of regional cerebral blood flow (rCBF) and cerebral function in brain infarction patients treated with intravascular laser irradiation of blood (ILIB). 17 of 35 patients with brain infarction were admitted to be treated by ILIB on the base of standard drug therapy, and SPECT brain perfusion imaging was performed before and after ILIB therapy with self-comparison. The results were analyzed in quantity with brain blood flow function change rate (BFCR%) model. Effect of ILIB during the therapy process in the other 18 patients were also observed. In the 18 patients, SPECT indicated an improvement of rCBF (both in focus and in total brain) and cerebral function after a 30 min-ILIB therapy. And the 17 patients showed an enhancement of total brain rCBF and cerebral function after ILIB therapy in comparison with that before, especially for the focus side of the brain. The enhancement for focus itself was extremely obvious with a higher significant difference (P<0.0001). The mirror regions had no significant change (P>0.05). BFCR% of foci was prominently higher than that of mirror regions (P<0.0001). In conclusion, the ILIB therapy can improve rCBF and cerebral function and activate brain cells of patients with brain infarction. The results denote new evidence of ILIB therapy for those patients with cerebral ischemia.
Furuta, Akihiro; Onishi, Hideo; Nakamoto, Kenta
This study aimed at developing the realistic striatal digital brain (SDB) phantom and to assess specific binding ratio (SBR) for ventricular effect in the 123 I-FP-CIT SPECT imaging. SDB phantom was constructed in to four segments (striatum, ventricle, brain parenchyma, and skull bone) using Percentile method and other image processing in the T2-weighted MR images. The reference image was converted into 128×128 matrixes to align MR images with SPECT images. The process image was reconstructed with projection data sets generated from reference images additive blurring, attenuation, scatter, and statically noise. The SDB phantom was evaluated to find the accuracy of calculated SBR and to find the effect of SBR with/without ventricular counts with the reference and process images. We developed and investigated the utility of the SDB phantom in the 123 I-FP-CIT SPECT clinical study. The true value of SBR was just marched to calculate SBR from reference and process images. The SBR was underestimated 58.0% with ventricular counts in reference image, however, was underestimated 162% with ventricular counts in process images. The SDB phantom provides an extremely convenient tool for discovering basic properties of 123 I-FP-CIT SPECT clinical study image. It was suggested that the SBR was susceptible to ventricle.
Brain pertechnetate SPECT in perinatal asphyxia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sfakianakis, G.; Curless, R.; Goldberg, R.
1984-01-01
Single photon emission computed tomography of the brain was performed in 6 patients with perinatal asphyxis aged 8-26 days. A single-head (LFOV) commercial SPECT system (Picker) was used and data were acquired 2-3 hr after an IV injection of 1-2 mCi Tc-99m-pertechnetate (360/sup 0/ rotation, 60 views, 64 x 64 matrix, 50K cts/view). Reconstruction in three planes was performed using MDS software (Hanning medium resolution filter, with or without attenuation correction using Sorenson's technique). For each clinical study, a ring type phantom source was used to identify the level of reconstruction noise in the tomographic planes. Abnormalities were found inmore » all patients studied, 3 central (moderate intensity), 2 peripheral (1 severe, 1 moderate) and 1 diffuse (mild intensity). Despite use of oral perchlorate (50 mg) in one patient the choroid plexus was visible. Since attenuation correction tended to amplify noise, the clinical studies were interpreted both with and without this correction. All 3 patients with central lesions were found abnormal on early (1-4 mo) neurologic follow-up examination, whereas the others were normal. No correlation was found between SPECT and 24 hr blood levels of CPK, ammonia, base excess, or the Apgar scores. Ct scans were reported abnormal (3 diffuse, 1 peripheral, 1 central and 1 questionable). Planar scintigrams obtained immediately after SPECT were normal (2), questionable (2) and abnormal (2). Follow-up SPECT brain scintigrams in two of the patients showed partial resolution. SPECT of the brain appears promising in perinatal asphyxia but long-term correlation with patient development is necessary.« less
Codreanu, Ion; Yang, JiGang; Zhuang, Hongming
2012-12-01
The indications of brain single-photon emission computed tomography (SPECT) in fetal alcohol syndrome are not clearly defined, even though the condition is recognized as one of the most common causes of mental retardation. This article reports a case of a 9-year-old adopted girl with developmental delay, mildly dysmorphic facial features, and behavioral and cognitive abnormalities. Extensive investigations including genetic studies and brain magnetic resonance imaging (MRI) revealed no abnormalities, and a diagnosis of fetal alcohol syndrome was considered since official diagnostic criteria were met. A brain SPECT was requested and showed severely decreased tracer activity in the thalami, basal ganglia, and temporal lobes on both sides, the overall findings being consistent with the established diagnosis of fetal alcohol syndrome. With increasing availability of functional brain imaging, the study indications and possible ethical implications in suspected prenatal alcohol exposure or even before adoption need further consideration. In this patient, SPECT was the only test to yield positive results.
Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia
NASA Astrophysics Data System (ADS)
Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier
2007-02-01
We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic strategy and provide objective follow-up of pain-processing recovery under treatment.
Gray, B G; Ichise, M; Chung, D G; Kirsh, J C; Franks, W
1992-01-01
The functional imaging modality has potential for demonstrating parenchymal abnormalities not detectable by traditional morphological imaging. Fifty-three patients with a remote history of traumatic brain injury (TBI) were studied with SPECT using 99mTc-hexamethylpropyleneamineoxime (HMPAO) and x-ray computed tomography (CT). Overall, 42 patients (80%) showed regional cerebral blood flow (rCBF) deficits by HMPAO SPECT, whereas 29 patients (55%) showed morphological abnormalities by CT. Out of 20 patients with minor head injury, 12 patients (60%) showed rCBF deficits and 5 patients (25%) showed CT abnormalities. Of 33 patients with major head injury, 30 patients (90%) showed rCBF deficits and 24 patients (72%) showed CT abnormalities. Thus, HMPAO SPECT was more sensitive than CT in detecting abnormalities in patients with a history of TBI, particularly in the minor head injury group. In the major head injury group, three patients showed localized cortical atrophy by CT and normal rCBF by HMPAO SPECT. In the evaluation of TBI patients, HMPAO SPECT is a useful technique to demonstrate regional brain dysfunction in the presence of morphological integrity as assessed by CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silverman, I.E.; Zeit, R.M.; Von Feldt, J.M.
1994-05-01
Systemic Lupus Erythematosis (SLE) commonly causes significant neuropsychiatric disorders. The purpose of this study was to review the brain SPECT studies of SLE patients with clinical evidence of CNS involvement and determine whether there is a correlation between the findings on SPECT images and the clinical manifestations of this serious phase of the disease. We enrolled 19 SLE patients and 12 normal controls in this study. The level of each patient`s disease activity was determined by the SLE Disease Activity Index (SLEDAI), an established method of scoring disease severity which is heavily weighted toward neuropsychiatric symptomatology, for 15 of themore » 19 SLE patients. The SLEDAI was calculated within a 10 day window of the date when the SPECT scan was obtained. SPECT scans were performed 30 minutes following the intravenous administration of 99mTc-HMPAO. Results are discussed.« less
Types of traumatic brain injury and regional cerebral blood flow assessed by 99mTc-HMPAO SPECT.
Yamakami, I; Yamaura, A; Isobe, K
1993-01-01
To investigate the relationship between focal and diffuse traumatic brain injury (TBI) and regional cerebral blood flow (rCBF), rCBF changes in the first 24 hours post-trauma were studied in 12 severe head trauma patients using single photon emission computed tomography (SPECT) with 99mtechnetium-hexamethyl propyleneamine oxime. Patients were classified as focal or diffuse TBI based on x-ray computed tomographic (X-CT) findings and neurological signs. In six patients with focal damage, SPECT demonstrated 1) perfusion defect (focal severe ischemia) in the brain region larger than the brain contusion by X-CT, 2) hypoperfusion (focal CBF reduction) in the brain region without abnormality by X-CT, and 3) localized hyperperfusion (focal CBF increase) in the surgically decompressed brain after decompressive craniectomy. Focal damage may be associated with a heterogeneous CBF change by causing various focal CBF derangements. In six patients with diffuse damage, SPECT revealed hypoperfusion in only one patient. Diffuse damage may be associated with a homogeneous CBF change by rarely causing focal CBF derangements. The type of TBI, focal or diffuse, determines the type of CBF change, heterogeneous or homogeneous, in the acute severe head trauma patient.
Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Justin S; Endres, Christopher; Foss, Catherine
2013-01-01
We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less
Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.
2013-06-01
We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less
SPECT in patients with cortical visual loss.
Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A
1993-09-01
Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.
Viewing the functional consequences of traumatic brain injury by using brain SPECT.
Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y
2006-03-01
High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.
Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi
2018-06-01
Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p < 0.05). The count ratio error with TEW and CTAC was approximately 5% regardless of bone density. After adjustment of the spatial resolution in the SPECT images, the variability of the NDB decreased and was comparable to that of the NDB without correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.
Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An
2014-09-01
There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bremner, J D; Baldwin, R; Horti, A; Staib, L H; Ng, C K; Tan, P Z; Zea-Ponce, Y; Zoghbi, S; Seibyl, J P; Soufer, R; Charney, D S; Innis, R B
1999-08-31
Although positron emission tomography (PET) and single photon emission computed tomography (SPECT) are increasingly used for quantitation of neuroreceptor binding, almost no studies to date have involved a direct comparison of the two. One study found a high level of agreement between the two techniques, although there was a systematic 30% increase in measures of benzodiazepine receptor binding in SPECT compared with PET. The purpose of the current study was to directly compare quantitation of benzodiazepine receptor binding in the same human subjects using PET and SPECT with high specific activity [11C]iomazenil and [123I]iomazenil, respectively. All subjects were administered a single bolus of high specific activity iomazenil labeled with 11C or 123I followed by dynamic PET or SPECT imaging of the brain. Arterial blood samples were obtained for measurement of metabolite-corrected radioligand in plasma. Compartmental modeling was used to fit values for kinetic rate constants of transfer of radioligand between plasma and brain compartments. These values were used for calculation of binding potential (BP = Bmax/Kd) and product of BP and the fraction of free non-protein-bound parent compound (V3'). Mean values for V3' in PET and SPECT were as follows: temporal cortex 23+/-5 and 22+/-3 ml/g, frontal cortex23+/-6 and 22+/-3 ml/g, occipital cortex 28+/-3 and 31+/-5 ml/g, and striatum 4+/-4 and 7+/-4 ml/g. These preliminary findings indicate that PET and SPECT provide comparable results in quantitation of neuroreceptor binding in the human brain.
NASA Astrophysics Data System (ADS)
Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi
2016-03-01
Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.
Mauro, Liberatore; Manuela, Morreale; Valentina, Megna; Sara, Collorone; Chondrogiannis, Sotirios; Maria, Drudi Francesco; Christos, Anagnostou; Liana, Civitelli; Ada, Francia; Maffione, Anna Margherita; Marzola, Maria Cristina; Rubello, Domenico
2015-01-01
Background: The diagnosis of vasculitis in the brain remains a quite difficult achievement. To the best of our knowledge, there is no imaging method reported in literature which is capable of reaching to a diagnosis of vasculitis with very high sensitivity. Aim: The aim of this study was to determine whether perfusion brain single photon emission computed tomography (SPECT) can be usefully employed in monitoring the treatment of vasculitis, allowing treating only potentially responder patients and avoiding the side effects on patients who do not respond. Materials and Methods: Twenty patients (two males and 18 females) suffering from systemic lupus erythematosus (SLE; n = 5), Behcet's disease (BD; n = 5), undifferentiated vasculitis (UV; n = 5), and Sjogren's syndrome (SS; n = 5) were included in the study. All patients underwent a wide neurological anamnestic investigation, a complete objective neurological examination and SPECT of the brain with 99mTc-hexamethyl-propylene-aminoxime (HMPAO). The brain SPECT was then repeated after appropriate medical treatment. The neurological and neuropsychiatric follow-up was performed at 6 months after the start of the treatment. Results: Overall, the differences between the scintigraphic results obtained after and before the medical treatment indicated a statistically significant increase of the cerebral perfusion (CP). In 19 out of 200 regions of interest (ROI) studied, the difference between pre- and post treatment percentages had negative sign, indicating a worsening of CP. This latter event has occurred six times (five in the same patients) in the UV, 10 times (eight in the same patients) in the SLE, never in BD, and three times (two in the same patient) in the SS. Conclusion: The reported results seem to indicate the possibility of identifying, by the means of a brain SPECT, responder and nonresponder (unchanged or worsened CP) patients, affected by autoimmune vasculitis, to the therapy. PMID:25973400
Regional CBF in chronic stable TBI treated with hyperbaric oxygen.
Barrett, K F; Masel, B; Patterson, J; Scheibel, R S; Corson, K P; Mader, J T
2004-01-01
To investigate whether Hyperbaric Oxygen Therapy (HBO2) could improve neurologic deficits and regional cerebral blood flow (rCBF) in chronic traumatic brain injuries (TBI), the authors employed a nonrandomized control pilot trial. Five subjects, at least three years post head injury, received HBO2. Five head injured controls (HIC) were matched for age, sex, and type of injury. Five healthy subjects served as normal controls. Sixty-eight normal volunteers comprised a reference data bank against which to compare SPECT brain scans. HBO2 subjects received 120 HBO2 in blocks of 80 and 40 treatments with an interval five-month break. Normal controls underwent a single SPECT brain scan, HBO2, and repeat SPECT battery. TBI subjects were evaluated by neurologic, neuropsychometric, exercise testing, and pre and post study MRIs, or CT scans if MRI was contraindicated. Statistical Parametric Mapping was applied to SPECT scans for rCBF analysis. There were no significant objective changes in neurologic, neuropsychometric, exercise testing, MRIs, or rCBF. In this small pilot study, HBO2 did not effect clinical or regional cerebral blood flow improvement in TBI subjects.
Brain perfusion SPECT in the mouse: normal pattern according to gender and age.
Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph
2012-12-01
Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1.7%, p=0.000) and at young adult age (AI=2.4 ± 1.7%, p=0.000). Gender had no effect on asymmetry. Voxel-wise testing confirmed the ROI-based findings. In conclusion, high-resolution HMPAO SPECT is a promising technique for measuring rCBF in preclinical research. It indicates lateral asymmetry of rCBF in the mouse brain as well as age-related changes during late maturation. ECD is not suitable as tracer for brain SPECT in the mouse because of its fast clearance from tissue indicating an interspecies difference in esterase activity between mice and humans. Copyright © 2012 Elsevier Inc. All rights reserved.
Brain SPECT Imaging in Complex Psychiatric Cases: An Evidence-Based, Underutilized Tool
Amen, Daniel G; Trujillo, Manuel; Newberg, Andrew; Willeumier, Kristen; Tarzwell, Robert; Wu, Joseph C; Chaitin, Barry
2011-01-01
Over the past 20 years brain Single Photon Emission Computed Tomography (SPECT) imaging has developed a substantial, evidence-based foundation and is now recommended by professional societies for numerous indications relevant to psychiatric practice. Unfortunately, SPECT in clinical practice is utilized by only a handful of clinicians. This article presents a rationale for a more widespread use of SPECT in clinical practice for complex cases, and includes seven clinical applications where it may help optimize patient care. PMID:21863144
Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J
1991-08-01
A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.
Raji, Cyrus A.; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G.; Henderson, Theodore
2014-01-01
Purpose This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). Methods After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. Results We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. Conclusions This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms. PMID:24646878
Raji, Cyrus A; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G; Henderson, Theodore
2014-01-01
This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post-injury neurological or psychiatric symptoms.
[Study of dopamine transporter imaging on the brain of children with autism].
Sun, Xiaomian; Yue, Jing; Zheng, Chongxun
2008-04-01
This study was conducted to evaluate the applicability of 99mTc-2beta-[ N, N'-bis (2-mercaptoethyl) ethylenediamino]methyl,3beta(4-chlorophenyl)tropane(TRODAT-1) dopamine transporter(DAT) SPECT imaging in children with autism, and thus to provide an academic basis for the etiology, mechanism and clinical therapy of autism. Ten autistic children and ten healthy controls were examined with 99mTc-TRODAT-1 DAT SPECT imaging. Striatal specific uptake of 99mTc-TRODAT-1 was calculated with region of interest analysis according to the ratics between striatum and cerebellum [(STR-BKG)/BKG]. There was no statistically significant difference in semiquantitative dopamine transporter between the bilateral striata of autistic children (P=0.562), and between those of normal controls (p=0.573); Dopamine transporter in the brain of patients with autism increased significantly as compared with that in the brain of normal controls (P=0.017). Dopaminergic nervous system is dysfunctioning in the brain of children with autism, and DAT 99mTc-TRODAT-1 SPECT imaging on the brain will help the imaging diagnosis of childhcod autism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, N.; Odano, I.; Ohkubo, M.
1994-05-01
We developed a more accurate quantitative measurement of regional cerebral blood flow (rCBF) with the microsphere model using N-isopropyl-p-[I-123] iodoamphetamine (IMP) and a ring type single photon emission computed tomography (SPECT) system. SPECT studies were performed in 17 patients with brain diseases. A dose of 222 MBq (6 mCi) of [I-123]IMP was injected i.v., at the same time a 5 min period of arterial blood withdrawal was begun. SPECT data were acquired from 25 min to 60 min after tracer injection. For obtaining the brain activity concentration at 5 min after IMP injection, total brain counts collections and one minutemore » period short time SPECT studies were performed at 5, 20, and 60 min. Measurement of the values of rCBF was calculated using short time SPECT images at 5 min (rCBF), static SPECT images corrected with total cerebral counts (rCBF{sub Ct}.) and those corrected with reconstructed counts on short time SPECT images (rCBF{sub Cb}). There was a good relationship (r=0.69) between rCBF and rCBF{sub Ct}, however, rCBF{sub Ct} tends to be underestimated in high flow areas and overestimated in low flow areas. There was better relationship between rCBF and rCBF{sub Cb}(r=0.92). The overestimation and underestimation shown in rCBF{sub Ct} was considered to be due to the correction of reconstructed counts using a total cerebral time activity curve, because of the kinetic behavior of [I-123]IMP was different in each region. We concluded that more accurate rCBF values could be obtained using the regional time activity curves.« less
McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W
2008-01-01
Background Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. Methods The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). Results A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. Conclusion The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques. PMID:18312639
McGoron, Anthony J; Capille, Michael; Georgiou, Michael F; Sanchez, Pablo; Solano, Juan; Gonzalez-Brito, Manuel; Kuluz, John W
2008-02-29
Assessment of cerebral blood flow (CBF) by SPECT could be important in the management of patients with severe traumatic brain injury (TBI) because changes in regional CBF can affect outcome by promoting edema formation and intracranial pressure elevation (with cerebral hyperemia), or by causing secondary ischemic injury including post-traumatic stroke. The purpose of this study was to establish an improved method for evaluating regional CBF changes after TBI in piglets. The focal effects of moderate traumatic brain injury (TBI) on cerebral blood flow (CBF) by SPECT cerebral blood perfusion (CBP) imaging in an animal model were investigated by parallelized statistical techniques. Regional CBF was measured by radioactive microspheres and by SPECT 2 hours after injury in sham-operated piglets versus those receiving severe TBI by fluid-percussion injury to the left parietal lobe. Qualitative SPECT CBP accuracy was assessed against reference radioactive microsphere regional CBF measurements by map reconstruction, registration and smoothing. Cerebral hypoperfusion in the test group was identified at the voxel level using statistical parametric mapping (SPM). A significant area of hypoperfusion (P < 0.01) was found as a response to the TBI. Statistical mapping of the reference microsphere CBF data confirms a focal decrease found with SPECT and SPM. The suitability of SPM for application to the experimental model and ability to provide insight into CBF changes in response to traumatic injury was validated by the SPECT SPM result of a decrease in CBP at the left parietal region injury area of the test group. Further study and correlation of this characteristic lesion with long-term outcomes and auxiliary diagnostic modalities is critical to developing more effective critical care treatment guidelines and automated medical imaging processing techniques.
Wortzel, Hal S; Filley, Christopher M; Anderson, C Alan; Oster, Timothy; Arciniegas, David B
2008-01-01
Traumatic brain injury (TBI) is a substantial source of mortality and morbidity world wide. Although most such injuries are relatively mild, accurate diagnosis and prognostication after mild TBI are challenging. These problems are complicated further when considered in medicolegal contexts, particularly civil litigation. Cerebral single photon emission computed tomography (SPECT) may contribute to the evaluation and treatment of persons with mild TBI. Cerebral SPECT is relatively sensitive to the metabolic changes produced by TBI. However, such changes are not specific to this condition, and their presence on cerebral SPECT imaging does not confirm a diagnosis of mild TBI. Conversely, the absence of abnormalities on cerebral SPECT imaging does not exclude a diagnosis of mild TBI, although such findings may be of prognostic value. The literature does not demonstrate consistent relationships between SPECT images and neuropsychological testing or neuropsychiatric symptoms. Using the rules of evidence shaped by Daubert v. Merrell Dow Pharmaceuticals, Inc., and its progeny to analyze the suitability of SPECT for forensic purposes, we suggest that expert testimony regarding SPECT findings should be admissible only as evidence to support clinical history, neuropsychological test results, and structural brain imaging findings and not as stand-alone diagnostic data.
GATE simulation of a new design of pinhole SPECT system for small animal brain imaging
NASA Astrophysics Data System (ADS)
Uzun Ozsahin, D.; Bläckberg, L.; El Fakhri, G.; Sabet, H.
2017-01-01
Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.
Cavallin, L; Axelsson, R; Wahlund, L O; Oksengard, A R; Svensson, L; Juhlin, P; Wiberg, M Kristoffersen; Frank, A
2008-12-01
Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using (99m)Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm, Sweden) on both SPECT and DSC-MRI. Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease.
Brain SPECT scans in students with specific learning disability: Preliminary results.
Karande, S; Deshmukh, N; Rangarajan, V; Agrawal, A; Sholapurwala, R
2018-06-08
Brain single-photon emission computed tomography (SPECT) assesses brain function through measurement of regional cerebral blood flow. This study was conducted to assess whether students with newly diagnosed specific learning disability (SpLD) show any abnormalities in cerebral cortex perfusion. Cross-sectional single-arm pilot study in two tertiary care hospitals. Nine students with SpLD were enrolled. Brain SPECT scan was done twice in each student. For the first or "baseline" scan, the student was first made to sit with eyes open in a quiet, dimly lit room for a period of 30-40 min and then injected intravenously with 20 mCi of 99mTc-ECD. An hour later, "baseline scan" was conducted. After a minimum gap of 4 days, a second or "test scan" was conducted, wherein the student performed an age-appropriate curriculum-based test for a period of 30-40 min to activate the areas in central nervous system related to learning before being injected with 20 mCi of 99mTc-ECD. Cerebral cortex perfusion at rest and after activation in each student was compared qualitatively by visual analysis and quantitatively using NeuroGam TM software. Visual analysis showed reduction in regional blood flow in temporoparietal areas in both "baseline" and "test" scans. However, when normalization was attempted and comparison done by Talairach analysis using NeuroGam software, no statistically significant change in regional perfusion in temporoparietal areas was appreciated. Brain SPECT scan may serve as a robust tool to identify changes in regional brain perfusion in students with SpLD.
Global scaling for semi-quantitative analysis in FP-CIT SPECT.
Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R
2014-01-01
Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.
Jain, Tarun Kumar; Karunanithi, Sellam; Sharma, Punit; Vijay, Maneesh Kumar; Ballal, Sanjana; Bal, Chandrasekhar
2014-11-01
Isolated asymptomatic brain metastasis in papillary carcinoma thyroid (PCT) is extremely rare. We here present such a case of a 48-year-old woman with PCT. SPECT/CT localized the 131I radiotracer concentration seen on whole-body scan in this patient to the right posterior parietal cortex, suggesting brain metastasis. Contrast-enhanced MRI and 18F-FDG PET/CT confirmed the diagnosis and the patient was taken for gamma-knife radiosurgery. 131I SPECT/CT in this case accurately restaged the patient by detecting asymptomatic isolated brain metastasis and correctly directed the management strategy.
5-HT Radioligands for Human Brain Imaging With PET and SPECT
Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.
2014-01-01
The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551
Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA
2011-12-06
A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.
Brain single-photon emission CT physics principles.
Accorsi, R
2008-08-01
The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.
Koizumi, Hiroyasu; Fujisawa, Hirosuke; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu
2013-01-01
[(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT) has been reported to be a useful marker of neuronal integrity. We evaluated cortical damage following traumatic brain injury (TBI) with IMZ SPECT at the acute stage. After conventional therapy for a cranial trauma, an IMZ SPECT re-evaluation was performed at the chronic stage. A reduction in IMZ uptake in the location of cerebral contusions was observed during the TBI acute phase; however, images of IMZ SPECT obtained during the chronic phase showed that areas with decreased IMZ distribution were remarkably reduced compared with those obtained during the acute phase. As a result of in vivo microdialysis study, the extracellular levels of glutamate in the cortex, where decreased IMZ distribution was shown during the acute phase, were increased during the 168-h monitoring period. During the chronic phase, IMZ uptake in the region with the microdialysis probes was recovered. The results suggest that this reduction in IMZ uptake might not be a sign of irreversible tissue damage in TBI.
Richieri, Raphaëlle; Verger, Antoine; Boyer, Laurent; Boucekine, Mohamed; David, Anthony; Lançon, Christophe; Cermolacce, Michel; Guedj, Eric
2018-05-18
Previous clinical trials have suggested that repetitive transcranial magnetic stimulation (rTMS) has a significant antidepressant effect in patients with treatment resistant depression (TRD). However, results remain heterogeneous with many patients without effective response. The aim of this SPECT study was to determine before treatment the predictive value of the connectivity of the stimulated area on further rTMS response in patients with TRD. Fifty-eight TRD patients performed a brain perfusion SPECT before high frequency rTMS of the left dorsolateral prefrontal cortex (DLPFC). A voxel based-analysis was achieved to compare connectivity of the left DLPFC in responders and non-responders using inter-regional correlations (p < 0.005, corrected for cluster volume). A multiple logistic regression model was thereafter used with the goal of establishing a predictive score. Before rTMS, responders exhibited increased SPECT connectivity between the left DLPFC and the right cerebellum in comparison to non-responders, independently of age, gender, severity of depression, and severity of treatment resistance. The area under the curve for the combination of these two SPECT clusters to predict rTMS response was 0.756 (p < 0.005). SPECT connectivity of the left DLPFC predicts rTMS response before treatment. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.
Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu
2010-10-01
We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [(123)I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand for the central benzodiazepine receptor in the cortex corresponding to the contusion revealed with computed tomography (CT) scans and magnetic resonance imaging (MRI) were shown on IMZ SPECT in the acute phase in all patients. In 9 of 12 patients (75%), images of IMZ SPECT obtained in the chronic phase of TBI showed that areas with a decreased distribution of IMZ were remarkably reduced in comparison with those obtained in the acute phase. Both CT scans and MRI showed a normal appearance of the cortex morphologically, where the binding potential of IMZ recovered in the chronic phase. Reduced binding potential of radioligand for the central benzodiazepine receptor is considered to be an irreversible reaction; however, in this study, IMZ accumulation in the cortex following TBI was recovered in the chronic phase in several patients. [(123)I] iomazenil SPECT may have a potential to disclose a reversible vulnerability of neurons following TBI.
Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury
Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu
2010-01-01
We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [123I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand for the central benzodiazepine receptor in the cortex corresponding to the contusion revealed with computed tomography (CT) scans and magnetic resonance imaging (MRI) were shown on IMZ SPECT in the acute phase in all patients. In 9 of 12 patients (75%), images of IMZ SPECT obtained in the chronic phase of TBI showed that areas with a decreased distribution of IMZ were remarkably reduced in comparison with those obtained in the acute phase. Both CT scans and MRI showed a normal appearance of the cortex morphologically, where the binding potential of IMZ recovered in the chronic phase. Reduced binding potential of radioligand for the central benzodiazepine receptor is considered to be an irreversible reaction; however, in this study, IMZ accumulation in the cortex following TBI was recovered in the chronic phase in several patients. [123I] iomazenil SPECT may have a potential to disclose a reversible vulnerability of neurons following TBI. PMID:20683454
Paschali, Anna; Messinis, Lambros; Lyros, Epameinondas; Constantoyannis, Costas; Kefalopoulou, Zinovia; Lakiotis, Velissarios; Papathanasopoulos, Panagiotis; Vassilakos, Paulos
2009-11-01
In the present study, we examined relationships between neuropsychological functions and brain single photon emission computed tomography (SPECT) regional cerebral blood flow (rCBF) observed at presurgical evaluation for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in advanced Parkinson's disease (PD) patients. Twenty advanced non-demented PD patients, candidates for DBS surgery, underwent perfusion brain SPECT study and neuropsychological assessment prior to surgery (range: 30-50 days). Patients were further assessed using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (H&Y) scale. During all assessments patients were "on" standard medication. NeuroGam software, which permits voxel by voxel analysis, was used to compare the brain perfusion of PD patients with a normal database adjusted for sex and age. Neuropsychological scores were compared to age, education and sex-adjusted normative databases. Our results indicated that the distribution of rCBF showed significant differences when compared to an age- and sex-adjusted normative database. We found impaired blood flow in 17 (85%) of our patients in the left prefrontal lobe, in 14 (70%) in the right prefrontal lobe and in 11 (55%) in the left frontal and right parietal lobes. Neuropsychological testing revealed that 18 (90%) of our patients had significant impairments in measures of executive functions (set-shifting) and 15 (75%) in response inhibition. Furthermore, we found significant correlations between measures of visual attention, executive functions and the right frontal lobe region. The presence of widespread blood flow reduction was observed mainly in the frontal lobes of dementia-free patients with advanced PD. Furthermore, performance on specific cognitive measures was highly related to perfusion brain SPECT findings.
Okumura, Yuki; Maya, Yoshifumi; Onishi, Takako; Shoyama, Yoshinari; Izawa, Akihiro; Nakamura, Daisaku; Tanifuji, Shigeyuki; Tanaka, Akihiro; Arano, Yasushi; Matsumoto, Hiroki
2018-04-06
In this study, we synthesized of a series of 2-phenyl- and 2-pyridyl-imidazo[1,2- a]pyridine derivatives and examine their suitability as novel probes for single-photon emission computed tomography (SPECT)-based imaging of β-amyloid (Aβ). Among the 11 evaluated compounds, 10 showed moderate affinity to Aβ(1-42) aggregates, exhibiting half-maximal inhibitory concentrations (IC 50 ) of 14.7 ± 6.07-87.6 ± 39.8 nM. In vitro autoradiography indicated that 123 I-labeled triazole-substituted derivatives displayed highly selective binding to Aβ plaques in the hippocampal region of Alzheimer's disease (AD)-affected brain. Moreover, biodistribution studies performed on normal rats demonstrated that all 123 I-labeled probes featured high initial uptake into the brain followed by a rapid washout and were thus well suited for imaging Aβ plaques, with the highest selectivity observed for a 1 H-1,2,3-triazole-substituted 2-pyridyl-imidazopyridine derivative, [ 123 I]ABC577. This compound showed good kinetics in rat brain as well as moderate in vivo stability in rats and is thus a promising SPECT imaging probe for AD in clinical settings.
Automated three-dimensional quantification of myocardial perfusion and brain SPECT.
Slomka, P J; Radau, P; Hurwitz, G A; Dey, D
2001-01-01
To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.
ERIC Educational Resources Information Center
Powledge, Tabitha M.
1997-01-01
Describes techniques for delving into the brain including positron emission tomography (PET), single photon emission computed tomography (SPECT), electroencephalogram (EEG), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and low-tech indirect studies. (JRH)
High spatial resolution technique for SPECT using a fan-beam collimator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichihar, T.; Nambu, K.; Motomura, N.
1993-08-01
The physical characteristics of the collimator cause degradation of resolution with increasing distance from the collimator surface. A new convolutional backprojection algorithm has been derived for fanbeam SPECT data without rebinding into parallel beam geometry. The projections are filtered and then backprojected into the area within an isosceles triangle whose vertex is the focal point of the fan-beam and whose base is the fan-beam collimator face, and outside of the circle whose center is located midway between the focal point and the center of rotation and whose diameter is the distance between the focal point and the center of rotation.more » Consequently the backprojected area is close to the collimator surface. This algorithm has been implemented on a GCA-9300A SPECT system showing good results with both phantom and patient studies. The SPECT transaxial resolution was 4.6mm FWHM (reconstructed image matrix size of 256x256) at the center of SPECT FOV using UHR (ultra-high-resolution) fan beam collimators for brain study. Clinically, Tc-99m HMPAO and Tc-99m ECD brain data were reconstructed using this algorithm. The reconstruction results were compared with MRI images of the same slice position and showed significantly improved over results obtained with standard reconstruction algorithms.« less
SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury.
Abdel-Dayem, H M; Abu-Judeh, H; Kumar, M; Atay, S; Naddaf, S; El-Zeftawy, H; Luo, J Q
1998-05-01
The purpose of this atlas is to present a review of the literature showing the advantages of SPECT brain perfusion imaging (BPI) in mild or moderate traumatic brain injury (TBI) over other morphologic imaging modalities such as x-ray CT or MRI. The authors also present the technical recommendations for SPECT brain perfusion currently practiced at their center. For the radiopharmaceutical of choice, a comparison between early and delayed images using Tc-99m HMPAO and Tc-99m ECD showed that Tc-99m HMPAO is more stable in the brain with no washout over time. Therefore, the authors feel that Tc-99m HMPAO is preferable to Tc-99m ECD. Recommendations regarding standardizing intravenous injection, the acquisition, processing parameters, and interpretation of scans using a ten grade color scale, and use of the cerebellum as the reference organ are presented. SPECT images of 228 patients (age range, 11 to 88; mean, 40.8 years) with mild or moderate TBI and no significant medical history that interfered with the results of the SPECT BP were reviewed. The etiology of the trauma was in the following order of frequency: motor vehicle accidents (45%) followed by blow to the head (36%) and a fall (19%). Frequency of the symptoms was headache (60.9%), memory problems (27.6%), dizziness (26.7%), and sleep disorders (8.7%). Comparison between patients imaged early (<3 months) versus those imaged delayed (>3 months) from the time of the accident, showed that early imaging detected more lesions (4.2 abnormal lesions per study compared to 2.7 in those imaged more than 3 months after the accident). Of 41 patients who had mild traumatic injury without loss of consciousness and had normal CT, 28 studies were abnormal. Focal areas of hypoperfusion were seen in 77% (176 patients, 612 lesions) of the group of 228 patients. The sites of abnormalities were in the following order: basal ganglia and thalami, 55.2%, frontal lobes, 23.8%, temporal lobes, 13%, parietal, 3.7%, insular and occipital lobes together, 4.6%.
[Asperger syndrome with highly exceptional calendar memory: a case report].
Sevik, Ali Emre; Cengel Kültür, Ebru; Demirel, Hilal; Karlı Oğuz, Kader; Akça, Onur; Lay Ergün, Eser; Demir, Başaran
2010-01-01
Some patients with pervasive developmental disorders develop unusual talents, which are characterized as savant syndrome. Herein we present neuropsychological examination and brain imaging (fMRI and brain SPECT) findings of an 18-year-old male with Asperger syndrome and highly unusual calendar memory. Neuropsychological evaluation of the case indicated mild attention, memory, and problem solving deficits, and severe executive function deficits that included conceptualization, category formation, and abstraction. Functional MRI findings showed activation above the baseline level (P<0.05) in the bilateral inferior parietal lobule, precuneus, superior and middle frontal gyri, and medial frontal cortex. Brain SPECT findings, in comparison to rest-SPECT findings, showed that there was hypoperfusion in some brain regions, including the right frontal cortex and right parietal cortex. Baseline blood perfusion in the left frontal cortex was also observed, as well as hypoperfusion in the right parietal-occipital cortex and in the right basal ganglion (compared to the left side). The results of the present study and further research will contribute to our understanding of calendar memory and savant syndrome.
Singh, Baljinder; Kumar, Narendra; Sharma, Sarika; Watts, Ankit; Hazari, Puja P; Rani, Nisha; Vyas, Sameer; Anish, Bhattacharya; Mishra, Anil K
2015-10-01
To evaluate the diagnostic use of an indigenously developed single vial ready to label (with Tc) kit preparation of bis-methionine-DTPA (Tc-MDM) for the detection of recurrent/residual glioma. We prospectively studied 32 patients (21 male and 11 female subjects aged 43.0±16.0 years) with clinical suspicion of postoperative recurrent/residual glioma. After radical radiotherapy (54.0-60.0 Gy) with or without concurrent temozolomide as indicated, Tc-MDM SPECT and ceMRI of the brain was performed in all the patients and F-FLT-PET imaging in 16 of 32 patients. MDM SPECT and ceMRI findings were concordant in 28 patients (15 positive and 13 negative). The findings were discordant in the remaining 5 patients, with positive ceMRI and negative MDM-SPECT in 2 patients and negative ceMRI and positive MDM-SPECT in 3 patients. Tc-MDM-SPECT, F-FLT PET, and ceMRI scan findings were positive in 9 of 16 and negative in 5 of 16 patients. In the remaining 2 of 16 patients, both F-FLT-PET and Tc-MDM-SPECT were positive, but ceMRI was negative. Sensitivity, specificity, PPV, NPV, and DA of Tc-MDM-SPECT for diagnosing recurrent/residual glioma were 88.24%, 81.25%, 83.3%, 86.7%, and 84.8%, respectively. The diagnostic accuracy of Tc-bis-methionine (MDM)-SPECT imaging was comparable with that of ceMRI and F-FLT-PET and may be useful in the management of glioma patients in the postsurgical follow-up period. This imaging technique may be of special interest in peripheral hospitals/developing countries lacking access to expensive PET/cyclotron technology. However, comparison with the existing "gold standard" PET tracers, especially with C-11-methionine-PET imaging and histopathological correlation, is warranted in a large cohort of glioma patients through multicentric studies.
Romero, Kristoffer; Lobaugh, Nancy J; Black, Sandra E; Ehrlich, Lisa; Feinstein, Anthony
2015-01-30
The neural underpinnings of cognitive dysfunction in mild traumatic brain injury (TBI) are not fully understood. Consequently, patient prognosis using existing clinical imaging is somewhat imprecise. Single photon emission computed tomography (SPECT) is a frequently employed investigation in this population, notwithstanding uncertainty over the clinical utility of the data obtained. In this study, subjects with mild TBI underwent (99m)Tc-ECD SPECT scanning, and were administered a brief battery of cognitive tests and self-report symptom scales of concussion and emotional distress. Testing took place 2 weeks (n=84) and 1 year (n=49) post-injury. Multivariate analysis (i.e., partial least squares analysis) revealed that frontal perfusion in right superior frontal and middle frontal gyri predicted poorer performance on the Stroop test, an index of executive function, both at initial and follow-up testing. Conversely, SPECT scans categorized as normal or abnormal by radiologists did not differentiate cognitively impaired from intact subjects. These results demonstrate the clinical utility of SPECT in mild TBI, but only when data are subjected to blood flow quantification analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Asl, Mina Taghizadeh; Yousefi, Farzaneh; Nemati, Reza; Assadi, Majid
2015-01-01
The present study was carried out to evaluate cerebral perfusion in different types of cerebral palsy (CP) patients. For those patients who underwent hyperbaric oxygen therapy, brain perfusion before and after the therapy was compared. A total of 11 CP patients were enrolled in this study, of which 4 patients underwent oxygen therapy. Before oxygen therapy and at the end of 40 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed , and the results were compared. A total of 11 CP patients, 7 females and 4 males with an age range of 5-27 years participated in the study. In brain SPECT studies, all the patients showed perfusion impairments. The region most significantly involved was the frontal lobe (54.54%), followed by the temporal lobe (27.27%), the occipital lobe (18.18%), the visual cortex (18.18%), the basal ganglia (9.09%), the parietal lobe (9.09%), and the cerebellum (9.09%). Frontal-lobe hypoperfusion was seen in all types of cerebral palsy. Two out of 4 patients (2 males and 2 females) who underwent oxygen therapy revealed certain degree of brain perfusion improvement. This study demonstrated decreased cerebral perfusion in different types of CP patients. The study also showed that hyperbaric oxygen therapy improved cerebral perfusion in a few CP patients. However, it could keep the physiological discussion open and strenghten a link with other areas of neurology in which this approach may have some value.
Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric
2012-12-03
Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (p<0.005, uncorrected), and separately in the subgroup of patients with left- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (p<0.001), without significant perfusion differences between these two subgroups. These data show that distinct successful rTMS protocols induce equivalent brain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.
Collimator design for a multipinhole brain SPECT insert for MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian
Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that canmore » operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations show sufficient axial sampling (in a Defrise phantom) and a reconstructed resolution of 5.0 mm (in a cold-rod phantom). The authors compared the 24-pinhole setup with a 34-pinhole system (with the same detector radius but a collimator radius of 156.63 mm) and found that 34 pinholes result in better uniformity but a worse reconstruction of the cold-rod phantom. The authors also compared the 24-pinhole system with a clinical triple-head UHR fan beam system based on contrast-to-noise ratio and found that the 24-pinhole setup performs better for the 6 mm hot and the 16 mm cold lesions and worse for the 8 and 10 mm hot lesions. Finally, the authors reconstructed noisy projection data of a Hoffman phantom with a 9 mm cold lesion and found that the lesion was slightly better visible on the multipinhole image compared to the fan beam image. Conclusions: The authors have optimized a stationary multipinhole SPECT insert for MRI and showed the feasibility of doing brain SPECT imaging inside a MRI with an image quality similar to the best clinical SPECT systems available.« less
Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.
Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis
2006-01-01
This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.
DI NARDO, W.; GIANNANTONIO, S.; DI GIUDA, D.; DE CORSO, E.; SCHINAIA, L.; PALUDETTI, G.
2013-01-01
SUMMARY Pre-surgery evaluation, indications for cochlear implantation and expectations in terms of post-operative functional results remain challenging topics in pre-lingually deaf adults. Our study has the purpose of determining the benefits of Single Photon Emission Tomography (SPECT) assessment in pre-surgical evaluation of pre-lingually deaf adults who are candidates for cochlear implantation. In 7 pre-lingually profoundly deaf patients, brain SPECT was performed at baseline conditions and in bilateral simultaneous multi-frequency acoustic stimulation. Six sagittal tomograms of both temporal cortices were used for semi-quantitative analysis in each patient. Percentage increases in cortical perfusion resulting from auditory stimulation were calculated. The results showed an inter-hemispherical asymmetry of the activation extension and intensity in the stimulated temporal areas. Consistent with the obtained brain activation data, patients were implanted preferring the side that showed higher activation after acoustic stimulus. Considering the increment in auditory perception performances, it was possible to point out a relationship between cortical brain activity shown by SPECT and hearing performances, and, even more significant, a correlation between post-operative functional performances and the activation of the most medial part of the sagittal temporal tomograms, corresponding to medium-high frequencies. In light of these findings, we believe that brain SPECT could be considered in the evaluation of deaf patients candidate for cochlear implantation, and that it plays a major role in functional assessment of the auditory cortex of pre-lingually deaf subjects, even if further studies are necessary to conclusively establish its utility. Further developments of this technique are possible by using trans-tympanic electrical stimulation of the cochlear promontory, which could give the opportunity to study completely deaf patients, whose evaluation is objectively difficult with current audiological methods. PMID:23620636
Haegelen, Claire; García-Lorenzo, Daniel; Le Jeune, Florence; Péron, Julie; Gibaud, Bernard; Riffaud, Laurent; Brassier, Gilles; Barillot, Christian; Vérin, Marc; Morandi, Xavier
2010-03-01
The subthalamic nucleus (STN) has become an effective target of deep-brain stimulation (DBS) in severely disabled patients with advanced Parkinson's disease (PD). Clinical studies have reported DBS-induced adverse effects on cognitive functions, mood, emotion and behavior. STN DBS seems to interfere with the limbic functions of the basal ganglia, but the limbic effects of STN DBS are controversial. We measured prospectively resting regional cerebral metabolism (rCMb) with 18-fluorodeoxyglucose and PET, and resting regional cerebral blood flow (rCBF) with HMPAO and SPECT in six patients with Parkinson's disease. We compared PET and SPECT 1 month before and 3 months after STN DBS. On cerebral MRI, 13 regions of interest (ROI) were manually delineated slice by slice in frontal and limbic lobes. We obtained mean rCBF and rCMb values for each ROI and the whole brain. We normalized rCBF and rCMB values to ones for the whole brain volume, which we compared before and following STN DBS. No significant difference emerged in the SPECT analysis. PET analysis revealed a significant decrease in rCMb following STN DBS in the superior frontal gyri and left and right dorsolateral prefrontal cortex (p < 0.05). A non-significant decrease in rCMb in the left anterior cingulate gyrus appeared following STN DBS (p = 0.075). Our prospective SPECT and PET study revealed significantly decreased glucose metabolism of the two superior frontal gyri without any attendant perfusion changes following STN DBS. These results suggest that STN DBS may change medial prefrontal function and therefore the integration of limbic information, either by disrupting emotional processes within the STN, or by hampering the normal function of a limbic circuit.
The relation between persistent coma and brain ischemia after severe brain injury.
Cheng, Quan; Jiang, Bing; Xi, Jian; Li, Zhen Yan; Liu, Jin Fang; Wang, Jun Yu
2013-12-01
To investigate the relation between brain ischemia and persistent vegetative state after severe traumatic brain injury. The 66 patients with severe brain injury were divided into two groups: The persistent coma group (coma duration ≥10 d) included 51 patients who had an admission Glasgow Coma Scale (GCS) of 5-8 and were unconscious for more than 10 d. There were 15 patients in the control group, their admission GCS was 5-8, and were unconscious for less than 10 d. The brain areas, including frontal, parietal, temporal, occipital lobes and thalamus, were measured by Single Photon Emission Computed Tomography (SPECT). In the first SPECT scan, multiple areas of cerebral ischemia were documented in all patients in both groups, whereas bilateral thalamic ischemia were presented in all patients in the persistent coma group and were absented in the control group. In the second SPECT scan taken during the period of analepsia, with an indication that unilateral thalamic ischemia were persisted in 28 of 41 patients in persistent coma group(28/41,68.29%). Persistent coma after severe brain injury is associated with bilateral thalamic ischemia.
Shin, Yong Beom; Kim, Seong-Jang; Kim, In-Ju; Kim, Yong-Ki; Kim, Dong-Soo; Park, Jae Heung; Yeom, Seok-Ran
2006-06-01
Statistical parametric mapping (SPM) was applied to brain perfusion single photon emission computed tomography (SPECT) images in patients with traumatic brain injury (TBI) to investigate regional cerebral abnormalities compared to age-matched normal controls. Thirteen patients with TBI underwent brain perfusion SPECT were included in this study (10 males, three females, mean age 39.8 +/- 18.2, range 21 - 74). SPM2 software implemented in MATLAB 5.3 was used for spatial pre-processing and analysis and to determine the quantitative differences between TBI patients and age-matched normal controls. Three large voxel clusters of significantly decreased cerebral blood perfusion were found in patients with TBI. The largest clusters were area including medial frontal gyrus (voxel number 3642, peak Z-value = 4.31, 4.27, p = 0.000) in both hemispheres. The second largest clusters were areas including cingulated gyrus and anterior cingulate gyrus of left hemisphere (voxel number 381, peak Z-value = 3.67, 3.62, p = 0.000). Other clusters were parahippocampal gyrus (voxel number 173, peak Z-value = 3.40, p = 0.000) and hippocampus (voxel number 173, peak Z-value = 3.23, p = 0.001) in the left hemisphere. The false discovery rate (FDR) was less than 0.04. From this study, group and individual analyses of SPM2 could clearly identify the perfusion abnormalities of brain SPECT in patients with TBI. Group analysis of SPM2 showed hypoperfusion pattern in the areas including medial frontal gyrus of both hemispheres, cingulate gyrus, anterior cingulate gyrus, parahippocampal gyrus and hippocampus in the left hemisphere compared to age-matched normal controls. Also, left parahippocampal gyrus and left hippocampus were additional hypoperfusion areas. However, these findings deserve further investigation on a larger number of patients to be performed to allow a better validation of objective SPM analysis in patients with TBI.
NASA Astrophysics Data System (ADS)
Valotassiou, V.; Papatriantafyllou, J.; Sifakis, N.; Karageorgiou, C.; Tsougos, I.; Tzavara, C.; Zerva, C.; Georgoulias, P.
2009-05-01
Introduction. Brain perfusion studies with single-photon emission computed tomography (SPECT) have been applied in demented patients to provide better discrimination between frontotemporal dementia (FTD) and Alzheimer's disease (AD). Aim. To assess the perfusion of specific Brodmann (Br) areas of the brain cortex in FTD and AD patients, using NeuroGam processing program to provide 3D voxel-by-voxel cerebral SPECT analysis. Material and methods. We studied 34 consecutive patients. We used the established criteria for the diagnosis of dementia and the specific established criteria for the diagnosis of FTD and AD. All the patients had a neuropsychological evaluation with a battery of tests including the mini-mental state examination (MMSE).Twenty-six patients (16 males, 10 females, mean age 68.76±6.51 years, education 11.81±4.25 years, MMSE 16.69±9.89) received the diagnosis of FTD and 8 patients (all females, mean age 71.25±10.48 years, education 10±4.6 years, MMSE 12.5±3.89) the diagnosis of AD. All the patients underwent a brain SPECT. We applied the NeuroGam Software for the evaluation of brain perfusion in specific Br areas in the left (L) and right (R) hemispheres. Results. Statistically significant hypoperfusion in FTD compared to AD patients, was found in the following Br areas: 11L (p<0.0001), 11R, 20L, 20R, 32L, 38L, 38R, 44L (p<0.001), 32R, 36L, 36R, 45L, 45R, 47R (p<0.01), 9L, 21L, 39R, 44R, 46R, 47L (p<0.05). On the contrary, AD patients presented significant (p<0.05) hypoperfusion in 7R and 39R Br areas. Conclusion. NeuroGam processing program of brain perfusion SPECT could result in enhanced accuracy for the differential diagnosis between AD and FTD patients.
Zheng, Xiujuan; Wei, Wentao; Huang, Qiu; Song, Shaoli; Wan, Jieqing; Huang, Gang
2017-01-01
The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.
Mandlik, Satish K; Ranpise, Nisharani S; Mohanty, Bhabani S; Chaudhari, Pradip R
2018-06-01
The present investigation deals with preparation and characterization of anti-migraine zolmitriptan (ZMT) nanostructured polymeric carriers for nose to brain drug targeting. The drug-loaded colloidal nanocarriers of ZMT were prepared by modified ionic gelation of cationic chitosan with anionic sodium tripolyphosphate and characterized for particle size, zeta potential, and entrapment efficiency. Further, in order to investigate nose to brain drug targeting, biodistribution, and brain kinetics studies were performed using 99m technetium radiolabeled nanocarriers ( 99m Tc-ZMTNP) in Swiss albino mice. The results were compared with intranasal pure drug solution ( 99m Tc-ZMT) and intravenous nanocarriers ( 99m Tc-ZMTNP). A single photon emission computerized tomography (SPECT) radioimaging studies were also carried out to visualize and confirm brain uptake of nanocarriers. The optimized nanocarriers showed particle size of 161 nm, entrapment efficiency of 80.6%, and zeta potential of + 23.7 mV. The pharmacokinetic parameters, C max , and AUC 0-∞ values for ZMT concentration in the brain expressed as percent radioactivity per gram of brain in intranasal and intravenous route of administration were calculated. The brain C max and AUC 0-∞ values found in three groups, intranasal 99m Tc-ZMTNP, intranasal 99m Tc-ZMT, and intravenous 99m Tc-ZMTNP were (0.427 and 1.889), (0.272 and 0.7157), and (0.204 and 0.9333), respectively. The higher C max values of intranasal 99m Tc-ZMTNP suggests better brain uptake as compared to other routes of administration. The significant higher values of nose to brain targeting parameters namely, drug targeting index (5.57), drug targeting efficiency (557.08%), and nose to brain drug direct transport (82.05%) confirmed drug targeting to brain via nasal route. The coupled bimodal SPECT-CT scintigrams confirm the brain uptake of intranasal 99m Tc-ZMTNP demonstrating major radioactivity accumulation in brain. This study conclusively demonstrated the greater uptake of ZMT-loaded nanocarriers by nose to brain drug targeting, which proves promising drug delivery system.
Kaneta, T; Katsuse, O; Hirano, T; Ogawa, M; Yoshida, K; Odawara, T; Hirayasu, Y; Inoue, T
2017-08-01
Arterial spin-labeling MR imaging has been recently developed as a noninvasive technique with magnetically labeled arterial blood water as an endogenous contrast medium for the evaluation of CBF. Our aim was to compare arterial spin-labeling MR imaging and SPECT in the visual assessment of CBF in patients with Alzheimer disease. In 33 patients with Alzheimer disease or mild cognitive impairment due to Alzheimer disease, CBF images were obtained by using both arterial spin-labeling-MR imaging with a postlabeling delay of 1.5 seconds and 2.5 seconds (PLD 1.5 and PLD 2.5 , respectively) and brain perfusion SPECT. Twenty-two brain regions were visually assessed, and the diagnostic confidence of Alzheimer disease was recorded. Among all arterial spin-labeling images, 84.9% of PLD 1.5 and 9% of PLD 2.5 images showed the typical pattern of advanced Alzheimer disease (ie, decreased CBF in the bilateral parietal, temporal, and frontal lobes). PLD 1.5 , PLD 2.5 , and SPECT imaging resulted in obviously different visual assessments. PLD 1.5 showed a broad decrease in CBF, which could have been due to an early perfusion. In contrast, PLD 2.5 did not appear to be influenced by an early perfusion but showed fewer pathologic findings than SPECT. The distinctions observed by us should be carefully considered in the visual assessments of Alzheimer disease. Further studies are required to define the patterns of change in arterial spin-labeling-MR imaging associated with Alzheimer disease. © 2017 by American Journal of Neuroradiology.
Booij, Jan; de Bruin, Kora; de Win, Maartje M L; Lavini, Cristina; den Heeten, Gerard J; Habraken, Jan B A
2003-08-01
A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand (123)I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [(123)I]FP-CIT binding ratios of the test/retest studies were 1.7 +/- 0.2 and 1.6 +/- 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [(123)I]FP-CIT binding ratios in rats is highly reproducible.
Amen, Daniel G; Wu, Joseph C; Taylor, Derek; Willeumier, Kristen
2011-01-01
Brain injuries are common in professional American football players. Finding effective rehabilitation strategies can have widespread implications not only for retired players but also for patients with traumatic brain injury and substance abuse problems. An open label pragmatic clinical intervention was conducted in an outpatient neuropsychiatric clinic with 30 retired NFL players who demonstrated brain damage and cognitive impairment. The study included weight loss (if appropriate); fish oil (5.6 grams a day); a high-potency multiple vitamin; and a formulated brain enhancement supplement that included nutrients to enhance blood flow (ginkgo and vinpocetine), acetylcholine (acetyl-l-carnitine and huperzine A), and antioxidant activity (alpha-lipoic acid and n-acetyl-cysteine). The trial average was six months. Outcome measures were Microcog Assessment of Cognitive Functioning and brain SPECT imaging. In the retest situation, corrected for practice effect, there were statistically significant increases in scores of attention, memory, reasoning, information processing speed and accuracy on the Microcog. The brain SPECT scans, as a group, showed increased brain perfusion, especially in the prefrontal cortex, parietal lobes, occipital lobes, anterior cingulate gyrus and cerebellum. This study demonstrates that cognitive and cerebral blood flow improvements are possible in this group with multiple interventions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langen, K.J.; Roosen, N.; Coenen, H.H.
SPECT studies with L-3-(123I)iodo-alpha-methyl tyrosine (IMT) were carried out in 10 patients with different types of brain tumors--first under fasting conditions (basal) and a week later during intravenous infusion of a mixture of naturally-occurring L-amino acids (AA load). An uptake index (UI) was calculated by dividing tissue count rates by the integral of plasma count rates. The UI decreased by 45.6% {plus minus} 15.4% (n = 10, p less than 0.001) for normal brain and by 53.2% {plus minus} 14.1% for gliomas (n = 5, p less than 0.01) during AA load compared to basal conditions, while two meningiomas andmore » a metastasis showed only a minor decrease (23.9 {plus minus} 5.7%, n.s.). Two pituitary adenomas could not be delineated on the SPECT scans. These data indicate that IMT competes with naturally-occurring L-amino acids for transport into normal brain and gliomas. Transport characteristics of IMT into tumors of nonglial origin appear to be different from those of gliomas. For both types of tumors, it is advisable to perform IMT-SPECT under fasting conditions.« less
A guide to SPECT equipment for brain imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffer, P.B.; Zubal, G.
1991-12-31
Single photon emission computed tomography (SPECT) was started by Kuhl and Edwards about 30 years ago. Their original instrument consisted of four focused Nal probes mounted on a moving gantry. During the 1980s, clinical SPECT imaging was most frequently performed using single-headed Anger-type cameras which were modified for rotational as well as static imaging. Such instruments are still available and may be useful in settings where there are few patients and SPECT is used only occasionally. More frequently, however, dedicated SPECT devices are purchased which optimize equipment potential while being user-friendly. Modern SPECT instrumentation incorporates improvements in the detector, computers,more » mathematical formulations, electronics and display systems. A comprehensive discussion of all aspects of SPECT is beyond the scope of this article. The authors, however, discuss general concepts of SPECT, the current state-of-the-art in clinical SPECT instrumentation, and areas of common misunderstanding. 9 refs.« less
Łacka, Katarzyna; Florczak, Jolanta; Gradecka-Kubik, Ilona; Rajewska, Justyna; Junik, Roman
2010-03-01
Lack of thyroid hormones in the womb and the first years of life causes changes in the nervous system and mental retardation. The aim of the study was to assess changes in peripheral and central nervous system in 29 adult patients with primary congenital hypothyroidism (PCH) depending on the cause of the disease and systematic treatment of L-thyroxine. The analysis was performed in 29 adult patients with PCH (16 women, 13 men) on the basis of the results of neurological examination, EEG, SPECT (Computer tomography single photon emission) of the brain. Changes in the nervous system were found in 72% of respondents. Patients who had implemented replacement therapy L-thyroxine after completing 12 months of age showed the most neurological disorders. There were variations in the cranial nerves III, IX, IV and VI. In 34% of respondents revealed paraneoplastic cerebellar symptoms, while the pyramid, and extrapyramidal symptoms in 10% and 3% of the people. EEG showed changes in brain bioelectrical activity in the entire study group. In the 83% found a significant asymmetry in regional cerebral blood flow (rCBF). Hypoperfusion outbreak occurred mainly in the stands and leading occipital. The relationship between time of initiation of treatment, and the presence of a systematic change in the nervous system was inversely proportional. In turn, analyzing the causes of most PCH deviations were found in the nervous system in patients with athyreosis. Brain SPECT study in these patients confirmed the organic changes in brain development. CONCLUSIONS. The presence and extent of changes in peripheral and central nervous system depends on the cause PCH, pending the implementation of L-thyroxine treatment and systematic. Studies of brain SPECT and EEG confirmed the existence of developmental changes of the brain in patients with PCH.
Nuclear medicine image registration by spatially noncoherent interferometry.
Scheiber, C; Malet, Y; Sirat, G; Grucker, D
2000-02-01
This article introduces a technique for obtaining high-resolution body contour data in the same coordinate frame as that of a rotating gamma camera, using a miniature range finder, the conoscope, mounted on the camera gantry. One potential application of the technique is accurate coregistration in longitudinal brain SPECT studies, using the face of the patient (or "mask"), instead of SPECT slices, to coregister subsequent acquisitions involving the brain. Conoscopic holography is an interferometry technique that relies on spatially incoherent light interference in birefringent crystals. In this study, the conoscope was used to measure the absolute distance (Z) between a light source reflected from the skin and its observation plane. This light was emitted by a 0.2-mW laser diode. A scanning system was used to image the face during SPECT acquisition. The system consisted of a motor-driven mirror (Y axis) and the gamma-camera gantry (1 profile was obtained for each rotation step, X axis). The system was calibrated to place the conoscopic measurements and SPECT slices in the same coordinate frame. Through a simple and robust calibration of the system, the SE for measurements performed on geometric shapes was less than 2 mm, i.e., less than the actual pixel size of the SPECT data. Biometric measurements of an anthropomorphic brain phantom were within 3%-5% of actual values. The mask data were used to register images of a brain phantom and of a volunteer's brain, respectively. The rigid transformation that allowed the merging of masks by visual inspection was applied to the 2 sets of SPECT slices to perform the fusion of the data. At the cost of an additional low-cost setup integrated into the gamma-camera gantry, real-time data about the surface of the head were obtained. As in all other surface-based techniques (as opposed to volume-based techniques), this method allows the match of data independently from the dataset of interest and facilitates further registration of data from any other source. The main advantage of this technique compared with other optically based methods is the robustness of the calibration procedure and the compactness of the sensor as a result of the colinearity of the projected beam and the reflected (diffused) beams of the conoscope. Taking into account the experimental nature of this preliminary work, significant improvements in the accuracy and speed of measurements (up to 1000 points/s) are expected.
Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaManna, M.M.; Sussman, N.M.; Harner, R.N.
1989-06-01
Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits.
Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries
2016-12-01
best uses of the device for naval medicine. 14. SUBJECT TERMS traumatic brain injuries, electroencephalography, EEG, use case study 15. NUMBER OF...Traumatic Brain Injury NCS Non-Convulsive Seizures PD Parkinson’s Disease QEEG Quantitative EEG SPECT Single-Photon Emission Computerized Tomography...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION This study examines the diagnosis of traumatic brain injuries (TBI). Early detection and diagnosis is
Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T
2014-05-01
Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.
Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo
2005-10-01
An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.
Nomura, Jun-ichi; Ogasawara, Kuniaki; Saito, Hideo; Terasaki, Kazunori; Matsumoto, Yoshiyasu; Takahashi, Yoshihiro; Ogasawara, Yasushi; Saura, Hiroaki; Yoshida, Koji; Sato, Yuiko; Kubo, Yoshitaka; Ogawa, Akira
2014-03-01
Misery perfusion increases the risk of stroke recurrence in patients with symptomatic major cerebral artery occlusion. The ratio of brain perfusion contralateral-to-affected asymmetry in the cerebellar hemisphere to brain perfusion affected-to-contralateral asymmetry in the cerebral hemisphere (CblPR/CbrPR) indicates affected-to-contralateral asymmetry of oxygen extraction fraction (OEF) in the cerebral hemisphere. The purpose of the present study was to determine whether the CblPR/CbrPR on brain perfusion single-photon emission computed tomography (SPECT) predicts 5-year outcomes in patients with symptomatic unilateral occlusion of the middle cerebral artery (MCA) or internal carotid artery (ICA). Brain perfusion was assessed using N-isopropyl-p-[123I]-iodoamphetamine (123I-IMP) SPECT in 70 patients. A region of interest (ROI) was manually placed in the bilateral MCA territories and in the bilateral cerebellar hemispheres, and the CblPR/CbrPR was calculated. All patients were prospectively followed for 5 years. The primary end points were stroke recurrence or death. A total of 17 patients exhibited the primary end points, 11 of whom experienced subsequent ipsilateral strokes. Multivariate analysis revealed that only high CblPR/CbrPR was significantly associated with the development of the primary end point or subsequent ipsilateral strokes (95% confidential limits [CIs], 1.130-3.145; P = 0.0114 or 95% CIs, 2.558-5.140; P = 0.0045, respectively). The CblPR/CbrPR provided 65% (11/17) or 91% (10/11) sensitivity and 88% (47/53) or 88% (52/59) specificity in predicting the primary end point or subsequent ipsilateral strokes, respectively. The CblPR/CbrPR on brain perfusion SPECT predicts 5-year outcomes in patients with symptomatic unilateral occlusion of the MCA or ICA.
A SPECT study of language and brain reorganization three years after pediatric brain injury.
Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D
2006-01-01
Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.
Pathological Laughing: Brain SPECT Findings.
Morland, David; Wolff, Valérie; Blondet, Cyrille; Marescaux, Christian; Namer, Izzie Jacques
2015-09-01
We present the case of a 40-year-old man consulting for uncontrollable episodes of laughing related to emotional lability and not systematically linked to feelings of happiness. Seven months earlier he had presented a pontine ischemic stroke related to an occlusion of the basilar and left vertebral arteries. No epileptic activity or new MRI brain lesions were found. Brain perfusion SPECT performed showed marked hypoperfusion in the right frontal inferior and temporoinsular regions, suggesting a diaschisis phenomenon caused by pontine lesions and highlighted laughing regulation pathways. The patient was successfully treated with a serotonergic reuptake inhibitor, fluoxetine.
Harada, Kengo; Saeki, Hiroshi; Matsuya, Eiji; Okita, Izumi
2013-11-01
We carried out differential diagnosis of brain blood flow images using single-photon emission computed tomography (SPECT) for patients with Parkinson's disease (PD) or progressive supranuclear paralysis (PSP) using statistical parametric mapping (SPM) and to whom we had applied anatomical standardization. We studied two groups and compared brain blood flow images using SPECT (N-isopropyl-4-iodoamphetamine [(123)I] hydrochloride injection, 222 MGq dosage i.v.). A total of 27 patients were studied using SPM: 18 with PD and 9 with PSP; humming bird sign on MRI was from moderate to medium. The decline of brain bloodstream in the PSP group was more notable in the midbrain, near the domain where the humming bird sign was observable, than in the PD group. The observable differences in brain bloodstream decline in the midbrain of PSP and PD patients suggest the potential usefulness of this technique's clinical application to distinction diagnosis.
Shields, T G; Duff, P M; Evans, S A; Gemmell, H G; Sharp, P F; Smith, F W; Staff, R T; Wilcock, S E
1997-01-01
OBJECTIVES: To explore the use of 99technetiumm-hexamethyl propylene amine oxime single photon computed tomography (HMPAO-SPECT) of the brain as a means of detecting nervous tissue damage in divers and to determine if there is any correlation between brain image and a diver's history of diving or decompression illness (DCI). METHODS: 28 commercial divers with a history of DCI, 26 divers with no history of DCI, and 19 non-diving controls were examined with brain HMPAO-SPECT. Results were classified by observer assessment as normal (I) or as a pattern variants (II-V). The brain images of a subgroup of these divers (n = 44) and the controls (n = 17) were further analysed with a first order texture analysis technique based on a grey level histogram. RESULTS: 15 of 54 commercial divers (28%) were visually assessed as having HMPAO-SPECT images outside normal limits compared with 15.8% in appropriately identified non-diver control subjects. 18% of divers with a history of DCI were classified as having a pattern different from the normal image compared with 38% with no history of DCI. No association was established between the presence of a pattern variant from the normal image and history of DCI, diving, or other previous possible neurological insult. On texture analysis of the brain images, divers had a significantly lower mean grey level (MGL) than non-divers. Divers with a history of DCI (n = 22) had a significantly lower MGL when compared with divers with no history of DCI (n = 22). Divers with > 14 years professional diving or > 100 decompression days a year had a significantly lower MGL value. CONCLUSIONS: Observer assessment of HMPAO-SPECT brain images can lead to disparity in results. Texture analysis of the brain images supplies both an objective and consistent method of measurement. A significant correlation was found between a low measure of MGL and a history of DCI. There was also an indication that diving itself had an effect on texture measurement, implying that it had caused subclinical nervous tissue damage. PMID:9166130
Resting functional imaging tools (MRS, SPECT, PET and PCT).
Van Der Naalt, J
2015-01-01
Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined. © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunaga, Shigeo, E-mail: shigeo-m@mui.biglobe.ne.jp; Shuto, Takashi; Takase, Hajime
Purpose: Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography ({sup 201}Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. Methods and Materials: The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of {sup 201}Tl SPECT data used the early ratio (ER) and the delayedmore » ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. Results: A total of 107 tumors were analyzed with {sup 201}Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P<.0001), but not in ER (P=.372), between the tumor recurrence and radiation necrosis groups, and no significant differences between metastatic brain tumors and high-grade gliomas in all indices (P=.926 for ER, P=.263 for DR, and P=.826 for RI). Receiver operating characteristics analysis indicated that RI was the most informative index with the optimum threshold of 0.775, which provided 82.8% sensitivity, 83.7% specificity, and 82.8% accuracy. Conclusions: Semiquantitative analysis of {sup 201}Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the most valuable index for this purpose.« less
Song, Jin-Ning; Chen, Hu; Zhang, Ming; Zhao, Yong-Lin; Ma, Xu-Dong
2013-03-01
Regional cerebral blood flow (rCBF) in the cerebral metabolism and energy metabolism measurements can be used to assess blood flow of brain cells and to detect cell activity. Changes of rCBF in the cerebral microcirculation and energy metabolism were determined in an experimental model of subarachnoid hemorrhage (SAH) model in 56 large-eared Japanese rabbits about 12 to 16-month old. Laser Doppler flowmetry was used to detect the blood supply to brain cells. Internal carotid artery and vein blood samples were used for duplicate blood gas analysis to assess the energy metabolism of brain cells. Cerebral blood flow (CBF) was detected by single photon emission computed tomography (SPECT) perfusion imaging using Tc-99m ethyl cysteinate dimer (Tc-99m ECD) as an imaging reagent. The percentage of injected dose per gram of brain tissue was calculated and analyzed. There were positive correlations between the percentage of radionuclide injected per gram of brain tissue and rCBF supply and cerebral metabolic rate for oxygen (P < 0.05). However, there was a negative correlation between radioactivity counts per unit volume detected on the SPECT rheoencephalogram and lactic acid concentration in the homolateral internal carotid artery and vein. In summary, this study found abnormal CBF in metabolism and utilization of brain cells after SAH, and also found that deterioration of energy metabolism of brain cells played a significant role in the development of SAH. There are matched reductions in CBF and metabolism. Thus, SPECT imaging could be used as a noninvasive method to detect CBF.
Sugita, Taku; Kondo, Yusuke; Ishino, Seigo; Mori, Ikuo; Horiguchi, Takashi; Ogawa, Mikako; Magata, Yasuhiro
2018-05-15
The purpose of this study is the development of novel fluorine-18-fluorodeoxyglucose (F-FDG)-PET and Tc-hexamethylpropylene amine oxime (HMPAO) SPECT methods with free-moving apparatus on conscious rats to investigate brain activity without the effects of anesthesia and tactual stimulation. We also assessed the sensitivity of the experimental system by an intervention study using fluoxetine as a reference drug. A catheter was inserted into the femoral vein and connected to a free-moving cannula system. After fluoxetine administration, the rats were given an injection of F-FDG or Tc-HMPAO via the intravenous cannula and released into a free-moving cage. After the tracer was trapped in the brain, the rats were anesthetized and scanned with PET or SPECT scanners. Then a volume of interest analysis and statistical parametric mapping were performed. We could inject the tracer without touching the rats, while keeping them conscious until the tracers were distributed and trapped in the brain using the developed system. The effects of fluoxetine on glucose uptake and cerebral blood flow were perceptively detected by volume of interest and statistical parametric mapping analysis. We successfully developed free-moving F-FDG-PET and Tc-HMPAO-SPECT imaging systems and detected detailed glucose uptake and cerebral blood flow changes in the conscious rat brain with fluoxetine administration. This system is expected to be useful to assess brain activity without the effects of anesthesia and tactual stimulation to evaluate drug effect or animal brain function.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.
Harch, Paul G.; Andrews, Susan R.; Fogarty, Edward F.; Lucarini, Juliette; Van Meter, Keith W.
2017-01-01
Mild traumatic brain injury (TBI) persistent post-concussion syndrome (PPCS) and post-traumatic stress disorder (PTSD) are epidemic in United States Iraq and Afghanistan War veterans. Treatment of the combined diagnoses is limited. The aim of this study is to assess safety, feasibility, and effectiveness of hyperbaric oxygen treatments (HBOT) for mild TBI PPCS and PTSD. Thirty military subjects aged 18–65 with PPCS with or without PTSD and from one or more blast-induced mild-moderate traumatic brain injuries that were a minimum of 1 year old and occurred after 9/11/2001 were studied. The measures included symptom lists, physical exam, neuropsychological and psychological testing on 29 subjects (1 dropout) and SPECT brain imaging pre and post HBOT. Comparison was made using SPECT imaging on 29 matched Controls. Side effects (30 subjects) experienced due to the HBOT: reversible middle ear barotrauma (n = 6), transient deterioration in symptoms (n = 7), reversible bronchospasm (n = 1), and increased anxiety (n = 2; not related to confinement); unrelated to HBOT: ureterolithiasis (n = 1), chest pain (n = 2). Significant improvement (29 subjects) was seen in neurological exam, symptoms, intelligence quotient, memory, measures of attention, dominant hand motor speed and dexterity, quality of life, general anxiety, PTSD, depression (including reduction in suicidal ideation), and reduced psychoactive medication usage. At 6-month follow-up subjects reported further symptomatic improvement. Compared to Controls the subjects' SPECT was significantly abnormal, significantly improved after 1 and 40 treatments, and became statistically indistinguishable from Controls in 75% of abnormal areas. HBOT was found to be safe and significantly effective for veterans with mild to moderate TBI PPCS with PTSD in all four outcome domains: clinical medicine, neuropsychology, psychology, and SPECT imaging. Veterans also experienced a significant reduction in suicidal ideation and reduction in psychoactive medication use. PMID:29152209
Harch, Paul G; Andrews, Susan R; Fogarty, Edward F; Lucarini, Juliette; Van Meter, Keith W
2017-01-01
Mild traumatic brain injury (TBI) persistent post-concussion syndrome (PPCS) and post-traumatic stress disorder (PTSD) are epidemic in United States Iraq and Afghanistan War veterans. Treatment of the combined diagnoses is limited. The aim of this study is to assess safety, feasibility, and effectiveness of hyperbaric oxygen treatments (HBOT) for mild TBI PPCS and PTSD. Thirty military subjects aged 18-65 with PPCS with or without PTSD and from one or more blast-induced mild-moderate traumatic brain injuries that were a minimum of 1 year old and occurred after 9/11/2001 were studied. The measures included symptom lists, physical exam, neuropsychological and psychological testing on 29 subjects (1 dropout) and SPECT brain imaging pre and post HBOT. Comparison was made using SPECT imaging on 29 matched Controls. Side effects (30 subjects) experienced due to the HBOT: reversible middle ear barotrauma ( n = 6), transient deterioration in symptoms ( n = 7), reversible bronchospasm ( n = 1), and increased anxiety ( n = 2; not related to confinement); unrelated to HBOT: ureterolithiasis ( n = 1), chest pain ( n = 2). Significant improvement (29 subjects) was seen in neurological exam, symptoms, intelligence quotient, memory, measures of attention, dominant hand motor speed and dexterity, quality of life, general anxiety, PTSD, depression (including reduction in suicidal ideation), and reduced psychoactive medication usage. At 6-month follow-up subjects reported further symptomatic improvement. Compared to Controls the subjects' SPECT was significantly abnormal, significantly improved after 1 and 40 treatments, and became statistically indistinguishable from Controls in 75% of abnormal areas. HBOT was found to be safe and significantly effective for veterans with mild to moderate TBI PPCS with PTSD in all four outcome domains: clinical medicine, neuropsychology, psychology, and SPECT imaging. Veterans also experienced a significant reduction in suicidal ideation and reduction in psychoactive medication use.
Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with 99mTc BN1.1
NASA Astrophysics Data System (ADS)
Scopinaro, F.; Paschali, E.; Di Santo, G.; Antonellis, T.; Massari, R.; Trotta, C.; Gourni, H.; Bouziotis, P.; David, V.; Soluri, A.; Varvarigou, A. D.
2006-12-01
The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. 99mTc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, 99mTc HMPAO and the new 99mTc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of 99mTc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of 99mTc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only 99mTc BN1.1 HR scan showed viability of transplanted TSC but also the "background brain" was the still now unknown map of BNR in mammalian brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drayer, B.; Jaszczak, R.; Coleman, E.
1982-06-01
An attempt was made to characterize, in vivo, specific binding to the muscarinic cholinergic receptor in the calf using the radioiodinated ligand quinuclidinyl benzilate (/sup 123/I-OH-QNB) and single photon detection emission computed tomography (SPECT). The supratentorial brain activity was significantly increased after the intravenous infusion of /sup 123/I-OH-QNB as compared to free /sup 123/I. Scopolamine, a muscarinic cholinergic receptor antagonist, decreased the measured brain activity when infused prior to /sup 123/I-OH-QNB consistent with pharmacologic blockade of specific receptor binding. Quantitative in vitro tissue distribution studies obtained following SPECT imaging were consistent with regionally distinct specific receptor binding in the striatummore » and cortical gray matter, nonspecific binding in the cerebellum, and pharmacologic blockade of specific binding sites with scopolamine. Although /sup 123/I-OH-QNB is not the ideal radioligand, our limited success will hopefully encourage the development of improved binding probes for SPECT imaging and quantitation.« less
Cerebral blood flow tomography with xenon-133
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lassen, N.A.
1985-10-01
Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This articlemore » discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.« less
Guinane, John; Ng, Boon Lung
2018-05-01
ABSTRACTBackground:Despite of their limited availability and potential for significant variation between and within each modality, this is the first study to prospectively measure the clinical utility of MRI and/or SPECT brain scanning in addition to the routine diagnostic workup of patients presenting to memory clinic. A single center study was conducted over a convenience of 12-month sampling period. For each patient referred for MRI and/or SPECT scanning, the primary geriatrician or psychogeriatrician was asked to assign an initial diagnosis. The initial diagnosis was then compared with the final consensus diagnosis after any scans or neuropsychology testing had been completed. During the 12-month study period, 66 patients (26%) were referred for scans out of a total of 253 patients included in the study. There were 16/44 (36%) positive MRI outcomes and 13/35 (37%) positive SPECT outcomes. The diagnosis changed consistent with the MRI scan findings in 11/44 (25%) and changed consistent with the SPECT scan findings in 9/35 (26%). Potentially reversible pathology was identified in a single patient, 1/50 (2%), via an MRI scan that suggested normal pressure hydrocephalus. The number needed to test for one positive outcome was 3.8 (95% CI 2.0-23.3), 6.0 (95% CI NA), and 1.7 (95% CI 1.3-2.5) for MRI only, SPECT only, and MRI and SPECT together, respectively. The clinical utility of MRI and/or SPECT scanning in this study may be broadly superior to the available international evidence, and further research is needed to identify predictors of positive scan outcomes.
Kaneta, Tomohiro; Nakatsuka, Masahiro; Nakamura, Kei; Seki, Takashi; Yamaguchi, Satoshi; Tsuboi, Masahiro; Meguro, Kenichi
2016-01-01
SPECT is an important diagnostic tool for dementia. Recently, statistical analysis of SPECT has been commonly used for dementia research. In this study, we evaluated the accuracy of visual SPECT evaluation and/or statistical analysis for the diagnosis (Dx) of Alzheimer disease (AD) and other forms of dementia in our community-based study "The Osaki-Tajiri Project." Eighty-nine consecutive outpatients with dementia were enrolled and underwent brain perfusion SPECT with 99mTc-ECD. Diagnostic accuracy of SPECT was tested using 3 methods: visual inspection (SPECT Dx), automated diagnostic tool using statistical analysis with easy Z-score imaging system (eZIS Dx), and visual inspection plus eZIS (integrated Dx). Integrated Dx showed the highest sensitivity, specificity, and accuracy, whereas eZIS was the second most accurate method. We also observed that a higher than expected rate of SPECT images indicated false-negative cases of AD. Among these, 50% showed hypofrontality and were diagnosed as frontotemporal lobar degeneration. These cases typically showed regional "hot spots" in the primary sensorimotor cortex (ie, a sensorimotor hot spot sign), which we determined were associated with AD rather than frontotemporal lobar degeneration. We concluded that the diagnostic abilities were improved by the integrated use of visual assessment and statistical analysis. In addition, the detection of a sensorimotor hot spot sign was useful to detect AD when hypofrontality is present and improved the ability to properly diagnose AD.
Le Jeune, Florence Prigent; Dubois, François; Blond, Serge; Steinling, Marc
2006-04-01
In the follow-up of treated gliomas, CT and MRI can often not differentiate radionecrosis from recurrent tumor. The aim of this study was to assess the interest of functional imaging with (99m)Tc-MIBI SPECT in a large series of 201 examinations. MIBI SPECT were performed in 81 patients treated for brain gliomas. A MIBI uptake index was computed as the ratio of counts in the lesion to counts in the controlateral region. SPECT was compared to stereotactic biopsy in 14 cases, or in the others cases to imaging evolution or clinical course at 6 months after the last tomoscintigraphy Two hundred and one tomoscintigraphies were performed. One hundred and two scans were true positive, 82 scans were true negative. Six scans were false positive (corresponding to 3 patients): 2 patients with an inflammatory reaction after radiosurgery, 1 with no explanation up to now. Eleven scans were false negative (5 patients): 1 patient with a deep peri-ventricular lesion, 2 patients with no contrast enhancement on MRI, 2 patients with a temporal tumor. The sensitivity for tumor recurrence was 90%, specificity 91.5% and accuracy 90.5%. We studied separately low and high grade glioma: sensitivity for tumor recurrence was respectively 91% and 89%, specificity 100% and 83% and accuracy 95% and 87%. MIBI SPECT allowed the diagnose of anaplasic degenerence of low grade sometimes earlier than clinical (5 cases) or MRI signs (7 cases). Our results confirm the usefullness of MIBI SPECT in the follow-up of treated gliomas for the differential diagnosis between radiation necrosis and tumor recurrence.
Lee, Si Un; Chung, Young Seob; Oh, Chang Wan; Kwon, O-Ki; Bang, Jae Seung; Hwang, Gyojun; Kim, Tackeun; Ahn, Seong Yeol
2016-06-01
The purposes of this study were to review the cerebrovascular events (CVE) during pregnancy and puerperium in adults with moyamoya disease (MMD) and to evaluate its risk factors. We reviewed electronic medical records on 141 pregnancies in 71 women diagnosed with MMD and this study included only 27 pregnancies (23 patients) diagnosed with MMD before pregnancy. Basal and acetazolamide-stress brain perfusion single-photon emission computed tomography (SPECT) was conducted for 40 hemispheres in 21 pregnancies within 1 year of the gestational period, ranging from 22 months before delivery to 12 months after delivery for evaluation of the hemodynamic status of the patients to devise the MMD treatment strategy. Twelve pregnancies (44.4%) showed CVE during pregnancy or puerperium in the group diagnosed with MMD before pregnancy. All the 12 CVE were ischemic, without any hemorrhagic events. A decreased cerebral vascular reserve capacity (CVRC) on stress SPECT was observed in 25 (62.5%) of the 40 hemispheres, and 18 of these 25 hemispheres showed TIA. In contrast, only 2 of 15 hemispheres which revealed normal CVRC on stress SPECT showed TIA. Overall, a decreased CVRC on stress SPECT imaging was statistically associated with development of CVE (P < 0.001). Furthermore, the clinical type of MMD was also regarded as predictive factor for CVE in this study. Especially, ischemic type MMD revealed a statistical association with the development of CVE (P = 0.014, odds ratio = 16.50). Assessment of cerebral hemodynamic status with stress SPECT may predict CVE during pregnancy and puerperium. Copyright © 2016 Elsevier Inc. All rights reserved.
Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease.
Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; De Carli, Fabrizio; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Morbelli, Silvia; Abruzzese, Giovanni; Sambuceti, Gianmario; Rodriguez, Guido
2011-12-01
Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naïve, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD.
NASA Astrophysics Data System (ADS)
Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.
2015-09-01
This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.
Staley, Julie K; van Dyck, Christopher H; Weinzimmer, David; Brenner, Eric; Baldwin, Ronald M; Tamagnan, Gilles D; Riccardi, Patrizia; Mitsis, Effie; Seibyl, John P
2005-09-01
(123)I-5-IA-85380 ((123)I-5-IA; [(123)I]-5-iodo-3-[2(S)-azetidinylmethoxy]pyridine) is a promising SPECT radiotracer for imaging beta(2)-containing nicotinic acetylcholine receptors (beta(2)-nAChRs) in brain. Beta(2)-nAChRs are the initial site of action of nicotine and are implicated in various neuropsychiatric disorders. The feasibility and reproducibility of the bolus-plus-constant-infusion paradigm for equilibrium modeling of (123)I-5-IA using SPECT in healthy nonsmokers was studied. Ten healthy nonsmokers (mean age +/- SD, 43.7 +/- 9.9 y) underwent two (123)I-5-IA SPECT scans within 4 wk. (123)I-5-IA was administered as a bolus (125.8 +/- 14.6 MBq) plus constant infusion (18.1 +/- 1.5 MBq/h). SPECT acquisitions (30 min) and venous blood sampling were performed every 60 min throughout the infusion (10-14 h). The test-retest variability and reliability of plasma activity (kBq/mL), the regional brain activity reflected by units of kBq/mL and %ID/mL (injected dose/mL brain tissue), and the equilibrium outcome measures V(T)' (ratio of total uptake to total plasma parent concentration) and V(T) (ratio of total uptake to free plasma parent concentration) were evaluated in 4 brain areas, including thalamus, striatum, cortex, and cerebellum. Linear regression analysis revealed that time-activity curves for both plasma and brain (123)I-5-IA activity stabilized by 5 h, with an average change of [2.5%/h between 6 and 8 h of infusion, permitting equilibrium modeling. The plasma free fraction (f(1)), total parent, and clearance demonstrated good test-retest variability (mean, 10.9%-12.5%), whereas the variability of free parent was greater (mean, 24.3%). Regional brain activity (kBq/mL) demonstrated good test-retest variability (11.1%-16.4%) that improved when corrected for infusion rate (mean, 8.2%-9.9%) or for injected dose (mean, 9.5%-13.3%). V(T)' demonstrated better test-retest variability (mean, 7.0%-8.9%) than V(T) (mean, 12.9%-14.6%). Reliability assessed by the intraclass correlation coefficient (ICC) was superior for kBq/mL (ICC = 0.83-0.90) and %ID/mL (ICC = 0.93-0.96) compared with V(T)' (ICC = 0.30-0.64) and V(T) (ICC = 0.28-0.60). The lower reliability of V(T) was attributed to the poor reliability of the free fraction (ICC = 0.35) and free parent (ICC = 0.68). These results support the feasibility and reproducibility of equilibrium imaging with (123)I-5-IA for measurement of beta(2)-nAChRs in human brain.
Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A
2013-01-01
A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.
[Successful treatment with anti-epileptic-drug of an 83-year-old man with musical hallucinosis].
Futamura, Akinori; Katoh, Hirotaka; Kawamura, Mitsuru
2014-05-01
An 83-year-old man with 3 years symptomatic hearing loss suddenly experienced musical hallucinosis. He heard children's songs, folk songs, military songs, and the Japanese national anthem for seven months every day. He sometime had paroxysmal nausea, dull headaches and depressive mood. On examination he had no psychosis or neurological symptoms except sensorineural hearing loss in both ears. MRI brain imaging and electroencephalography showed no significant abnormalities, however 123I-IMP brain SPECT showed decreased activity in the right temporal lobe and increased activity in the left temporal and parietal lobes. Late phase 123I-iomazenil brain SPECT showed decreased accumulation in the right temporal lobe compared to the early phase. This indicates right temporal lobe epilepsy. He was diagnosed with epilepsy because of paroxysmal nausea and headache and the laterality of 123I-IMP brain SPECT and 123I-iomazenil brain SPECT. The musical hallucinosis was much reduced by carbamazepine 200mg per day. Nine months after beginning carbamazepine we detected decreased activity in the right temporal lobe and increased activity in left temporal and parietal lobes was improved. We do not believe he had epileptogenic musical hallucinosis because his musical hallusinosis was neither paroxysmal nor lateral. We diagnosed auditory Charles Bonnet syndrome with onset 3 years after sensorineural hearing loss due to reversible epileptic like discharge in temporal and parietal lobes. There is no established treatment for musical hallucinosis, but anti-epileptic drugs may be of some help.
[Topodiagnosis of Creutzfeldt-Jakob disease using HMPAO-SPECT].
Heye, N; Farahati, J; Heinz, A; Büttner, T; Przuntek, H; Reiners, C
1993-02-01
An 80-year old female presented with early stage Creutzfeldt-Jakob disease with clinical, neurophysiological and neuropathological findings suggesting a focal involvement of the brain. HMPAO SPECT disclosed asymmetries of regional cerebral perfusion, thus suggesting that it may be a further diagnostic instrument in this disease.
Bors, Luca; Tóth, Kinga; Tóth, Estilla Zsófia; Bajza, Ágnes; Csorba, Attila; Szigeti, Krisztián; Máthé, Domokos; Perlaki, Gábor; Orsi, Gergely; Tóth, Gábor K; Erdő, Franciska
2018-05-01
Decreased beta-amyloid clearance in Alzheimer's disease and increased blood-brain barrier permeability in aged subjects have been reported in several articles. However, morphological and functional characterization of blood-brain barrier and its membrane transporter activity have not been described in physiological aging yet. The aim of our study was to explore the structural changes in the brain microvessels and possible functional alterations of P-glycoprotein at the blood-brain barrier with aging. Our approach included MR imaging for anatomical orientation in middle aged rats, electronmicroscopy and immunohistochemistry to analyse the alterations at cellular level, dual or triple-probe microdialysis and SPECT to test P-glycoprotein functionality in young and middle aged rats. Our results indicate that the thickness of basal lamina increases, the number of tight junctions decreases and the size of astrocyte endfeet extends with advanced age. On the basis of microdialysis and SPECT results the P-gp function is reduced in old rats. With our multiparametric approach a complex regulation can be suggested which includes elements leading to increased permeability of blood-brain barrier by enhanced paracellular and transcellular transport, and factors working against it. To verify the role of P-gp pumps in brain aging further studies are warranted. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Iofetamine hydrochloride I 123: a new radiopharmaceutical for cerebral perfusion imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druckenbrod, R.W.; Williams, C.C.; Gelfand, M.J.
1989-01-01
Iofetamine hydrochloride I-123 permits cerebral blood perfusion imaging with single photon emission computed tomography (SPECT). SPECT is more widely available than positron emission tomography, and complements anatomic visualization with X-ray computed tomography (CT) or magnetic resonance imaging. Iofetamine is an amphetamine analog that is rapidly taken up by the lungs, then redistributed principally to the liver and brain. The precise mechanism of localization has not been determined, but is believed to result from nonspecific receptor binding. Brain uptake peaks at 30 minutes postinjection and remains relatively constant through 60 minutes. The drug is metabolized and excreted in the urine, withmore » negligible activity remaining at 48 hours. When compared with CT in stroke patients, visualization may be performed sooner after symptom onset and a larger zone of involvement may be evident with iofetamine. Localization of seizure foci and diagnosis of Alzheimer's disease may also be possible. As CT has revolutionized noninvasive imaging of brain anatomy, SPECT with iofetamine permits routine cerebral blood flow imaging. 36 references.« less
Takeuchi, Wataru; Suzuki, Atsuro; Shiga, Tohru; Kubo, Naoki; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Umegaki, Kikuo; Tamaki, Nagara
2016-12-01
A brain single-photon emission computed tomography (SPECT) system using cadmium telluride (CdTe) solid-state detectors was previously developed. This CdTe-SPECT system is suitable for simultaneous dual-radionuclide imaging due to its fine energy resolution (6.6 %). However, the problems of down-scatter and low-energy tail due to the spectral characteristics of a pixelated solid-state detector should be addressed. The objective of this work was to develop a system for simultaneous Tc-99m and I-123 brain studies and evaluate its accuracy. A scatter correction method using five energy windows (FiveEWs) was developed. The windows are Tc-lower, Tc-main, shared sub-window of Tc-upper and I-lower, I-main, and I-upper. This FiveEW method uses pre-measured responses for primary gamma rays from each radionuclide to compensate for the overestimation of scatter by the triple-energy window method that is used. Two phantom experiments and a healthy volunteer experiment were conducted using the CdTe-SPECT system. A cylindrical phantom and a six-compartment phantom with five different mixtures of Tc-99m and I-123 and a cold one were scanned. The quantitative accuracy was evaluated using 18 regions of interest for each phantom. In the volunteer study, five healthy volunteers were injected with Tc-99m human serum albumin diethylene triamine pentaacetic acid (HSA-D) and scanned (single acquisition). They were then injected with I-123 N-isopropyl-4-iodoamphetamine hydrochloride (IMP) and scanned again (dual acquisition). The counts of the Tc-99m images for the single and dual acquisitions were compared. In the cylindrical phantom experiments, the percentage difference (PD) between the single and dual acquisitions was 5.7 ± 4.0 % (mean ± standard deviation). In the six-compartment phantom experiment, the PDs between measured and injected activity for Tc-99m and I-123 were 14.4 ± 11.0 and 2.3 ± 1.8 %, respectively. In the volunteer study, the PD between the single and dual acquisitions was 4.5 ± 3.4 %. This CdTe-SPECT system using the FiveEW method can provide accurate simultaneous dual-radionuclide imaging. A solid-state detector SPECT system using the FiveEW method will permit quantitative simultaneous Tc-99m and I-123 study to become clinically applicable.
Schreiber, Shaul; Dannon, Pinhas N; Goshen, Elinor; Amiaz, Revital; Zwas, Tzila S; Grunhaus, Leon
2002-11-30
Auditory command hallucinations probably arise from the patient's failure to monitor his/her own 'inner speech', which is connected to activation of speech perception areas of the left cerebral cortex and to various degrees of dysfunction of cortical circuits involved in schizophrenia as supported by functional brain imaging. We hypothesized that rapid transcranial magnetic stimulation (rTMS), by increasing cortical activation of the right prefrontal brain region, would bring about a reduction of the hallucinations. We report our first schizophrenic patient affected with refractory command hallucinations treated with 10 Hz rTMS. Treatment was performed over the right dorsolateral prefrontal cortex, with 1200 magnetic stimulations administered daily for 20 days at 90% motor threshold. Regional cerebral blood flow changes were monitored with neuroSPECT. Clinical evaluation and scores on the Positive and Negative Symptoms Scale and the Brief Psychiatric Rating Scale demonstrated a global improvement in the patient's condition, with no change in the intensity and frequency of the hallucinations. NeuroSPECT performed at intervals during and after treatment indicated a general improvement in cerebral perfusion. We conclude that right prefrontal rTMS may induce a general clinical improvement of schizophrenic brain function, without directly influencing the mechanism involved in auditory command hallucinations.
Sheehan, William; Thurber, Steven
2008-09-01
We summarize single proton emission computed tomography (SPECT) findings from 63 psychiatric patients in a small rural hospital in western Minnesota. SPECT scans were ordered only for patients in whom documentation of hypoperfusion and functional deficits might be helpful in clarifying diagnoses and treatment planning. The patients referred for SPECT scans had histories of traumatic brain injuries, atypical psychiatric symptom presentations, or conditions that were refractory to standard treatments. In the context of strict referral guidelines and close psychiatrist-radiologist collaboration, a much higher yield of significant findings was obtained compared with those noted in other reports in the literature.
Winter, Craig; Bell, Christopher; Whyte, Timothy; Cardinal, John; Macfarlane, David; Rose, Stephen
2015-07-01
Damage to the blood-brain barrier (BBB) is an important secondary mechanism that occurs following traumatic brain injury (TBI) and may provide a potential therapeutic target to improve patient outcome. For such a progress to be realised, an accurate assessment of BBB compromise needs to be established. Fourteen patients with TBI were prospectively recruited. Post-traumatic BBB dysfunction was assessed using dynamic contrast-enhanced MRI (DCE-MRI), single-photon emission computerised tomography (SPECT) and serum S100B levels. A statistically significant correlation between standardised uptake value ratio (SUVR) calculated from 99mTc-DTPA SPECT and K(trans) (a volume transfer constant) from DCE-MRI was found for those eight patients who had concurrent scans. The positive correlation persisted when the data were corrected for patient age, number of days following trauma and both parameters combined. We found no statistically significant correlation between either of the imaging modalities and concurrent serum S100B levels. The correlation of SPECT with DCE-MRI suggests that either scan may be used to assess post-traumatic BBB damage. We could not support serum S100B to be an accurate measure of BBB damage when sampled a number of days following injury but the small number of patients, the heterogeneity in TBI patients and the delay following injury makes any firm conclusions regarding S100B and BBB difficult.
Functional brain imaging and bioacoustics in the Bottlenose dolphins, Tursiops truncatus
NASA Astrophysics Data System (ADS)
Ridgway, Sam; Finneran, James; Carder, Donald; van Bonn, William; Smith, Cynthia; Houser, Dorian; Mattrey, Robert; Hoh, Carl
2003-10-01
The dolphin brain is the central processing computer for a complex and effective underwater echolocation and communication system. Until now, it has not been possible to study or diagnose disorders of the dolphin brain employing modern functional imaging methods like those used in human medicine. Our most recent studies employ established methods such as behavioral tasks, physiological observations, and computed tomography (CT) and, for the first time, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Trained dolphins slide out of their enclosure on to a mat and are transported by trainers and veterinarians to the laboratory for injection of a ligand. Following ligand injection, brief experiments include trained vocal responses to acoustic, visual, or tactile stimuli. We have used the ligand technetium (Tc-99m) biscisate (Neurolite) to image circulatory flow by SPECT. Fluro-deoxy-d-glucose (18-F-FDG) has been employed to image brain metabolism with PET. Veterinarians carefully monitored dolphins during and after the procedure. Through these methods, we have demonstrated that functional imaging can be employed safely and productively with dolphins to obtain valuable information on brain structure and function for medical and research purposes. Hemispheric differences and variations in flow and metabolism in different brain areas will be shown.
SPECT-CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone.
Sharma, Punit; Sharma, Shekhar; Ballal, Sanjana; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh
2012-09-01
To assess the patient radiation dose during routine clinical single-photon emission computed tomography-computed tomography (SPECT-CT) and measure the increase as compared with SPECT alone. Data pertaining to 357 consecutive patients who had undergone radioisotope imaging along with SPECT-CT of a selected volume were retrospectively evaluated. Dose of the injected radiopharmaceutical (MBq) was noted, and the effective dose (mSv) was calculated as per International Commission on Radiological Protection (ICRP) guidelines. The volume-weighted computed tomography dose index (CTDIvol) and dose length product of the CT were also assessed using standard phantoms. The effective dose (mSv) due to CT was calculated as the product of dose length product and a conversion factor depending on the region of investigation, using ICRP guidelines. The dose due to CT was compared among different investigations. The increase in effective dose was calculated as CT dose expressed as a percentage of radiopharmaceutical dose. The per-patient CT effective dose for different studies varied between 0.06 and 11.9 mSv. The mean CT effective dose was lowest for 99mTc-ethylene cysteine dimer brain SPECT-CT (0.9 ± 0.7) and highest for 99mTc-methylene diphosphonate bone SPECT-CT (4.2 ± 2.8). The increase in radiation dose (SPECT-CT vs. SPECT) varied widely (2.3-666.4% for 99mTc-tracers and 0.02-96.2% for 131I-tracers). However, the effective dose of CT in SPECT-CT was less than the values reported for conventional CT examinations of the same regions. Addition of CT to nuclear medicine imaging in the form of SPECT-CT increases the radiation dose to the patient, with the effective dose due to CT exceeding the effective dose of RP in many instances. Hence, appropriate utilization and optimization of the protocols of SPECT-CT is needed to maximize benefit to patients.
Real-time landmark-based unrestrained animal tracking system for motion-corrected PET/SPECT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.S. Goddard; S.S. Gleason; M.J. Paulus
2003-08-01
Oak Ridge National Laboratory (ORNL) and Jefferson Lab and are collaborating to develop a new high-resolution single photon emission tomography (SPECT) instrument to image unrestrained laboratory animals. This technology development will allow functional imaging studies to be performed on the animals without the use of anesthetic agents. This technology development could have eventual clinical applications for performing functional imaging studies on patients that cannot remain still (Parkinson's patients, Alzheimer's patients, small children, etc.) during a PET or SPECT scan. A key component of this new device is the position tracking apparatus. The tracking apparatus is an integral part of themore » gantry and designed to measure the spatial position of the animal at a rate of 10-15 frames per second with sub-millimeter accuracy. Initial work focuses on brain studies where anesthetic agents or physical restraint can significantly impact physiologic processes.« less
Warwick, J M; Carey, P; Van der Linden, G; Prinsloo, C; Niehaus, D; Seedat, S; Dupont, P; Stein, D J
2006-09-01
The serotonin specific reuptake inhibitor (SSRI) citalopram and the reversible mono-amine oxidase-A inhibitor (RIMA) moclobemide have both been used successfully for the treatment of social anxiety disorder (SAD). In this study we investigate the effects of these compounds on resting brain function using single photon emission computed tomography (SPECT). Subjects meeting DSM-IV criteria for SAD underwent regional cerebral blood flow (rCBF) SPECT using Tc-HMPAO at baseline and after 8 weeks of treatment with either citalopram or moclobemide. Using statistical parametric mapping brain SPECT studies were analysed to determine the effects of treatment on rCBF, to compare the effects of citalopram and moclobemide, and to detect correlations between changes in rCBF and clinical response. Subjects received citalopram (n=17) or moclobemide (n=14) as therapy. Subjects in both treatment groups demonstrated a significant improvement of SAD symptoms as measured by the Liebowitz Social Anxiety Scale total score. All subjects demonstrated a decrease in rCBF in the insulae post therapy. Subjects receiving citalopram had decreased superior cingulate rCBF after therapy compared to those receiving moclobemide. Both SSRI's and RIMA's decreased rCBF in the insulae during treatment of SAD; an effect that may be consistent with the role of these regions in processing internal somatic cues evoked by emotional stimuli. Citalopram had a greater effect on superior cingulate perfusion, an effect that is consistent with evidence of high levels of 5-HT transporters in this region.
Reproducibility Between Brain Uptake Ratio Using Anatomic Standardization and Patlak-Plot Methods.
Shibutani, Takayuki; Onoguchi, Masahisa; Noguchi, Atsushi; Yamada, Tomoki; Tsuchihashi, Hiroko; Nakajima, Tadashi; Kinuya, Seigo
2015-12-01
The Patlak-plot and conventional methods of determining brain uptake ratio (BUR) have some problems with reproducibility. We formulated a method of determining BUR using anatomic standardization (BUR-AS) in a statistical parametric mapping algorithm to improve reproducibility. The objective of this study was to demonstrate the inter- and intraoperator reproducibility of mean cerebral blood flow as determined using BUR-AS in comparison to the conventional-BUR (BUR-C) and Patlak-plot methods. The images of 30 patients who underwent brain perfusion SPECT were retrospectively used in this study. The images were reconstructed using ordered-subset expectation maximization and processed using an automatic quantitative analysis for cerebral blood flow of ECD tool. The mean SPECT count was calculated from axial basal ganglia slices of the normal side (slices 31-40) drawn using a 3-dimensional stereotactic region-of-interest template after anatomic standardization. The mean cerebral blood flow was calculated from the mean SPECT count. Reproducibility was evaluated using coefficient of variation and Bland-Altman plotting. For both inter- and intraoperator reproducibility, the BUR-AS method had the lowest coefficient of variation and smallest error range about the Bland-Altman plot. Mean CBF obtained using the BUR-AS method had the highest reproducibility. Compared with the Patlak-plot and BUR-C methods, the BUR-AS method provides greater inter- and intraoperator reproducibility of cerebral blood flow measurement. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
NASA Astrophysics Data System (ADS)
Lin, Alexander; Johnson, Lindsay C.; Shokouhi, Sepideh; Peterson, Todd E.; Kupinski, Matthew A.
2015-03-01
In synthetic-collimator SPECT imaging, two detectors are placed at different distances behind a multi-pinhole aperture. This configuration allows for image detection at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. Image multiplexing the undesired overlapping between images due to photon origin uncertainty may occur in both detector planes and is often present in the second detector plane due to greater magnification. However, artifact-free image reconstruction is possible by combining data from both the front detector (little to no multiplexing) and the back detector (noticeable multiplexing). When the two detectors are used in tandem, spatial resolution is increased, allowing for a higher sensitivity-to-detector-area ratio. Due to variability in detector distances and pinhole spacings found in synthetic-collimator SPECT systems, a large parameter space must be examined to determine optimal imaging configurations. We chose to assess image quality based on the task of estimating activity in various regions of a mouse brain. Phantom objects were simulated using mouse brain data from the Magnetic Resonance Microimaging Neurological Atlas (MRM NeAt) and projected at different angles through models of a synthetic-collimator SPECT system, which was developed by collaborators at Vanderbilt University. Uptake in the different brain regions was modeled as being normally distributed about predetermined means and variances. We computed the performance of the Wiener estimator for the task of estimating activity in different regions of the mouse brain. Our results demonstrate the utility of the method for optimizing synthetic-collimator system design.
Stamoulis, Catherine; Verma, Nishant; Kaulas, Himanshu; Halford, Jonathan J.; Duffy, Frank H.; Pearl, Phillip L.; Treves, S. Ted
2016-01-01
Objective Ictal SPECT is promising for accurate non-invasive localization of the epileptogenic brain tissue in focal epilepsies. However, high quality ictal scans require meticulous attention to the seizure onset. In a relatively large cohort of pediatric patients, this study investigated the impact of the timing of radiotracer injection, MRI findings and seizure characteristics on ictal SPECT localizations, and the relationship between concordance of ictal SPECT, scalp EEG and resected area with seizure freedom following epilepsy surgery. Methods Scalp EEG and ictal SPECT studies from 95 patients (48 males and 47 females, median age = 11 years, (25th, 75th) quartiles = (6.0, 14.75) years) with pharmacoresistant focal epilepsy and no prior epilepsy surgery were reviewed. The ictal SPECT result was examined as a function of the radiotracer injection delay, seizure duration, epilepsy etiology, cerebral lobe of seizure onset identified by EEG and MRI findings. Thirty two patients who later underwent epilepsy surgery had postoperative seizure freedom data at <1, 6 and 12 months. Results Sixty patients (63.2%) had positive SPECT localizations - 51 with a hyperperfused region that was concordant with the cerebral lobe of seizure origin identified by EEG and 9 with discordant localizations. Of these, 35 patients (58.3%) had temporal and 25 (41.7%) had extratemporal seizures. The ictal SPECT result was significantly correlated with the injection delay (p<0.01) and cerebral lobe of seizure onset (specifically frontal versus temporal; p = 0.02) but not MRI findings (p = 0.33), epilepsy etiology (p ≥ 0.27) or seizure duration (p = 0.20). Concordance of SPECT, scalp EEG and resected area was significantly correlated with seizure freedom at 6 months after surgery (p=0.04). Significance Ictal SPECT holds promise as a powerful source imaging tool for presurgical planning in pediatric epilepsies. To optimize the SPECT result the radiotracer injection delay should be minimized to ≤ 25 s, although the origin of seizure onset (specifically temporal versus frontal) also significantly impacts the localization. PMID:27918961
Stamoulis, Catherine; Verma, Nishant; Kaulas, Himanshu; Halford, Jonathan J; Duffy, Frank H; Pearl, Phillip L; Treves, S Ted
2017-01-01
Ictal SPECT is promising for accurate non-invasive localization of the epileptogenic brain tissue in focal epilepsies. However, high quality ictal scans require meticulous attention to the seizure onset. In a relatively large cohort of pediatric patients, this study investigated the impact of the timing of radiotracer injection, MRI findings and seizure characteristics on ictal SPECT localizations, and the relationship between concordance of ictal SPECT, scalp EEG and resected area with seizure freedom following epilepsy surgery. Scalp EEG and ictal SPECT studies from 95 patients (48 males and 47 females, median age=11years, (25th, 75th) quartiles=(6.0, 14.75) years) with pharmacoresistant focal epilepsy and no prior epilepsy surgery were reviewed. The ictal SPECT result was examined as a function of the radiotracer injection delay, seizure duration, epilepsy etiology, cerebral lobe of seizure onset identified by EEG and MRI findings. Thirty two patients who later underwent epilepsy surgery had postoperative seizure freedom data at <1, 6 and 12 months. Sixty patients (63.2%) had positive SPECT localizations - 51 with a hyperperfused region that was concordant with the cerebral lobe of seizure origin identified by EEG and 9 with discordant localizations. Of these, 35 patients (58.3%) had temporal and 25 (41.7%) had extratemporal seizures. The ictal SPECT result was significantly correlated with the injection delay (p<0.01) and cerebral lobe of seizure onset (specifically frontal versus temporal; p=0.02) but not MRI findings (p=0.33), epilepsy etiology (p≥0.27) or seizure duration (p=0.20). Concordance of SPECT, scalp EEG and resected area was significantly correlated with seizure freedom at 6 months after surgery (p=0.04). Ictal SPECT holds promise as a powerful source imaging tool for presurgical planning in pediatric epilepsies. To optimize the SPECT result the radiotracer injection delay should be minimized to≤25s, although the origin of seizure onset (specifically temporal versus frontal) also significantly impacts the localization. Copyright © 2016 Elsevier B.V. All rights reserved.
Congenital atresia of the external ear and tinnitus: a new syndrome.
Shulman, Abraham; Strashun, Arnold M; Goldstein, Barbara; Lenhardt, Martin L
2006-01-01
Congenital atresia of the external ears and severe tinnitus has been reported by two patients to be contralateral to the atretic ear. The use of the nuclear medicine imaging technique of single-photon emission computed tomography (SPECT) of brain has demonstrated hypoperfusion in brain areas supplied by the middle cerebral artery on the side of the atretic ear. Ultrahigh-frequency audiometry (UHFA) has revealed a bilateral loss of hearing greater than expected for the age of affected patients. Quantitative electroencephalography (QEEG) has shown a significant central nervous system electrical dysfunction correlated with the SPECT of brain findings. One case is reported in detail at this time. Completion of the medical audiological tinnitus patient protocol, including SPECT of brain, UHFA, and QEEG, accurately established the clinical tinnitus diagnosis of predominantly a central-type tinnitus, a clinical hypothesis that the medical significance of the tinnitus is a "soft" sign of cerebrovascular disease, and provided a rationale for treatment directed to a presumed ischemia of brain based on a receptor-targeted therapy targeted to the GABA-A receptor, resulting in significant tinnitus relief. Questions that have arisen include (1) the incidence of occurrence of hypoperfusion of the middle cerebral artery in congenital atresia patients; (2) implications and long-term consequences of this finding in this patient population for development of cerebrovascular disease; (3) brain plasticity for tinnitus relief (i.e., neuronal reprogramming, particularly in response to treatment recommendations for complaints of the cochleovestibular system in general and specifically for tinnitus); (4) the clinical significance of the UHFA thresholds of bilateral hearing loss greater than expected for the age of the patient; and (5) whether congenital atresia of the external ear may be part of a syndrome that includes hypoperfusion in brain areas supplied by the middle cerebral artery on the side of the atretic ear, ultra-high-frequency bilateral loss of hearing greater than expected for the age of the patient, and significant central nervous system electrical dysfunction. As far as we can determine, these findings, highlighted by the brain SPECT, have not previously been reported in patients with congenital atresia of the external ear.
Kolodziej, Angela; Lippert, Michael; Angenstein, Frank; Neubert, Jenni; Pethe, Annette; Grosser, Oliver S; Amthauer, Holger; Schroeder, Ulrich H; Reymann, Klaus G; Scheich, Henning; Ohl, Frank W; Goldschmidt, Jürgen
2014-12-01
Electrical and optogenetic methods for brain stimulation are widely used in rodents for manipulating behavior and analyzing functional connectivities in neuronal circuits. High-resolution in vivo imaging of the global, brain-wide, activation patterns induced by these stimulations has remained challenging, in particular in awake behaving mice. We here mapped brain activation patterns in awake, intracranially self-stimulating mice using a novel protocol for single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (rCBF). Mice were implanted with either electrodes for electrical stimulation of the medial forebrain bundle (mfb-microstim) or with optical fibers for blue-light stimulation of channelrhodopsin-2 expressing neurons in the ventral tegmental area (vta-optostim). After training for self-stimulation by current or light application, respectively, mice were implanted with jugular vein catheters and intravenously injected with the flow tracer 99m-technetium hexamethylpropyleneamine oxime (99mTc-HMPAO) during seven to ten minutes of intracranial self-stimulation or ongoing behavior without stimulation. The 99mTc-brain distributions were mapped in anesthetized animals after stimulation using multipinhole SPECT. Upon self-stimulation rCBF strongly increased at the electrode tip in mfb-microstim mice. In vta-optostim mice peak activations were found outside the stimulation site. Partly overlapping brain-wide networks of activations and deactivations were found in both groups. When testing all self-stimulating mice against all controls highly significant activations were found in the rostromedial nucleus accumbens shell. SPECT-imaging of rCBF using intravenous tracer-injection during ongoing behavior is a new tool for imaging regional brain activation patterns in awake behaving rodents providing higher spatial and temporal resolutions than 18F-2-fluoro-2-dexoyglucose positron emission tomography. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Newberg, Andrew B; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S; Wintering, Nancy
2014-01-01
This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to measure cerebral blood flow (CBF) and (123)I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.
Nuclear medicine and imaging research (quantitative studies in radiopharmaceutical science)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, M.; Beck, R.N.
1992-06-01
This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of (F18)fluorinated benzamides (dopamine D-2 receptor tracers), (F18)fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of (F18)-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.
Reduced striatal dopamine transporters in people with internet addiction disorder.
Hou, Haifeng; Jia, Shaowe; Hu, Shu; Fan, Rong; Sun, Wen; Sun, Taotao; Zhang, Hong
2012-01-01
In recent years, internet addiction disorder (IAD) has become more prevalent worldwide and the recognition of its devastating impact on the users and society has rapidly increased. However, the neurobiological mechanism of IAD has not bee fully expressed. The present study was designed to determine if the striatal dopamine transporter (DAT) levels measured by (99m)Tc-TRODAT-1 single photon emission computed tomography (SPECT) brain scans were altered in individuals with IAD. SPECT brain scans were acquired on 5 male IAD subjects and 9 healthy age-matched controls. The volume (V) and weight (W) of bilateral corpus striatum as well as the (99m)Tc-TRODAT-1 uptake ratio of corpus striatum/the whole brain (Ra) were calculated using mathematical models. It was displayed that DAT expression level of striatum was significantly decreased and the V, W, and Ra were greatly reduced in the individuals with IAD compared to controls. Taken together, these results suggest that IAD may cause serious damages to the brain and the neuroimaging findings further illustrate IAD is associated with dysfunctions in the dopaminergic brain systems. Our findings also support the claim that IAD may share similar neurobiological abnormalities with other addictive disorders.
Fresneau, Nathalie; Dumas, Noé; Tournier, Benjamin B; Fossey, Christine; Ballandonne, Céline; Lesnard, Aurélien; Millet, Philippe; Charnay, Yves; Cailly, Thomas; Bouillon, Jean-Philippe; Fabis, Frédéric
2015-04-13
With the aim to develop a suitable radiotracer for the brain imaging of the serotonin 4 receptor subtype (5-HT4R) using single photon emission computed tomography (SPECT), we synthesized and evaluated a library of di- and triazaphenanthridines with lipophilicity values which were in the range expected to favour brain penetration, and which demonstrated specific binding to the target of interest. Adding additional nitrogen atoms to previously described phenanthridine ligands exhibiting a high unspecific binding, we were able to design a radioiodinated compound [(125)I]14. This compound exhibited a binding affinity value of 0.094 nM toward human 5-HT4R and a high selectivity over other serotonin receptor subtypes (5-HTR). In vivo SPECT imaging studies and competition experiments demonstrated that the decreased lipophilicity (in comparison with our previously reported compounds 4 and 5) allowed a more specific labelling of the 5-HT4R brain-containing regions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde
2017-02-01
Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a 99m technetium-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, F.F. Jr.; McPherson, D.W.; Luo, H.
1995-06-01
Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development ofmore » the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.« less
A Silicon SPECT System for Molecular Imaging of the Mouse Brain.
Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E
2007-01-01
We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.
Fuchigami, Takeshi; Yamashita, Yuki; Haratake, Mamoru; Ono, Masahiro; Yoshida, Sakura; Nakayama, Morio
2014-05-01
We report radioiodinated chalcone derivatives as new SPECT imaging probes for amyloid β (Aβ) plaques. The monoethyleneoxy derivative 2 and allyloxy derivative 8 showed a high affinity for Aβ(1-42) aggregates with Ki values of 24 and 4.5 nM, respectively. Fluorescent imaging demonstrated that 2 and 8 clearly stained thioflavin-S positive Aβ plaques in the brain sections of Tg2576 transgenic mice. In vitro autoradiography revealed that [(125)I]2 displayed no clear accumulation toward Aβ plaques in the brain sections of Tg2576 mice, whereas the accumulation pattern of [(125)I]8 matched with the presence of Aβ plaques both in the brain sections of Tg2576 mice and an AD patient. In biodistribution studies using normal mice, [(125)I]2 showed preferable in vivo pharmacokinetics (4.82%ID/g at 2 min and 0.45%ID/g at 60 min), while [(125)I]8 showed only a modest brain uptake (1.62%ID/g at 2 min) with slow clearance (0.56%ID/g at 60 min). [(125)I]8 showed prospective binding properties for Aβ plaques, although further structural modifications are needed to improve the blood brain barrier permeability and washout from brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Using normalization 3D model for automatic clinical brain quantative analysis and evaluation
NASA Astrophysics Data System (ADS)
Lin, Hong-Dun; Yao, Wei-Jen; Hwang, Wen-Ju; Chung, Being-Tau; Lin, Kang-Ping
2003-05-01
Functional medical imaging, such as PET or SPECT, is capable of revealing physiological functions of the brain, and has been broadly used in diagnosing brain disorders by clinically quantitative analysis for many years. In routine procedures, physicians manually select desired ROIs from structural MR images and then obtain physiological information from correspondent functional PET or SPECT images. The accuracy of quantitative analysis thus relies on that of the subjectively selected ROIs. Therefore, standardizing the analysis procedure is fundamental and important in improving the analysis outcome. In this paper, we propose and evaluate a normalization procedure with a standard 3D-brain model to achieve precise quantitative analysis. In the normalization process, the mutual information registration technique was applied for realigning functional medical images to standard structural medical images. Then, the standard 3D-brain model that shows well-defined brain regions was used, replacing the manual ROIs in the objective clinical analysis. To validate the performance, twenty cases of I-123 IBZM SPECT images were used in practical clinical evaluation. The results show that the quantitative analysis outcomes obtained from this automated method are in agreement with the clinical diagnosis evaluation score with less than 3% error in average. To sum up, the method takes advantage of obtaining precise VOIs, information automatically by well-defined standard 3-D brain model, sparing manually drawn ROIs slice by slice from structural medical images in traditional procedure. That is, the method not only can provide precise analysis results, but also improve the process rate for mass medical images in clinical.
Studying Spatial Resolution of CZT Detectors Using Sub-Pixel Positioning for SPECT
NASA Astrophysics Data System (ADS)
Montémont, Guillaume; Lux, Silvère; Monnet, Olivier; Stanchina, Sylvain; Verger, Loïck
2014-10-01
CZT detectors are the basic building block of a variety of new SPECT systems. Their modularity allows adapting system architecture to specific applications such as cardiac, breast, brain or small animal imaging. In semiconductors, a high number of electron-hole pairs is produced by a single interaction. This direct conversion process allows better energy and spatial resolutions than usual scintillation detectors based on NaI(Tl). However, it remains often unclear if SPECT imaging can really benefit of that performance gain. We investigate the system performance of a detection module, which is based on 5 mm thick CZT with a segmented anode having a 2.5 mm pitch by simulation and experimentation. This pitch allows an easy assembly of the crystal on the readout board and limits the space occupied by electronics without significantly degrading energy and spatial resolution.
NASA Astrophysics Data System (ADS)
Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.
2005-11-01
Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.
Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara
2013-11-07
For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, '4-PMC' indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, (99m)Tc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.
Decision-making deficit of a patient with axonal damage after traumatic brain injury.
Yasuno, Fumihiko; Matsuoka, Kiwamu; Kitamura, Soichiro; Kiuchi, Kuniaki; Kosaka, Jun; Okada, Koji; Tanaka, Syohei; Shinkai, Takayuki; Taoka, Toshiaki; Kishimoto, Toshifumi
2014-02-01
Patients with traumatic brain injury (TBI) were reported to have difficulty making advantageous decisions, but the underlying deficits of the network of brain areas involved in this process were not directly examined. We report a patient with TBI who demonstrated problematic behavior in situations of risk and complexity after cerebral injury from a traffic accident. The Iowa gambling task (IGT) was used to reveal his deficits in the decision-making process. To examine underlying deficits of the network of brain areas, we examined T1-weighted structural MRI, diffusion tensor imaging (DTI) and Tc-ECD SPECT in this patient. The patient showed abnormality in IGT. DTI-MRI results showed a significant decrease in fractional anisotropy (FA) in the fasciculus between the brain stem and cortical regions via the thalamus. He showed significant decrease in gray matter volumes in the bilateral insular cortex, hypothalamus, and posterior cingulate cortex, possibly reflecting Wallerian degeneration secondary to the fasciculus abnormalities. SPECT showed significant blood flow decrease in the broad cortical areas including the ventromedial prefrontal cortex (VM). Our study showed that the patient had dysfunctional decision-making process. Microstructural abnormality in the fasciculus, likely from the traffic accident, caused reduced afferent feedback to the brain, resulting in less efficient decision-making. Our findings support the somatic-marker hypothesis (SMH), where somatic feedback to the brain influences the decision-making process. Copyright © 2013 Elsevier Inc. All rights reserved.
Ohmichi, Takuma; Kondo, Masaki; Itsukage, Masahiro; Koizumi, Hidetaka; Matsushima, Shigenori; Kuriyama, Nagato; Ishii, Kazunari; Mori, Etsuro; Yamada, Kei; Mizuno, Toshiki; Tokuda, Takahiko
2018-03-16
OBJECTIVE The gold standard for the diagnosis of idiopathic normal pressure hydrocephalus (iNPH) is the CSF removal test. For elderly patients, however, a less invasive diagnostic method is required. On MRI, high-convexity tightness was reported to be an important finding for the diagnosis of iNPH. On SPECT, patients with iNPH often show hyperperfusion of the high-convexity area. The authors tested 2 hypotheses regarding the SPECT finding: 1) it is relative hyperperfusion reflecting the increased gray matter density of the convexity, and 2) it is useful for the diagnosis of iNPH. The authors termed the SPECT finding the convexity apparent hyperperfusion (CAPPAH) sign. METHODS Two clinical studies were conducted. In study 1, SPECT was performed for 20 patients suspected of having iNPH, and regional cerebral blood flow (rCBF) of the high-convexity area was examined using quantitative analysis. Clinical differences between patients with the CAPPAH sign (CAP) and those without it (NCAP) were also compared. In study 2, the CAPPAH sign was retrospectively assessed in 30 patients with iNPH and 19 healthy controls using SPECT images and 3D stereotactic surface projection. RESULTS In study 1, rCBF of the high-convexity area of the CAP group was calculated as 35.2-43.7 ml/min/100 g, which is not higher than normal values of rCBF determined by SPECT. The NCAP group showed lower cognitive function and weaker responses to the removal of CSF than the CAP group. In study 2, the CAPPAH sign was positive only in patients with iNPH (24/30) and not in controls (sensitivity 80%, specificity 100%). The coincidence rate between tight high convexity on MRI and the CAPPAH sign was very high (28/30). CONCLUSIONS Patients with iNPH showed hyperperfusion of the high-convexity area on SPECT; however, the presence of the CAPPAH sign did not indicate real hyperperfusion of rCBF in the high-convexity area. The authors speculated that patients with iNPH without the CAPPAH sign, despite showing tight high convexity on MRI, might have comorbidities such as Alzheimer's disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, M.; Beck, R.N.
1992-06-01
This report describes three studies aimed at using radiolabeled pharmaceuticals to explore brain function and anatomy. The first section describes the chemical preparation of [F18]fluorinated benzamides (dopamine D-2 receptor tracers), [F18]fluorinated benzazepines (dopamine D-1 receptor tracers), and tissue distribution of [F18]-fluoxetine (serotonin reuptake site tracer). The second section relates pharmacological and behavioral studies of amphetamines. The third section reports on progress made with processing of brain images from CT, MRI and PET/SPECT with regards to brain metabolism of glucose during mental tasks.
Brain imaging with sup 123 I-IMP-SPECT in migraine between attacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlake, H.P.; Boettger, I.G.G.; Grotemeyer, K.H.
1989-06-01
{sup 123}I-IMP-SPECT brain imaging was performed in patients with classic migraine (n = 5) and migraine accompagnee (n = 18) during the headache-free interval. A regional reduction of tracer uptake into brain was observed in all patients with migraine accompagnee, while in patients with classic migraine only one case showed an area of decreased activity. The most marked alteration was found in a patient with persisting neurological symptoms (complicated migraine). In most cases the areas of decreased tracer uptake corresponded to headache localization as well as to topography of neurologic symptoms during migraine attacks. It may be concluded that migrainemore » attacks occur in connection with exacerbations of preexisting changes of cerebral autoregulation due to endogenous or exogenous factors.« less
Nuclear emission-based imaging in the study of brain function
NASA Astrophysics Data System (ADS)
Sossi, Vesna
2016-09-01
Nuclear emission - based imaging has been used in medicine for decades either in the form of Single Photon Emission Computerized Tomography (SPECT) or Positron Emission Tomography (PET). Both techniques are based on radiolabelling molecules of biological interest (radiotracers) with either a gamma (SPECT) or a positron (PET) emitting radionuclide. By detecting radiation from the radiolabels and reconstructing the acquired data it is possible to form an image of the radiotracer distribution in the body and thus obtain information on the biological process that the radiotracer is tagging. While most of the clinical applications of PET are in oncology, where the glucose analogue 18F-flurodeoxyglocose (FDG) is the most commonly used radiotracer, the importance of PET imaging for brain applications is rapidly increasing. Numerous radiotracers exist that can tag different neurotransmitter systems as well as abnormal protein aggregations that are known to underlie several brain diseases: amyloid deposition, a characteristic of Alzheimer's, and, more recently, tau deposition, which is deemed abnormal not only in dementia, but also in Parkinson's syndrome and traumatic brain injury. Imaging has shown that may brain diseases start decades before clinical symptoms, in part explaining the difficulty of developing adequate treatments. This talk will briefly summarize the role of PET imaging in the study of neurodegeneration and discuss the upcoming hybrid PET/MRI imaging instrumentation. NSERC, CIHR, MJFF.
[Application of SPECT/CT in neurosurgical practice].
Golanov, A V; Kotel'nikova, T M; Melikian, A G; Dolgushin, M B; Sorokin, V S; Soboleva, O I; Khokhlova, E V; Gorlachev, G E; Krasnianskiĭ, S A
2012-01-01
The paper presents the experience of application of single-photon emission computed tomography (SPECT) and CT in neurosurgery. Combination of these two techniques in the single system provides higher precision of both methods. The novel technique allows assessment of tumor spread in the brain, differential diagnosis of tumor regrowth and radiation-induced necrosis, evaluation of cerebral perfusion in epilepsy, traumatic brain injury (TBI), and diagnostics of secondary CNS lesions. Examples of primary diagnosis, dynamic follow-up and differential diagnosis of cerebral neoplasms, localization of epileptogenic foci in planning of surgery, prediction of outcome after TBI and evaluation of spread of metastatic skeletal involvement and further application of acquire data are presented.
Inoue, Kentaro; Ito, Hiroshi; Shidahara, Miho; Goto, Ryoi; Kinomura, Shigeo; Sato, Kazunori; Taki, Yasuyuki; Okada, Ken; Kaneta, Tomohiro; Fukuda, Hiroshi
2006-02-01
The limited spatial resolution of SPECT causes a partial volume effect (PVE) and can lead to the significant underestimation of regional tracer concentration in the small structures surrounded by a low tracer concentration, such as the cortical gray matter of an atrophied brain. The aim of the present study was to determine, using 123I-IMP and SPECT, normal CBF of elderly subjects with and without PVE correction (PVC), and to determine regional differences in the effect of PVC and their association with the regional tissue fraction of the brain. Quantitative CBF SPECT using 123I-IMP was performed in 33 healthy elderly subjects (18 males, 15 females, 54-74 years old) using the autoradiographic method. We corrected CBF for PVE using segmented MR images, and analyzed quantitative CBF and regional differences in the effect of PVC using tissue fractions of gray matter (GM) and white matter (WM) in regions of interest (ROIs) placed on the cortical and subcortical GM regions and deep WM regions. The mean CBF in GM-ROIs were 31.7 +/- 6.6 and 41.0 +/- 8.1 ml/100 g/min for males and females, and in WM-ROIs, 18.2 +/- 0.7 and 22.9 +/- 0.8 ml/100 g/min for males and females, respectively. The mean CBF in GM-ROIs after PVC were 50.9 +/- 12.8 and 65.8 +/- 16.1 ml/100 g/min for males and females, respectively. There were statistically significant differences in the effect of PVC among ROIs, but not between genders. The effect of PVC was small in the cerebellum and parahippocampal gyrus, and it was large in the superior frontal gyrus, superior parietal lobule and precentral gyrus. Quantitative CBF in GM recovered significantly, but did not reach values as high as those obtained by invasive methods or in the H2(15)O PET study that used PVC. There were significant regional differences in the effect of PVC, which were considered to result from regional differences in GM tissue fraction, which is more reduced in the frontoparietal regions in the atrophied brain of the elderly.
Hadanny, A.; Golan, H.; Fishlev, G.; Bechor, Y.; Volkov, O.; Suzin, G.; Ben-Jacob, E.; Efrati, S.
2015-01-01
Abstract Purpose: Cognitive impairment may occur in 42–50% of cardiac arrest survivors. Hyperbaric oxygen therapy (HBO2) has recently been shown to have neurotherapeutic effects in patients suffering from chronic cognitive impairments (CCI) consequent to stroke and mild traumatic brain injury. The objective of this study was to assess the neurotherapeutic effect of HBO2 in patients suffering from CCI due to cardiac arrest. Methods: Retrospective analysis of patients with CCI caused by cardiac arrest, treated with 60 daily sessions of HBO2. Evaluation included objective computerized cognitive tests (NeuroTrax), Activity of Daily Living (ADL) and Quality of life questionnaires. The results of these tests were compared with changes in brain activity as assessed by single photon emission computed tomography (SPECT) brain imaging. Results: The study included 11 cases of CCI patients. Patients were treated with HBO2, 0.5–7.5 years (mean 2.6 ± 0.6 years) after the cardiac arrest. HBO2 was found to induce modest, but statistically significant improvement in memory, attention and executive function (mean scores) of 12% , 20% and 24% respectively. The clinical improvements were found to be well correlated with increased brain activity in relevant brain areas as assessed by computerized analysis of the SPECT imaging. Conclusions: Although further research is needed, the results demonstrate the beneficial effects of HBO2 on CCI in patients after cardiac arrest, even months to years after the acute event. PMID:26409406
Comparison of ( sup 99m Tc)HMPAO SPECT with ( sup 18 F)fluoromethane PET in cerebrovascular disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiss, W.D.; Herholz, K.; Podreka, I.
1990-09-01
Positron emission tomography (PET) of (18F)fluoromethane (FM) and single-photon emission tomography (SPECT) of (99mTc)hexamethylpropyleneamine oxime (HMPAO) were performed under identical conditions within 2 h in 22 patients suffering from cerebrovascular disease (8 ischemic infarction, 2 intracerebral hemorrhages, 7 transient ischemic attacks, and 5 multi-infarct syndrome). While gross pathological changes could be seen in the images of either procedure, focal abnormalities corresponding to transient ischemic deficits or to lesions in multi-infarct syndrome and areas of functional deactivation were sometimes missed on SPECT images. Overall, HMPAO SPECT images showed less contrast between high and low activity regions than the FM PET images,more » and differences between lesions and contralateral regions were less pronounced (6.4 vs 13.3% difference). Regional cerebral blood flow (rCBF) was calculated from FM PET studies in 14 large territorial regions and the pathological lesion, and the regional values relative to mean flow were compared to the relative HMPAO uptake in an identical set of regions defined on the SPECT images. Among individual patients, the Spearman rank-correlation coefficient between relative rCBF and HMPAO uptake varied between 0.48 and 0.89, with a mean of 0.70. While an underestimation of high flow with SPECT--which was demonstrated in a curvilinear relationship between all relative regional PET and SPECT values--could be corrected by linearization taking into account HMPAO efflux from the brain before metabolic trapping, correspondence of SPECT data with PET rCBF values was not improved since this procedure also increased the variance in high flow areas. In the cerebellum, however, a high HMPAO uptake in SPECT always overestimated CBF in relation to forebrain values; this finding might be due to high capillary density in the cerebellum.« less
Design and evaluation of two multi-pinhole collimators for brain SPECT.
Chen, Ling; Tsui, Benjamin M W; Mok, Greta S P
2017-10-01
SPECT is a powerful tool for diagnosing or staging brain diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) but is limited by its inferior resolution and sensitivity. At the same time, pinhole SPECT provides superior resolution and detection efficiency trade-off as compared to the conventional parallel-hole collimator for imaging small field-of-view (FOV), which fits for the case of brain imaging. In this study, we propose to develop and evaluate two multi-pinhole (MPH) collimator designs to improve the imaging of cerebral blood flow and striatum. We set the target resolutions to be 12 and 8 mm, respectively, and the FOV at 200 mm which is large enough to cover the whole brain. The constraints for system optimization include maximum and minimum detector-to-center-of-FOV (CFOV) distances of 344 and 294 mm, respectively, and minimal radius-of-rotation (ROR) of 135 mm to accommodate patients' shoulder. According to the targeted FOV, resolutions, and constraints, we determined the pinhole number, ROR, focal length, aperture acceptance angle, and aperture diameter which maximized the system sensitivity. We then assessed the imaging performance of the proposed MPH and standard low-energy high-resolution (LEHR) collimators using analytical simulations of a digital NCAT brain phantom with 99m Tc-HMPAO/ 99m Tc-TRODAT-1 distributions; Monte Carlo simulations of a hot-rod phantom; and a Defrise phantom using GATE v6.1. Projections were generated over 360° and reconstructed using the 3D MPH/LEHR OS-EM methods with up to 720 updates. The normalized mean square error (NMSE) was calculated over the cerebral and striatal regions extracted from the reconstructed images for 99m Tc-HMPAO and 99m Tc-TRODAT-1 simulations, respectively, and average normalized standard deviation (NSD) based on 20 noise realizations was assessed on selected uniform 3D regions as the noise index. Visual assessment and image profiles were applied to the results of Monte Carlo simulations. The optimized design parameters of the MPH collimators were 9 pinholes with 4.7 and 2.8 mm pinhole diameter, 73° acceptance angle, 127 mm focal length, 167 mm ROR for 12 mm and 8 mm target resolution, respectively. According to the optimization results, the detection efficiencies of the proposed collimators were 270 and 40% more as compared to LEHR. The Monte Carlo simulations showed that 7.9 and 6.4 mm rods can be discriminated for the MPH collimators with target resolutions of 12 and 8 mm, respectively. The eight 12 mm-thick discs of the Defrise phantom can also be resolved clearly in the axial plane as demonstrated by the image profiles generated with the MPH collimators. The two collimator designs provide superior image quality as compared to the conventional LEHR, and shows potential to improve current brain SPECT imaging based on a conventional SPECT scanner.
Umile, Eric M; Sandel, M Elizabeth; Alavi, Abass; Terry, Charles M; Plotkin, Rosette C
2002-11-01
To determine whether patients with mild traumatic brain injury (TBI) and persistent postconcussive symptoms have evidence of temporal lobe injury on dynamic imaging. Case series. An academic medical center. Twenty patients with a clinical diagnosis of mild TBI and persistent postconcussive symptoms were referred for neuropsychologic evaluation and dynamic imaging. Fifteen (75%) had normal magnetic resonance imaging (MRI) and/or computed tomography (CT) scans at the time of injury. Neuropsychologic testing, positron-emission tomography (PET), and single-photon emission-computed tomography (SPECT). Temporal lobe findings on static imaging (MRI, CT) and dynamic imaging (PET, SPECT); neuropsychologic test findings on measures of verbal and visual memory. Testing documented neurobehavioral deficits in 19 patients (95%). Dynamic imaging documented abnormal findings in 18 patients (90%). Fifteen patients (75%) had temporal lobe abnormalities on PET and SPECT (primarily in medial temporal regions); abnormal findings were bilateral in 10 patients (50%) and unilateral in 5 (25%). Six patients (30%) had frontal abnormalities, and 8 (40%) had nonfrontotemporal abnormalities. Correlations between neuropsychologic testing and dynamic imaging could be established but not consistently across the whole group. Patients with mild TBI and persistent postconcussive symptoms have a high incidence of temporal lobe injury (presumably involving the hippocampus and related structures), which may explain the frequent finding of memory disorders in this population. The abnormal temporal lobe findings on PET and SPECT in humans may be analogous to the neuropathologic evidence of medial temporal injury provided by animal studies after mild TBI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
Hippocampal perfusion predicts impending neurodegeneration in REM sleep behavior disorder.
Dang-Vu, Thien Thanh; Gagnon, Jean-François; Vendette, Mélanie; Soucy, Jean-Paul; Postuma, Ronald B; Montplaisir, Jacques
2012-12-11
Patients with idiopathic REM sleep behavior disorder (IRBD) are at risk for developing Parkinson disease (PD) and dementia with Lewy bodies (DLB). We aimed to identify functional brain imaging patterns predicting the emergence of PD and DLB in patients with IRBD, using SPECT with (99m)Tc-ethylene cysteinate dimer (ECD). Twenty patients with IRBD were scanned at baseline during wakefulness using (99m)Tc-ECD SPECT. After a follow-up of 3 years on average, patients were divided into 2 groups according to whether or not they developed defined neurodegenerative disease (PD, DLB). SPECT data analysis comparing regional cerebral blood flow (rCBF) between groups assessed whether specific brain perfusion patterns were associated with subsequent clinical evolution. Regression analysis between rCBF and clinical markers of neurodegeneration (motor, color vision, olfaction) looked for neural structures involved in this process. Of the 20 patients with IRBD recruited for this study, 10 converted to PD or DLB during the follow-up. rCBF at baseline was increased in the hippocampus of patients who would later convert compared with those who would not (p < 0.05 corrected). Hippocampal perfusion was correlated with motor and color vision scores across all IRBD patients. (99m)Tc-ECD SPECT identifies patients with IRBD at risk for conversion to other neurodegenerative disorders such as PD or DLB; disease progression in IRBD is predicted by abnormal perfusion in the hippocampus at baseline. Perfusion within this structure is correlated with clinical markers of neurodegeneration, further suggesting its involvement in the development of presumed synucleinopathies.
Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J; Dierckx, Rudi A J O; Koole, Michel; Doorduin, Janine
2015-01-01
High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70 ± 0.32 mm for [18F]FDG (n = 25), 0.23 ± 0.10mm for [11C]flumazenil (n = 13), 0.88 ± 0.20 mm for [11C]MeDAS (n = 15), 0.64 ± 0.28 mm for [11C]PK11195 (n = 19), 0.34 ± 0.15 mm for [11C]raclopride (n = 6), and 0.40 ± 0.13 mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p<0.001). Additionally, registration errors were smallest with strain-specific templates (p<0.05), and when images and templates had the same size (p ≤ 0.001). Moreover, highest registration errors were found for the focal lesion group (p<0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community [corrected].
Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J.; Dierckx, Rudi A. J. O.; Koole, Michel; Doorduin, Janine
2015-01-01
High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70±0.32mm for [18F]FDG (n = 25), 0.23±0.10mm for [11C]flumazenil (n = 13), 0.88±0.20 mm for [11C]MeDAS (n = 15), 0.64±0.28mm for [11C]PK11195 (n = 19), 0.34±0.15mm for [11C]raclopride (n = 6), and 0.40±0.13mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p&0.001). Additionally, registration errors were smallest with strain-specific templates (p&0.05), and when images and templates had the same size (p≤0.001). Moreover, highest registration errors were found for the focal lesion group (p&0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows accurate registration of functional rat brain data, independent of disease specific uptake patterns and with registration error below spatial resolution of the cameras. The templates and the SAMIT package will be freely available for the research community. PMID:25823005
Newberg, Andrew B.; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S.; Wintering, Nancy
2014-01-01
Background This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Methods and Findings Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both 99mTc exametazime to measure cerebral blood flow (CBF) and 123I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Conclusions Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario. PMID:24475210
Radiosynthesis and evaluation of novel acetylcholine receptor radioligands
NASA Astrophysics Data System (ADS)
Pimlott, Sally L.
Neuroreceptor single photon emission computed tomography (SPECT) imaging provides a powerful tool for the evaluation of the function of a neurotransmitter system in normal and or disease states in the living human brain. The cholinergic system is involved in the control of a variety of complex functions including learning, memory and modulation of behaviour. Deficits in the cholinergic system have been found in a number of neurological diseases, such as Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Epilepsy. Acetylcholine receptors (AChRs) are divided into two classes, muscarinic and nicotinic. The aim of this project was to develop two novel SPECT AChR ligands: (R,R)[123I]I-QNB, a M1 subtype selective muscarinic acetylcholine receptor (mAChR) ligand, and 5-[123I]-A-85380, a alpha4beta2 subtype selective nicotinic receptor (nAChR) ligand, for use in human SPECT imaging studies. The calculation of the binding potential of a ligand can be used to obtain quantitative information from a SPECT scan, enabling comparisons to be made between studies. Methodological issues involved in the calculation of binding potential are therefore crucial for the accuracy of results. A particularly important parameter is the amount of authentic radioligand available to cross the blood brain barrier. This was characterised in the research performed for this thesis. The radiosynthesis of two novel neuroreceptor radioligands has been optimised for use in humans. (R, R)[123I]I-QNB has been used in human studies to provide useful information on the human mAChR function in disease. Pre-clinical evaluation of 5-[123I]-A-85380 provided useful information for in vivo human studies. Both radioligands are concluded to successfully provide novel information on the function of the acetylcholine system. Methodological issues involved in the blood metabolite analysis and measurement of plasma protein binding have been investigated and discussed, with particular reference made to the factors that must be taken into account when designing these experiments. (Abstract shortened by ProQuest.).
A new era for Nuclear Medicine neuroimaging in Spain: Where do we start from in Spain?
Balsa, M A; Camacho, V; Garrastachu, P; García-Solís, D; Gómez-Río, M; Rubí, S; Setoain, X; Arbizu, J
To determine the status of neuroimaging studies of Nuclear Medicine in Spain during 2013 and first quarter of 2014, in order to define the activities of the neuroimaging group of the Spanish Society of Nuclear Medicine and Molecular Imaging (SEMNIM). A questionnaire of 14 questions was designed, divided into 3 parts: characteristics of the departments (equipment and professionals involved); type of scans and clinical indications; and evaluation methods. The questionnaire was sent to 166 Nuclear Medicine departments. A total of 54 departments distributed among all regions completed the questionnaire. Most departments performed between 300 and 800 neuroimaging examinations per year, representing more than 25 scans per month. The average pieces of equipment were three; half of the departments had a PET/CT scanner and SPECT/CT equipment. Scans performed more frequently were brain SPECT with 123 I-FP-CIT, followed by brain perfusion SPECT and PET with 18 F-FDG. The most frequent clinical indications were cognitive impairment followed by movement disorders. For evaluation of the images most sites used only visual assessment, and for the quantitative assessment the most used was quantification by region of interest. These results reflect the clinical activity of 2013 and first quarter of 2014. The main indications of the studies were cognitive impairment and movement disorders. Variability in the evaluation of the studies is among the challenges that will be faced in the coming years. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Banaś, Anna
2003-01-01
A case of severe organic affective disorder after head trauma with loss of consciousness is presented. While CT in this case was normal, SPECT brain perfusion imaging showed hipoperfusion in the right frontal lobe and the left temporal-parietal region. The psychologic tests: Benton, Bender, MMPI confirmed changes in CNS as well. These findings help to explain the severity and chronicity of disorders and medical certification.
[Changes in visual event-related potentials and SPECT in dissociative amnesia].
Kurita, Akira; Yonezawa, Jin; Suzuki, Masahiko; Kawaguchi, Sachiko; Ito, Yasuhiko; Inoue, Kiyoharu
2004-01-01
A 29-year-old man was admitted because of sudden onset of retrograde amnesia. The patient was unable to recall events having occurred during the past 2 years. The impairment was especially serious with regard to personal memories during the 5 months prior to admission, while he had first been working as a full-time employee under stressful circumstance. A diagnosis of dissociative amnesia was made on the basis of absence of any systemic or neurological diseases that could cause amnesia, the inadaptable character of the patient, the nature of amnesia, and presence of stressful condition possibly related to the amnesia. Visual event-related potential (ERP) studies recorded with human face discrimination tasks demonstrated a P3a wave in response to a face of his superior in the office, whom he said that he had never seen before. The similar P3a wave was observed in response to a face quite familiar to the patient, his mother, but not to a face "truly" unknown to him. These findings suggest that the visual memory of his superior's face exists in the brain, but the patient is unable to retrieve it by some psychogenic mechanism. 131I-IMP SPECT revealed decreased perfusion in the left medial temporal lobe and the basal forebrain, suggesting the association between dissociative amnesia and focal brain dysfunction. While dissociative amnesia has been understood as psychogenic nature, both ERPs and SPECT are quite important tools to understand the association between the psychological phenomenon and biological changes of the brain in this disorder.
Olsson, Anna; Arlig, Asa; Carlsson, Gudrun Alm; Gustafsson, Agnetha
2007-09-01
The image quality of single photon emission computed tomography (SPECT) depends on the reconstruction algorithm used. The purpose of the present study was to evaluate parameters in ordered subset expectation maximization (OSEM) and to compare systematically with filtered back-projection (FBP) for reconstruction of regional cerebral blood flow (rCBF) SPECT, incorporating attenuation and scatter correction. The evaluation was based on the trade-off between contrast recovery and statistical noise using different sizes of subsets, number of iterations and filter parameters. Monte Carlo simulated SPECT studies of a digital human brain phantom were used. The contrast recovery was calculated as measured contrast divided by true contrast. Statistical noise in the reconstructed images was calculated as the coefficient of variation in pixel values. A constant contrast level was reached above 195 equivalent maximum likelihood expectation maximization iterations. The choice of subset size was not crucial as long as there were > or = 2 projections per subset. The OSEM reconstruction was found to give 5-14% higher contrast recovery than FBP for all clinically relevant noise levels in rCBF SPECT. The Butterworth filter, power 6, achieved the highest stable contrast recovery level at all clinically relevant noise levels. The cut-off frequency should be chosen according to the noise level accepted in the image. Trade-off plots are shown to be a practical way of deciding the number of iterations and subset size for the OSEM reconstruction and can be used for other examination types in nuclear medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyck, C.H. van; Lin, C.H.; Smith, E.O.
1996-11-01
SPECT has shown increasing promise as a diagnostic tool in Alzheimer`s disease (AD). Recently, a new SPECT brain perfusion agent, {sup 99m}Tc-ethyl cysteinate dimer ({sup 99m}Tc-ECD) has emerged with purported advantages in image quality over the established tracer, {sup 99m}Tc-hexamethylpropyleneamine oxime ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for {sup 99}mTc-HMPAO and {sup 99m}Tc-ECD in discriminating patients with AD form control subjects. 51 refs., 5 figs., 3 tabs.
Ito, Kimiteru; Shimano, Yasumasa; Imabayashi, Etsuko; Nakata, Yasuhiro; Omachi, Yoshie; Sato, Noriko; Arima, Kunimasa; Matsuda, Hiroshi
2014-10-01
The purpose of this study was to clarify the concordance of diagnostic abilities and interobserver agreement between 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and brain perfusion single photon-emission computed tomography (SPECT) in patients with Alzheimer's disease (AD) who were diagnosed according to the research criteria of the National Institute of Aging-Alzheimer's Association Workshop. Fifty-five patients with "AD and mild cognitive impairment (MCI)" (n = 40) and "non-AD" (n = 15) were evaluated with 18F-FDG PET and (99m)Tc-ethyl cysteinate dimer (ECD) SPECT during an 8-week period. Three radiologists independently graded the regional uptake in the frontal, temporal, parietal, and occipital lobes as well as the precuneus/posterior cingulate cortex in both images. Kappa values were used to determine the interobserver reliability regarding regional uptake. The regions with better interobserver reliability between 18F-FDG PET and (99m)Tc-ECD SPECT were the frontal, parietal, and temporal lobes. The (99m)Tc-ECD SPECT agreement in the occipital lobes was not significant. The frontal, temporal, and parietal lobes showed good correlations between 18F-FDG PET and (99m)Tc-ECD SPECT in the degree of uptake, but the occipital lobe and precuneus/posterior cingulate cortex did not show good correlations. The diagnostic accuracy rates of "AD and MCI" ranged from 60% to 70% in both of the techniques. The degree of uptake on 18F-FDG PET and (99m)Tc-ECD SPECT showed significant correlations in the frontal, temporal, and parietal lobes. The diagnostic abilities of 18F-FDG PET and (99m)Tc-ECD SPECT for "AD and MCI," when diagnosed according to the National Institute of Aging-Alzheimer's Association Workshop criteria, were nearly identical. Copyright © 2014 John Wiley & Sons, Ltd.
[Clinical feature of ALS with communication disturbance; the possibility to communicate in TLS].
Nagao, Masahiro
2013-01-01
In the subsets of amyotrohic lateral sclerosis (ALS), totally-locked in state (TLS) is shown as the result of marked progression of motor neuron degeneration. In TLS, patients are impossible to move any voluntary muscles. As the result, patients with TLS cannot communicate with any augmentative and alternative communication devices(AACD) at present. To find the AACD that enables for TLS to communicate, we examined the clinical character, brain MRI, SPECT and evoked potentials in TLS. Brain MRI showed marked brain atrophy including the brainstem, but the occipital lobe was spared. SPECT and visual evoked potentials (VEP) showed preserved physiological function of the occipital lobe in TLS. The results suggest that neuronal degeneration in TLS is not restricted to motor system, but that the visual pathways are spared. Patients with TLS may be possible to use AACD that utilize the visual pathway.
Impact of playing American professional football on long-term brain function.
Amen, Daniel G; Newberg, Andrew; Thatcher, Robert; Jin, Yi; Wu, Joseph; Keator, David; Willeumier, Kristen
2011-01-01
The authors recruited 100 active and former National Football League players, representing 27 teams and all positions. Players underwent a clinical history, brain SPECT imaging, qEEG, and multiple neuropsychological measures, including MicroCog. Relative to a healthy-comparison group, players showed global decreased perfusion, especially in the prefrontal, temporal, parietal, and occipital lobes, and cerebellar regions. Quantitative EEG findings were consistent, showing elevated slow waves in the frontal and temporal regions. Significant decreases from normal values were found in most neuropsychological tests. This is the first large-scale brain-imaging study to demonstrate significant differences consistent with a chronic brain trauma pattern in professional football players.
Lee, Jung Keun; Yoon, Byul Hee; Chung, Seung Young; Park, Moon Sun; Kim, Seong Min; Lee, Do Sung
2013-10-01
MR perfusion and single photon emission computerized tomography (SPECT) are well known imaging studies to evaluate hemodynamic change between prior to and following superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis in moyamoya disease. But their side effects and invasiveness make discomfort to patients. We evaluated the ivy sign on MR fluid attenuated inversion recovery (FLAIR) images in adult patients with moyamoya disease and compared it with result of SPECT and MR perfusion images. We enrolled twelve patients (thirteen cases) who were diagnosed with moyamoya disease and underwent STA-MCA anastomosis at our medical institution during a period ranging from September of 2010 to December of 2012. The presence of the ivy sign on MR FLAIR images was classified as Negative (0), Minimal (1), and Positive (2). Regions were classified into four territories: the anterior cerebral artery (ACA), the anterior MCA, the posterior MCA and the posterior cerebral artery. Ivy signs on preoperative and postoperative MR FLAIR were improved (8 and 4 in the ACA regions, 13 and 4 in the anterior MCA regions and 19 and 9 in the posterior MCA regions). Like this result, the cerebrovascular reserve (CVR) on SPECT was significantly increased in the sum of CVR in same regions after STA-MCA anastomosis. After STA-MCA anastomosis, ivy signs were decreased in the cerebral hemisphere. As compared with conventional diagnostic modalities such as SPECT and MR perfusion images, the ivy sign on MR FLAIR is considered as a useful indicator in detecting brain hemodynamic changes between preoperatively and postoperatively in adult moyamoya patients.
Lee, Jung Keun; Yoon, Byul Hee; Park, Moon Sun; Kim, Seong Min; Lee, Do Sung
2013-01-01
Objective MR perfusion and single photon emission computerized tomography (SPECT) are well known imaging studies to evaluate hemodynamic change between prior to and following superficial temporal artery (STA)-middle cerebral artery (MCA) anastomosis in moyamoya disease. But their side effects and invasiveness make discomfort to patients. We evaluated the ivy sign on MR fluid attenuated inversion recovery (FLAIR) images in adult patients with moyamoya disease and compared it with result of SPECT and MR perfusion images. Methods We enrolled twelve patients (thirteen cases) who were diagnosed with moyamoya disease and underwent STA-MCA anastomosis at our medical institution during a period ranging from September of 2010 to December of 2012. The presence of the ivy sign on MR FLAIR images was classified as Negative (0), Minimal (1), and Positive (2). Regions were classified into four territories: the anterior cerebral artery (ACA), the anterior MCA, the posterior MCA and the posterior cerebral artery. Results Ivy signs on preoperative and postoperative MR FLAIR were improved (8 and 4 in the ACA regions, 13 and 4 in the anterior MCA regions and 19 and 9 in the posterior MCA regions). Like this result, the cerebrovascular reserve (CVR) on SPECT was significantly increased in the sum of CVR in same regions after STA-MCA anastomosis. Conclusion After STA-MCA anastomosis, ivy signs were decreased in the cerebral hemisphere. As compared with conventional diagnostic modalities such as SPECT and MR perfusion images, the ivy sign on MR FLAIR is considered as a useful indicator in detecting brain hemodynamic changes between preoperatively and postoperatively in adult moyamoya patients. PMID:24294453
Harch, Paul G; Andrews, Susan R; Fogarty, Edward F; Amen, Daniel; Pezzullo, John C; Lucarini, Juliette; Aubrey, Claire; Taylor, Derek V; Staab, Paul K; Van Meter, Keith W
2012-01-01
This is a preliminary report on the safety and efficacy of 1.5 ATA hyperbaric oxygen therapy (HBOT) in military subjects with chronic blast-induced mild to moderate traumatic brain injury (TBI)/post-concussion syndrome (PCS) and post-traumatic stress disorder (PTSD). Sixteen military subjects received 40 1.5 ATA/60 min HBOT sessions in 30 days. Symptoms, physical and neurological exams, SPECT brain imaging, and neuropsychological and psychological testing were completed before and within 1 week after treatment. Subjects experienced reversible middle ear barotrauma (5), transient deterioration in symptoms (4), and reversible bronchospasm (1); one subject withdrew. Post-treatment testing demonstrated significant improvement in: symptoms, neurological exam, full-scale IQ (+14.8 points; p<0.001), WMS IV Delayed Memory (p=0.026), WMS-IV Working Memory (p=0.003), Stroop Test (p<0.001), TOVA Impulsivity (p=0.041), TOVA Variability (p=0.045), Grooved Pegboard (p=0.028), PCS symptoms (Rivermead PCSQ: p=0.0002), PTSD symptoms (PCL-M: p<0.001), depression (PHQ-9: p<0.001), anxiety (GAD-7: p=0.007), quality of life (MPQoL: p=0.003), and self-report of percent of normal (p<0.001), SPECT coefficient of variation in all white matter and some gray matter ROIs after the first HBOT, and in half of white matter ROIs after 40 HBOT sessions, and SPECT statistical parametric mapping analysis (diffuse improvements in regional cerebral blood flow after 1 and 40 HBOT sessions). Forty 1.5 ATA HBOT sessions in 1 month was safe in a military cohort with chronic blast-induced PCS and PTSD. Significant improvements occurred in symptoms, abnormal physical exam findings, cognitive testing, and quality-of-life measurements, with concomitant significant improvements in SPECT.
Rondina, Jane Maryam; Ferreira, Luiz Kobuti; de Souza Duran, Fabio Luis; Kubo, Rodrigo; Ono, Carla Rachel; Leite, Claudia Costa; Smid, Jerusa; Nitrini, Ricardo; Buchpiguel, Carlos Alberto; Busatto, Geraldo F
2018-01-01
Machine learning techniques such as support vector machine (SVM) have been applied recently in order to accurately classify individuals with neuropsychiatric disorders such as Alzheimer's disease (AD) based on neuroimaging data. However, the multivariate nature of the SVM approach often precludes the identification of the brain regions that contribute most to classification accuracy. Multiple kernel learning (MKL) is a sparse machine learning method that allows the identification of the most relevant sources for the classification. By parcelating the brain into regions of interest (ROI) it is possible to use each ROI as a source to MKL (ROI-MKL). We applied MKL to multimodal neuroimaging data in order to: 1) compare the diagnostic performance of ROI-MKL and whole-brain SVM in discriminating patients with AD from demographically matched healthy controls and 2) identify the most relevant brain regions to the classification. We used two atlases (AAL and Brodmann's) to parcelate the brain into ROIs and applied ROI-MKL to structural (T1) MRI, 18 F-FDG-PET and regional cerebral blood flow SPECT (rCBF-SPECT) data acquired from the same subjects (20 patients with early AD and 18 controls). In ROI-MKL, each ROI received a weight (ROI-weight) that indicated the region's relevance to the classification. For each ROI, we also calculated whether there was a predominance of voxels indicating decreased or increased regional activity (for 18 F-FDG-PET and rCBF-SPECT) or volume (for T1-MRI) in AD patients. Compared to whole-brain SVM, the ROI-MKL approach resulted in better accuracies (with either atlas) for classification using 18 F-FDG-PET (92.5% accuracy for ROI-MKL versus 84% for whole-brain), but not when using rCBF-SPECT or T1-MRI. Although several cortical and subcortical regions contributed to discrimination, high ROI-weights and predominance of hypometabolism and atrophy were identified specially in medial parietal and temporo-limbic cortical regions. Also, the weight of discrimination due to a pattern of increased voxel-weight values in AD individuals was surprisingly high (ranging from approximately 20% to 40% depending on the imaging modality), located mainly in primary sensorimotor and visual cortices and subcortical nuclei. The MKL-ROI approach highlights the high discriminative weight of a subset of brain regions of known relevance to AD, the selection of which contributes to increased classification accuracy when applied to 18 F-FDG-PET data. Moreover, the MKL-ROI approach demonstrates that brain regions typically spared in mild stages of AD also contribute substantially in the individual discrimination of AD patients from controls.
Henderson, Theodore A; Morries, Larry D
2015-01-01
Traumatic brain injury (TBI) is a growing health concern affecting civilians and military personnel. Near-infrared (NIR) light has shown benefits in animal models and human trials for stroke and in animal models for TBI. Diodes emitting low-level NIR often have lacked therapeutic efficacy, perhaps failing to deliver sufficient radiant energy to the necessary depth. In this case report, a patient with moderate TBI documented in anatomical magnetic resonance imaging (MRI) and perfusion single-photon emission computed tomography (SPECT) received 20 NIR treatments in the course of 2 mo using a high-power NIR laser. Symptoms were monitored by clinical examination and a novel patient diary system specifically designed for this patient population. Clinical application of these levels of infrared energy for this patient with TBI yielded highly favorable outcomes with decreased depression, anxiety, headache, and insomnia, whereas cognition and quality of life improved. Neurological function appeared to improve based on changes in the SPECT by quantitative analysis. NIR in the power range of 10-15 W at 810 and 980 nm can safely and effectively treat chronic symptoms of TBI.
Chen, Chun-Jen; Bando, Kazunori; Ashino, Hiroki; Taguchi, Kazumi; Shiraishi, Hideaki; Fujimoto, Osuke; Kitamura, Chiemi; Matsushima, Satoshi; Fujinaga, Masayuki; Zhang, Ming-Rong; Kasahara, Hiroyuki; Minamizawa, Takao; Jiang, Cheng; Ono, Maiko; Higuchi, Makoto; Suhara, Tetsuya; Yamada, Kazutaka; Ji, Bin
2014-08-01
Non-invasive detection for amyloid-β peptide (Aβ) deposition has important significance for the early diagnosis and medical intervention for Alzheimer's disease (AD). In this study, we developed a series of imidazopyridine derivatives as potential imaging agents for single-photon emission computed tomography (SPECT). Two of them, compounds DRK092 and DRM106, showed higher affinity for synthetic human Aβ 1-40 fibrils than did the well-known amyloid-imaging agent IMPY. A metabolite analysis revealed brain-permeable radioactive metabolites of (125)I-labeled DRK092 and IMPY; no radioactive metabolites from (125)I-labeled DRM106 ([(125)I]DRM106) were detected. In addition, in vitro autoradiography clearly demonstrated specific binding of [(125)I]DRM106 in the hippocampal region of AD enriched with Aβ plaques. Thus, our results strongly suggested that compound DRM106 can be used as an imaging agent for SPECT to detect Aβ deposition in AD brain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina
2018-05-01
Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.
NASA Astrophysics Data System (ADS)
Fakhri, G. El; Kijewski, M. F.; Moore, S. C.
2001-06-01
Estimates of SPECT activity within certain deep brain structures could be useful for clinical tasks such as early prediction of Alzheimer's disease with Tc-99m or Parkinson's disease with I-123; however, such estimates are biased by poor spatial resolution and inaccurate scatter and attenuation corrections. We compared an analytical approach (AA) of more accurate quantitation to a slower iterative approach (IA). Monte Carlo simulated projections of 12 normal and 12 pathologic Tc-99m perfusion studies, as well as 12, normal and 12 pathologic I-123 neurotransmission studies, were generated using a digital brain phantom and corrected for scatter by a multispectral fitting procedure. The AA included attenuation correction by a modified Metz-Fan algorithm and activity estimation by a technique that incorporated Metz filtering to compensate for variable collimator response (VCR), IA-modeled attenuation, and VCR in the projector/backprojector of an ordered subsets-expectation maximization (OSEM) algorithm. Bias and standard deviation over the 12 normal and 12 pathologic patients were calculated with respect to the reference values in the corpus callosum, caudate nucleus, and putamen. The IA and AA yielded similar quantitation results in both Tc-99m and I-123 studies in all brain structures considered in both normal and pathologic patients. The bias with respect to the reference activity distributions was less than 7% for Tc-99m studies, but greater than 30% for I-123 studies, due to partial volume effect in the striata. Our results were validated using I-123 physical acquisitions of an anthropomorphic brain phantom. The IA yielded quantitation accuracy comparable to that obtained with IA, while requiring much less processing time. However, in most conditions, IA yielded lower noise for the same bias than did AA.
Neuroimaging studies in schizophrenia: an overview of research from Asia.
Narayanaswamy, Janardhanan C; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N
2012-10-01
Neuroimaging studies in schizophrenia help clarify the neural substrates underlying the pathogenesis of this neuropsychiatric disorder. Contemporary brain imaging in schizophrenia is predominated by magnetic resonance imaging (MRI)-based research approaches. This review focuses on the various imaging studies from India and their relevance to the understanding of brain abnormalities in schizophrenia. The existing studies are predominantly comprised of structural MRI reports involving region-of-interest and voxel-based morphometry approaches, magnetic resonance spectroscopy and single-photon emission computed tomography/positron emission tomography (SPECT/PET) studies. Most of these studies are significant in that they have evaluated antipsychotic-naïve schizophrenia patients--a relatively difficult population to obtain in contemporary research. Findings of these studies offer robust support to the existence of significant brain abnormalities at very early stages of the disorder. In addition, theoretically relevant relationships between these brain abnormalities and developmental aberrations suggest possible neurodevelopmental basis for these brain deficits.
Huang, Feng-Yun J; Lee, Te-Wei; Kao, Chih-Hao K; Chang, Chih-Hsien; Zhang, Xiaoning; Lee, Wan-Yu; Chen, Wan-Jou; Wang, Shu-Chi; Lo, Jem-Mau
2011-12-01
The (188)Re-labeled pegylated nanoliposome (abbreviated as (188)Re-Liposome) was prepared and evaluated for its potential as a theragnostic agent for glioma. (188)Re-BMEDA complex was loaded into the pegylated liposome core with pH 5.5 ammonium sulfate gradient to produce (188)Re-Liposome. Orthotopic Fischer344/F98 glioma tumor-bearing rats were prepared and intravenously injected with (188)Re-Liposome. Biodistribution, pharmacokinetic study, autoradiography (ARG), histopathology, and nano-SPECT/CT imaging were conducted for the animal model. The result showed that (188)Re-Liposome accumulated in the brain tumor of the animal model from 0.28%±0.09% injected dose (ID)/g (n=3) at 1 hour to a maximum of 1.95%±0.35% ID/g (n=3) at 24 hours postinjection. The tumor-to-normal brain uptake ratio (T/N ratio) increased from 3.5 at 1 hour to 32.5 at 24 hours. Both ARG and histopathological images clearly showed corresponding tumor regions with high T/N ratios. Nano-SPECT/CT detected a very clear tumor image from 4 hours till 48 hours. This study reveals the potential of (188)Re-Liposome as a theragnostic agent for brain glioma.
rCBF-SPECT in brain infarction: When does it predict outcome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limburg, M.; van Royen, E.A.; Hijdra, A.
1991-03-01
We prospectively studied 26 patients with ischemic stroke within 24 hr, after 2 wk, and after 6 mo with thallium-201-diethyldithiocarbamate single-photon emission computed tomography (SPECT) and neurologic and functional assessments. The admission flow deficits correlated with outcome. The admission and 6-mo scores correlated with clinical conditions at each time. At 2 wk, the flow deficits were smaller and did not correlate with clinical parameters. Nor did the presence or absence of hyperfixation of the radiopharmaceutical. Six months after the infarct, the flow defect had decreased in 9 of 15 patients in whom three serial scans were available, with better clinicalmore » improvement than in the remaining six whose flow deficits increased. More patients in the first group had been treated randomly with the calcium-entry blocker flunarizine. SPECT imaging of rCBF within 24 hr after stroke correlates with clinical outcome and condition, whereas rCBF imaging at 2 wk after the stroke shows no clinical correlation.« less
Yang, Feng-Yi; Wang, Hsin-Ell; Lin, Guan-Liang; Teng, Ming-Che; Lin, Hui-Hsien; Wong, Tai-Tong; Liu, Ren-Shyan
2011-03-01
This study evaluated the pharmacokinetics of (99m)Tc-diethylenetriamine pentaacetate acid ((99m)Tc-DTPA) after intravenous administration in healthy and F98 glioma-bearing F344 rats in the presence of blood-brain barrier disruption (BBB-D) induced by focused ultrasound (FUS). The pharmacokinetics of the healthy and tumor-containing brains after BBB-D were compared to identify the optimal time period for combined treatment. Healthy and F98 glioma-bearing rats were injected intravenously with Evans blue (EB) and (99m)Tc-DTPA; these treatments took place with or without BBB-D induced by transcranial FUS of 1 hemisphere of the brain. The permeability of the BBB was quantified by EB extravasation. Twelve rats were scanned for 2 h to estimate uptake of (99m)Tc radioactivity with respect to time for the pharmacokinetic analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was performed to examine tissue damage. The accumulations of EB and (99m)Tc-DTPA in normal brains or brains with a tumor were significantly elevated after the intravenous injection when BBB-D was induced. The disruption-to-nondisruption ratio of the brains and the tumor-to-ipsilateral brain ratio of the tumors in terms of radioactivity reached a peak at 45 and 60 min, respectively. EB injection followed by sonication showed that there was an increase of about 2-fold in the tumor-to-ipsilateral brain EB ratio of the target tumors (7.36), compared with the control tumors (3.73). TUNEL staining showed no significant differences between the sonicated tumors and control tumors. This study demonstrates that (99m)Tc-DTPA micro-SPECT/CT can be used for the pharmacokinetic analysis of BBB-D induced by FUS. This method should be able to provide important information that will help with establishing an optimal treatment protocol for drug administration after FUS-induced BBB-D in clinical brain disease therapy.
Alegret, Montserrat; Vinyes-Junqué, Georgina; Boada, Mercè; Martínez-Lage, Pablo; Cuberas, Gemma; Espinosa, Ana; Roca, Isabel; Hernández, Isabel; Valero, Sergi; Rosende-Roca, Maitée; Mauleón, Ana; Becker, James T.; Tárraga, Lluís
2012-01-01
Background Visuoperceptual processing is impaired early in the clinical course of Alzheimer’s disease (AD). The 15-Objects Test (15-OT) detects such subtle performance deficits in Mild Cognitive Impairment (MCI) and mild AD. Reduced brain perfusion in the temporal, parietal and prefrontal regions have been found in early AD and MCI patients. Objectives To confirm the role of the 15-OT in the diagnosis of MCI and AD, and to investigate the brain perfusion correlates of visuoperceptual dysfunction (15-OT) in subjects with MCI, AD and normal aging. Methods Forty-two AD, 42 MCI and 42 healthy elderly control (EC) subjects underwent a brain Single Photon Emission Tomography (SPECT) and separately completed the 15-OT. An analysis of variance compared 15-OT scores between groups. SPM5 was used to analyse the SPECT data. Results 15-OT performace was impaired in the MCI and AD patients. In terms of the SPECT scans, AD patients showed reduced perfusion in temporal-parietal regions, while the MCI subjects had decreased perfusion in the middle and posterior cingulate. When MCI and AD groups were compared, a significant brain perfusion reduction was found in temporo-parietal regions. In the whole sample, 15-OT performance was significantly correlated with the clinical dementia rating scores, and with the perfusion in the bilateral posterior cingulate and the right temporal pole, with no significant correlation in each separate group. Conclusion Our findings suggest that the 15-OT performance provides a useful gradation of impairment from normal aging to AD, and it seems to be related to perfusion in the bilateral posterior cingulate and the right temporal pole. PMID:20555146
Collimator Design for a Brain SPECT/MRI Insert
NASA Astrophysics Data System (ADS)
Salvado, Debora; Erlandsson, Kjell; Bousse, Alexandre; Occhipinti, Michele; Busca, Paolo; Fiorini, Carlo; Hutton, Brian F.
2015-08-01
This project's goal is to design a SPECT insert for a clinical MRI system for simultaneous brain SPECT/MR imaging, with a high-sensitivity collimator and high-resolution detectors. We have compared eight collimator designs, four multi-pinhole and four multi-slit slit-slat configurations. The collimation was designed for a system with 2 rings of 25 5 × 5 cm detectors. We introduce the concept of 1/2-pinhole and 1/2-slit, which are transaxially shared between two adjacent detectors. Analytical geometric efficiency was calculated for an activity distribution corresponding to a human brain and a range of intrinsic detector resolutions Ri and target resolutions Rt at the centre of the FOV. Noise-free data were simulated with and without depth-of-interaction (DOI) information, 0.8 mm Ri and 10 mm Rt FWHM, and reconstructed for uniform, Defrise, Derenzo, and Zubal brain phantoms. Comparing the multi-pinhole and multi-slit slit-slat collimators, the former gives better reconstructed uniformity and transaxial resolution, while the latter gives better axial resolution. Although the 2 ×2-pinhole and 2-slit designs give the highest sensitivities, they result in a sub-optimal utilisation of the detector FOV. The best options are therefore the 5+ 2 1/2-pinhole and the 1 + 2 1/2-slit systems, with sensitivities of 1.8 ×10-4 and 3.2 ×10-4, respectively. Noiseless brain phantom reconstructions with the multi-pinhole collimator are slightly superior as compared to slit-slat, in terms of symmetry and accuracy of the activity distribution, but the same is not true when noise is included. DOI information reduces artefacts and improves uniformity in geometric phantoms. Further evaluation is needed with prototype collimators.
Tsartsalis, Stergios; Tournier, Benjamin B; Habiby, Selim; Ben Hamadi, Meriem; Barca, Cristina; Ginovart, Nathalie; Millet, Philippe
2018-04-30
SPECT imaging with two radiotracers at the same time is feasible if two different radioisotopes are employed, given their distinct energy emission spectra. In the case of 123 I and 125 I, dual SPECT imaging is not straightforward: 123 I emits photons at a principal energy emission spectrum of 143.1-179.9 keV. However, it also emits at a secondary energy spectrum (15-45 keV) that overlaps with the one of 125 I and the resulting cross-talk of emissions impedes the accurate quantification of 125 I. In this paper, we describe three different methods for the correction of this cross-talk and the simultaneous in vivo [ 123 I]IBZM and [ 125 I]R91150 imaging of D 2/3 and 5-HT 2A receptors in the rat brain. Three methods were evaluated for the correction of the effect of cross-talk in a series of simultaneous, [ 123 I]IBZM and [ 125 I]R91150 in vivo and phantom SPECT scans. Method 1 employs a dual-energy window (DEW) approach, in which the cross-talk on 125 I is considered a stable fraction of the energy emitted from 123 I at the principal emission spectrum. The coefficient describing the relationship between the emission of 123 I at the principal and the secondary spectrum was estimated from a series of single-radiotracer [ 123 I]IBZM SPECT studies. In Method 2, spectral factor analysis (FA) is applied to separate the radioactivity from 123 I and 125 I on the basis of their distinct emission patterns across the energy spectrum. Method 3 uses a modified simplified reference tissue model (SRTM C ) to describe the kinetics of [ 125 I]R91150. It includes the coefficient describing the cross-talk on 125 I from 123 I in the model parameters. The results of the correction of cross-talk on [ 125 I]R91150 binding potential (BP ND ) with each of the three methods, using cerebellum as the reference region, were validated against the results of a series of single-radiotracer [ 123 I]R91150 SPECT studies. In addition, the DEW approach (Method 1), considered to be the most straightforward to apply of the three, was further applied in a dual-radiotracer SPECT study of the relationship between D 2/3 and 5-HT 2A receptor binding in the striatum, both at the voxel and at the regional level. Average regional BP ND values of [ 125 I]R91150, estimated on the cross-talk corrected dual-radiotracer SPECT studies provided satisfactory correlations with the BP ND values for [ 123 I]R91150 from single-radiotracer studies: r = 0.92, p < 0.001 for Method 1, r = 0.92, p < 0.001 for Method 2, r = 0.92, p < 0.001, for Method 3. The coefficient describing the ratio of the 123 I-emitted radioactivity at the 125 I-emission spectrum to the radioactivity that it emits at its principal emission spectrum was 0.34 in vivo. Dual-radiotracer in vivo SPECT studies corrected with Method 1 demonstrated a positive correlation between D 2/3 and 5-HT 2A receptor binding in the rat nucleus accumbens at the voxel level. At the VOI-level, a positive correlation was confirmed in the same region (r = 0.78, p < 0.01). Dual-radiotracer SPECT imaging using 123 I and 125 I-labeled radiotracers is feasible if the cross-talk of 123 I on the 125 I emission spectrum is properly corrected. The most straightforward approach is Method 1, in which a fraction (34%) of the radioactivity emitted from 123 I at its principal energy spectrum is subtracted from the measured radioactivity at the spectrum of 125 I. With this method, a positive correlation between the binding of [ 123 I]IBZM and [ 125 I]R91150 was demonstrated in the rat nucleus accumbens. This result highlights the interest of dual-radiotracer SPECT imaging to study multiple neurotransmitter systems at the same time and under the same biological conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Markerless motion estimation for motion-compensated clinical brain imaging
NASA Astrophysics Data System (ADS)
Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.
2018-05-01
Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.
The Effect of the Presence of EEG Leads on Image Quality in Cerebral Perfusion SPECT and FDG PET/CT.
Zhang, Lulu; Yen, Stephanie P; Seltzer, Marc A; Thomas, George P; Willis, Kristen; Siegel, Alan
2018-06-08
Rationale: Cerebral perfusion SPECT and 18 F-FDG PET/CT are commonly performed diagnostic procedures for patients suffering from epilepsy. Individuals receiving these tests are often in-patients undergoing examinations with EEG leads. We have routinely removed these leads before these tests due to concerns that they would lead to imaging artifacts. The leads would then be replaced at the conclusion of the scan. The goal of our study was to determine if the EEG leads actually do cause artifacts that could lead to erroneous scan interpretation or make the scan uninterpretable. Methods: PET/CT with 18 F-FDG and SPECT with technetium-99m ECD were performed on a two dimensional brain phantom. The phantom was scanned with standard leads, CT/MR compatible leads and with no leads. The scans were interpreted by three experienced nuclear medicine physicians who were asked to rank the images by quality and then to determine if they could differentiate each of the scans from a scan in which it was indicated that no leads were present. Results: No differences could be detected between SPECT or PET scans performed without leads or with either set of leads. The standard EEG leads did create an artifact in the CT portion of the PET/CT while the CT/MR compatible leads did not. Conclusion: This phantom study suggest that EEG leads, standard or CT/MR compatible do not need to be removed for SPECT or for PET. Further study evaluating the effect on patients scan would be of value to support this conclusion. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
King, Michael A; Mukherjee, Joyeeta M; Könik, Arda; Zubal, I George; Dey, Joyoni; Licho, Robert
2016-02-01
For the 2011 FDA approved Parkinson's Disease (PD) SPECT imaging agent I-123 labeled DaTscan, the volume of interest (VOI) is the interior portion of the brain. However imaging of the occipital lobe is also required with PD for calculation of the striatal binding ratio (SBR), a parameter of significance in early diagnosis, differentiation of PD from other disorders with similar clinical presentations, and monitoring progression. Thus we propose the usage of a combination of a multi-pinhole (MPH) collimator on one head of the SPECT system and a fan-beam on the other. The MPH would be designed to provide high resolution and sensitivity for imaging of the interior portion of the brain. The fan-beam collimator would provide lower resolution but complete sampling of the brain addressing data sufficiency and allowing a volume-of-interest to be defined over the occipital lobe for calculation of SBR's. Herein we focus on the design of the MPH component of the combined system. Combined reconstruction will be addressed in a subsequent publication. An analysis of 46 clinical DaTscan studies was performed to provide information to define the VOI, and design of a MPH collimator to image this VOI. The system spatial resolution for the MPH was set to 4.7 mm, which is comparable to that of clinical PET systems, and significantly smaller than that of fan-beam collimators employed in SPECT. With this set, we compared system sensitivities for three aperture array designs, and selected the 3 × 3 array due to it being the highest of the three. The combined sensitivity of the apertures for it was similar to that of an ultra-high resolution fan-beam (LEUHRF) collimator, but smaller than that of a high-resolution fan-beam collimator (LEHRF). On the basis of these results we propose the further exploration of this design through simulations, and the development of combined MPH and fan-beam reconstruction.
Hattori, Naoya; Yabe, Ichiro; Hirata, Kenji; Shiga, Tohru; Sakushima, Ken; Tsuji-Akimoto, Sachiko; Sasaki, Hidenao; Tamaki, Nagara
2013-05-01
Cognitive impairment is a representative neuropsychiatric presentation that accompanies Parkinson disease (PD). The purpose of this study was to localize the cerebral regions associated with cognitive impairment in patients with PD using quantitative SPECT. Thirty-two patients with PD (mean [SD] age, 75 [8] years; 25 women; Hoehn-Yahr scores from 2 to 5) underwent quantitative brain SPECT using 123I iodoamphetamine. Parametric images of regional cerebral blood flow (rCBF) were spatially normalized to the standard brain atlas. First, voxel-by-voxel comparison between patients with PD with versus without cognitive impairment was performed to visualize overall trend of regional differences. Next, the individual quantitative rCBF values were extracted in representative cortical regions using a standard region-of-interest template to compare the quantitative rCBF values. Patients with cognitive impairment showed trends of lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices in the voxel-by-voxel analyses. Region-of-interest-based analysis demonstrated significantly lower rCBF in the bilateral anterior cingulate cortices (right, 25.8 [5.5] vs 28.9 [5.7] mL per 100 g/min, P < 0.05; left, 25.8 [5.8] vs 29.1 [5.7] mL per 100 g/min, P < 0.05) associated with cognitive impairment. Patients with cognitive impairment showed lower rCBF in the left frontal and temporal cortices as well as in the bilateral medial frontal and anterior cingulate cortices. The results suggested dysexecutive function as an underlining mechanism of cognitive impairment in patients with PD.
Fleming, J S; Kemp, P M; Bolt, L; Goatman, K A
2002-11-01
Methods for quantifying the changes in brain function observed in single photon emission computed tomography (SPECT) using hexamethylenepropylene amine oxime (HMPAO) for patients with Alzheimer's disease have the potential of improving the diagnostic accuracy of the procedure and its ability to monitor response to treatment. The absolute percentage uptake of HMPAO and the cerebral perfusion volume (CPV) of the brain were assessed using SPECT in 26 patients with mild to moderate Alzheimer's disease (AD) and 24 control subjects. A subset of 15 control subjects, which was age-matched to the AD patients, was selected to allow fair statistical comparison of parameters between groups. The percentage of brain volume with reduced perfusion (R) and a volume loss index (VLI), given by /CPV, were also calculated. Eight of the control subjects were studied on a second occasion after a mean period of 6 months. There was no significant difference in percentage uptake between controls and AD patients, the mean value being 5.8%. Cerebral perfusion volume in controls was found to depend on sex (mean value in males and females being 1327 ml and 1222 ml, respectively) and on age. The volume loss index corrected for age and sex provided good discrimination between controls and AD subjects giving a sensitivity and specificity of 81% and 96%, respectively. The repeatability coefficient, the 95% confidence limit for the difference between repeat measurements, on controls was 67 ml (5%). The measurement of cerebral perfusion volume and related indices may be of value in identifying patients with early Alzheimer's disease and in following their response to treatment.
Furuta, Akihiro; Onishi, Hideo; Amijima, Hizuru
2018-06-01
This study aimed to evaluate the effect of ventricular enlargement on the specific binding ratio (SBR) and to validate the cerebrospinal fluid (CSF)-Mask algorithm for quantitative SBR assessment of 123 I-FP-CIT single-photon emission computed tomography (SPECT) images with the use of a 3D-striatum digital brain (SDB) phantom. Ventricular enlargement was simulated by three-dimensional extensions in a 3D-SDB phantom comprising segments representing the striatum, ventricle, brain parenchyma, and skull bone. The Evans Index (EI) was measured in 3D-SDB phantom images of an enlarged ventricle. Projection data sets were generated from the 3D-SDB phantoms with blurring, scatter, and attenuation. Images were reconstructed using the ordered subset expectation maximization (OSEM) algorithm and corrected for attenuation, scatter, and resolution recovery. We bundled DaTView (Southampton method) with the CSF-Mask processing software for SBR. We assessed SBR with the use of various coefficients (f factor) of the CSF-Mask. Specific binding ratios of 1, 2, 3, 4, and 5 corresponded to SDB phantom simulations with true values. Measured SBRs > 50% that were underestimated with EI increased compared with the true SBR and this trend was outstanding at low SBR. The CSF-Mask improved 20% underestimates and brought the measured SBR closer to the true values at an f factor of 1.0 despite an increase in EI. We connected the linear regression function (y = - 3.53x + 1.95; r = 0.95) with the EI and f factor using root-mean-square error. Processing with CSF-Mask generates accurate quantitative SBR from dopamine transporter SPECT images of patients with ventricular enlargement.
Brain perfusion alterations in depressed patients with Parkinson's disease.
Kim, Young-Do; Jeong, Hyeonseok S; Song, In-Uk; Chung, Yong-An; Namgung, Eun; Kim, Yong-Duk
2016-12-01
Although Parkinson's disease (PD) is frequently accompanied by depression, brain perfusion deficits in PD with depression remain unclear. This study aimed to assess alterations in regional cerebral blood flow (rCBF) in depressed PD patients using 99m Tc hexamethyl-propylene-amine-oxime single-photon emission computed tomography (SPECT). Among 78 patients with PD, 35 patients were classified into the depressed PD group, while the rest (43 patients) was assigned to the nondepressed PD group based on the scores of the Geriatric Depressive Scale (GDS). All participants underwent brain SPECT imaging. The voxel-wise whole-brain analysis and region-of-interest (ROI) analysis of the limbic areas were conducted to compare rCBF between the depressed and nondepressed PD groups. The depressed PD patients demonstrated higher GDS scores than nondepressed patients, whereas between-group differences in the PD severity and cognitive function were not significant. Perfusion in the left cuneus was increased, while that in the right superior temporal gyrus and right medial orbitofrontal cortex was reduced in the depressed PD patients as compared with nondepressed PD patients. In addition, the ROI analysis demonstrated rCBF decreases in the amygdala, anterior cingulate cortex, hippocampus, and parahippocampal gyrus in the depressed PD group. A positive correlation was found between the GDS scores and rCBF in the left cuneus cluster in the depressed PD patients. This study identified the regional pattern of brain perfusion that distinguished depressed from nondepressed PD patients. Hyperperfusion in the occipital areas and hypoperfusion in the fronto-temporo-limbic regions may be potential imaging biomarkers for depression in PD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluationmore » of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)« less
Loi, Gianfranco; Dominietto, Marco; Manfredda, Irene; Mones, Eleonora; Carriero, Alessandro; Inglese, Eugenio; Krengli, Marco; Brambilla, Marco
2008-09-01
This note describes a method to characterize the performances of image fusion software (Syntegra) with respect to accuracy and robustness. Computed tomography (CT), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) studies were acquired from two phantoms and 10 patients. Image registration was performed independently by two couples composed of one radiotherapist and one physicist by means of superposition of anatomic landmarks. Each couple performed jointly and saved the registration. The two solutions were averaged to obtain the gold standard registration. A new set of estimators was defined to identify translation and rotation errors in the coordinate axes, independently from point position in image field of view (FOV). Algorithms evaluated were local correlation (LC) for CT-MRI, normalized mutual information (MI) for CT-MRI, and CT-SPECT registrations. To evaluate accuracy, estimator values were compared to limiting values for the algorithms employed, both in phantoms and in patients. To evaluate robustness, different alignments between images taken from a sample patient were produced and registration errors determined. LC algorithm resulted accurate in CT-MRI registrations in phantoms, but exceeded limiting values in 3 of 10 patients. MI algorithm resulted accurate in CT-MRI and CT-SPECT registrations in phantoms; limiting values were exceeded in one case in CT-MRI and never reached in CT-SPECT registrations. Thus, the evaluation of robustness was restricted to the algorithm of MI both for CT-MRI and CT-SPECT registrations. The algorithm of MI proved to be robust: limiting values were not exceeded with translation perturbations up to 2.5 cm, rotation perturbations up to 10 degrees and roto-translational perturbation up to 3 cm and 5 degrees.
Kojima, Daigo; Komoribayashi, Nobukazu; Omama, Shinichi; Oikawa, Kohki; Fujiwara, Shunrou; Kobayashi, Masakazu; Kubo, Yoshitaka; Terasaki, Kazunori; Ogasawara, Kuniaki
2018-06-01
Whereas SPECT images obtained 180 minutes after administration of I-iomazenil (IMZ) (late images) are proportional to the distribution of central benzodiazepine receptor-binding potential, SPECT images obtained within 30 minutes after I-IMZ administration (early images) correlate with regional brain perfusion. The aim of the present study was to determine whether crossed cerebellar tracer uptake on acute-stage I-IMZ SPECT imaging predicts 3-month functional outcome in patients with nonfatal hypertensive putaminal or thalamic hemorrhage. Forty-six patients underwent early and late SPECT imaging with I-IMZ within 7 days after the onset of hemorrhage. A region of interest was automatically placed in the bilateral cerebellar hemispheres using a 3-dimensional stereotaxic region-of-interest template, and the ratio of the value in the cerebellar hemisphere contralateral to the affected side to that in the ipsilateral cerebellar hemisphere (ARcbl) was calculated in each patient. Each patient's physical function was measured using the modified Rankin scale (mRS) score 3 months after onset. The ARcbl on early (ρ = -0.511, P = 0.0003) and late (ρ = -0.714, P < 0.0001) images correlated with the mRS 3 months after the onset of hemorrhage. Multivariate analysis showed that only a low ARcbl in late images was significantly associated with a poor functional outcome (mRS score ≥3 at 3 months after onset) (95% confidence interval, 0.001-0.003; P = 0.0212). Crossed cerebellar tracer uptake on acute-stage I-IMZ SPECT imaging predicts 3-month functional outcome in patients with nonfatal hypertensive putaminal or thalamic hemorrhage.
... monitor the brain's activity and detect abnormalities. Single-photon emission computerized tomography (SPECT). The scan image varies ... off anti-seizure drugs after a year or two. By Mayo Clinic Staff . Mayo Clinic Footer Legal ...
NASA Astrophysics Data System (ADS)
Fakhri, G. El; Maksud, P.; Kijewski, M. F.; Haberi, M. O.; Todd-Pokropek, A.; Aurengo, A.; Moore, S. C.
2000-08-01
Simultaneous imaging of Tc-99m and I-123 would have a high clinical potential in the assessment of brain perfusion (Tc-99m) and neurotransmission (I-123) but is hindered by cross-talk between the two radionuclides. Monte Carlo simulations of 15 different dual-isotope studies were performed using a digital brain phantom. Several physiologic Tc-99m and I-123 uptake patterns were modeled in the brain structures. Two methods were considered to correct for cross-talk from both scattered and unscattered photons: constrained spectral factor analysis (SFA) and artificial neural networks (ANN). The accuracy and precision of reconstructed pixel values within several brain structures were compared to those obtained with an energy windowing method (WSA). In I-123 images, mean bias was close to 10% in all structures for SFA and ANN and between 14% (in the caudate nucleus) and 25% (in the cerebellum) for WSA. Tc-99m activity was overestimated by 35% in the cortex and 53% in the caudate nucleus with WSA, but by less than 9% in all structures with SFA and ANN. SFA and ANN performed well even in the presence of high-energy I-123 photons. The accuracy was greatly improved by incorporating the contamination into the SFA model or in the learning phase for ANN. SFA and ANN are promising approaches to correct for cross-talk in simultaneous Tc-99m/I-123 SPECT.
Kim, Woojun; Kim, Joong-Seok; Lee, Kwang-Soo; Kim, Yeong-In; Park, Chong-Won; Chung, Yong-An
2008-10-01
Polycythaemia vera is a well-known cause of symptomatic chorea, however, the pathophysiology of this correlation remains unclear. We report on a patient with generalized chorea-ballism associated with polycythaemia vera, and we present the findings of 99mTc-hexamethylpropylene amine oxime (HMPAO) SPECT done in both the choreic state and the non-choreic state. The SPECT during both the choreic and the non-choreic states did not reveal any definite perfusion changes in specific regions of the brain, as compared with 6 age-matched controls. In addition, the subtraction SPECT co-registered to MRI (SISCOM) analysis did not show any difference in cerebral blood flow during the choreic and non-choreic states. This result suggests that the basic mechanism of chorea associated with polycythaemia vera does not appear to be associated with a reduction in cerebral perfusion to a specific cerebral area, such as the basal ganglia or its thalamocortical connections.
Nam, Yoonho; Jang, Jinhee; Park, Sonya Youngju; Choi, Hyun Seok; Jung, So-Lyung; Ahn, Kook-Jin; Kim, Bum-Soo
2018-05-22
To explore the feasibility of using correlation-based time-delay (CTD) maps produced from time-resolved MR angiography (TRMRA) to diagnose perfusion abnormalities in patients suspected to have steno-occlusive lesions in the craniocervical arteries. Twenty-seven patients who were suspected to have steno-occlusive lesions in the craniocervical arteries underwent both TRMRA and brain single-photon emission computed tomography (SPECT). TRMRA was performed on the supra-aortic area after intravenous injection of a 0.03 mmol/kg gadolinium-based contrast agent. Time-to-peak (TTP) maps and CTD maps of the brain were automatically generated from TRMRA data, and their quality was assessed. Detection of perfusion abnormalities was compared between CTD maps and the time-series maximal intensity projection (MIP) images from TRMRA and TTP maps. Correlation coefficients between quantitative changes in SPECT and parametric maps for the abnormal perfusion areas were calculated. The CTD maps were of significantly superior quality than TTP maps (p < 0.01). For perfusion abnormality detection, CTD maps (kappa 0.84, 95% confidence interval [CI] 0.67-1.00) showed better agreement with SPECT than TTP maps (0.66, 0.46-0.85). For perfusion deficit detection, CTD maps showed higher accuracy (85.2%, 95% CI 66.3-95.8) than MIP images (66.7%, 46-83.5), with marginal significance (p = 0.07). In abnormal perfusion areas, correlation coefficients between SPECT and CTD (r = 0.74, 95% CI 0.34-0.91) were higher than those between SPECT and TTP (r = 0.66, 0.20-0.88). CTD maps generated from TRMRA were of high quality and offered good diagnostic performance for detecting perfusion abnormalities associated with steno-occlusive arterial lesions in the craniocervical area. • Generation of perfusion parametric maps from time-resolved MR angiography is clinically useful. • Correlation-based delay maps can be used to detect perfusion abnormalities associated with steno-occlusive craniocervical arteries. • Estimation of correlation-based delay is robust for low signal-to-noise 4D MR data.
Reliability evaluation of I-123 ADAM SPECT imaging using SPM software and AAL ROI methods
NASA Astrophysics Data System (ADS)
Yang, Bang-Hung; Tsai, Sung-Yi; Wang, Shyh-Jen; Su, Tung-Ping; Chou, Yuan-Hwa; Chen, Chia-Chieh; Chen, Jyh-Cheng
2011-08-01
The level of serotonin was regulated by serotonin transporter (SERT), which is a decisive protein in regulation of serotonin neurotransmission system. Many psychiatric disorders and therapies were also related to concentration of cerebral serotonin. I-123 ADAM was the novel radiopharmaceutical to image SERT in brain. The aim of this study was to measure reliability of SERT densities of healthy volunteers by automated anatomical labeling (AAL) method. Furthermore, we also used statistic parametric mapping (SPM) on a voxel by voxel analysis to find difference of cortex between test and retest of I-123 ADAM single photon emission computed tomography (SPECT) images.Twenty-one healthy volunteers were scanned twice with SPECT at 4 h after intravenous administration of 185 MBq of 123I-ADAM. The image matrix size was 128×128 and pixel size was 3.9 mm. All images were obtained through filtered back-projection (FBP) reconstruction algorithm. Region of interest (ROI) definition was performed based on the AAL brain template in PMOD version 2.95 software package. ROI demarcations were placed on midbrain, pons, striatum, and cerebellum. All images were spatially normalized to the SPECT MNI (Montreal Neurological Institute) templates supplied with SPM2. And each image was transformed into standard stereotactic space, which was matched to the Talairach and Tournoux atlas. Then differences across scans were statistically estimated on a voxel by voxel analysis using paired t-test (population main effect: 2 cond's, 1 scan/cond.), which was applied to compare concentration of SERT between the test and retest cerebral scans.The average of specific uptake ratio (SUR: target/cerebellum-1) of 123I-ADAM binding to SERT in midbrain was 1.78±0.27, pons was 1.21±0.53, and striatum was 0.79±0.13. The cronbach's α of intra-class correlation coefficient (ICC) was 0.92. Besides, there was also no significant statistical finding in cerebral area using SPM2 analysis. This finding might help us to understand reliability of I-123 ADAM SPECT imaging and further develop new strategy for the treatment of psychiatric disorders.
Benameur, S.; Mignotte, M.; Meunier, J.; Soucy, J. -P.
2009-01-01
Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI). This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter. PMID:19812704
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroiss, A.; Boeck, F.; Auinger, C.
1994-05-01
The aim of this study was to compare the visualization of brain tumors with Iodine-123-Methyl Tyrosine (l-123-MT) and Indium-111-Octreotide (ln-111-Oc). We used l-123-MT (FZ-Seibersdorf), administering 222 MBq and planar images were performed 10min and 1hr after application. In 5 pts SPECT images were performed too. Not earlier than 48hrs 244 MBq In-111-Oc (OctreoScan{sup {reg_sign}}, Mallincrodt) were injected and planar images 4 and 24 hrs after application performed. In 9 pts SPECT images were performed (4hrs p.appl.). A digital Anger camera was used for data acquisition and processing (APEX 409A, Elscint). A total of 12 pts (8 male, 4 female agemore » ranging from 45-71 yrs) were investigated. using a region of interest technique tumor-to-brain tissue rations (T/BT) were calculated. Diagnosis of tumor was established by neurosurgical procedures. 6 pts with glioblastoma showed a high uptake with in-111-Oc (T/BT 1.7 {plus_minus}0.5) and also with l-123-MT T/BT: 1.5{plus_minus}0.4 (10 {prime}) and 1.45 {plus_minus}0.45 (1h). In 2 menigiomas the images with ln-111-Oc were very good (T/BT: 3.1, 3.6 (4hr pl)) and were negative with l-123-MT. In 4 metastases we found a low uptake in 2 pts with l-123-MT T/BT (10{prime}): 1.3 and 1.25; T/BT (1h): 1.25 and 1.2 and ln-111-Oc (T/BT (4h pl): 1.6 and 1.4). These were pts with brain metastases of adeno carcinoma. In two pts with brain metastases of small cell lung cancer we found good images with both substances I-123-MT T/BT: 1.6 and 1.7 (1h) and ln-111-Oc T/BT: 2.5 and 2.6 (4h pl). In summary, glioblastoma showed concordant images with both substances and also metastases, meningiomas showed discordant images. SPECT acquisition is possible with both substances and sometimes advisable.« less
Silverman, Daniel H S
2004-04-01
The clinical identification and differential diagnosis of dementias is especially challenging in the early stages, but the need for early, accurate diagnosis has become more important, now that several medications for the treatment of mild to moderate Alzheimer's disease (AD) are available. Many neurodegenerative diseases produce significant brain-function alterations detectable with PET or SPECT even when structural images with CT or MRI reveal no specific abnormalities. (18)F-FDG PET images of AD demonstrate focally decreased cerebral metabolism involving especially the posterior cingulate and neocortical association cortices, while largely sparing the basal ganglia, thalamus, cerebellum, and cortex mediating primary sensory and motor functions. Assessment of the precise diagnostic accuracy of PET had until recently been hindered by the paucity of data on diagnoses made using PET and confirmed by definitive histopathologic examination. In the past few years, however, studies comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET-accuracies substantially exceeding those of comparable studies of the diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. Similar data are emerging concerning the prognostic value of (18)F-FDG PET. Improvements in the ability of PET to identify very early changes associated with AD and other neurodegenerative dementias are currently outpacing improvements in therapeutic options, but with advances in potential preventive and disease-modifying treatments appearing imminent, early detection and diagnosis will play an increasing role in the management of dementing illness.
Boussi-Gross, Rahav; Golan, Haim; Fishlev, Gregori; Bechor, Yair; Volkov, Olga; Bergan, Jacob; Friedman, Mony; Hoofien, Dan; Shlamkovitch, Nathan; Ben-Jacob, Eshel; Efrati, Shai
2013-01-01
Traumatic brain injury (TBI) is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT) in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments. The trial population included 56 mTBI patients 1-5 years after injury with prolonged post-concussion syndrome (PCS). The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups. Patients in the treated group were evaluated at baseline and following 40 HBOT sessions; patients in the crossover group were evaluated three times: at baseline, following a 2-month control period of no treatment, and following subsequent 2-months of 40 HBOT sessions. The HBOT protocol included 40 treatment sessions (5 days/week), 60 minutes each, with 100% oxygen at 1.5 ATA. "Mindstreams" was used for cognitive evaluations, quality of life (QOL) was evaluated by the EQ-5D, and changes in brain activity were assessed by SPECT imaging. Significant improvements were demonstrated in cognitive function and QOL in both groups following HBOT but no significant improvement was observed following the control period. SPECT imaging revealed elevated brain activity in good agreement with the cognitive improvements. HBOT can induce neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in mTBI patients with prolonged PCS at late chronic stage. ClinicalTrials.gov NCT00715052.
Adriaens, Antita; Polis, Ingeborgh; Waelbers, Tim; Vandermeulen, Eva; Dobbeleir, André; De Spiegeleer, Bart; Peremans, Kathelijne
2013-01-01
Functional imaging provides important insights into canine brain pathologies such as behavioral problems. Two (99m) Tc-labeled single photon emission computed tomography (SPECT) cerebral blood flow tracers-ethylcysteinate dimer (ECD) and hexamethylpropylene amine oxime (HMPAO)-are commonly used in human medicine and have been used previously in dogs but intrasubject comparison of both tracers in dogs is lacking. Therefore, this study investigated whether regional distribution differences between both tracers occur in dogs as is reported in humans. Eight beagles underwent two SPECT examinations first with (99m) Tc-ECD and followed by (99m) Tc-HMPAO. SPECT scanning was performed with a triple head gamma camera equipped with ultrahigh resolution parallel hole collimators. Images were reconstructed using filtered backprojection with a Butterworth filter. Emission data were fitted to a template permitting semiquantification using predefined regions or volumes of interest (VOIs). For each VOI, perfusion indices were calculated by normalizing the regional counts per voxel to total brain counts per voxel. The obtained perfusion indices for each region for both tracers were compared with a paired Student's T-test. Significant (P < 0.05) regional differences were seen in the subcortical region and the cerebellum. Both tracers can be used to visualize regional cerebral blood flow in dogs, however, due to the observed regional differences, they are not entirely interchangeable. © 2013 Veterinary Radiology & Ultrasound.
Romero, Kristoffer; Black, Sandra E; Feinstein, Anthony
2014-01-01
Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI. Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major depressive disorder (MDD), but no TBI were given 99m T-ECD single-photon emission computed tomography (SPECT) scans within 2 weeks of injury. All subjects completed tests of information processing speed, complex attention, and executive functioning, and a self-report questionnaire measuring symptoms of psychological distress. Between-group comparisons of quantified SPECT perfusion were undertaken using univariate and multivariate (partial least squares) analyses. mTBI-D and mTBI-noD groups did not differ in terms of cerebral perfusion. However, patients with MDD showed hypoperfusion compared to both TBI groups in several frontal (orbitofrontal, middle frontal, and superior frontal cortex), superior temporal, and posterior cingulate regions. The mTBI-D group showed poorer performance on a measure of complex attention and working memory compared to both the mTBI-noD and MDD groups. These results suggest that depressive symptoms do not affect SPECT perfusion in the sub-acute phase following a mild TBI. Conversely, MDD is associated with hypoperfusion primarily in frontal regions.
Introduction of a novel ultrahigh sensitivity collimator for brain SPECT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Mi-Ae, E-mail: miaepark@bwh.harvard.edu; Kij
Purpose: Noise levels of brain SPECT images are highest in central regions, due to preferential attenuation of photons emitted from deep structures. To address this problem, the authors have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. This hybrid collimator consisted of ultrashort cone-beam holes in the central regions and slant-holes in the periphery (USCB). We evaluated this collimator for quantitative brain imaging tasks. Methods: Owing to the uniqueness of the USCB collimation, the hole pattern required substantial variations in collimator parameters. To utilize themore » lead-casting technique, the authors designed two supporting plates to position about 37 000 hexagonal, slightly tapered pins. The holes in the supporting plates were modeled to yield the desired focal length, hole length, and septal thickness. To determine the properties of the manufactured collimator and to compute the system matrix, the authors prepared an array of point sources that covered the entire detector area. Each point source contained 32 μCi of Tc-99m at the first scan time. The array was imaged for 5 min at each of the 64 shifted locations to yield a 2-mm sampling distance, and hole parameters were calculated. The sensitivity was also measured using a point source placed along the central ray at several distances from the collimator face. High-count projection data from a five-compartment brain phantom were acquired with the three collimators on a dual-head SPECT/CT system. The authors calculated Cramer-Rao bounds on the precision of estimates of striatal and background activity concentration. In order to assess the new collimation system to detect changes in striatal activity, the authors evaluated the precision of measuring a 5% decrease in right putamen activity. The authors also reconstructed images of projection data obtained by summing data from the individual phantom compartments. Results: The sensitivity of the novel cone-beam collimator varied with distance from the detector face; it was higher than that of the fan-beam collimator by factors ranging from 2.7 to 162. Examination of the projections of the point sources revealed that only a few holes were distorted or partially blocked, indicating that the intensive manual fabrication process was very successful. Better reconstructed phantom images were obtained from the USCB+FAN collimator pair than from either LEHR or FAN collimation. For the left caudate, located near the center of the brain, the detected counts were 9.8 (8.3) times higher for UCSB compared with LEHR (FAN), averaged over 60 views. The task-specific SNR for detecting a 5% decrease in putamen uptake was 7.4 for USCB and 3.2 for LEHR. Conclusions: The authors have designed and manufactured a novel collimator for brain SPECT imaging. The sensitivity is much higher than that of a fan-beam collimator. Because of differences between the manufactured collimator and its design, reconstruction of the data requires a measured system matrix. The authors have demonstrated the potential of USCB collimation for improved precision in estimating striatal uptake. The novel collimator may be useful for early detection of Parkinson’s disease, and for monitoring therapy response and disease progression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, D.C.; Ell, P.J.; Burns, A.
1988-12-01
We present preliminary data on the utility of functional brain imaging with (99mTc)-d,l-HM-PAO and single photon emission computed tomography (SPECT) in the study of patients with dementia of the Alzheimer type (DAT), HIV-related dementia syndrome, and the on-off syndrome of Parkinson's disease. In comparison with a group of age-matched controls, the DAT patients revealed distinctive bilateral temporal and posterior parietal deficits, which correlate with detailed psychometric evaluation. Patients with amnesia as the main symptom (group A) showed bilateral mesial temporal lobe perfusion deficits (p less than 0.02). More severely affected patients (group B) with significant apraxia, aphasia, or agnosia exhibitedmore » patterns compatible with bilateral reduced perfusion in the posterior parietal cortex, as well as reduced perfusion to both temporal lobes, different from the patients of the control group (p less than 0.05). SPECT studies of HIV patients with no evidence of intracraneal space occupying pathology showed marked perfusion deficits. Patients with Parkinson's disease and the on-off syndrome studied during an on phase (under levodopa therapy) and on another occasion after withdrawal of levodopa (off) demonstrated a significant change in the uptake of (99mTc)-d,l-HM-PAO in the caudate nucleus (lower on off) and thalamus (higher on off). These findings justify the present interest in the functional evaluation of the brain of patients with dementia. (99mTc)-d,l-HM-PAO and regional cerebral blood flow (rCBF)/SPECT appear useful and highlight individual disorders of flow in a variety of neuropsychiatric conditions.« less
Measurement of cerebral perfusion after zolpidem administration in the baboon model.
Clauss, R P; Dormehl, I C; Oliver, D W; Nel, W H; Kilian, E; Louw, W K
2001-01-01
A recent report showed that zolpidem (CAS 82626-48-0) can lead to the arousal of a semi-comatosed patient. Zolpidem is clinically used for the treatment of insomnia. It belongs to the imidazopyridine chemical class and is a non benzodiazepine drug. It illicits its pharmacological action via the GABA receptor system through stimulation of particularly the omega 1 receptors. In this study, the effect of zolpidem on brain perfusion was examined by 99mTc hexamethyl-propylene amine oxime (HMPAO) split dose brain SPECT on four normal baboons and in one baboon with abnormal neurological behaviour. The global and regional brain perfusion was not significantly affected in the normal brains. In some regions of the abnormal baboon brain, however, there was a disproportionate increase in perfusion after zolpidem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelis, Georgios I., E-mail: georgios.angelis@sydney.edu.au; Ryder, William J.; Bashar, Rezaul
Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to themore » torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more advantageous. Conclusions: Motion-induced inconsistencies in the projection data and attenuation/emission mismatch are the two main causes of bias in reconstructed brain images when there is complex motion. It appears that these two factors have a synergistic effect on the qualitative and quantitative accuracy of the reconstructed images.« less
Yamashita, Ken-Ichiro; Taniwaki, Yoshihide; Utsunomiya, Hidetsuna; Taniwaki, Takayuki
2014-01-01
Impairment of orientation for time (OT) is a characteristic symptom of Alzheimer disease (AD). However, the brain regions underlying OT remain to be elucidated. Using single photon emission computed tomography (SPECT), we examined the brain regions exhibiting hypoperfusion that were associated with OT. We compared regional cerebral blood flow (rCBF) differences between AD and amnesic mild cognitive impairment (aMCI) or normal subjects using 3-dimensional stereotactic surface projection (3D-SSP) analysis. AD patients were divided into OT good and poor groups according to their mean OT scores, and rCBF then compared between the groups to elucidate OT-specific brain areas. 3D-SSP analysis showed reduced rCBF in the left superior parietal lobule (SPL) and bilateral inferior parietal lobule (IPL) in AD patients. In the poor OT group, 3D-SSP analysis revealed hypoperfusion in the bilateral SPL, IPL, posterior cingulated cortex (PCC), and precuneus. Among these areas, region of interest analysis revealed a significant higher number of hypoperfused pixels in the left PCC in the OT poor AD group. Our SPECT study suggested that hypoperfusion in the left SPL and bilateral IPL was AD specific, and reduced rCBF in the left PCC was specifically associated with OT. Copyright © 2014 by the American Society of Neuroimaging.
Sustained effects of ecstasy on the human brain: a prospective neuroimaging study in novel users.
de Win, Maartje M L; Jager, Gerry; Booij, Jan; Reneman, Liesbeth; Schilt, Thelma; Lavini, Cristina; Olabarriaga, Sílvia D; den Heeten, Gerard J; van den Brink, Wim
2008-11-01
Previous studies have suggested toxic effects of recreational ecstasy use on the serotonin system of the brain. However, it cannot be excluded that observed differences between users and non-users are the cause rather than the consequence of ecstasy use. As part of the Netherlands XTC Toxicity (NeXT) study, we prospectively assessed sustained effects of ecstasy use on the brain in novel ecstasy users using repeated measurements with a combination of different neuroimaging parameters of neurotoxicity. At baseline, 188 ecstasy-naive volunteers with high probability of first ecstasy use were examined. After a mean period of 17 months follow-up, neuroimaging was repeated in 59 incident ecstasy users and 56 matched persistent ecstasy-naives and their outcomes were compared. Neuroimaging included [(123)I]beta-carbomethoxy-3beta-(4-iodophenyl)tropane (CIT) SPECT to measure serotonin transporter densities as indicators of serotonergic function; (1)H-MR spectroscopy ((1)H-MRS) to measure brain metabolites as indicators of neuronal damage; diffusion tensor imaging (DTI) to measure the apparent diffusion coefficient and fractional anisotropy (FA) of the diffusional motion of water molecules in the brain as indicators of axonal integrity; and perfusion weighted imaging (PWI) to measure regional relative cerebral blood volume (rrCBV) which indicates brain perfusion. With this approach, both structural ((1)H-MRS and DTI) and functional ([(123)I]beta-CIT SPECT and PWI) aspects of neurotoxicity were combined. Compared to persistent ecstasy-naives, novel low-dose ecstasy users (mean 6.0, median 2.0 tablets) showed decreased rrCBV in the globus pallidus and putamen; decreased FA in thalamus and frontoparietal white matter; increased FA in globus pallidus; and increased apparent diffusion coefficient in the thalamus. No changes in serotonin transporter densities and brain metabolites were observed. These findings suggest sustained effects of ecstasy on brain microvasculature, white matter maturation and possibly axonal damage due to low dosages of ecstasy. Although we do not know yet whether these effects are reversible or not, we cannot exclude that ecstasy even in low doses is neurotoxic to the brain.
[Scans without Evidence of Dopamine Deficit (SWEDDs)].
Mukai, Yohei; Murata, Miho
2016-01-01
Dopamine transporter (DaT) single-photon emission computed tomography (SPECT) and [18F]fluoro-L-DOPA ([18F]DOPA) positron emission tomography (PET) facilitate the investigation of dopaminergic hypofunction in neurodegenerative diseases. DaT SPECT and [18F]DOPA PET have been adopted as survey tools in clinical trials. In a large study on Parkinson's disease, 4-15% of subjects clinically diagnosed with early-stage Parkinson's disease had normal dopaminergic functional imaging scans. These are called Scans without Evidence of Dopamine Deficit (SWEDDs), and are considered to represent a state different from Parkinson's disease. Neurological diseases that exhibit parkinsonism and have normal dopaminergic cells in the nigrostriatal system (e.g., essential tremor, psychogenic parkinsonism, DOPA-responsive dystonia, vascular parkinsonism, drug-induced parkinsonism, manganism, brain tumor, myoclonus-dystonia (DYT11), and fragile X syndrome) might be diagnosed with SWEDDs. True bradykinesia with fatigue or decrement may be useful for distinguishing between Parkinson's disease and SWEDDs. However, because SWEDDs encompass many diseases, their properties may not be uniform. In this review, we discuss DaT SPECT, the concept of SWEDDs, and differential diagnosis.
Kubo, N
1995-04-01
To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.
Imaging cerebral activity in recovery from chronic traumatic brain injury: a preliminary report.
Lewis, David H; Bluestone, Judith P; Savina, Maryann; Zoller, William H; Meshberg, Emily B; Minoshima, Satoshi
2006-07-01
People in chronic phase of traumatic brain injury (TBI) are often told that there will be no further recovery in brain function, that they are in a "static phase." Holistic Approach to NeuroDevelopment and Learning Efficiency (HANDLE), an alternative therapy, aims to improve function by teaching a series of physical and mental activities that clients perform and encouraging changes in lifestyle. Five subjects (3 males) with chronic TBI (at least 3 years since ictus) completed the HANDLE Institute's program and were prospectively evaluated. Each had six regional cerebral blood flow (rCBF) single-photon emission computed tomography (SPECT) scans over 7 months (scans n= 30). Paired scans were performed with injection of Tc-99m ECD to image rCBF at rest and during the HANDLE "Crossed Arm Bounce" (CAB) exercise before the program, at 3-4 months into the program, and at 6-7 months, after the program had ended. SPECT images were analyzed statistically using Neurostat in which image sets were coregistered and warped into Talaraich atlas for pairwise subtraction between conditions. Group analysis of SPECT showed that CAB activated (increased rCBF) vermis and cerebellar hemispheres in first two paired scans and anterior cingulate and vermis on the final pair. Increased rCBF at rest occurred in cerebellar hemispheres, vermis, and right dorsomedial frontal cortex. These preliminary observations suggest that there may be a role of the hindbrain (vermis and cerebellum) with HANDLE treatment of chronic TBI.
Yokoyama, Shunichi; Kajiya, Yoriko; Yoshinaga, Takuma; Tani, Atsushi; Hirano, Hirofumi
2014-06-01
In the diagnosis of Alzheimer's disease (AD), discrepancies are often observed between magnetic resonance imaging (MRI) and brain perfusion single-photon emission computed tomography (SPECT) findings. MRI, brain perfusion SPECT, and amyloid positron emission tomography (PET) findings were compared in patients with mild cognitive impairment or early AD to clarify the discrepancies between imaging modalities. Several imaging markers were investigated, including the cortical average standardized uptake value ratio on amyloid PET, the Z-score of a voxel-based specific regional analysis system for AD on MRI, periventricular hyperintensity grade, deep white matter hyperintense signal grade, number of microbleeds, and three indicators of the easy Z-score imaging system for a specific SPECT volume-of-interest analysis. Based on the results of the regional analysis and the three indicators, we classified patients into four groups and then compared the results of amyloid PET, periventricular hyperintensity grade, deep white matter hyperintense signal grade, and the numbers of microbleeds among the groups. The amyloid deposition was the highest in the group that presented typical AD findings on both the regional analysis and the three indicators. The two groups that showed an imaging discrepancy between the regional analysis and the three indicators demonstrated intermediate amyloid deposition findings compared with the typical and atypical groups. The patients who showed hippocampal atrophy on the regional analysis and atypical AD findings using the three indicators were approximately 60% amyloid-negative. The mean periventricular hyperintensity grade was highest in the typical group. Patients showing discrepancies between MRI and SPECT demonstrated intermediate amyloid deposition findings compared with patients who showed typical or atypical findings. Strong white matter signal abnormalities on MRI in patients who presented typical AD findings provided further evidence for the involvement of vascular factors in AD. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negus, Ian S.; Holmes, Robin B.; Thorne, Gareth C.
Purpose: To make an adaptable, head shaped radionuclide phantom to simulate molecular imaging of the brain using clinical acquisition and reconstruction protocols. This will allow the characterization and correction of scanner characteristics, and improve the accuracy of clinical image analysis, including the application of databases of normal subjects. Methods: A fused deposition modeling 3D printer was used to create a head shaped phantom made up of transaxial slabs, derived from a simulated MRI dataset. The attenuation of the printed polylactide (PLA), measured by means of the Hounsfield unit on CT scanning, was set to match that of the brain bymore » adjusting the proportion of plastic filament and air (fill ratio). Transmission measurements were made to verify the attenuation of the printed slabs. The radionuclide distribution within the phantom was created by adding {sup 99m}Tc pertechnetate to the ink cartridge of a paper printer and printing images of gray and white matter anatomy, segmented from the same MRI data. The complete subresolution sandwich phantom was assembled from alternate 3D printed slabs and radioactive paper sheets, and then imaged on a dual headed gamma camera to simulate an HMPAO SPECT scan. Results: Reconstructions of phantom scans successfully used automated ellipse fitting to apply attenuation correction. This removed the variability inherent in manual application of attenuation correction and registration inherent in existing cylindrical phantom designs. The resulting images were assessed visually and by count profiles and found to be similar to those from an existing elliptical PMMA phantom. Conclusions: The authors have demonstrated the ability to create physically realistic HMPAO SPECT simulations using a novel head-shaped 3D printed subresolution sandwich method phantom. The phantom can be used to validate all neurological SPECT imaging applications. A simple modification of the phantom design to use thinner slabs would make it suitable for use in PET.« less
Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT
NASA Astrophysics Data System (ADS)
Shokouhi, S.; Metzler, S. D.; Wilson, D. W.; Peterson, T. E.
2009-01-01
We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.
Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.
Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru
2011-01-01
In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.
Towards the Experimental Assessment of the DQE in SPECT Scanners
NASA Astrophysics Data System (ADS)
Fountos, G. P.; Michail, C. M.
2017-11-01
The purpose of this work was to introduce the Detective Quantum Efficiency (DQE) in single photon emission computed tomography (SPECT) systems using a flood source. A Tc-99m-based flood source (Eγ = 140 keV) consisting of a radiopharmaceutical solution of dithiothreitol (DTT, 10-3 M)/Tc-99m(III)-DMSA, 40 mCi/40 ml bound to the grains of an Agfa MammoRay HDR Medical X-ray film) was prepared in laboratory. The source was placed between two PMMA blocks and images were obtained by using the brain tomographic acquisition protocol (DatScan-brain). The Modulation Transfer Function (MTF) was evaluated using the Iterative 2D algorithm. All imaging experiments were performed in a Siemens e-Cam gamma camera. The Normalized Noise Power spectra (NNPS) were obtained from the sagittal views of the source. The higher MTF values were obtained for the Flash Iterative 2D with 24 iterations and 20 subsets. The noise levels of the SPECT reconstructed images, in terms of the NNPS, were found to increase as the number of iterations increase. The behavior of the DQE was influenced by both MTF and NNPS. As the number of iterations was increased, higher MTF values were obtained, however with a parallel, increase of magnitude in image noise, as depicted from the NNPS results. DQE values, which were influenced by both MTF and NNPS, were found higher when the number of iterations results in resolution saturation. The method presented here is novel and easy to implement, requiring materials commonly found in clinical practice and can be useful in the quality control of SPECT scanners.
[Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain].
Fiedler, E; Platsch, G; Schwarz, A; Schmiedehausen, K; Tomandl, B; Huk, W; Rupprecht, Th; Rahn, N; Kuwert, T
2003-10-01
Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. PATIENTS, MATERIAL AND METHOD: In 32 patients regional cerebral blood flow was measured using (99m)Tc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3D-T1w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use.
NASA Astrophysics Data System (ADS)
Prince, John R.
1982-12-01
Sensitivity, specificity, and predictive accuracy have been shown to be useful measures of the clinical efficacy of diagnostic tests and can be used to predict the potential improvement in diagnostic certitude resulting from the introduction of a competing technology. This communication demonstrates how the informal use of clinical decision analysis may guide health planners in the allocation of resources, purchasing decisions, and implementation of high technology. For didactic purposes the focus is on a comparison between conventional planar radioscintigraphy (RS) and single photon transverse section emission conputed tomography (SPECT). For example, positive predictive accuracy (PPA) for brain RS in a specialist hospital with a 50% disease prevalance is about 95%. SPECT should increase this predicted accuracy to 96%. In a primary care hospital with only a 15% disease prevalance the PPA is only 77% and SPECT may increase this accuracy to about 79%. Similar calculations based on published data show that marginal improvements are expected with SPECT in the liver. It is concluded that: a) The decision to purchase a high technology imaging modality such as SPECT for clinical purposes should be analyzed on an individual organ system and institutional basis. High technology may be justified in specialist hospitals but not necessarily in primary care hospitals. This is more dependent on disease prevalance than procedure volume; b) It is questionable whether SPECT imaging will be competitive with standard RS procedures. Research should concentrate on the development of different medical applications.
Recent neuroimaging techniques in mild traumatic brain injury.
Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L
2007-01-01
Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.
Hattori, Naoya; Swan, Megan; Stobbe, Gary A; Uomoto, Jay M; Minoshima, Satoshi; Djang, David; Krishnananthan, Ruben; Lewis, David H
2009-07-01
Patients with mild traumatic brain injury (TBI) often complain of cognitive fatigue during the chronic recovery phase. The Paced Auditory Serial Addition Test (PASAT) is a complex psychologic measure that may demonstrate subtle deficiencies in higher cognitive functions. The purpose of this study was to investigate the brain activation of regional cerebral blood flow (rCBF) with PASAT in patients with mild TBI to explore mechanisms for the cognitive fatigue. Two groups consisting of 15 patients with mild TBI and 15 healthy control subjects underwent (99m)Tc-ethylene cysteine dimer SPECT at rest and during PASAT on a separate day. Cortical rCBF was extracted using a 3-dimensional stereotactic surface projection and statistically analyzed to identify areas of activation, which were compared with PASAT performance scores. Image analysis demonstrated a difference in the pattern of activation between patients with mild TBI and healthy control subjects. Healthy control subjects activated the superior temporal cortex (Brodmann area [BA] 22) bilaterally, the precentral gyrus (BA 9) on the left, and the precentral gyrus (BA 6) and cerebellum bilaterally. Patients with mild TBI demonstrated a larger area of supratentorial activation (BAs 9, 10, 13, and 46) but a smaller area of activation in the cerebellum, indicating frontocerebellar dissociation. Patients with mild TBI and cognitive fatigue demonstrated a different pattern of activation during PASAT. Frontocerebellar dissociation may explain cognitive impairment and cognitive fatigue in the chronic recovery phase of mild traumatic brain injury.
Understanding the pathophysiology of reflex epilepsy using simultaneous EEG-fMRI.
Sandhya, Manglore; Bharath, Rose Dawn; Panda, Rajanikant; Chandra, S R; Kumar, Naveen; George, Lija; Thamodharan, A; Gupta, Arun Kumar; Satishchandra, P
2014-03-01
Measuring neuro-haemodynamic correlates in the brain of epilepsy patients using EEG-fMRI has opened new avenues in clinical neuroscience, as these are two complementary methods for understanding brain function. In this study, we investigated three patients with drug-resistant reflex epilepsy using EEG-fMRI. Different types of reflex epilepsy such as eating, startle myoclonus, and hot water epilepsy were included in the study. The analysis of EEG-fMRI data was based on the visual identification of interictal epileptiform discharges on scalp EEG. The convolution of onset time and duration of these epilepsy spikes was estimated, and using these condition-specific effects in a general linear model approach, we evaluated activation of fMRI. Patients with startle myoclonus epilepsy experienced epilepsy in response to sudden sound or touch, in association with increased delta and theta activity with a spike-and-slow-wave pattern of interictal epileptiform discharges on EEG and fronto-parietal network activation pattern on SPECT and EEG-fMRI. Eating epilepsy was triggered by sight or smell of food and fronto-temporal discharges were noted on video-EEG (VEEG). Similarly, fronto-temporo-parietal involvement was noted on SPECT and EEG-fMRI. Hot water epilepsy was triggered by contact with hot water either in the bath or by hand immersion, and VEEG showed fronto-parietal involvement. SPECT and EEG fMRI revealed a similar fronto-parietal-occipital involvement. From these results, we conclude that continuous EEG recording can improve the modelling of BOLD changes related to interictal epileptic activity and this can thus be used to understand the neuro-haemodynamic substrates involved in reflex epilepsy.
Preclinical imaging characteristics and quantification of Platinum-195m SPECT.
Aalbersberg, E A; de Wit-van der Veen, B J; Zwaagstra, O; Codée-van der Schilden, K; Vegt, E; Vogel, Wouter V
2017-08-01
In vivo biodistribution imaging of platinum-based compounds may allow better patient selection for treatment with chemo(radio)therapy. Radiolabeling with Platinum-195m ( 195m Pt) allows SPECT imaging, without altering the chemical structure or biological activity of the compound. We have assessed the feasibility of 195m Pt SPECT imaging in mice, with the aim to determine the image quality and accuracy of quantification for current preclinical imaging equipment. Enriched (>96%) 194 Pt was irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands (NRG). A 0.05 M HCl 195m Pt-solution with a specific activity of 33 MBq/mg was obtained. Image quality was assessed for the NanoSPECT/CT (Bioscan Inc., Washington DC, USA) and U-SPECT + /CT (MILabs BV, Utrecht, the Netherlands) scanners. A radioactivity-filled rod phantom (rod diameter 0.85-1.7 mm) filled with 1 MBq 195m Pt was scanned with different acquisition durations (10-120 min). Four healthy mice were injected intravenously with 3-4 MBq 195m Pt. Mouse images were acquired with the NanoSPECT for 120 min at 0, 2, 4, or 24 h after injection. Organs were delineated to quantify 195m Pt concentrations. Immediately after scanning, the mice were sacrificed, and the platinum concentration was determined in organs using a gamma counter and graphite furnace - atomic absorption spectroscopy (GF-AAS) as reference standards. A 30-min acquisition of the phantom provided visually adequate image quality for both scanners. The smallest visible rods were 0.95 mm in diameter on the NanoSPECT and 0.85 mm in diameter on the U-SPECT + . The image quality in mice was visually adequate. Uptake was seen in the kidneys with excretion to the bladder, and in the liver, blood, and intestine. No uptake was seen in the brain. The Spearman correlation between SPECT and gamma counter was 0.92, between SPECT and GF-AAS it was 0.84, and between GF-AAS and gamma counter it was0.97 (all p < 0.0001). Preclinical 195m Pt SPECT is feasible with acceptable tracer doses and acquisition times, and provides good image quality and accurate signal quantification.
Evolving knowledge of sex differences in brain structure, function, and chemistry.
Cosgrove, Kelly P; Mazure, Carolyn M; Staley, Julie K
2007-10-15
Clinical and epidemiologic evidence demonstrates sex differences in the prevalence and course of various psychiatric disorders. Understanding sex-specific brain differences in healthy individuals is a critical first step toward understanding sex-specific expression of psychiatric disorders. Here, we evaluate evidence on sex differences in brain structure, chemistry, and function using imaging methodologies, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and structural magnetic resonance imaging (MRI) in mentally healthy individuals. MEDLINE searches of English-language literature (1980-November 2006) using the terms sex, gender, PET, SPECT, MRI, fMRI, morphometry, neurochemistry, and neurotransmission were performed to extract relevant sources. The literature suggests that while there are many similarities in brain structure, function, and neurotransmission in healthy men and women, there are important differences that distinguish the male from the female brain. Overall, brain volume is greater in men than women; yet, when controlling for total volume, women have a higher percentage of gray matter and men a higher percentage of white matter. Regional volume differences are less consistent. Global cerebral blood flow is higher in women than in men. Sex-specific differences in dopaminergic, serotonergic, and gamma-aminobutyric acid (GABA)ergic markers indicate that male and female brains are neurochemically distinct. Insight into the etiology of sex differences in the normal living human brain provides an important foundation to delineate the pathophysiological mechanisms underlying sex differences in neuropsychiatric disorders and to guide the development of sex-specific treatments for these devastating brain disorders.
Structural (CT) and functional imaging (PET/SPECT) for the investigation of dolphin bioacoustics
NASA Astrophysics Data System (ADS)
Houser, Dorian S.; Finneran, James J.; Mattrey, Robert; Hoh, Carl; Ridgway, Sam
2003-10-01
A combination of imaging modalities was used to address physiological and anatomical questions relevant to dolphin bioacoustics. Three dolphins (Tursiops truncatus) were scanned with CT to investigate in vivo dolphin cranial anatomy. One dolphin underwent SPECT and PET scanning to investigate blood flow and metabolic activity of the cranial tissues. Air spaces were mostly contiguous and covered the periotic bone and auditory bulla dorsally and medially. Cranial air was compartmentalized by the nasal plug and constriction of the palatopharyngeus muscle. Blood flow, determined from SPECT imaging of 99Tc-bicisate distribution, was greatest in the brain, melon, and posterior fats of the lower jaw. Metabolic activity of tissues, assessed by monitoring the uptake of 18F-deoxyglucose via PET, indicated that melon and jaw fats were metabolically inert compared to the brain. Nasal cavity and sinus air volume that is reduced during diving may be replenished with lung air via the palatopharyngeus and Eustachian tube. Air covering the bulla may protect the ears from outgoing echolocation pulses and contribute to spectral and time of arrival cues. Blood flow to the melon and lower jaw fats may serve to either regulate the temperature of acoustic lipids or act as a site of counter-current heat exchange.
Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki
2017-12-01
The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.
Romero, Kristoffer; Black, Sandra E.; Feinstein, Anthony
2014-01-01
Background: Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI. Methods: Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major depressive disorder (MDD), but no TBI were given 99m T-ECD single-photon emission computed tomography (SPECT) scans within 2 weeks of injury. All subjects completed tests of information processing speed, complex attention, and executive functioning, and a self-report questionnaire measuring symptoms of psychological distress. Between-group comparisons of quantified SPECT perfusion were undertaken using univariate and multivariate (partial least squares) analyses. Results: mTBI-D and mTBI-noD groups did not differ in terms of cerebral perfusion. However, patients with MDD showed hypoperfusion compared to both TBI groups in several frontal (orbitofrontal, middle frontal, and superior frontal cortex), superior temporal, and posterior cingulate regions. The mTBI-D group showed poorer performance on a measure of complex attention and working memory compared to both the mTBI-noD and MDD groups. Conclusion: These results suggest that depressive symptoms do not affect SPECT perfusion in the sub-acute phase following a mild TBI. Conversely, MDD is associated with hypoperfusion primarily in frontal regions. PMID:25191305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inugami, A.; Kanno, I.; Uemura, K.
1988-12-01
The radioisotope distribution following intravenous injection of 99mTc-labeled hexamethylpropyleneamine oxime (HM-PAO) in the brain was measured by single photon emission computed tomography (SPECT) and corrected for the nonlinearity caused by differences in net extraction. The linearization correction was based on a three compartment model, and it required a region of reference to normalize the SPECT image in terms of regional cerebral blood flow distribution. Two different regions of reference, the cerebellum and the whole brain, were tested. The uncorrected and corrected HM-PAO images were compared with cerebral blood flow (CBF) image measured by the C VO2 inhalation steady state methodmore » and positron emission tomography (PET). The relationship between uncorrected HM-PAO and PET-CBF showed a correlation coefficient of 0.85 but tended to saturate at high CBF values, whereas it was improved to 0.93 after the linearization correction. The whole-brain normalization worked just as well as normalization using the cerebellum. This study constitutes a validation of the linearization correction and it suggests that after linearization the HM-PAO image may be scaled to absolute CBF by employing a global hemispheric CBF value as measured by the nontomographic TTXe clearance method.« less
Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism.
Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques
2015-01-01
Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness.
Amen, Daniel G; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A
2016-04-25
National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players.
Amen, Daniel G.; Willeumier, Kristen; Omalu, Bennet; Newberg, Andrew; Raghavendra, Cauligi; Raji, Cyrus A.
2016-01-01
Background: National Football League (NFL) players are exposed to multiple head collisions during their careers. Increasing awareness of the adverse long-term effects of repetitive head trauma has raised substantial concern among players, medical professionals, and the general public. Objective: To determine whether low perfusion in specific brain regions on neuroimaging can accurately separate professional football players from healthy controls. Method: A cohort of retired and current NFL players (n = 161) were recruited in a longitudinal study starting in 2009 with ongoing interval follow up. A healthy control group (n = 124) was separately recruited for comparison. Assessments included medical examinations, neuropsychological tests, and perfusion neuroimaging with single photon emission computed tomography (SPECT). Perfusion estimates of each scan were quantified using a standard atlas. We hypothesized that hypoperfusion particularly in the orbital frontal, anterior cingulate, anterior temporal, hippocampal, amygdala, insular, caudate, superior/mid occipital, and cerebellar sub-regions alone would reliably separate controls from NFL players. Cerebral perfusion differences were calculated using a one-way ANOVA and diagnostic separation was determined with discriminant and automatic linear regression predictive models. Results: NFL players showed lower cerebral perfusion on average (p < 0.01) in 36 brain regions. The discriminant analysis subsequently distinguished NFL players from controls with 90% sensitivity, 86% specificity, and 94% accuracy (95% CI 95-99). Automatic linear modeling achieved similar results. Inclusion of age and clinical co-morbidities did not improve diagnostic classification. Conclusion: Specific brain regions commonly damaged in traumatic brain injury show abnormally low perfusion on SPECT in professional NFL players. These same regions alone can distinguish this group from healthy subjects with high diagnostic accuracy. This study carries implications for the neurological safety of NFL players. PMID:27128374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, D.C.; Walker, S.; Waddington, W.
1996-05-01
FP-CIT is a N-fluoropropyl analogue of the [2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane] which has been labelled with I-123 and developed as a new marker of the pre-synaptic dopamine transporter system. Its selective uptake in the striatum of non-human primates and human volunteers has been reported with advantageous faster brain kinetics than {beta}-CIT. In this pilot work we studied the whole body imaging kinetics of FP-CIT in one normal volunteer - NV (5, 60, 100, 360 minutes and 24 hours post-injection for 20 minutes each) and a drug-free patient with well established Parkinson`s disease - PD (100 minutes) after intravenous injection of 111 MBq. Bothmore » subjects had high resolution brain SPECT at 35 minutes and 3.5 hours post-injection. Percent of whole body uptake (geometric mean of anterior and posterior projections) in different organs, including total brain and basal ganglia shows rapid clearance from blood during the first hour with no significant change from 100 minutes to 24 hours. The basal ganglia uptake is approximately 0.4% of total body from 100 minutes onwards. Striatal uptake (ratio to frontal cortex) is different between subjects, mainly at 3.5 hours and more marked in the putamen: Calculated dosimetry (mSv/MBq) showed E.D.E.-0.034, and total doses to whole body - 0.01, total brain - 0.017, basal ganglia - 0.155, small intestine - 0.06, urinary bladder - 0.05 and liver - 0.03. These data confirm that FP-CIT has acceptable dosimetry with good pharmacokinetics enabling the study of pre-synaptic dopamine transport system in nigrostriatal degeneration with clinical SPECT at 3-4 hrs p.i.« less
Pirich, Christian; Keinrath, Peter; Barth, Gabriele; Rendl, Gundula; Rettenbacher, Lukas; Rodrigues, Margarida
2017-03-01
IQ SPECT consists of a new pinhole-like collimator, cardio-centric acquisition, and advanced 3D iterative SPECT reconstruction. The aim of this paper was to compare diagnostic accuracy and functional parameters obtained with IQ SPECT versus conventional SPECT in patients undergoing myocardial perfusion scintigraphy with adenosine stress and at rest. Eight patients with known or suspected coronary artery disease underwent [99mTc] tetrofosmin gated SPECT. Acquisition was performed on a Symbia T6 equipped with IQ SPECT and on a conventional gamma camera system. Gated SPECT data were used to calculate functional parameters. Scores analysis was performed on a 17-segment model. Coronary angiography and clinical follow-up were considered as diagnostic reference standard. Mean acquisition time was 4 minutes with IQ SPECT and 21 minutes with conventional SPECT. Agreement degree on the diagnostic accuracy between both systems was 0.97 for stress studies, 0.91 for rest studies and 0.96 for both studies. Perfusion abnormalities scores obtained by using IQ SPECT and conventional SPECT were not significant different: SSS, 9.7±8.8 and 10.1±6.4; SRS, 7.1±6.1 and 7.5±7.3; SDS, 4.0±6.1 and 3.9±4.3, respectively. However, a significant difference was found in functional parameters derived from IQ SPECT and conventional SPECT both after stress and at rest. Mean LVEF was 8% lower using IQ SPECT. Differences in LVEF were found in patients with normal LVEF and patients with reduced LVEF. Functional parameters using accelerated cardiac acquisition with IQ SPECT are significantly different to those obtained with conventional SPECT, while agreement for clinical interpretation of myocardial perfusion scintigraphy with both techniques is high.
Verger, Antoine; Djaballah, Wassila; Fourquet, Nicolas; Rouzet, François; Koehl, Grégoire; Imbert, Laetitia; Poussier, Sylvain; Fay, Renaud; Roch, Véronique; Le Guludec, Dominique; Karcher, Gilles; Marie, Pierre-Yves
2013-02-01
The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving (201)Tl (n = 120) or (99m)Tc-sestamibi injected at low dose at stress ((99m)Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ((99m)Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, (201)Tl 92 %, (99m)Tc-Low 86 %, (99m)Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the (201)Tl or (99m)Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 ± 101 kcounts) and dramatically enhanced with CZT SPECT (+279 ± 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT.
A SPECT Scanner for Rodent Imaging Based on Small-Area Gamma Cameras
NASA Astrophysics Data System (ADS)
Lage, Eduardo; Villena, José L.; Tapias, Gustavo; Martinez, Naira P.; Soto-Montenegro, Maria L.; Abella, Mónica; Sisniega, Alejandro; Pino, Francisco; Ros, Domènec; Pavia, Javier; Desco, Manuel; Vaquero, Juan J.
2010-10-01
We developed a cost-effective SPECT scanner prototype (rSPECT) for in vivo imaging of rodents based on small-area gamma cameras. Each detector consists of a position-sensitive photomultiplier tube (PS-PMT) coupled to a 30 x 30 Nal(Tl) scintillator array and electronics attached to the PS-PMT sockets for adapting the detector signals to an in-house developed data acquisition system. The detector components are enclosed in a lead-shielded case with a receptacle to insert the collimators. System performance was assessed using 99mTc for a high-resolution parallel-hole collimator, and for a 0.75-mm pinhole collimator with a 60° aperture angle and a 42-mm collimator length. The energy resolution is about 10.7% of the photopeak energy. The overall system sensitivity is about 3 cps/μCi/detector and planar spatial resolution ranges from 2.4 mm at 1 cm source-to-collimator distance to 4.1 mm at 4.5 cm with parallel-hole collimators. With pinhole collimators planar spatial resolution ranges from 1.2 mm at 1 cm source-to-collimator distance to 2.4 mm at 4.5 cm; sensitivity at these distances ranges from 2.8 to 0.5 cps/μCi/detector. Tomographic hot-rod phantom images are presented together with images of bone, myocardium and brain of living rodents to demonstrate the feasibility of preclinical small-animal studies with the rSPECT.
Mutoh, Tatsushi; Totsune, Tomoko; Takenaka, Shunsuke; Tatewaki, Yasuko; Nakagawa, Manabu; Suarez, Jose I; Taki, Yasuyuki; Ishikawa, Tatsuya
2018-02-01
The aim of this study was to evaluate the impact of cerebral blood flow (CBF) recovery obtained from brain single-photon emission computed tomography (SPECT) images on postoperative outcome after aneurysmal subarachnoid haemorrhage (SAH). Twenty-nine patients who had undergone surgical clipping for ruptured anterior communicating artery aneurysms were analyzed prospectively. Routine measurements of CBF were performed using technetium-99 m hexamethyl propyleneamine oxine SPECT on days 4 and 14 after SAH. Regional voxel data analyzed by three dimensional stereotactic surface projection (3D-SSP) were compared between patients and age-matched normal database (NDB). In 3D-SSP analysis of all patients, cortical hypoperfusion around the surgical site in bilateral frontal lobes was evident on day 4 (P < .05 vs NDB), which was improved significantly on day 14. However, the recovery was less complete in patients with poor clinical grades (P < .05) and presenting symptoms attributable to delayed cerebral ischaemia (DCI) (P < .05) than those without. Multivariate analysis showed that patients with mild to moderate CBF recovery (relative Z-score differences of <4) (P = .014; odds ratio, 2.5; 95% confidence interval, 1.93-3.31) was independently associated with poor functional outcome at 3 months. We conclude that reduced CBF recovery detected by serial 3D-SSP SPECT image analyses can be a potential predictor of poor prognosis in postoperative patients after SAH. © 2017 John Wiley & Sons Australia, Ltd.
Fishlev, Gregori; Bechor, Yair; Volkov, Olga; Bergan, Jacob; Friedman, Mony; Hoofien, Dan; Shlamkovitch, Nathan; Ben-Jacob, Eshel; Efrati, Shai
2013-01-01
Background Traumatic brain injury (TBI) is the leading cause of death and disability in the US. Approximately 70-90% of the TBI cases are classified as mild, and up to 25% of them will not recover and suffer chronic neurocognitive impairments. The main pathology in these cases involves diffuse brain injuries, which are hard to detect by anatomical imaging yet noticeable in metabolic imaging. The current study tested the effectiveness of Hyperbaric Oxygen Therapy (HBOT) in improving brain function and quality of life in mTBI patients suffering chronic neurocognitive impairments. Methods and Findings The trial population included 56 mTBI patients 1–5 years after injury with prolonged post-concussion syndrome (PCS). The HBOT effect was evaluated by means of prospective, randomized, crossover controlled trial: the patients were randomly assigned to treated or crossover groups. Patients in the treated group were evaluated at baseline and following 40 HBOT sessions; patients in the crossover group were evaluated three times: at baseline, following a 2-month control period of no treatment, and following subsequent 2-months of 40 HBOT sessions. The HBOT protocol included 40 treatment sessions (5 days/week), 60 minutes each, with 100% oxygen at 1.5 ATA. “Mindstreams” was used for cognitive evaluations, quality of life (QOL) was evaluated by the EQ-5D, and changes in brain activity were assessed by SPECT imaging. Significant improvements were demonstrated in cognitive function and QOL in both groups following HBOT but no significant improvement was observed following the control period. SPECT imaging revealed elevated brain activity in good agreement with the cognitive improvements. Conclusions HBOT can induce neuroplasticity leading to repair of chronically impaired brain functions and improved quality of life in mTBI patients with prolonged PCS at late chronic stage. Trial Registration ClinicalTrials.gov NCT00715052 PMID:24260334
Matsuoka, Teruyuki; Narumoto, Jin; Shibata, Keisuke; Okamura, Aiko; Taniguchi, Shogo; Kitabayashi, Yurinosuke; Fukui, Kenji
2012-01-01
The aim of this study was to examine the effect of toki-shakuyaku-san (TSS) on mild cognitive impairment (MCI) and Alzheimer's disease (AD) using single-photon emission computed tomography (SPECT). All subjects were administered TSS (7.5 g/day) for eight weeks. SPECT and evaluations using the Mini Mental State Examination (MMSE), Neuropsychiatric Inventory, and Physical Self-Maintenance Scale were performed before and after treatment with TSS. Three patients with MCI and five patients with AD completed the study. No adverse events occurred during the study period. After treatment with TSS, regional cerebral blood flow (rCBF) in the posterior cingulate was significantly higher than that before treatment. No brain region showed a significant decrease in rCBF. TSS treatment also tended to improve the score for orientation to place on the MMSE. These results suggest that TSS could be useful for treatment of MCI and AD. PMID:22454658
Cognitive impairment and olfactory panic from occupational exposure to VOCs.
Reinhartz, Abe
2006-10-01
A Canadian government clerical worker in her early thirties developed frontal lobe dysfunction from inhalation of volatile organic compounds off-gassed during an office renovation. Pulmonary function, bronchial provocation, allergy testing, and a brain (SPECT) scan were performed. SPECT scanning showed frontotemporal hypoperfusion and neuropsychologic testing revealed deficits in verbal learning and poor organizational memory. A significant component of this worker's impairment was the development of "olfactory panic," a debilitating aversion to odor accompanied by symptoms of panic. The Ontario Workplace Safety and Insurance Appeals Tribunal granted entitlement for her cognitive difficulties and olfactory panic as a result of her toxic exposure.
Task-based design of a synthetic-collimator SPECT system used for small animal imaging.
Lin, Alexander; Kupinski, Matthew A; Peterson, Todd E; Shokouhi, Sepideh; Johnson, Lindsay C
2018-05-07
In traditional multipinhole SPECT systems, image multiplexing - the overlapping of pinhole projection images - may occur on the detector, which can inhibit quality image reconstructions due to photon-origin uncertainty. One proposed system to mitigate the effects of multiplexing is the synthetic-collimator SPECT system. In this system, two detectors, a silicon detector and a germanium detector, are placed at different distances behind the multipinhole aperture, allowing for image detection to occur at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. The unwanted effects of multiplexing are reduced by utilizing the additional data collected from the front silicon detector. However, determining optimal system configurations for a given imaging task requires efficient parsing of the complex parameter space, to understand how pinhole spacings and the two detector distances influence system performance. In our simulation studies, we use the ensemble mean-squared error of the Wiener estimator (EMSE W ) as the figure of merit to determine optimum system parameters for the task of estimating the uptake of an 123 I-labeled radiotracer in three different regions of a computer-generated mouse brain phantom. The segmented phantom map is constructed by using data from the MRM NeAt database and allows for the reduction in dimensionality of the system matrix which improves the computational efficiency of scanning the system's parameter space. To contextualize our results, the Wiener estimator is also compared against a region of interest estimator using maximum-likelihood reconstructed data. Our results show that the synthetic-collimator SPECT system outperforms traditional multipinhole SPECT systems in this estimation task. We also find that image multiplexing plays an important role in the system design of the synthetic-collimator SPECT system, with optimal germanium detector distances occurring at maxima in the derivative of the percent multiplexing function. Furthermore, we report that improved task performance can be achieved by using an adaptive system design in which the germanium detector distance may vary with projection angle. Finally, in our comparative study, we find that the Wiener estimator outperforms the conventional region of interest estimator. Our work demonstrates how this optimization method has the potential to quickly and efficiently explore vast parameter spaces, providing insight into the behavior of competing factors, which are otherwise very difficult to calculate and study using other existing means. © 2018 American Association of Physicists in Medicine.
Trogrlic, Mate; Težak, Stanko
2017-06-12
The aim of this study was to evaluate the additional value of 99m Tc-HYNIC-TOC SPECT/CT over planar whole-body (WB) scintigraphy and SPECT alone in the detection and accurate localisation of neuroendocrine tumour (NET) lesions. This study included 65 patients with a definitive histological diagnosis of NET prior to scintigraphy. Planar WB scintigraphy, SPECT, and SPECT/CT images were acquired at 4 h post-administration of 670 MBq 99m Tc-HYNIC-TOC. Additional SPECT images at 10 min after tracer administration were also acquired. Clinical and imaging follow-up findings were considered as the reference standards (minimum follow-up period, 15 months). Patient and lesion-based analyses of the efficacies of the imaging modalities were performed. While 38 patients exhibited metastasis of NETs, 27 presented no evidence of metastasis. Upon patient-based analysis, the sensitivity and specificity of SPECT/CT were found to be 88.9 and 79.3 %, respectively. The diagnostic accuracies of WB scintigraphy, 4h-SPECT, and SPECT/CT were 72.3, 73.8, and 84.6 %, respectively. The area under curve (AUC) value for SPECT/CT (0.84) was the highest, followed by those for 4h-SPECT (0.75) and WB scintigraphy (0.74). The accuracy and AUC values of SPECT/CT were significantly better compared to those of WB scintigraphy (p < 0.001), 10 min-SPECT (p < 0.001), and 4 h-SPECT (p = 0.001). The findings of SPECT/CT led to the change in treatment plan of 11 patients (16.9 %). The sensitivity and diagnostic accuracy of SPECT/CT in the evaluation of NET lesions outperforms planar WB imaging or SPECT alone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Mi-Ae; Moore, Stephen C.; McQuaid, Sarah J.
Purpose: The authors have previously reported the advantages of high-sensitivity single-photon emission computed tomography (SPECT) systems for imaging structures located deep inside the brain. DaTscan (Isoflupane I-123) is a dopamine transporter (DaT) imaging agent that has shown potential for early detection of Parkinson disease (PD), as well as for monitoring progression of the disease. Realizing the full potential of DaTscan requires efficient estimation of striatal uptake from SPECT images. They have evaluated two SPECT systems, a conventional dual-head gamma camera with low-energy high-resolution collimators (conventional) and a dedicated high-sensitivity multidetector cardiac imaging system (dedicated) for imaging tasks related to PD.more » Methods: Cramer-Rao bounds (CRB) on precision of estimates of striatal and background activity concentrations were calculated from high-count, separate acquisitions of the compartments (right striata, left striata, background) of a striatal phantom. CRB on striatal and background activity concentration were calculated from essentially noise-free projection datasets, synthesized by scaling and summing the compartment projection datasets, for a range of total detected counts. They also calculated variances of estimates of specific-to-nonspecific binding ratios (BR) and asymmetry indices from these values using propagation of error analysis, as well as the precision of measuring changes in BR on the order of the average annual decline in early PD. Results: Under typical clinical conditions, the conventional camera detected 2 M counts while the dedicated camera detected 12 M counts. Assuming a normal BR of 5, the standard deviation of BR estimates was 0.042 and 0.021 for the conventional and dedicated system, respectively. For an 8% decrease to BR = 4.6, the signal-to-noise ratio were 6.8 (conventional) and 13.3 (dedicated); for a 5% decrease, they were 4.2 (conventional) and 8.3 (dedicated). Conclusions: This implies that PD can be detected earlier with the dedicated system than with the conventional system; therefore, earlier identification of PD progression should be possible with the high-sensitivity dedicated SPECT camera.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, J; Yoon, D; Suh, T
2014-06-01
Purpose: The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the BNCT. Methods: Data from the PET module, neutron source, and collimator was entered in the Monte Carlo n-particle extended (MCNPX) source code. The coincidence events were first compiled on the PET detector, and then, the events of the prompt gamma ray were collected after neutron emission by using a single photon emission computed tomography (SPECT) collimator on the PET. The obtaining of full widthmore » at half maximum (FWHM) values from the energy spectrum was performed to collect effective events for reconstructed image. In order to evaluate the images easily, five boron regions in a brain phantom were used. The image profiles were extracted from the region of interest (ROI) of a phantom. The image was reconstructed using the ordered subsets expectation maximization (OSEM) reconstruction algorithm. The image profiles and the receiver operating characteristic (ROC) curve were compiled for quantitative analysis from the two kinds of reconstructed image. Results: The prompt gamma ray energy peak of 478 keV appeared in the energy spectrum with a FWHM of 41 keV (6.4%). On the basis of the ROC curve in Region A to Region E, the differences in the area under the curve (AUC) of the PET and SPECT images were found to be 10.2%, 11.7%, 8.2% (center, Region C), 12.6%, and 10.5%, respectively. Conclusion: We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No.2009 00420) and the Radiation Technology R and D program (Grant No.2013M2A2A7043498), Republic of Korea.« less
Cassar, Andrew; Prasad, Megha; Rodriguez-Porcel, Martin; Reeder, Guy S; Karia, Darshak; DeMaria, Anthony N; Lerman, Amir
2014-03-01
To assess the safety and efficacy of extracorporeal shockwave myocardial revascularization (ESMR) therapy in treating patients with refractory angina pectoris. A single-arm multicenter prospective trial to assess safety and efficacy of the ESMR therapy in patients with refractory angina (class III/IV angina) was performed. Screening exercise treadmill tests and pharmacological single-photon emission computed tomography (SPECT) were performed for all patients to assess exercise capacity and ischemic burden. Patients were treated with 9 sessions of ESMR to ischemic areas over 9 weeks. Efficacy end points were exercise capacity by using treadmill test as well as ischemic burden on pharmacological SPECT at 4 months after the last ESMR treatment. Safety measures included electrocardiography, echocardiography, troponin, creatine kinase, and brain natriuretic peptide testing, and pain questionnaires. Fifteen patients with medically refractory angina and no revascularization options were enrolled. There was a statistically significant mean increase of 122.3±156.9 seconds (38% increase compared with baseline; P=.01) in exercise treadmill time from baseline (319.8±157.2 seconds) to last follow-up after the ESMR treatment (422.1±183.3 seconds). There was no improvement in the summed stress perfusion scores after pharmacologically induced stress SPECT at 4 months after the last ESMR treatment in comparison to that at screening; however, SPECT summed stress score revealed that untreated areas had greater progression in ischemic burden vs treated areas (3.69±6.2 vs 0.31±4.5; P=.03). There was no significant change in the mean summed echo score from baseline to posttreatment (0.4±5.1; P=.70). The ESMR therapy was performed safely without any adverse events in electrocardiography, echocardiography, troponins, creatine kinase, or brain natriuretic peptide. Pain during the ESMR treatment was minimal (a score of 0.5±1.2 to 1.1±1.2 out of 10). In this multicenter feasibility study, ESMR seems to be a safe and efficacious treatment for patients with refractory angina pectoris. However, larger sham-controlled trials will be required to confirm these findings. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Hyperbaric Oxygen Therapy Can Diminish Fibromyalgia Syndrome – Prospective Clinical Trial
Efrati, Shai; Golan, Haim; Bechor, Yair; Faran, Yifat; Daphna-Tekoah, Shir; Sekler, Gal; Fishlev, Gregori; Ablin, Jacob N.; Bergan, Jacob; Volkov, Olga; Friedman, Mony; Ben-Jacob, Eshel; Buskila, Dan
2015-01-01
Background Fibromyalgia Syndrome (FMS) is a persistent and debilitating disorder estimated to impair the quality of life of 2–4% of the population, with 9:1 female-to-male incidence ratio. FMS is an important representative example of central nervous system sensitization and is associated with abnormal brain activity. Key symptoms include chronic widespread pain, allodynia and diffuse tenderness, along with fatigue and sleep disturbance. The syndrome is still elusive and refractory. The goal of this study was to evaluate the effect of hyperbaric oxygen therapy (HBOT) on symptoms and brain activity in FMS. Methods and Findings A prospective, active control, crossover clinical trial. Patients were randomly assigned to treated and crossover groups: The treated group patients were evaluated at baseline and after HBOT. Patients in the crossover-control group were evaluated three times: baseline, after a control period of no treatment, and after HBOT. Evaluations consisted of physical examination, including tender point count and pain threshold, extensive evaluation of quality of life, and single photon emission computed tomography (SPECT) imaging for evaluation of brain activity. The HBOT protocol comprised 40 sessions, 5 days/week, 90 minutes, 100% oxygen at 2ATA. Sixty female patients were included, aged 21–67 years and diagnosed with FMS at least 2 years earlier. HBOT in both groups led to significant amelioration of all FMS symptoms, with significant improvement in life quality. Analysis of SPECT imaging revealed rectification of the abnormal brain activity: decrease of the hyperactivity mainly in the posterior region and elevation of the reduced activity mainly in frontal areas. No improvement in any of the parameters was observed following the control period. Conclusions The study provides evidence that HBOT can improve the symptoms and life quality of FMS patients. Moreover, it shows that HBOT can induce neuroplasticity and significantly rectify abnormal brain activity in pain related areas of FMS patients. Trial Registration ClinicalTrials.gov NCT01827683 PMID:26010952
Traumatic Brain Injury: A Guide for Caregivers of Service Members and Veterans. Caregivers Companion
2010-04-01
legs , body, speech, or eye movements. Axons – Also known as nerve fibers, an axon is a long, slender projection of a nerve...excessively nasal; volume may be weak; drooling may occur. Dyskinesia – Involuntary movements most often seen in the arms or legs . Electroencephalograph, or...Tests may include: CT Scan, MRI, Angiogram, EEG, SPECT Scan, PET Scan, DTI Scan. Neurotransmitters – Chemicals found within the brain that
Central nervous system vasculitis after starting methimazole in a woman with Graves' disease.
Tripodi, Pier Francesco; Ruggeri, Rosaria M; Campennì, Alfredo; Cucinotta, Mariapaola; Mirto, Angela; Lo Gullo, Renato; Baldari, Sergio; Trimarchi, Francesco; Cucinotta, Domenico; Russo, Giuseppina T
2008-09-01
Graves' disease (GD), a prototypical autoimmune disorder, is associated with other autoimmune diseases, including vasculitis. Antithyroid drugs, despite their postulated immunosuppressive effects, may cause several autoimmune disorders. Here we describe the first patient with central nervous system (CNS) vasculitis that developed shortly after the start of methimazole (MMI) treatment for GD. CNS vasculitis was suspected on the basis of the clinical features and neurologic examination, showing a reinforcement of deep reflexes, especially of the left knee and Achilles reflexes. The diagnosis was confirmed by a brain magnetic resonance imaging (MRI), which showed some hyperintensive spots in the subcortical substantia alba and in the parietal area bilaterally, and by a single-photon emission computed tomography (SPECT) imaging, which showed a nonhomogenous distribution of the blood flow in the brain, with a reduced perfusion on the left side of the frontotemporal and parietal regions, and on the right side of the frontotemporal area. MMI was stopped before total thyroidectomy, and symptoms resolved in the next 5 weeks. Six months after MMI was stopped, the brain MRI and SPECT had become normal. To our knowledge, this is the first report of CNS vasculitis related to MMI therapy.
Sestini, Stelvio; Pupi, Alberto; Ammannati, Franco; Silvia, Ramat; Sorbi, Sandro; Castagnoli, Antonio
2007-10-01
The aim of this follow-up study was to assess persistent motor and regional cerebral blood flow (rCBF) changes in patients with Parkinson's disease (PD) treated with high-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN). Ten PD patients with STN-DBS underwent three rCBF SPECT studies at rest, once preoperatively in the off-drug condition (T(0)), and twice postoperatively in the off-drug/off-stimulation conditions at 5 +/- 2 (T(1)) and 42 +/- 7 months (T(2)). Patients were assessed using the UPDRS, H&Y and S&E scales. SPM was used to investigate baseline rCBF changes from the preoperative condition to the postoperative conditions and the relationship between rCBF and UPDRS scores used as covariate of interest. Parkinsonian patients showed a clinical improvement which was significant only on follow-up at 42 months. The main effect of treatment from T(0) to T(1) was to produce baseline rCBF increases in the pre-supplementary motor area (pre-SMA), premotor cortex and somatosensory association cortex. From T(1) to T(2) a further baseline rCBF increase was detected in the pre-SMA (p < 0.0001). A correlation was detected between the slight improvement in motor scores and the rCBF increase in the pre-SMA (p < 0.0001), which is known to play a crucial role in clinical progression. Our study suggests the presence of adaptive functional changes in the human brain of PD patients treated with long-term STN-DBS. Such adaptive processes seem to occur in the pre-SMA and to play only a slightly beneficial role in terms of functional compensation of motor impairment.
SPECT/CT in patients with lower back pain after lumbar fusion surgery.
Sumer, Johannes; Schmidt, Daniela; Ritt, Philipp; Lell, Michael; Forst, Raimund; Kuwert, Torsten; Richter, Richard
2013-10-01
The aim of the study was to investigate the incremental diagnostic value of skeletal hybrid imaging with single-photon emission computed tomography and X-ray computed tomography (SPECT/CT) over conventional nuclear medical imaging in patients with lower back pain after lumbar fusion surgery (LFS). This retrospective study comprised 37 patients suffering from lower back pain after LFS in whom three-phase planar bone scintigraphies of the lumbar spine including SPECT/CT of that region had been performed. The findings visible on these imaging data sets were classified into the following five diagnostic categories: (a) metal loosening; (b) insufficient stabilizing function of the metal implants indicated by metabolically active facet joint arthritis and/or intervertebral osteochondrosis in the instrumented region; (c) adjacent instability defined as metabolically active degenerative disease in the segments adjacent to the instrumented region; (d) indeterminate; and (e) normal. In the case of eight patients no lesions were visible on their planar scintigraphy and SPECT (planar/SPECT) or SPECT/CT images. In the remaining 29 patients, planar/SPECT disclosed 62 pathological foci of uptake within the graft region and SPECT/CT revealed 55. The rate of reclassification by SPECT/CT compared with planar/SPECT was 5/12 for lesions categorized as metal loosening by planar/SPECT, 16/29 for foci with a planar/SPECT diagnosis of insufficient stabilizing function, 7/20 when the planar/SPECT diagnosis had been adjacent instability, and 1/1 for the lesions indeterminate on planar/SPECT. Two lesions had been detected on SPECT/CT only. The overall rate of reclassification was 45.2% (28/62) (95% confidence interval, 33.4-57.5%). Because of its significantly higher accuracy compared with planar/SPECT, SPECT/CT should be the conventional nuclear medical procedure of choice for patients with lower back pain after LFS.
Ben-Haim, Simona; Kacperski, Krzysztof; Hain, Sharon; Van Gramberg, Dean; Hutton, Brian F; Erlandsson, Kjell; Sharir, Tali; Roth, Nathaniel; Waddington, Wendy A; Berman, Daniel S; Ell, Peter J
2010-08-01
We compared simultaneous dual-radionuclide (DR) stress and rest myocardial perfusion imaging (MPI) with a novel solid-state cardiac camera and a conventional SPECT camera with separate stress and rest acquisitions. Of 27 consecutive patients recruited, 24 (64.5+/-11.8 years of age, 16 men) were injected with 74 MBq of (201)Tl (rest) and 250 MBq (99m)Tc-MIBI (stress). Conventional MPI acquisition times for stress and rest are 21 min and 16 min, respectively. Rest (201)Tl for 6 min and simultaneous DR 15-min list mode gated scans were performed on a D-SPECT cardiac scanner. In 11 patients DR D-SPECT was performed first and in 13 patients conventional stress (99m)Tc-MIBI SPECT imaging was performed followed by DR D-SPECT. The DR D-SPECT data were processed using a spill-over and scatter correction method. DR D-SPECT images were compared with rest (201)Tl D-SPECT and with conventional SPECT images by visual analysis employing the 17-segment model and a five-point scale (0 normal, 4 absent) to calculate the summed stress and rest scores. Image quality was assessed on a four-point scale (1 poor, 4 very good) and gut activity was assessed on a four-point scale (0 none, 3 high). Conventional MPI studies were abnormal at stress in 17 patients and at rest in 9 patients. In the 17 abnormal stress studies DR D-SPECT MPI showed 113 abnormal segments and conventional MPI showed 93 abnormal segments. In the nine abnormal rest studies DR D-SPECT showed 45 abnormal segments and conventional MPI showed 48 abnormal segments. The summed stress and rest scores on conventional SPECT and DR D-SPECT were highly correlated (r=0.9790 and 0.9694, respectively). The summed scores of rest (201)Tl D-SPECT and DR-DSPECT were also highly correlated (r=0.9968, p<0.0001 for all). In six patients stress perfusion defects were significantly larger on stress DR D-SPECT images, and five of these patients were imaged earlier by D-SPECT than by conventional SPECT. Fast and high-quality simultaneous DR MPI is feasible with D-SPECT in a single imaging session with comparable diagnostic performance and image quality to conventional SPECT and to a separate rest (201)Tl D-SPECT acquisition.
PET AND SPECT STUDIES IN CHILDREN WITH HEMISPHERIC LOW-GRADE GLIOMAS
Juhász, Csaba; Bosnyák, Edit
2016-01-01
Molecular imaging is playing an increasing role in the pre-treatment evaluation of low-grade gliomas. While glucose positron emission tomography (PET) can be helpful to differentiate low-grade from high-grade tumors, PET imaging with amino acid radiotracers has several advantages, such as better differentiation between tumors and non-tumorous lesions, optimized biopsy targeting and improved detection of tumor recurrence. This review provides a brief overview of single photon emission computed tomography (SPECT) studies followed by a more detailed review of clinical applications of glucose and amino acid PET imaging in low-grade hemispheric gliomas. We discuss key differences in the performance of the most commonly utilized PET radiotracers and highlight the advantage of PET/MRI fusion to obtain optimal information about tumor extent, heterogeneity and metabolism. Recent data also suggest that simultaneous acquisition of PET/MR images and the combination of advanced MRI techniques with quantitative PET can further improve the pre- and post-treatment evaluation of pediatric brain tumors. PMID:27659825
PET and SPECT studies in children with hemispheric low-grade gliomas.
Juhász, Csaba; Bosnyák, Edit
2016-10-01
Molecular imaging is playing an increasing role in the pretreatment evaluation of low-grade gliomas. While glucose positron emission tomography (PET) can be helpful to differentiate low-grade from high-grade tumors, PET imaging with amino acid radiotracers has several advantages, such as better differentiation between tumors and non-tumorous lesions, optimized biopsy targeting, and improved detection of tumor recurrence. This review provides a brief overview of single-photon emission computed tomography (SPECT) studies followed by a more detailed review of the clinical applications of glucose and amino acid PET imaging in low-grade hemispheric gliomas. We discuss key differences in the performance of the most commonly utilized PET radiotracers and highlight the advantage of PET/MRI fusion to obtain optimal information about tumor extent, heterogeneity, and metabolism. Recent data also suggest that simultaneous acquisition of PET/MR images and the combination of advanced MRI techniques with quantitative PET can further improve the pretreatment and post-treatment evaluation of pediatric brain tumors.
Mete, Mutlu; Sakoglu, Unal; Spence, Jeffrey S; Devous, Michael D; Harris, Thomas S; Adinoff, Bryon
2016-10-06
Neuroimaging studies have yielded significant advances in the understanding of neural processes relevant to the development and persistence of addiction. However, these advances have not explored extensively for diagnostic accuracy in human subjects. The aim of this study was to develop a statistical approach, using a machine learning framework, to correctly classify brain images of cocaine-dependent participants and healthy controls. In this study, a framework suitable for educing potential brain regions that differed between the two groups was developed and implemented. Single Photon Emission Computerized Tomography (SPECT) images obtained during rest or a saline infusion in three cohorts of 2-4 week abstinent cocaine-dependent participants (n = 93) and healthy controls (n = 69) were used to develop a classification model. An information theoretic-based feature selection algorithm was first conducted to reduce the number of voxels. A density-based clustering algorithm was then used to form spatially connected voxel clouds in three-dimensional space. A statistical classifier, Support Vectors Machine (SVM), was then used for participant classification. Statistically insignificant voxels of spatially connected brain regions were removed iteratively and classification accuracy was reported through the iterations. The voxel-based analysis identified 1,500 spatially connected voxels in 30 distinct clusters after a grid search in SVM parameters. Participants were successfully classified with 0.88 and 0.89 F-measure accuracies in 10-fold cross validation (10xCV) and leave-one-out (LOO) approaches, respectively. Sensitivity and specificity were 0.90 and 0.89 for LOO; 0.83 and 0.83 for 10xCV. Many of the 30 selected clusters are highly relevant to the addictive process, including regions relevant to cognitive control, default mode network related self-referential thought, behavioral inhibition, and contextual memories. Relative hyperactivity and hypoactivity of regional cerebral blood flow in brain regions in cocaine-dependent participants are presented with corresponding level of significance. The SVM-based approach successfully classified cocaine-dependent and healthy control participants using voxels selected with information theoretic-based and statistical methods from participants' SPECT data. The regions found in this study align with brain regions reported in the literature. These findings support the future use of brain imaging and SVM-based classifier in the diagnosis of substance use disorders and furthering an understanding of their underlying pathology.
Einstein, Andrew J.; Blankstein, Ron; Andrews, Howard; Fish, Mathews; Padgett, Richard; Hayes, Sean W.; Friedman, John D.; Qureshi, Mehreen; Rakotoarivelo, Harivony; Slomka, Piotr; Nakazato, Ryo; Bokhari, Sabahat; Di Carli, Marcello; Berman, Daniel S.
2015-01-01
SPECT myocardial perfusion imaging (MPI) plays a central role in coronary artery disease diagnosis; but concerns exist regarding its radiation burden. Compared to standard Anger-SPECT (A-SPECT) cameras, new high-efficiency (HE) cameras with specialized collimators and solid-state cadmium-zinc-telluride detectors offer potential to maintain image quality (IQ), while reducing administered activity and thus radiation dose to patients. No previous study has compared IQ, interpretation, total perfusion deficit (TPD), or ejection fraction (EF) in patients receiving both ultra-low-dose (ULD) imaging on a HE-SPECT camera and standard low-dose (SLD) A-SPECT imaging. Methods We compared ULD-HE-SPECT to SLD-A-SPECT imaging by dividing the rest dose in 101 patients at 3 sites scheduled to undergo clinical A-SPECT MPI using a same day rest/stress Tc-99m protocol. Patients received HE-SPECT imaging following an initial ~130 MBq (3.5mCi) dose, and SLD-A-SPECT imaging following the remainder of the planned dose. Images were scored visually by 2 blinded readers for IQ and summed rest score (SRS). TPD and EF were assessed quantitatively. Results Mean activity was 134 MBq (3.62 mCi) for ULD-HE-SPECT (effective dose 1.15 mSv) and 278 MBq (7.50 mCi, 2.39 mSv) for SLD-A-SPECT. Overall IQ was superior for ULD-HE-SPECT (p<0.0001), with twice as many studies graded excellent quality. Extracardiac activity and overall perfusion assessment were similar. Between-method correlations were high for SRS (r=0.87), TPD (r=0.91), and EF (r=0.88). Conclusion ULD-HE-SPECT rest imaging correlates highly with SLD-A-SPECT. It has improved image quality, comparable extracardiac activity, and achieves radiation dose reduction to 1 mSv for a single injection. PMID:24982439
Bigler, E D
2001-02-01
This paper overviews the current status of neuroimaging in neuropsychological outcome in traumatic brain injury (TBI). The pathophysiology of TBI is reviewed and integrated with expected neuroimaging and neuropsychological findings. The integration of clinical and quantitative magnetic resonance (QMR) imaging is the main topic of review, but these findings are integrated with single photon emission computed tomography (SPECT) and magnetoencephalography (MEG). Various clinical caveats are offered for the clinician.
Development of a multichannel optical system for differential cortical measurement
NASA Astrophysics Data System (ADS)
Maki, Atsushi; Yamashita, Yuichi; Watanabe, Eiju; Koizumi, Hideaki
1997-08-01
A prototype system based on intensity-modulation spectroscopy (IMS) was produced with the goal of developing 'optoencephalography' as a new instrument for clinical application and for investigating human brain functions. This system can use dual wavelengths (787 and 827 nm) to simultaneously measure reflectances at 8 measurement positions on the human head. Using the system, we measured the changes in blood circulation and oxygenation changes caused by epileptic seizures and specific brain functions. The former measurements were made simultaneously with tests to determine the epileptic focus by using single-photon-emission computed tomography (SPECT) and electrodes set in the brian. Four measurement positions were fixed in each temporal region. The areas where cerebral blood flow increased, as observed by SPECT, corresponded to the positions where the regional cerebral blood volume (rCBV) increased, as measured by the IMS system. Furthermore, the timing of the epileptic seizures, as measured by the depth-electrodes, corresponded to the timing of the increase in rCBV measured by the prototype system. Our measurements of changes in blood circulation as a result of brain functions were made for motor functions to compare the differences between the right and left hemisphere in how they respond to specific functions. Four measurement positions were set in bilateral motor areas. Significant differences in blood circulation in connection with brain activities were observed between the right and left hemispheres.
Movement disorders: role of imaging in diagnosis.
Mascalchi, Mario; Vella, Alessandra; Ceravolo, Roberto
2012-02-01
Magnetic resonance imaging (MRI and single-photon emission computed tomography (SPECT) have a considerable role in the diagnosis of the single patient with movement disorders. Conventional MRI demonstrates symptomatic causes of parkinsonism but does not show any specific finding in Parkinson's disease (PD). However, SPECT using tracers of the dopamine transporter (DAT) demonstrates an asymmetric decrease of the uptake in the putamen and caudate from the earliest clinical stages. In other degenerative forms of parkinsonism, including progressive supranuclear palsy (PSP), multisystem atrophy (MSA), and corticobasal degeneration (CBD), MRI reveals characteristic patterns of regional atrophy combined with signal changes or microstructural changes in the basal ganglia, pons, middle and superior cerebellar peduncles, and cerebral subcortical white matter. SPECT demonstrates a decreased uptake of tracers of the dopamine D2 receptors in the striata of patients with PSP and MSA, which is not observed in early PD. MRI also significantly contributes to the diagnosis of some inherited hyperkinetic conditions including neurodegeneration with brain iron accumulation and fragile-X tremor/ataxia syndrome by revealing characteristic symmetric signal changes in the basal ganglia and middle cerebellar peduncles, respectively. A combination of the clinical features with MRI and SPECT is recommended for optimization of the diagnostic algorithm in movement disorders. Copyright © 2011 Wiley Periodicals, Inc.
Bartolini, M; Candela, M; Brugni, M; Catena, L; Mari, F; Pomponio, G; Provinciali, L; Danieli, G
2002-01-01
To determine whether some behavioural manifestations and poor motor performances in patients affected by rheumatoid arthritis (RA) are due to subclinical cognitive defects. We performed a psychometric assessment of 30 patients affected by RA exploring several cognitive domains such as memory, visual-spatial integration, motor planning, mental flexibility, relating performances with morphological and functional neuroimaging (MRI and SPECT). We also related the cognitive data with the Ritchie and Lee indexes and other clinical parameters. We found an impairment in visual-spatial tasks in 71% of patients with a high correlation to activity and disease severity as expressed by the Ritchie and Lee indexes (p < 0.005; p < 0.01). Furthermore, we detected in 38% of patients some difficulties in mental flexibility related to the Lee Index (p < 0.05). These poor performances are related to hypoperfusion of the frontal and parietal lobes as detected by brain SPECT; this finding is more evident in patients with brain white matter alterations on MRI. Our data allow us to hypothesize that manual dexterity could be due to a disconnection between subcortical white matter and parietal-frontal lobes because of microangiopathy; furthermore, a chronic reduction in sensorial stimuli by impaired joints could lead to produce an alteration in motor planning cognitive processes.
Mazzini, Letizia; Campini, Riccardo; Angelino, Elisabetta; Rognone, Felice; Pastore, Ilaria; Oliveri, Giuseppe
2003-11-01
To detect the clinical and radiologic characteristics of posttraumatic hydrocephalus (PTH), to define its prognostic value, and to assess the effects of shunt surgery. Correlational study on a prospective cohort. Brain injury rehabilitation center. One hundred forty patients with severe traumatic brain injury (TBI) referred to an inpatient intensive rehabilitation unit of primary care in a university-based system. Not applicable. The Glasgow Outcome Scale (GOS), Disability Rating Scale (DRS), FIM instrument, and Neurobehavioural Rating Scale (NRS), as well as single-photon emission computed tomography (SPECT) and magnetic resonance imaging. PTH was found in 45% of patients. Risk factors for PTH were as follows: age (P<.04), duration of coma (P<.0001), and decompressive craniectomy (P<.0001). PTH correlated with the degree of hypoperfusion in the temporal lobes (P<.001). Patients who showed clinical deterioration improved after surgery. PTH correlated significantly with GOS, DRS, FIM, and NRS (P<.0001) 1 year after the trauma, and it influenced the appearance of posttraumatic epilepsy (P<.02). PTH concerns about 50% of patients with severe TBI. It influences functional and behavioral outcome and the appearance of posttraumatic epilepsy. The selection of patients for surgery can be defined principally on a clinical basis. SPECT may be helpful for differentiating ventricular enlargement due to cortical atrophy and hydrocephalus.
Sleep Deprivation Reveals Altered Brain Perfusion Patterns in Somnambulism
Dang-Vu, Thien Thanh; Zadra, Antonio; Labelle, Marc-Antoine; Petit, Dominique; Soucy, Jean-Paul; Montplaisir, Jacques
2015-01-01
Background Despite its high prevalence, relatively little is known about the pathophysiology of somnambulism. Increasing evidence indicates that somnambulism is associated with functional abnormalities during wakefulness and that sleep deprivation constitutes an important drive that facilitates sleepwalking in predisposed patients. Here, we studied the neural mechanisms associated with somnambulism using Single Photon Emission Computed Tomography (SPECT) with 99mTc-Ethylene Cysteinate Dimer (ECD), during wakefulness and after sleep deprivation. Methods Ten adult sleepwalkers and twelve controls with normal sleep were scanned using 99mTc-ECD SPECT in morning wakefulness after a full night of sleep. Eight of the sleepwalkers and nine of the controls were also scanned during wakefulness after a night of total sleep deprivation. Between-group comparisons of regional cerebral blood flow (rCBF) were performed to characterize brain activity patterns during wakefulness in sleepwalkers. Results During wakefulness following a night of total sleep deprivation, rCBF was decreased bilaterally in the inferior temporal gyrus in sleepwalkers compared to controls. Conclusions Functional neural abnormalities can be observed during wakefulness in somnambulism, particularly after sleep deprivation and in the inferior temporal cortex. Sleep deprivation thus not only facilitates the occurrence of sleepwalking episodes, but also uncovers patterns of neural dysfunction that characterize sleepwalkers during wakefulness. PMID:26241047
Validation of Left Ventricular Ejection Fraction with the IQ•SPECT System in Small-Heart Patients.
Yoneyama, Hiroto; Shibutani, Takayuki; Konishi, Takahiro; Mizutani, Asuka; Hashimoto, Ryosuke; Onoguchi, Masahisa; Okuda, Koichi; Matsuo, Shinro; Nakajima, Kenichi; Kinuya, Seigo
2017-09-01
The IQ•SPECT system, which is equipped with multifocal collimators ( SMART ZOOM) and uses ordered-subset conjugate gradient minimization as the reconstruction algorithm, reduces the acquisition time of myocardial perfusion imaging compared with conventional SPECT systems equipped with low-energy high-resolution collimators. We compared the IQ•SPECT system with a conventional SPECT system for estimating left ventricular ejection fraction (LVEF) in patients with a small heart (end-systolic volume < 20 mL). Methods: The study consisted of 98 consecutive patients who underwent a 1-d stress-rest myocardial perfusion imaging study with a 99m Tc-labeled agent for preoperative risk assessment. Data were reconstructed using filtered backprojection for conventional SPECT and ordered-subset conjugate gradient minimization for IQ•SPECT. End-systolic volume, end-diastolic volume, and LVEF were calculated using quantitative gated SPECT (QGS) and cardioREPO software. We compared the LVEF from gated myocardial perfusion SPECT to that from echocardiographic measurements. Results: End-diastolic volume, end-systolic volume, and LVEF as obtained from conventional SPECT, IQ•SPECT, and echocardiography showed a good to excellent correlation regardless of whether they were calculated using QGS or using cardioREPO. Although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (65.4% ± 13.8% vs. 68.4% ± 15.2%) ( P = 0.0002), LVEF calculated using cardioREPO did not (69.5% ± 10.6% vs. 69.5% ± 11.0%). Likewise, although LVEF calculated using QGS significantly differed between conventional SPECT and IQ•SPECT (75.0 ± 9.6 vs. 79.5 ± 8.3) ( P = 0.0005), LVEF calculated using cardioREPO did not (72.3% ± 9.0% vs. 74.3% ± 8.3%). Conclusion: In small-heart patients, the difference in LVEF between IQ•SPECT and conventional SPECT was less when calculated using cardioREPO than when calculated using QGS. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Hamami, Monia E; Poeppel, Thorsten D; Müller, Stephan; Heusner, Till; Bockisch, Andreas; Hilgard, Philipp; Antoch, Gerald
2009-05-01
Radioembolization with (90)Y microspheres is a novel treatment for hepatic tumors. Generally, hepatic arteriography and (99m)Tc-macroaggregated albumin (MAA) scanning are performed before selective internal radiation therapy to detect extrahepatic shunting to the lung or the gastrointestinal tract. Whereas previous studies have used only planar or SPECT scans, the present study used (99m)Tc-MAA SPECT/CT scintigraphy (SPECT with integrated low-dose CT) to evaluate whether SPECT/CT and additional diagnostic contrast-enhanced CT before radioembolization with (90)Y microspheres are superior to SPECT or planar imaging alone for detection of gastrointestinal shunting. In a prospective study, we enrolled 58 patients (mean age, 66 y; SD, 12 y; 10 women and 48 men) with hepatocellular carcinoma who underwent hepatic arteriography and scintigraphy with (99m)Tc-MAA using planar imaging, SPECT, and SPECT with integrated low-dose CT of the upper abdomen (acquired with a hybrid SPECT/CT camera). The ability of the different imaging modalities to detect extrahepatic MAA shunting was compared. Patient follow-up of a mean of 180 d served as the standard of reference. Gastrointestinal shunting was revealed by planar imaging in 4, by SPECT in 9, and by SPECT/CT in 16 of the 68 examinations. For planar imaging, the sensitivity for detection of gastrointestinal shunting was 25%, the specificity 87%, and the accuracy 72%. For SPECT without CT, the sensitivity was 56%, the specificity 87%, and the accuracy 79%. SPECT with CT fusion had a sensitivity of 100%, a specificity of 94%, and an accuracy of 96%. In 3 patients, MAA deposits in the portal vein could accurately be attributed to tumor thrombus only with additional information from contrast-enhanced CT. The follow-up did not show any gastrointestinal complications. SPECT with integrated low-dose CT using (99m)Tc-MAA is beneficial in radioembolization with (90)Y microspheres because it increases the sensitivity and specificity of (99m)Tc-MAA SPECT when detecting extrahepatic arterial shunting. The overall low risk of gastrointestinal complications in radioembolization may therefore be further reduced by SPECT/CT.
Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing
2016-01-01
Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.
Ogata, Yuji; Nakahara, Tadaki; Ode, Kenichi; Matsusaka, Yohji; Katagiri, Mari; Iwabuchi, Yu; Itoh, Kazunari; Ichimura, Akira; Jinzaki, Masahiro
2017-05-01
We developed a method of image data projection of bone SPECT into 3D volume-rendered CT images for 3D SPECT/CT fusion. The aims of our study were to evaluate its feasibility and clinical usefulness. Whole-body bone scintigraphy (WB) and SPECT/CT scans were performed in 318 cancer patients using a dedicated SPECT/CT systems. Volume data of bone SPECT and CT were fused to obtain 2D SPECT/CT images. To generate our 3D SPECT/CT images, colored voxel data of bone SPECT were projected onto the corresponding location of the volume-rendered CT data after a semi-automatic bone extraction. Then, the resultant 3D images were blended with conventional volume-rendered CT images, allowing to grasp the three-dimensional relationship between bone metabolism and anatomy. WB and SPECT (WB + SPECT), 2D SPECT/CT fusion, and 3D SPECT/CT fusion were evaluated by two independent reviewers in the diagnosis of bone metastasis. The inter-observer variability and diagnostic accuracy in these three image sets were investigated using a four-point diagnostic scale. Increased bone metabolism was found in 744 metastatic sites and 1002 benign changes. On a per-lesion basis, inter-observer agreements in the diagnosis of bone metastasis were 0.72 for WB + SPECT, 0.90 for 2D SPECT/CT, and 0.89 for 3D SPECT/CT. Receiver operating characteristic analyses for the diagnostic accuracy of bone metastasis showed that WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT had an area under the curve of 0.800, 0.983, and 0.983 for reader 1, 0.865, 0.992, and 0.993 for reader 2, respectively (WB + SPECT vs. 2D or 3D SPECT/CT, p < 0.001; 2D vs. 3D SPECT/CT, n.s.). The durations of interpretation of WB + SPECT, 2D SPECT/CT, and 3D SPECT/CT images were 241 ± 75, 225 ± 73, and 182 ± 71 s for reader 1 and 207 ± 72, 190 ± 73, and 179 ± 73 s for reader 2, respectively. As a result, it took shorter time to read 3D SPECT/CT images than 2D SPECT/CT (p < 0.0001) or WB + SPECT images (p < 0.0001). 3D SPECT/CT fusion offers comparable diagnostic accuracy to 2D SPECT/CT fusion. The visual effect of 3D SPECT/CT fusion facilitates reduction of reading time compared to 2D SPECT/CT fusion.
Daou, Doumit; Coaguila, Carlos; Vilain, Didier
2007-05-01
Electrocardiograph-gated single photon emission computed tomography (SPECT) radionuclide angiography provides accurate measurement of right ventricular ejection fraction and end-diastolic and end-systolic volumes. In this study, we report the interstudy precision and reliability of SPECT radionuclide angiography for the measurement of global systolic right ventricular function using two, three-dimensional volume processing methods (SPECT-QBS, SPECT-35%). These were compared with equilibrium planar radionuclide angiography. Ten patients with chronic coronary artery disease having two SPECT and planar radionuclide angiography acquisitions were included. For the right ventricular ejection fraction, end-diastolic volume and end-systolic volume, the interstudy precision and reliability were better with SPECT-35% than with SPECT-QBS. The sample sizes needed to objectify a change in right ventricular volumes or ejection fraction were lower with SPECT-35% than with SPECT-QBS. The interstudy precision and reliability of SPECT-35% and SPECT-QBS for the right ventricle were better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography on the same population. SPECT-35% and SPECT-QBS present good interstudy precision and reliability for right ventricular function, with the results favouring the use of SPECT-35%. The results are better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography. They need to be confirmed in a larger population.
Exploring Symmetry to Assist Alzheimer's Disease Diagnosis
NASA Astrophysics Data System (ADS)
Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.
NASA Astrophysics Data System (ADS)
Lai, Xiaochun; Meng, Ling-Jian
2018-02-01
In this paper, we present simulation studies for the second-generation MRI compatible SPECT system, MRC-SPECT-II, based on an inverted compound eye (ICE) gamma camera concept. The MRC-SPECT-II system consists of a total of 1536 independent micro-pinhole-camera-elements (MCEs) distributed in a ring with an inner diameter of 6 cm. This system provides a FOV of 1 cm diameter and a peak geometrical efficiency of approximately 1.3% (the typical levels of 0.1%-0.01% found in modern pre-clinical SPECT instrumentations), while maintaining a sub-500 μm spatial resolution. Compared to the first-generation MRC-SPECT system (MRC-SPECT-I) (Cai 2014 Nucl. Instrum. Methods Phys. Res. A 734 147-51) developed in our lab, the MRC-SPECT-II system offers a similar resolution with dramatically improved sensitivity and greatly reduced physical dimension. The latter should allow the system to be placed inside most clinical and pre-clinical MRI scanners for high-performance simultaneous MRI and SPECT imaging.
NASA Astrophysics Data System (ADS)
Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.
2012-01-01
Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum-likelihood expectation-maximization (4D ML-EM) reconstructions gave more accurate reconstructions than did standard frame-by-frame static 3D ML-EM reconstructions. The SPECT/P results showed that 4D ML-EM reconstruction gave higher and more accurate estimates of K1 than did 3D ML-EM, yielding anywhere from a 44% underestimation to 24% overestimation for the three patients. The SPECT/D results showed that 4D ML-EM reconstruction gave an overestimation of 28% and 3D ML-EM gave an underestimation of 1% for K1. For the patient study the 4D ML-EM reconstruction provided continuous images as a function of time of the concentration in both ventricular cavities and myocardium during the 2 min infusion. It is demonstrated that a 2 min infusion with a two-headed SPECT system rotating 180° every 54 s can produce measurements of blood pool and myocardial TACs, though the SPECT simulation studies showed that one must sample at least every 30 s to capture a 1 min infusion input function.
Added value of SPECT/spiral CT versus SPECT or CT alone in diagnosing solitary skeletal lesions.
Zhang, Yiqiu; Li, Beilei; Shi, Hongcheng; Yu, Haojun; Gu, Yushen; Xiu, Yan
2017-08-14
The aim of this study was to investigate the added value of SPECT/spiral CT versus SPECT or CT alone in the differential diagnosis of solitary skeletal lesions. This was a retrospective study on a total of 69 patients who had a solitary skeletal "hot spot" that could not be definitively diagnosed using planar scintigraphy. Thus, SPECT/spiral CT was performed on the indeterminate lesions. SPECT, CT and SPECT/spiral CT images were independently interpreted by two experienced doctors who have both identification of CT and nuclear medicine. Each lesion was graded on a 4-point diagnostic scale (1: benign, 2: likely benign, 3: likely malignant, 4: malignant). The final diagnosis of each lesion was based on pathological confirmation after surgery within 3 weeks of the bone scan. Final diagnoses based on the pathological results revealed that 43 of the 69 patients were diagnosed with malignancy, and the remaining 26 patients were diagnosed as having benign lesions. For SPECT and CT scans, both of the reviewers rated 55.1 % (38/69) and 37.7 % (26/69) of lesions as equivocal, with the help of SPECT/CT, 33.3 % (23/69) of lesions were rated as equivocal. The diagnostic accuracies of SPECT, CT alone and SPECT/CT were 66.7 % (46/69) ,82.6 % (57/69) and 85.5 %(59/69), respectively. The kappa scores for the degree of agreement between SPECT, CT alone or SPECT/CT with pathological results were 0.185 (p = 0.054) , 0.612 (p < 0.001) and 0.671 (p < 0.001), respectively. Compared with SPECT or imaging alone, SPECT/spiral CT imaging was more accurate and valuable in the differential diagnosis of solitary skeletal lesions and resulted in significantly fewer equivocal findings.
Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi
2014-01-01
The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.
Neuroimaging findings with MDMA/ecstasy: technical aspects, conceptual issues and future prospects.
Reneman, Liesbeth; de Win, Maartje M L; van den Brink, Wim; Booij, Jan; den Heeten, Gerard J
2006-03-01
Users of ecstasy (3,4-methylenedioxymethamphetamine; MDMA) may be at risk of developing MDMA-induced injury to the serotonin (5-HT) system. Previously, there were no methods available for directly evaluating the neurotoxic effects of MDMA in the living human brain. However, development of in vivoneuroimaging tools have begun to provide insights into the effects of ecstasy on the human brain. Single photon emission computed tomography (SPECT), positron emission computed tomography (PET) and proton magnetic resonance spectroscopy (1H-MRS) studies which have evaluated ecstasy's neurotoxic potential will be reviewed and discussed in terms of technical aspects, conceptual issues and future prospects. Although PET and SPECT may be limited by several factors such as the low cortical uptake and the use of a non-optimal reference region (cerebellum) the few studies conducted so far provide suggestive evidence that people who heavily use ecstasy are at risk of developing subcortical, and probably also cortical reductions in serotonin transporter (SERT) densities, a marker of 5-HT neurotoxicity. There seem to be dose-dependent and transient reductions in SERT for which females may be more vulnerable than males. 1H-MRS appears to be a less sensitive technique for studying ecstasy's neurotoxic potential. Whether individuals with a relatively low ecstasy exposure also demonstrate loss of SERT needs to be determined. Because most studies have had a retrospective design, in which evidence is indirect and differs in the degree to which any causal links can be implied, longitudinal studies in human ecstasy users are needed to draw definite conclusions.
Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.
1989-07-01
To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determinedmore » from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake.« less
Lundgren, J D; Amsterdam, J; Newberg, A; Allison, K C; Wintering, N; Stunkard, A J
2009-03-01
We examined serotonin transporter (SERT) binding affinity using single photon emission computed tomography (SPECT) in patients with major depressive disorder (MDD) and night eating syndrome (NES). There are similarities between MDD and NES in affective symptoms, appetite disturbance, nighttime awakenings, and, particularly, response to selective serotonin reuptake inhibitors (SSRIs). Six non-depressed patients with NES and seven patients with MDD underwent SPECT brain imaging with 123I-ADAM, a radiopharmaceutical agent selective for SERT sites. Uptake ratios of 123I-ADAM SERT binding were obtained for the midbrain, basal ganglia, and temporal lobe regions compared to the cerebellum reference region. Patients with NES had significantly greater SERT uptake ratios (effect size range 0.64-0.84) in the midbrain, right temporal lobe, and left temporal lobe regions than those with MDD whom we had previously studied. Pathophysiological differences in SERT uptake between patients with NES and MDD suggest these are distinct clinical syndromes.
Description of a prototype emission-transmission computed tomography imaging system
NASA Technical Reports Server (NTRS)
Lang, T. F.; Hasegawa, B. H.; Liew, S. C.; Brown, J. K.; Blankespoor, S. C.; Reilly, S. M.; Gingold, E. L.; Cann, C. E.
1992-01-01
We have developed a prototype imaging system that can perform simultaneous x-ray transmission CT and SPECT phantom studies. This system employs a 23-element high-purity-germanium detector array. The detector array is coupled to a collimator with septa angled toward the focal spot of an x-ray tube. During image acquisition, the x-ray fan beam and the detector array move synchronously along an arc pivoted at the x-ray source. Multiple projections are obtained by rotating the object, which is mounted at the center of rotation of the system. The detector array and electronics can count up to 10(6) cps/element with sufficient energy-resolution to discriminate between x-rays at 100-120 kVp and gamma rays from 99mTc. We have used this device to acquire x-ray CT and SPECT images of a three-dimensional Hoffman brain phantom. The emission and transmission images may be superimposed in order to localize the emission image on the transmission map.
Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis.
Egerton, A; Modinos, G; Ferrera, D; McGuire, P
2017-06-06
Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy ( 1 H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1 H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABA A /benzodiazepine receptor (GABA A /BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1 H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=-0.3, 409 patients, 495 controls, 95% confidence interval (CI): -0.6 to 0.1; POC: g=-0.3, 139 patients, 111 controls, 95% CI: -0.9 to 0.3; striatum: g=-0.004, 123 patients, 95 controls, 95% CI: -0.7 to 0.7). Heterogeneity across studies was high (I 2 >50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABA A /BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity.
Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis
Egerton, A; Modinos, G; Ferrera, D; McGuire, P
2017-01-01
Data from animal models and from postmortem studies suggest that schizophrenia is associated with brain GABAergic dysfunction. The extent to which this is reflected in data from in vivo studies of GABA function in schizophrenia is unclear. The Medline database was searched to identify articles published until 21 October 2016. The search terms included GABA, proton magnetic resonance spectroscopy (1H-MRS), positron emission tomography (PET), single photon emission computed tomography (SPECT), schizophrenia and psychosis. Sixteen GABA 1H-MRS studies (538 controls, 526 patients) and seven PET/SPECT studies of GABAA/benzodiazepine receptor (GABAA/BZR) availability (118 controls, 113 patients) were identified. Meta-analyses of 1H-MRS GABA in the medial prefrontal cortex (mPFC), parietal/occipital cortex (POC) and striatum did not show significant group differences (mFC: g=−0.3, 409 patients, 495 controls, 95% confidence interval (CI): −0.6 to 0.1; POC: g=−0.3, 139 patients, 111 controls, 95% CI: −0.9 to 0.3; striatum: g=−0.004, 123 patients, 95 controls, 95% CI: −0.7 to 0.7). Heterogeneity across studies was high (I2>50%), and this was not explained by subsequent moderator or meta-regression analyses. There were insufficient PET/SPECT receptor availability studies for meta-analyses, but a systematic review did not suggest replicable group differences in regional GABAA/BZR availability. The current literature does not reveal consistent alterations in in vivo GABA neuroimaging measures in schizophrenia, as might be hypothesized from animal models and postmortem data. The analysis highlights the need for further GABA neuroimaging studies with improved methodology and addressing potential sources of heterogeneity. PMID:28585933
Akay, Aynur Pekcanlar; Kaya, Gamze Çapa; Kose, Samet; Yazıcıoğlu, Çiğdem Eresen; Erkuran, Handan Özek; Güney, Sevay Alşen; Oğuz, Kaya; Keskin, Duygu; Baykara, Burak; Emiroğlu, Neslihan İnal; Eren, Mine Şencan; Kızıldağ, Sefa; Ertay, Türkan; Özsoylu, Dua; Miral, Süha; Durak, Hatice; Gönül, Ali Saffet; Rohde, Luis Augusto
2018-04-20
To examine theeffects on the brain of 2-month treatment withamethylphenidate extended-release formulation (OROS-MPH) using [Tc- 99m ] TRODAT-1SPECT in a sample of treatment-naïve adolescents with Attention Deficit/Hyperactivity Disorder (ADHD). In addition, to assess whether risk alleles (homozygosity for 10-repeat allele at the DAT1 gene were associated with alterations in striatal DAT availability. Twenty adolescents with ADHD underwent brain single-photon emission computed tomography (SPECT) scans with [Tc- 99m ] TRODAT-1 at baseline and two months after starting OROS-MPH treatment with dosages up to 1 mg/kg/day. Severity of illness was estimated using the Clinical Global Impression Scale (CGI-S) and DuPaul ADHD Rating Scale-Clinician version (ARS) before treatment,1 month and 2 months after initiating OROS-MPH treatment. Decreased DAT availability was found in both the right caudate (pretreatment DAT binding: 224.76 ± 33.77, post-treatment DAT binding: 208.86 ± 28.75, p = 0.02) and right putamen (pre-treatment DAT binding: 314.41 ± 55.24, post-treatment DAT binding: 285.66 ± 39.20, p = 0.05) in adolescents with ADHD receiving OROS-MPH treatment. Adolescents with ADHD who showed a robust response to OROS-MPH (n = 7) had significantly greater reduction of DAT density in the right putamen than adolescents who showed less robust response to OROS-MPH (n = 13) (p = 0.02). However, between-group differences by treatment responses were not related with DAT density in the right caudate. Risk alleles (homozygosity for the 10-repeat allele of DAT1 gene) in the DAT1 gene were not associated with alterations in striatal DAT availability. Two months of OROS-MPH treatment decreased DAT availability in both the right caudate and putamen. Adolescents with ADHD who showed a robust response to OROS-MPH had greater reduction of DAT density in the right putamen. However,our findings did not support an association between homozygosity for a 10-repeat allele in the DAT1 gene and DAT density, assessedusing[Tc- 99m ] TRODAT-1SPECT. Copyright © 2018 Elsevier Inc. All rights reserved.
Kashiwagi, Toru; Yutani, Kenji; Fukuchi, Minoru; Naruse, Hitoshi; Iwasaki, Tadaaki; Yokozuka, Koichi; Inoue, Shinichi; Kondo, Shoji
2002-06-01
Improvements in image quality and quantitation measurement, and the addition of detailed anatomical structures are important topics for single-photon emission tomography (SPECT). The goal of this study was to develop a practical system enabling both nonuniform attenuation correction and image fusion of SPECT images by means of high-performance X-ray computed tomography (CT). A SPECT system and a helical X-ray CT system were placed next to each other and linked with Ethernet. To avoid positional differences between the SPECT and X-ray CT studies, identical flat patient tables were used for both scans; body distortion was minimized with laser beams from the upper and lateral directions to detect the position of the skin surface. For the raw projection data of SPECT, a scatter correction was performed with the triple energy window method. Image fusion of the X-ray CT and SPECT images was performed automatically by auto-registration of fiducial markers attached to the skin surface. After registration of the X-ray CT and SPECT images, an X-ray CT-derived attenuation map was created with the calibration curve for 99mTc. The SPECT images were then reconstructed with scatter and attenuation correction by means of a maximum likelihood expectation maximization algorithm. This system was evaluated in torso and cylindlical phantoms and in 4 patients referred for myocardial SPECT imaging with Tc-99m tetrofosmin. In the torso phantom study, the SPECT and X-ray CT images overlapped exactly on the computer display. After scatter and attenuation correction, the artifactual activity reduction in the inferior wall of the myocardium improved. Conversely, the incresed activity around the torso surface and the lungs was reduced. In the abdomen, the liver activity, which was originally uniform, had recovered after scatter and attenuation correction processing. The clinical study also showed good overlapping of cardiac and skin surface outlines on the fused SPECT and X-ray CT images. The effectiveness of the scatter and attenuation correction process was similar to that observed in the phantom study. Because the total time required for computer processing was less than 10 minutes, this method of attenuation correction and image fusion for SPECT images is expected to become popular in clinical practice.
Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A.
2015-01-01
Background Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. Methods Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large group of neuropsychiatric patients. Two groups were analyzed: Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI (n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs and visual readings (VRs) were analyzed using a binary logistic regression model with predicted probabilities inputted into a Receiver Operating Characteristic analysis to identify sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically significant regions of increased perfusion in PTSD compared to TBI. Analysis included a 10-fold cross validation of the protocol in the larger community sample (Group 2). Results For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differentiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingulum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes. Conclusions This study demonstrates the ability to separate PTSD and TBI from healthy controls, from each other, and detect their co-occurrence, even in highly comorbid samples, using SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of these conditions. PMID:26132293
Amen, Daniel G; Raji, Cyrus A; Willeumier, Kristen; Taylor, Derek; Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A
2015-01-01
Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are highly heterogeneous and often present with overlapping symptomology, providing challenges in reliable classification and treatment. Single photon emission computed tomography (SPECT) may be advantageous in the diagnostic separation of these disorders when comorbid or clinically indistinct. Subjects were selected from a multisite database, where rest and on-task SPECT scans were obtained on a large group of neuropsychiatric patients. Two groups were analyzed: Group 1 with TBI (n=104), PTSD (n=104) or both (n=73) closely matched for demographics and comorbidity, compared to each other and healthy controls (N=116); Group 2 with TBI (n=7,505), PTSD (n=1,077) or both (n=1,017) compared to n=11,147 without either. ROIs and visual readings (VRs) were analyzed using a binary logistic regression model with predicted probabilities inputted into a Receiver Operating Characteristic analysis to identify sensitivity, specificity, and accuracy. One-way ANOVA identified the most diagnostically significant regions of increased perfusion in PTSD compared to TBI. Analysis included a 10-fold cross validation of the protocol in the larger community sample (Group 2). For Group 1, baseline and on-task ROIs and VRs showed a high level of accuracy in differentiating PTSD, TBI and PTSD+TBI conditions. This carefully matched group separated with 100% sensitivity, specificity and accuracy for the ROI analysis and at 89% or above for VRs. Group 2 had lower sensitivity, specificity and accuracy, but still in a clinically relevant range. Compared to subjects with TBI, PTSD showed increases in the limbic regions, cingulum, basal ganglia, insula, thalamus, prefrontal cortex and temporal lobes. This study demonstrates the ability to separate PTSD and TBI from healthy controls, from each other, and detect their co-occurrence, even in highly comorbid samples, using SPECT. This modality may offer a clinical option for aiding diagnosis and treatment of these conditions.
Oda, Kenji; Matsushima, Eisuke; Okubo, Yoshiro; Ohta, Katsuya; Murata, Yuji; Koike, Ryuji; Miyasaka, Nobuyuki; Kato, Motoichiro
2005-07-01
Single-photon emission computed tomography (SPECT) studies have demonstrated decreased regional cerebral blood flow (rCBF) in systemic lupus erythematosus (SLE) patients. However, no study has done voxel-based analysis using statistical parametric mapping (SPM) that can evaluate rCBF objectively, and the relationship between rCBF and psychiatric symptoms has not been well investigated. Using L,L-ethyl cysteinate dimer (99mTc ECD) SPECT and SPM, we aimed to clarify the association of rCBF changes with psychiatric symptoms in SLE patients whose magnetic resonance imaging (MRI) showed no morphological abnormalities. Twenty SLE patients and 19 healthy volunteers underwent 99mTc ECD SPECT. Data were collected from August 2000 to March 2003. SLE was diagnosed according to American College of Rheumatology criteria, and psychiatric symptoms were diagnosed according to ICD-10 criteria. On the basis of the modified Carbotte, Denburg, and Denburg method, the patients were classified into 3 groups: a group with major psychiatric symptoms (hallucinosis, delusional disorder, and mood disorder), a group with minor psychiatric symptoms (anxiety disorder, dissociative disorder, and emotionally labile disorder), and a group without psychiatric symptoms. Gross organic lesions were ruled out by brain MRI. Group comparisons of rCBF were performed with analysis using SPM99. SLE patients without MRI lesions showed decreased rCBF in the posterior cingulate gyrus and thalamus. The reduction in rCBF was overt in patients with major psychiatric symptoms. Our study indicated that SLE patients may have dysfunction in the posterior cingulate gyrus and thalamus and that this may be associated with the severity of psychiatric symptoms.
Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl
2016-09-01
Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.
Konishi, Takahiro; Nakajima, Kenichi; Okuda, Koichi; Yoneyama, Hiroto; Matsuo, Shinro; Shibutani, Takayuki; Onoguchi, Masahisa; Kinuya, Seigo
2017-07-01
Although IQ-single-photon emission computed tomography (SPECT) provides rapid acquisition and attenuation-corrected images, the unique technology may create characteristic distribution different from the conventional imaging. This study aimed to compare the diagnostic performance of IQ-SPECT using Japanese normal databases (NDBs) with that of the conventional SPECT for thallium-201 ( 201 Tl) myocardial perfusion imaging (MPI). A total of 36 patients underwent 1-day 201 Tl adenosine stress-rest MPI. Images were acquired with IQ-SPECT at approximately one-quarter of the standard time of conventional SPECT. Projection data acquired with the IQ-SPECT system were reconstructed via an ordered subset conjugate gradient minimizer method with or without scatter and attenuation correction (SCAC). Projection data obtained using the conventional SPECT were reconstructed via a filtered back projection method without SCAC. The summed stress score (SSS) was calculated using NDBs created by the Japanese Society of Nuclear Medicine working group, and scores were compared between IQ-SPECT and conventional SPECT using the acquisition condition-matched NDBs. The diagnostic performance of the methods for the detection of coronary artery disease was also compared. SSSs were 6.6 ± 8.2 for the conventional SPECT, 6.6 ± 9.4 for IQ-SPECT without SCAC, and 6.5 ± 9.7 for IQ-SPECT with SCAC (p = n.s. for each comparison). The SSS showed a strong positive correlation between conventional SPECT and IQ-SPECT (r = 0.921 and p < 0.0001), and the correlation between IQ-SPECT with and without SCAC was also good (r = 0.907 and p < 0.0001). Regarding diagnostic performance, the sensitivity, specificity, and accuracy were 80.8, 78.9, and 79.4%, respectively, for the conventional SPECT; 80.8, 80.3, and 82.0%, respectively, for IQ-SPECT without SCAC; and 88.5, 86.8, and 87.3%, respectively, for IQ-SPECT with SCAC, respectively. The area under the curve obtained via receiver operating characteristic analysis were 0.77, 0.80, and 0.86 for conventional SPECT, IQ-SPECT without SCAC, and IQ-SPECT with SCAC, respectively (p = n.s. for each comparison). When appropriate NDBs were used, the diagnostic performance of 201 Tl IQ-SPECT was comparable with that of the conventional system regardless of different characteristics of myocardial accumulation in the conventional system.
NASA Astrophysics Data System (ADS)
Karamat, Muhammad I.; Farncombe, Troy H.
2015-10-01
Simultaneous multi-isotope Single Photon Emission Computed Tomography (SPECT) imaging has a number of applications in cardiac, brain, and cancer imaging. The major concern however, is the significant crosstalk contamination due to photon scatter between the different isotopes. The current study focuses on a method of crosstalk compensation between two isotopes in simultaneous dual isotope SPECT acquisition applied to cancer imaging using 99mTc and 111In. We have developed an iterative image reconstruction technique that simulates the photon down-scatter from one isotope into the acquisition window of a second isotope. Our approach uses an accelerated Monte Carlo (MC) technique for the forward projection step in an iterative reconstruction algorithm. The MC estimated scatter contamination of a radionuclide contained in a given projection view is then used to compensate for the photon contamination in the acquisition window of other nuclide. We use a modified ordered subset-expectation maximization (OS-EM) algorithm named simultaneous ordered subset-expectation maximization (Sim-OSEM), to perform this step. We have undertaken a number of simulation tests and phantom studies to verify this approach. The proposed reconstruction technique was also evaluated by reconstruction of experimentally acquired phantom data. Reconstruction using Sim-OSEM showed very promising results in terms of contrast recovery and uniformity of object background compared to alternative reconstruction methods implementing alternative scatter correction schemes (i.e., triple energy window or separately acquired projection data). In this study the evaluation is based on the quality of reconstructed images and activity estimated using Sim-OSEM. In order to quantitate the possible improvement in spatial resolution and signal to noise ratio (SNR) observed in this study, further simulation and experimental studies are required.
Iskandar, Aline; Limone, Brendan; Parker, Matthew W; Perugini, Andrew; Kim, Hyejin; Jones, Charles; Calamari, Brian; Coleman, Craig I; Heller, Gary V
2013-02-01
It remains controversial whether the diagnostic accuracy of single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) is different in men as compared to women. We performed a meta-analysis to investigate gender differences of SPECT MPI for the diagnosis of CAD (≥50% stenosis). Two investigators independently performed a systematic review of the MEDLINE and EMBASE databases from inception through January 2012 for English-language studies determining the diagnostic accuracy of SPECT MPI. We included prospective studies that compared SPECT MPI with conventional coronary angiography which provided sufficient data to calculate gender-specific true and false positives and negatives. Data from studies evaluating <20 patients of one gender were excluded. Bivariate meta-analysis was used to create summary receiver operating curves. Twenty-six studies met inclusion criteria, representing 1,148 women and 1,142 men. Bivariate meta-analysis yielded a mean sensitivity and specificity of 84.2% (95% confidence interval [CI] 78.7%-88.6%) and 78.7% (CI 70.0%-85.3%) for SPECT MPI in women and 89.1% (CI 84.0%-92.7%) and 71.2% (CI 60.8%-79.8%) for SPECT MPI in men. There was no significant difference in the sensitivity (P = .15) or specificity (P = .23) between male and female subjects. In a bivariate meta-analysis of the available literature, the diagnostic accuracy of SPECT MPI is similar for both men and women.
Mariën, Peter; Abutalebi, Jubin; Engelborghs, Sebastiaan; De Deyn, Peter P
2005-12-01
Acquired aphasia after circumscribed vascular subcortical lesions has not been reported in bilingual children. We report clinical and neuroimaging findings in an early bilingual boy who incurred equally severe transcortical sensory aphasia in his first language (L1) and second language (L2) after a posterior left thalamic hemorrhage. Following recurrent bleeding of the lesion the aphasic symptoms substantially aggravated. Spontaneous pathological language switching and mixing were found in both languages. Remission of these phenomena was reflected on brain perfusion SPECT revealing improved perfusion in the left frontal lobe and left caudate nucleus. The parallelism between the evolution of language symptoms and the SPECT findings may demonstrate that a subcortical left frontal lobe circuity is crucially involved in language switching and mixing.
Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo
2015-06-01
A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p < 0.05). The left ventricular ejection fraction from IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a short time are equivalent to that of conventional LEHR. The results indicated that the IQ-SPECT system with AC is capable of correcting inferior artifacts with high image quality.
Riaz, Saima; Bashir, Humayun; Niazi, Imran Khalid; Butt, Sumera; Qamar, Faisal
2018-06-01
Mirels' scoring system quantifies the risk of sustaining a pathologic fracture in osseous metastases of weight bearing long bones. Conventional Mirels' scoring is based on radiographs. Our pilot study proposes Tc MDP bone SPECT-CT based modified Mirels' scoring system and its comparison with conventional Mirels' scoring. Cortical lysis was noted in 8(24%) by SPECT-CT versus 2 (6.3%) on X-rays. Additional SPECT-CT parameters were; circumferential involvement [1/4 (31%), 1/2 (3%), 3/4 (37.5%), 4/4 (28%)] and extra-osseous soft tissue [3%]. Our pilot study suggests the potential role of SPECT-CT in predicting risk of fracture in osseous metastases.
NASA Astrophysics Data System (ADS)
Soret, Marine; Alaoui, Jawad; Koulibaly, Pierre M.; Darcourt, Jacques; Buvat, Irène
2007-02-01
ObjectivesPartial volume effect (PVE) is a major source of bias in brain SPECT imaging of dopamine transporter. Various PVE corrections (PVC) making use of anatomical data have been developed and yield encouraging results. However, their accuracy in clinical data is difficult to demonstrate because the gold standard (GS) is usually unknown. The objective of this study was to assess the accuracy of PVC. MethodTwenty-three patients underwent MRI and 123I-FP-CIT SPECT. The binding potential (BP) values were measured in the striata segmented on the MR images after coregistration to SPECT images. These values were calculated without and with an original PVC. In addition, for each patient, a Monte Carlo simulation of the SPECT scan was performed. For these simulations where true simulated BP values were known, percent biases in BP estimates were calculated. For the real data, an evaluation method that simultaneously estimates the GS and a quadratic relationship between the observed and the GS values was used. It yields a surrogate mean square error (sMSE) between the estimated values and the estimated GS values. ResultsThe averaged percent difference between BP measured for real and for simulated patients was 0.7±9.7% without PVC and was -8.5±14.5% with PVC, suggesting that the simulated data reproduced the real data well enough. For the simulated patients, BP was underestimated by 66.6±9.3% on average without PVC and overestimated by 11.3±9.5% with PVC, demonstrating the greatest accuracy of BP estimates with PVC. For the simulated data, sMSE were 27.3 without PVC and 0.90 with PVC, confirming that our sMSE index properly captured the greatest accuracy of BP estimates with PVC. For the real patient data, sMSE was 50.8 without PVC and 3.5 with PVC. These results were consistent with those obtained on the simulated data, suggesting that for clinical data, and despite probable segmentation and registration errors, BP were more accurately estimated with PVC than without. ConclusionPVC was very efficient to greatly reduce the error in BP estimates in clinical imaging of dopamine transporter.
Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT
Bowsher, James; Yan, Susu; Roper, Justin; Giles, William; Yin, Fang-Fang
2014-01-01
Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times. PMID:24387490
Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang
2014-01-15
Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinholemore » SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times.« less
Efficient mining of association rules for the early diagnosis of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Chaves, R.; Górriz, J. M.; Ramírez, J.; Illán, I. A.; Salas-Gonzalez, D.; Gómez-Río, M.
2011-09-01
In this paper, a novel technique based on association rules (ARs) is presented in order to find relations among activated brain areas in single photon emission computed tomography (SPECT) imaging. In this sense, the aim of this work is to discover associations among attributes which characterize the perfusion patterns of normal subjects and to make use of them for the early diagnosis of Alzheimer's disease (AD). Firstly, voxel-as-feature-based activation estimation methods are used to find the tridimensional activated brain regions of interest (ROIs) for each patient. These ROIs serve as input to secondly mine ARs with a minimum support and confidence among activation blocks by using a set of controls. In this context, support and confidence measures are related to the proportion of functional areas which are singularly and mutually activated across the brain. Finally, we perform image classification by comparing the number of ARs verified by each subject under test to a given threshold that depends on the number of previously mined rules. Several classification experiments were carried out in order to evaluate the proposed methods using a SPECT database that consists of 41 controls (NOR) and 56 AD patients labeled by trained physicians. The proposed methods were validated by means of the leave-one-out cross validation strategy, yielding up to 94.87% classification accuracy, thus outperforming recent developed methods for computer aided diagnosis of AD.
Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru
The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.
Comparison of 18F SPECT with PET in myocardial imaging: a realistic thorax-cardiac phantom study.
Knešaurek, Karin; Machac, Josef
2006-10-31
Positron emission tomography (PET) imaging with fluorine-18 (18F) Fluorodeoxyglucose (FDG) and flow tracer such as Rubidium-82 (82Rb) is an established method for evaluating an ischemic but viable myocardium. However, the high cost of PET imaging restricts its wider clinical use. Therefore, less expensive 18F FDG single photon emission computed tomography (SPECT) imaging has been considered as an alternative to 18F FDG PET imaging. The purpose of the work is to compare SPECT with PET in myocardial perfusion/viability imaging. A nonuniform RH-2 thorax-heart phantom was used in the SPECT and PET acquisitions. Three inserts, 3 cm, 2 cm and 1 cm in diameter, were placed in the left ventricular (LV) wall to simulate infarcts. The phantom acquisition was performed sequentially with 7.4 MBq of 18F and 22.2 MBq of Technetium-99m (99mTc) in the SPECT study and with 7.4 MBq of 18F and 370 MBq of 82Rb in the PET study. SPECT and PET data were processed using standard reconstruction software provided by vendors. Circumferential profiles of the short-axis slices, the contrast and viability of the inserts were used to evaluate the SPECT and PET images. The contrast for 3 cm, 2 cm and 1 cm inserts were for 18F PET data, 1.0 +/- 0.01, 0.67 +/- 0.02 and 0.25 +/- 0.01, respectively. For 82Rb PET data, the corresponding contrast values were 0.61 +/- 0.02, 0.37 +/- 0.02 and 0.19 +/- 0.01, respectively. For 18F SPECT the contrast values were, 0.31 +/- 0.03 and 0.20 +/- 0.05 for 3 cm and 2 cm inserts, respectively. For 99mTc SPECT the contrast values were, 0.63 +/- 0.04 and 0.24 +/- 0.05 for 3 cm and 2 cm inserts respectively. In SPECT, the 1 cm insert was not detectable. In the SPECT study, all three inserts were falsely diagnosed as "viable", while in the PET study, only the 1 cm insert was diagnosed falsely "viable". For smaller defects the 99mTc/18F SPECT imaging cannot entirely replace the more expensive 82Rb/18F PET for myocardial perfusion/viability imaging, due to poorer image spatial resolution and poorer defect contrast.
Pöttker, Bruno; Stöber, Franziska; Hummel, Regina; Angenstein, Frank; Radyushkin, Konstantin; Goldschmidt, Jürgen; Schäfer, Michael K E
2017-12-01
Traumatic brain injury (TBI) is a leading cause of disability and death and survivors often suffer from long-lasting motor impairment, cognitive deficits, anxiety disorders and epilepsy. Few experimental studies have investigated long-term sequelae after TBI and relations between behavioral changes and neural activity patterns remain elusive. We examined these issues in a murine model of TBI combining histology, behavioral analyses and single-photon emission computed tomography (SPECT) imaging of regional cerebral blood flow (CBF) as a proxy for neural activity. Adult C57Bl/6N mice were subjected to unilateral cortical impact injury and investigated at early (15-57 days after lesion, dal) and late (184-225 dal) post-traumatic time points. TBI caused pronounced tissue loss of the parietal cortex and subcortical structures and enduring neurological deficits. Marked perilesional astro- and microgliosis was found at 57 dal and declined at 225 dal. Motor and gait pattern deficits occurred at early time points after TBI and improved over the time. In contrast, impaired performance in the Morris water maze test and decreased anxiety-like behavior persisted together with an increased susceptibility to pentylenetetrazole-induced seizures suggesting alterations in neural activity patterns. Accordingly, SPECT imaging of CBF indicated asymmetric hemispheric baseline neural activity patterns. In the ipsilateral hemisphere, increased baseline neural activity was found in the amygdala. In the contralateral hemisphere, homotopic to the structural brain damage, the hippocampus and distinct cortex regions displayed increased baseline neural activity. Thus, regionally elevated CBF along with behavioral alterations indicate that increased neural activity is critically involved in the long-lasting consequences of TBI.
Joutsa, Juho; Johansson, Jarkko; Seppänen, Marko; Noponen, Tommi; Kaasinen, Valtteri
2015-07-01
Loss of nigrostriatal neurons leading to dopamine depletion in the dorsal striatum is the pathologic hallmark of Parkinson disease contributing to the primary motor symptoms of the disease. However, Parkinson pathology is more widespread in the brain, affecting also other dopaminergic pathways and neurotransmitter systems, but these changes are less well characterized. This study aimed to investigate the mesencephalic striatal and extrastriatal dopaminergic projections together with extrastriatal serotonin transporter binding in Parkinson disease. Two hundred sixteen patients with Parkinson disease and 204 control patients (patients without neurodegenerative parkinsonism syndromes and normal SPECT imaging) were investigated with SPECT using the dopamine/serotonin transporter ligand (123)I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ((123)I-FP-CIT) in the clinical setting. The group differences and midbrain correlations were analyzed voxel by voxel over the entire brain. We found that Parkinson patients had lower (123)I-FP-CIT uptake in the striatum and ventral midbrain but higher uptake in the thalamus and raphe nuclei than control patients. In patients with Parkinson disease, the correlation of the midbrain tracer uptake was shifted from the putamen to widespread corticolimbic areas. All findings were highly significant at the voxel level familywise error-corrected P value of less than 0.05. Our findings show that Parkinson disease is associated not only with the degeneration of the nigrostriatal dopamine neurotransmission, but also with a parallel shift toward mesolimbic and mesocortical function. Furthermore, Parkinson disease patients seem to have upregulation of brain serotonin transporter function at the early phase of the disease. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Mizumura, Sunao; Nishikawa, Kazuhiro; Murata, Akihiro; Yoshimura, Kosei; Ishii, Nobutomo; Kokubo, Tadashi; Morooka, Miyako; Kajiyama, Akiko; Terahara, Atsuro
2018-05-01
In Japan, the Southampton method for dopamine transporter (DAT) SPECT is widely used to quantitatively evaluate striatal radioactivity. The specific binding ratio (SBR) is the ratio of specific to non-specific binding observed after placing pentagonal striatal voxels of interest (VOIs) as references. Although the method can reduce the partial volume effect, the SBR may fluctuate due to the presence of low-count areas of cerebrospinal fluid (CSF), caused by brain atrophy, in the striatal VOIs. We examined the effect of the exclusion of low-count VOIs on SBR measurement. We retrospectively reviewed DAT imaging of 36 patients with parkinsonian syndromes performed after injection of 123 I-FP-CIT. SPECT data were reconstructed using three conditions. We defined the CSF area in each SPECT image after segmenting the brain tissues. A merged image of gray and white matter images was constructed from each patient's magnetic resonance imaging (MRI) to create an idealized brain image that excluded the CSF fraction (MRI-mask method). We calculated the SBR and asymmetric index (AI) in the MRI-mask method for each reconstruction condition. We then calculated the mean and standard deviation (SD) of voxel RI counts in the reference VOI without the striatal VOIs in each image, and determined the SBR by excluding the low-count pixels (threshold method) using five thresholds: mean-0.0SD, mean-0.5SD, mean-1.0SD, mean-1.5SD, and mean-2.0SD. We also calculated the AIs from the SBRs measured using the threshold method. We examined the correlation among the SBRs of the threshold method, between the uncorrected SBRs and the SBRs of the MRI-mask method, and between the uncorrected AIs and the AIs of the MRI-mask method. The intraclass correlation coefficient indicated an extremely high correlation among the SBRs and among the AIs of the MRI-mask and threshold methods at thresholds between mean-2.0D and mean-1.0SD, regardless of the reconstruction correction. The differences among the SBRs and the AIs of the two methods were smallest at thresholds between man-2.0SD and mean-1.0SD. The SBR calculated using the threshold method was highly correlated with the MRI-SBR. These results suggest that the CSF correction of the threshold method is effective for the calculation of idealized SBR and AI values.
Inoue, Kentaro; Ito, Hiroshi; Goto, Ryoi; Nakagawa, Manabu; Kinomura, Shigeo; Sato, Tachio; Sato, Kazunori; Fukuda, Hiroshi
2005-06-01
Several studies using single photon emission tomography (SPECT) have shown changes in cerebral blood flow (CBF) with age, which were associated with partial volume effects by some authors. Some studies have also demonstrated gender-related differences in CBF. The present study aimed to examine age and gender effects on CBF SPECT images obtained using the 99mTc-ethyl cysteinate dimer and a SPECT scanner, before and after partial volume correction (PVC) using magnetic resonance (MR) imaging. Forty-four healthy subjects (29 males and 15 females; age range, 27-64 y; mean age, 50.0 +/- 9.8 y) participated. Each MR image was segmented to yield grey and white matter images and coregistered to a corresponding SPECT image, followed by convolution to approximate the SPECT spatial resolution. PVC-SPECT images were produced using the convoluted grey matter MR (GM-MR) and white matter MR images. The age and gender effects were assessed using SPM99. Decreases with age were detected in the anterolateral prefrontal cortex and in areas along the lateral sulcus and the lateral ventricle, bilaterally, in the GM-MR images and the SPECT images. In the PVC-SPECT images, decreases in CBF in the lateral prefrontal cortex lost their statistical significance. Decreases in CBF with age found along the lateral sulcus and the lateral ventricle, on the other hand, remained statistically significant, but observation of the spatially normalized MR images suggests that these findings are associated with the dilatation of the lateral sulcus and lateral ventricle, which was not completely compensated for by the spatial normalization procedure. Our present study demonstrated that age effects on CBF in healthy subjects could reflect morphological differences with age in grey matter.
Tangjaturonrasme, Napadon; Vasavid, Pataramon; Sombuntham, Premsuda; Keelawat, Somboon
2013-06-01
Papillary thyroid cancer has a high prevalence of cervical nodal metastasis. There is no "gold standard" imaging for pre-operative diagnosis. The aim of the present study was to assess the accuracy of pre-operative 99mTc-MBI SPECT/CT in diagnosis of cervical nodal metastasis in patients with papillary thyroid cancer Fifteen patients were performed 99Tc-MlBI SPECT/CT pre-operatively. Either positive pathological report of neck dissection or positive post-treatment I-131 whole body scan with SPECT/CT of neck was concluded for definite neck metastasis. The PPV, NPV, and accuracy of 99mTc-MIBI SPECT/CT were analyzed. The PPV NPV and accuracy were 80%, 88.89%, and 85.71%, respectively. 99mTc-MIBI SPECT/CT could localize the abnormal lymph nodes groups correctly in most cases when compared with pathological results. However the authors found one false positive case with caseating granulomatous lymphadenitis and one false negative case with positive post-treatment 1-131 whole body scan with SPECT/CT of neck on cervical nodes zone II and IV CONCLUSION: 99mTc-MIBI SPECT/CTseem promising for pre-operative staging of cervical nodal involvement in patients with papillary thyroid cancer without the need of using iodinated contrast that may complicate subsequence 1-131 treatment. However, false positive result in granulomatous inflammatory nodes should be aware of especially in endemic areas. 99mTc-MIBI SPECT/CT scan shows a good result when compared with previous study of CT or MRI imaging. The comparative study between different imaging modality and the extension of neck dissection according to MIBI result seems interesting.
Benke, Małgorzata; Wocial, Krzysztof; Lewandowska, Weronika; Rutkowski, Piotr Łukasz; Teterycz, Paweł; Jarek, Piotr; Dedecjus, Marek
2018-06-29
Background Localization and histopathological examination of sentinel lymph node (SLN) is a standard of melanoma treatment. The first stage of identification of the SLN is the preoperative lymphoscintigraphy. The aim of this study was to assess and compare diagnostic value of planar lymphoscintigraphy (PL) and SPECT/CT in sentinel lymph node biopsy (SLNB) procedure performed in patients with cutaneous trunk melanoma. Material and Methods Between 2015 and 2016, patients with trunk melanoma (N=255, F/M 95/160), aged from 17 to 88 after an excisional biopsy, with primary tumor ≥ pT1b (AJCC 2009, median Breslow thickness 2.0± 3.13) were included in the study. In all the patients PL was followed by SPECT/CT 1-3 h after injection of 99mTc- colloid particles, and SLNB was performed the next day. Results SPECT-CT revealed 78 (18.6%) SLN more than PL, and in 40 patients showed additional lymph drainage regions leading to surgical adjustments. In 18 patients (7.1%) SPECT-CT revealed SLN not visible in the PL (false-negative PL) and in 22 patients (8.6%), foci of uptake interpreted in PL as hot SLNs were found to be non-nodal sites of uptake when assessed on SPECT/CT (false positive PL). SPECT-CT vs. PL mismatch was observed in 31 patients (12.2%) and was the most common in patients with primary lesions located in the anterior inferior medial region (75%). Conclusions Results of the presented study indicates the high diagnostic value of SPECT-CT in assessment of SLNs and proved that SPECT-CT increases the sensitivity and accuracy of SLN identification as compared to PL even in very experienced hands.
Elschot, Mattijs; Vermolen, Bart J.; Lam, Marnix G. E. H.; de Keizer, Bart; van den Bosch, Maurice A. A. J.; de Jong, Hugo W. A. M.
2013-01-01
Background After yttrium-90 (90Y) microsphere radioembolization (RE), evaluation of extrahepatic activity and liver dosimetry is typically performed on 90Y Bremsstrahlung SPECT images. Since these images demonstrate a low quantitative accuracy, 90Y PET has been suggested as an alternative. The aim of this study is to quantitatively compare SPECT and state-of-the-art PET on the ability to detect small accumulations of 90Y and on the accuracy of liver dosimetry. Methodology/Principal Findings SPECT/CT and PET/CT phantom data were acquired using several acquisition and reconstruction protocols, including resolution recovery and Time-Of-Flight (TOF) PET. Image contrast and noise were compared using a torso-shaped phantom containing six hot spheres of various sizes. The ability to detect extra- and intrahepatic accumulations of activity was tested by quantitative evaluation of the visibility and unique detectability of the phantom hot spheres. Image-based dose estimates of the phantom were compared to the true dose. For clinical illustration, the SPECT and PET-based estimated liver dose distributions of five RE patients were compared. At equal noise level, PET showed higher contrast recovery coefficients than SPECT. The highest contrast recovery coefficients were obtained with TOF PET reconstruction including resolution recovery. All six spheres were consistently visible on SPECT and PET images, but PET was able to uniquely detect smaller spheres than SPECT. TOF PET-based estimates of the dose in the phantom spheres were more accurate than SPECT-based dose estimates, with underestimations ranging from 45% (10-mm sphere) to 11% (37-mm sphere) for PET, and 75% to 58% for SPECT, respectively. The differences between TOF PET and SPECT dose-estimates were supported by the patient data. Conclusions/Significance In this study we quantitatively demonstrated that the image quality of state-of-the-art PET is superior over Bremsstrahlung SPECT for the assessment of the 90Y microsphere distribution after radioembolization. PMID:23405207
Bayesian reconstruction and use of anatomical a priori information for emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.
1996-10-01
A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less
NASA Astrophysics Data System (ADS)
van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard
2016-08-01
Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the <1-cm detection limit for fluorescence imaging, allowing refinement of the navigation process using fluorescence findings. The phantom experiments performed suggest that SPECT-based navigation of the robot-integrated fluorescence laparoscope is feasible and may aid fluorescence-guided surgery procedures.
99mTc-d,l-HMPAO and SPECT of the brain in normal aging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldemar, G.; Hasselbalch, S.G.; Andersen, A.R.
1991-05-01
Single photon emission computed tomography (SPECT) with 99mTc-d,l-hexamethylpropyleneamine oxime (99mTc-d,l-HMPAO) was used to determine global and regional CBF in 53 healthy subjects aged 21-83 years. For the whole group, global CBF normalized to the cerebellum was 86.4% +/- 8.4 (SD). The contribution of age, sex, and atrophy to variations in global CBF was studied using stepwise multiple regression analysis. There was a significant negative correlation of global CBF with subjective ratings of cortical atrophy, but not with ratings of ventricular size, Evans ratio, sex, or age. In a subgroup of 33 subjects, in whom volumetric measurements of atrophy were performed,more » cortical atrophy was the only significant determinant for global CBF, accounting for 27% of its variance. Mean global CBF as measured with the 133Xe inhalation technique and SPECT was 54 +/- 9 ml/100 g/min and did not correlate significantly with age. There was a preferential decline of CBF in the frontal cortex with advancing age. The side-to-side asymmetry of several regions of interest increased with age. A method was described for estimation of subcortical CBF, which decreased with advancing cortical atrophy. The relative area of the subcortical low-flow region increased with age. These results are useful in distinguishing the effects of age and simple atrophy from disease effects, when the 99mTc-d,l-HMPAO method is used.« less
2014-01-01
Background The Kii peninsula of Japan is one of the foci of amyotrophic lateral sclerosis and parkinsonism-dementia complex (ALS/PDC) in the world. The purpose of this study is to clarify the neuropsychological features of the patients with ALS/PDC of the Kii peninsula (Kii ALS/PDC). Methods The medical interview was done on 13 patients with Kii ALS/PDC, 12 patients with Alzheimer’s disease, 10 patients with progressive supranuclear palsy, 10 patients with frontotemporal lobar degeneration and 10 patients with dementia with Lewy bodies. These patients and their carer/spouse were asked to report any history of abulia-apathy, hallucination, personality change and other variety of symptoms. Patients also underwent brain magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and neuropsychological tests comprising the Mini Mental State Examination, Raven’s Colored Progressive Matrices, verbal fluency, and Paired-Associate Word Learning Test and some of them were assessed with the Frontal Assessment Battery (FAB). Results All patients with Kii ALS/PDC had cognitive dysfunction including abulia-apathy, bradyphrenia, hallucination, decrease of extraversion, disorientation, and delayed reaction time. Brain MRI showed atrophy of the frontal and/or temporal lobes, and SPECT revealed a decrease in cerebral blood flow of the frontal and/or temporal lobes in all patients with Kii ALS/PDC. Disorientation, difficulty in word recall, delayed reaction time, and low FAB score were recognized in Kii ALS/PDC patients with cognitive dysfunction. Conclusions The core neuropsychological features of the patients with Kii ALS/PDC were characterized by marked abulia-apathy, bradyphrenia, and hallucination. PMID:25041813
Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Nieman, Koen; Meijboom, W Bob; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J; Verzijlbergen, J Fred
2013-07-01
Hybrid myocardial perfusion imaging with single photon emission computed tomography (SPECT) and CT coronary angiography (CCTA) has the potential to play a major role in patients with non-conclusive SPECT or CCTA results. We evaluated the performance of hybrid SPECT/CCTA vs. standalone SPECT and CCTA for the diagnosis of significant coronary artery disease (CAD) in patients with an intermediate to high pre-test likelihood of CAD. In total, 98 patients (mean age 62.5 ± 10.1 years, 68.4% male) with stable anginal complaints and a median pre-test likelihood of 87% (range 22-95%) were prospectively included in this study. Hybrid SPECT/CCTA was performed prior to conventional coronary angiography (CA) including fractional flow reserve (FFR) measurements. Hybrid analysis was performed by combined interpretation of SPECT and CCTA images. The sensitivity, specificity, positive (PPV), and negative (NPV) predictive values were calculated for standalone SPECT, CCTA, and hybrid SPECT/CCTA on per patient level, using an FFR <0.80 as a reference for significant CAD. Significant CAD was demonstrated in 56 patients (57.9%). Non-conclusive SPECT or CCTA results were found in 32 (32.7%) patients. SPECT had a sensitivity of 93%, specificity 79%, PPV 85%, and NPV 89%. CCTA had a sensitivity of 98%, specificity 62%, PPV 77%, and NPV 96%. Hybrid analysis of SPECT and CCTA improved the overall performance: sensitivity, specificity, PPV, and NPV for the presence of significant CAD to 96, 95, 96, and 95%, respectively. In > 40% of the patients with a high pre-test likelihood no significant CAD was demonstrated, emphasizing the value of accurate pre-treatment cardiovascular imaging. Hybrid SPECT/CCTA was able to accurately diagnose and exclude significant CAD surpassing standalone myocardial SPECT and CCTA, vs. a reference standard of FFR measurements.
Molecular imaging of angiogenesis with SPECT
Boerman, Otto C.
2010-01-01
Single-photon emission computed tomography (SPECT) and position emission tomography (PET) are the two main imaging modalities in nuclear medicine. SPECT imaging is more widely available than PET imaging and the radionuclides used for SPECT are easier to prepare and usually have a longer half-life than those used for PET. In addition, SPECT is a less expensive technique than PET. Commonly used gamma emitters are: 99mTc (Emax 141 keV, T1/2 6.02 h), 123I (Emax 529 keV, T1/2 13.0 h) and 111In (Emax 245 keV, T1/2 67.2 h). Compared to clinical SPECT, PET has a higher spatial resolution and the possibility to more accurately estimate the in vivo concentration of a tracer. In preclinical imaging, the situation is quite different. The resolution of microSPECT cameras (<0.5 mm) is higher than that of microPET cameras (>1.5 mm). In this report, studies on new radiolabelled tracers for SPECT imaging of angiogenesis in tumours are reviewed. PMID:20617435
Schmidt, Daniela; Linke, Rainer; Uder, Michael; Kuwert, Torsten
2010-04-01
In differentiated thyroid carcinoma (DTC), (131)I-SPECT/CT is more accurate in identifying radioiodine-positive lymph node metastases (LNM) than planar whole-body scans (WBS). The purpose of this study was to investigate the value of (131)I-SPECT/CT performed at the first radioablation to predict the occurrence and/or persistence of cervical radioiodine-positive LNM 5 months later. The study included 81 DTC patients that had had SPECT/ spiral CT after radioablation of thyroid remnants after thyroidectomy. The patients were re-examined 5 months later using (131)I-WBS performed at TSH stimulation. In addition, SPECT/CT of the neck was performed in patients with iodine-positive cervical foci to distinguish between thyroid remnant and LNM. The outcome variable of the study was the detection or exclusion of iodine-positive cervical LNM. Of 61 patients without a SPECT/CT diagnosis of (131)I-positive LNM at radioablation, 60 had no (131)I-positive LNM at follow-up. In the remaining patient of this group, a new radioiodine-positive LNM was detected. In 17 of 20 patients with a SPECT/CT diagnosis of (131)I-positive LNM (n = 19) or an indeterminate lesion (n = 1) at first radioablation, no (131)I-positive LNM were detected 5 months later. Radioiodine-positive LNM persisted in three patients of this group. (131)I-SPECT/CT has a high negative predictive value with regard to the occurrence of radioiodine-positive cervical LNM 5 months after initial therapy. The majority of iodine-positive LNM diagnosed by SPECT/CT at radioablation disappear within 5 months. These findings motivate further research into the value of (131)I-SPECT/CT of the neck for predicting recurrence and planning surgical reintervention in DTC.
SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system
NASA Astrophysics Data System (ADS)
Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.
2010-04-01
The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co-registered MRI image in SPECT reconstruction, and exploring potential applications of the simultaneous SPECT/MRI SA system including dynamic SPECT studies.
Kinetic analysis of IMP split dose method for two consecutive measurement of cerebral blood flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishizawa, S.; Yonekura, Y.; Tanaka, F.
1994-05-01
The split dose method for two consecutive measurements of cerebral blood flow (CBF) with I-123 IMP seems to offer a great merit to the SPECT study of the brain. However, because of complexity of the dynamics of IMP, it is not clear if microsphere (MS) model permits a estimation of CBF for the 2nd dose. We applied kinetic (KN) analysis based on 2 compartment model to the dynamic SPECT scan data, and compared the results with those obtained by MS model. Dynamic SPECT (1-min scans for 50 min) was performed using 3-head SPECT camera in 5 patients to test themore » reproducibility of measured CBF and in 9 patients to test the vascular response to acetazolamide (ACZ). Two doses of IMP (111 MBq each) were injected at the time of, and 25 min after, the scan initiation. ACZ (1g) was administered at 13 min. Arterial blood samples were drawn manually during the scan and an octanol extracted input function was obtained. Dynamic scan data for 22 min was used for CBF by KN analysis (K1), and 4-min scan data at 5 min for CBF by MS model (Km), for each dose. For 2nd CBF by MS model, simple subtraction of brain activity due to the I st dose was done using 4-min scan data just prior to the 2nd dose. Reproducibility of measured CBF by KN analysis was excellent (r=0.949, 1st K1=39.2{plus_minus}5.6 and 2nd K1=38.5{plus_minus}6.6 ml/l00g/min: mean{plus_minus}SD). Vascular response to ACZ was good (1st K1=42.4{plus_minus}7.8 to 2nd K1=67.9{plus_minus}10.0) in areas without ischemia, but poor (1st K1=41.1{plus_minus}8.5 to 2nd K1=46.1{plus_minus}11.1) in ischemic areas. Compared to KN analysis, MS model underestimated 3.5% for the 1st CBF measurement and 12.8% for the 2nd. However, excellent correlation was observed not only between 1st K1 and Km (r=0.993, slope=0.920) but between 2nd K1 and Km (r=0.994, slope=0.814), and the results permitted a reasonable correction for Km.« less
Effect of attenuation correction on image quality in emission tomography
NASA Astrophysics Data System (ADS)
Denisova, N. V.; Ondar, M. M.
2017-10-01
In this paper, mathematical modeling and computer simulations of myocardial perfusion SPECT imaging are performed. The main factors affecting the quality of reconstructed images in SPECT are anatomical structures, the diastolic volume of a myocardium and attenuation of gamma rays. The purpose of the present work is to study the effect of attenuation correction on image quality in emission tomography. The basic 2D model describing a Tc-99m distribution in a transaxial slice of the thoracic part of a patient body was designed. This model was used to construct four phantoms simulated various anatomical shapes: 2 male and 2 female patients with normal, obese and subtle physique were included in the study. Data acquisition model which includes the effect of non-uniform attenuation, collimator-detector response and Poisson statistics was developed. The projection data were calculated for 60 views in accordance with the standard myocardial perfusion SPECT imaging protocol. Reconstructions of images were performed using the OSEM algorithm which is widely used in modern SPECT systems. Two types of patient's examination procedures were simulated: SPECT without attenuation correction and SPECT/CT with attenuation correction. The obtained results indicate a significant effect of the attenuation correction on the SPECT images quality.
Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology
NASA Astrophysics Data System (ADS)
Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.
2009-05-01
D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.
Rhenium and technetium complexes that bind to amyloid-β plaques.
Hayne, David J; North, Andrea J; Fodero-Tavoletti, Michelle; White, Jonathan M; Hung, Lin W; Rigopoulos, Angela; McLean, Catriona A; Adlard, Paul A; Ackermann, Uwe; Tochon-Danguy, Henri; Villemagne, Victor L; Barnham, Kevin J; Donnelly, Paul S
2015-03-21
Alzheimer's disease is associated with the presence of insoluble protein deposits in the brain called amyloid plaques. The major constituent of these deposits is aggregated amyloid-β peptide. Technetium-99m complexes that bind to amyloid-β plaques could provide important diagnostic information on amyloid-β plaque burden using Single Photon Emission Computed Tomography (SPECT). Tridentate ligands with a stilbene functional group were used to form complexes with the fac-[M(I)(CO)3](+) (M = Re or (99m)Tc) core. The rhenium carbonyl complexes with tridentate co-ligands that included a stilbene functional group and a dimethylamino substituent bound to amyloid-β present in human frontal cortex brain tissue from subjects with Alzheimer's disease. This chemistry was extended to make the analogous [(99m)Tc(I)(CO)3](+) complexes and the complexes were sufficiently stable in human serum. Whilst the lipophilicity (log D7.4) of the technetium complexes appeared ideally suited for penetration of the blood-brain barrier, preliminary biodistribution studies in an AD mouse model (APP/PS1) revealed relatively low brain uptake (0.24% ID g(-1) at 2 min post injection).
Blood-pool SPECT in addition to bone SPECT in the viability assessment in mandibular reconstruction.
Aydogan, F; Akbay, E; Cevik, C; Kalender, E
2014-01-01
The assessment of the postoperative viability of vascularized and non-vascularized grafts used in the reconstruction of mandibular defects due to trauma and surgical reasons is a major problem in maxillofacial surgery. In the present study, we evaluated the feasibility and image quality of blood-pool SPECT, which is used for the first time in the literature here in the assessment of mandibular reconstruction, in addition to non-invasive bone scintigraphy and bone SPECT. We also evaluated whether it would be useful in clinical prediction. Micro-vascularized and non-vascularized bone grafts were used in 12 Syrian men with maxillofacial trauma. Between days 5-7 after surgery, three-phase bone scintigraphy, blood-pool SPECT and delayed bone SPECT scans were performed. After month 6, the patients were assessed by control CT scans. Of the non-vascularized grafts, one graft was reported as non-viable at week one. At month 6, graft resorption was demonstrated on the CT images. The remaining non-vascularized grafts and all of the micro-vascularized grafts were considered to be viable according to delayed bone SPECT and blood-pool SPECT images. However, only the anterior and posterior ends could be clearly assessed on delayed SPECT images, while blood-pool SPECT images allowed the clear assessment of the entire graft. The combined use of blood-pool and delayed SPECT scans could allow for better assessment of graft viability in the early period, and can provide more detailed information to clinicians about prognosis in the follow-up of patients undergoing mandibular graft reconstruction.
Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT.
Gardner, Ann; Åstrand, Disa; Öberg, Johanna; Jacobsson, Hans; Jonsson, Cathrine; Larsson, Stig; Pagani, Marco
2014-08-30
Several studies have demonstrated altered brain functional connectivity in the resting state in depression. However, no study has investigated interregional networking in patients with persistent depressive disorder (PDD). The aim of this study was to assess differences in brain perfusion distribution and connectivity between large groups of patients and healthy controls. Participants comprised 91 patients with PDD and 65 age- and sex-matched healthy controls. Resting state perfusion was investigated by single photon emission computed tomography, and group differences were assessed by Statistical Parametric Mapping. Brain connectivity was explored through a voxel-wise interregional correlation analysis using as covariate of interest the normalized values of clusters of voxels in which perfusion differences were found in group analysis. Significantly increased regional brain perfusion distribution covering a large part of the cerebellum was observed in patients as compared with controls. Patients showed a significant negative functional connectivity between the cerebellar cluster and caudate, bilaterally. This study demonstrated inverse relative perfusion between the cerebellum and the caudate in PDD. Functional uncoupling may be associated with a dysregulation between the role of the cerebellum in action control and of the caudate in action selection, initiation and decision making in the patients. The potential impact of the resting state condition and the possibility of mitochondrial impairment are discussed. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Cerebral blood perfusion after treatment with zolpidem and flumazenil in the baboon.
Clauss, Ralf P; Dormehl, Irene C; Kilian, Elmaré; Louw, Werner K A; Nel, Wally H; Oliver, Douglas W
2002-01-01
Previous studies have shown that zolpidem (CAS 82626-48-0) can lead to improved perfusion in damaged brain tissue. Zolpidem belongs to the imidazopyridine chemical class and it illicits its pharmacological action via the gamma-aminobutyric acid (GABA) receptor system through stimulation of particularly the omega 1 receptors and to a lesser extent omega 2 receptors. Previously it was reported that no cerebral blood flow effects were observed in normal baboons after treatment with zolpidem, whereas an asymmetric regional increase in cerebral blood flow was observed in a neurologically abnormal baboon. In this study, the effect of a combination of the benzodiazepine receptor antagonist flumazenil (CAS 78755-81-4) and zolpidem on brain perfusion was examined by the 99mTc-hexamethyl-propylene amine oxime (99mTc-HMPAO) split dose brain single photon emission computed tomography (SPECT). Four normal baboons and the neurologically abnormal baboon from the previous zolpidem study were examined. In the current study the asymmetric changes observed after zolpidem--only treatment in the abnormal baboon was attenuated by flumazenil intervention. A decreased brain blood flow was observed after combination treatment of zolpidem and flumazenil in the normal baboons. The involvement of the omega receptors is suggested by these results. Up- or down-regulation of omega receptors may also contribute to the observed responses in the abnormal baboon and a brain injured patient.
Invisible Base Electrode Coordinates Approximation for Simultaneous SPECT and EEG Data Visualization
NASA Astrophysics Data System (ADS)
Kowalczyk, L.; Goszczynska, H.; Zalewska, E.; Bajera, A.; Krolicki, L.
2014-04-01
This work was performed as part of a larger research concerning the feasibility of improving the localization of epileptic foci, as compared to the standard SPECT examination, by applying the technique of EEG mapping. The presented study extends our previous work on the development of a method for superposition of SPECT images and EEG 3D maps when these two examinations are performed simultaneously. Due to the lack of anatomical data in SPECT images it is a much more difficult task than in the case of MRI/EEG study where electrodes are visible in morphological images. Using the appropriate dose of radioisotope we mark five base electrodes to make them visible in the SPECT image and then approximate the coordinates of the remaining electrodes using properties of the 10-20 electrode placement system and the proposed nine-ellipses model. This allows computing a sequence of 3D EEG maps spanning on all electrodes. It happens, however, that not all five base electrodes can be reliably identified in SPECT data. The aim of the current study was to develop a method for determining the coordinates of base electrode(s) missing in the SPECT image. The algorithm for coordinates approximation has been developed and was tested on data collected for three subjects with all visible electrodes. To increase the accuracy of the approximation we used head surface models. Freely available model from Oostenveld research based on data from SPM package and our own model based on data from our EEG/SPECT studies were used. For data collected in four cases with one electrode not visible we compared the invisible base electrode coordinates approximation for Oostenveld and our models. The results vary depending on the missing electrode placement, but application of the realistic head model significantly increases the accuracy of the approximation.
An uncommon case of random fire-setting behavior associated with Todd paralysis: a case report.
Kanehisa, Masayuki; Morinaga, Katsuhiko; Kohno, Hisae; Maruyama, Yoshihiro; Ninomiya, Taiga; Ishitobi, Yoshinobu; Tanaka, Yoshihiro; Tsuru, Jusen; Hanada, Hiroaki; Yoshikawa, Tomoya; Akiyoshi, Jotaro
2012-08-31
The association between fire-setting behavior and psychiatric or medical disorders remains poorly understood. Although a link between fire-setting behavior and various organic brain disorders has been established, associations between fire setting and focal brain lesions have not yet been reported. Here, we describe the case of a 24-year-old first time arsonist who suffered Todd's paralysis prior to the onset of a bizarre and random fire-setting behavior. A case of a 24-year-old man with a sudden onset of a bizarre and random fire-setting behavior is reported. The man, who had been arrested on felony arson charges, complained of difficulties concentrating and of recent memory disturbances with leg weakness. A video-EEG recording demonstrated a close relationship between the focal motor impairment and a clear-cut epileptic ictal discharge involving the bilateral motor cortical areas. The SPECT result was statistically analyzed by comparing with standard SPECT images obtained from our institute (easy Z-score imaging system; eZIS). eZIS revealed hypoperfusion in cingulate cortex, basal ganglia and hyperperfusion in frontal cortex,. A neuropsychological test battery revealed lower than normal scores for executive function, attention, and memory, consistent with frontal lobe dysfunction. The fire-setting behavior and Todd's paralysis, together with an unremarkable performance on tests measuring executive function fifteen months prior, suggested a causal relationship between this organic brain lesion and the fire-setting behavior. The case describes a rare and as yet unreported association between random, impulse-driven fire-setting behavior and damage to the brain and suggests a disconnection of frontal lobe structures as a possible pathogenic mechanism.
Neuroimaging of the Injured Pediatric Brain: Methods and New Lessons.
Dennis, Emily L; Babikian, Talin; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F
2018-02-01
Traumatic brain injury (TBI) is a significant public health problem in the United States, especially for children and adolescents. Current epidemiological data estimate over 600,000 patients younger than 20 years are treated for TBI in emergency rooms annually. While many patients experience a full recovery, for others there can be long-lasting cognitive, neurological, psychological, and behavioral disruptions. TBI in youth can disrupt ongoing brain development and create added family stress during a formative period. The neuroimaging methods used to assess brain injury improve each year, providing researchers a more detailed characterization of the injury and recovery process. In this review, we cover current imaging methods used to quantify brain disruption post-injury, including structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, resting state fMRI, and magnetic resonance spectroscopy (MRS), with brief coverage of other methods, including electroencephalography (EEG), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). We include studies focusing on pediatric moderate-severe TBI from 2 months post-injury and beyond. While the morbidity of pediatric TBI is considerable, continuing advances in imaging methods have the potential to identify new treatment targets that can lead to significant improvements in outcome.
Recent Developments in Molecular Brain Imaging of Neuropsychiatric Disorders.
Slifstein, Mark; Abi-Dargham, Anissa
2017-01-01
Molecular imaging with PET or SPECT has been an important research tool in psychiatry for as long as these modalities have been available. Here, we discuss two areas of neuroimaging relevant to current psychiatry research. The first is the use of imaging to study neurotransmission. We discuss the use of pharmacologic probes to induce changes in levels of neurotransmitters that can be inferred through their effects on outcome measures of imaging experiments, from their historical origins focusing on dopamine transmission through recent developments involving serotonin, GABA, and glutamate. Next, we examine imaging of neuroinflammation in the context of psychiatry. Imaging markers of neuroinflammation have been studied extensively in other areas of brain research, but they have more recently attracted interest in psychiatry research, based on accumulating evidence that there may be an inflammatory component to some psychiatric conditions. Furthermore, new probes are under development that would allow unprecedented insights into cellular processes. In summary, molecular imaging would continue to offer great potential as a unique tool to further our understanding of brain function in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Synthesis and receptor binding studies of (+/-)1-iodo-MK-801
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, D.J.; Ciliax, B.J.; Van Dort, M.E.
1989-06-01
The glutamate analogue N-methyl-D-aspartate (NMDA) binds to a subset of glutamate receptors that are coupled to a voltage-sensitive cation channel. This NMDA-linked channel is the likely binding locus of the potent anticonvulsant MK-801. To develop single-photon emission computed tomography (SPECT) probes of this brain channel, we synthesized (+/)1-iodo-MK-801 and (+/-)1-({sup 125}I)iodo-MK-801. The effect of (+/-)1-iodo-MK-801 on ligand binding to the NMDA-linked glutamate receptor site was assessed using a rat brain homogenate assay. (+/-)1-Iodo-MK-801 displaced the dissociative anesthetic ligand ({sup 3}H)N-(1-(2-thienyl)cyclohexyl)piperidine (({sup 3}H)TCP) binding with an IC50 of 1 microM, which is a 10-fold lower binding affinity than that of (+/-)MK-801.more » In in vivo autoradiographic studies, (+/-)MK-801 failed to block selective uptake of (+/-)1-iodo-MK-801 in rat brain. These results suggest that (+/-)1-iodo-MK-801 may not be a suitable ligand for mapping NMDA-linked glutamate receptor channels.« less
Neuroimaging and cognitive changes during déjà vu.
Kovacs, Norbert; Auer, Tibor; Balas, Istvan; Karadi, Kazmer; Zambo, Katalin; Schwarcz, Attila; Klivenyi, Peter; Jokeit, Hennric; Horvath, Krisztina; Nagy, Ferenc; Janszky, Jozsef
2009-01-01
The cause or the physiological role of déjà vu (DV) in healthy people is unknown. The pathophysiology of DV-type epileptic aura is also unresolved. Here we describe a 22-year-old woman treated with deep brain stimulation (DBS) of the left internal globus pallidus for hemidystonia. At certain stimulation settings, DBS elicited reproducible episodes of DV. Neuropsychological tests and single-photon-emission computed tomography (SPECT) were performed during DBS-evoked DV and during normal DBS stimulation without DV. SPECT during DBS-evoked DV revealed hyperperfusion of the right (contralateral to the electrode) hippocampus and other limbic structures. Neuropsychological examinations performed during several evoked DV episodes revealed disturbances in nonverbal memory. Our results confirm the role of mesiotemporal structures in the pathogenesis of DV. We hypothesize that individual neuroanatomy and disturbances in gamma oscillations or in the dopaminergic system played a role in DBS-elicited DV in our patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odano, I.; Takahashi, N.; Ohkubo, M.
1994-05-01
We developed a new method for quantitative measurement of rCBF with Iodine-123-IMP based on the microsphere model, which was accurate, more simple and relatively non-invasive than the continuous withdrawal method. IMP is assumed to behave as a chemical microsphere in the brain. Then regional CBF is measured by the continuous withdrawal of arterial blood and the microsphere model as follows: F=Cb(t)/integral Ca(t)*N, where F is rCBF (ml/100g/min), Cb(t) is the brain activity concentration. The integral Ca(t) is the total activity of arterial whole-blood withdrawn, and N is the fraction of the integral Ca(t) that is true tracer activity. We analyzedmore » 14 patients. A dose of 222 MBq of IMP was injected i.v. over 1 min, and withdrawal of the arterial blood was performed from 0 to 5 min (integral Ca(t)), after which arterial blood samples (one point Ca(t)) were obtained at 5, 6, 7, 8, 9, 10 min, respectively. Then the integral Ca(t) was mathematically inferred from the value of one point Ca(t). When we examined the correlation between integral Ca(t)*N and one point Ca(t), and % error of one point Ca(t) compared with integral Ca(t)*N, the minimum of the % error was 8.1% and the maximum of the correlation coefficient was 0.943, the both values of which were obtained at 6 min. We concluded that 6 min was the best time to take arterial blood sample by one point sampling method for assuming the integral Ca(t)*N. IMP SPECT studies were performed with a ring-type SPECT scanner, Compared with rCBF measured by Xe-133 method, a significant correlation was observed in this method (r=0.773). One point Ca(t) method is very easy and quickly for measurement of rCBF without inserting catheters and without arterial blood treatment with octanol.« less
Altered Brain Microstate Dynamics in Adolescents with Narcolepsy
Drissi, Natasha M.; Szakács, Attila; Witt, Suzanne T.; Wretman, Anna; Ulander, Martin; Ståhlbrandt, Henriettae; Darin, Niklas; Hallböök, Tove; Landtblom, Anne-Marie; Engström, Maria
2016-01-01
Narcolepsy is a chronic sleep disorder caused by a loss of hypocretin-1 producing neurons in the hypothalamus. Previous neuroimaging studies have investigated brain function in narcolepsy during rest using positron emission tomography (PET) and single photon emission computed tomography (SPECT). In addition to hypothalamic and thalamic dysfunction they showed aberrant prefrontal perfusion and glucose metabolism in narcolepsy. Given these findings in brain structure and metabolism in narcolepsy, we anticipated that changes in functional magnetic resonance imaging (fMRI) resting state network (RSN) dynamics might also be apparent in patients with narcolepsy. The objective of this study was to investigate and describe brain microstate activity in adolescents with narcolepsy and correlate these to RSNs using simultaneous fMRI and electroencephalography (EEG). Sixteen adolescents (ages 13–20) with a confirmed diagnosis of narcolepsy were recruited and compared to age-matched healthy controls. Simultaneous EEG and fMRI data were collected during 10 min of wakeful rest. EEG data were analyzed for microstates, which are discrete epochs of stable global brain states obtained from topographical EEG analysis. Functional MRI data were analyzed for RSNs. Data showed that narcolepsy patients were less likely than controls to spend time in a microstate which we found to be related to the default mode network and may suggest a disruption of this network that is disease specific. We concluded that adolescents with narcolepsy have altered resting state brain dynamics. PMID:27536225
NASA Astrophysics Data System (ADS)
Tsui, Benjamin M. W.; Hugg, James W.; Xu, Jingyan; Chen, Si; Meier, Dirk; Edelstein, William; El-Sharkawy, Abdel; Wagenaar, Douglas J.; Patt, Bradley E.
2011-03-01
We describe a continuing design and development of MR-compatible SPECT systems for simultaneous SPECT-MR imaging of small animals. A first generation prototype SPECT system was designed and constructed to fit inside a MRI system with a gradient bore inner diameter of 12 cm. It consists of 3 angularly offset rings of 8 detectors (1"x1", 16x16 pixels MR-compatible solid-state CZT). A matching 24-pinhole collimator sleeve, made of a tungsten-compound, provides projections from a common FOV of ~25 mm. A birdcage RF coil for MRI data acquisition surrounds the collimator. The SPECT system was tested inside a clinical 3T MRI system. Minimal interference was observed on the simultaneously acquired SPECT and MR images. We developed a sparse-view image reconstruction method based on accurate modeling of the point response function (PRF) of each of the 24 pinholes to provide artifact-free SPECT images. The stationary SPECT system provides relatively low resolution of 3-5 mm but high geometric efficiency of 0.5- 1.2% for fast dynamic acquisition, demonstrated in a SPECT renal kinetics study using Tc-99m DTPA. Based on these results, a second generation prototype MR-compatible SPECT system with an outer diameter of 20 cm that fits inside a mid-sized preclinical MRI system is being developed. It consists of 5 rings of 19 CZT detectors. The larger ring diameter allows the use of optimized multi-pinhole collimator designs, such as high system resolution up to ~1 mm, high geometric efficiency, or lower system resolution without collimator rotation. The anticipated performance of the new system is supported by simulation data.
Catherine, Faget-Agius; Aurélie, Vincenti; Eric, Guedj; Pierre, Michel; Raphaëlle, Richieri; Marine, Alessandrini; Pascal, Auquier; Christophe, Lançon; Laurent, Boyer
2017-12-30
This study aims to define functioning levels of patients with schizophrenia by using a method of interpretable clustering based on a specific functioning scale, the Functional Remission Of General Schizophrenia (FROGS) scale, and to test their validity regarding clinical and neuroimaging characterization. In this observational study, patients with schizophrenia have been classified using a hierarchical top-down method called clustering using unsupervised binary trees (CUBT). Socio-demographic, clinical, and neuroimaging SPECT perfusion data were compared between the different clusters to ensure their clinical relevance. A total of 242 patients were analyzed. A four-group functioning level structure has been identified: 54 are classified as "minimal", 81 as "low", 64 as "moderate", and 43 as "high". The clustering shows satisfactory statistical properties, including reproducibility and discriminancy. The 4 clusters consistently differentiate patients. "High" functioning level patients reported significantly the lowest scores on the PANSS and the CDSS, and the highest scores on the GAF, the MARS and S-QoL 18. Functioning levels were significantly associated with cerebral perfusion of two relevant areas: the left inferior parietal cortex and the anterior cingulate. Our study provides relevant functioning levels in schizophrenia, and may enhance the use of functioning scale. Copyright © 2017 Elsevier B.V. All rights reserved.
Cuberas-Borrós, Gemma; Pineda, Victor; Aguadé-Bruix, Santiago; Romero-Farina, Guillermo; Pizzi, M Nazarena; de León, Gustavo; Castell-Conesa, Joan; García-Dorado, David; Candell-Riera, Jaume
2013-09-01
The aim of this study was to compare magnetic resonance and gated-SPECT myocardial perfusion imaging in patients with chronic myocardial infarction. Magnetic resonance imaging and gated-SPECT were performed in 104 patients (mean age, 61 [12] years; 87.5% male) with a previous infarction. Left ventricular volumes and ejection fraction and classic late gadolinium enhancement viability criteria (<75% transmurality) were correlated with those of gated-SPECT (uptake >50%) in the 17 segments of the left ventricle. Motion, thickening, and ischemia on SPECT were analyzed in segments showing nonviable tissue or equivocal enhancement features (50%-75% transmurality). A good correlation was observed between the 2 techniques for volumes, ejection fraction (P<.05), and estimated necrotic mass (P<.01). In total, 82 of 264 segments (31%) with >75% enhancement had >50% single SPECT uptake. Of the 106 equivocal segments on magnetic resonance imaging, 68 (64%) had >50% uptake, 41 (38.7%) had normal motion, 46 (43.4%) had normal thickening, and 17 (16%) had ischemic criteria on SPECT. A third of nonviable segments on magnetic resonance imaging showed >50% uptake on SPECT. Gated-SPECT can be useful in the analysis of motion, thickening, and ischemic criteria in segments with questionable viability on magnetic resonance imaging. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Direct comparison of rest and adenosine stress myocardial perfusion CT with rest and stress SPECT
Okada, David R.; Ghoshhajra, Brian B.; Blankstein, Ron; Rocha-Filho, Jose A.; Shturman, Leonid D.; Rogers, Ian S.; Bezerra, Hiram G.; Sarwar, Ammar; Gewirtz, Henry; Hoffmann, Udo; Mamuya, Wilfred S.; Brady, Thomas J.; Cury, Ricardo C.
2010-01-01
Introduction We have recently described a technique for assessing myocardial perfusion using adenosine-mediated stress imaging (CTP) with dual source computed tomography. SPECT myocardial perfusion imaging (SPECT-MPI) is a widely utilized and extensively validated method for assessing myocardial perfusion. The aim of this study was to determine the level of agreement between CTP and SPECT-MPI at rest and under stress on a per-segment, per-vessel, and per-patient basis. Methods Forty-seven consecutive patients underwent CTP and SPECT-MPI. Perfusion images were interpreted using the 17 segment AHA model and were scored on a 0 (normal) to 3 (abnormal) scale. Summed rest and stress scores were calculated for each vascular territory and patient by adding corresponding segmental scores. Results On a per-segment basis (n = 799), CTP and SPECT-MPI demonstrated excellent correlation: Goodman-Kruskall γ = .59 (P < .0001) for stress and .75 (P < .0001) for rest. On a per-vessel basis (n = 141), CTP and SPECT-MPI summed scores demonstrated good correlation: Pearson r = .56 (P < .0001) for stress and .66 (P < .0001) for rest. On a per-patient basis (n = 47), CTP and SPECT-MPI demonstrated good correlation: Pearson r = .60 (P < .0001) for stress and .76 (P < .0001) for rest. Conclusions CTP compares favorably with SPECT-MPI for detection, extent, and severity of myocardial perfusion defects at rest and stress. PMID:19936863
Walker, Zuzana; Cummings, Jeffrey L
2012-01-01
Early, accurate diagnosis of dementia with Lewy bodies (DLB), in particular its differentiation from Alzheimer's disease, is important for optimal management, providing patients/carers with information about the likely symptomatology and illness course, allowing initiation of effective pharmacotherapy, and avoiding the consequences of neuroleptic sensitivity. Clinical diagnosis of DLB has high specificity but low sensitivity. Clinical trials of [(123)I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane single-photon emission computed tomography ([(123)I]FP-CIT SPECT) indicate high positive and negative percent agreement with reference to clinical diagnosis, and high sensitivity and specificity in patients with neuropathologically confirmed diagnoses of DLB. An abnormal [(123)I]FP-CIT SPECT image in patients fulfilling criteria for possible DLB advances the certainty of a diagnosis to probable DLB. [(123)I]FP-CIT SPECT, by identifying the striatal dopaminergic deficit, can be a valuable diagnostic aid and can provide support to a clinical diagnosis of DLB in patients with dementia. The technique is likely to be of particular utility in patients with dementia with an uncertain diagnosis. Copyright © 2012 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Horino, Asako; Kawawaki, Hisashi; Fukuoka, Masataka; Tsuji, Hitomi; Hattori, Yuka; Inoue, Takeshi; Nukui, Megumi; Kuki, Ichiro; Okazaki, Shin; Tomiwa, Kiyotaka; Hirose, Shinichi
2016-10-01
Clinical phenotypic expression of SSADH deficiency is highly heterogeneous, and some infants may develop refractory secondary generalized seizures. A 9-month-old boy manifested partial seizures, developing severe status epilepticus, and conventional antiepileptic drugs were ineffective. Use of ketamine contributed to the control of status epilepticus, achieving a reduction in frequency of partial seizures, and improving EEG findings without apparent complications. Diffusion-weighted images showed hyperintensities in the bilateral basal ganglia and fornix, and multiple T2 hyperintensity lesions were detected. (123)I-iomazenil (IMZ) SPECT revealed a decrease in binding of (123)I-iomazenil predominantly in the left temporal region by the 18th day of hospitalization. However, repeated IMZ-SPECT on the 46th day of hospitalization demonstrated almost no accumulation across a broad region, sparing the left temporal region. The patient showed rapid regression, refractory myoclonus, and severe progressive brain atrophy. IMZ-SPECT findings demonstrated reduced benzodiazepine receptor binding and its dynamic changes in an SSADH-deficient patient. Considering the down regulation of the GABAA receptor, ketamine should be included in pharmacotherapeutic strategies for treatment of refractory status epilepticus in SSADH-deficient patients. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Berber, Reshid; Henckel, Johann; Khoo, Michael; Wan, Simon; Hua, Jia; Skinner, John; Hart, Alister
2015-04-01
SPECT-CT is increasingly used to assess painful knee arthroplasties. The aim of this study was to evaluate the clinical usefulness of SPECT-CT in unexplained painful MOM hip arthroplasty. We compared the diagnosis and management plan for 19 prosthetic MOM hips in 15 subjects with unexplained pain before and after SPECT-CT. SPECT-CT changed the management decision in 13 (68%) subjects, Chi-Square=5.49, P=0.24. In 6 subjects (32%) pain remained unexplained however the result reassured the surgeon to continue with non-operative management. SPECT-CT should be reserved as a specialist test to help identify possible causes of pain where conventional investigations have failed. It can help reassure surgeons making management decisions for patients with unexplained pain following MOM hip arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.
Menéndez-González, Manuel; Tavares, Francisco; Zeidan, Nahla; Salas-Pacheco, José M; Arias-Carrión, Oscar
2014-01-01
The [(123)I]ioflupane-a dopamine transporter radioligand-SPECT (DaT-SPECT) has proven to be useful in the differential diagnosis of tremor. Here, we investigate the diagnoses behind patients with hard-to-classify tremor and normal DaT-SPECT. Therefore, 30 patients with tremor and normal DaT-SPECT were followed up for 2 years. In 18 cases we were able to make a diagnosis. The residual 12 patients underwent a second DaT-SPECT, were then followed for additional 12 months and thereafter the diagnosis was reconsidered again. The final diagnoses included cases of essential tremor, dystonic tremor, multisystem atrophy, vascular parkinsonism, progressive supranuclear palsy, corticobasal degeneration, fragile X-associated tremor ataxia syndrome, psychogenic parkinsonism, iatrogenic parkinsonism and Parkinson's disease. However, for 6 patients the diagnosis remained uncertain. Larger series are needed to better establish the relative frequency of the different conditions behind these cases.
Chandra, Piyush; Dhake, Sanket; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu; Rangarajan, Venkatesh
2017-01-01
Evidence supporting the use of Sentinel node biopsy (SNB) for nodal staging of early oral squamous cell carcinomas (OSCC) appears to be very promising. Pre-operative lymphatic mapping using planar lymphoscinitigraphy (PL) with or without SPECT/CT in the SNB procedure is useful in sentinel node localization and for planning appropriate surgery. Recently, a large prospective multi-centric study evaluating SNB in cutaneous melanoma, breast and pelvic malignancies, demonstrated that adding SPECT to PL leads to surgical adjustments in a considerable number of patients. Our aim of this study was to evaluate the incremental value of additional SPECT/CT over PL alone in SNB for OSCC. This was a retrospective analysis of 44 patients (40- tongue, 4- buccal mucosa) with T1-T2, clinically N0 oral cavity SCC who underwent sentinel node biopsy procedure. PL and SPECT lymphoscinitigraphy images were compared for pre-operative mapping of sentinel nodes. Using a handheld gamma probe, a total of 179 sentinel nodes were harvested, with a mean of 4.06 per patient. PL revealed 75 hotspots with a mean of 1.70 per patient, and SPECT/CT revealed 92 hotspots with a mean of 2.09 per patient. Additional hotpots were identified in 14 patients on SPECT/CT, which included 4 patients, where PL did not detect any sentinel nodes. Pre-operative SPECT/CT in addition to planar lympho-scinitigraphy in sentinel node biopsies of oral cavity SCC detects more number of sentinel nodes compared to planar imaging alone. The higher sensitivity of SPECT combined with better anatomical localization using diagnostic CT may further improve the precision of SNB procedure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, J.S.; Moon, D.H.; Shin, M.J.
1994-05-01
Solitary or a few spinal abnormalities on planar bone scan pose a dilemma in cancer patients. The purpose of this study was to evaluate the usefulness of spine SPECT imaging in differential diagnosis of malignant and benign lesion. Subjects were 54 adult patients with solitary or a few equivocal vertebral lesions on planar bone scan. Spine SPECT imaging was obtained by a triple head SPECT system (TRIAD, Trionix). The final diagnoses were based on data from biopsy, other imaging studies, or minimum 1 year of follow up. Two blind observers reviewed the planar image first, then both planar and SPECTmore » images. The uptake patterns on SPECT images were analyzed, and the diagnostic performance was evaluated by the ROC analysis. Thirty three lesions of 22 patients were malignant, and 60 lesions of 32 patients were benign. Common characteristic patterns of malignant lesions were focal or segmental hot uptake in the body, hot uptake in the body and pedicle, and cold defect with surrounding hot uptake in the vertebra. Whereas marginal protruding hot uptakes in endplate, and hot uptakes in facet joints were benign. The ROC analysis showed that SPECT improved the diagnostic performance (the area under the ROC curve of two observers for planar image 0.903 and 0.791, for the combination of planar and SPECT : 0.950 and 0.976). In conclusion, the uptake pattern recognition in spine SPECT provides useful information for differential diagnosis of malignant and benign lesions in vertebra. Spine SPECT is a valuable complement in cancer patients with inconclusive findings on planar bone scan.« less
Optimized 3D stitching algorithm for whole body SPECT based on transition error minimization (TEM)
NASA Astrophysics Data System (ADS)
Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan
2017-02-01
Standard Single Photon Emission Computed Tomography (SPECT) has a limited field of view (FOV) and cannot provide a 3D image of an entire long whole body SPECT. To produce a 3D whole body SPECT image, two to five overlapped SPECT FOVs from head to foot are acquired and assembled using image stitching. Most commercial software from medical imaging manufacturers applies a direct mid-slice stitching method to avoid blurring or ghosting from 3D image blending. Due to intensity changes across the middle slice of overlapped images, direct mid-slice stitching often produces visible seams in the coronal and sagittal views and maximal intensity projection (MIP). In this study, we proposed an optimized algorithm to reduce the visibility of stitching edges. The new algorithm computed, based on transition error minimization (TEM), a 3D stitching interface between two overlapped 3D SPECT images. To test the suggested algorithm, four studies of 2-FOV whole body SPECT were used and included two different reconstruction methods (filtered back projection (FBP) and ordered subset expectation maximization (OSEM)) as well as two different radiopharmaceuticals (Tc-99m MDP for bone metastases and I-131 MIBG for neuroblastoma tumors). Relative transition errors of stitched whole body SPECT using mid-slice stitching and the TEM-based algorithm were measured for objective evaluation. Preliminary experiments showed that the new algorithm reduced the visibility of the stitching interface in the coronal, sagittal, and MIP views. Average relative transition errors were reduced from 56.7% of mid-slice stitching to 11.7% of TEM-based stitching. The proposed algorithm also avoids blurring artifacts by preserving the noise properties of the original SPECT images.
Montes, Carlos; Tamayo, Pilar; Hernandez, Jorge; Gomez-Caminero, Felipe; García, Sofia; Martín, Carlos; Rosero, Angela
2013-08-01
Hybrid imaging, such as SPECT/CT, is used in routine clinical practice, allowing coregistered images of the functional and structural information provided by the two imaging modalities. However, this multimodality imaging may mean that patients are exposed to a higher radiation dose than those receiving SPECT alone. The study aimed to determine the radiation exposure of patients who had undergone SPECT/CT examinations and to relate this to the Background Equivalent Radiation Time (BERT). 145 SPECT/CT studies were used to estimate the total effective dose to patients due to both radiopharmaceutical administrations and low-dose CT scans. The CT contribution was estimated by the Dose-Length Product method. Specific conversion coefficients were calculated for SPECT explorations. The radiation dose from low-dose CTs ranged between 0.6 mSv for head and neck CT and 2.6 mSv for whole body CT scan, representing a maximum of 1 year of background radiation exposure. These values represent a decrease of 80-85% with respect to the radiation dose from diagnostic CT. The radiation exposure from radiopharmaceutical administration varied from 2.1 mSv for stress myocardial perfusion SPECT to 26 mSv for gallium SPECT in patients with lymphoma. The BERT ranged from 1 to 11 years. The contribution of low-dose CT scans to the total radiation dose to patients undergoing SPECT/CT examinations is relatively low compared with the effective dose from radiopharmaceutical administration. When a CT scan is only acquired for anatomical localization and attenuation correction, low-dose CT scan is justified on the basis of its lower dose.
Comparison of TOF-PET and Bremsstrahlung SPECT Images of Yttrium-90: A Monte Carlo Simulation Study.
Takahashi, Akihiko; Himuro, Kazuhiko; Baba, Shingo; Yamashita, Yasuo; Sasaki, Masayuki
2018-01-01
Yttrium-90 ( 90 Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90 Y using Monte Carlo simulation codes under the same conditions and to compare them. In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90 Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90 Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.
NASA Astrophysics Data System (ADS)
Gupta, Arun; Kim, Kyeong Yun; Hwang, Donghwi; Lee, Min Sun; Lee, Dong Soo; Lee, Jae Sung
2018-06-01
SPECT plays important role in peptide receptor targeted radionuclide therapy using theranostic radionuclides such as Lu-177 for the treatment of various cancers. However, SPECT studies must be quantitatively accurate because the reliable assessment of tumor uptake and tumor-to-normal tissue ratios can only be performed using quantitatively accurate images. Hence, it is important to evaluate performance parameters and quantitative accuracy of preclinical SPECT systems for therapeutic radioisotopes before conducting pre- and post-therapy SPECT imaging or dosimetry studies. In this study, we evaluated system performance and quantitative accuracy of NanoSPECT/CT scanner for Lu-177 imaging using point source and uniform phantom studies. We measured recovery coefficient, uniformity, spatial resolution, system sensitivity and calibration factor for mouse whole body standard aperture. We also performed the experiments using Tc-99m to compare the results with that of Lu-177. We found that the recovery coefficient of more than 70% for Lu-177 at the optimum noise level when nine iterations were used. The spatial resolutions of Lu-177 with and without adding uniform background was comparable to that of Tc-99m in axial, radial and tangential directions. System sensitivity measured for Lu-177 was almost three times less than that of Tc-99m.
Raja, Senthil; Mittal, Bhagwant R; Santhosh, Sampath; Bhattacharya, Anish; Rohit, Manoj K
2014-11-01
Left ventricular ejection fraction (LVEF) is the single most important predictor of prognosis in patients with coronary artery disease (CAD) and left ventricular (LV) dysfunction. Equilibrium radionuclide ventriculography (ERNV) is considered the most reliable technique for assessing LVEF. Most of these patients undergo two dimensional (2D) echocardiography and myocardial viability study using gated myocardial perfusion imaging (MPI) or gated F-fluorodeoxyglucose (F-FDG) PET. However, the accuracy of LVEF assessed by these methods is not clear. This study has been designed to assess the correlation and agreement between the LVEF measured by 2D echocardiography, gated blood pool single photon emission computed tomography (SPECT), Tc tetrofosmin gated SPECT, and F-FDG gated PET with ERNV in CAD patients with severe LV dysfunction. Patients with CAD and severe LV dysfunction [ejection fraction (EF) <35 assessed by 2D echocardiography] were prospectively included in the study. These patients underwent ERNV along with gated blood pool SPECT, Tc tetrofosmin gated SPECT, and F-FDG gated PET as per the standard protocol for myocardial viability assessment and LVEF calculation. Spearman's coefficient of correlation (r) was calculated for the different sets of values with significance level kept at a P-value less than 0.05. Bland-Altman plots were inspected to visually assess the between-agreement measurements from different methods. Forty-one patients were prospectively included. LVEF calculated by various radionuclide methods showed good correlation with ERNV as follows: gated blood pool SPECT, r=0.92; MPI gated SPECT, r=0.85; and F-FDG gated PET, r=0.76. However, the correlation between 2D echocardiography and ERNV was poor (r=0.520). The Bland-Altman plot for LVEF measured by all radionuclide methods showed good agreement with ERNV. However, agreement between 2D echocardiography and ERNV is poor, as most of the values in this plot gave a negative difference for low EF and a positive difference for high EF. The mean difference between various techniques [2D echocardiography (a), gated blood pool SPECT (b), MPI gated SPECT (c), F-FDG gated PET (d)] and ERNV (e) was as follows: (a)-(e), 3.3; (b)-(e), 5; (c)-(e), 1.1; and (d)-(e), 2.9. The best possible correlation and agreement was found between MPI gated SPECT and ERNV. This study showed good correlation and agreement between MPI gated SPECT and F-FDG gated PET with ERNV for LVEF calculation in CAD patients with severe LV dysfunction. Thus, subjecting patients who undergo viability assessment by MPI gated SPECT or F-FDG gated PET to a separate procedure like ERNV for LVEF assessment may not be warranted. As the gated blood pool SPECT also showed good correlation and agreement with ERNV for LVEF assessment in CAD patients with severe LV dysfunction, with better characteristics than ERNV, it can be routinely used whenever accurate LVEF assessment is needed.
NASA Astrophysics Data System (ADS)
Iyatomi, Hitoshi; Hashimoto, Jun; Yoshii, Fumuhito; Kazama, Toshiki; Kawada, Shuichi; Imai, Yutaka
2014-03-01
Discrimination between Alzheimer's disease and other dementia is clinically significant, however it is often difficult. In this study, we developed classification models among Alzheimer's disease (AD), other dementia (OD) and/or normal subjects (NC) using patient factors and indices obtained by brain perfusion SPECT. SPECT is commonly used to assess cerebral blood flow (CBF) and allows the evaluation of the severity of hypoperfusion by introducing statistical parametric mapping (SPM). We investigated a total of 150 cases (50 cases each for AD, OD, and NC) from Tokai University Hospital, Japan. In each case, we obtained a total of 127 candidate parameters from: (A) 2 patient factors (age and sex), (B) 12 CBF parameters and 113 SPM parameters including (C) 3 from specific volume analysis (SVA), and (D) 110 from voxel-based analysis stereotactic extraction estimation (vbSEE). We built linear classifiers with a statistical stepwise feature selection and evaluated the performance with the leave-one-out cross validation strategy. Our classifiers achieved very high classification performances with reasonable number of selected parameters. In the most significant discrimination in clinical, namely those of AD from OD, our classifier achieved both sensitivity (SE) and specificity (SP) of 96%. In a similar way, our classifiers achieved a SE of 90% and a SP of 98% in AD from NC, as well as a SE of 88% and a SP of 86% in AD from OD and NC cases. Introducing SPM indices such as SVA and vbSEE, classification performances improved around 7-15%. We confirmed that these SPM factors are quite important for diagnosing Alzheimer's disease.
Role of 99mTc-ECD SPECT in the Management of Children with Craniosynostosis
Barik, Mayadhar; Bajpai, Minu; Das, Rashmi Ranajn; Malhotra, Arun; Panda, Shasanka Shekhar; Sahoo, Manas Kumar; Dwivedi, Sadanand
2014-01-01
Purpose of the Report. There is a paucity of data on correlation of various imaging modalities with clinical findings in craniosynostosis. Moreover, no study has specifically reported the role of 99mTc-ECD SPECT in a large number of subjects with craniosynostosis. Materials and Methods. We prospectively analyzed a cohort of 85 patients with craniosynostosis from year 2007 to 2012. All patients underwent evaluation with 99mTc-ECD SPECT and the results were correlated with radiological and surgical findings. Results. 99mTc-ECD SPECT revealed regional perfusion abnormalities in the cerebral hemisphere corresponding to the fused sutures preoperatively that disappeared postoperatively in all the cases. Corresponding to this, the mean mental performance quotient (MPQ) increased significantly (P < 0.05) postoperatively only in those children with absent perfusion defect postoperatively. Conclusions. Our study suggests that early surgery and release of craniosynostosis in patients with preoperative perfusion defects (absent on 99mTc-ECD SPECT study) are beneficial, as theylead to improved MPQ after surgery. PMID:24987670
Onishi, Hideo; Motomura, Nobutoku; Takahashi, Masaaki; Yanagisawa, Masamichi; Ogawa, Koichi
2010-03-01
Degradation of SPECT images results from various physical factors. The primary aim of this study was the development of a digital phantom for use in the characterization of factors that contribute to image degradation in clinical SPECT studies. A 3-dimensional mathematic cylinder (3D-MAC) phantom was devised and developed. The phantom (200 mm in diameter and 200 mm long) comprised 3 imbedded stacks of five 30-mm-long cylinders (diameters, 4, 10, 20, 40, and 60 mm). In simulations, the 3 stacks and the background were assigned radioisotope concentrations and attenuation coefficients. SPECT projection datasets that included Compton scattering effects, photoelectric effects, and gamma-camera models were generated using the electron gamma-shower Monte Carlo simulation program. Collimator parameters, detector resolution, total photons acquired, number of projections acquired, and radius of rotation were varied in simulations. The projection data were formatted in Digital Imaging and Communications in Medicine (DICOM) and imported to and reconstructed using commercial reconstruction software on clinical SPECT workstations. Using the 3D-MAC phantom, we validated that contrast depended on size of region of interest (ROI) and was overestimated when the ROI was small. The low-energy general-purpose collimator caused a greater partial-volume effect than did the low-energy high-resolution collimator, and contrast in the cold region was higher using the filtered backprojection algorithm than using the ordered-subset expectation maximization algorithm in the SPECT images. We used imported DICOM projection data and reconstructed these data using vendor software; in addition, we validated reconstructed images. The devised and developed 3D-MAC SPECT phantom is useful for the characterization of various physical factors, contrasts, partial-volume effects, reconstruction algorithms, and such, that contribute to image degradation in clinical SPECT studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siman, W.; Mikell, J. K.; Kappadath, S. C., E-mail
Purpose: To develop a practical background compensation (BC) technique to improve quantitative {sup 90}Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a {sup 90}Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images.more » The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar {sup 90}Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical {sup 90}Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for {sup 90}Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion detectability and activity quantification compared to SPECT with AC only. The proposed methodology can readily be used to tailor {sup 90}Y SPECT/CT acquisition and reconstruction protocols with different SPECT/CT systems for quantification and improved image quality in clinical settings.« less
McKeith, Ian; O'Brien, John; Walker, Zuzana; Tatsch, Klaus; Booij, Jan; Darcourt, Jacques; Padovani, Alessandro; Giubbini, Raffaele; Bonuccelli, Ubaldo; Volterrani, Duccio; Holmes, Clive; Kemp, Paul; Tabet, Naji; Meyer, Ines; Reininger, Cornelia
2007-04-01
Dementia with Lewy bodies (DLB) needs to be distinguished from other types of dementia because of important differences in patient management and outcome. Current clinically based diagnostic criteria for DLB have limited accuracy. Severe nigrostriatal dopaminergic degeneration occurs in DLB, but not in Alzheimer's disease or most other dementia subtypes, offering a potential system for a biological diagnostic marker. The primary aim of this study was to investigate the sensitivity and specificity, in the ante-mortem differentiation of probable DLB from other causes of dementia, of single photon emission computed tomography (SPECT) brain imaging with the ligand (123)I-2beta-carbometoxy-3beta-(4-iodophenyl)-N-(3-fluoropropyl) nortropane ((123)I-FP-CIT), which binds to the dopamine transporter (DAT) reuptake site. Diagnostic accuracy, positive and negative predictive values, and inter-reader agreement were the secondary endpoints and a subgroup of possible DLB patients was also included. We did a phase III study in which we used a (123)I-FP-CIT SPECT scan to assess 326 patients with clinical diagnoses of probable (n=94) or possible (n=57) DLB or non-DLB dementia (n=147) established by a consensus panel (in 28 patients no diagnosis could be made). Three readers, unaware of the clinical diagnosis, classified the images as normal or abnormal by visual inspection. The study had 90% power to detect the differences between our anticipated sensitivity (0.80) and specificity (0.85) targets and prespecified lower thresholds (sensitivity 0.65, specificity 0.73) using one-sided binomial tests with a significance level of alpha=0.025. Abnormal scans had a mean sensitivity of 77.7% for detecting clinical probable DLB, with specificity of 90.4% for excluding non-DLB dementia, which was predominantly due to Alzheimer's disease. A mean value of 85.7% was achieved for overall diagnostic accuracy, 82.4% for positive predictive value, and 87.5% for negative predictive value. Inter-reader agreement for rating scans as normal or abnormal was high (Cohen's kappa=0.87). The procedure was well tolerated with few adverse events. A revision of the International Consensus Criteria for DLB has recommended that low DAT uptake in the basal ganglia, as shown by SPECT or PET imaging, be a suggestive feature for diagnosis. Our findings confirm the high correlation between abnormal (low binding) DAT activity measured with (123)I-FP-CIT SPECT and a clinical diagnosis of probable DLB. The diagnostic accuracy is sufficiently high for this technique to be clinically useful in distinguishing DLB from Alzheimer's disease.
Chen, Chun; Li, Dianfu; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S; Chen, Ji
2012-07-01
The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2-3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4%) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p < 0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p < 0.01). Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI.
Sarikaya, Ismet
2015-01-01
Various PET studies, such as measurements of glucose, serotonin and oxygen metabolism, cerebral blood flow and receptor bindings are availabe for epilepsy. 18Fluoro-2-deoxyglucose (18F-FDG) PET imaging of brain glucose metabolism is a well established and widely available technique. Studies have demonstrated that the sensitivity of interictal FDG-PET is higher than interictal SPECT and similar to ictal SPECT for the lateralization and localization of epileptogenic foci in presurgical patients refractory to medical treatments who have noncontributory EEG and MRI. In addition to localizing epileptogenic focus, FDG-PET provide additional important information on the functional status of the rest of the brain. The main limitation of interictal FDG-PET is that it cannot precisely define the surgical margin as the area of hypometabolism usually extends beyond the epileptogenic zone. Various neurotransmitters (GABA, glutamate, opiates, serotonin, dopamine, acethylcholine, and adenosine) and receptor subtypes are involved in epilepsy. PET receptor imaging studies performed in limited centers help to understand the role of neurotransmitters in epileptogenesis, identify epileptic foci and investigate new treatment approaches. PET receptor imaging studies have demonstrated reduced 11C-flumazenil (GABAA-cBDZ) and 18F-MPPF (5-HT1A serotonin) and increased 11C-cerfentanil (mu opiate) and 11C-MeNTI (delta opiate) bindings in the area of seizure. 11C-flumazenil has been reported to be more sensitive than FDG-PET for identifying epileptic foci. The area of abnormality on GABAAcBDZ and opiate receptor images is usually smaller and more circumscribed than the area of hypometabolism on FDG images. Studies have demonstrated that 11C-alpha-methyl-L-tryptophan PET (to study synthesis of serotonin) can detect the epileptic focus within malformations of cortical development and helps in differentiating epileptogenic from non-epileptogenic tubers in patients with tuberous sclerosis complex. 15O-H2O PET was reported to have a similar sensitivity to FDG-PET in detecting epileptic foci. PMID:26550535
Primary postural instability: a cause of recurrent sudden falls in the elderly.
Djaldetti, R; Lorberboym, M; Melamed, E
2006-12-01
Elderly patients with recurrent falls are frequently diagnosed with an extrapyramidal syndrome. This study aims to characterise a distinct group of patients with recurrent falls and postural instability as a hallmark of the clinical examination. The study took place in the Movement Disorders Unit, Rabin Medical Center, Petah Tiqva, Israel among 26 patients with recurrent falls who had no clinical evidence of a neurodegenerative disease. Medical records, neurological examination and brain imaging studies were assessed. Falls in these patients were sudden, unprovoked, with no vertigo or loss of consciousness. All had postural instability with minimal or no abnormality on the neurological examination. Brain imaging showed diffuse ischaemic changes in 65%. [(123)I]-FPCIT SPECT with the dopamine transporter ligand, performed in five patients, was normal in all. Recurrent falls might be caused by a neurological syndrome that primarily affects balance control. The importance of identifying this disorder is its distinction from other parkinsonian syndromes causing falls.
2009-01-01
A 25-year-old male military veteran presented with diagnoses of post concussion syndrome and post traumatic stress disorder three years after loss of consciousness from an explosion in combat. The patient underwent single photon emission computed tomography brain blood flow imaging before and after a block of thirty-nine 1.5 atmospheres absolute hyperbaric oxygen treatments. The patient experienced a permanent marked improvement in his post-concussive symptoms, physical exam findings, and brain blood flow. In addition, he experienced a complete resolution of post-traumatic stress disorder symptoms. After treatment he became and has remained employed for eight consecutive months. This case suggests a novel treatment for the combined diagnoses of blast-induced post-concussion syndrome and post-traumatic stress disorder. PMID:19829822
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, D; Jung, J; Suh, T
2014-06-01
Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom.more » The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) and Future Planning (MSIP)(Grant No.200900420) and the Radiation Technology Research and Development program (Grant No.2013043498), Republic of Korea.« less
Yamada, Naoki; Kakuda, Wataru; Yamamoto, Kazuma; Momosaki, Ryo; Abo, Masahiro
2016-09-01
We clarified the safety, feasibility, and efficacy of atomoxetine administration combined with intensive speech therapy (ST) for patients with post-stroke aphasia. In addition, we investigated the effect of atomoxetine treatment on neural activity of surrounding lesioned brain areas. Four adult patients with motor-dominant aphasia and a history of left hemispheric stroke were studied. We have registered on the clinical trials database (ID: JMA-IIA00215). Daily atomoxetine administration of 40 mg was initiated two weeks before admission and raised to 80 mg 1 week before admission. During the subsequent 13-day hospitalization, administration of atomoxetine was raised to 120 mg and daily intensive ST (120 min/day, one-on-one training) was provided. Language function was assessed using the Japanese version of The Western Aphasia Battery (WAB) and the Token test two weeks prior to admission, on the day of admission, and at discharge. At two weeks prior to admission and at discharge, each patient's cortical blood flow was measured using (123)I-IMP-single photon emission computed tomography (SPECT). This protocol was successfully completed by all patients without any adverse effects. Four patients showed improved language function with the median of the Token Test increasing from 141 to 149, and the repetition score of WAB increasing from 88 to 99. In addition, cortical blood flow surrounding lesioned brain areas was found to increase following intervention in all patients. Atomoxetine administration and intensive ST were safe and feasible for post-stroke aphasia, suggesting their potential usefulness in the treatment of this patient population.
Coll, Claudia; González, Patricio; Massardo, Teresa; Sierralta, Paulina; Humeres, Pamela; Jofré, Josefina; Yovanovich, Jorge; Aramburú, Ivonne; Brugère, Solange; Chamorro, Hernán; Ramírez, Alfredo; Kunstmann, Sonia; López, Héctor
2002-03-01
The detection of viability after acute myocardial infarction is primordial to select the most appropriate therapy, to decrease cardiac events and abnormal remodeling. Thallium201 SPECT is one of the radionuclide techniques used to detect viability. To evaluate the use of Thallium201 rest-redistribution SPECT to detect myocardial viability in reperfused patients after a recent myocardial infarction. Forty one patients with up to of 24 days of evolution of a myocardial infarction were studied. All had angiographically demonstrated coronary artery disease and were subjected to a successful thrombolysis, angioplasty or bypass grafting. SPECT Thallium201 images were acquired at rest and after 4 h of redistribution. These results were compared with variations in wall motion score, studied at baseline and after 3 or 4 months with echocardiography. The sensitivity of rest-redistribution Thallium201 SPECT, to predict recovery of wall motion was 91% when patient analysis was performed and 79% when segmental analysis was done in the culprit region. The figures for specificity were 56 and 73% respectively. Rest-distribution Thallium201 SPECT has an excellent sensitivity to predict myocardial viability in recent myocardial infarction. The data obtained in this study is similar to that reported for chronic coronary artery disease.
Archer, Hilary A; Smailagic, Nadja; John, Christeena; Holmes, Robin B; Takwoingi, Yemisi; Coulthard, Elizabeth J; Cullum, Sarah
2015-06-23
In the UK, dementia affects 5% of the population aged over 65 years and 25% of those over 85 years. Frontotemporal dementia (FTD) represents one subtype and is thought to account for up to 16% of all degenerative dementias. Although the core of the diagnostic process in dementia rests firmly on clinical and cognitive assessments, a wide range of investigations are available to aid diagnosis.Regional cerebral blood flow (rCBF) single-photon emission computed tomography (SPECT) is an established clinical tool that uses an intravenously injected radiolabelled tracer to map blood flow in the brain. In FTD the characteristic pattern seen is hypoperfusion of the frontal and anterior temporal lobes. This pattern of blood flow is different to patterns seen in other subtypes of dementia and so can be used to differentiate FTD.It has been proposed that a diagnosis of FTD, (particularly early stage), should be made not only on the basis of clinical criteria but using a combination of other diagnostic findings, including rCBF SPECT. However, more extensive testing comes at a financial cost, and with a potential risk to patient safety and comfort. To determine the diagnostic accuracy of rCBF SPECT for diagnosing FTD in populations with suspected dementia in secondary/tertiary healthcare settings and in the differential diagnosis of FTD from other dementia subtypes. Our search strategy used two concepts: (a) the index test and (b) the condition of interest. We searched citation databases, including MEDLINE (Ovid SP), EMBASE (Ovid SP), BIOSIS (Ovid SP), Web of Science Core Collection (ISI Web of Science), PsycINFO (Ovid SP), CINAHL (EBSCOhost) and LILACS (Bireme), using structured search strategies appropriate for each database. In addition we searched specialised sources of diagnostic test accuracy studies and reviews including: MEDION (Universities of Maastricht and Leuven), DARE (Database of Abstracts of Reviews of Effects) and HTA (Health Technology Assessment) database.We requested a search of the Cochrane Register of Diagnostic Test Accuracy Studies and used the related articles feature in PubMed to search for additional studies. We tracked key studies in citation databases such as Science Citation Index and Scopus to ascertain any further relevant studies. We identified 'grey' literature, mainly in the form of conference abstracts, through the Web of Science Core Collection, including Conference Proceedings Citation Index and Embase. The most recent search for this review was run on the 1 June 2013.Following title and abstract screening of the search results, full-text papers were obtained for each potentially eligible study. These papers were then independently evaluated for inclusion or exclusion. We included both case-control and cohort (delayed verification of diagnosis) studies. Where studies used a case-control design we included all participants who had a clinical diagnosis of FTD or other dementia subtype using standard clinical diagnostic criteria. For cohort studies, we included studies where all participants with suspected dementia were administered rCBF SPECT at baseline. We excluded studies of participants from selected populations (e.g. post-stroke) and studies of participants with a secondary cause of cognitive impairment. Two review authors extracted information on study characteristics and data for the assessment of methodological quality and the investigation of heterogeneity. We assessed the methodological quality of each study using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool. We produced a narrative summary describing numbers of studies that were found to have high/low/unclear risk of bias as well as concerns regarding applicability. To produce 2 x 2 tables, we dichotomised the rCBF SPECT results (scan positive or negative for FTD) and cross-tabulated them against the results for the reference standard. These tables were then used to calculate the sensitivity and specificity of the index test. Meta-analysis was not performed due to the considerable between-study variation in clinical and methodological characteristics. Eleven studies (1117 participants) met our inclusion criteria. These consisted of six case-control studies, two retrospective cohort studies and three prospective cohort studies. Three studies used single-headed camera SPECT while the remaining eight used multiple-headed camera SPECT. Study design and methods varied widely. Overall, participant selection was not well described and the studies were judged as having either high or unclear risk of bias. Often the threshold used to define a positive SPECT result was not predefined and the results were reported with knowledge of the reference standard. Concerns regarding applicability of the studies to the review question were generally low across all three domains (participant selection, index test and reference standard).Sensitivities and specificities for differentiating FTD from non-FTD ranged from 0.73 to 1.00 and from 0.80 to 1.00, respectively, for the three multiple-headed camera studies. Sensitivities were lower for the two single-headed camera studies; one reported a sensitivity and specificity of 0.40 (95% confidence interval (CI) 0.05 to 0.85) and 0.95 (95% CI 0.90 to 0.98), respectively, and the other a sensitivity and specificity of 0.36 (95% CI 0.24 to 0.50) and 0.92 (95% CI 0.88 to 0.95), respectively.Eight of the 11 studies which used SPECT to differentiate FTD from Alzheimer's disease used multiple-headed camera SPECT. Of these studies, five used a case-control design and reported sensitivities of between 0.52 and 1.00, and specificities of between 0.41 and 0.86. The remaining three studies used a cohort design and reported sensitivities of between 0.73 and 1.00, and specificities of between 0.94 and 1.00. The three studies that used single-headed camera SPECT reported sensitivities of between 0.40 and 0.80, and specificities of between 0.61 and 0.97. At present, we would not recommend the routine use of rCBF SPECT in clinical practice because there is insufficient evidence from the available literature to support this.Further research into the use of rCBF SPECT for differentiating FTD from other dementias is required. In particular, protocols should be standardised, study populations should be well described, the threshold for 'abnormal' scans predefined and clear details given on how scans are analysed. More prospective cohort studies that verify the presence or absence of FTD during a period of follow up should be undertaken.
Peretti, Charles-Siegfried; Peretti, Charles Roger; Kozora, Elizabeth; Papathanassiou, Dimitri; Chouinard, Virginie-Anne; Chouinard, Guy
2012-01-01
Systemic lupus erythematosus (SLE) is known to induce psychiatric disorders, from psychoses to maladaptive coping. Brain autoantibodies were proposed to explain SLE neuropsychiatric disorders and found to be elevated before the onset of clinical symptoms. We assessed cognition in Caucasian SLE women with elevated autoantibodies without overt neuropsychiatric syndromes, in conjunction with single photon emission computerized tomography (SPECT). 31 women meeting SLE criteria of the American College of Rheumatology (ACR) were included. Patients who met the ACR neuropsychiatric definition were excluded. Matched controls were 23 healthy women from the Champagne-Ardenne region, France. Participants completed neuropsychological and autoantibodies measurements, and 19 completed SPECT. 61% (19/31) of women with SLE and 53% (9/17) of those with normal SPECT had significant global cognitive impairment defined as 4 T-scores <40 in cognitive tests, compared to 0% (0/23) of controls. SLE women also had significantly greater cognitive dysfunction (mean T-score) on the Wechsler Adult Intelligence Scale (WAIS) visual backspan, Trail Making Test A and B, WAIS Digit Symbol Substitution Test and Stroop Interference, compared to controls. Elevated antinuclear antibody correlated with impairment in the WAIS visual span, WAIS visual backspan, and cancellation task; elevated anti-double-stranded DNA antibody and anticardiolipin correlated respectively with impairment in the Trail Making Test A and WAIS auditive backspan. Two SLE women had abnormal SPECT. A high prevalence of cognitive deficits was found in Caucasian SLE women compared to normal women, which included impairment in cognitive domains important for daily activities. Elevated autoantibodies tended to correlate with cognitive dysfunction. Copyright © 2012 S. Karger AG, Basel.
Gaibazzi, Nicola; Siniscalchi, Carmine; Porter, Thomas R; Crocamo, Antonio; Basaglia, Manuela; Boffetti, Francesca; Lorenzoni, Valentina
2018-06-01
We compared the long-term outcome of subjects without prior cardiac disease who underwent either vasodilator single-photon emission computed tomography (SPECT) or contrast stress-echocardiography (cSE) for suspected coronary artery disease (CAD). Subjects who underwent vasodilator SPECT or cSE between 2008 and 2012 for suspected CAD but no history of cardiac disease were included. We retrospectively compared the association of each method with combined all-cause death and nonfatal myocardial infarction and their positive predictive value (PPV) for angiographically obstructive CAD. A total of 1,387 subjects were selected: 497 who underwent SPECT and 890 who underwent cSE. During 4 years of mean follow-up there were 78 hard events in the cSE group and 51 in the SPECT group. Event-free survival in subjects testing positive for ischemia, either with SPECT or cSE, was significantly worse both in the overall population and after propensity matching patients. In multivariable analyses, vasodilator SPECT or cSE demonstrated significant stratification capability with an ischemic test doubling (SPECT) or more than doubling (cSE) the risk of future hard events independently from other variables. PPV of vasodilator SPECT for the diagnosis of obstructive CAD was inferior to vasodilator cSE (PPV = 63% vs 89%, respectively; P < .001). Our study suggests that the associations of vasodilator SPECT or cSE with outcome are comparable, with cSE demonstrating better diagnostic PPV for CAD. The absence of ionizing radiation and anticipated lower costs from higher PPV suggest that vasodilator cSE is a valid alternative to vasodilator SPECT as a gatekeeper in subjects without a prior history of CAD. Copyright © 2018 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Okuda, Koichi; Nakajima, Kenichi; Matsuo, Shinro; Kondo, Chisato; Sarai, Masayoshi; Horiguchi, Yoriko; Konishi, Takahiro; Onoguchi, Masahisa; Shimizu, Takeshi; Kinuya, Seigo
2017-01-03
Image acquisition by short-time single-photon emission-computed tomography (SPECT) has been made feasible by IQ·SPECT. The aim of this study was to generate normal databases (NDBs) of thallium-201 ( 201 Tl) myocardial perfusion imaging for IQ·SPECT, and characterize myocardial perfusion distribution. We retrospectively enrolled 159 patients with a low likelihood of cardiac diseases from four hospitals in Japan. All patients underwent short-time 201 Tl myocardial perfusion IQ·SPECT with or without attenuation and scatter correction (ACSC) in either supine or prone position. The mean myocardial counts were calculated using 17-segment polar maps. Three NDBs were derived from supine and prone images as well as supine images with ACSC. Differences between the supine and prone positions were observed in the uncorrected sex-segregated NDBs in the mid-inferolateral counts (p ≤ 0.016 for males and p ≤ 0.002 for females). Differences between IQ·SPECT and conventional SPECT were also observed in the mid-anterior, inferolateral, and apical lateral counts (p ≤ 0.009 for males and p ≤ 0.003 for females). Apical low counts attributed to myocardial thinning were observed in the apical anterior and apex segments in the supine IQ·SPECT NDB with ACSC. There were significant differences between uncorrected supine and prone NDBs, between uncorrected supine NDB and supine NDB with ACSC, and between uncorrected supine NDB and conventional SPECT NDB. Understanding the pattern of normal distribution in IQ-SPECT short-time acquisitions with and without ACSC will be helpful for interpretation of imaging findings in patients with coronary artery disease (CAD) or low likelihood of CAD and the NDBs will aid in quantitative analysis.
Nishimura, Masato; Hashimoto, Tetsuya; Kobayashi, Hiroyuki; Fukuda, Toyofumi; Okino, Koji; Yamamoto, Noriyuki; Fujita, Hiroshi; Inoue Tsunehiko Nishimura, Naoto; Ono, Toshihiko
2004-08-01
Coronary artery disease contributes significantly to mortality in end-stage renal disease (ESRD) patients. Single-photon emission computed tomography (SPECT) using an iodinated fatty acid analogue, iodine-123-methyl iodophenylpentadecanoic acid (123I-BMIPP), can assess fatty acid metabolism in the myocardium. We investigated the ability of 123I-BMIPP SPECT to detect coronary artery disease in hemodialysis patients compared with 201thallium chloride (201Tl) SPECT. We prospectively studied 130 ESRD patients undergoing hemodialysis for a mean of 88.6 months (male/female, 77/53; mean age, 63.8 years). Dual SPECT using 123I-BMIPP and 201Tl was performed, followed by coronary angiography. SPECT findings were graded in 17 segments on a five-point scale (0, normal uptake; 4, none) and assessed as a summed score. By coronary angiography, 71.5% of patients (93/130) had significant coronary stenosis (> or =75%), and five patients showed coronary spasm without coronary stenosis. When a BMIPP summed score of 6 or more was defined as abnormal, sensitivity, specificity, and accuracy for detecting coronary artery disease by BMIPP SPECT were 98.0%, 65.6%, and 90.0%, respectively; in contrast, these parameters for detecting coronary artery disease by Tl SPECT were 84.7%, 46.9%, and 75.0%, respectively, when a Tl summed score of 1 or more was defined as abnormal. In receiver operating characteristic analysis, the area under the curve was 0.895 in BMIPP and 0.727 in Tl SPECT, respectively. Resting BMIPP SPECT is superior to Tl SPECT for detecting coronary lesions, and provides safe screening for coronary artery disease among maintenance hemodialysis patients.
NASA Astrophysics Data System (ADS)
Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost
2003-01-01
This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odano, I.; Ohkubo, M.; Takahashi, N.
1994-05-01
The estimate the distribution volume (Vd) of Iodine-123 IMP brain SPECT, we developed a new graphic plot, the rate constant square method, which was useful to predict an increase of rCBF in the ischemic lesions caused by bypass surgery. The tracer kinetics of IMP was assumed to be a 2-compartment model as follows: dCb(t)/dt=K1Ca(t)-k2Cb(t), where K1 is rCBF(ml/g/min), k2 is the washout constant(/min), and K1/k2 is defined as distribution volume (Vd:ml/g). When input function Ca(t) is prepared, we can determine the relationship between K1, Delayed/Early ratio and Vd on the graph. The method was applied to 13 patients with chronicmore » cerebral infarction. Regional CBF was measured by the microsphere model and early and delayed scans were performed. In the normal area, K1 and Delayed/Early ratio were 0.5 ml/g/min and 1.0, respectively, then Vd (=31.5 ml/g) was obtained on the graph. 30.0 ml/g, the value in the infarct area was reduced. After bypass surgery undertaken on five patients, we observed a significant relationship between % increase of rCBF in the lesions and values of Vd. Since Vd reflects the extent of IMP retention in the brain tissue, we can predict an increase of rCBF by the bypass operation using this method.« less
Grošev, Darko; Gregov, Marin; Wolfl, Miroslava Radić; Krstonošić, Branislav; Debeljuh, Dea Dundara
2018-06-07
To make quantitative methods of nuclear medicine more available, four centres in Croatia participated in the national intercomparison study, following the materials and methods used in the previous international study organized by the International Atomic Energy Agency (IAEA). The study task was to calculate the activities of four Ba sources (T1/2=10.54 years; Eγ=356 keV) using planar and single-photon emission computed tomography (SPECT) or SPECT/CT acquisitions of the sources inside a water-filled cylindrical phantom. The sources were previously calibrated by the US National Institute of Standards and Technology. Triple-energy window was utilized for scatter correction. Planar studies were corrected for attenuation correction (AC) using the conjugate-view method. For SPECT/CT studies, data from X-ray computed tomography were used for attenuation correction (CT-AC), whereas for SPECT-only acquisition, the Chang-AC method was applied. Using the lessons learned from the IAEA study, data were acquired according to the harmonized data acquisition protocol, and the acquired images were then processed using centralized data analysis. The accuracy of the activity quantification was evaluated as the ratio R between the calculated activity and the value obtained from National Institute of Standards and Technology. For planar studies, R=1.06±0.08; for SPECT/CT study using CT-AC, R=1.00±0.08; and for Chang-AC, R=0.89±0.12. The results are in accordance with those obtained within the larger IAEA study and confirm that SPECT/CT method is the most appropriate for accurate activity quantification.
Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H
2017-08-03
SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image analysis also produced a similar accuracy, sensitivity, and specificity. CFR was normal in 6, each with CAD on SCA with an overall accuracy of 91%, sensitivity of 80%, and specificity of 100%. The mean CFR was significantly lower for SCA detected abnormal than for normal patients (3.86±1.06 vs 1.94±0. 0.67, P < 0.001). The visually assessed image findings in static and dynamic SPECT are subjective, and may not reflect direct physiologic measures of coronary lesion based on SCA. The CFR measured with dynamic SPECT is fully objective, with better sensitivity and specificity, available only with the data generated from the dynamic SPECT method.
Schaap, Jeroen; Kauling, Robert M; Boekholdt, S Matthijs; Post, Martijn C; Van der Heyden, Jan A; de Kroon, Thom L; van Es, H Wouter; Rensing, Benno J W M; Verzijlbergen, J Fred
2013-03-01
Coronary calcium scoring (CCS) adds to the diagnostic performance of myocardial perfusion single-photon emission computed tomography (SPECT) to assess the presence of significant coronary artery disease (CAD). Patients with a high pre-test likelihood are expected to have a high CCS which potentially could enhance the diagnostic performance of myocardial perfusion SPECT in this specific patient group. We evaluated the added value of CCS to SPECT in the diagnosis of significant CAD in patients with an intermediate to high pre-test likelihood. In total, 129 patients (mean age 62.7 ± 9.7 years, 65 % male) with stable anginal complaints and intermediate to high pre-test likelihood of CAD (median 87 %, range 22-95) were prospectively included in this study. All patients received SPECT and CCS imaging preceding invasive coronary angiography (CA). Fractional flow reserve (FFR) measurements were acquired from patients with angiographically estimated 50-95 % obstructive CAD. For SPECT a SSS > 3 was defined significant CAD. For CCS the optimal cut-off value for significant CAD was determined by ROC curve analysis. The reference standard for significant CAD was a FFR of <0.80 acquired by CA. Significant CAD was demonstrated in 64 patients (49.6 %). Optimal CCS cut-off value for significant CAD was >182.5. ROC curve analysis for prediction of the presence of significant CAD for SPECT, CCS and the combination of CCS and SPECT resulted in an area under the curve (AUC) of 0.88 (95 % CI 81-94), 0.75 (95 % CI 66-83 %) and 0.92 (95 % CI 87-97 %) respectively. The difference of the AUC between SPECT and the combination of CCS and SPECT was 0.05 (P = 0.12). The addition of CCS did not significantly improve the diagnostic performance of SPECT in the evaluation of patients with a predominantly high pre-test likelihood of CAD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Tokihiro, E-mail: toyamamoto@ucdavis.edu; Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California; Kabus, Sven
Purpose: 4-dimensional computed tomography (4D-CT)-based pulmonary ventilation imaging is an emerging functional imaging modality. The purpose of this study was to investigate the physiological significance of 4D-CT ventilation imaging by comparison with pulmonary function test (PFT) measurements and single-photon emission CT (SPECT) ventilation images, which are the clinical references for global and regional lung function, respectively. Methods and Materials: In an institutional review board–approved prospective clinical trial, 4D-CT imaging and PFT and/or SPECT ventilation imaging were performed in thoracic cancer patients. Regional ventilation (V{sub 4DCT}) was calculated by deformable image registration of 4D-CT images and quantitative analysis for regional volumemore » change. V{sub 4DCT} defect parameters were compared with the PFT measurements (forced expiratory volume in 1 second (FEV{sub 1}; % predicted) and FEV{sub 1}/forced vital capacity (FVC; %). V{sub 4DCT} was also compared with SPECT ventilation (V{sub SPECT}) to (1) test whether V{sub 4DCT} in V{sub SPECT} defect regions is significantly lower than in nondefect regions by using the 2-tailed t test; (2) to quantify the spatial overlap between V{sub 4DCT} and V{sub SPECT} defect regions with Dice similarity coefficient (DSC); and (3) to test ventral-to-dorsal gradients by using the 2-tailed t test. Results: Of 21 patients enrolled in the study, 18 patients for whom 4D-CT and either PFT or SPECT were acquired were included in the analysis. V{sub 4DCT} defect parameters were found to have significant, moderate correlations with PFT measurements. For example, V{sub 4DCT}{sup HU} defect volume increased significantly with decreasing FEV{sub 1}/FVC (R=−0.65, P<.01). V{sub 4DCT} in V{sub SPECT} defect regions was significantly lower than in nondefect regions (mean V{sub 4DCT}{sup HU} 0.049 vs 0.076, P<.01). The average DSCs for the spatial overlap with SPECT ventilation defect regions were only moderate (V{sub 4DCT}{sup HU}0.39 ± 0.11). Furthermore, ventral-to-dorsal gradients of V{sub 4DCT} were strong (V{sub 4DCT}{sup HU} R{sup 2} = 0.69, P=.08), which was similar to V{sub SPECT} (R{sup 2} = 0.96, P<.01). Conclusions: An 18-patient study demonstrated significant correlations between 4D-CT ventilation and PFT measurements as well as SPECT ventilation, providing evidence toward the validation of 4D-CT ventilation imaging.« less
Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition.
Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Muftuler, L Tugan; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan
2010-03-21
In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B(0) field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.
Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition
NASA Astrophysics Data System (ADS)
Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Tugan Muftuler, L.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan
2010-03-01
In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B0 field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.
Chen, Chun; Miao, Changqing; Feng, Jianlin; Zhou, Yanli; Cao, Kejiang; Lloyd, Michael S.; Chen, Ji
2013-01-01
Purpose The purpose of this study was to evaluate left ventricular (LV) mechanical dyssynchrony in patients with Wolff-Parkinson-White (WPW) syndrome pre- and post-radiofrequency catheter ablation (RFA) using phase analysis of gated single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). Methods Forty-five WPW patients were enrolled and had gated SPECT MPI pre- and 2–3 days post-RFA. Electrophysiological study (EPS) was used to locate accessory pathways (APs) and categorize the patients according to the AP locations (septal, left and right free wall). Electrocardiography (ECG) was performed pre- and post-RFA to confirm successful elimination of the APs. Phase analysis of gated SPECT MPI was used to assess LV dyssynchrony pre- and post-RFA. Results Among the 45 patients, 3 had gating errors, and thus 42 had SPECT phase analysis. Twenty-two patients (52.4 %) had baseline LV dyssynchrony. Baseline LV dyssynchrony was more prominent in the patients with septal APs than in the patients with left or right APs (p<0.05). RFA improved LV synchrony in the entire cohort and in the patients with septal APs (p<0.01). Conclusion Phase analysis of gated SPECT MPI demonstrated that LV mechanical dyssynchrony can be present in patients with WPW syndrome. Septal APs result in the greatest degree of LV mechanical dyssynchrony and afford the most benefit after RFA. This study supports further investigation in the relationship between electrical and mechanical activation using EPS and phase analysis of gated SPECT MPI. PMID:22532253
Feichtinger, Michael; Eder, Hans; Holl, Alexander; Körner, Eva; Zmugg, Gerda; Aigner, Reingard; Fazekas, Franz; Ott, Erwin
2007-07-01
In the presurgical evaluation of patients with partial epilepsy, the ictal single photon emission computed tomography (SPECT) is a useful noninvasive diagnostic tool for seizure focus localization. To achieve optimal SPECT scan quality, ictal tracer injection should be carried out as quickly as possible after the seizure onset and under highest safety conditions possible. Compared to the commonly used manual injection, an automatic administration of the radioactive tracer may provide higher quality standards for this procedure. In this study, therefore, we retrospectively analyzed efficiency and safety of an automatic injection system for ictal SPECT tracer application. Over a 31-month period, 26 patients underwent ictal SPECT by use of an automatic remote-controlled injection pump originally designed for CT-contrast agent application. Various factors were reviewed, including latency of ictal injection, radiation safety parameters, and ictal seizure onset localizing value. Times between seizure onset and tracer injection ranged between 3 and 48 s. In 21 of 26 patients ictal SPECT supported the localization of the epileptogenic focus in the course of the presurgical evaluation. In all cases ictal SPECT tracer injection was performed with a high degree of safety to patients and staff. Ictal SPECT by use of a remote-controlled CT-contrast agent injection system provides a high scan quality and is a safe and confirmatory presurgical evaluation technique in the epilepsy-monitoring unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krengli, Marco; Ballare, Andrea; Cannillo, Barbara
2006-11-15
Purpose: This study aims to investigate the in vivo drainage of lymphatic spread by using the sentinel node (SN) technique and single-photon emission computed tomography (SPECT)-computed tomography (CT) image fusion, and to analyze the impact of such information on conformal pelvic irradiation. Methods and Materials: Twenty-three prostate cancer patients, candidates for radical prostatectomy already included in a trial studying the SN technique, were enrolled. CT and SPECT images were obtained after intraprostate injection of 115 MBq of {sup 99m}Tc-nanocolloid, allowing identification of SN and other pelvic lymph nodes. Target and nontarget structures, including lymph nodes identified by SPECT, were drawnmore » on SPECT-CT fusion images. A three-dimensional conformal treatment plan was performed for each patient. Results: Single-photon emission computed tomography lymph nodal uptake was detected in 20 of 23 cases (87%). The SN was inside the pelvic clinical target volume (CTV{sub 2}) in 16 of 20 cases (80%) and received no less than the prescribed dose in 17 of 20 cases (85%). The most frequent locations of SN outside the CTV{sub 2} were the common iliac and presacral lymph nodes. Sixteen of the 32 other lymph nodes (50%) identified by SPECT were found outside the CTV{sub 2}. Overall, the SN and other intrapelvic lymph nodes identified by SPECT were not included in the CTV{sub 2} in 5 of 20 (25%) patients. Conclusions: The study of lymphatic drainage can contribute to a better knowledge of the in vivo potential pattern of lymph node metastasis in prostate cancer and can lead to a modification of treatment volume with consequent optimization of pelvic irradiation.« less
Hemimegalencephaly: Clinical, EEG, neuroimaging, and IMP-SPECT correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konkol, R.J.; Maister, B.H.; Wells, R.G.
1990-11-01
Iofetamine-single photon emission computed tomography (IMP-SPECT) was performed on 2 girls (5 1/2 and 6 years of age) with histories of intractable seizures, developmental delay, and unilateral hemiparesis secondary to hemimegalencephaly. Electroencephalography (EEG) revealed frequent focal discharges in 1 patient, while a nearly continuous burst suppression pattern over the malformed hemisphere was recorded in the other. IMP-SPECT demonstrated a good correlation with neuroimaging studies. In spite of the different EEG patterns, which had been proposed to predict contrasting clinical outcomes, both IMP-SPECT scans disclosed a similar decrease in tracer uptake in the malformed hemisphere. These results are consistent with themore » pattern of decreased tracer uptake found in other interictal studies of focal seizures without cerebral malformations. In view of recent recommendations for hemispherectomy in these patients, we suggest that the IMP-SPECT scan be used to compliment EEG as a method to define the extent of abnormality which may be more relevant to long-term prognosis than EEG alone.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L; Duke University Medical Center, Durham, NC; Fudan University Shanghai Cancer Center, Shanghai
Purpose: To investigate prostate imaging onboard radiation therapy machines using a novel robotic, 49-pinhole Single Photon Emission Computed Tomography (SPECT) system. Methods: Computer-simulation studies were performed for region-of-interest (ROI) imaging using a 49-pinhole SPECT collimator and for broad cross-section imaging using a parallel-hole SPECT collimator. A male XCAT phantom was computersimulated in supine position with one 12mm-diameter tumor added in the prostate. A treatment couch was added to the phantom. Four-minute detector trajectories for imaging a 7cm-diameter-sphere ROI encompassing the tumor were investigated with different parameters, including pinhole focal length, pinhole diameter and trajectory starting angle. Pseudo-random Poisson noise wasmore » included in the simulated projection data, and SPECT images were reconstructed by OSEM with 4 subsets and up to 10 iterations. Images were evaluated by visual inspection, profiles, and Root-Mean- Square-Error (RMSE). Results: The tumor was well visualized above background by the 49-pinhole SPECT system with different pinhole parameters while it was not visible with parallel-hole SPECT imaging. Minimum RMSEs were 0.30 for 49-pinhole imaging and 0.41 for parallelhole imaging. For parallel-hole imaging, the detector trajectory from rightto- left yielded slightly lower RMSEs than that from posterior to anterior. For 49-pinhole imaging, near-minimum RMSEs were maintained over a broader range of OSEM iterations with a 5mm pinhole diameter and 21cm focal length versus a 2mm diameter pinhole and 18cm focal length. The detector with 21cm pinhole focal length had the shortest rotation radius averaged over the trajectory. Conclusion: On-board functional and molecular prostate imaging may be feasible in 4-minute scan times by robotic SPECT. A 49-pinhole SPECT system could improve such imaging as compared to broadcross-section parallel-hole collimated SPECT imaging. Multi-pinhole imaging can be improved by considering pinhole focal length, pinhole diameter, and trajectory starting angle. The project is supported by the NIH grant 5R21-CA156390.« less
Lenoir, Laurence; Edeline, Julien; Rolland, Yann; Pracht, Marc; Raoul, Jean-Luc; Ardisson, Valérie; Bourguet, Patrick; Clément, Bruno; Boucher, Eveline; Garin, Etienne
2012-05-01
Identifying gastroduodenal uptake of (99m)Tc-macroaggregated albumin (MAA), which is associated with an increased risk of ulcer disease, is a crucial part of the therapeutic management of patients undergoing radioembolization for liver tumours. Given this context, the use of MAA single photon emission computed tomography (SPECT)/CT may be essential, but the procedure has still not been thoroughly evaluated. The aim of this retrospective study was to determine the effectiveness of MAA SPECT/CT in identifying digestive extrahepatic uptake, while determining potential diagnostic pitfalls. Overall, 139 MAA SPECT/CT scans were performed on 103 patients with different hepatic tumour types. Patients were followed up for at least 6 months according to standard requirements. Digestive, or digestive-like, uptake other than free pertechnetate was identified in 5.7% of cases using planar imaging and in 36.6% of cases using SPECT/CT. Uptake sites identified by SPECT/CT included the gastroduodenal region (3.6%), gall bladder (12.2%), portal vein thrombosis (6.5%), hepatic artery (6.5%), coil embolization site (2.1%) as well as falciform artery (5.0%). For 2.1% of explorations, a coregistration error between SPECT and CT imaging could have led to a false diagnosis by erroneously attributing an uptake site to the stomach or gall bladder, when the uptake actually occurred in the liver. SPECT/CT is more efficacious than planar imaging in identifying digestive extrahepatic uptake sites, with extrahepatic uptake observed in one third of scans using the former procedure. However, more than half of the uptake sites in our study were vascular in nature, without therapeutic implications. The risk of coregistration errors must also be kept in mind.
Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo
2003-06-01
Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.
Radiopharmaceuticals for SPECT cancer detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernov, V. I., E-mail: chernov@oncology.tomsk.ru; Medvedeva, A. A., E-mail: tickayaAA@oncology.tomsk.ru; Zelchan, R. V., E-mail: r.zelchan@yandex.ru
2016-08-02
The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with {sup 199}Tl and {sup 99}mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal {sup 199}Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of {sup 199}Tlmore » SPECT. In the breast cancer patients, the increased {sup 199}Tl uptake in the breast was visualized in 94.8% patients, {sup 99m}Tc-MIBI—in 93.4% patients. The increased {sup 199}Tl uptake in axillary lymph nodes was detected in 60% patients, and {sup 99m}Tc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI was 95%. The {sup 199}Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the {sup 99m}Tc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI can be used as one of the additional imaging methods in detection of tumors.« less
Nielsen, Lene H; Ortner, Nino; Nørgaard, Bjarne L; Achenbach, Stephan; Leipsic, Jonathon; Abdulla, Jawdat
2014-09-01
To systematically review and perform a meta-analysis of the diagnostic accuracy and post-test outcomes of conventional exercise electrocardiography (XECG) and single-photon emission computed tomography (SPECT) compared with coronary computed tomography angiography (coronary CTA) in patients suspected of stable coronary artery disease (CAD). We systematically searched for studies published from January 2002 to February 2013 examining the diagnostic accuracy (defined as at least ≥50% luminal obstruction on invasive coronary angiography) and outcomes of coronary CTA (≥16 slice) in comparison with XECG and SPECT. The search revealed 11 eligible studies (N = 1575) comparing the diagnostic accuracy and 7 studies (N = 216.603) the outcomes of coronary CTA vs. XECG or/and SPECT. The per-patient sensitivity [95% confidence interval (95% CI)] to identify significant CAD was 98% (93-99%) for coronary CTA vs. 67% (54-78%) (P < 0.001) for XECG and 99% (96-100%) vs. 73% (59-83%) (P = 0.001) for SPECT. The specificity (95% CI) of coronary CTA was 82% (63-93%) vs. 46% (30-64%) (P < 0.001) for XECG and 71% (60-80%) vs. 48% (31-64%) (P = 0.14) for SPECT. The odds ratio (OR) of downstream test utilization (DTU) for coronary CTA vs. XECG/SPECT was 1.38 (1.33-1.43, P < 0.001), for revascularization 2.63 (2.50-2.77, P < 0.001), for non-fatal myocardial infarction 0.53 (0.39-0.72, P < 0.001), and for all-cause mortality 1.01 (0.87-1.18, P = 0.87). The up-front diagnostic performance of coronary CTA is higher than of XECG and SPECT. When compared with XECG/SPECT testing, coronary CTA testing is associated with increased DTU and coronary revascularization. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Araz, Mine; Çayir, Derya; Erdoğan, Mehmet; Uçan, Bekir; Çakal, Erman
2017-02-01
The aim of this study was to investigate the effects of thyroid diseases and regularly used medications on the sensitivity of Tc-99m methoxyisobutylisonitrile (MIBI) dual-phase parathyroid single photon emission computed tomography (SPECT) and to define indicatives of the result of the study. Overall, 218 primary hyperparathyroidism patients (190 women, 28 men, mean age: 57±14 years) with thyroid-parathyroid ultrasonography and Tc-99m MIBI dual-phase parathyroid SPECT were retrospectively enrolled. Patients were divided as follows: a positive SPECT group [119 (54.6%) patients] and a negative SPECT group [99 (45.4%) patients]. The effects of thyroid diseases and use of calcium channel blockers, β-blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, oral antidiabetics, thyroid hormone preparates, nonsteroidal anti-inflammatory drugs, and proton pump inhibitors on the sensitivity of Tc-99m MIBI dual-phase parathyroid SPECT were investigated. The frequency of NSAID usage was higher in the negative scan group (P<0.001). No significant difference was detected in terms of coexisting thyroid disease or usage of other medications. Overall sensitivity, specificity, positive, and negative predictive value of Tc-99m MIBI dual-phase parathyroid SPECT were calculated to be 89.6, 92.5, 94.1, and 86.9%. The sensitivity was low only in nonsteroidal anti-inflammatory drug users (75.6%) compared with nonusers (96.5%). Logistic regression showed that ultrasonography was indicative of a positive scan and the possibility of a negative result was increased by regular usage of nonsteroid anti-inflammatory drugs (odds ratio: 0.262, confidence interval: 0.128-0.538; P<0.001) CONCLUSION: Among various drug groups, NSAIDs may decrease the sensitivity of Tc-99m MIBI SPECT and, provided that these novel data are supported by other studies, patient preparation may be modified to stop NSAIDs before Tc-99m MIBI dual-phase parathyroid SPECT.
Computer-assisted detection of epileptiform focuses on SPECT images
NASA Astrophysics Data System (ADS)
Grzegorczyk, Dawid; Dunin-Wąsowicz, Dorota; Mulawka, Jan J.
2010-09-01
Epilepsy is a common nervous system disease often related to consciousness disturbances and muscular spasm which affects about 1% of the human population. Despite major technological advances done in medicine in the last years there was no sufficient progress towards overcoming it. Application of advanced statistical methods and computer image analysis offers the hope for accurate detection and later removal of an epileptiform focuses which are the cause of some types of epilepsy. The aim of this work was to create a computer system that would help to find and diagnose disorders of blood circulation in the brain This may be helpful for the diagnosis of the epileptic seizures onset in the brain.
Excessive daytime sleepiness in Parkinson disease: a SPECT study.
Matsui, Hideaki; Nishinaka, Kazuto; Oda, Masaya; Hara, Narihiro; Komatsu, Kenichi; Kubori, Tamotsu; Udaka, Fukashi
2006-07-01
The underlying pathologic mechanism of excessive daytime sleepiness (EDS) in Parkinson disease and the relative contributions of brain function to this process are poorly understood. We compared brain perfusion images between patients with Parkinson disease and EDS and those without EDS using n-isopropyl-p-1231 iodoamphetamine single photon emission computed tomography. Clinical study. Sumitomo Hospital. Thirteen patients with Parkinson disease with EDS (EDS group) and 27 patients with Parkinson disease without EDS (no-EDS group) were studied. Whether or not each case had EDS was determined according to the response to the Epworth Sleepiness Scale: patients with an Epworth Sleepiness Scale score > or = 10 were included in the EDS group, and patients with an Epworth Sleepiness Scale score < or = 9 were included in the no-EDS group. There were significant hypoperfusions in the left parietal and temporal association cortex in the EDS group. In the multivariable logistic regression model, attention and decreased regional cerebral blood flow of the left parietal association cortex and right caudate and increased regional cerebral blood flow of the right thalamus were the independent and significant factors. The cortical hypofunction relative to hyperfunction of the brain stem may relate to EDS in Parkinson disease. This is the first imaging study about EDS in Parkinson disease, and further studies are required.
Waelbers, Tim; Polis, Ingeborgh; Vermeire, Simon; Dobbeleir, André; Eersels, Jos; De Spiegeleer, Bart; Audenaert, Kurt; Slegers, Guido; Peremans, Kathelijne
2013-08-01
Subanesthetic doses of ketamine can be used as a rapid-acting antidepressant in patients with treatment-resistant depression. Therefore, the brain kinetics of (123)I-5-I-R91150 (4-amino-N-[1-[3-(4-fluorophenyl)propyl]-4-methylpiperidin-4-yl]-5-iodo-2-methoxybenzamide) and the influence of ketamine on the postsynaptic serotonin-2A receptor (5-hydroxytryptamine-2A, or 5-HT2A) status were investigated in cats using micro-SPECT. This study was conducted on 6 cats using the radioligand (123)I-5-I-R91150, a 5-HT2A receptor antagonist, as the imaging probe. Anesthesia was induced and maintained with a continuous-rate infusion of propofol (8.4 ± 1.2 mg kg(-1) followed by 0.22 mg kg(-1) min(-1)) 75 min after tracer administration, and acquisition of the first image began 15 min after induction of anesthesia. After this first acquisition, propofol (0.22 mg kg(-1) min(-1)) was combined with ketamine (5 mg kg(-1) followed by 0.023 mg kg(-1) min(-1)), and the second acquisition began 15 min later. Semiquantification, with the cerebellum as a reference region, was performed to calculate the 5-HT2A receptor binding indices (parameter for available receptor density) in the frontal and temporal cortices. The binding indices were analyzed with Wilcoxon signed ranks statistics. The addition of ketamine to the propofol continuous-rate infusion resulted in decreased binding indices in the right frontal cortex (1.25 ± 0.22 vs. 1.45 ± 0.16; P = 0.028), left frontal cortex (1.34 ± 0.15 vs. 1.49 ± 0.10; P = 0.028), right temporal cortex (1.30 ± 0.17 vs. 1.45 ± 0.09; P = 0.046), and left temporal cortex (1.41 ± 0.20 vs. 1.52 ± 0.20; P = 0.046). This study showed that cats can be used as an animal model for studying alterations of the 5-HT2A receptor status with (123)I-5-I-R91150 micro-SPECT. Furthermore, an interaction between ketamine and the 5-HT2A receptors resulting in decreased binding of (123)I-5-I-R91150 in the frontal and temporal cortices was demonstrated. Whether the decreased radioligand binding resulted from a direct competition between ketamine and (123)I-5-I-R91150 or from a decreased affinity of the 5-HT2A receptor caused by ketamine remains to be elucidated.
Lee, Grace S; McKenzie, Travis J; Mullan, Brian P; Farley, David R; Thompson, Geoffrey B; Richards, Melanie L
2016-03-01
Focused parathyroidectomy in primary hyperparathyroidism (1°HPT) is possible with accurate preoperative localization and intraoperative PTH monitoring (IOPTH). The added benefit of multimodal imaging techniques for operative success is unknown. Patients with 1°HPT, who underwent parathyroidectomy in 2012-2014 at a single institution, were retrospectively reviewed. Only the patients who underwent the standardized multimodal imaging workup consisting of (123)I/(99)Tc-sestamibi subtraction scintigraphy, SPECT, and SPECT/CT were assessed. Of 360 patients who were identified, a curative operation was performed in 96%, using pre-operative imaging and IOPTH. Imaging analysis showed that (123)I/(99)Tc-sestamibi had a sensitivity of 86% (95% CI 82-90%), positive predictive value (PPV) 93%, and accuracy 81%, based on correct lateralization. SPECT had a sensitivity of 77% (95% CI 72-82%), PPV 92% and accuracy 72%. SPECT/CT had a sensitivity of 75% (95% CI 70-80%), PPV of 94%, and accuracy 71%. There were 3 of 45 (7%) patients with negative sestamibi imaging that had an accurate SPECT and SPECT/CT. Of 312 patients (87%) with positive uptake on sestamibi (93% true positive, 7% false positive), concordant findings were present in 86% SPECT and 84% SPECT/CT. In cases where imaging modalities were discordant, but at least one method was true-positive, (123)I/(99)Tc-sestamibi was significantly better than both SPECT and SPECT/CT (p < 0.001). The inclusion of SPECT and SPECT/CT in 1°HPT imaging protocol increases patient cost up to 2.4-fold. (123)I/(99)Tc-sestamibi subtraction imaging is highly sensitive for preoperative localization in 1°HPT. SPECT and SPECT/CT are commonly concordant with (123)I/(99)Tc-sestamibi and rarely increase the sensitivity. Routine inclusion of multimodality imaging technique adds minimal clinical benefit but increases cost to patient in high-volume setting.
[Evaluation of left ventricular diastolic function using gated SPECT with 99mTc-MIBI].
Toba, M; Kumita, S I; Mizumura, S; Cho, K; Kijima, T; Takahama, K; Kumazaki, T
1996-04-01
Development of 3 head SPECT system and 99mTc-labeled radiopharmaceuticals enable us to evaluate left ventricular systolic function on the basis of once gated SPECT routine. This study was focused on assessment of left ventricular diastolic function using 99mTc-MIBI gated SPECT data. Twenty nine patients with ischemic heart diseases underwent 99mTc-MIBI gated SPECT and 99mTc-HSAD ventriculographic assessment of left ventricular diastolic function within 1 month. Region of interests (ROI), simultaneously calculating counts per pixel within ROI, were placed over whole myocardium of 16 serial phasic images reconstructed from gated SPECT data, following selection of the central slice within short axial images. Then, 29 patients were classified into 3 patterns of phase count curve (normal, mixed, and delayed relaxation = diastolic dysfunction). Moreover, 1/3 Count Decreasing Fraction (1/3 CDF) was calculated on the same concept as 1/3 FF. The curve pattern showed significant differences between normal and abnormal group divided on the basis of established indices such as 1/3 FF and PFR, and 1/3 CDF has correlations with 1/3 FF (r = 0.61) and PFR (r = 0.58). We concluded that the new parameters drawn from 99mTc-MIBI gated SPECT data might be feasible for evaluation of diastolic function.
Imamura, K; Okayasu, N; Nagatsu, T
2011-07-01
We examined the relationship between severity of depression in Parkinson's disease (PD) and regional cerebral blood flow (rCBF) using single photon emission computed tomography (SPECT) and the reaction to levodopa-selegiline combination therapy. We evaluated 52 patients with PD and nine age-matched controls with SPECT and the Unified Parkinson's Disease Rating Scale (UPDRS) part III, Mini-Mental State Examination (MMSE), and Beck Depression Inventory (BDI) to evaluate depression severity and its connection with rCBF. Furthermore, we examined rCBF in patients with PD treated with levodopa with or without selegiline. A significant fall in rCBF was observed in the bilateral posterior cingulate, hippocampus, and cuneus and the superior parietal and primary visual areas in PD patients with minor depression and in all regions in those with major depression. Elevations in UPDRS part III and BDI scores and falls in MMSE scores were of significantly lower magnitude in the levodopa-selegiline group than in the levodopa group. Whole brain rCBF fell significantly less in the levodopa-selegiline group than in the levodopa group. These results indicate that selegiline controlled not only worsening of motor function and cognitive function in PD but also aggravation of minor depression, and restrained a fall in whole brain rCBF. © 2010 John Wiley & Sons A/S.
Performance index: A method for quantitative evaluation of filters used in clinical SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contino, J.; Touya, J.J.; Corbus, H.F.
1984-01-01
The purpose of this study was to design a method for optimal filter selection during the reconstruction of clinical SPECT images. Hamming, Bartlett, Parzen and Butterworth filters were evaluated at different cutoff frequencies when applied to reconstruction of the Jaszczak phantom and liver SPECTs. The phantom filled with 6 mCi of Tc-99m was imaged following 4 different protocols which varied in matrix sizes (128 x 128 or 64 x 64) and in number of steps (128 or 64). Total imaging time in the 4 protocols was 24 minutes. A total of 160 reconstructions were analyzed. Liver SPECTs from 2 patientsmore » with small metastatic lesions from colon Ca were similarly studied. An ECT Performance Index (ECT PI) was defined as the product of the contrast efficiency function (ECT C) and uniformity (ECT U). ECT C as a function of the radius was measured following Rollo's approach. ECT U was measured as the ratio between min. and max. counts per pixel in a known uniform region. ECT PI was computed on a slice through the void spheres region of the phantom. In liver SPECTs the ECT U was measured over the spleen. The most favorable ECT PI (0.35, radius 7.9 mm) was obtained with images in 128 x 128 matrices, 128 steps, processed with a Butterworth cutoff frequency of 0.19, filter order 4. When images were acquired in 64 x 64 matrices using 64 steps the ECT PI was lower and influenced to a lesser degree by both choice of filter and cutoff frequency. Results in the two liver SPECT examinations were parallel to those found in the phantom studies confirming the clinical usefulness of the ECT PI in the evaluation of filters for reconstruction of SPECT images.« less
NASA Astrophysics Data System (ADS)
Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.
2014-09-01
The purpose of this study is to derive optimized parameters for a detector module employing an off-the-shelf X-ray camera and a pinhole array collimator applicable for a range of different SPECT systems. Monte Carlo simulations using the Geant4 application for tomographic emission (GATE) were performed to estimate the performance of the pinhole array collimators and were compared to that of low energy high resolution (LEHR) parallel-hole collimator in a four head SPECT system. A detector module was simulated to have 48 mm by 48 mm active area along with 1mm, 1.6mm and 2 mm pinhole aperture sizes at 0.48 mm pitch on a tungsten plate. Perpendicular lead septa were employed to verify overlapping and non-overlapping projections against a proper acceptance angle without lead septa. A uniform shape cylindrical water phantom was used to evaluate the performance of the proposed four head SPECT system of the pinhole array detector module. For each head, 100 pinhole configurations were evaluated based on sensitivity and detection efficiency for 140 keV γ-rays, and compared to LEHR parallel-hole collimator. SPECT images were reconstructed based on filtered back projection (FBP) algorithm where neither scatter nor attenuation corrections were performed. A better reconstruction algorithm development for this specific system is in progress. Nevertheless, activity distribution was well visualized using the backprojection algorithm. In this study, we have evaluated several quantitative and comparative analyses for a pinhole array imaging system providing high detection efficiency and better system sensitivity over a large FOV, comparing to the conventional four head SPECT system. The proposed detector module is expected to provide improved performance in various SPECT imaging.
Limited angle tomographic breast imaging: A comparison of parallel beam and pinhole collimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessell, D.E.; Kadrmas, D.J.; Frey, E.C.
1996-12-31
Results from clinical trials have suggested no improvement in lesion detection with parallel hole SPECT scintimammography (SM) with Tc-99m over parallel hole planar SM. In this initial investigation, we have elucidated some of the unique requirements of SPECT SM. With these requirements in mind, we have begun to develop practical data acquisition and reconstruction strategies that can reduce image artifacts and improve image quality. In this paper we investigate limited angle orbits for both parallel hole and pinhole SPECT SM. Singular Value Decomposition (SVD) is used to analyze the artifacts associated with the limited angle orbits. Maximum likelihood expectation maximizationmore » (MLEM) reconstructions are then used to examine the effects of attenuation compensation on the quality of the reconstructed image. All simulations are performed using the 3D-MCAT breast phantom. The results of these simulation studies demonstrate that limited angle SPECT SM is feasible, that attenuation correction is needed for accurate reconstructions, and that pinhole SPECT SM may have an advantage over parallel hole SPECT SM in terms of improved image quality and reduced image artifacts.« less
Remenschneider, Aaron K; Dilger, Amanda E; Wang, Yingbing; Palmer, Edwin L; Scott, James A; Emerick, Kevin S
2015-04-01
Preoperative localization of sentinel lymph nodes in head and neck cutaneous malignancies can be aided by single-photon emission computed tomography/computed tomography (SPECT/CT); however, its true predictive value for identifying lymph nodes intraoperatively remains unquantified. This study aims to understand the sensitivity, specificity, and positive and negative predictive values of SPECT/CT in sentinel lymph node biopsy for cutaneous malignancies of the head and neck. Blinded retrospective imaging review with comparison to intraoperative gamma probe confirmed sentinel lymph nodes. A consecutive series of patients with a head and neck cutaneous malignancy underwent preoperative SPECT/CT followed by sentinel lymph node biopsy with a gamma probe. Two nuclear medicine physicians, blinded to clinical data, independently reviewed each SPECT/CT. Activity within radiographically defined nodal basins was recorded and compared to intraoperative gamma probe findings. Sensitivity, specificity, and negative and positive predictive values were calculated with subgroup stratification by primary tumor site. Ninety-two imaging reads were performed on 47 patients with cutaneous malignancy who underwent SPECT/CT followed by sentinel lymph node biopsy. Overall sensitivity was 73%, specificity 92%, positive predictive value 54%, and negative predictive value 96%. The predictive ability of SPECT/CT to identify the basin or an adjacent basin containing the single hottest node was 92%. SPECT/CT overestimated uptake by an average of one nodal basin. In the head and neck, SPECT/CT has higher reliability for primary lesions of the eyelid, scalp, and cheek. SPECT/CT has high sensitivity, specificity, and negative predictive value, but may overestimate relevant nodal basins in sentinel lymph node biopsy. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
Lee, Seung-Pyo; Jang, Eun Jin; Kim, Yong-Jin; Cha, Myung-Jin; Park, Sun-Young; Song, Hyun Jin; Choi, Ji Eun; Shim, Jung-Im; Ahn, Jeonghoon; Lee, Hyun Joo
2015-01-01
Coronary CT angiography (CCTA) has been proven accurate and is incorporated in clinical recommendations for coronary artery disease (CAD) diagnosis workup, but cost-effectiveness data, especially in comparison to other methods such as myocardial single photon emission CT (SPECT) are insufficient. To compare the cost-effectiveness of CCTA and myocardial SPECT in a real-world setting. We performed a retrospective cohort study on consecutive patients with suspected CAD and a pretest probability between 10% and 90%. Test accuracy was compared by correcting referral bias to coronary angiography depending on noninvasive test results based on the Bayes' theorem and also by incorporating 1-year follow-up results. Cost-effectiveness was analyzed using test accuracy and quality-adjusted life year (QALY). The model using diagnostic accuracy used the number of patients accurately diagnosed among 1000 persons as the effect and contained only expenses for diagnostic testing as the cost. In the model using QALY, a decision tree was developed, and the time horizon was 1 year. CCTA was performed in 635 patients and SPECT in 997 patients. An accurate diagnosis per 1000 patients was achieved in 725 patients by CCTA vs 661 patients by SPECT. In the model using diagnostic accuracy, CCTA was more effective and less expensive than SPECT ($725.38 for CCTA vs $661.46 for SPECT). In the model using QALY, CCTA was generally more effective in terms of life quality (0.00221 QALY) and cost ($513) than SPECT. However, cost utility varied among subgroups, with SPECT outperforming CCTA in patients with a pretest probability of 30% to 60% (0.01890 QALY; $113). These results suggest that CCTA may be more cost-effective than myocardial SPECT. Copyright © 2015 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
A quantitative reconstruction software suite for SPECT imaging
NASA Astrophysics Data System (ADS)
Namías, Mauro; Jeraj, Robert
2017-11-01
Quantitative Single Photon Emission Tomography (SPECT) imaging allows for measurement of activity concentrations of a given radiotracer in vivo. Although SPECT has usually been perceived as non-quantitative by the medical community, the introduction of accurate CT based attenuation correction and scatter correction from hybrid SPECT/CT scanners has enabled SPECT systems to be as quantitative as Positron Emission Tomography (PET) systems. We implemented a software suite to reconstruct quantitative SPECT images from hybrid or dedicated SPECT systems with a separate CT scanner. Attenuation, scatter and collimator response corrections were included in an Ordered Subset Expectation Maximization (OSEM) algorithm. A novel scatter fraction estimation technique was introduced. The SPECT/CT system was calibrated with a cylindrical phantom and quantitative accuracy was assessed with an anthropomorphic phantom and a NEMA/IEC image quality phantom. Accurate activity measurements were achieved at an organ level. This software suite helps increasing quantitative accuracy of SPECT scanners.
Pontine hyperperfusion in sporadic hyperekplexia
Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Nave, Riccardo Della; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale
2007-01-01
Objective To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Methods Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H‐MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Results Both patients showed excessively large and non‐habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H‐MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. Conclusions In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals. PMID:17702784
Pontine hyperperfusion in sporadic hyperekplexia.
Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Della Nave, Riccardo; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale
2007-09-01
To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H-MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Both patients showed excessively large and non-habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H-MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals.
Kobayashi, Masato; Matsunari, Ichiro; Nishi, Kodai; Mizutani, Asuka; Miyazaki, Yoshiharu; Ogai, Kazuhiro; Sugama, Jyunko; Shiba, Kazuhiro; Kawai, Keiichi; Kinuya, Seigo
2016-05-01
Simultaneous acquisition of (99m)Tc and (123)I was evaluated using a preclinical SPECT scanner with cadmium zinc telluride (CZT)-based detectors. 10-ml cylindrical syringes contained about 37 MBq (99m)Tc-tetrofosmin ((99m)Tc-TF) or 37 MBq (123)I-15-(p-iodophenyl)-3R,S-methyl pentadecanoic acid ((123)I-BMIPP) were used to assess the relationship between these SPECT radioactive counts and radioactivity. Two 10-ml syringes contained 100 or 300 MBq (99m)Tc-TF and 100 MBq (123)I-BMIPP to assess the influence of (99m)Tc upscatter and (123)I downscatter, respectively. A rat-sized cylindrical phantom also contained both 100 or 300 MBq (99m)Tc-TF and 100 MBq (123)I-BMIPP. The two 10-ml syringes and phantom were scanned using a pinhole collimator for rats. Myocardial infarction model rats were examined using 300 MBq (99m)Tc-TF and 100 MBq (123)I-BMIPP. Two 1-ml syringes contained 105 MBq (99m)Tc-labeled hexamethylpropyleneamine oxime ((99m)Tc-HMPAO) and 35 MBq (123)I-labeled N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane ((123)I-FP-CIT). The two 1-ml syringes were scanned using a pinhole collimator for mice. Normal mice were examined using 105 MBq (99m)Tc-HMPAO and 35 MBq (123)I-FP-CIT. The relationship between SPECT radioactive counts and radioactivity was excellent. Downscatter contamination of (123)I-BMIPP exhibited fewer radioactive counts for 300 MBq (99m)Tc-TF without scatter correction (SC) in 125-150 keV. There was no upscatter contamination of (99m)Tc-TF in 150-175 keV. In the rat-sized phantom, the radioactive count ratio decreased to 4.0 % for 300 MBq (99m)Tc-TF without SC in 125-150 keV. In the rats, myocardial images and radioactive counts of (99m)Tc-TF with the dual tracer were identical to those of the (99m)Tc-TF single injection. Downscatter contamination of (123)I-FP-CIT was 4.2 % without SC in 125-150 keV. In the first injection of (99m)Tc-HMPAO and second injection of (123)I-FP-CIT, brain images and radioactive counts of (99m)Tc-HMPAO with the dual tracer in normal mice also were the similar to those of the (99m)Tc-HMPAO single injection. In the first injection of (123)I-FP-CIT and second injection of (99m)Tc-HMPAO, the brain images and radioactive counts with the dual tracer were not much different from those of the (123)I-FP-CIT single injection. Dual-tracer imaging of (99m)Tc- and (123)I-labeled radiotracers is feasible in a preclinical SPECT scanner with CZT detector. When higher radioactivity of (99m)Tc-labeled radiotracers relative to (123)I-labeled radiotracers is applied, correction methods are not necessarily required for the quantification of (99m)Tc- and (123)I-labeled radiotracers when using a preclinical SPECT scanner with CZT detector.
Initial Investigation of preclinical integrated SPECT and MR imaging.
Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan
2010-02-01
Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.
Initial Investigation of Preclinical Integrated SPECT and MR Imaging
Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan
2014-01-01
Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source. PMID:20082527
Greenwood, John P; Herzog, Bernhard A; Brown, Julia M; Everett, Colin C; Nixon, Jane; Bijsterveld, Petra; Maredia, Neil; Motwani, Manish; Dickinson, Catherine J; Ball, Stephen G; Plein, Sven
2016-05-10
There are no prospective, prognostic data comparing cardiovascular magnetic resonance (CMR) and single-photon emission computed tomography (SPECT) in the same population of patients with suspected coronary heart disease (CHD). To establish the ability of CMR and SPECT to predict major adverse cardiovascular events (MACEs). Annual follow-up of the CE-MARC (Clinical Evaluation of MAgnetic Resonance imaging in Coronary heart disease) study for a minimum of 5 years for MACEs (cardiovascular death, acute coronary syndrome, unscheduled revascularization or hospital admission for cardiovascular cause). (Current Controlled Trials registration: ISRCTN77246133). Secondary and tertiary care cardiology services. 752 patients from the CE-MARC study who were being investigated for suspected CHD. Prediction of time to MACE was assessed by using univariable (log-rank test) and multivariable (Cox proportional hazards regression) analysis. 744 (99%) of the 752 recruited patients had complete follow-up. Of 628 who underwent CMR, SPECT, and the reference standard test of X-ray angiography, 104 (16.6%) had at least 1 MACE. Abnormal findings on CMR (hazard ratio, 2.77 [95% CI, 1.85 to 4.16]; P < 0.001) and SPECT (hazard ratio, 1.62 [CI, 1.11 to 2.38; P = 0.014) were both strong and independent predictors of MACE. Only CMR remained a significant predictor after adjustment for other cardiovascular risk factors, angiography result, or stratification for initial patient treatment. Data are from a single-center observational study (albeit conducted in a high-volume institution for both CMR and SPECT). Five-year follow-up of the CE-MARC study indicates that compared with SPECT, CMR is a stronger predictor of risk for MACEs, independent of cardiovascular risk factors, angiography result, or initial patient treatment. This further supports the role of CMR as an alternative to SPECT for the diagnosis and management of patients with suspected CHD. British Heart Foundation.
C-SPECT - a Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential
Chang, Wei; Ordonez, Caesar E.; Liang, Haoning; Li, Yusheng; Liu, Jingai
2013-01-01
Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient’s thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system. PMID:23885129
Sakashita, Y.; Kanai, M.; Sugimoto, T.; Taki, S.; Takamori, M.
1997-01-01
OBJECTIVE—Previous reports about changes in cerebral blood flow (CBF) in transient global amnesia disclosed decreased flow in some parts of the brain. However, CBF analyses in most reports were qualitative but not quantitative. The purpose of this study was to determine changes in CBF in transient global amnesia. METHODS—The CBF was measured and the vasoreactive response to acetazolamide was evaluated in six patients with transient global amnesia using technetium-99m hexamethylpropylene amine oxime single-photon emission computed tomography (SPECT). The CBF was measured during an attack in two patients and soon after an attack in the other four. About one month later, CBF was re-evaluated in each patient. RESULTS—Two patients examined during an attack and one patient examined five hours after an attack had increased blood flow in the occipital cortex and cerebellum. Three patients examined at six to 10 hours after an attack had decreased blood flow in the thalamus, cerebellum, or putamen. These abnormalities of blood flow almost disappeared in all patients one month after onset. The vasodilatory response to acetazolamide, which was evaluated initially using SPECT, was poor in areas of increased blood flow. By the second evaluation of CBF with acetazolamide, the vasodilatory response had returned to normal. CONCLUSIONS—In a patient with transient global amnesia, CBF increased in the vertebrobasilar territory during the attack and decreased afterwards. The vasodilatory response to acetazolamide may be impaired in the parts of the brain with increased blood flow. It is suggested that transient global amnesia is distinct from migraine but may share the same underlying mechanism. PMID:9408101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M
Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less
The origins of SPECT and SPECT/CT.
Hutton, Brian F
2014-05-01
Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility.
Iwamoto, Konosuke; Ikeda, Ken; Mizumura, Sunao; Tachiki, Kazuhiro; Yanagihashi, Masaru; Iwasaki, Yasuo
2014-03-01
A 49-year-old healthy man developed sudden unconsciousness under inadequate ventilation. Blood gas analysis showed carboxyhemoglobin of 7.3%. After normobaric oxygen therapy, he recovered completely 7 days later. At 3 weeks after carbon monoxide (CO) exposures, memory and gait disturbances appeared. Neurological examination revealed Mini-Mental State Examination (MMSE) score of 5 of 30 points, leg hyper-reflexia with Babinski signs, and Parkinsonism. Brain fluid-attenuated inversion recovery imaging disclosed symmetric hypointense lesions in the thalamus and the globus pallidus, and hyperintense lesions in the cerebral white matter. Brain single-photon emission tomography (SPECT) scanning with (99m)Technesium-ethyl cysteinate dimer displayed marked hypoperfusion in the cerebellum, the thalamus, the basal ganglia, and the entire cerebral cortex. He was diagnosed as CO poisoning and treated with hyperbaric oxygen therapy. The neurological deficits were not ameliorated. At 9 weeks after neurological onset, methylprednisolone (1000 mg/day, intravenous, 3 days) and memantine hydrochloride (20 mg/day, per os) were administered. Three days later, MMSE score was increased from 3 to 20 points. Neurological examination was normal 3 weeks later. Brain SPECT exhibited 20% increase of regional cerebral blood flows in the cerebellum, the thalamus, the basal ganglia, and the entire cerebral cortex. These clinicoradiological changes supported that the treatment with steroid pulse and memantine hydrochloride could prompt recovery from neurological dysfunction and cerebral hypoperfusion. Further clinical trials are warranted whether such combined therapy can attenuate neurological deficits and cerebral hypoperfusion in patients with CO poisoning. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Raji, Cyrus A; Willeumier, Kristen; Taylor, Derek; Tarzwell, Robert; Newberg, Andrew; Henderson, Theodore A; Amen, Daniel G
2015-09-01
PTSD and TBI are two common conditions in veteran populations that can be difficult to distinguish clinically. The default mode network (DMN) is abnormal in a multitude of neurological and psychiatric disorders. We hypothesize that brain perfusion SPECT can be applied to diagnostically separate PTSD from TBI reliably in a veteran cohort using DMN regions. A group of 196 veterans (36 with PTSD, 115 with TBI, 45 with PTSD/TBI) were selected from a large multi-site population cohort of individuals with psychiatric disease. Inclusion criteria were peacetime or wartime veterans regardless of branch of service and included those for whom the traumatic brain injury was not service related. SPECT imaging was performed on this group both at rest and during a concentration task. These measures, as well as the baseline-concentration difference, were then inputted from DMN regions into separate binary logistic regression models controlling for age, gender, race, clinic site, co-morbid psychiatric diseases, TBI severity, whether or not the TBI was service related, and branch of armed service. Predicted probabilities were then inputted into a receiver operating characteristic analysis to compute sensitivity, specificity, and accuracy. Compared to PSTD, persons with TBI were older, male, and had higher rates of bipolar and major depressive disorder (p < 0.05). Baseline quantitative regions with SPECT separated PTSD from TBI in the veterans with 92 % sensitivity, 85 % specificity, and 94 % accuracy. With concentration scans, there was 85 % sensitivity, 83 % specificity and 89 % accuracy. Baseline-concentration (the difference metric between the two scans) scans were 85 % sensitivity, 80 % specificity, and 87 % accuracy. In separating TBI from PTSD/TBI visual readings of baseline scans had 85 % sensitivity, 81 % specificity, and 83 % accuracy. Concentration scans had 80 % sensitivity, 65 % specificity, and 79 % accuracy. Baseline-concentration scans had 82 % sensitivity, 69 % specificity, and 81 % accuracy. For separating PTSD from PTSD/TBI baseline scans had 87 % sensitivity, 83 % specificity, and 92 % accuracy. Concentration scans had 91 % sensitivity, 76 % specificity, and 88 % accuracy. Baseline-concentration scans had 84 % sensitivity, 64 % specificity, and 85 % accuracy. This study demonstrates the ability to separate PTSD and TBI from each other in a veteran population using functional neuroimaging.
Ahmadihosseini, Hossein; Abedi, Javad; Ghodsi Rad, Mohammad A; Zakavi, Seyed R; Knoll, Peter; Mirzaei, Siroos; Sadeghi, Ramin
2014-12-01
The current study was performed to evaluate the impact of Tc-EDDA-tricine-HYNIC-Tyr-octreotate in the differentiation of active from inactive pulmonary tuberculosis lesions. Ten consecutive patients (six male and four female, age range 24-83 years) with proven pulmonary tuberculosis (with a positive smear or culture) were enrolled in the study. At 120 min after injection of 740 MBq of Tc-EDDA-tricine-HYNIC-Tyr-octreotate, planar and single-photon emission computed tomography (SPECT) images of the thorax were taken. A semiquantitative evaluation of lesion and nonlesion areas was performed. The scan was repeated following the same protocol after standard treatment for tuberculosis after a negative sputum culture. Semiquantitative evaluation of the lesions showed a statistically significant higher uptake before treatment in both planar and SPECT images (P=0.005 and 0.007, respectively). Lesion-to-nonlesion ratios were also higher in the pretreatment sets on both planar and SPECT images (1.4±0.2 vs. 1.19±0.15, P=0.001, for planar images and 2.32±0.55 vs. 1.32±0.32, P=0.0001, for SPECT images). Tc-EDDA-tricine-HYNIC-Tyr-octreotate scintigraphy may help to differentiate between active and inactive pulmonary tuberculosis. SPECT imaging and semiquantitative evaluation are indispensable for increasing the diagnostic yield of this method. Larger studies are needed to corroborate our results.
Allred, Jonathan D; Niedbala, Jeremy; Mikell, Justin K; Owen, Dawn; Frey, Kirk A; Dewaraja, Yuni K
2018-06-15
A major toxicity concern in radioembolization therapy of hepatic malignancies is radiation-induced pneumonitis and sclerosis due to hepatopulmonary shunting of 90 Y microspheres. Currently, 99m Tc macroaggregated albumin ( 99m Tc-MAA) imaging is used to estimate the lung shunt fraction (LSF) prior to treatment. The aim of this study was to evaluate the accuracy/precision of LSF estimated from 99m Tc planar and SPECT/CT phantom imaging, and within this context, to compare the corresponding LSF and lung-absorbed dose values from 99m Tc-MAA patient studies. Additionally, LSFs from pre- and post-therapy imaging were compared. A liver/lung torso phantom filled with 99m Tc to achieve three lung shunt values was scanned by planar and SPECT/CT imaging with repeat acquisitions to assess accuracy and precision. To facilitate processing of patient data, a workflow that relies on SPECT and CT-based auto-contouring to define liver and lung volumes for the LSF calculation was implemented. Planar imaging-based LSF estimates for 40 patients, obtained from their medical records, were retrospectively compared with SPECT/CT imaging-based calculations with attenuation and scatter correction. Additionally, in a subset of 20 patients, the pre-therapy estimates were compared with 90 Y PET/CT-based measurements. In the phantom study, improved accuracy in LSF estimation was achieved using SPECT/CT with attenuation and scatter correction (within 13% of the true value) compared with planar imaging (up to 44% overestimation). The results in patients showed a similar trend with planar imaging significantly overestimating LSF compared to SPECT/CT. There was no correlation between lung shunt estimates and the delay between 99m Tc-MAA administration and scanning, but off-target extra hepatic uptake tended to be more likely in patients with a longer delay. The mean lung absorbed dose predictions for the 28 patients who underwent therapy was 9.3 Gy (range 1.3-29.4) for planar imaging and 3.2 Gy (range 0.4-13.4) for SPECT/CT. For the patients with post-therapy imaging, the mean LSF from 90 Y PET/CT was 1.0%, (range 0.3-2.8). This value was not significantly different from the mean LSF estimate from 99m Tc-MAA SPECT/CT (mean 1.0%, range 0.4-1.6; p = 0.968), but was significantly lower than the mean LSF estimate based on planar imaging (mean 4.1%, range 1.2-15.0; p = 0.0002). The improved accuracy demonstrated by the phantom study, agreement with 90 Y PET/CT in patient studies, and the practicality of using auto-contouring for liver/lung definition suggests that 99m Tc-MAA SPECT/CT with scatter and attenuation corrections should be used for lung shunt estimation prior to radioembolization.
Progress in SPECT/CT imaging of prostate cancer.
Seo, Youngho; Franc, Benjamin L; Hawkins, Randall A; Wong, Kenneth H; Hasegawa, Bruce H
2006-08-01
Prostate cancer is the most common type of cancer (other than skin cancer) among men in the United States. Although prostate cancer is one of the few cancers that grow so slowly that it may never threaten the lives of some patients, it can be lethal once metastasized. Indium-111 capromab pendetide (ProstaScint, Cytogen Corporation, Princeton, NJ) imaging is indicated for staging and recurrence detection of the disease, and is particularly useful to determine whether or not the disease has spread to distant metastatic sites. However, the interpretation of 111In-capromab pendetide is challenging without correlated structural information mostly because the radiopharmaceutical demonstrates nonspecific uptake in the normal vasculature, bowel, bone marrow, and the prostate gland. We developed an improved method of imaging and localizing 111In-Capromab pendetide using a SPECT/CT imaging system. The specific goals included: i) development and application of a novel iterative SPECT reconstruction algorithm that utilizes a priori information from coregistered CT; and ii) assessment of clinical impact of adding SPECT/CT for prostate cancer imaging with capromab pendetide utilizing the standard and novel reconstruction techniques. Patient imaging studies with capromab pendetide were performed from 1999 to 2004 using two different SPECT/CT scanners, a prototype SPECT/CT system and a commercial SPECT/CT system (Discovery VH, GE Healthcare, Waukesha, WI). SPECT projection data from both systems were reconstructed using an experimental iterative algorithm that compensates for both photon attenuation and collimator blurring. In addition, the data obtained from the commercial system were reconstructed with attenuation correction using an OSEM reconstruction supplied by the camera manufacturer for routine clinical interpretation. For 12 sets of patient data, SPECT images reconstructed using the experimental algorithm were interpreted separately and compared with interpretation of images obtained using the standard reconstruction technique. The experimental reconstruction algorithm improved spatial resolution, reduced streak artifacts, and yielded a better correlation with anatomic details of CT in comparison to conventional reconstruction methods (e.g., filtered back-projection or OSEM with attenuation correction only). Images produced with the experimental algorithm produced a subjective improvement in the confidence of interpretation for 11 of 12 studies. There were also changes in interpretations for 4 of 12 studies although the changes were not sufficient to alter prognosis or the patient treatment plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, B.M.W.; Frey, E.C.; Lalush, D.S.
1996-12-31
We investigated methods to accurately reconstruct 180{degrees} truncated TCT and SPECT projection data obtained from a right-angle dual-camera SPECT system for myocardial SPECT with attenuation compensation. The 180{degrees} data reconstruction methods would permit substantial savings in transmission data acquisition time. Simulation data from the 3D MCAT phantom and clinical data from large patients were used in the evaluation study. Different transmission reconstruction methods including the FBP, transmission ML-EM, transmission ML-SA, and BIT algorithms with and without using the body contour as support, were used in the TCT image reconstructions. The accuracy of both the TCT and attenuation compensated SPECT imagesmore » were evaluated for different degrees of truncation and noise levels. We found that using the FBP reconstructed TCT images resulted in higher count density in the left ventricular (LV) wall of the attenuation compensated SPECT images. The LV wall count density obtained using the iteratively reconstructed TCT images with and without support were similar to each other and were more accurate than that using the FBP. However, the TCT images obtained with support show fewer image artifacts than without support. Among the iterative reconstruction algorithms, the ML-SA algorithm provides the most accurate reconstruction but is the slowest. The BIT algorithm is the fastest but shows the most image artifacts. We conclude that accurate attenuation compensated images can be obtained with truncated 180{degrees} data from large patients using a right-angle dual-camera SPECT system.« less
González, Javiera; Prat, Hernán; Swett, Eduardo; Berrocal, Isabel; Fernández, René; Zhindon, Juan Pablo; Castro, Ariel; Massardo, Teresa
2015-11-01
The evaluation of coronary artery disease (CAD) can be performed with stress test and myocardial SPECT tomography. To assess the predictive value of myocardial SPECT using stress test for cardiovascular events in patients with good exercise capacity. We included 102 males aged 56 ± 10 years and 19 females aged 52 ± 10 years, all able to achieve 10 METs and ≥ 85% of the theoretical maximum heart rate and at least 8 min in their stress test with gated 99mTc-sestamibi SPECT. Eighty two percent of patients were followed clinically for 33 ± 17 months. Sixty seven percent of patients were studied for CAD screening and the rest for known disease assessment. Treadmill stress test was negative in 75.4%; 37% of patients with moderate to severe Duke Score presented ischemia. Normal myocardial perfusion SPECT was observed in 70.2%. Reversible defects appeared in 24.8% of cases, which were of moderate or severe degree (> 10% left ventricular extension) in 56.6%. Only seven cases had coronary events after the SPECT. Two major (myocardial infarction and emergency coronary revascularization) and 5 minor events (elective revascularization) ere observed in the follow-up. In a multivariate analysis, SPECT ischemia was the only statistically significant parameter that increased the probability of having a major or minor event. Nearly a quarter of our patients with good exercise capacity demonstrated reversible defects in their myocardial perfusion SPECT. In the intermediate-term follow-up, a low rate of cardiac events was observed, being the isotopic ischemia the only significant predictive parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Negahdar, M; Yamamoto, T; Shultz, D
Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patientsmore » treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.« less
Saura, Hiroaki; Ogasawara, Kuniaki; Suzuki, Taro; Kuroda, Hiroki; Yamashita, Takeshi; Kobayashi, Masakazu; Terasaki, Kazunori; Ogawa, Akira
2012-01-01
While the combination of an angiotensin receptor blocker with thiazide diuretics produces a clinically beneficial reduction in blood pressure in patients who otherwise only partially respond to monotherapy with an angiotensin receptor blocker, blood pressure-lowering therapy with combination antihypertensive drug regimens in patients with cerebral hemodynamic impairment may adversely affect cerebral hemodynamics. The purpose of the present exploratory study was to determine whether blood pressure-lowering therapy with the combination of the angiotensin receptor blocker losartan plus hydrochlorothiazide (LPH) worsens brain perfusion in patients with both hypertension and cerebral hemodynamic impairment due to symptomatic chronic major cerebral artery steno-occlusive disease. Patients with losartan-resistant hypertension and reduced cerebrovascular reactivity (CVR) to acetazolamide due to symptomatic chronic internal carotid artery (ICA) or middle cerebral artery (MCA) steno-occlusive disease were prospectively entered into the present study and received 50 mg/day of losartan plus 12.5 mg/day of hydrochlorothiazideat 14 weeks after the last ischemic event. Cerebral blood flow (CBF) and CVR were measured before and 12 weeks after initiating LPH using N-isopropyl-p-[(123)I]-iodoamphetamine single-photon emission computed tomography (SPECT). A region of interest (ROI) was automatically placed in the MCA territory on each SPECT image using a three-dimensional stereotactic ROI template. None of the 18 patients who participated in the study experienced any new neurological symptoms or adverse effects related to antihypertensive drugs. Systolic (p < 0.001) and diastolic (p < 0.001) blood pressures were significantly reduced after the administration of LPH, with average reductions of 11 mm Hg in systolic blood pressure and 10 mm Hg in diastolic blood pressure. While in the affected hemisphere CBF did not differ between measurements taken before and after the administration of LPH, CVR was significantly higher after the administration of LPH than before (p = 0.007) and was significantly improved in 5 of 18 patients. In the contralateral hemisphere, CBF and CVR did not differ between measurements taken before and after the administration of LPH. There were no patients who experienced a significant deterioration in CBF or CVR in the affected or contralateral hemisphere after the administration of LPH. Although the present study was exploratory and its results were preliminary due to the small sample size, the current data suggest that blood pressure-lowering therapy with LPH apparently does not result in worsening of cerebral hemodynamics in patients with both hypertension and cerebral hemodynamic impairment due to symptomatic chronic ICA or MCA steno-occlusive disease. Copyright © 2012 S. Karger AG, Basel.
Vitali, Paolo; Nobili, Flavio; Raiteri, Umberto; Canfora, Michela; Rosa, Marco; Calvini, Piero; Girtler, Nicola; Regesta, Giovanni; Rodriguez, Guido
2004-01-15
This article describes the unusual case of a 60-year-old woman suffering from pure progressive aphemia. The fusion of multimodal neuroimaging (MRI, perfusion SPECT) implicated the right frontal lobe, especially the inferior frontal gyrus. This area also showed the greatest functional MRI activation during the performance of a covert phonemic fluency task. Results are discussed in terms of bihemispheric language representation. The fusion of three sets of neuroimages has aided in the interpretation of the patient's cognitive brain dysfunction.
Method for image reconstruction of moving radionuclide source distribution
Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick
2012-12-18
A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.
Integrated software for the detection of epileptogenic zones in refractory epilepsy.
Mottini, Alejandro; Miceli, Franco; Albin, Germán; Nuñez, Margarita; Ferrándo, Rodolfo; Aguerrebere, Cecilia; Fernandez, Alicia
2010-01-01
In this paper we present an integrated software designed to help nuclear medicine physicians in the detection of epileptogenic zones (EZ) by means of ictal-interictal SPECT and MR images. This tool was designed to be flexible, friendly and efficient. A novel detection method was included (A-contrario) along with the classical detection method (Subtraction analysis). The software's performance was evaluated with two separate sets of validation studies: visual interpretation of 12 patient images by an experimented observer and objective analysis of virtual brain phantom experiments by proposed numerical observers. Our results support the potential use of the proposed software to help nuclear medicine physicians in the detection of EZ in clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K.A.; Mueller, S.T.; Walshe, T.M.
1987-02-01
We used single photon emission computed tomography (SPECT) to study 15 patients with Alzheimer's disease and nine controls. Iofetamine hydrochloride I 123 uptake data were recorded from the entire brain using a rotating gamma camera. Activity ratios were measured for the frontal, posterior parietal, posterior, medial, and lateral cortical temporal regions and striate cortex and were normalized by the activity in the cerebellum. Abnormalities in iofetamine hydrochloride I 123 activity were similar to the abnormalities in glucose metabolism observed with positron emission tomography. Cortical tracer activity was globally depressed in patients with Alzheimer's disease, with the greatest reduction in themore » posterior parietal cortex.« less
Chiaretti, Antonio; Conti, Giorgio; Falsini, Benedetto; Buonsenso, Danilo; Crasti, Matteo; Manni, Luigi; Soligo, Marzia; Fantacci, Claudia; Genovese, Orazio; Calcagni, Maria Lucia; Di Giuda, Daniela; Mattoli, Maria Vittoria; Cocciolillo, Fabrizio; Ferrara, Pietro; Ruggiero, Antonio; Staccioli, Susanna; Colafati, Giovanna Stefania; Riccardi, Riccardo
2017-01-01
Nerve growth factor (NGF) promotes neural recovery after experimental traumatic brain injury (TBI) supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated protein Doublecortin (DCX). Only a few studies reported NGF administration in paediatric patients with severe TBI. A four-year-old boy in a persistent unresponsive wakefulness syndrome (UWS) was treated with intranasal murine NGF administration 6 months after severe TBI. The patient received four cycles of intranasal NGF (0.1 mg/kg, twice a day for 10 consecutive days). NGF administration improved functional [Positron Emission Tomography/Computed Tomography (PET/CT); Single photon emission/Computed Tomography (SPECT/CT) and Magnetic Resonance Imaging (MRI)] assessment, electrophysiological [Electroencephalogram (EEG) and Visual Evoked Potential (VEP)] studies and clinical conditions. He showed improvements in voluntary movements, facial mimicry, phonation, attention and verbal comprehension, ability to cry, cough reflex, oral motility, feeding capacity, and bowel and urinary functions. After NGF administration, raised levels of both NGF and DCX were found in the cerebrospinal fluid of the patient. No side effects were reported. Although further studies are needed for better understanding the neuroprotective role of this neurotrophin, intranasal NGF administration appears to be a promising and safe rescuing strategy treatment in children with neurological impairment after TBI.
Ahmadzadehfar, Hojjat; Sabet, Amir; Biermann, Kim; Muckle, Marianne; Brockmann, Holger; Kuhl, Christiane; Wilhelm, Kai; Biersack, Hans-Jürgen; Ezziddin, Samer
2010-08-01
Selective internal radiation therapy (SIRT), a catheter-based liver-directed modality for treating primary and metastatic liver cancer, requires appropriate planning to maximize its therapeutic response and minimize its side effects. (99m)Tc-macroaggregated albumin (MAA) scanning should precede the therapy to detect any extrahepatic shunting to the lung or gastrointestinal tract. Our aim was to compare the ability of SPECT/CT with that of planar imaging and SPECT in the detection and localization of extrahepatic (99m)Tc-MAA accumulation and to evaluate the impact of SPECT/CT on SIRT treatment planning and its added value to angiography in this setting. Ninety diagnostic hepatic angiograms with (99m)Tc-MAA were obtained for 76 patients with different types of cancer. All images were reviewed retrospectively for extrahepatic MAA deposition in the following order: planar, non-attenuation-corrected SPECT, and SPECT/CT. Review of angiograms and follow-up of patients with abdominal shunting served as reference standards. Extrahepatic accumulation was detected by planar imaging, SPECT, and SPECT/CT in 12%, 17%, and 42% of examinations, respectively. The sensitivity for detecting extrahepatic shunting with planar imaging, SPECT, and SPECT/CT was 32%, 41%, and 100%, respectively; specificity was 98%, 98%, and 93%, respectively. The respective positive predictive values were 92%, 93%, and 89%, and the respective negative predictive values were 71%, 73%, and 100%. The therapy plan was changed according to the results of planar imaging, SPECT, and SPECT/CT in 7.8%, 8.9%, and 29% of patients, respectively. In pre-SIRT planning, (99m)Tc-MAA SPECT/CT is valuable for identifying extrahepatic visceral sites at risk for postradioembolization complications.
Nanasato, M; Ando, A; Isobe, S; Nonokawa, M; Hirayama, H; Tsuboi, N; Ito, T; Hirai, M; Yokota, M; Saito, H
2001-12-01
Electrocardiographically (ECG) gated myocardial SPECT with (99m)Tc-tetrofosmin has been used widely to assess left ventricular (LV) function. However, the accuracy of variables using ECG gated myocardial SPECT with beta-methyl-p-(123)I-iodophenylpentadecanoic acid (BMIPP) has not been well defined. Thirty-six patients (29 men, 7 women; mean age, 61.6 +/- 15.6 y) with ischemic heart disease underwent ECG gated myocardial SPECT with (123)I-BMIPP and with (99m)Tc-tetrofosmin and left ventriculography (LVG) within 1 wk. LV ejection fraction (LVEF), LV end-diastolic volume (LVEDV), and LV end-systolic volume (LVESV) were determined on gated SPECT using commercially available software for automatic data analysis. These volume-related items on LVG were calculated with an area-length method and were estimated by 2 independent observers to evaluate interobserver validity. The regional wall motion with these methods was assessed visually. LVEF was 41.1% +/- 12.5% on gated SPECT with (123)I-BMIPP, 44.5% +/- 13.1% on gated SPECT with (99m)Tc-tetrofosmin, and 46.0% +/- 12.7% on LVG. Global LV function and regional wall motion between both gated SPECT procedures had excellent correlation (LVEF, r = 0.943; LVEDV, r = 0.934; LVESV, r = 0.952; regional wall motion, kappa = 0.92). However, the correlations of global LV function and regional wall motion between each gated SPECT and LVG were significantly lower. Gated SPECT with (123)I-BMIPP showed the same interobserver validity as gated SPECT with (99m)Tc-tetrofosmin. Gated SPECT with (123)I-BMIPP provides high accuracy with regard to LV function and is sufficiently applicable for use in clinical SPECT. This technique can simultaneously reveal myocardial fatty acid metabolism and LV function, which may be useful to evaluate various cardiac diseases.
NASA Astrophysics Data System (ADS)
Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah
2018-01-01
The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.
Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction.
Bexelius, Tobias; Sohlberg, Antti
2018-06-01
Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT reconstruction algorithm based on graphics processing unit (GPU) processing. Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-dependent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM implementation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values (SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies. The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded CPU version on a normal 128 × 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and detector response, attenuation, and scatter were included. GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.
Stojanov, Katica; de Vries, Erik F J; Hoekstra, Dick; van Waarde, Aren; Dierckx, Rudi A J O; Zuhorn, Inge S
2012-02-01
The introduction of neural stem cells into the brain has promising therapeutic potential for the treatment of neurodegenerative diseases. To monitor the cellular replacement therapy, that is, to determine stem cell migration, survival, and differentiation, in vivo tracking methods are needed. Ideally, these tracking methods are noninvasive. Noninvasive tracking methods that have been successfully used for the visualization of blood-derived progenitor cells include magnetic resonance imaging and radionuclide imaging using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The SPECT tracer In-111-oxine is suitable for stem cell labeling, but for studies in small animals, the higher sensitivity and facile quantification that can be obtained with PET are preferred. Here the potential of 2'-[18F]fluoro-2'-deoxy-D-glucose ([18F]-FDG), a PET tracer, for tracking of neural stem cell (NSCs) trafficking toward an inflammation site was investigated. [18F]-FDG turns out to be a poor radiopharmaceutical to label NSCs owing to the low labeling efficiency and substantial release of radioactivity from these cells. Efflux of [18F]-FDG from NSCs can be effectively reduced by phloretin in vitro, but inhibition of tracer release is insufficient in vivo for accurate monitoring of stem cell trafficking.
Crossed Wernicke's aphasia after aneurysmal subarachnoid hemorrhage: a case report.
Seçkin, Hakan; Yiğitkanli, Kazim; Kapucu, Ozlem; Bavbek, Murad
2009-01-01
Crossed aphasia (CA) refers to aphasia occurring after right brain damage in right handers. In the literature, numerous CA cases following cerebral ischemia have been reported, but few met the criteria for a prompt diagnosis. The authors present the case of a 52-year-old woman with SAH caused by a right middle cerebral artery (MCA) saccular aneurysm who developed non-fluent aphasia characterized by reduced verbal output, word-finding disturbances and phonemic paraphasias in both oral and written language. 99mTc-HMPAO SPECT was also consistent with right parieto-temporal and frontoparietal ischemia with crossed cerebellar diaschisis on the right cerebellum. A diagnosis of CA was made. One year follow-up showed improvement in communication skills but persistent right fronto-temporo-parietal ischemia. Cerebral vasospasm after aneurysmal SAH symptomatology may vary from motor and sensory disturbances to cognitive disabilities. Aphasia developing after cerebral ischemia of the right hemisphere in a right-hand dominant patient following vasospasm may be a misleading symptom for the localization of the insult. Keeping a high index of suspicion may help in making the correct diagnosis. The changes in the perfusion patterns of cerebellum as assessed by SPECT study during the acute and recovery phases suggests the involvement of cerebellum in language functions.
Koçyiğit Deveci, Emel; Ocak, Meltem; Bozkurt, Murat Fani; Türker, Selcan; Kabasakal, Levent; Uğur, Omer
2013-12-01
The aim of this study was to assess the diagnostic efficiency of (99m)Tc-EDDA/HYNIC-Octreotate in comparison with (111)Inpentetrotide scintigraphy in the detection of neuroendocrine tumors. This study also evaluates the impact of SPECT-CT hybrid imaging on somatostatin receptor scintigraphy (SRS) interpretation and clinical management of these tumors. Fourteen patients were included in the study. All patients underwent a whole body and SPECT-CT imaging with both (99m)Tc- EDDA/HYNIC-octreotate and (111)In-pentetrotide. Images were evaluated both visually and semiquantitatively. On patient basis, the diagnostic results of both studies were similar. The number of lesions detected by (99m)Tc- EDDA/HYNICOctreotate were higher than the number of lesions detected by (111)In-pentetrotide however the difference was not significant (40/43( 93%), 36/43 (83%) p=0.109). Semiquantitative analysis showed higher tumor/organ count ratios for both whole-body and SPECT (99m)Tc- EDDA/HYNIC-Octreotate scans. The results of this study suggested that, (99m)Tc- EDDA/HYNIC-Octreotate may be a better alternative to (111)In- pentetrotide due to high image quality and lower radiation dose. SPECT/CT is a valuable tool for the assessment of neuroendocrine tumors by providing the precise anatomic localization of scintigraphic findings thus improving lesion detectability and characterization. None declared.
Licata, Stephanie C.; Renshaw, Perry F.
2011-01-01
Proton magnetic resonance spectroscopy (1H MRS) is a non-invasive imaging technique that permits measurement of particular compounds or metabolites within the tissue of interest. In the brain, 1H MRS provides a snapshot of the neurochemical environment within a defined volume of interest. A search of the literature demonstrates the widespread utility of this technique for characterizing tumors, tracking the progress of neurodegenerative disease, and for understanding the neurobiological basis of psychiatric disorders. As of relatively recently, 1H MRS has found its way into substance abuse research, and it is beginning to become recognized as a valuable complement in the brain imaging toolbox that also contains positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI). Drug abuse studies employing 1H MRS have identified a number biochemical changes in the brain. The most consistent alterations across drug class were reductions in N-acetylaspartate and elevations in myo-inositol, while changes in choline, creatine, and amino acid transmitters also were abundant. Together, the studies discussed herein provide evidence that drugs of abuse may have a profound impact on neuronal health, energy metabolism and maintenance, inflammatory processes, cell membrane turnover, and neurotransmission, and these biochemical changes may underlie the neuropathology within brain tissue that subsequently gives rise to the cognitive and behavioral impairments associated with drug addiction. PMID:20201852
Bennie, George; Vorster, Mariza; Buscombe, John; Sathekge, Mike
2015-01-01
Single-photon emission computed tomography-computed tomography (SPECT-CT) allows for physiological and anatomical co-registration in sentinel lymph node (SLN) mapping and offers additional benefits over conventional planar imaging. However, the clinical relevance when considering added costs and radiation burden of these reported benefits remains somewhat uncertain. This study aimed to evaluate the possible added value of SPECT-CT and intra-operative gamma-probe use over planar imaging alone in the South African setting. 80 patients with breast cancer or malignant melanoma underwent both planar and SPECT-CT imaging for SLN mapping. We assessed and compared the number of nodes detected on each study, false positive and negative findings, changes in surgical approach and or patient management. In all cases where a sentinel node was identified, SPECT-CT was more accurate anatomically. There was a significant change in surgical approach in 30 cases - breast cancer (n = 13; P 0.001) and malignant melanoma (n = 17; P 0.0002). In 4 cases a node not identified on planar imaging was seen on SPECT-CT. In 16 cases additional echelon nodes were identified. False positives were excluded by SPECT-CT in 12 cases. The addition of SPECT-CT and use of intra-operative gamma-probe to planar imaging offers important benefits in patients who present with breast cancer and melanoma. These benefits include increased nodal detection, elimination of false positives and negatives and improved anatomical localization that ultimately aids and expedites surgical management. This has been demonstrated in the context of industrialized country previously and has now also been confirmed in the setting of a emerging-market nation.
Delcroix, Olivier; Robin, Philippe; Gouillou, Maelenn; Le Duc-Pennec, Alexandra; Alavi, Zarrin; Le Roux, Pierre-Yves; Abgral, Ronan; Salaun, Pierre-Yves; Bourhis, David; Querellou, Solène
2018-02-12
xSPECT Bone® (xB) is a new reconstruction algorithm developed by Siemens® in bone hybrid imaging (SPECT/CT). A CT-based tissue segmentation is incorporated into SPECT reconstruction to provide SPECT images with bone anatomy appearance. The objectives of this study were to assess xB/CT reconstruction diagnostic reliability and accuracy in comparison with Flash 3D® (F3D)/CT in clinical routine. Two hundred thirteen consecutive patients referred to the Brest Nuclear Medicine Department for non-oncological bone diseases were evaluated retrospectively. Two hundred seven SPECT/CT were included. All SPECT/CT were independently interpreted by two nuclear medicine physicians (a junior and a senior expert) with xB/CT then with F3D/CT three months later. Inter-observer agreement (IOA) and diagnostic confidence were determined using McNemar test, and unweighted Kappa coefficient. The study objectives were then re-assessed for validation through > 18 months of clinical and paraclinical follow-up. No statistically significant differences between IOA xB and IOA F3D were found (p = 0.532). Agreement for xB after categorical classification of the diagnoses was high (κ xB = 0.89 [95% CI 0.84 -0.93]) but without statistically significant difference F3D (κ F3D = 0.90 [95% CI 0.86 - 0.94]). Thirty-one (14.9%) inter-reconstruction diagnostic discrepancies were observed of which 21 (10.1%) were classified as major. The follow-up confirmed the diagnosis of F3D in 10 cases, xB in 6 cases and was non-contributory in 5 cases. xB reconstruction algorithm was found reliable, providing high interobserver agreement and similar diagnostic confidence to F3D reconstruction in clinical routine.
Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger
2015-01-01
Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216
Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna
2017-12-01
Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.
"Parkinson-dementia" diseases: a comparison by double tracer SPECT studies.
Rossi, Carlo; Volterrani, Duccio; Nicoletti, Valentina; Manca, Gianpiero; Frosini, Daniela; Kiferle, Lorenzo; Unti, Elisa; De Feo, Paola; Bonuccelli, Ubaldo; Ceravolo, Roberto
2009-12-01
We performed 123I-FP-CIT/SPECT and ECD/SPECT in 30 patients with Parkinson's disease with dementia (PDD) and 30 patients with dementia with Lewy bodies (DLB) to evaluate whether presynaptic nigro-striatal function and/or cerebral perfusional pattern is different in these diseases. The striatal uptake of DAT tracer was statistically significantly lower in PDD and DLB with respect to control data (p < 0.0005), however no significant difference was found between PDD and DLB. Patients with PDD and DLB showed a significant reduction of rCBF (p < 0.001) in parieto-occipital and frontal areas, with respect to controls, but the comparison between the two groups did not result in any significant difference by SPM analysis. Finally no correlation was found between any regional perfusional changes and nigro-striatal dysfunction. We conclude that neither studies with 123I-FP-CIT nor ECD/SPECT were able to discriminate between DLB and PDD in vivo.
Gibbons, Raymond J; Askew, J Wells; Hodge, David; Miller, Todd D
2010-03-01
The purpose of this study was to apply published appropriateness criteria for single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) in a single academic medical center to determine if the percentage of inappropriate studies was changing over time. In a previous study, we applied the American College of Cardiology Foundation/American Society of Nuclear Cardiology (ASNC) appropriateness criteria for stress SPECT MPI and reported that 14% of stress SPECT studies were performed for inappropriate reasons. Using similar methodology, we retrospectively examined 284 patients who underwent stress SPECT MPI in October 2006 and compared the findings to the previous cohort of 284 patients who underwent stress SPECT MPI in May 2005. The indications for testing in the 2 cohorts were very similar. The overall level of agreement in characterizing categories of appropriateness between 2 experienced cardiovascular nurse abstractors was good (kappa = 0.68), which represented an improvement from our previous study (kappa = 0.56). There was a significant change between May 2005 and October 2006 in the overall classification of categories for appropriateness (P = .024 by chi(2) statistic). There were modest, but insignificant, increases in the number of patients who were unclassified (15% in the current study vs 11% previously), appropriate (66% vs 64%), and uncertain (12% vs 11%). Only 7% of the studies in the current study were inappropriate, which represented a significant (P = .004) decrease from the 14% reported in the 2005 cohort. In the absence of any specific intervention, there was a significant change in the overall classification of SPECT appropriateness in an academic medical center over 17 months. The only significant difference in individual categories was a decrease in inappropriate studies. Additional measurements over time will be required to determine if this trend is sustainable or generalizable.
2009-10-01
Field-of-View, Mobile PET/SPECT System for Bedside Environments: A Dynamic Cardiac Phantom Study using 99mTc and 18F- FDG . Presented at the American...using Tc-99m tracers and viability imaging using F- 18 tracers [3]-[7]. For cardiac F-18 imaging in a bedside environment, the 511 keV SPECT approach...SPECT system may have difficulty imaging subtle myocardial defects with F-18 tracers , but it may effectively image moderate to severe defects. The
Ma, C; Wang, X; Shao, M; Zhao, L; Jiawei, X; Wu, Z; Wang, H
2015-06-01
Aim of the present study was to investigate the usefulness of 18F-FDG SPECT/CT in differentiated thyroid cancer (DTC) with elevated serum thyroglobulin (Tg) but negative iodine-131 scan. This retrospective review of patients with DTC recurrence who had 18F-FDG SPECT/CT and 18F-FDG PET/CT for elevated serum Tg but negative iodine-131 scan (March 2007-October 2012). After total thyroidectomy followed by radioiodine ablation, 86 consecutive patients with elevated Tg levels underwent 18F-FDG SPECT/CT or 18F-FDG PET/CT. Of these, 45 patients had 18F-FDG SPECT/CT, the other 41 patients had 18F-FDG PET/CT 3-4weeks after thyroid hormone withdrawal. The results of 18F-FDG PET/CT and SPECT/CT were correlated with patient follow-up information, which included the results from subsequent imaging modalities such as neck ultrasound, MRI and CT, Tg levels, and histologic examination of surgical specimens. The diagnostic accuracy of the two imaging modalities was evaluated. In 18F-FDG SPECT/CT scans, 24 (24/45) patients had positive findings, 22 true positive in 24 patients, false positive in 2 patients, true-negative and false-negative in 6, 15 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG SPECT/CT were 59.5%, 75% and 62.2%, respectively. Twenty six patients had positive findings on 18F-FDG PET/CT scans, 23 true positive in 26 (26/41) patients, false positive in 3 patients, true-negative and false-negative in 9, 6 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 79.3%, 81.8% and 78.1%, respectively. Clinical management changed for 13 (29%) of 45 patients by 18F-FDG SPECT/CT, 14 (34%) of 41 patients by 18F-FDG PET/CT including surgery, radiation therapy, or multikinase inhibitor. Based on the retrospective analysis of 86 patients, 18F-FDG SPECT/CT has lower sensitivity in the diagnosis of DTC recurrence with elevated Tg and negative iodine-131scan to 18F-FDG PET/CT. The clinical application of FDG SPECT/CT is then limited and cannot replace PET/CT.
Provost, Karine; Leblond, Antoine; Gauthier-Lemire, Annie; Filion, Édith; Bahig, Houda; Lord, Martin
2017-09-01
Planar perfusion scintigraphy with 99m Tc-labeled macroaggregated albumin is often used for pretherapy quantification of regional lung perfusion in lung cancer patients, particularly those with poor respiratory function. However, subdividing lung parenchyma into rectangular regions of interest, as done on planar images, is a poor reflection of true lobar anatomy. New tridimensional methods using SPECT and SPECT/CT have been introduced, including semiautomatic lung segmentation software. The present study evaluated inter- and intraobserver agreement on quantification using SPECT/CT software and compared the results for regional lung contribution obtained with SPECT/CT and planar scintigraphy. Methods: Thirty lung cancer patients underwent ventilation-perfusion scintigraphy with 99m Tc-macroaggregated albumin and 99m Tc-Technegas. The regional lung contribution to perfusion and ventilation was measured on both planar scintigraphy and SPECT/CT using semiautomatic lung segmentation software by 2 observers. Interobserver and intraobserver agreement for the SPECT/CT software was assessed using the intraclass correlation coefficient, Bland-Altman plots, and absolute differences in measurements. Measurements from planar and tridimensional methods were compared using the paired-sample t test and mean absolute differences. Results: Intraclass correlation coefficients were in the excellent range (above 0.9) for both interobserver and intraobserver agreement using the SPECT/CT software. Bland-Altman analyses showed very narrow limits of agreement. Absolute differences were below 2.0% in 96% of both interobserver and intraobserver measurements. There was a statistically significant difference between planar and SPECT/CT methods ( P < 0.001) for quantification of perfusion and ventilation for all right lung lobes, with a maximal mean absolute difference of 20.7% for the right middle lobe. There was no statistically significant difference in quantification of perfusion and ventilation for the left lung lobes using either method; however, absolute differences reached 12.0%. The total right and left lung contributions were similar for the two methods, with a mean difference of 1.2% for perfusion and 2.0% for ventilation. Conclusion: Quantification of regional lung perfusion and ventilation using SPECT/CT-based lung segmentation software is highly reproducible. This tridimensional method yields statistically significant differences in measurements for right lung lobes when compared with planar scintigraphy. We recommend that SPECT/CT-based quantification be used for all lung cancer patients undergoing pretherapy evaluation of regional lung function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
SU-E-I-20: Dead Time Count Loss Compensation in SPECT/CT: Projection Versus Global Correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siman, W; Kappadath, S
Purpose: To compare projection-based versus global correction that compensate for deadtime count loss in SPECT/CT images. Methods: SPECT/CT images of an IEC phantom (2.3GBq 99mTc) with ∼10% deadtime loss containing the 37mm (uptake 3), 28 and 22mm (uptake 6) spheres were acquired using a 2 detector SPECT/CT system with 64 projections/detector and 15 s/projection. The deadtime, Ti and the true count rate, Ni at each projection, i was calculated using the monitor-source method. Deadtime corrected SPECT were reconstructed twice: (1) with projections that were individually-corrected for deadtime-losses; and (2) with original projections with losses and then correcting the reconstructed SPECTmore » images using a scaling factor equal to the inverse of the average fractional loss for 5 projections/detector. For both cases, the SPECT images were reconstructed using OSEM with attenuation and scatter corrections. The two SPECT datasets were assessed by comparing line profiles in xyplane and z-axis, evaluating the count recoveries, and comparing ROI statistics. Higher deadtime losses (up to 50%) were also simulated to the individually corrected projections by multiplying each projection i by exp(-a*Ni*Ti), where a is a scalar. Additionally, deadtime corrections in phantoms with different geometries and deadtime losses were also explored. The same two correction methods were carried for all these data sets. Results: Averaging the deadtime losses in 5 projections/detector suffices to recover >99% of the loss counts in most clinical cases. The line profiles (xyplane and z-axis) and the statistics in the ROIs drawn in the SPECT images corrected using both methods showed agreement within the statistical noise. The count-loss recoveries in the two methods also agree within >99%. Conclusion: The projection-based and the global correction yield visually indistinguishable SPECT images. The global correction based on sparse sampling of projections losses allows for accurate SPECT deadtime loss correction while keeping the study duration reasonable.« less
Nakai, Motoki; Sato, Hirotatsu; Sato, Morio; Ikoma, Akira; Sonomura, Tetsuo; Nishimura, Yoshiharu; Okamura, Yoshitaka
2015-01-01
The purpose of this study was to assess the utility of (99m)Tc-human serum albumin diethylenetriamine pentaacetic acid ((99m)Tc-HSAD) SPECT in the detection of endoleaks after endovascular abdominal aortic aneurysm repair. Fifteen patients (11 men, four women) with aneurysm sac expansion of 5 mm or greater after endovascular abdominal aortic aneurysm repair underwent three-phase CT, (99m)Tc-HSAD SPECT, and CT during aortography. Sensitivity calculations for three-phase CT and (99m)Tc-HSAD SPECT were performed with CT during aortography as the reference standard. The volume of each endoleak was measured with CT during aortography. Seven subjects underwent embolization with N-butyl cyanoacrylate (NBCA)-Lipiodol (ethiodized oil, Guerbet and metallic coils. Three-phase CT and (99m)Tc-HSAD SPECT were repeated after embolization to assess their efficacy. Endoleaks were interpreted as perigraft radioisotope accumulation in 12 patients (80.0%) on (99m)Tc-HSAD SPECT images, in 13 patients (86.7%) on three-phase CT images, and in 15 patients (100%) on CT during aortography. The mean endoleak volume visualized with (99m)Tc-HSAD SPECT was 8.37 cm(3) (range, 5.2-15.1 cm(3)), and the volume not visualized was 3.47 cm(3) (2.5-4.6 cm(3)), a statistically significant difference (p = 0.019). In two patients, (99m)Tc-HSAD SPECT depicted endoleaks evident at delayed phase CT during aortography but not at three-phase CT, suggesting they were slow-filling endoleaks. Accumulation of (99m)Tc-HSAD corresponding to endoleaks disappeared after embolization, but CT evaluation of embolization was impeded by artifacts of NBCA-Lipiodol and metallic coils. Technetium-99m-labeled HSAD SPECT proved less sensitive than three-phase CT but depicted endoleaks with volumes 5.2 cm(3) or greater as perigraft radioisotope accumulation. Slow-filling endoleaks can be visualized with (99m)Tc-HSAD SPECT, which can be used to evaluate the efficacy of embolization.
Barbagelata, Alejandro; Di Carli, Marcelo F; Califf, Robert M; Garg, Jyotsna; Birnbaum, Yochai; Grinfeld, Liliana; Gibbons, Raymond J; Granger, Christopher B; Goodman, Shaun G; Wagner, Galen S; Mahaffey, Kenneth W
2005-10-01
Noninvasive methods are needed to evaluate reperfusion success in patients with acute myocardial infarction (MI). The AMISTAD trial was analyzed to compare MI size and myocardial salvage determined by electrocardiogram (ECG) with technetium Tc 99m sestamibi single-photon emission computerized tomography (SPECT) imaging. Of 236 patients enrolled in AMISTAD, 166 (70 %) with no ECG confounding factors and no prior MI were included in this analysis. Of these, group 1 (126 patients, 53%) had final infarct size (FIS) available by both ECG and SPECT. Group 2 (56 patients, 24%) had myocardium at risk, FIS, and salvage index (SI) assessed by both SPECT and ECG techniques. Aldrich/Clemmensen scores for myocardium at risk and the Selvester QRS score for final MI size were used. Salvage index was calculated as follows: SI = (myocardium at risk-FIS)/(myocardium at risk). In group 1, FIS was 15% (6, 24) as measured by ECG and 11% (2, 27) as measured by SPECT. In the adenosine group, FIS was 12% (6, 21) and 11% (2, 22). In the placebo group, FIS was 16.5% (7.5, 24) and 11.5% (3.0, 38.5) by ECG and SPECT, respectively. The overall correlation between SPECT and ECG for FIS was 0.58 (P = .0001): 0.60 in the placebo group (P = .0001) and 0.54 (P = .0001) in the adenosine group. In group 2, myocardium at risk was 23% (17, 30) and 26% (10, 50) with ECG and SPECT, respectively (P = .0066). Final infarct size was 17% (6, 21) and 12% (1, 24) (P < .0001). The SI was 29% (-7, 57) and 46% (15, 79) with ECG and SPECT, respectively (P = .0510). The ECG measurement of infarct size has a moderate relationship with SPECT infarct size measurements in the population with available assessments. This ECG algorithm must further be validated on clinical outcomes.
Schmidkonz, Christian; Cordes, Michael; Beck, Michael; Goetz, Theresa Ida; Schmidt, Daniela; Prante, Olaf; Bäuerle, Tobias; Cavallaro, Alexander; Uder, Michael; Wullich, Bernd; Goebell, Peter; Kuwert, Torsten; Ritt, Philipp
2018-06-19
We investigated the role of Tc-MIP-1404 (Progenics Pharmaceuticals, Inc, New York, NY) SPECT/CT of PSMA expression in the assessment of treatment response in patients with metastatic prostate cancer. We retrospectively analyzed Tc-MIP-1404 SPECT/CT scans from 28 patients with metastatic prostate cancer examined before initiation and after completion of therapy. Eight of these patients had been treated with androgen deprivation therapy, 10 with docetaxel, and another 10 with external beam radiotherapy. On the CT images from SPECT/CT, treatment response was assessed according to RECIST 1.1 criteria; independently from that analysis, maximal standardized uptake values (SUVmax) were quantified in representative tumor lesions and treatment response assumed at differences in SUVmax greater than 30%. Radiographic response assessment was correlated to biochemical response (BR) based on prostate-specific antigen serum levels. The concordance rate between SPECT and BR was 75% (95% confidence interval [CI], 0.55-0.89) (Cohen κ = 0.57; 95% CI, 0.29-0.85; P ≤ 0.01), higher than for that between SPECT and CT with 57% (95% CI, 0.37-0.76) (κ = 0.40; 95% CI, 0.14-0.65; P ≤ 0.01), as well as that between CT and BR with 50% (95% CI, 0.31-0.69) (κ = 0.31; 95% CI, 0.06-0.57, P ≤ 0.05). Discordant findings between SPECT and CT were most likely due to limitations of CT in assessing metastases in lymph nodes, as well as bone involvement, which was sometimes not detectable on CT scans. The high agreement between treatment response, as assessed by Tc-MIP-1404 SPECT/CT and BR, suggests a possible role of that imaging tool for monitoring treatment in metastatic prostate cancer. Larger, ideally prospective trials are needed to help to reveal the full potential of SPECT imaging of PSMA expression in that regard.
Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji
2013-01-01
Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996
NASA Astrophysics Data System (ADS)
Tobon-Gomez, C.; Bijnens, B. H.; Huguet, M.; Sukno, F.; Moragas, G.; Frangi, A. F.
2009-02-01
Gated single photon emission tomography (gSPECT) is a well-established technique used routinely in clinical practice. It can be employed to evaluate global left ventricular (LV) function of a patient. The purpose of this study is to assess LV systolic and diastolic function from gSPECT datasets in comparison with cardiac magnetic resonance imaging (CMR) measurements. This is achieved by applying our recently implemented 3D active shape model (3D-ASM) segmentation approach for gSPECT studies. This methodology allows for generation of 3D LV meshes for all cardiac phases, providing volume time curves and filling rate curves. Both systolic and diastolic functional parameters can be derived from these curves for an assessment of patient condition even at early stages of LV dysfunction. Agreement of functional parameters, with respect to CMR measurements, were analyzed by means of Bland-Altman plots. The analysis included subjects presenting either LV hypertrophy, dilation or myocardial infarction.
Development and validation of technique for in-vivo 3D analysis of cranial bone graft survival
NASA Astrophysics Data System (ADS)
Bernstein, Mark P.; Caldwell, Curtis B.; Antonyshyn, Oleh M.; Ma, Karen; Cooper, Perry W.; Ehrlich, Lisa E.
1997-05-01
Bone autografts are routinely employed in the reconstruction of facial deformities resulting from trauma, tumor ablation or congenital malformations. The combined use of post- operative 3D CT and SPECT imaging provides a means for quantitative in vivo evaluation of bone graft volume and osteoblastic activity. The specific objectives of this study were: (1) Determine the reliability and accuracy of interactive computer-assisted analysis of bone graft volumes based on 3D CT scans; (2) Determine the error in CT/SPECT multimodality image registration; (3) Determine the error in SPECT/SPECT image registration; and (4) Determine the reliability and accuracy of CT-guided SPECT uptake measurements in cranial bone grafts. Five human cadaver heads served as anthropomorphic models for all experiments. Four cranial defects were created in each specimen with inlay and onlay split skull bone grafts and reconstructed to skull and malar recipient sites. To acquire all images, each specimen was CT scanned and coated with Technetium doped paint. For purposes of validation, skulls were landmarked with 1/16-inch ball-bearings and Indium. This study provides a new technique relating anatomy and physiology for the analysis of cranial bone graft survival.
A new collimator for I-123-IMP SPECT imaging of the brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyamada, H.; Fukukita, H.; Tanaka, E.
1985-05-01
At present, commercially available I-123-IMP is contaminated with I-124 and its concentration on the assay date is said to be approximately 5%. Therefore, the application of medium energy parallel hole collimator (MEPC) used in many places for SPECT results in deterioration of the image quality. Recently, the authors have developed a new collimator for I-123-IMP SPECT imaging comprised of 4 slat type units; ultrahigh resolution (UHR), high resolution (HR), high sensitivity (HS), and ultrahigh sensitivity (UHS). The slit width/septum thickness in mm for UHR, HR, HS, and UHS are 0.9/0.5, 1.5/0.85, 3.2/1.5, and 5.2/2.0, respectively. In practice, either UHR ormore » HR is set to the detector (Shimadzu LFOV-E, modified type) together with either HS or UHS. The former is always set to the detector with the slit direction parallel to the rotation axis, and the latter is set with its slit direction at a right angle to the former. This is based on an idea that, upon sacrifice of resolution to some extent, sensitivity can be gained on the axial direction while the resolution on the transaxial slice will still be sufficiently preserved. Resolutions (transaxial direction/axial direction) in FWHM (mm) for each combination (UHR-HS, UHR-UHS, HR-HS, and HR-UHS) were 15.9/31.4, 15.9/36.5,23.2/33.3, and 23.9/40.7, respectively, whereas the resolution of MEPC was 28.7/29.5. On the other hand, relative sensitivities to MEPC were 0.57, 0.86, 0.80, and 1.16. The authors conclude that the combination of UHR and HS is best suited for clinical practice and, at present they are obtaining I-123-IMP SPECT images of good quality.« less
Martínez, A; Zerdoud, S; Mery, E; Bouissou, E; Ferron, G; Querleu, D
2010-12-01
Conventional lymphoscintigraphy provides planar images with little spatial information on location of pelvic sentinel lymph nodes (SLN). SPECT has better spatial resolution and, in combination with anatomic accuracy provided by CT improves SLN preoperative localization. The aim of the study was to report on the results of hybrid imaging of SLN in early cervical cancer patients treated at Claudius Regaud Cancer Center. Stages IA-IB1 cervical cancer patients undergoing preoperative SPECT/CT for SLN detection were analysed. Forty-one patients were included. A 100% SLN detection rate was achieved when a combined technique (radiotracer and blue dye) was used. At least one SLN was clearly visualized by SPECT/CT in 39 of 41 patients (95%) and full anatomic concordance with intraoperative anatomical location of SLN was found in 37 of the 39 patients with at least one SLN identified by SPECT/CT (95%). Location of removed SLN included the external and internal iliac area in 88% patients, the common iliac area in 10.5%, and the inframesenteric para-aortic area in 1.5%. No SLN was found in the infrarenal para-aortic region. Lymph node involvement was identified in 5 patients (12.1%). SLN correctly predicted lymph node involvement in all node-positive patients. However, SPECT/CT failed to identify 1 of the 5 metastatic SLN. SPECT/CT accurately detected preoperative SLN topography and enhanced diagnostic sensitivity of SLN imaging, improving surgical approach to patients with cervical cancer staging. Diagnostic quality of anatomic landmarks of CT images of SPECT/CT could be further improved by the use of contrast injected CT. Copyright © 2010 Elsevier Inc. All rights reserved.
Agostini, Denis; Roule, Vincent; Nganoa, Catherine; Roth, Nathaniel; Baavour, Raphael; Parienti, Jean-Jacques; Beygui, Farzin; Manrique, Alain
2018-07-01
We assessed the feasibility of myocardial blood flow (MBF) and flow reserve (MFR) estimation using dynamic SPECT with a novel CZT camera in patients with stable CAD, in comparison with 15 O-water PET and fractional flow reserve (FFR). Thirty patients were prospectively included and underwent FFR measurements in the main coronary arteries (LAD, LCx, RCA). A stenosis ≥50% was considered obstructive and a FFR abnormal if ≤0.8. All patients underwent a dynamic rest/stress 99m Tc-sestamibi CZT-SPECT and 15 O-water PET for MBF and MFR calculation. Net retention kinetic modeling was applied to SPECT data to estimate global uptake values, and MBF was derived using Leppo correction. Ischemia by PET and CZT-SPECT was considered present if MFR was lower than 2 and 2.1, respectively. CZT-SPECT yielded higher stress and rest MBF compared to PET for global and LAD and LCx territories, but not in RCA territory. MFR was similar in global and each vessel territory for both modalities. The sensitivity, specificity, accuracy, positive and negative predictive value of CZT-SPECT were, respectively, 83.3, 95.8, 93.3, 100 and 85.7% for the detection of ischemia and 58.3, 84.6, 81.1, 36.8 and 93% for the detection of hemodynamically significant stenosis (FFR ≤ 0.8). Dynamic 99m Tc-sestamibi CZT-SPECT was technically feasible and provided similar MFR compared to 15 O-water PET and high diagnostic value for detecting impaired MFR and abnormal FFR in patients with stable CAD.
Gorin, Michael A; Rowe, Steven P; Baras, Alexander S; Solnes, Lilja B; Ball, Mark W; Pierorazio, Phillip M; Pavlovich, Christian P; Epstein, Jonathan I; Javadi, Mehrbod S; Allaf, Mohamad E
2016-03-01
Nuclear imaging offers a potential noninvasive means of determining the histology of renal tumors. The aim of this study was to evaluate the accuracy of technetium-99m ((99m)Tc)-sestamibi single-photon emission computed tomography/x-ray computed tomography (SPECT/CT) for the differentiation of oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) from other renal tumor histologies. In total, 50 patients with a solid clinical T1 renal mass were imaged with (99m)Tc-sestamibi SPECT/CT prior to surgical resection. Preoperative SPECT/CT scans were reviewed by two blinded readers, and their results were compared with centrally reviewed surgical pathology data. Following surgery, 6 (12%) tumors were classified as renal oncocytomas and 2 (4%) as HOCTs. With the exception of 1 (2%) angiomyolipoma, all other tumors were renal cell carcinomas (82%). (99m)Tc-sestamibi SPECT/CT correctly identified 5 of 6 (83.3%) oncocytomas and 2 of 2 (100%) HOCTs, resulting in an overall sensitivity of 87.5% (95% confidence interval [CI], 47.4-99.7%). Only two tumors were falsely positive on SPECT/CT, resulting in a specificity of 95.2% (95% CI, 83.8-99.4%). In summary, (99m)Tc-sestamibi SPECT/CT is a promising imaging test for the noninvasive diagnosis of renal oncocytomas and HOCTs. We found that the imaging test (99m)Tc-sestamibi SPECT/CT can be used to accurately diagnose two types of benign kidney tumors. This test may be eventually used to help better evaluate patients diagnosed with a renal tumor. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.
MR-based keyhole SPECT for small animal imaging
Lee, Keum Sil; Roeck, Werner W; Gullberg, Grant T; Nalcioglu, Orhan
2011-01-01
The rationale for multi-modality imaging is to integrate the strengths of different imaging technologies while reducing the shortcomings of an individual modality. The work presented here proposes a limited-field-of-view (LFOV) SPECT reconstruction technique that can be implemented on a multi-modality MR/SPECT system that can be used to obtain simultaneous MRI and SPECT images for small animal imaging. The reason for using a combined MR/SPECT system in this work is to eliminate any possible misregistration between the two sets of images when MR images are used as a priori information for SPECT. In nuclear imaging the target area is usually smaller than the entire object; thus, focusing the detector on the LFOV results in various advantages including the use of a smaller nuclear detector (less cost), smaller reconstruction region (faster reconstruction) and higher spatial resolution when used in conjunction with pinhole collimators with magnification. The MR/SPECT system can be used to choose a region of interest (ROI) for SPECT. A priori information obtained by the full field-of-view (FOV) MRI combined with the preliminary SPECT image can be used to reduce the dimensions of the SPECT reconstruction by limiting the computation to the smaller FOV while reducing artifacts resulting from the truncated data. Since the technique is based on SPECT imaging within the LFOV it will be called the keyhole SPECT (K-SPECT) method. At first MRI images of the entire object using a larger FOV are obtained to determine the location of the ROI covering the target organ. Once the ROI is determined, the animal is moved inside the radiofrequency (rf) coil to bring the target area inside the LFOV and then simultaneous MRI and SPECT are performed. The spatial resolution of the SPECT image is improved by employing a pinhole collimator with magnification >1 by having carefully calculated acceptance angles for each pinhole to avoid multiplexing. In our design all the pinholes are focused to the center of the LFOV. K-SPECT reconstruction is accomplished by generating an adaptive weighting matrix using a priori information obtained by simultaneously acquired MR images and the radioactivity distribution obtained from the ROI region of the SPECT image that is reconstructed without any a priori input. Preliminary results using simulations with numerical phantoms show that the image resolution of the SPECT image within the LFOV is improved while minimizing artifacts arising from parts of the object outside the LFOV due to the chosen magnification and the new reconstruction technique. The root-mean-square-error (RMSE) in the out-of-field artifacts was reduced by 60% for spherical phantoms using the K-SPECT reconstruction technique and by 48.5–52.6% for the heart in the case with the MOBY phantom. The KSPECT reconstruction technique significantly improved the spatial resolution and quantification while reducing artifacts from the contributions outside the LFOV as well as reducing the dimension of the reconstruction matrix. PMID:21220840
Tamm, Alexander S; Abele, Jonathan T
2017-02-01
Spondylodiscitis has historically been a difficult clinical diagnosis. Two imaging techniques that address this problem are magnetic resonance imaging (MRI) and combined bone ( 99m Tc-methylene diphosphonate) and gallium-67 single-photon emission computed tomography-computed tomography (SPECT-CT). Their accuracies have not been adequately compared. The purpose of this study is to compare the sensitivities and specificities of bone and gallium SPECT-CT and MRI in infectious spondylodiscitis. This retrospective study assessed all patients who underwent a bone or gallium SPECT-CT of the spine to assess for infectious spondylodiscitis from January 1, 2010, to May 2, 2012, at a single tertiary care centre. Thirty-four patients (23 men; average 62 ± 14 years of age) were included. The results of the bone or gallium SPECT-CT were compared against MRI for all patients in the cohort who underwent an MRI within 12 weeks of the SPECT-CT. A diagnosis of spondylodiscitis in the discharge summary was considered the reference standard, and was based on a combination of clinical scenario, response to therapy, imaging, or microbiology. Spondylodiscitis was diagnosed in 18 patients and excluded in 16. Bone or gallium SPECT-CT and MRI had similar (P > .05; κ = 0.74) sensitivities (0.94 vs 0.94), specificities (1.00 vs 1.00), positive predictive values (1.00 vs 1.00), negative predictive values (0.94 vs 0.80), and accuracies (0.97 vs 0.95) when compared to the reference standard. Although MRI remains the initial modality of choice in diagnosing spondylodiscitis, bone and gallium SPECT-CT appears diagnostically equivalent and should be considered a viable supplementary or alternative imaging modality particularly if there is contraindication or inaccessibility to MRI. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Takenaka, Daisuke; Onishi, Yumiko; Matsumoto, Keiko; Matsumoto, Sumiaki; Maniwa, Yoshimasa; Yoshimura, Masahiro; Nishimura, Yoshihiro; Sugimura, Kazuro
2011-01-01
The purpose of this study was to compare predictive capabilities for postoperative lung function in non-small cell lung cancer (NSCLC) patients of the state-of-the-art radiological methods including perfusion MRI, quantitative CT and SPECT/CT with that of anatomical method (i.e. qualitative CT) and traditional nuclear medicine methods such as planar imaging and SPECT. Perfusion MRI, CT, nuclear medicine study and measurements of %FEV(1) before and after lung resection were performed for 229 NSCLC patients (125 men and 104 women). For perfusion MRI, postoperative %FEV(1) (po%FEV(1)) was predicted from semi-quantitatively assessed blood volumes within total and resected lungs, for quantitative CT, it was predicted from the functional lung volumes within total and resected lungs, for qualitative CT, from the number of segments of total and resected lungs, and for nuclear medicine studies, from uptakes within total and resected lungs. All SPECTs were automatically co-registered with CTs for preparation of SPECT/CTs. Predicted po%FEV(1)s were then correlated with actual po%FEV(1)s, which were measured %FEV(1)s after operation. The limits of agreement were also evaluated. All predicted po%FEV(1)s showed good correlation with actual po%FEV(1)s (0.83≤r≤0.88, p<0.0001). Perfusion MRI, quantitative CT and SPECT/CT demonstrated better correlation than other methods. The limits of agreement of perfusion MRI (4.4±14.2%), quantitative CT (4.7±14.2%) and SPECT/CT (5.1±14.7%) were less than those of qualitative CT (6.0±17.4%), planar imaging (5.8±18.2%), and SPECT (5.5±16.8%). State-of-the-art radiological methods can predict postoperative lung function in NSCLC patients more accurately than traditional methods. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Takenaka, Daisuke; Ohno, Yoshiharu; Koyama, Hisanobu; Nogami, Munenobu; Onishi, Yumiko; Matsumoto, Keiko; Yoshikawa, Takeshi; Matsumoto, Sumiaki; Sugimura, Kazuro
2010-06-01
To directly compare the capabilities of perfusion scan, SPECT, co-registered SPECT/CT, and quantitatively and qualitatively assessed MDCT (i.e. quantitative CT and qualitative CT) for predicting postoperative clinical outcome for lung volume reduction surgery (LVRS) candidates. Twenty-five consecutive candidates (19 men and six women, age range: 42-72 years) for LVRS underwent preoperative CT and perfusion scan with SPECT. Clinical outcome of LVRS for all subjects was also assessed by determining the difference between pre- and postoperative forced expiratory volume in 1s (FEV(1)) and 6-min walking distance (6MWD). All SPECT examinations were performed on a SPECT scanner, and co-registered to thin-section CT by using commercially available software. On planar imaging, SPECT and SPECT/CT, upper versus lower zone or lobe ratios (U/Ls) were calculated from regional uptakes between upper and lower lung fields in the operated lung. On quantitatively assessed CT, U/L for all subjects was assessed from regional functional lung volumes. On qualitatively assessed CT, planar imaging, SPECT and co-registered SPECT/CT, U/Ls were assessed with a 4-point visual scoring system. To compare capabilities of predicting clinical outcome, each U/L was statistically correlated with the corresponding clinical outcome. Significantly fair or moderate correlations were observed between quantitatively and qualitatively assessed U/Ls obtained with all four methods and clinical outcomes (-0.60
Chen, Chia-Lin; Wang, Yuchuan; Lee, Jason J S; Tsui, Benjamin M W
2008-07-01
The authors developed and validated an efficient Monte Carlo simulation (MCS) workflow to facilitate small animal pinhole SPECT imaging research. This workflow seamlessly integrates two existing MCS tools: simulation system for emission tomography (SimSET) and GEANT4 application for emission tomography (GATE). Specifically, we retained the strength of GATE in describing complex collimator/detector configurations to meet the anticipated needs for studying advanced pinhole collimation (e.g., multipinhole) geometry, while inserting the fast SimSET photon history generator (PHG) to circumvent the relatively slow GEANT4 MCS code used by GATE in simulating photon interactions inside voxelized phantoms. For validation, data generated from this new SimSET-GATE workflow were compared with those from GATE-only simulations as well as experimental measurements obtained using a commercial small animal pinhole SPECT system. Our results showed excellent agreement (e.g., in system point response functions and energy spectra) between SimSET-GATE and GATE-only simulations, and, more importantly, a significant computational speedup (up to approximately 10-fold) provided by the new workflow. Satisfactory agreement between MCS results and experimental data were also observed. In conclusion, the authors have successfully integrated SimSET photon history generator in GATE for fast and realistic pinhole SPECT simulations, which can facilitate research in, for example, the development and application of quantitative pinhole and multipinhole SPECT for small animal imaging. This integrated simulation tool can also be adapted for studying other preclinical and clinical SPECT techniques.
Castini, D; Bestetti, A; Garbin, M; Di Leo, C; Bigi, R; Sponzilli, C; Concardi, G; Gioventù, M; Tarolo, G L; Lombardi, F; Fiorentini, C
1999-09-01
The presence of tissue viability is of great importance in the prognostic work-up of patients recovering from acute myocardial infarction. However, uncertainty still exists concerning the optimal tool for its assessment. The present study was undertaken in order to compare low-dose dobutamine echocardiography and rest-redistribution thallium SPECT for predicting late improvement of regional left ventricular function after acute myocardial infarction. Fifteen patients undergoing coronary angiography, low-dose dobutamine echocardiography and rest-redistribution thallium SPECT after thrombolyzed anterior acute myocardial infarction were studied. A 3 month follow-up echocardiogram was performed in all patients and 9 underwent coronary revascularization. A significant (> or = 70%) residual stenosis of the infarct-related artery was present in 14 patients, whilst a total occlusion was observed in 1. At 3 month follow-up, 41% of the dyssynergic segments improved. The sensitivity, specificity and accuracy for late wall motion improvement was 61, 89 and 77% for low-dose dobutamine echocardiography and, respectively, 76, 45 and 58% for rest-redistribution thallium SPECT. Tissue viability was detected in 65 and 31% of dyssynergic segments by rest-redistribution thallium SPECT and low-dose dobutamine echocardiography, respectively (p < 0.001). The agreement between the two techniques was 48%. Low-dose dobutamine echocardiography is more accurate than rest-redistribution thallium SPECT for predicting 3 month wall motion improvement in patients with acute anterior myocardial infarction, mainly due to its significantly better specificity.
Monteiro, Paulo Henrique Silva; de Souza, Thiago Ferreira; Moretti, Maria Luiza; Resende, Mariangela Ribeiro; Mengatti, Jair; de Lima, Mariana da Cunha Lopes; Santos, Allan Oliveira; Ramos, Celso Darío
2017-01-01
To evaluate SPECT/CT with radiolabeled somatostatin analogues (RSAs) in systemic granulomatous infections in comparison with gallium-67 ( 67 Ga) citrate scintigraphy. We studied 28 patients with active systemic granulomatous infections, including tuberculosis, paracoccidioidomycosis, pneumocystosis, cryptococcosis, aspergillosis, leishmaniasis, infectious vasculitis, and an unspecified opportunistic infection. Of the 28 patients, 23 had started specific treatment before the study outset. All patients underwent whole-body SPECT/CT imaging: 7 after injection of 99m Tc-EDDA-HYNIC-TOC, and 21 after injection of 111 In-DTPA-octreotide. All patients also underwent 67 Ga citrate imaging, except for one patient who died before the 67 Ga was available. In 20 of the 27 patients who underwent imaging with both tracers, 27 sites of active disease were detected by 67 Ga citrate imaging and by SPECT/CT with an RSA. Both tracers had negative results in the other 7 patients. RSA uptake was visually lower than 67 Ga uptake in 11 of the 20 patients with positive images and similar to 67 Ga uptake in the other 9 patients. The only patient who did not undergo 67 Ga scintigraphy underwent 99m Tc-EDDA-HYNIC-TOC SPECT/CT-guided biopsy of a lung cavity with focal RSA uptake, which turned to be positive for aspergillosis. SPECT/CT with 99m Tc-EDDA-HYNIC-TOC or 111 In-DTPA-octreotide seems to be a good alternative to 67 Ga citrate imaging for the evaluation of patients with systemic granulomatous disease.
The AdaptiSPECT Imaging Aperture
Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.
2015-01-01
In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577
Effects of video game playing on cerebral blood flow in young adults: a SPECT study.
Chou, Yuan-Hwa; Yang, Bang-Hung; Hsu, Ju-Wei; Wang, Shyh-Jen; Lin, Chun-Lung; Huang, Kai-Lin; Chien Chang, Alice; Lee, Shin-Min
2013-04-30
To study the impact of video game playing on the human brain, the effects of two video games playing on cerebral blood flow (CBF) in young adults were determined. Thirty healthy subjects comprising 18 males and 12 females who were familiar with video game playing were recruited. Each subject underwent three sessions of single photon emission computed tomography (SPECT) with a bolus injection of 20 mCi (99m)Tc ECD IV to measure their CBF. The first measurement was performed as baseline, the second and third measurements were performed after playing two different video games for 30 min, respectively. Statistic parametric mapping (SPM2) with Matlab 6.5 implemented on a personal computer was used for image analysis. CBF was significantly decreased in the prefrontal cortex and significantly increased in the temporal and occipital cortices after both video games playing. Furthermore, decreased CBF in the anterior cingulate cortex (ACC) which was significantly correlated with the number of killed characters was found after the violent game playing. The major finding of hypo-perfusion in prefrontal regions after video game playing is consistent with a previous study showing reduced or abnormal prefrontal cortex functions after video game playing. The second finding of decreased CBF in the ACC after playing the violent video game provides support for a previous hypothesis that the ACC might play a role in regulating violent behavior. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Sibille, Louis; Chambert, Benjamin; Alonso, Sandrine; Barrau, Corinne; D'Estanque, Emmanuel; Al Tabaa, Yassine; Collombier, Laurent; Demattei, Christophe; Kotzki, Pierre-Olivier; Boudousq, Vincent
2016-07-01
The purpose of this study was to compare a routine bone SPECT/CT protocol using CT reconstructed with filtered backprojection (FBP) with an optimized protocol using low-dose CT images reconstructed with adaptive statistical iterative reconstruction (ASiR). In this prospective study, enrolled patients underwent bone SPECT/CT, with 1 SPECT acquisition followed by 2 randomized CT acquisitions: FBP CT (FBP; noise index, 25) and ASiR CT (70% ASiR; noise index, 40). The image quality of both attenuation-corrected SPECT and CT images was visually (5-point Likert scale, 2 interpreters) and quantitatively (contrast ratio [CR] and signal-to-noise ratio [SNR]) estimated. The CT dose index volume, dose-length product, and effective dose were compared. Seventy-five patients were enrolled in the study. Quantitative attenuation-corrected SPECT evaluation showed no inferiority for contrast ratio and SNR issued from FBP CT or ASiR CT (respectively, 13.41 ± 7.83 vs. 13.45 ± 7.99 and 2.33 ± 0.83 vs. 2.32 ± 0.84). Qualitative image analysis showed no difference between attenuation-corrected SPECT images issued from FBP CT or ASiR CT for both interpreters (respectively, 3.5 ± 0.6 vs. 3.5 ± 0.6 and 3.6 ± 0.5 vs. 3.6 ± 0.5). Quantitative CT evaluation showed no inferiority for SNR between FBP and ASiR CT images (respectively, 0.93 ± 0.16 and 1.07 ± 0.17). Qualitative image analysis showed no quality difference between FBP and ASiR CT images for both interpreters (respectively, 3.8 ± 0.5 vs. 3.6 ± 0.5 and 4.0 ± 0.1 vs. 4.0 ± 0.2). Mean CT dose index volume, dose-length product, and effective dose for ASiR CT (3.0 ± 2.0 mGy, 148 ± 85 mGy⋅cm, and 2.2 ± 1.3 mSv) were significantly lower than for FBP CT (8.5 ± 3.7 mGy, 365 ± 160 mGy⋅cm, and 5.5 ± 2.4 mSv). The use of 70% ASiR blending in bone SPECT/CT can reduce the CT radiation dose by 60%, with no sacrifice in attenuation-corrected SPECT and CT image quality, compared with the conventional protocol using FBP CT reconstruction technique. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Effective diagnosis of Alzheimer’s disease by means of large margin-based methodology
2012-01-01
Background Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer’s Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. Methods It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. Results Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. Conclusions All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET). PMID:22849649
Effective diagnosis of Alzheimer's disease by means of large margin-based methodology.
Chaves, Rosa; Ramírez, Javier; Górriz, Juan M; Illán, Ignacio A; Gómez-Río, Manuel; Carnero, Cristobal
2012-07-31
Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).
Hasebe, Naoyuki; Moroi, Masao; Nishimura, Masato; Hara, Kazuhiro; Hase, Hiroki; Hashimoto, Akiyoshi; Kumita, Shinichiro; Haze, Kazuo; Momose, Mitsuru; Nagai, Yoji; Sugimoto, Tokuichiro; Kusano, Eiji; Akiba, Takashi; Nakata, Tomoaki; Nishimura, Tsunehiko; Tamaki, Nagara; Kikuchi, Kenjiro
2008-12-01
Cardiovascular disease is the leading cause of morbidity and mortality in patients undergoing hemodialysis. Such patients frequently develop complications such as asymptomatic coronary artery disease (CAD). Accordingly, CAD must ideally be diagnosed at an early stage to improve prognosis. Although myocardial perfusion single photon emission computed tomography (SPECT) is valuable for diagnosing CAD, the stress test is not always applicable to patients on hemodialysis. Thus, we proposed a multicenter, prospective cohort study called "B-SAFE" to investigate the applicability of resting (123)I-labeled beta-methyl-iodophenylpentadecanoic acid ((123)I-BMIPP)-SPECT will be used to diagnose cardiac disease and evaluate the prognosis of hemodialysis patients by imaging myocardial fatty acid metabolism. B-SAFE began enrolling patients from June 2006 at 48 facilities. We performed (123)I-BMIPP-SPECT on 702 hemodialysis patients with risk factors for CAD until 30 November 2007 and plan to follow up for three years. The primary endpoints will be cardiac death and sudden death. This study should end in 2010.
NASA Astrophysics Data System (ADS)
Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout
2015-10-01
Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.
Late-onset social anxiety disorder following traumatic brain injury.
Chaves, Cristiano; Trzesniak, Clarissa; Derenusson, Guilherme Nogueira; Araújo, David; Wichert-Ana, Lauro; Machado-de-Sousa, João Paulo; Carlotti, Carlos Gilberto; Nardi, Antonio E; Zuardi, Antônio W; de S Crippa, José Alexandre; Hallak, Jaime E C
2012-01-01
Neuropsychiatric sequelae are the predominant long-term disability after traumatic brain injury (TBI). This study reports a case of late-onset social anxiety disorder (SAD) following TBI. A patient that was spontaneous and extroverted up to 18-years-old started to exhibit significant social anxiety symptoms. These symptoms became progressively worse and he sought treatment at age 21. He had a previous history of traumatic brain injury (TBI) at age 17. Neuroimaging investigations (CT, SPECT and MRI) showed a bony protuberance on the left frontal bone, with mass effect on the left frontal lobe. He had no neurological signs or symptoms. The patient underwent neurosurgery with gross total resection of the lesion and the pathological examination was compatible with intradiploic haematoma. Psychiatric symptoms may be the only findings in the initial manifestation of slowly growing extra-axial space-occupying lesions that compress the frontal lobe from the outside. Focal neurological symptoms may occur only when the lesion becomes large. This case report underscores the need for careful exclusion of general medical conditions and TBI history in cases of late-onset SAD and may also contribute to the elucidation of the neurobiology of this disorder.
In vivo evidence for long-term CNS toxicity, associated with chronic binge use of methamphetamine.
Chung, Yong An; Peterson, Bradley S; Yoon, Sujung J; Cho, Sung-Nam; Chai, Sukhi; Jeong, Jaeseung; Kim, Dai Jin
2010-09-01
The aim of this study was to examine disturbances in regional cerebral blood flow (rCBF) associated with methamphetamine abuse. Using Single Photon Emission Computed Tomography (SPECT), rCBF was measured in 20 men who had previously injected methamphetamine intravenously for over 30 months and who were now abstinent for a minimum of 9 months and for an average of 2 years. Values were compared with those in 12 healthy men who had never injected methamphetamine. While rCBF was significantly and disproportionately reduced in subcortical and dorsal cortical brain regions, including the striatum, thalamus, cingulum, mesiodorsal prefrontal cortex, and pons (all t's>8.3 after global normalization, corrected p's<0.001), whole brain CBF was also significantly reduced in the former methamphetamine users. Binge use of methamphetamine is associated with long-term changes in both global and regional blood flows, likely representing severe and enduring neural toxicity of monoaminergic neurotransmitter systems in the brain, producing a pattern of hypoperfusion that resembles patterns reported previously for persons with atypical Parkinson's disease. These findings suggest that methamphetamine abusers may be possibly at increased risk for neurodegenerative diseases later in life. Copyright 2010. Published by Elsevier Ireland Ltd.
SPECT assessment of brain activation induced by caffeine: no effect on areas involved in dependence
Nehlig, Astrid; Armspach, Jean-Paul; Namer, Izzie J.
2010-01-01
Caffeine is not considered addictive, and in animals it does not trigger metabolic increases or dopamine release in brain areas involved in reinforcement and reward. Our objective was to measure caffeine effects on cerebral perfusion in humans using single photon emission computed tomography, with a specific focus on areas of reinforcement and reward. Two groups of nonsmoking subjects were studied, one with a low (8 subjects) and one with a high (6 subjects) daily coffee consumption. The subjects ingested 3 mg/kg caffeine or placebo in a raspberry-tasting drink, and scans were performed 45 min after ingestion. A control group of 12 healthy volunteers receiving no drink was also studied. Caffeine consumption led to a generalized, statistically nonsignificant perfusion decrease of 6% to 8%, comparable in low and high consumers. Compared with controls, low consumers displayed neuronal activation bilaterally in inferior frontal gyrusanterior insular cortex and uncus, left internal parietal cortex, right lingual gyrus, and cerebellum. In high consumers, brain activation occurred bilaterally only in hypothalamus. Thus, on a background of widespread low-amplitude perfusion decrease, caffeine activates a few regions mainly involved in the control of vigilance, anxiety, and cardiovascular regulation, but does not affect areas involved in reinforcing and reward. PMID:20623930
2012-01-01
Backgrounds We conducted a pilot study of the infusion of intravenous autologous cord blood (CB) in children with cerebral palsy (CP) to assess the safety and feasibility of the procedure as well as its potential efficacy in countering neurological impairment. Methods Patients diagnosed with CP were enrolled in this study if their parents had elected to bank their CB at birth. Cryopreserved CB units were thawed and infused intravenously over 10~20 minutes. We assessed potential efficacy over 6 months by brain magnetic resonance imaging (MRI)-diffusion tensor imaging (DTI), brain perfusion single-photon emission computed tomography (SPECT), and various evaluation tools for motor and cognitive functions. Results Twenty patients received autologous CB infusion and were evaluated. The types of CP were as follows: 11 quadriplegics, 6 hemiplegics, and 3 diplegics. Infusion was generally well-tolerated, although 5 patients experienced temporary nausea, hemoglobinuria, or urticaria during intravenous infusion. Diverse neurological domains improved in 5 patients (25%) as assessed with developmental evaluation tools as well as by fractional anisotropy values in brain MRI-DTI. The neurologic improvement occurred significantly in patients with diplegia or hemiplegia rather than quadriplegia. Conclusions Autologous CB infusion is safe and feasible, and has yielded potential benefits in children with CP. PMID:22443810
SPECT assessment of brain activation induced by caffeine: no effect on areas involved in dependence.
Nehlig, Astrid; Armspach, Jean-Paul; Namer, Izzie J
2010-01-01
Caffeine is not considered addictive, and in animals it does not trigger metabolic increases or dopamine release in brain areas involved in reinforcement and reward. Our objective was to measure caffeine effects on cerebral perfusion in humans using single photon emission computed tomography with a specific focus on areas of reinforcement and reward. Two groups of nonsmoking subjects were studied, one with a low (8 subjects) and one with a high (6 subjects) daily coffee consumption. The subjects ingested 3 mg/kg caffeine or placebo in a raspberry-tasting drink, and scans were performed 45 min after ingestion. A control group of 12 healthy volunteers receiving no drink was also studied. Caffeine consumption led to a generalized, statistically nonsignificant perfusion decrease of 6% to 8%, comparable in low and high consumers. Compared with controls, low consumers displayed neuronal activation bilaterally in inferior frontal gyrus-anterior insular cortex and uncus, left internal parietal cortex, right lingual gyrus, and cerebellum. In high consumers, brain activation occurred bilaterally only in hypothalamus. Thus, on a background of widespread low-amplitude perfusion decrease, caffeine activates a few regions mainly involved in the control of vigilance, anxiety, and cardiovascular regulation, but does not affect areas involved in reinforcing and reward.
Ventilation/perfusion single-photon emission computed tomography: a service evaluation.
Parekh, Amit; Graham, Richard; Redman, Stewart
2017-08-01
To identify the positive rate and negative predictive value (NPV) of our ventilation/perfusion (V/Q) single-photon emission computed tomography (SPECT) service as respective markers of overcalling (false positives) and undercalling (false negatives). We also identified the indeterminate rate as an indicator of the technical quality of the scans and reporter confidence. V/Q SPECT studies carried out over 5 years were classified into positive, negative and indeterminate results. Patients who had died or had pulmonary emboli on imaging within 3 months of a negative V/Q SPECT were identified as false negatives, from which the NPV was calculated. The total number of positive and indeterminate studies as a proportion of all studies was calculated as the positive and indeterminate rates. The positive rate, NPV and indeterminate rates in nonpregnant patients were 24, 98.7-100 and 3.6%, respectively. The positive rate, NPV and indeterminate rates in pregnant patients were 6.8, 100 and 2.3%, respectively. The positive rate and NPV for nonpregnant patients were similar to the published literature. This suggests that we provide a safe service. The indeterminate rate was slightly higher than the stated guidelines. The study shows that the positive rate and NPV are achievable indicators of potential overcalling and undercalling in a V/Q SPECT service.This is also one of the first studies to report a positive rate in pregnant patients undergoing V/Q SPECT that other institutions can use as a standard when evaluating their services.
Koçyiğit Deveci, Emel; Ocak, Meltem; Bozkurt, Murat Fani; Türker, Selcan; Kabasakal, Levent; Uğur, Ömer
2013-01-01
Objective: The aim of this study was to assess the diagnostic efficiency of 99mTc-EDDA/HYNIC-Octreotate in comparison with 111Inpentetrotide scintigraphy in the detection of neuroendocrine tumors. This study also evaluates the impact of SPECT-CT hybrid imaging on somatostatin receptor scintigraphy (SRS) interpretation and clinical management of these tumors. Methods: Fourteen patients were included in the study. All patients underwent a whole body and SPECT-CT imaging with both 99mTc- EDDA/HYNIC-octreotate and 111In-pentetrotide. Images were evaluated both visually and semiquantitatively. Results: On patient basis, the diagnostic results of both studies were similar. The number of lesions detected by 99mTc- EDDA/HYNICOctreotate were higher than the number of lesions detected by 111In-pentetrotide however the difference was not significant (40/43( 93%), 36/43 (83%) p=0.109). Semiquantitative analysis showed higher tumor/organ count ratios for both whole-body and SPECT 99mTc- EDDA/HYNIC-Octreotate scans. Conclusion: The results of this study suggested that, 99mTc- EDDA/HYNIC-Octreotate may be a better alternative to 111In- pentetrotide due to high image quality and lower radiation dose. SPECT/CT is a valuable tool for the assessment of neuroendocrine tumors by providing the precise anatomic localization of scintigraphic findings thus improving lesion detectability and characterization. Conflict of interest:None declared. PMID:24416622
NASA Astrophysics Data System (ADS)
Yao, Rutao; Ma, Tianyu; Shao, Yiping
2008-08-01
This work is part of a feasibility study to develop SPECT imaging capability on a lutetium oxyorthosilicate (LSO) based animal PET system. The SPECT acquisition was enabled by inserting a collimator assembly inside the detector ring and acquiring data in singles mode. The same LSO detectors were used for both PET and SPECT imaging. The intrinsic radioactivity of 176Lu in the LSO crystals, however, contaminates the SPECT data, and can generate image artifacts and introduce quantification error. The objectives of this study were to evaluate the effectiveness of a LSO background subtraction method, and to estimate the minimal detectable target activity (MDTA) of image object for SPECT imaging. For LSO background correction, the LSO contribution in an image study was estimated based on a pre-measured long LSO background scan and subtracted prior to the image reconstruction. The MDTA was estimated in two ways. The empirical MDTA (eMDTA) was estimated from screening the tomographic images at different activity levels. The calculated MDTA (cMDTA) was estimated from using a formula based on applying a modified Currie equation on an average projection dataset. Two simulated and two experimental phantoms with different object activity distributions and levels were used in this study. The results showed that LSO background adds concentric ring artifacts to the reconstructed image, and the simple subtraction method can effectively remove these artifacts—the effect of the correction was more visible when the object activity level was near or above the eMDTA. For the four phantoms studied, the cMDTA was consistently about five times of the corresponding eMDTA. In summary, we implemented a simple LSO background subtraction method and demonstrated its effectiveness. The projection-based calculation formula yielded MDTA results that closely correlate with that obtained empirically and may have predicative value for imaging applications.
Hirschmann, Michael T; Mathis, Dominic; Rasch, Helmut; Amsler, Felix; Friederich, Niklaus F; Arnold, Markus P
2013-02-01
SPECT/CT is a hybrid imaging modality, which combines a 3D scintigraphy (SPECT) and a conventional computerised tomography (CT). SPECT/CT allows accurate anatomical localisation of metabolic tracer activity. It allows the correlation of surgical factors such as tunnel position and orientation with mechanical alignment, clinical outcome and biological factors. The purpose of this study was to investigate whether the SPECT/CT tracer uptake (intensity and distribution) correlates with the stability and laxity of the knee joint and the position and orientation of the tibial and femoral tunnels in patients after anterior cruciate ligament (ACL) reconstruction. A consecutive series of knees (n=66), with symptoms of pain and/or instability after ACL reconstruction were prospectively evaluated using clinical examination and 99mTc-HDP-SPECT/CT. Clinical laxity testing was performed using the Rolimeter (Ormed, Freiburg, Germany) including Lachman testing (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), anterior drawer test (0-2 mm, 3-5 mm, 6-10 mm, >10 mm), pivot shift test (positive versus negative) and patient-based subjective instability (yes versus no). For analysis of SPECT/CT tracer uptake a previously validated SPECT/CT localisation scheme consisting of 17 tibial, nine femoral and four patellar regions on standardised axial, coronal, and sagittal slices was used. The tracer activity on SPECT/CT was localised and recorded using a 3D volumetric and quantitative analysis software. Mean, standard deviation, minimum and maximum of grading for each area of the localisation scheme were recorded. The position and orientation of the tibial and femoral tunnel was assessed using a previously published method on 3D-CT. Correlation of instability, pivot shift as well as clinical laxity testing with 99mTc-HDP-SPECT/CT tracer uptake intensity and distribution showed no significant correlation. 99mTc-HDP-SPECT/CT tracer uptake correlated significantly with the position and orientation of the ACL graft. A more horizontal femoral graft position showed significantly increased tracer uptake within the superior and posterior femoral regions. A more posteriorly-placed femoral insertion site showed significantly more tracer uptake within the femoral and tibial tunnel regions. A more vertical or a less medial tibial tunnel orientation showed significant increased uptake within the tibial and femoral tunnel regions. A more anterior tibial tunnel position showed significantly more tracer uptake in the femoral and tibial tunnel regions as well as the entire tibiofemoral joint. SPECT/CT tracer uptake intensity and distribution showed a significant correlation with the femoral and tibial tunnel position and orientation in patients with symptomatic knees after ACL reconstruction. No correlation was found with stability or clinical laxity. SPECT/CT tracer uptake distribution has the potential to give us important information on joint homeostasis and remodelling after ACL reconstruction. It might help to predict ACL graft failure and improve our surgical ACL reconstruction technique in finding the optimal tunnel and graft position and orientation.
Fonager, Randi F; Zacho, Helle D; Langkilde, Niels C; Fledelius, Joan; Ejlersen, June A; Haarmark, Christian; Hendel, Helle W; Lange, Mine Benedicte; Jochumsen, Mads R; Mortensen, Jesper C; Petersen, Lars J
2017-01-01
The aim of this study was to prospectively compare planar, bone scan (BS) versus SPECT/CT and NaF PET/CT in detecting bone metastases in prostate cancer. Thirty-seven consecutive, newly diagnosed, prostate cancer patients with prostate specific antigen (PSA) levels ≥ 50 ng/mL and who were considered eligible for androgen-deprivation therapy (ADT) were included in this study. BS, SPECT/CT, and NaF PET/CT, were performed prior to treatment and were repeated after six months of ADT. Baseline images from each index test were independently read by two experienced readers. The reference standard was based on a consensus decision made by a multidisciplinary team on the basis of baseline and follow-up images of the index tests, the findings of the baseline index tests by the experienced readers, and any available imaging, biochemical, and clinical data, including the response to ADT. Twenty-seven (73%) of the 37 patients had bone metastases according to the reference standard. The sensitivities for BS, SPECT/CT and NaF PET/CT were 78%, 89%, and 89%, respectively, and the specificities were 90%, 100%, and 90%, respectively. The positive predictive values of BS, SPECT/CT and NaF PET/CT were 96%, 100%, and 96%, respectively, and the negative predictive values were 60%, 77% and 75%, respectively. No statistically significant difference among the three imaging modalities was observed. All three imaging modalities showed high sensitivity and specificity. NaF PET/CT and SPECT/CT showed numerically improved, but not statistically superior, sensitivity compared with BS in this limited and selected patient cohort. PMID:29181269
High-resolution imaging of the large non-human primate brain using microPET: a feasibility study
NASA Astrophysics Data System (ADS)
Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.
2007-11-01
The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.
Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F
2015-07-01
To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.
Miyamoto, T; Horigome, H; Sato, H; Yamada, M; Inai, K; Takeda, T; Ishikawa, N; Hoshino, H; Itai, Y
1996-02-01
A 4-month-old male infant with Bland-White-Garland (BWG) syndrome complicated myocardial infarction was reported. Signs included tachypnea, coughing, and failure to thrive. However, there was no sign of myocardial infarction. A chest radiograph revealed cardiomegaly (CTR = 65%) and electrocardiogram showed abnormal Q waves in I, aVL, V6 leads. Cardiac catheterization and angiography revealed marked dilatation of left ventricle (end-diastolic volume = 384 ml/m2) and extremely depressed ejection fraction (16%), confirming the diagnosis of BWG syndrome. A 201TlCl-myocardial SPECT demonstrated apical defect and hypoperfusion in the anterolateral, inferoposterior walls, whereas 123I-beta-methyl-p-iodophenylpentadecanoic-acid (123I-BMIPP) SPECT showed a wider defect area. SPECT studies with 201TlCl and 123I-BMIPP, are useful to assess myocardial viability more accurately in BWG syndrome.
D'estanque, Emmanuel; Hedon, Christophe; Lattuca, Benoît; Bourdon, Aurélie; Benkiran, Meriem; Verd, Aurélie; Roubille, François; Mariano-Goulart, Denis
2017-08-01
Dual-isotope 201 Tl/ 123 I-MIBG SPECT can assess trigger zones (dysfunctions in the autonomic nervous system located in areas of viable myocardium) that are substrate for ventricular arrhythmias after STEMI. This study evaluated the necessity of delayed acquisition and scatter correction for dual-isotope 201 Tl/ 123 I-MIBG SPECT studies with a CZT camera to identify trigger zones after revascularization in patients with STEMI in routine clinical settings. Sixty-nine patients were prospectively enrolled after revascularization to undergo 201 Tl/ 123 I-MIBG SPECT using a CZT camera (Discovery NM 530c, GE). The first acquisition was a single thallium study (before MIBG administration); the second and the third were early and late dual-isotope studies. We compared the scatter-uncorrected and scatter-corrected (TEW method) thallium studies with the results of magnetic resonance imaging or transthoracic echography (reference standard) to diagnose myocardial necrosis. Summed rest scores (SRS) were significantly higher in the delayed MIBG studies than the early MIBG studies. SRS and necrosis surface were significantly higher in the delayed thallium studies with scatter correction than without scatter correction, leading to less trigger zone diagnosis for the scatter-corrected studies. Compared with the scatter-uncorrected studies, the late thallium scatter-corrected studies provided the best diagnostic values for myocardial necrosis assessment. Delayed acquisitions and scatter-corrected dual-isotope 201 Tl/ 123 I-MIBG SPECT acquisitions provide an improved evaluation of trigger zones in routine clinical settings after revascularization for STEMI.
Shojaeifard, Maryam; Ghaedian, Tahereh; Yaghoobi, Nahid; Malek, Hadi; Firoozabadi, Hasan; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amin, Ahmad; Azizian, Nasrin; Rastgou, Feridoon
2015-01-01
Background: Gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is known as a feasible tool for the measurement of left ventricular ejection fraction (EF) and volumes, which are of great importance in the management and follow-up of patients with coronary artery diseases. However, considering the technical shortcomings of SPECT in the presence of perfusion defect, the accuracy of this method in heart failure patients is still controversial. Objectives: The aim of the present study was to compare the results from gated SPECT MPI with those from echocardiography in heart failure patients to compare echocardiographically-derived left ventricular dimension and function data to those from gated SPECT MPI in heart failure patients. Patients and Methods: Forty-one patients with severely reduced left ventricular systolic function (EF ≤ 35%) who were referred for gated SPECT MPI were prospectively enrolled. Quantification of EF, end-diastolic volume (EDV), and end-systolic volume (ESV) was performed by using quantitative gated spect (QGS) (QGS, version 0.4, May 2009) and emory cardiac toolbox (ECTb) (ECTb, revision 1.0, copyright 2007) software packages. EF, EDV, and ESV were also measured with two-dimensional echocardiography within 3 days after MPI. Results: A good correlation was found between echocardiographically-derived EF, EDV, and ESV and the values derived using QGS (r = 0.67, r = 0.78, and r = 0.80 for EF, EDV, and ESV, respectively; P < 0.001) and ECTb (r = 0.68, 0.79, and r = 0.80 for EF, EDV, and ESV, respectively; P < 0.001). However, Bland-Altman plots indicated significantly different mean values for EF, 11.4 and 20.9 using QGS and ECTb, respectively, as compared with echocardiography. ECTb-derived EDV was also significantly higher than the EDV measured with echocardiography and QGS. The highest correlation between echocardiography and gated SPECT MPI was found for mean values of ESV different. Conclusions: Gated SPECT MPI has a good correlation with echocardiography for the measurement of left ventricular EF, EDV, and ESV in patients with severe heart failure. However, the absolute values of these functional parameters from echocardiography and gated SPECT MPI measured with different software packages should not be used interchangeably. PMID:26889455
Gültekin, Salih Sinan; Kir, Metin; Tuğ, Tuğbay; Demirer, Seher; Genç, Yasemin
2011-10-01
This study was conducted to evaluate the early and delayed pinhole MIBI single photon emission computed tomography (pSPECT) images in detecting hyperfunctioning parathyroid glands, to make a comparison with peroperative γ probe (GP) findings. Planar, early, and delayed pSPECT scans and skin in-vivo and ex-vivo GP counts were obtained in 22 patients with hyperparathyroidism. All data were analyzed statistically on the basis of localization of the lesions, using the histopathological findings as the gold standard. Histopathological examinations revealed 18 of 44 adenomas, 18 of 44 hyperplasic glands, two of 44 lymph nodules, five of 44 thyroid nodules, and one of 44 normal parathyroid glands. Sensitivity and specificity were found to be 36 and 100% for planar, 69 and 75% for early pSPECT, 86 and 88% for delayed pSPECT scans, and similarly, 78 and 75% on skin, 92 and 75% in-vivo and 83 and 100% ex-vivo GP counts, respectively. For distinction ability of GP counts between three groups of lesions, there was a statistically significant difference among the three groups for ex-vivo GP counts but not between groups of adenomas and hyperplasic lesions for in-vivo GP counts. Early and delayed pSPECT scans play a complementary role on the planar scans. Delayed pSPECT scans and in-vivo GP counts are equally valuable to localize both single and multiple hyperfunctioning parathyroid glands. Ex-vivo GP counts seem to be better for making a distinction among types of lesions.
[Development of a Striatal and Skull Phantom for Quantitative 123I-FP-CIT SPECT].
Ishiguro, Masanobu; Uno, Masaki; Miyazaki, Takuma; Kataoka, Yumi; Toyama, Hiroshi; Ichihara, Takashi
123 Iodine-labelled N-(3-fluoropropyl) -2β-carbomethoxy-3β-(4-iodophenyl) nortropane ( 123 I-FP-CIT) single photon emission computerized tomography (SPECT) images are used for differential diagnosis such as Parkinson's disease (PD). Specific binding ratio (SBR) is affected by scattering and attenuation in SPECT imaging, because gender and age lead to changes in skull density. It is necessary to clarify and correct the influence of the phantom simulating the the skull. The purpose of this study was to develop phantoms that can evaluate scattering and attenuation correction. Skull phantoms were prepared based on the measuring the results of the average computed tomography (CT) value, average skull thickness of 12 males and 16 females. 123 I-FP-CIT SPECT imaging of striatal phantom was performed with these skull phantoms, which reproduced normal and PD. SPECT images, were reconstructed with scattering and attenuation correction. SBR with partial volume effect corrected (SBR act ) and conventional SBR (SBR Bolt ) were measured and compared. The striatum and the skull phantoms along with 123 I-FP-CIT were able to reproduce the normal accumulation and disease state of PD and further those reproduced the influence of skull density on SPECT imaging. The error rate with the true SBR, SBR act was much smaller than SBR Bolt . The effect on SBR could be corrected by scattering and attenuation correction even if the skull density changes with 123 I-FP-CIT on SPECT imaging. The combination of triple energy window method and CT-attenuation correction method would be the best correction method for SBR act .
Fujimoto, Ayataka; Okanishi, Tohru; Kanai, Sotaro; Sato, Keishiro; Itamura, Shinji; Baba, Shimpei; Nishimura, Mitsuyo; Masui, Takayuki; Enoki, Hideo
2018-06-01
When the results of electroencephalography (EEG), magnetic resonance imaging (MRI), and seizure semiology are discordant or no structural lesion is evident on MRI, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are important examinations for lateralization or localization of epileptic regions. We hypothesized that the concordance between interictal 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG)-PET and iomazenil (IMZ)-SPECT could suggest the epileptogenic lobe in patients with non-lesional findings on MRI. Fifty-nine patients (31 females, 28 males; mean age, 29 years; median age, 27 years; range, 7-56 years) underwent subdural electrode implantation followed by focus resection. All patients underwent 18 FDG-PET, IMZ-SPECT, and focus resection surgery. Follow-up was continued for ≥ 2 years. We evaluated surgical outcomes as seizure-free or not and analyzed correlations between outcomes and concordances of low-uptake lobes on PET, SPECT, or both PET and SPECT to the resection lobes. We used uni- and multivariate logistic regression analyses. In univariate analyses, all three concordances correlated significantly with seizure-free outcomes (PET, p = 0.017; SPECT, p = 0.030; both PET and SPECT, p = 0.006). In multivariate analysis, concordance between resection and low-uptake lobes in both PET and SPECT correlated significantly with seizure-free outcomes (p = 0.004). The odds ratio was 6.0. Concordance between interictal 18 FDG-PET and IMZ-SPECT suggested that the epileptogenic lobe is six times better than each examination alone among patients with non-lesional findings on MRI. IMZ-SPECT and 18 FDG-PET are complementary examinations in the assessment of localization-related epilepsy.
Monteiro, Paulo Henrique Silva; de Souza, Thiago Ferreira; Moretti, Maria Luiza; Resende, Mariangela Ribeiro; Mengatti, Jair; de Lima, Mariana da Cunha Lopes; Santos, Allan Oliveira; Ramos, Celso Darío
2017-01-01
Objective To evaluate SPECT/CT with radiolabeled somatostatin analogues (RSAs) in systemic granulomatous infections in comparison with gallium-67 (67Ga) citrate scintigraphy. Materials and Methods We studied 28 patients with active systemic granulomatous infections, including tuberculosis, paracoccidioidomycosis, pneumocystosis, cryptococcosis, aspergillosis, leishmaniasis, infectious vasculitis, and an unspecified opportunistic infection. Of the 28 patients, 23 had started specific treatment before the study outset. All patients underwent whole-body SPECT/CT imaging: 7 after injection of 99mTc-EDDA-HYNIC-TOC, and 21 after injection of 111In-DTPA-octreotide. All patients also underwent 67Ga citrate imaging, except for one patient who died before the 67Ga was available. Results In 20 of the 27 patients who underwent imaging with both tracers, 27 sites of active disease were detected by 67Ga citrate imaging and by SPECT/CT with an RSA. Both tracers had negative results in the other 7 patients. RSA uptake was visually lower than 67Ga uptake in 11 of the 20 patients with positive images and similar to 67Ga uptake in the other 9 patients. The only patient who did not undergo 67Ga scintigraphy underwent 99mTc-EDDA-HYNIC-TOC SPECT/CT-guided biopsy of a lung cavity with focal RSA uptake, which turned to be positive for aspergillosis. Conclusion SPECT/CT with 99mTc-EDDA-HYNIC-TOC or 111In-DTPA-octreotide seems to be a good alternative to 67Ga citrate imaging for the evaluation of patients with systemic granulomatous disease. PMID:29307928
Nuclear medicine imaging of locally advanced laryngeal and hypopharyngeal cancer
NASA Astrophysics Data System (ADS)
Medvedeva, A.; Chernov, V.; Zeltchan, R.; Sinilkin, I.; Bragina, O.; Chijevskaya, S.; Choynzonov, E.; Goldberg, A.
2017-09-01
The diagnostic capabilities of nuclear medicine imaging in the detection and assessment of the spread of laryngeal/hypopharyngeal cancer were studied. A total of 40 patients with histologically verified laryngeal and hypopharyngeal cancer and 20 patients with benign laryngeal lesions were included into the study. Submucosal injections of 99mTc-MIBI and 99mTc-Alotech were made around the tumor. Single photon emission computed tomography (SPECT) was performed 20 minutes after the injection of 99mTc-MIBI. Sentinel lymph nodes (SLNs) were detected in 26 patients. In 18 hours after the injection of 99mTc-Alotech, SPECT was performed. In 24 hours after the injection of 99mTc-Alotech, intraoperative SLN detection was performed using Gamma Finder II. SPECT with 99mTc-MIBI revealed laryngeal and hypopharyngeal tumors in 38 of the 40 patients. The 99mTc-MIBI uptake in metastatic lymph nodes was visualized in 2 (17%) of the 12 patients. Twenty eight SLNs were detected by SPECT and 31 SLNs were identified using the intraoperative gamma probe. The percentage of 99mTc-Alotech in the SLN was 5-10% of the radioactivity in the injection site by SPECT and 18-33% by intraoperative gamma probe detection. Thus, SPECT with 99mTc-MIBI is an effective tool for the diagnosis of laryngeal/hypopharyngeal cancer. The sensitivity, specificity and accuracy of this technique were 95%, 80% and 92%, respectively. The use of 99mTc-Alotech for the detection of SLNs in patients with laryngeal/hypopharyngeal cancer is characterized by 92.8% sensitivity.
Mann, Steve D.; Perez, Kristy L.; McCracken, Emily K. E.; Shah, Jainil P.; Wong, Terence Z.; Tornai, Martin P.
2012-01-01
A pilot study is underway to quantify in vivo the uptake and distribution of Tc-99m Sestamibi in subjects without previous history of breast cancer using a dedicated SPECT-CT breast imaging system. Subjects undergoing diagnostic parathyroid imaging studies were consented and imaged as part of this IRB-approved breast imaging study. For each of the seven subjects, one randomly selected breast was imaged prone-pendant using the dedicated, compact breast SPECT-CT system underneath the shielded patient support. Iteratively reconstructed and attenuation and/or scatter corrected images were coregistered; CT images were segmented into glandular and fatty tissue by three different methods; the average concentration of Sestamibi was determined from the SPECT data using the CT-based segmentation and previously established quantification techniques. Very minor differences between the segmentation methods were observed, and the results indicate an average image-based in vivo Sestamibi concentration of 0.10 ± 0.16 μCi/mL with no preferential uptake by glandular or fatty tissues. PMID:22956950
Bigler, E D
1999-08-01
Contemporary neuorimaging techniques in child traumatic brain injury are reviewed, with an emphasis on computerized tomography (CT) and magnetic resonance (MR) imaging. A brief overview of MR spectroscopy (MRS), functional MR imaging (fMRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) is also provided because these techniques will likely constitute important neuroimaging techniques of the future. Numerous figures are provided to illustrate the multifaceted manner in which traumatic deficits can be imaged and the role of neuroimaging information as it relates to TBI outcome.
Carboranylporphyrins and uses thereof
Wu, Haitao; Miura, Michiko
2006-02-07
The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity carborane-containing 5, 10, 15, 20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head and neck, and surrounding tissue. The invention is also directed to using these carborane-containing tetraphenyl porphyrin compounds to methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.
Carboranylporphyrins and uses thereof
Wu, Haitao; Miura, Michiko
2006-01-24
The present invention is directed to low toxicity boronated compounds and methods for their use in the treatment, visualization, and diagnosis of tumors. More specifically, the present invention is directed to low toxicity carborane-containing 5, 10, 15, 20-tetraphenylporphyrin compounds and methods for their use particularly in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for the treatment of tumors of the brain, head, neck, and surrounding tissue. The invention is also directed to using these carborane-containing tetraphenyl porphyrin compounds to methods of tumor imaging and/or diagnosis such as MRI, SPECT, or PET.
Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; ...
2015-12-29
The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curvemore » K 1 = F(1–Aexp(–B/F)) for K 1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99mTc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99mTc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.« less
Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.
Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita
2008-01-01
We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of transplanted pancreatic cells in vivo.
Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S
2018-02-01
Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust quantitative image reconstruction and biomarker analysis, there may be an expanded role for SPECT/CT imaging in renal masses and other pathologic conditions.
Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T
2017-02-01
The objective of this study was to measure myocardial blood flow (MBF) in humans using 99m Tc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99m Tc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99m Tc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99m Tc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve [Formula: see text] for K 1 values estimated with 99m Tc-tefrofosmin using SPECT and MBF values estimated with 13 N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13 N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99m Tc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99m Tc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99m Tc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99m Tc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.
Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares; Yeghiazarians, Yerem; Ellin, Justin; Verdin, Emily; Boyle, Andrew; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.
2015-01-01
Background The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single photon emission computed tomography (SPECT). Methods Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curve K1=F(1−Aexp(−BF)) for K1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH3 PET. The flow dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. Results The estimated flow extraction parameters for 99mTc-tefrofosmin was found to be A=0.91±0.11, B=0.34±0.20 (R2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44 ml/min/g to 3.81 ml/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (p < 0.001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (p = 0.037). The PS for 99mTc-tefrofosmin was (0.091 ± 0.10) * MBF = (0.32 ± 0.16). Conclusions Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF. PMID:26715603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrestha, Uttam; Sciammarella, Maria; Alhassen, Fares
The objective of this study was to measure myocardial blood flow (MBF) in humans using 99mTc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Dynamic SPECT using 99mTc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients were used to determine the flow-extraction curve for 99mTc-tefrofosmin while data from the remaining 7 patients were used for method validation. The nonlinear tracer correction parameters A and B for 99mTc-tefrofosmin were estimated for the 9 patients by fitting the flow-extraction curvemore » K 1 = F(1–Aexp(–B/F)) for K 1 values estimated with 99mTc-tefrofosmin using SPECT and MBF values estimated with 13N-NH 3 using PET. These parameters were then used to calculate MBF and coronary flow reserve (CFR) in three coronary territories (LAD, RCA, and LCX) using SPECT for an independent cohort of 7 patients. The results were then compared with that estimated with 13N-NH 3 PET. The flow-dependent permeability surface-area product (PS) for 99mTc-tefrofosmin was also estimated. The estimated flow-extraction parameters for 99mTc-tefrofosmin were found to be A = 0.91 ± 0.11, B = 0.34 ± 0.20 (R 2 = 0.49). The range of MBF in LAD, RCA, and LCX was 0.44-3.81 mL/min/g. The MBF between PET and SPECT in the group of independent cohort of 7 patients showed statistically significant correlation, r = 0.71 (P < .001). However, the corresponding CFR correlation was moderate r = 0.39 yet statistically significant (P = .037). The PS for 99mTc-tefrofosmin was (0.019 ± 0.10)*MBF + (0.32 ± 0.16). Dynamic cardiac SPECT using 99mTc-tetrofosmin and a clinical two-headed SPECT/CT scanner can be a useful tool for estimation of MBF.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, S; Touch, M; Bowsher, J
Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator andmore » a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1.« less
Ibogaine labeling with 99mTc-tricarbonyl: synthesis and transport at the mouse blood-brain barrier.
Tournier, Nicolas; André, Pascal; Blondeel, Sandy; Rizzo-Padoin, Nathalie; du Moulinet d'Hardemarre, Amaury; Declèves, Xavier; Scherrmann, Jean-Michel; Cisternino, Salvatore
2009-12-01
The (99m)Tc-tricarbonyl core may be used as an ideal tool for gamma-labeling ligands in noninvasive SPECT imaging. However, most (99m)Tc-tricarbonyl-labeled agents have difficulty crossing the blood-brain barrier (BBB). We radiolabeled the neuroactive indole ibogaine with (99m)Tc-tricarbonyl and measured its transport into the mouse brain by in situ brain perfusion. We measured the interactions of [(99m)Tc(CO)(3)-ibogaine](+) and (99m)Tc-tricarbonyl with the main BBB efflux transporters P-gp and BCRP in vitro and in vivo. Ibogaine was radiolabeled (yield: over 95%). [(99m)Tc(CO)(3)-ibogaine](+) entered the brain (K(in)) poorly (0.18 microL/g/s), at about the same rate as (99m)Tc-tricarbonyl (0.16 microL/g/s) and [(99m)Tc-sestamibi](+) (0.10 microL/g/s). The CNS tracer [(99m)Tc-HMPAO](0) entered the brain approximately 70-times higher than [(99m)Tc(CO)(3)-ibogaine](+). In vitro studies revealed that neither [(99m)Tc(CO)(3)-ibogaine](+) nor (99m)Tc-tricarbonyl ion were substrates for P-gp or BCRP. But lowering the membrane dipole potential barrier with phloretin enhanced the brain transport of [(99m)Tc(OH(2))(3)(CO)(3)](+) approximately 3-fold. Thus, ibogaine directly labeled with (99m)Tc-tricarbonyl is not suitable for CNS imaging because of its poor uptake. Brain transport is not restricted by efflux transporters but is reduced by its lipophilicity and interaction with the membrane-positive dipole potential. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
Stanzel, Susanne; Pernthaler, Birgit; Schwarz, Thomas; Bjelic-Radisic, Vesna; Kerschbaumer, Stefan; Aigner, Reingard M
2018-06-01
of the study was to demonstrate the diagnostic and prognostic value of SPECT/CT in sentinel lymph node mapping (SLNM) in patients with invasive breast cancer. 114 patients with invasive breast cancer with clinically negative lymph nodes were included in this retrospective study as they were referred for SLNM with 99m Tc-nanocolloid. Planar image acquisition was accomplished in a one-day or two-day protocol depending on the schedule of the surgical procedure. Low dose SPECT/CT was performed after the planar images. The sentinel lymph node biopsy (SLNB) was considered false negative if a primary recurrence developed within 12 months after SLNB in the axilla from which a tumor-free SLN had been removed. Between December 2009 and December 2011, 114 patients (pts.) underwent SLNM with additional SPECT/CT. Planar imaging identified in 109 pts. 139 SLNs, which were tumor-positive in 42 nodes (n = 41 pts.). SPECT/CT identified in 81 pts. 151 additional SLNs, of which 19 were tumor-positive and led to therapy change (axillary lymph node dissection) in 11 pts. (9.6 %). Of overall 61 tumor-positive SLNs (n = 52 pts.) SPECT/CT detected all, whereas planar imaging detected only 42 of 61 ( P < 0.0001). No patient had lymph node metastasis within 12 months after SLNB in the axilla from which a tumor-free SLN had been removed resulting in a false-negative rate of 0 %. The local relapse rate was 1.8 % leading to a 4-year disease-free survival rate of 90 %. Among patients with breast cancer, the use of SPECT/CT-aided SLNM correlated due to a better anatomical localization and identification of planar not visible SLNs with a higher detection rate of SLNs. This led to therapeutic consequences and an excellent false-negative and 4-year disease-free survival rate. Schattauer GmbH.
Performance Evaluation of a Bedside Cardiac SPECT System
NASA Astrophysics Data System (ADS)
Studenski, Matthew T.; Gilland, David R.; Parker, Jason G.; Hammond, B.; Majewski, Stan; Weisenberger, Andrew G.; Popov, Vladimir
2009-06-01
This paper reports on the initial performance evaluation of a bedside cardiac PET/SPECT system. The system was designed to move within a hospital to image critically-ill patients, for example, those in intensive care unit (ICU) or emergency room settings, who cannot easily be transported to a conventional SPECT or PET facility. The system uses two compact (25 cm times 25 cm) detectors with pixilated NaI crystals and position sensitive PMTs. The performance is evaluated for both 140 keV (Tc-99m) and 511 keV (F-18) emitters with the system operating in single photon counting (SPECT) mode. The imaging performance metrics for both 140 keV and 511 keV included intrinsic energy resolution, spatial resolution (intrinsic, system, and reconstructed SPECT), detection sensitivity, count rate capability, and uniformity. Results demonstrated an intrinsic energy resolution of 31% at 140 keV and 23% at 511 keV, a planar intrinsic spatial resolution of 5.6 mm full width half-maximum (FWHM) at 140 keV and 6.3 mm FWHM at 511 keV, and a sensitivity of 4.15 countsmiddotmuCi-1 ldr s-1 at 140 keV and 0.67 counts ldr muCi-1 ldr s-1 at 511 keV. To further the study, a SPECT acquisition using a dynamic cardiac phantom was performed, and the resulting reconstructed images are presented.
Performance Evaluation of a Bedside Cardiac SPECT System
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.T. Studenski, D.R. Gilland, J.G. Parker, B. Hammond, S. Majewski, A.G. Weisenberger, V. Popov
This paper reports on the initial performance evaluation of a bedside cardiac PET/SPECT system. The system was designed to move within a hospital to image critically-ill patients, for example, those in intensive care unit (ICU) or emergency room settings, who cannot easily be transported to a conventional SPECT or PET facility. The system uses two compact (25 cm times 25 cm) detectors with pixilated NaI crystals and position sensitive PMTs. The performance is evaluated for both 140 keV (Tc-99m) and 511 keV (F-18) emitters with the system operating in single photon counting (SPECT) mode. The imaging performance metrics for bothmore » 140 keV and 511 keV included intrinsic energy resolution, spatial resolution (intrinsic, system, and reconstructed SPECT), detection sensitivity, count rate capability, and uniformity. Results demonstrated an intrinsic energy resolution of 31% at 140 keV and 23% at 511 keV, a planar intrinsic spatial resolution of 5.6 mm full width half-maximum (FWHM) at 140 keV and 6.3 mm FWHM at 511 keV, and a sensitivity of 4.15 countsmiddotmuCi-1 ldr s-1 at 140 keV and 0.67 counts ldr muCi-1 ldr s-1 at 511 keV. To further the study, a SPECT acquisition using a dynamic cardiac phantom was performed, and the resulting reconstructed images are presented.« less
Barón, J; Mulero, P; Pedraza, M I; Gamazo, C; de la Cruz, C; Ruiz, M; Ayuso, M; Cebrián, M C; García-Talavera, P; Marco, J; Guerrero, A L
2016-06-01
Transient headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) is characterised by migraine-like headache episodes accompanied by neurological deficits consisting of motor, sensory, or aphasic symptoms. Electroencephalogram (EEG) and single photon emission computed tomography (SPECT) may show focal abnormalities that correspond to the neurological deficits. We aim to evaluate the correlation between focal deficit topography and EEG or SPECT abnormalities in 5 new cases. We retrospectively reviewed patients attended in a tertiary hospital (January 2010-May 2014) and identified 5 patients (3 men, 2 women) with a mean age of 30.6 ± 7.7 (21-39) years. They presented 3.4 ± 2.6 episodes of headache (range, 2-8) of moderate to severe intensity and transient neurological deficits over a maximum of 5 weeks. Pleocytosis was detected in CSF in all cases (70 to 312 cells/mm3, 96.5-100% lymphocytes) with negative results from aetiological studies. At least one EEG was performed in 4 patients and SPECT in 3 patients. Patient 1: 8 episodes; 4 left hemisphere, 3 right hemisphere, and 1 brainstem; 2 EEGs showing left temporal and bilateral temporal slowing; normal SPECT. Patient 2: 2 episodes, left hemisphere and right hemisphere; SPECT showed decreased left temporal blood flow. Patient 3: 3 left hemisphere deficits; EEG with bilateral frontal and temporal slowing. Patient 4: 2 episodes with right parieto-occipital topography and right frontal slowing in EEG. Patient 5: 2 episodes, right hemisphere and left hemisphere, EEG with right temporal slowing; normal SPECT. The neurological deficits accompanying headache in HaNDL demonstrate marked clinical heterogeneity. SPECT abnormalities and most of all EEG abnormalities were not uncommon in our series and they did not always correlate to the topography of focal déficits. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Evaluation of the In Vivo and Ex Vivo Binding of Novel BC1 Cannabinoid Receptor Radiotracers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A.; Gatley, J.; Gifford, A.
The primary active ingredient of marijuana, 9-tetrahydrocannabinol, exerts its psychoactive effects by binding to cannabinoid CB1 receptors. These receptors are found throughout the brain with high concentrations in the hippocampus and cerebellum. The current study was conducted to evaluate the binding of a newly developed putative cannabinoid antagonist, AM630, and a classical cannabinoid 8-tetrahydrocannabinol as potential PET and/or SPECT imaging agents for brain CB1 receptors. For both of these ligands in vivo and ex vivo studies in mice were conducted. AM630 showed good overall brain uptake (as measure by %IA/g) and a moderately rapid clearance from the brain with amore » half-clearance time of approximately 30 minutes. However, AM630 did not show selective binding to CB1 cannabinoid receptors. Ex vivo autoradiography supported the lack of selective binding seen in the in vivo study. Similar to AM630, 8-tetrahydrocanibol also failed to show selective binding to CB1 receptor rich brain areas. The 8-tetrahydrocanibol showed moderate overall brain uptake and relatively slow brain clearance as compared to AM630. Further studies were done with AM2233, a cannabinoid ligand with a similar structure as AM630. These studies were done to develop an ex vivo binding assay to quantify the displacement of [131I]AM2233 binding by other ligands in Swiss-Webster and CB1 receptor knockout mice. By developing this assay we hoped to determine the identity of an unknown binding site for AM2233 present in the hippocampus of CB1 knockout mice. Using an approach based on incubation of brain slices prepared from mice given intravenous [131I]AM2233 in either the presence or absence of AM2233 (unlabelled) it was possible to demonstrate a significant AM2233-displacable binding in the Swiss-Webster mice. Future studies will determine if this assay is appropriate for identifying the unknown binding site for AM2233 in the CB1 knockout mice.« less
Task Equivalence for Model and Human-Observer Comparisons in SPECT Localization Studies
NASA Astrophysics Data System (ADS)
Sen, Anando; Kalantari, Faraz; Gifford, Howard C.
2016-06-01
While mathematical model observers are intended for efficient assessment of medical imaging systems, their findings should be relevant for human observers as the primary clinical end users. We have investigated whether pursuing equivalence between the model and human-observer tasks can help ensure this goal. A localization receiver operating characteristic (LROC) study tested prostate lesion detection in simulated In-111 SPECT imaging with anthropomorphic phantoms. The test images were 2D slices extracted from reconstructed volumes. The iterative ordered sets expectation-maximization (OSEM) reconstruction algorithm was used with Gaussian postsmoothing. Variations in the number of iterations and the level of postfiltering defined the test strategies in the study. Human-observer performance was compared with that of a visual-search (VS) observer, a scanning channelized Hotelling observer, and a scanning channelized nonprewhitening (CNPW) observer. These model observers were applied with precise information about the target regions of interest (ROIs). ROI knowledge was a study variable for the human observers. In one study format, the humans read the SPECT image alone. With a dual-modality format, the SPECT image was presented alongside an anatomical image slice extracted from the density map of the phantom. Performance was scored by area under the LROC curve. The human observers performed significantly better with the dual-modality format, and correlation with the model observers was also improved. Given the human-observer data from the SPECT study format, the Pearson correlation coefficients for the model observers were 0.58 (VS), -0.12 (CH), and -0.23 (CNPW). The respective coefficients based on the human-observer data from the dual-modality study were 0.72, 0.27, and -0.11. These results point towards the continued development of the VS observer for enhancing task equivalence in model-observer studies.
Detection of Sentinel Lymph Nodes in Gynecologic Tumours by Planar Scintigraphy and SPECT/CT
Kraft, Otakar; Havel, Martin
2012-01-01
Objective: Assess the role of planar lymphoscintigraphy and fusion imaging of SPECT/CT in sentinel lymph node (SLN) detection in patients with gynecologic tumours. Material and Methods: Planar scintigraphy and hybrid modality SPECT/CT were performed in 64 consecutive women with gynecologic tumours (mean age 53.6 with range 30-77 years): 36 pts with cervical cancer (Group A), 21 pts with endometrial cancer (Group B), 7 pts with vulvar carcinoma (Group C). Planar and SPECT/CT images were interpreted separately by two nuclear medicine physicians. Efficacy of these two techniques to image SLN were compared. Results: Planar scintigraphy did not image SLN in 7 patients (10.9%), SPECT/CT was negative in 4 patients (6.3%). In 35 (54.7%) patients the number of SLNs captured on SPECT/CT was higher than on planar imaging. Differences in detection of SLN between planar and SPECT/CT imaging in the group of all 64 patients are statistically significant (p<0.05). Three foci of uptake (1.7% from totally visible 177 foci on planar images) in 2 patients interpreted on planar images as hot LNs were found to be false positive non-nodal sites of uptake when further assessed on SPECT/CT. SPECT/CT showed the exact anatomical location of all visualised sentinel nodes. Conclusion: In some patients with gynecologic cancers SPECT/CT improves detection of sentinel lymph nodes. It can image nodes not visible on planar scintigrams, exclude false positive uptake and exactly localise pelvic and paraaortal SLNs. It improves anatomic localization of SLNs. Conflict of interest:None declared. PMID:23486989
NOTE: Implementation of angular response function modeling in SPECT simulations with GATE
NASA Astrophysics Data System (ADS)
Descourt, P.; Carlier, T.; Du, Y.; Song, X.; Buvat, I.; Frey, E. C.; Bardies, M.; Tsui, B. M. W.; Visvikis, D.
2010-05-01
Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy.
Pulmonary Arterial Hypertension With Abnormal V/Q Single-Photon Emission Computed Tomography.
Chan, Kenneth; Ioannidis, Stefanos; Coghlan, John G; Hall, Margaret; Schreiber, Benjamin E
2017-10-16
This study aimed to evaluate the incidence and clinical outcomes of abnormal ventilation/perfusion (V/Q) single-photon emission computed tomography (SPECT) without thromboembolism, especially in patients with group I pulmonary arterial hypertension (PAH). American Heart Association/American College of Cardiology and European Society of Cardiology guidelines recommend V/Q scan for screening for chronic thromboembolic pulmonary hypertension. The significance of patients with abnormal V/Q SPECT findings but no thromboembolism demonstrated in further investigations remained unclear. A distinct pattern of global patchy changes not typical of thromboembolism is recognized, but guidelines for reporting these in the context of PAH are lacking. A total of 136 patients who underwent V/Q SPECT and right-sided heart catheterization showing mean pulmonary arterial pressure ≥25 mm Hg were included. V/Q SPECT findings were reported using European Association of Nuclear Medicine criteria for pulmonary embolism followed by computed tomography pulmonary angiography screening for positive thromboembolism and further invasive pulmonary angiography for distal thromboembolism. The abnormal V/Q SPECT images were further analyzed according to perfusion pattern into focal or global perfusion defects. V/Q SPECT showed thromboembolic disease in 44 patients, but 19 of these patients had no thromboembolism demonstrated by pulmonary angiography. Among these patients, 15 of 19 (78.9%) had group I PAH, and the majority had diffuse, patchy perfusion defects. After redefining V/Q SPECT images according to the perfusion pattern, those patients with global perfusion defects had higher mean pulmonary arterial pressure compared with patients with focal perfusion defects and normal scans (mean difference +13.9 and +6.2 mm Hg, respectively; p = 0.0002), as well as higher pulmonary vascular resistance (mean difference +316.6 and +226.3 absolute resistance units, respectively; p = 0.004). Among patients with PAH, global perfusion defects were associated with higher all-cause mortality with a hazard ratio of 5.63 (95% confidence interval: 1.11 to 28.5) compared with patients with focal or no perfusion abnormalities. There is a high incidence of abnormal V/Q SPECT scans in nonthromboembolic PAH. Further studies are needed to investigate the poor outcome associated with abnormal V/Q SPECT findings in the context of PAH. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Guaranha, Mirian S B; Garzon, Eliana; Buchpiguel, Carlos A; Tazima, Sérgio; Yacubian, Elza M T; Sakamoto, Américo C
2005-01-01
Hyperventilation is an activation method that provokes physiological slowing of brain rhythms, interictal discharges, and seizures, especially in generalized idiopathic epilepsies. In this study we assessed its effectiveness in inducing focal seizures during video-EEG monitoring. We analyzed the effects of hyperventilation (HV) during video-EEG monitoring (video-EEG) of patients with medically intractable focal epilepsies. We excluded children younger than 10 years, mentally retarded patients, and individuals with frequent seizures. We analyzed 97 patients; 24 had positive seizure activation (PSA), and 73 had negative seizure activation (NSA). No differences were found between groups regarding sex, age, age at epilepsy onset, duration of epilepsy, frequency of seizures, and etiology. Temporal lobe epilepsies were significantly more activated than frontal lobe epilepsies. Spontaneous and activated seizures did not differ in terms of their clinical characteristics, and the activation did not affect the performance of ictal single-photon emission computed tomography (SPECT). HV is a safe and effective method of seizure activation during monitoring. It does not modify any of the characteristics of the seizures and allows the obtaining of valuable ictal SPECTs. This observation is clinically relevant and suggests the effectiveness and the potential of HV in shortening the presurgical evaluation, especially of temporal lobe epilepsy patients, consequently reducing its costs and increasing the number of candidates for epilepsy surgery.
Levin, P; Lazrove, S; van der Kolk, B
1999-01-01
To better understand the pathophysiology and treatment of Posttraumatic Stress Disorder (PTSD), standard psychological testing, Rorschach Ink Blot testing, and neuroimaging using Single Photon Emission Computed Tomography (SPECT) were administered to subjects with PTSD prior to and following three sessions of Eye Movement Desensitization and Reprocessing (EMDR). Using this within-subject design, data from one of six subjects in our series is presented as a case report. Following EMDR, the subject experienced improvement in his level of distress, which correlated with decrements in PTSD and depressive symptomatology on psychological testing. Analysis of the Rorschach data corroborated these changes. Among other findings, the Hypervigilance Index went from positive to negative, indicating that the subject was spending less time scanning the environment for threats, and available ego resources also increased, as measured by the Experience Actual variable. Upon recall of the traumatic memory during SPECT scanning, two areas of the brain were hyperactive post-EMDR treatment relative to pretreatment: the anterior cingulate gyrus and the left frontal lobe. These changes were consistent with summed data from four out of six subjects in the ongoing study. An important implication of these findings is that successful treatment of PTSD does not reduce arousal at the limbic level, but instead, enhances the ability to differentiate real from imagined threat. The psychology and neurophysiology of PTSD are discussed in greater detail.
MacDiarmid, Jennifer A; Langova, Veronika; Bailey, Dale; Pattison, Scott T; Pattison, Stacey L; Christensen, Neil; Armstrong, Luke R; Brahmbhatt, Vatsala N; Smolarczyk, Katarzyna; Harrison, Matthew T; Costa, Marylia; Mugridge, Nancy B; Sedliarou, Ilya; Grimes, Nicholas A; Kiss, Debra L; Stillman, Bruce; Hann, Christine L; Gallia, Gary L; Graham, Robert M; Brahmbhatt, Himanshu
2016-01-01
Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of EGFR-targeted, doxorubicin-loaded minicells for effective treatment of human patients with recurrent glioblastoma.
MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu
2016-01-01
Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of EGFR-targeted, doxorubicin-loaded minicells for effective treatment of human patients with recurrent glioblastoma. PMID:27050167
Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun
2017-04-01
A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.
Broseta, J; García-March, G; Sánchez-Ledesma, M J; Gonçalves, J; Silva, I; Barcia, J A; Llácer, J L; Barcia-Salorio, J L
1994-01-01
Previous studies of our group showed that C1-C2 spinal cord stimulation increases carotid and brain blood flow in normal conditions in the goat and dog and it has a beneficial vasomotor effect in a model of vasospasm in the rat. For further clinical application it seemed rational to investigate the possible vascular changes mediated by this technique in experimental brain infarction. To this aim, 45 New Zealand rabbits were used. Brain infarction was produced by bilateral carotid ligation in 15, unilateral microcoagulation of the middle cerebral artery in 15 and by microcoagulation of the vertebral artery at the craniocervical junction in the other 15. One week later, following daily clinical scoring and cortical and posterior fossa blood flow readings by laser Doppler, a period of 120 min of right C1-C2 spinal cord electric stimulation was performed. A mean of 27% increase in previous blood flow recordings was obtained at the right hemisphere and a mean of 32% in the posterior fossa. This procedure was used in 10 patients presenting with various cerebral low perfusion syndromes. Though not constant, an increase in alertness, retention, speech, emotional lability and performance in skilled acts was achieved. No MR changes were observed, though SPECT readings showed an increase in blood flow in the penumbral perilesional area.
Towards Effective Non-Invasive Brain-Computer Interfaces Dedicated to Gait Rehabilitation Systems
Castermans, Thierry; Duvinage, Matthieu; Cheron, Guy; Dutoit, Thierry
2014-01-01
In the last few years, significant progress has been made in the field of walk rehabilitation. Motor cortex signals in bipedal monkeys have been interpreted to predict walk kinematics. Epidural electrical stimulation in rats and in one young paraplegic has been realized to partially restore motor control after spinal cord injury. However, these experimental trials are far from being applicable to all patients suffering from motor impairments. Therefore, it is thought that more simple rehabilitation systems are desirable in the meanwhile. The goal of this review is to describe and summarize the progress made in the development of non-invasive brain-computer interfaces dedicated to motor rehabilitation systems. In the first part, the main principles of human locomotion control are presented. The paper then focuses on the mechanisms of supra-spinal centers active during gait, including results from electroencephalography, functional brain imaging technologies [near-infrared spectroscopy (NIRS), functional magnetic resonance imaging (fMRI), positron-emission tomography (PET), single-photon emission-computed tomography (SPECT)] and invasive studies. The first brain-computer interface (BCI) applications to gait rehabilitation are then presented, with a discussion about the different strategies developed in the field. The challenges to raise for future systems are identified and discussed. Finally, we present some proposals to address these challenges, in order to contribute to the improvement of BCI for gait rehabilitation. PMID:24961699
Ahlman, Mark A; Nietert, Paul J; Wahlquist, Amy E; Serguson, Jill M; Berry, Max W; Suranyi, Pal; Liu, Songtao; Spicer, Kenneth M
2014-01-01
Purpose: In the effort to reduce radiation exposure to patients undergoing myocardial perfusion imaging (MPI) with SPECT/CT, we evaluate the feasibility of a single CT for attenuation correction (AC) of single-day rest (R)/stress (S) perfusion. Methods: Processing of 20 single isotope and 20 dual isotope MPI with perfusion defects were retrospectively repeated in three steps: (1) the standard method using a concurrent R-CT for AC of R-SPECT and S-CT for S-SPECT; (2) the standard method repeated; and (3) with the R-CT used for AC of S-SPECT, and the S-CT used for AC of R-SPECT. Intra-Class Correlation Coefficients (ICC) and Choen’s kappa were used to measure intra-operator variability in sum scoring. Results: The highest level of intra-operator reliability was seen with the reproduction of the sum rest score (SRS) and sum stress score (SSS) (ICC > 95%). ICCs were > 85% for SRS and SSS when alternate CTs were used for AC, but when sum difference scores were calculated, ICC values were much lower (~22% to 27%), which may imply that neither CT substitution resulted in a reproducible difference score. Similar results were seen when evaluating dichotomous outcomes (sum scores difference of ≥ 4) when comparing different processing techniques (kappas ~0.32 to 0.43). Conclusions: When a single CT is used for AC of both rest and stress SPECT, there is disproportionately high variability in sum scoring that is independent of user error. This information can be used to direct further investigation in radiation reduction for common imaging exams in nuclear medicine. PMID:24482701
SPECT/CT imaging in general orthopedic practice.
Scharf, Stephen
2009-09-01
The availability of hybrid devices that combine the latest single-photon emission computed tomography (SPECT) imaging technology with multislice computed tomography (CT) scanning has allowed us to detect subtle, nonspecific abnormalities on bone scans and interpret them as specific focal areas of pathology. Abnormalities in the spine can be separated into those caused by pars fractures, facet joint arthritis, or osteophyte formation on vertebral bodies. Compression fractures can be distinguished from severe degenerative disease, both of which can cause intense activity across the spine on either planar or SPECT imaging. Localizing activity in patients who have had spinal fusion can provide tremendous insight into the causes of therapeutic failures. Infections of the spine now can be diagnosed with gallium SPECT/CT, despite the fact that gallium has long been abandoned because of its failure to detect spine infection on either planar or SPECT imaging. Small focal abnormalities in the feet and ankles can be localized well enough to make specific orthopedic diagnoses on the basis of their location. Moreover, when radiographic imaging provides equivocal or inadequate information, SPECT/CT can provide a road map for further diagnostic studies and has been invaluable in planning surgery. Our ability to localize activity within a bone or at an articular surface has allowed us to distinguish between fractures and joint disease. Increased activity associated with congenital anomalies, such as tarsal coalition and Bertolotti's syndrome have allowed us to understand the pathophysiology of these conditions, to confirm them as the cause of the patient's symptoms, and to provide information that is useful in determining appropriate clinical management. As our experience broadens, SPECT/CT will undoubtedly become an important tool in the evaluation and management of a wider variety of orthopedic patients.
De Lorenzo, Andrea; Peclat, Thais; Amaral, Ana Carolina; Lima, Ronaldo S L
2016-02-01
The purpose of this study is to evaluate the prognostic value of myocardial perfusion SPECT obtained in CZT cameras (CZT-SPECT) with multipinhole collimation in obese patients. CZT-SPECT may be technically challenging in the obese, and its prognostic value remains largely unknown. Patients underwent single-day, rest/stress (supine and prone) imaging. Images were visually inspected and graded as poor, fair or good/excellent. Summed stress and difference scores (SSS and SDS, respectively) were converted into percentages of total perfusion defect and of ischemic defect by division by the maximum possible score. Obesity was defined as a body mass index (BMI) ≥ 30 kg/m(2) and classified as class I (BMI 30-34.9 kg/m(2)), II (BMI 35-39.9 kg/m(2)), or III (BMI ≥ 40 kg/m(2)). Patients were followed-up by telephone interview for the occurrence of all-cause death, myocardial infarction or revascularization. A Cox proportional hazards analysis was used to assess the independent predictors of death. Among 1396 patients, 365 (26.1 %) were obese (mean BMI 33.9 ± 3.6; 17.5 % class I, 3.4 % class II, and 3.4 % class III). Image quality was good/excellent in 94.5 % of the obese patients. The annualized mortality rates were not significantly different among obese and non-obese patients, being <1 % with normal CZT-SPECT, and increased with the degree of scan abnormality in both obese and non-obese patients. Age, the use of pharmacologic stress and an abnormal CZT-SPECT, but not obesity, were independent predictors of death. In obese patients, single-day rest/stress CZT-SPECT with a multipinhole camera provides prognostic discrimination with high image quality.
Alvelo, Jessica L.; Papademetris, Xenophon; Mena-Hurtado, Carlos; Jeon, Sangchoon; Sumpio, Bauer E.; Sinusas, Albert J.
2018-01-01
Background: Single photon emission computed tomography (SPECT)/computed tomography (CT) imaging allows for assessment of skeletal muscle microvascular perfusion but has not been quantitatively assessed in angiosomes, or 3-dimensional vascular territories, of the foot. This study assessed and compared resting angiosome foot perfusion between healthy subjects and diabetic patients with critical limb ischemia (CLI). Additionally, the relationship between SPECT/CT imaging and the ankle–brachial index—a standard tool for evaluating peripheral artery disease—was assessed. Methods and Results: Healthy subjects (n=9) and diabetic patients with CLI and nonhealing ulcers (n=42) underwent SPECT/CT perfusion imaging of the feet. CT images were segmented into angiosomes for quantification of relative radiotracer uptake, expressed as standardized uptake values. Standardized uptake values were assessed in ulcerated angiosomes of patients with CLI and compared with whole-foot standardized uptake values in healthy subjects. Serial SPECT/CT imaging was performed to assess uptake kinetics of technetium-99m-tetrofosmin. The relationship between angiosome perfusion and ankle–brachial index was assessed via correlational analysis. Resting perfusion was significantly lower in CLI versus healthy subjects (P=0.0007). Intraclass correlation coefficients of 0.95 (healthy) and 0.93 (CLI) demonstrated excellent agreement between serial perfusion measurements. Correlational analysis, including healthy and CLI subjects, demonstrated a significant relationship between ankle–brachial index and SPECT/CT (P=0.01); however, this relationship was not significant for diabetic CLI patients only (P=0.2). Conclusions: SPECT/CT imaging assesses regional foot perfusion and detects abnormalities in microvascular perfusion that may be undetectable by conventional ankle–brachial index in patients with diabetes mellitus. SPECT/CT may provide a novel approach for evaluating responses to targeted therapies. PMID:29748311
High-Resolution 4D Imaging of Technetium Transport in Porous Media using Preclinical SPECT-CT
NASA Astrophysics Data System (ADS)
Dogan, M.; DeVol, T. A.; Groen, H.; Moysey, S. M.; Ramakers, R.; Powell, B. A.
2015-12-01
Preclinical SPECT-CT (single-photon emission computed tomography with integrated X-ray computed tomography) offers the potential to quantitatively image the dynamic three-dimensional distribution of radioisotopes with sub-millimeter resolution, overlaid with structural CT images (20-200 micron resolution), making this an attractive method for studying transport in porous media. A preclinical SPECT-CT system (U-SPECT4CT, MILabs BV. Utrecht, The Netherlands) was evaluated for imaging flow and transport of 99mTc (t1/2=6hrs) using a 46,5mm by 156,4mm column packed with individual layers consisting of <0.2mm diameter silica gel, 0.2-0.25, 0.5, 1.0, 2.0, 3.0, and 4.0mm diameter glass beads, and a natural soil sample obtained from the Savannah River Site. The column was saturated with water prior to injecting the 99mTc solution. During the injection the flow was interrupted intermittently for 10 minute periods to allow for the acquisition of a SPECT image of the transport front. Non-uniformity of the front was clearly observed in the images as well as the retarded movement of 99mTc in the soil layer. The latter is suggesting good potential for monitoring transport processes occurring on the timescale of hours. After breakthrough of 99mTc was achieved, the flow was stopped and SPECT data were collected in one hour increments to evaluate the sensitivity of the instrument as the isotope decayed. Fused SPECT- CT images allowed for improved interpretation of 99mTc distributions within individual pore spaces. With ~3 MBq remaining in the column, the lowest activity imaged, it was not possible to clearly discriminate any of the pore spaces.