Sample records for brain stimulation dbs

  1. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain.

    PubMed

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS.

  2. Functional MRI during Hippocampal Deep Brain Stimulation in the Healthy Rat Brain

    PubMed Central

    Van Den Berge, Nathalie; Vanhove, Christian; Descamps, Benedicte; Dauwe, Ine; van Mierlo, Pieter; Vonck, Kristl; Keereman, Vincent; Raedt, Robrecht; Boon, Paul; Van Holen, Roel

    2015-01-01

    Deep Brain Stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. The mechanism of action and the effects of electrical fields administered to the brain by means of an electrode remain to be elucidated. The effects of DBS have been investigated primarily by electrophysiological and neurochemical studies, which lack the ability to investigate DBS-related responses on a whole-brain scale. Visualization of whole-brain effects of DBS requires functional imaging techniques such as functional Magnetic Resonance Imaging (fMRI), which reflects changes in blood oxygen level dependent (BOLD) responses throughout the entire brain volume. In order to visualize BOLD responses induced by DBS, we have developed an MRI-compatible electrode and an acquisition protocol to perform DBS during BOLD fMRI. In this study, we investigate whether DBS during fMRI is valuable to study local and whole-brain effects of hippocampal DBS and to investigate the changes induced by different stimulation intensities. Seven rats were stereotactically implanted with a custom-made MRI-compatible DBS-electrode in the right hippocampus. High frequency Poisson distributed stimulation was applied using a block-design paradigm. Data were processed by means of Independent Component Analysis. Clusters were considered significant when p-values were <0.05 after correction for multiple comparisons. Our data indicate that real-time hippocampal DBS evokes a bilateral BOLD response in hippocampal and other mesolimbic structures, depending on the applied stimulation intensity. We conclude that simultaneous DBS and fMRI can be used to detect local and whole-brain responses to circuit activation with different stimulation intensities, making this technique potentially powerful for exploration of cerebral changes in response to DBS for both preclinical and clinical DBS. PMID:26193653

  3. Adaptive deep brain stimulation in advanced Parkinson disease.

    PubMed

    Little, Simon; Pogosyan, Alex; Neal, Spencer; Zavala, Baltazar; Zrinzo, Ludvic; Hariz, Marwan; Foltynie, Thomas; Limousin, Patricia; Ashkan, Keyoumars; FitzGerald, James; Green, Alexander L; Aziz, Tipu Z; Brown, Peter

    2013-09-01

    Brain-computer interfaces (BCIs) could potentially be used to interact with pathological brain signals to intervene and ameliorate their effects in disease states. Here, we provide proof-of-principle of this approach by using a BCI to interpret pathological brain activity in patients with advanced Parkinson disease (PD) and to use this feedback to control when therapeutic deep brain stimulation (DBS) is delivered. Our goal was to demonstrate that by personalizing and optimizing stimulation in real time, we could improve on both the efficacy and efficiency of conventional continuous DBS. We tested BCI-controlled adaptive DBS (aDBS) of the subthalamic nucleus in 8 PD patients. Feedback was provided by processing of the local field potentials recorded directly from the stimulation electrodes. The results were compared to no stimulation, conventional continuous stimulation (cDBS), and random intermittent stimulation. Both unblinded and blinded clinical assessments of motor effect were performed using the Unified Parkinson's Disease Rating Scale. Motor scores improved by 66% (unblinded) and 50% (blinded) during aDBS, which were 29% (p = 0.03) and 27% (p = 0.005) better than cDBS, respectively. These improvements were achieved with a 56% reduction in stimulation time compared to cDBS, and a corresponding reduction in energy requirements (p < 0.001). aDBS was also more effective than no stimulation and random intermittent stimulation. BCI-controlled DBS is tractable and can be more efficient and efficacious than conventional continuous neuromodulation for PD. Copyright © 2013 American Neurological Association.

  4. Uncovering the mechanism(s) of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Gang, Li; Chao, Yu; Ling, Lin; C-Y Lu, Stephen

    2005-01-01

    Deep brain stimulators, often called `pacemakers for the brain', are implantable devices which continuously deliver impulse stimulation to specific targeted nuclei of deep brain structure, namely deep brain stimulation (DBS). To date, deep brain stimulation (DBS) is the most effective clinical technique for the treatment of several medically refractory movement disorders (e.g., Parkinson's disease, essential tremor, and dystonia). In addition, new clinical applications of DBS for other neurologic and psychiatric disorders (e.g., epilepsy and obsessive-compulsive disorder) have been put forward. Although DBS has been effective in the treatment of movement disorders and is rapidly being explored for the treatment of other neurologic disorders, the scientific understanding of its mechanisms of action remains unclear and continues to be debated in the scientific community. Optimization of DBS technology for present and future therapeutic applications will depend on identification of the therapeutic mechanism(s) of action. The goal of this review is to address our present knowledge of the effects of high-frequency stimulation within the central nervous system and comment on the functional implications of this knowledge for uncovering the mechanism(s) of DBS.

  5. Rejecting deep brain stimulation artefacts from MEG data using ICA and mutual information.

    PubMed

    Abbasi, Omid; Hirschmann, Jan; Schmitz, Georg; Schnitzler, Alfons; Butz, Markus

    2016-08-01

    Recording brain activity during deep brain stimulation (DBS) using magnetoencephalography (MEG) can potentially help clarifying the neurophysiological mechanism of DBS. The DBS artefact, however, distorts MEG data significantly. We present an artefact rejection approach to remove the DBS artefact from MEG data. We developed an approach consisting of four consecutive steps: (i) independent component analysis was used to decompose MEG data to independent components (ICs); (ii) mutual information (MI) between stimulation signal and all ICs was calculated; (iii) artefactual ICs were identified by means of an MI threshold; and (iv) the MEG signal was reconstructed using only non-artefactual ICs. This approach was applied to MEG data from five Parkinson's disease patients with implanted DBS stimulators. MEG was recorded with DBS ON (unilateral stimulation of the subthalamic nucleus) and DBS OFF during two experimental conditions: a visual attention task and alternating right and left median nerve stimulation. With the presented approach most of the artefact could be removed. The signal of interest could be retrieved in both conditions. In contrast to existing artefact rejection methods for MEG-DBS data (tSSS and S(3)P), the proposed method uses the actual artefact source, i.e. the stimulation signal, as reference signal. Using the presented method, the DBS artefact can be significantly rejected and the physiological data can be restored. This will facilitate research addressing the impact of DBS on brain activity during rest and various tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Bilateral adaptive deep brain stimulation is effective in Parkinson's disease.

    PubMed

    Little, Simon; Beudel, Martijn; Zrinzo, Ludvic; Foltynie, Thomas; Limousin, Patricia; Hariz, Marwan; Neal, Spencer; Cheeran, Binith; Cagnan, Hayriye; Gratwicke, James; Aziz, Tipu Z; Pogosyan, Alex; Brown, Peter

    2016-07-01

    Adaptive deep brain stimulation (aDBS) uses feedback from brain signals to guide stimulation. A recent acute trial of unilateral aDBS showed that aDBS can lead to substantial improvements in contralateral hemibody Unified Parkinson's Disease Rating Scale (UPDRS) motor scores and may be superior to conventional continuous DBS in Parkinson's disease (PD). We test whether potential benefits are retained with bilateral aDBS and in the face of concurrent medication. We applied bilateral aDBS in 4 patients with PD undergoing DBS of the subthalamic nucleus. aDBS was delivered bilaterally with independent triggering of stimulation according to the amplitude of β activity at the corresponding electrode. Mean stimulation voltage was 3.0±0.1 volts. Motor assessments consisted of double-blinded video-taped motor UPDRS scores that included both limb and axial features. UPDRS scores were 43% (p=0.04; Cohen's d=1.62) better with aDBS than without stimulation. Motor improvement with aDBS occurred despite an average time on stimulation (ToS) of only 45%. Levodopa was well tolerated during aDBS and led to further reductions in ToS. Bilateral aDBS can improve both axial and limb symptoms and can track the need for stimulation across drug states. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  7. Asleep Deep Brain Stimulation Reduces Incidence of Intracranial Air during Electrode Implantation.

    PubMed

    Ko, Andrew L; Magown, Philippe; Ozpinar, Alp; Hamzaoglu, Vural; Burchiel, Kim J

    2018-05-30

    Asleep deep brain stimulation (aDBS) implantation replaces microelectrode recording for image-guided implantation, shortening the operative time and reducing cerebrospinal fluid egress. This may decrease pneumocephalus, thus decreasing brain shift during implantation. To compare the incidence and volume of pneumocephalus during awake (wkDBS) and aDBS procedures. A retrospective review of bilateral DBS cases performed at Oregon Health & Science University from 2009 to 2017 was undertaken. Postimplantation imaging was reviewed to determine the presence and volume of intracranial air and measure cortical brain shift. Among 371 patients, pneumocephalus was noted in 66% of wkDBS and 15.6% of aDBS. The average volume of air was significantly higher in wkDBS than aDBS (8.0 vs. 1.8 mL). Volumes of air greater than 7 mL, which have previously been linked to brain shift, occurred significantly more frequently in wkDBS than aDBS (34 vs 5.6%). wkDBS resulted in significantly larger cortical brain shifts (5.8 vs. 1.2 mm). We show that aDBS reduces the incidence of intracranial air, larger air volumes, and cortical brain shift. Large volumes of intracranial air have been correlated to shifting of brain structures during DBS procedures, a variable that could impact accuracy of electrode placement. © 2018 S. Karger AG, Basel.

  8. Network effects of deep brain stimulation

    PubMed Central

    Alhourani, Ahmad; McDowell, Michael M.; Randazzo, Michael J.; Wozny, Thomas A.; Kondylis, Efstathios D.; Lipski, Witold J.; Beck, Sarah; Karp, Jordan F.; Ghuman, Avniel S.

    2015-01-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  9. Bio-heat transfer model of deep brain stimulation-induced temperature changes

    NASA Astrophysics Data System (ADS)

    Elwassif, Maged M.; Kong, Qingjun; Vazquez, Maribel; Bikson, Marom

    2006-12-01

    There is a growing interest in the use of chronic deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. Fundamental questions remain about the physiologic effects of DBS. Previous basic research studies have focused on the direct polarization of neuronal membranes by electrical stimulation. The goal of this paper is to provide information on the thermal effects of DBS using finite element models to investigate the magnitude and spatial distribution of DBS-induced temperature changes. The parameters investigated include stimulation waveform, lead selection, brain tissue electrical and thermal conductivities, blood perfusion, metabolic heat generation during the stimulation and lead thermal conductivity/heat dissipation through the electrode. Our results show that clinical DBS protocols will increase the temperature of surrounding tissue by up to 0.8 °C depending on stimulation/tissue parameters.

  10. Centromedian-parafascicular deep brain stimulation induces differential functional inhibition of the motor, associative, and limbic circuits in large animals.

    PubMed

    Kim, Joo Pyung; Min, Hoon-Ki; Knight, Emily J; Duffy, Penelope S; Abulseoud, Osama A; Marsh, Michael P; Kelsey, Katherine; Blaha, Charles D; Bennet, Kevin E; Frye, Mark A; Lee, Kendall H

    2013-12-15

    Deep brain stimulation (DBS) of the centromedian-parafascicular (CM-Pf) thalamic nuclei has been considered an option for treating Tourette syndrome. Using a large animal DBS model, this study was designed to explore the network effects of CM-Pf DBS. The combination of DBS and functional magnetic resonance imaging is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. With a within-subjects design, we tested the proportional effects of CM and Pf DBS by manipulating current spread and varying stimulation contacts in healthy pigs (n = 5). Our results suggests that CM-Pf DBS has an inhibitory modulating effect in areas that have been suggested as contributing to impaired sensory-motor and emotional processing. The results also help to define the differential neural circuitry effects of the CM and Pf with evidence of prominent sensorimotor/associative effects for CM DBS and prominent limbic/associative effects for Pf DBS. Our results support the notion that stimulation of deep brain structures, such as the CM-Pf, modulates multiple networks with cortical effects. The networks affected by CM-Pf stimulation in this study reinforce the conceptualization of Tourette syndrome as a condition with psychiatric and motor symptoms and of CM-Pf DBS as a potentially effective tool for treating both types of symptoms. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.

    PubMed

    Miocinovic, Svjetlana; Lempka, Scott F; Russo, Gary S; Maks, Christopher B; Butson, Christopher R; Sakaie, Ken E; Vitek, Jerrold L; McIntyre, Cameron C

    2009-03-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson's disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system.

  12. Brain stimulation in posttraumatic stress disorder

    PubMed Central

    Novakovic, Vladan; Sher, Leo; Lapidus, Kyle A.B.; Mindes, Janet; A.Golier, Julia; Yehuda, Rachel

    2011-01-01

    Posttraumatic stress disorder (PTSD) is a complex, heterogeneous disorder that develops following trauma and often includes perceptual, cognitive, affective, physiological, and psychological features. PTSD is characterized by hyperarousal, intrusive thoughts, exaggerated startle response, flashbacks, nightmares, sleep disturbances, emotional numbness, and persistent avoidance of trauma-associated stimuli. The efficacy of available treatments for PTSD may result in part from relief of associated depressive and anxiety-related symptoms in addition to treatment of core symptoms that derive from reexperiencing, numbing, and hyperarousal. Diverse, heterogeneous mechanisms of action and the ability to act broadly or very locally may enable brain stimulation devices to address PTSD core symptoms in more targeted ways. To achieve this goal, specific theoretical bases derived from novel, well-designed research protocols will be necessary. Brain stimulation devices include both long-used and new electrical and magnetic devices. Electroconvulsive therapy (ECT) and Cranial electrotherapy stimulation (CES) have both been in use for decades; transcranial magnetic stimulation (TMS), magnetic seizure therapy (MST), deep brain stimulation (DBS), transcranial Direct Current Stimulation (tDCS), and vagus nerve stimulation (VNS) have been developed recently, over approximately the past twenty years. The efficacy of brain stimulation has been demonstrated as a treatment for psychiatric and neurological disorders such as anxiety (CES), depression (ECT, CES, rTMS, VNS, DBS), obsessive-compulsive disorder (OCD) (DBS), essential tremor, dystonia (DBS), epilepsy (DBS, VNS), Parkinson Disease (DBS), pain (CES), and insomnia (CES). To date, limited data on brain stimulation for PTSD offer only modest guidance. ECT has shown some efficacy in reducing comorbid depression in PTSD patients but has not been demonstrated to improve most core PTSD symptoms. CES and VNS have shown some efficacy in reducing anxiety, findings that may suggest possible utility in relieving PTSD-associated anxiety. Treatment of animal models of PTSD with DBS suggests potential human benefit. Additional research and novel treatment options for PTSD are urgently needed. The potential usefulness of brain stimulation in treating PTSD deserves further exploration. PMID:22893803

  13. Electrical engram: how deep brain stimulation affects memory.

    PubMed

    Lee, Hweeling; Fell, Jürgen; Axmacher, Nikolai

    2013-11-01

    Deep brain stimulation (DBS) is a surgical procedure involving implantation of a pacemaker that sends electric impulses to specific brain regions. DBS has been applied in patients with Parkinson's disease, depression, and obsessive-compulsive disorder (among others), and more recently in patients with Alzheimer's disease to improve memory functions. Current DBS approaches are based on the concept that high-frequency stimulation inhibits or excites specific brain regions. However, because DBS entails the application of repetitive electrical stimuli, it primarily exerts an effect on extracellular field-potential oscillations similar to those recorded with electroencephalography. Here, we suggest a new perspective on how DBS may ameliorate memory dysfunction: it may enhance normal electrophysiological patterns underlying long-term memory processes within the medial temporal lobe. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Deep Brain Stimulation as a Treatment for Refractory Epilepsy: Review of the Current State-of-the-Art.

    PubMed

    Ganguli, Malika P; Upton, Adrian R M; Kamath, Markad V

    2017-01-01

    Epilepsy affects ∼ 1% of the global population, and 33% of patients are nonresponsive to medication and must seek alternative treatment options. Alternative options such as surgery and ablation exist but are not appropriate treatment plans for some patients. Neurostimulation methods such as vagal nerve stimulation, responsive neural stimulation, and deep brain stimulation (DBS) are viable alternatives for medically refractory patients. DBS stimulation has been used in the treatment of Parkinson's disease, dystonia, and pain management. For the treatment of epilepsy, DBS has been found to be an effective treatment plan, with promising results of reduced seizure frequency and intensity. In this review, we discuss DBS surgery and equipment, mechanisms of DBS for epilepsy, and efficacy, technological specifications, and suggestions for future research. We also review a historical summary of experiments involving DBS for epilepsy. Our literature review suggests that further studies are warranted for medically refractory epilepsy using DBS.

  15. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.

    PubMed

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-04-21

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.

  16. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat

    PubMed Central

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  17. MEG Can Map Short and Long-Term Changes in Brain Activity following Deep Brain Stimulation for Chronic Pain

    PubMed Central

    Mohseni, Hamid R.; Smith, Penny P.; Parsons, Christine E.; Young, Katherine S.; Hyam, Jonathan A.; Stein, Alan; Stein, John F.; Green, Alexander L.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2012-01-01

    Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain. PMID:22675503

  18. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    PubMed Central

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-01-01

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design. PMID:26029954

  19. Bimanual Force Coordination in Parkinson’s Disease Patients with Bilateral Subthalamic Deep Brain Stimulation

    PubMed Central

    Gorniak, Stacey L.; McIntyre, Cameron C.; Alberts, Jay L.

    2013-01-01

    Objective Studies of bimanual actions similar to activities of daily living (ADLs) are currently lacking in evaluating fine motor control in Parkinson’s disease patients implanted with bilateral subthalamic deep brain stimulators. We investigated basic time and force characteristics of a bimanual task that resembles performance of ADLs in a group of bilateral subthalamic deep brain stimulation (DBS) patients. Methods Patients were evaluated in three different DBS parameter conditions off stimulation, on clinically derived stimulation parameters, and on settings derived from a patient-specific computational model. Model-based parameters were computed as a means to minimize spread of current to non-motor regions of the subthalamic nucleus via Cicerone Deep Brain Stimulation software. Patients were evaluated off parkinsonian medications in each stimulation condition. Results The data indicate that DBS parameter state does not affect most aspects of fine motor control in ADL-like tasks; however, features such as increased grip force and grip symmetry varied with the stimulation state. In the absence of DBS parameters, patients exhibited significant grip force asymmetry. Overall UPDRS-III and UPDRS-III scores associated with hand function were lower while patients were experiencing clinically-derived or model-based parameters, as compared to the off-stimulation condition. Conclusion While bilateral subthalamic DBS has been shown to alleviate gross motor dysfunction, our results indicate that DBS may not provide the same magnitude of benefit to fine motor coordination. PMID:24244388

  20. Electric Field Comparison between Microelectrode Recording and Deep Brain Stimulation Systems—A Simulation Study

    PubMed Central

    Johansson, Johannes; Wårdell, Karin; Hemm, Simone

    2018-01-01

    The success of deep brain stimulation (DBS) relies primarily on the localization of the implanted electrode. Its final position can be chosen based on the results of intraoperative microelectrode recording (MER) and stimulation tests. The optimal position often differs from the final one selected for chronic stimulation with the DBS electrode. The aim of the study was to investigate, using finite element method (FEM) modeling and simulations, whether lead design, electrical setup, and operating modes induce differences in electric field (EF) distribution and in consequence, the clinical outcome. Finite element models of a MER system and a chronic DBS lead were developed. Simulations of the EF were performed for homogenous and patient-specific brain models to evaluate the influence of grounding (guide tube vs. stimulator case), parallel MER leads, and non-active DBS contacts. Results showed that the EF is deformed depending on the distance between the guide tube and stimulating contact. Several parallel MER leads and the presence of the non-active DBS contacts influence the EF distribution. The DBS EF volume can cover the intraoperatively produced EF, but can also extend to other anatomical areas. In conclusion, EF deformations between stimulation tests and DBS should be taken into consideration as they can alter the clinical outcome. PMID:29415442

  1. Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing.

    PubMed

    Heldmann, Marcus; Berding, Georg; Voges, Jürgen; Bogerts, Bernhard; Galazky, Imke; Müller, Ulf; Baillot, Gunther; Heinze, Hans-Jochen; Münte, Thomas F

    2012-01-01

    The influence of bilateral deep brain stimulation (DBS) of the nucleus nucleus (NAcc) on the processing of reward in a gambling paradigm was investigated using H(2)[(15)O]-PET (positron emission tomography) in a 38-year-old man treated for severe alcohol addiction. Behavioral data analysis revealed a less risky, more careful choice behavior under active DBS compared to DBS switched off. PET showed win- and loss-related activations in the paracingulate cortex, temporal poles, precuneus and hippocampus under active DBS, brain areas that have been implicated in action monitoring and behavioral control. Except for the temporal pole these activations were not seen when DBS was deactivated. These findings suggest that DBS of the NAcc may act partially by improving behavioral control.

  2. Mechanisms and targets of deep brain stimulation in movement disorders.

    PubMed

    Johnson, Matthew D; Miocinovic, Svjetlana; McIntyre, Cameron C; Vitek, Jerrold L

    2008-04-01

    Chronic electrical stimulation of the brain, known as deep brain stimulation (DBS), has become a preferred surgical treatment for medication-refractory movement disorders. Despite its remarkable clinical success, the therapeutic mechanisms of DBS are still not completely understood, limiting opportunities to improve treatment efficacy and simplify selection of stimulation parameters. This review addresses three questions essential to understanding the mechanisms of DBS. 1) How does DBS affect neuronal tissue in the vicinity of the active electrode or electrodes? 2) How do these changes translate into therapeutic benefit on motor symptoms? 3) How do these effects depend on the particular site of stimulation? Early hypotheses proposed that stimulation inhibited neuronal activity at the site of stimulation, mimicking the outcome of ablative surgeries. Recent studies have challenged that view, suggesting that although somatic activity near the DBS electrode may exhibit substantial inhibition or complex modulation patterns, the output from the stimulated nucleus follows the DBS pulse train by direct axonal excitation. The intrinsic activity is thus replaced by high-frequency activity that is time-locked to the stimulus and more regular in pattern. These changes in firing pattern are thought to prevent transmission of pathologic bursting and oscillatory activity, resulting in the reduction of disease symptoms through compensatory processing of sensorimotor information. Although promising, this theory does not entirely explain why DBS improves motor symptoms at different latencies. Understanding these processes on a physiological level will be critically important if we are to reach the full potential of this powerful tool.

  3. Programming Deep Brain Stimulation for Parkinson's Disease: The Toronto Western Hospital Algorithms.

    PubMed

    Picillo, Marina; Lozano, Andres M; Kou, Nancy; Puppi Munhoz, Renato; Fasano, Alfonso

    2016-01-01

    Deep brain stimulation (DBS) is an established and effective treatment for Parkinson's disease (PD). After surgery, a number of extensive programming sessions are performed to define the most optimal stimulation parameters. Programming sessions mainly rely only on neurologist's experience. As a result, patients often undergo inconsistent and inefficient stimulation changes, as well as unnecessary visits. We reviewed the literature on initial and follow-up DBS programming procedures and integrated our current practice at Toronto Western Hospital (TWH) to develop standardized DBS programming protocols. We propose four algorithms including the initial programming and specific algorithms tailored to symptoms experienced by patients following DBS: speech disturbances, stimulation-induced dyskinesia and gait impairment. We conducted a literature search of PubMed from inception to July 2014 with the keywords "deep brain stimulation", "festination", "freezing", "initial programming", "Parkinson's disease", "postural instability", "speech disturbances", and "stimulation induced dyskinesia". Seventy papers were considered for this review. Based on the literature review and our experience at TWH, we refined four algorithms for: (1) the initial programming stage, and management of symptoms following DBS, particularly addressing (2) speech disturbances, (3) stimulation-induced dyskinesia, and (4) gait impairment. We propose four algorithms tailored to an individualized approach to managing symptoms associated with DBS and disease progression in patients with PD. We encourage established as well as new DBS centers to test the clinical usefulness of these algorithms in supplementing the current standards of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis.

    PubMed

    Hescham, Sarah; Temel, Yasin; Schipper, Sandra; Lagiere, Mélanie; Schönfeld, Lisa-Maria; Blokland, Arjan; Jahanshahi, Ali

    2017-03-01

    Deep brain stimulation (DBS) is an established symptomatic treatment modality for movement disorders and constitutes an emerging therapeutic approach for the treatment of memory impairment. In line with this, fornix DBS has shown to ameliorate cognitive decline associated with dementia. Nonetheless, mechanisms mediating clinical effects in demented patients or patients with other neurological disorders are largely unknown. There is evidence that DBS is able to modulate neurophysiological activity in targeted brain regions. We therefore hypothesized that DBS might be able to influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters, which were validated to restore memory loss in a previous behavioral study, we here assessed long-term effects of fornix DBS. To do so, we injected the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), after DBS and perfused the animals 6.5 weeks later. A week prior to perfusion, memory performance was assessed in the water maze. We found that acute stimulation of the fornix improved spatial memory performance in the water maze when the probe trial was performed 1 h after the last training session. However, no evidence for stimulation-induced neurogenesis was found in fornix DBS rats when compared to sham. Our results suggest that fornix DBS improves memory functions independent of hippocampal neurogenesis, possibly through other mechanisms such as synaptic plasticity and acute neurotransmitter release.

  5. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    PubMed Central

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  6. Stuttering in Parkinson's disease after deep brain stimulation: A note on dystonia and low-frequency stimulation.

    PubMed

    Mendonça, Marcelo D; Barbosa, Raquel; Seromenho-Santos, Alexandra; Reizinho, Carla; Bugalho, Paulo

    2018-04-01

    Stuttering, a speech fluency disorder, is a rare complication of Deep Brain Stimulation (DBS) in Parkinson's Disease (PD). We report a 61 years-old patient with PD, afflicted by severe On and Off dystonia, treated with Subthalamic Nucleus DBS that developed post-DBS stuttering while on 130 Hz stimulation. Stuttering reduction was noted when frequency was changed to 80 Hz, but the previously observed dystonia improvement was lost. There are no reports in literature on patients developing stuttering with low-frequency stimulation. We question if low-frequency stimulation could have a role for managing PD's post-DBS stuttering, and notice that stuttering improvement was associated with dystonia worsening suggesting that they are distinct phenomena. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. The temporal pattern of stimulation may be important to the mechanism of deep brain stimulation

    PubMed Central

    Hess, Christopher W.; Vaillancourt, David E.; Okun, Michael S.

    2013-01-01

    Deep brain stimulation (DBS) has emerged as an important and potentially powerful treatment option for the management of carefully selected patients with advanced Parkinson's disease (PD) who are not adequately controlled by standard medication therapy. Though considerable advances have been made, the mechanisms underlying the therapeutic effects of DBS remain unclear despite its clinical efficacy. It is now widely held that both excitation and inhibition can occur secondary to stimulation, and it is suspected that abnormal synchronized oscillations may also be important in the mechanism of DBS. Other potentially important processes, including blood flow changes, local and upstream neurogenesis, and the modulation of neurotransmitters through stimulation of bordering astrocytes are also being investigated. Recent research has suggested that the temporal pattern of DBS stimulation is also an important variable in DBS neuromodulation, yet the extent of its influence on DBS efficacy has yet to be determined. As high stimulation frequency alone does not appear to be sufficient for optimal symptom suppression, attention to stimulation pattern might lead to more effective symptom control and reduced side effects, possibly at a lower frequency. Stimulation pattern may be potentially amenable to therapeutic modulation and its role in the clinical efficacy of DBS should be addressed through further focus and research. PMID:23399890

  8. [Neurological and technical aspects of deep brain stimulation].

    PubMed

    Voges, J; Krauss, J K

    2010-06-01

    Deep brain stimulation (DBS) is an important component of the therapy of movement disorders and has almost completely replaced high-frequency coagulation of brain tissue in stereotactic neurosurgery. Despite the functional efficacy of DBS, which in parts is documented on the highest evidence level, the underlying mechanisms are still not completely understood. According to the current state of knowledge electrophysiological and functional data give evidence that high-frequency DBS has an inhibitory effect around the stimulation electrode whilst at the same time axons entering or leaving the stimulated brain area are excited leading to modulation of neuronal networks. The latter effect modifies pathological discharges of neurons in key structures of the basal ganglia network (e.g. irregular bursting activity, oscillations or synchronization) which are found in particular movement disorders such as Parkinson' s disease or dystonia. The introduction of technical standards, such as the integration of high resolution MRI into computer-assisted treatment planning, in combination with special treatment planning software have contributed significantly to the reduction of severe surgical complications (frequency of intracranial hemorrhaging 1-3%) in recent years. Future developments will address the modification of hardware components of the stimulation system, the evaluation of new brain target areas, the simultaneous stimulation of different brain areas and the assessment of different stimulation paradigms (high-frequency vs low-frequency DBS).

  9. Engineering the next generation of clinical deep brain stimulation technology.

    PubMed

    McIntyre, Cameron C; Chaturvedi, Ashutosh; Shamir, Reuben R; Lempka, Scott F

    2015-01-01

    Deep brain stimulation (DBS) has evolved into a powerful clinical therapy for a range of neurological disorders, but even with impressive clinical growth, DBS technology has been relatively stagnant over its history. However, enhanced collaborations between neural engineers, neuroscientists, physicists, neurologists, and neurosurgeons are beginning to address some of the limitations of current DBS technology. These interactions have helped to develop novel ideas for the next generation of clinical DBS systems. This review attempts collate some of that progress with two goals in mind. First, provide a general description of current clinical DBS practices, geared toward educating biomedical engineers and computer scientists on a field that needs their expertise and attention. Second, describe some of the technological developments that are currently underway in surgical targeting, stimulation parameter selection, stimulation protocols, and stimulation hardware that are being directly evaluated for near term clinical application. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Optimizing a Rodent Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation

    PubMed Central

    Nowak, Karl; Mix, Eilhard; Gimsa, Jan; Strauss, Ulf; Sriperumbudur, Kiran Kumar; Benecke, Reiner; Gimsa, Ulrike

    2011-01-01

    Deep brain stimulation (DBS) has become a treatment for a growing number of neurological and psychiatric disorders, especially for therapy-refractory Parkinson's disease (PD). However, not all of the symptoms of PD are sufficiently improved in all patients, and side effects may occur. Further progress depends on a deeper insight into the mechanisms of action of DBS in the context of disturbed brain circuits. For this, optimized animal models have to be developed. We review not only charge transfer mechanisms at the electrode/tissue interface and strategies to increase the stimulation's energy-efficiency but also the electrochemical, electrophysiological, biochemical and functional effects of DBS. We introduce a hemi-Parkinsonian rat model for long-term experiments with chronically instrumented rats carrying a backpack stimulator and implanted platinum/iridium electrodes. This model is suitable for (1) elucidating the electrochemical processes at the electrode/tissue interface, (2) analyzing the molecular, cellular and behavioral stimulation effects, (3) testing new target regions for DBS, (4) screening for potential neuroprotective DBS effects, and (5) improving the efficacy and safety of the method. An outlook is given on further developments of experimental DBS, including the use of transgenic animals and the testing of closed-loop systems for the direct on-demand application of electric stimulation. PMID:21603182

  11. Deep brain stimulation for the treatment of Alzheimer disease and dementias.

    PubMed

    Laxton, Adrian W; Lozano, Andres M

    2013-01-01

    To review the use of deep brain stimulation (DBS) for treatment of dementia. A PubMed literature search was conducted to identify all studies that have investigated the use of DBS for treatment of dementia. Three studies examined the use of DBS for dementia. One study involved fornix DBS for Alzheimer disease (AD), and two studies involved DBS of the nucleus basalis of Meynert, one to treat AD and one to treat Parkinson disease dementia. Evidence for the use of DBS to treat dementia is preliminary and limited. Fornix and nucleus basalis of Meynert DBS can influence activity in the pathologic neural circuits that underlie AD and Parkinson disease dementia. Further investigation into the potential clinical effects of DBS for dementia is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Me, Myself and My Brain Implant: Deep Brain Stimulation Raises Questions of Personal Authenticity and Alienation.

    PubMed

    Kraemer, Felicitas

    2013-01-01

    In this article, I explore select case studies of Parkinson patients treated with deep brain stimulation (DBS) in light of the notions of alienation and authenticity. While the literature on DBS has so far neglected the issues of authenticity and alienation, I argue that interpreting these cases in terms of these concepts raises new issues for not only the philosophical discussion of neuro-ethics of DBS, but also for the psychological and medical approach to patients under DBS. In particular, I suggest that the experience of alienation and authenticity varies from patient to patient with DBS. For some, alienation can be brought about by neurointerventions because patients no longer feel like themselves. But, on the other hand, it seems alienation can also be cured by DBS as other patients experience their state of mind as authentic under treatment and retrospectively regard their former lives without stimulation as alienated. I argue that we must do further research on the relevance of authenticity and alienation to patients treated with DBS in order to gain a deeper philosophical understanding, and to develop the best evaluative criterion for the behavior of DBS patients.

  13. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease

    PubMed Central

    de Hemptinne, Coralie; Swann, Nicole; Ostrem, Jill L.; Ryapolova-Webb, Elena S.; Luciano, Marta San; Galifianakis, Nicholas; Starr, Philip A.

    2015-01-01

    Deep brain stimulation (DBS) is increasingly applied to the treatment of brain disorders, but its mechanism of action remains unknown. Here, we evaluate the effect of basal ganglia DBS on cortical function using invasive cortical recordings in Parkinson's disease (PD) patients undergoing DBS implantation surgery. In the primary motor cortex of PD patients neuronal population spiking is excessively synchronized to the phase of network oscillations. This manifests in brain surface recordings as exaggerated coupling between the phase of the β rhythm and the amplitude of broadband activity. We show that acute therapeutic DBS reversibly reduces phase-amplitude interactions over a similar time course as reduction in parkinsonian motor signs. We propose that DBS of the basal ganglia improves cortical function by alleviating excessive β phase locking of motor cortex neurons. PMID:25867121

  14. Deep brain stimulation in the bed nucleus of the stria terminalis and medial forebrain bundle in a patient with major depressive disorder and anorexia nervosa.

    PubMed

    Blomstedt, Patric; Naesström, Matilda; Bodlund, Owe

    2017-05-01

    Deep brain stimulation (DBS) may be considered in severe cases of therapy-refractory major depressive disorder (MDD). However, DBS for MDD is still an experimental therapy. Therefore, it should only be administered in clinical studies driven by multidisciplinary teams, including surgeons with substantial experience of DBS in the treatment of other conditions.

  15. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    PubMed

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (<50 Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  16. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    PubMed Central

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (<50Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  17. Current Topics in Deep Brain Stimulation for Parkinson Disease

    PubMed Central

    UMEMURA, Atsushi; OYAMA, Genko; SHIMO, Yasushi; NAKAJIMA, Madoka; NAKAJIMA, Asuka; JO, Takayuki; SEKIMOTO, Satoko; ITO, Masanobu; MITSUHASHI, Takumi; HATTORI, Nobutaka; ARAI, Hajime

    2016-01-01

    There is a long history of surgical treatment for Parkinson disease (PD). After pioneering trials and errors, the current primary surgical treatment for PD is deep brain stimulation (DBS). DBS is a promising treatment option for patients with medically refractory PD. However, there are still many problems and controversies associated with DBS. In this review, we discuss current issues in DBS for PD, including patient selection, clinical outcomes, complications, target selection, long-term outcomes, management of axial symptoms, timing of surgery, surgical procedures, cost-effectiveness, and new technology. PMID:27349658

  18. In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.

  19. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report.

    PubMed

    Ho, Allen L; Choudhri, Omar; Sung, C Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-03-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS).

  20. Deep Brain Stimulation for Essential Vocal Tremor: A Technical Report

    PubMed Central

    Choudhri, Omar; Sung, C. Kwang; DiRenzo, Elizabeth E; Halpern, Casey H

    2015-01-01

    Essential vocal tremor (EVT) is the presence of a tremulous voice that is commonly associated with essential tremor. Patients with EVT often report a necessary increase in vocal effort that significantly worsens with stress and anxiety and can significantly impact quality of life despite optimal medical and behavioral treatment options. Deep brain stimulation (DBS) has been proposed as an effective therapy for vocal tremor, but very few studies exist in the literature that comprehensively evaluate the efficacy of DBS for specifically addressing EVT. We present a technical report on our multidisciplinary, comprehensive operative methodology for treatment of EVT with frameless, awake deep brain stimulation (DBS). PMID:26180680

  1. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson's Disease.

    PubMed

    Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert

    2016-01-13

    Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN-DBS with TMS at short (∼ 3 ms) and medium (∼ 23 ms) intervals increased cortical excitability that lasted for up to 45 min, whereas the control condition (fixed latency of 167 ms) had no effects on cortical excitability. This is the first demonstration of associative plasticity in the STN-M1 circuits in PD patients using this novel technique. The potential therapeutic effects of combining DBS and noninvasive cortical stimulation should be investigated further. Copyright © 2016 the authors 0270-6474/16/360397-09$15.00/0.

  2. Increased dopamine receptor expression and anti-depressant response following deep brain stimulation of the medial forebrain bundle.

    PubMed

    Dandekar, Manoj P; Luse, Dustin; Hoffmann, Carson; Cotton, Patrick; Peery, Travis; Ruiz, Christian; Hussey, Caroline; Giridharan, Vijayasree V; Soares, Jair C; Quevedo, Joao; Fenoy, Albert J

    2017-08-01

    Among several potential neuroanatomical targets pursued for deep brain stimulation (DBS) for treating those with treatment-resistant depression (TRD), the superolateral-branch of the medial forebrain bundle (MFB) is emerging as a privileged location. We investigated the antidepressant-like phenotypic and chemical changes associated with reward-processing dopaminergic systems in rat brains after MFB-DBS. Male Wistar rats were divided into three groups: sham-operated, DBS-Off, and DBS-On. For DBS, a concentric bipolar electrode was stereotactically implanted into the right MFB. Exploratory activity and depression-like behavior were evaluated using the open-field and forced-swimming test (FST), respectively. MFB-DBS effects on the dopaminergic system were evaluated using immunoblotting for tyrosine hydroxylase (TH), dopamine transporter (DAT), and dopamine receptors (D1-D5), and high-performance liquid chromatography for quantifying dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in brain homogenates of prefrontal cortex (PFC), hippocampus, amygdala, and nucleus accumbens (NAc). Animals receiving MFB-DBS showed a significant increase in swimming time without alterations in locomotor activity, relative to the DBS-Off (p<0.039) and sham-operated groups (p<0.014), indicating an antidepressant-like response. MFB-DBS led to a striking increase in protein levels of dopamine D2 receptors and DAT in the PFC and hippocampus, respectively. However, we did not observe appreciable differences in the expression of other dopamine receptors, TH, or in the concentrations of dopamine, DOPAC, and HVA in PFC, hippocampus, amygdala, and NAc. This study was not performed on an animal model of TRD. MFB-DBS rescues the depression-like phenotypes and selectively activates expression of dopamine receptors in brain regions distant from the target area of stimulation. Copyright © 2017. Published by Elsevier B.V.

  3. Effects of repeated deep brain stimulation on depressive- and anxiety-like behavior in rats: comparing entopeduncular and subthalamic nuclei.

    PubMed

    Creed, Meaghan C; Hamani, Clement; Nobrega, José N

    2013-07-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) has been routinely used for the treatment of some movement disorders. However, DBS may be associated with adverse psychiatric effects, such as depression, anxiety and impulsivity. To compare DBS applied to the entopeduncular nucleus (EPN; the rodent homolog of the GPi) and STN in terms of their effects on depressive- and anxiety-like behavior in rats. DBS was applied for 21 days (4 h a day) to either the STN or EPN. Rats then underwent behavioral testing on learned helplessness and elevated plus maze tasks before being sacrificed for brain analyses of zif268, BDNF and trkB mRNA as well as BDNF protein levels. Repeated DBS of the STN, but not of the EPN, led to impaired performance in the learned helplessness task, suggesting that STN-DBS induces or potentiates depressive-like behavior. There was no effect of DBS on elevated plus maze or on open field behavior. Repeated STN-DBS, but not EPN-DBS, led to decreased levels of BDNF and trkB mRNA in hippocampus. Acute stimulation of the STN or EPN resulted in similar changes in zif268 levels in several brain areas, except for the raphe where decreases were seen only after STB-DBS. Together these results indicate that the effects of STN- and EPN-DBS differ in behavioral and neurochemical respects. Results further suggest that the EPN may be a preferable target for clinical DBS when psychiatric side effects are considered insofar as it may be associated with a lower incidence of depressive-like behavior than the STN. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease

    ERIC Educational Resources Information Center

    Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh

    2011-01-01

    Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…

  5. Cognitive Functioning in Children with Pantothenate-Kinase-Associated Neurodegeneration Undergoing Deep Brain Stimulation

    ERIC Educational Resources Information Center

    Mahoney, Rachel; Selway, Richard; Lin, Jean-Pierre

    2011-01-01

    Aim: To examine the cognitive functioning of young people with pantothenate-kinase-associated neurodegeneration (PKAN) after pallidal deep brain stimulation (DBS). PKAN is characterized by progressive generalized dystonia and has historically been associated with cognitive decline. With growing evidence that DBS can improve motor function in…

  6. Stimulation Induced Electrographic Seizures in Deep Brain Stimulation of the Anterior Nucleus of the Thalamus Do Not Preclude a Subsequent Favorable Treatment Response.

    PubMed

    Nora, Tommi; Heinonen, Hanna; Tenhunen, Mirja; Rainesalo, Sirpa; Järvenpää, Soila; Lehtimäki, Kai; Peltola, Jukka

    2018-01-01

    Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a method of neuromodulation used for refractory focal epilepsy. We report a patient suffering from drug-resistant epilepsy who developed novel visual symptoms and atypical seizures with the onset of ANT-DBS therapy. Rechallenge under video electroencephalography recording confirmed that lowering the stimulation voltage alleviated these symptoms. Subsequent stimulation with the initial voltage value did not cause the recurrence of either the visual symptoms or the new seizure type, and appeared to alleviate the patient's seizures in long-term follow-up. We therefore hypothesize that the occurrence of stimulation induced seizures at the onset of DBS therapy should not be considered as a failure in the DBS therapy, and the possibility of a subsequent favorable response to the treatment still exists.

  7. Targeted neural network interventions for auditory hallucinations: Can TMS inform DBS?

    PubMed

    Taylor, Joseph J; Krystal, John H; D'Souza, Deepak C; Gerrard, Jason Lee; Corlett, Philip R

    2018-05-01

    The debilitating and refractory nature of auditory hallucinations (AH) in schizophrenia and other psychiatric disorders has stimulated investigations into neuromodulatory interventions that target the aberrant neural networks associated with them. Internal or invasive forms of brain stimulation such as deep brain stimulation (DBS) are currently being explored for treatment-refractory schizophrenia. The process of developing and implementing DBS is limited by symptom clustering within psychiatric constructs as well as a scarcity of causal tools with which to predict response, refine targeting or guide clinical decisions. Transcranial magnetic stimulation (TMS), an external or non-invasive form of brain stimulation, has shown some promise as a therapeutic intervention for AH but remains relatively underutilized as an investigational probe of clinically relevant neural networks. In this editorial, we propose that TMS has the potential to inform DBS by adding individualized causal evidence to an evaluation processes otherwise devoid of it in patients. Although there are significant limitations and safety concerns regarding DBS, the combination of TMS with computational modeling of neuroimaging and neurophysiological data could provide critical insights into more robust and adaptable network modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [The role of neurologists in deep brain stimulation for Parkinson disease: a neurosurgical perspective].

    PubMed

    Umemura, Atsushi

    2012-01-01

    Deep brain stimulation (DBS) has been accepted as an effective treatment for medically refractory Parkinson disease (PD). Appropriate patient selection, safe and precise surgery, and proper postoperative adjustment of stimulation and medication, are essential for the success of DBS. Patient selection is the most important role for the neurologist in DBS treatment. Neurologists treating PD should understand the correct indications and contraindications for DBS, and introduce it in a timely manner to patients who can be expected to benefit substantially from it. For long term treatment of PD, ideally the neurologist in charge of the patient should adjust both the stimulation parameters and medication. Neurologists engaged in this treatment should also have a comprehensive understanding of the probable complications and how to avoid them.

  9. Forniceal deep brain stimulation induces gene expression and splicing changes that promote neurogenesis and plasticity

    PubMed Central

    Pohodich, Amy E; Yalamanchili, Hari; Raman, Ayush T; Wan, Ying-Wooi; Gundry, Michael; Hao, Shuang; Jin, Haijing; Tang, Jianrong; Liu, Zhandong

    2018-01-01

    Clinical trials are currently underway to assess the efficacy of forniceal deep brain stimulation (DBS) for improvement of memory in Alzheimer’s patients, and forniceal DBS has been shown to improve learning and memory in a mouse model of Rett syndrome (RTT), an intellectual disability disorder caused by loss-of-function mutations in MECP2. The mechanism of DBS benefits has been elusive, however, so we assessed changes in gene expression, splice isoforms, DNA methylation, and proteome following acute forniceal DBS in wild-type mice and mice lacking Mecp2. We found that DBS upregulates genes involved in synaptic function, cell survival, and neurogenesis and normalized expression of ~25% of the genes altered in Mecp2-null mice. Moreover, DBS induced expression of 17–24% of the genes downregulated in other intellectual disability mouse models and in post-mortem human brain tissue from patients with Major Depressive Disorder, suggesting forniceal DBS could benefit individuals with a variety of neuropsychiatric disorders. PMID:29570050

  10. State of the Art for Deep Brain Stimulation Therapy in Movement Disorders: A Clinical and Technological Perspective.

    PubMed

    Wagle Shukla, Aparna; Okun, Michael S

    2016-01-01

    Deep brain stimulation (DBS) therapy is a widely used brain surgery that can be applied for many neurological and psychiatric disorders. DBS is American Food and Drug Administration approved for medication refractory Parkinson's disease, essential tremor and dystonia. Although DBS has shown consistent success in many clinical trials, the therapy has limitations and there are well-recognized complications. Thus, only carefully selected patients are ideal candidates for this surgery. Over the last two decades, there have been significant advances in clinical knowledge on DBS. In addition, the surgical techniques and technology related to DBS has been rapidly evolving. The goal of this review is to describe the current status of DBS in the context of movement disorders, outline the mechanisms of action for DBS in brief, discuss the standard surgical and imaging techniques, discuss the patient selection and clinical outcomes in each of the movement disorders, and finally, introduce the recent advancements from a clinical and technological perspective.

  11. Analysis of simultaneous MEG and intracranial LFP recordings during Deep Brain Stimulation: a protocol and experimental validation

    PubMed Central

    Oswal, Ashwini; Jha, Ashwani; Neal, Spencer; Reid, Alphonso; Bradbury, David; Aston, Peter; Limousin, Patricia; Foltynie, Tom; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir

    2016-01-01

    Background Deep Brain Stimulation (DBS) is an effective treatment for several neurological and psychiatric disorders. In order to gain insights into the therapeutic mechanisms of DBS and to advance future therapies a better understanding of the effects of DBS on large-scale brain networks is required. New method In this paper, we describe an experimental protocol and analysis pipeline for simultaneously performing DBS and intracranial local field potential (LFP) recordings at a target brain region during concurrent magnetoencephalography (MEG) measurement. Firstly we describe a phantom setup that allowed us to precisely characterise the MEG artefacts that occurred during DBS at clinical settings. Results Using the phantom recordings we demonstrate that with MEG beamforming it is possible to recover oscillatory activity synchronised to a reference channel, despite the presence of high amplitude artefacts evoked by DBS. Finally, we highlight the applicability of these methods by illustrating in a single patient with Parkinson's disease (PD), that changes in cortical-subthalamic nucleus coupling can be induced by DBS. Comparison with existing approaches To our knowledge this paper provides the first technical description of a recording and analysis pipeline for combining simultaneous cortical recordings using MEG, with intracranial LFP recordings of a target brain nucleus during DBS. PMID:26698227

  12. Mechanisms of deep brain stimulation

    PubMed Central

    Cheng, Jennifer J.; Eskandar, Emad N.

    2015-01-01

    Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS. PMID:26510756

  13. Novel targets and stimulation paradigms for deep brain stimulation.

    PubMed

    De Jesus, Sol; Almeida, Leonardo; Peng-Chen, Zhongxing; Okun, Michael S; Hess, Christopher W

    2015-01-01

    Deep brain stimulation (DBS) is an accepted therapy for appropriately selected patients with movement disorders and psychiatric disease. The recent advances in lead technology and the advent of novel stimulation parameters have spurred a number of improvements that will likely be implemented in the clinical setting. Although the mechanisms and biology of DBS remain poorly understood, the progress in our understanding of network level dysfunction has driven the introduction of a variety of new targets and approaches to the treatment of human disease. Here we summarize the recent advances in novel stimulation patterns and customized field shaping. We also review new targets, novel applications of DBS and the immediate and long-term horizon for this therapy.

  14. Articulation Features of Parkinson's Disease Patients with Subthalamic Nucleus Deep Brain Stimulation.

    PubMed

    Tanaka, Yasuhiro; Tsuboi, Takashi; Watanabe, Hirohisa; Kajita, Yasukazu; Nakatsubo, Daisuke; Fujimoto, Yasushi; Ohdake, Reiko; Ito, Mizuki; Atsuta, Naoki; Yamamoto, Masahiko; Wakabayashi, Toshihiko; Katsuno, Masahisa; Sobue, Gen

    2016-10-19

    Voice and speech disorders are one of the most important issues after subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) patients. However, articulation features in this patient population remain unclear. We studied the articulation features of PD patients with STN-DBS. Participants were 56 PD patients treated with STN-DBS (STN-DBS group) and 41 patients treated only with medical therapy (medical-therapy-alone group). Articulation function was evaluated with acoustic and auditory-perceptual analyses. The vowel space area (VSA) was calculated using the formant frequency data of three vowels (/a/, /i/, and /u/) from sustained phonation task. The VSA reportedly reflects the distance of mouth/jaw and tongue movements during speech and phonation. Correlations between acoustic and auditory-perceptual measurements were also assessed. The VSA did not significantly differ between the medical-therapy-alone group and the STN-DBS group in the off-stimulation condition. In the STN-DBS group, the VSA was larger in the on-stimulation condition than in the off-stimulation condition. However, individual analysis showed the VSA changes after stopping stimulation were heterogeneous. In total, 89.8% of the STN-DBS group showed a large VSA size in the on- than in the off-stimulation condition. In contrast, the VSA of the remaining patients in that group was smaller in the on- than the off-stimulation condition. STN-DBS may resolve hypokinesia of the articulation structures, including the mouth/jaw and tongue, and improve maximal vowel articulation. However, in the on-stimulation condition, the VSA was not significantly correlated with speech intelligibility. This may be because STN-DBS potentially affects other speech processes such as voice and/or respiratory process.

  15. Chinese expert consensus on programming deep brain stimulation for patients with Parkinson's disease.

    PubMed

    Chen, Shengdi; Gao, Guodong; Feng, Tao; Zhang, Jianguo

    2018-01-01

    Deep Brain Stimulation (DBS) therapy for the treatment of Parkinson's Disease (PD) is now a well-established option for some patients. Postoperative standardized programming processes can improve the level of postoperative management and programming, relieve symptoms and improve quality of life. In order to improve the quality of the programming, the experts on DBS and PD in neurology and neurosurgery in China reviewed the relevant literatures and combined their own experiences and developed this expert consensus on the programming of deep brain stimulation in patients with PD in China. This Chinese expert consensus on postoperative programming can standardize and improve postoperative management and programming of DBS for PD.

  16. Deep brain stimulation changes basal ganglia output nuclei firing pattern in the dystonic hamster.

    PubMed

    Leblois, Arthur; Reese, René; Labarre, David; Hamann, Melanie; Richter, Angelika; Boraud, Thomas; Meissner, Wassilios G

    2010-05-01

    Dystonia is a heterogeneous syndrome of movement disorders characterized by involuntary muscle contractions leading to abnormal movements and postures. While medical treatment is often ineffective, deep brain stimulation (DBS) of the internal pallidum improves dystonia. Here, we studied the impact of DBS in the entopeduncular nucleus (EP), the rodent equivalent of the human globus pallidus internus, on basal ganglia output in the dt(sz)-hamster, a well-characterized model of dystonia by extracellular recordings. Previous work has shown that EP-DBS improves dystonic symptoms in dt(sz)-hamsters. We report that EP-DBS changes firing pattern in the EP, most neurons switching to a less regular firing pattern during DBS. In contrast, EP-DBS did not change the average firing rate of EP neurons. EP neurons display multiphasic responses to each stimulation impulse, likely underlying the disruption of their firing rhythm. Finally, neurons in the substantia nigra pars reticulata display similar responses to EP-DBS, supporting the idea that EP-DBS affects basal ganglia output activity through the activation of common afferent fibers. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guideline on Subthalamic Nucleus and Globus Pallidus Internus Deep Brain Stimulation for the Treatment of Patients With Parkinson's Disease: Executive Summary.

    PubMed

    Rughani, Anand; Schwalb, Jason M; Sidiropoulos, Christos; Pilitsis, Julie; Ramirez-Zamora, Adolfo; Sweet, Jennifer A; Mittal, Sandeep; Espay, Alberto J; Martinez, Jorge Gonzalez; Abosch, Aviva; Eskandar, Emad; Gross, Robert; Alterman, Ron; Hamani, Clement

    2018-06-01

    Is bilateral subthalamic nucleus deep brain stimulation (STN DBS) more, less, or as effective as bilateral globus pallidus internus deep brain stimulation (GPi DBS) in treating motor symptoms of Parkinson's disease, as measured by improvements in Unified Parkinson's Disease Rating Scale, part III (UPDRS-III) scores? Given that bilateral STN DBS is at least as effective as bilateral GPi DBS in treating motor symptoms of Parkinson's disease (as measured by improvements in UPDRS-III scores), consideration can be given to the selection of either target in patients undergoing surgery to treat motor symptoms. (Level I). Is bilateral STN DBS more, less, or as effective as bilateral GPi DBS in allowing reduction of dopaminergic medication in Parkinson's disease? When the main goal of surgery is reduction of dopaminergic medications in a patient with Parkinson's disease, then bilateral STN DBS should be performed instead of GPi DBS. (Level I). Is bilateral STN DBS more, less, or as effective as bilateral GPi DBS in treating dyskinesias associated with Parkinson's disease? There is insufficient evidence to make a generalizable recommendation regarding the target selection for reduction of dyskinesias. However, when the reduction of medication is not anticipated and there is a goal to reduce the severity of "on" medication dyskinesias, the GPi should be targeted. (Level I). Is bilateral STN DBS more, less, or as effective as bilateral GPi DBS in improving quality of life measures in Parkinson's disease? When considering improvements in quality of life in a patient undergoing DBS for Parkinson's disease, there is no basis to recommend bilateral DBS in 1 target over the other. (Level I). Is bilateral STN DBS associated with greater, lesser, or a similar impact on neurocognitive function than bilateral GPi DBS in Parkinson disease? If there is significant concern about cognitive decline, particularly in regards to processing speed and working memory in a patient undergoing DBS, then the clinician should consider using GPi DBS rather than STN DBS, while taking into consideration other goals of surgery. (Level I). Is bilateral STN DBS associated with a higher, lower, or similar risk of mood disturbance than GPi DBS in Parkinson's disease? If there is significant concern about the risk of depression in a patient undergoing DBS, then the clinician should consider using pallidal rather than STN stimulation, while taking into consideration other goals of surgery. (Level I). Is bilateral STN DBS associated with a higher, lower, or similar risk of adverse events compared to GPi DBS in Parkinson's disease? There is insufficient evidence to recommend bilateral DBS in 1 target over the other in order to minimize the risk of surgical adverse events.  The full guideline can be found at: https://www.cns.org/guidelines/deep-brain-stimulation-parkinsons-disease.

  18. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.

    PubMed

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C

    2017-01-01

    Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson's disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation.

  19. Deep Brain Stimulation of the Subthalamic Nucleus Parameter Optimization for Vowel Acoustics and Speech Intelligibility in Parkinson's Disease

    ERIC Educational Resources Information Center

    Knowles, Thea; Adams, Scott; Abeyesekera, Anita; Mancinelli, Cynthia; Gilmore, Greydon; Jog, Mandar

    2018-01-01

    Purpose: The settings of 3 electrical stimulation parameters were adjusted in 12 speakers with Parkinson's disease (PD) with deep brain stimulation of the subthalamic nucleus (STN-DBS) to examine their effects on vowel acoustics and speech intelligibility. Method: Participants were tested under permutations of low, mid, and high STN-DBS frequency,…

  20. Effects of dopaminergic and subthalamic stimulation on musical performance.

    PubMed

    van Vugt, Floris T; Schüpbach, Michael; Altenmüller, Eckart; Bardinet, Eric; Yelnik, Jérôme; Hälbig, Thomas D

    2013-05-01

    Although subthalamic-deep brain stimulation (STN-DBS) is an efficient treatment for Parkinson's disease (PD), its effects on fine motor functions are not clear. We present the case of a professional violinist with PD treated with STN-DBS. DBS improved musical articulation, intonation and emotional expression and worsened timing relative to a timekeeper (metronome). The same effects were found for dopaminergic treatment. These results suggest that STN-DBS, mimicking the effects of dopaminergic stimulation, improves fine-tuned motor behaviour whilst impairing timing precision.

  1. The Impact of Mirth-Inducing Ventral Striatal Deep Brain Stimulation on Functional and Effective Connectivity

    PubMed Central

    Gibson, William S; Cho, Shinho; Abulseoud, Osama A; Gorny, Krzysztof R; Felmlee, Joel P; Welker, Kirk M; Klassen, Bryan T; Min, Hoon-Ki; Lee, Kendall H

    2017-01-01

    Abstract Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is an investigational therapy for treatment-resistant obsessive-compulsive disorder. The ability of VC/VS DBS to evoke spontaneous mirth in patients, often accompanied by smiling and laughter, is clinically well documented. However, the neural correlates of DBS-evoked mirth remain poorly characterized. Patients undergoing VC/VS DBS surgery underwent intraoperative evaluation in which mirth-inducing and non-mirth-inducing stimulation localizations were identified. Using dynamic causal modeling (DCM) for fMRI, the effect of mirth-inducing DBS on functional and effective connectivity among established nodes in limbic cortico-striato-thalamo-cortical (CSTC) circuitry was investigated. Both mirth-inducing and non-mirth-inducing VC/VS DBS consistently resulted (conjunction, global null, family-wise error-corrected P < 0.05) in activation of amygdala, ventral striatum, and mediodorsal thalamus. However, only mirth-inducing DBS resulted in functional inhibition of anterior cingulate cortex. Dynamic causal modeling revealed that mirth-inducing DBS enhanced effective connectivity from anterior cingulate to ventral striatum, while attenuating connectivity from thalamus to ventral striatum relative to non-mirth-inducing stimulation. These results suggest that DBS-evoked mood elevation is accompanied by distinct patterns of limbic thalamocortical connectivity. Using the novel combination of DBS-evoked mood alteration and functional MRI in human subjects, we provide new insights into the network-level mechanisms that influence affect. PMID:27001680

  2. Catatonia after deep brain stimulation successfully treated with lorazepam and right unilateral electroconvulsive therapy: a case report.

    PubMed

    Quinn, Davin K; Rees, Caleb; Brodsky, Aaron; Deligtisch, Amanda; Evans, Daniel; Khafaja, Mohamad; Abbott, Christopher C

    2014-09-01

    The presence of a deep brain stimulator (DBS) in a patient who develops neuropsychiatric symptoms poses unique diagnostic challenges and questions for the treating psychiatrist. Catatonia has been described only once, during DBS implantation, but has not been reported in a successfully implanted DBS patient. We present a case of a patient with bipolar disorder and renal transplant who developed catatonia after DBS for essential tremor. The patient was successfully treated for catatonia with lorazepam and electroconvulsive therapy after careful diagnostic workup. Electroconvulsive therapy has been successfully used with DBS in a handful of cases, and certain precautions may help reduce potential risk. Catatonia is a rare occurrence after DBS but when present may be safely treated with standard therapies such as lorazepam and electroconvulsive therapy.

  3. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism

    PubMed Central

    Whiting, Donald M.; Tomycz, Nestor D.; Bailes, Julian; De Jonge, Lilian; Lecoultre, Virgile; Wilent, Bryan; Alcindor, Dunbar; Prostko, E. Richard; Cheng, Boyle C.; Angle, Cynthia; Cantella, Diane; Whiting, Benjamin B.; Mizes, J. Scott; Finnis, Kirk W.; Ravussin, Eric; Oh, Michael Y.

    2017-01-01

    Object Deep brain stimulation (DBS) of the lateral hypothalamic area (LHA) has been suggested as a potential treatment for intractable obesity. The authors present the 2-year safety results as well as early efficacy and metabolic effects in 3 patients undergoing bilateral LHA DBS in the first study of this approach in humans. Methods Three patients meeting strict criteria for intractable obesity, including failed bariatric surgery, under-went bilateral implantation of LHA DBS electrodes as part of an institutional review board– and FDA-approved pilot study. The primary focus of the study was safety; however, the authors also received approval to collect data on early efficacy including weight change and energy metabolism. Results No serious adverse effects, including detrimental psychological consequences, were observed with continuous LHA DBS after a mean follow-up of 35 months (range 30–39 months). Three-dimensional nonlinear transformation of postoperative imaging superimposed onto brain atlas anatomy was used to confirm and study DBS contact proximity to the LHA. No significant weight loss trends were seen when DBS was programmed using standard settings derived from movement disorder DBS surgery. However, promising weight loss trends have been observed when monopolar DBS stimulation has been applied via specific contacts found to increase the resting metabolic rate measured in a respiratory chamber. Conclusions Deep brain stimulation of the LHA may be applied safely to humans with intractable obesity. Early evidence for some weight loss under metabolically optimized settings provides the first “proof of principle” for this novel antiobesity strategy. A larger follow-up study focused on efficacy along with a more rigorous metabolic analysis is planned to further explore the benefits and therapeutic mechanism behind this investigational therapy. PMID:23560573

  4. Betting on DBS: Effects of Subthalamic Nucleus Deep Brain Stimulation on Risk-Taking and Decision-Making in Patients with Parkinson’s Disease

    PubMed Central

    Brandt, Jason; Rogerson, Mark; Al-Joudi, Haya; Reckess, Gila; Shpritz, Barnett; Umeh, Chizoba C.; Aljehani, Noha; Mills, Kelly; Mari, Zoltan

    2014-01-01

    Objective Concerns persist that deep brain stimulation (DBS) for Parkinson’s disease (PD) increases impulsivity and/or induces excessive reward-seeking. We report here the performance of PD patients with implanted subthalamic nucleus electrodes, with stimulation on and off, on three laboratory tasks of risk-taking and decision-making. They are compared to PD patients maintained on medication and normal control subjects. Methods and Results In the Game of Dice Task, a test of “risky” decision-making, PD patients with or without DBS made highest-risk bets more often, and ended up with less money, than normal controls. There was a trend for DBS stimulation to ameliorate this effect. Deal or No-Deal is an “ambiguous” decision-making task that assessed preference for risk (holding on to one’s briefcase) over a “sure thing” (accepting the banker’s offer). Here, DBS patients were more conservative with stimulation on than off. They accepted smaller offers from the banker and won less money in the DBS-on condition. Overall, the two PD groups won less money than healthy participants. The Framing Paradigm assessed willingness to gamble on a fixed (unambiguous) prize depending on whether the reward was “framed” as a loss or a gain. Nonsurgical PD patients tended to be more risk-averse than normal subjects, whereas DBS patients were more willing to gamble for gains as well as losses both on and off stimulation. Conclusions On “risky” decision-making tasks, DBS patients were more risk-taking than normal, but stimulation may temper this tendency. In contrast, in an “ambiguous risk” situation, DBS patients were more risk-averse (conservative) than normal, and this tendency was greatest with stimulation. PMID:25486385

  5. Betting on DBS: Effects of subthalamic nucleus deep brain stimulation on risk taking and decision making in patients with Parkinson's disease.

    PubMed

    Brandt, Jason; Rogerson, Mark; Al-Joudi, Haya; Reckess, Gila; Shpritz, Barnett; Umeh, Chizoba C; Aljehani, Noha; Mills, Kelly; Mari, Zoltan

    2015-07-01

    Concerns persist that deep brain stimulation (DBS) for Parkinson's disease (PD) increases impulsivity or induces excessive reward seeking. We report here the performance of PD patients with implanted subthalamic nucleus electrodes, with stimulation on and off, on 3 laboratory tasks of risk taking and decision making. They are compared with PD patients maintained on medication and healthy participants. In the Game of Dice Task, a test of "risky" decision making, PD patients with or without DBS made highest risk bets more often and ended up with less money than did healthy participants. There was a trend for DBS stimulation to ameliorate this effect. Deal or No-Deal is an "ambiguous" decision-making task that assessed preference for risk (holding on to one's briefcase) over a "sure thing" (accepting the banker's offer). Here, DBS patients were more conservative with stimulation on than with it off. They accepted smaller offers from the banker and won less money in the DBS-on condition. Overall, the 2 PD groups won less money than did healthy participants. The Framing Paradigm assessed willingness to gamble on a fixed (unambiguous) prize depending on whether the reward was "framed" as a loss or a gain. Nonsurgical PD patients tended to be more risk-averse than were healthy participants, whereas DBS patients were more willing to gamble for gains as well as losses both on and off stimulation. On risky decision-making tasks, DBS patients took more risks than did healthy participants, but stimulation may temper this tendency. In contrast, in an ambiguous-risk situation, DBS patients were more risk-averse (conservative) than were healthy participants, and this tendency was greatest with stimulation. (c) 2015 APA, all rights reserved).

  6. Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression.

    PubMed

    Widge, Alik S; Malone, Donald A; Dougherty, Darin D

    2018-01-01

    Major depressive episodes are the largest cause of psychiatric disability, and can often resist treatment with medication and psychotherapy. Advances in the understanding of the neural circuit basis of depression, combined with the success of deep brain stimulation (DBS) in movement disorders, spurred several groups to test DBS for treatment-resistant depression. Multiple brain sites have now been stimulated in open-label and blinded studies. Initial open-label results were dramatic, but follow-on controlled/blinded clinical trials produced inconsistent results, with both successes and failures to meet endpoints. Data from follow-on studies suggest that this is because DBS in these trials was not targeted to achieve physiologic responses. We review these results within a technology-lifecycle framework, in which these early trial "failures" are a natural consequence of over-enthusiasm for an immature technology. That framework predicts that from this "valley of disillusionment," DBS may be nearing a "slope of enlightenment." Specifically, by combining recent mechanistic insights and the maturing technology of brain-computer interfaces (BCI), the next generation of trials will be better able to target pathophysiology. Key to that will be the development of closed-loop systems that semi-autonomously alter stimulation strategies based on a patient's individual phenotype. Such next-generation DBS approaches hold great promise for improving psychiatric care.

  7. Deep brain stimulation of pedunculopontine tegmental nucleus: role in sleep modulation in advanced Parkinson disease patients: one-year follow-up.

    PubMed

    Peppe, Antonella; Pierantozzi, Mariangela; Baiamonte, Valentina; Moschella, Vincenzo; Caltagirone, Carlo; Stanzione, Paolo; Stefani, Alessandro

    2012-12-01

    Sleep disorders are frequent non-motor symptoms in Parkinson disease (PD), probably due to multifactorial pathogeneses including disease progression, dopaminergic drugs, or concomitant illness. In recent years, the pedunculopontine tegmental (PPTg) nucleus has been considered a surgical target for deep brain stimulation (DBS) in advanced PD patients. As it is involved in controlling the sleep-wake cycle, we investigated the long-lasting effects of PPTg-DBS on the sleep of five PD patients implanted in both the PPTg and the subthalamic nucleus (STN) by rating two subjective clinical scales for sleep: the Parkinson's Disease Sleep Scale (PDSS), and the Epworth Sleepiness Scale (ESS). Sleep scales were administered a week before surgery (T0), three months after DBS (T1), and one year later (T2). In this study, STN-DBS was kept constantly in ON, and three different patterns of PPTg-DBS were investigated: STN-ON (PPTg switched off); PPTg-ON (PPTg stimulated 24 h/day); PPTg-cycle (PPTg stimulated only at night). In post-surgery follow-up, PD patients reported a marked improvement of sleep quality in all DBS conditions. In particular, stimulation of the PPTg nucleus produced not only a remarkable long-term improvement of nighttime sleep, but unlike STN-DBS, also produced significant amelioration of daytime sleepiness. Our study suggests that PPTg-DBS plays an important role in reorganizing regular sleep in PD patients.

  8. Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations.

    PubMed

    Ramirez-Zamora, Adolfo; Smith, Heather; Kumar, Vignessh; Prusik, Julia; Phookan, Sujoy; Pilitsis, Julie G

    2016-01-01

    Although thalamic deep brain stimulation (DBS) has been established as an effective therapy for refractory tremor in Parkinson's disease and essential tremor, reports investigating the efficacy of posterior subthalamic area (PSA) DBS for severe, debilitating tremors continue to emerge. However, questions regarding the optimal anatomical target, surgical approach, programming paradigms and effectiveness compared to other targets remain. In this report, we aimed to review the current literature to assess different stereotactic techniques, anatomical considerations, adverse effects and stimulation settings in PSA DBS. A comprehensive literature review was performed searching for articles discussing tremors and PSA stimulation. We performed a quantitative analysis comparing different DBS tremor targets. Tremor improvement is consistently documented in most reports with an average reduction in tremor of 79% depending on the specific tremor syndrome. Tremor benefit in patients with multiple sclerosis (MS) tremor was significantly higher than for other stimulation targets. Transient paresthesias, imbalance, dizziness and dysarthria are the most common side effects with PSA DBS. PSA DBS is an effective and safe treatment for tremor control and should be considered in patients with refractory tremors with associated cerebellar or dystonic features, proximal tremors and MS tremor. © 2016 S. Karger AG, Basel.

  9. Targeting the brain: considerations in 332 consecutive patients treated by deep brain stimulation (DBS) for severe neurological diseases.

    PubMed

    Franzini, Angelo; Cordella, Roberto; Messina, Giuseppe; Marras, Carlo Efisio; Romito, Luigi Michele; Albanese, Alberto; Rizzi, Michele; Nardocci, Nardo; Zorzi, Giovanna; Zekaj, Edvin; Villani, Flavio; Leone, Massimo; Gambini, Orsola; Broggi, Giovanni

    2012-12-01

    Deep brain stimulation (DBS) extends the treatment of some severe neurological diseases beyond pharmacological and conservative therapy. Our experience extends the field of DBS beyond the treatment of Parkinson disease and dystonia, including several other diseases such as cluster headache and disruptive behavior. Since 1993, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan, 580 deep brain electrodes were implanted in 332 patients. The DBS targets include Stn, GPi, Voa, Vop, Vim, CM-pf, pHyp, cZi, Nacc, IC, PPN, and Brodmann areas 24 and 25. Three hundred patients are still available for follow-up and therapeutic considerations. DBS gave a new therapeutic chance to these patients affected by severe neurological diseases and in some cases controlled life-threatening pathological conditions, which would otherwise result in the death of the patient such as in status dystonicus, status epilepticus and post-stroke hemiballismus. The balance of DBS in severe neurological disease is strongly positive even if further investigations and studies are needed to search for new applications and refine the selection criteria for the actual indications.

  10. Differential effects of deep brain stimulation on verbal fluency.

    PubMed

    Ehlen, Felicitas; Schoenecker, Thomas; Kühn, Andrea A; Klostermann, Fabian

    2014-07-01

    We aimed at gaining insights into principles of subcortical lexical processing. Therefore, effects of deep brain stimulation (DBS) in different target structures on verbal fluency (VF) were tested. VF was assessed with active vs. inactivated DBS in 13 and 14 patients with DBS in the vicinity of the thalamic ventral intermediate nucleus (VIM) and, respectively, of the subthalamic nucleus (STN). Results were correlated to electrode localizations in postoperative MRI, and compared to those of 12 age-matched healthy controls. Patients' VF performance was generally below normal. However, while activation of DBS in the vicinity of VIM provoked marked VF decline, it induced subtle phonemic VF enhancement in the vicinity of STN. The effects correlated with electrode localizations in left hemispheric stimulation sites. The results show distinct dependencies of VF on DBS in the vicinity of VIM vs. STN. Particular risks for deterioration occur in patients with relatively ventromedial thalamic electrodes. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring.

    PubMed

    Kuhn, Jens; Gründler, Theo O J; Bauer, Robert; Huff, Wolfgang; Fischer, Adrian G; Lenartz, Doris; Maarouf, Mohammad; Bührle, Christian; Klosterkötter, Joachim; Ullsperger, Markus; Sturm, Volker

    2011-10-01

    Following recent advances in neuromodulation therapy for mental disorders, we treated one patient with severe alcohol addiction with deep brain stimulation (DBS) of the nucleus accumbens (NAc). Before and one year following the surgery, we assessed the effects of DBS within the NAc on the addiction as well as on psychometric scores and electrophysiological measures of cognitive control. In our patient, DBS achieved normalization of addictive behavior and craving. An electrophysiological marker of error processing (the error-related negativity) linked to anterior mid-cingulate cortex (aMCC) functioning was altered through DBS, an effect that could be reversed by periods without stimulation. Thus, this case supports the hypothesis that DBS of the NAc could have a positive effect on addiction trough a normalization of craving associated with aMCC dysfunction. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  12. Fornix deep brain stimulation enhances acetylcholine levels in the hippocampus.

    PubMed

    Hescham, Sarah; Jahanshahi, Ali; Schweimer, Judith V; Mitchell, Stephen N; Carter, Guy; Blokland, Arjan; Sharp, Trevor; Temel, Yasin

    2016-11-01

    Deep brain stimulation (DBS) of the fornix has gained interest as a potential therapy for advanced treatment-resistant dementia, yet the mechanism of action remains widely unknown. Previously, we have reported beneficial memory effects of fornix DBS in a scopolamine-induced rat model of dementia, which is dependent on various brain structures including hippocampus. To elucidate mechanisms of action of fornix DBS with regard to memory restoration, we performed c-Fos immunohistochemistry in the hippocampus. We found that fornix DBS induced a selective activation of cells in the CA1 and CA3 subfields of the dorsal hippocampus. In addition, hippocampal neurotransmitter levels were measured using microdialysis before, during and after 60 min of fornix DBS in a next experiment. We observed a substantial increase in the levels of extracellular hippocampal acetylcholine, which peaked 20 min after stimulus onset. Interestingly, hippocampal glutamate levels did not change compared to baseline. Therefore, our findings provide first experimental evidence that fornix DBS activates the hippocampus and induces the release of acetylcholine in this region.

  13. Intraoperative neurophysiological responses in epileptic patients submitted to hippocampal and thalamic deep brain stimulation.

    PubMed

    Cukiert, Arthur; Cukiert, Cristine Mella; Argentoni-Baldochi, Meire; Baise, Carla; Forster, Cássio Roberto; Mello, Valeria Antakli; Burattini, José Augusto; Lima, Alessandra Moura

    2011-12-01

    Deep brain stimulation (DBS) has been used in an increasing frequency for treatment of refractory epilepsy. Acute deep brain macrostimulation intraoperative findings were sparsely published in the literature. We report on our intraoperative macrostimulation findings during thalamic and hippocampal DBS implantation. Eighteen patients were studied. All patients underwent routine pre-operative evaluation that included clinical history, neurological examination, interictal and ictal EEG, high resolution 1.5T MRI and neuropsychological testing. Six patients with temporal lobe epilepsy were submitted to hippocampal DBS (Hip-DBS); 6 patients with focal epilepsy were submitted to anterior thalamic nucleus DBS (AN-DBS) and 6 patients with generalized epilepsy were submitted to centro-median thalamic nucleus DBS (CM-DBS). Age ranged from 9 to 40 years (11 males). All patients were submitted to bilateral quadripolar DBS electrode implantation in a single procedure, under general anesthesia, and intraoperative scalp EEG monitoring. Final electrode's position was checked postoperatively using volumetric CT scanning. Bipolar stimulation using the more proximal and distal electrodes was performed. Final standard stimulation parameters were 6Hz, 4V, 300μs (low frequency range: LF) or 130Hz, 4V, 300μs (high frequency range: HF). Bilateral recruiting response (RR) was obtained after unilateral stimulation in all patients submitted to AN and CM-DBS using LF stimulation. RR was widespread but prevailed over the fronto-temporal region bilaterally, and over the stimulated hemisphere. HF stimulation led to background slowing and a DC shift. The mean voltage for the appearance of RR was 4V (CM) and 3V (AN). CM and AN-DBS did not alter inter-ictal spiking frequency or morphology. RR obtained after LF Hip-DBS was restricted to the stimulated temporal lobe and no contralateral activation was noted. HF stimulation yielded no visually recognizable EEG modification. Mean intensity for initial appearance of RR was 3V. In 5 of the 6 patients submitted to Hip-DBS, an increase in inter-ictal spiking was noted unilaterally immediately after electrode insertion. Intraoperative LF stimulation did not modify temporal lobe spiking; on the other hand, HF was effective in abolishing inter-ictal spiking in 4 of the 6 patients studied. There was no immediate morbidity or mortality in this series. Macrostimulation might be used to confirm that the hardware was working properly. There was no typical RR derived from each studied thalamic nuclei after LF stimulation. On the other hand, absence of such RRs was highly suggestive of hardware malfunction or inadequate targeting. Thalamic-DBS (Th-DBS) RR was always bilateral after unilateral stimulation, although they somehow prevailed over the stimulated hemisphere. Contrary to Th-DBS, Hip-DBS gave rise to localized RR over the ipsolateral temporal neocortex, and absence of this response might very likely be related to inadequate targeting or hardware failure. Increased spiking was seen over temporal neocortex during hippocampal electrode insertion; this might point to the more epileptogenic hippocampal region in each individual patient. We did not notice any intraoperative response difference among patients with temporal lobe epilepsy with or without MTS. The relationship between these intraoperative findings and seizure outcome is not yet clear and should be further evaluated. 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  14. Astroglial Control of the Antidepressant-Like Effects of Prefrontal Cortex Deep Brain Stimulation.

    PubMed

    Etiévant, A; Oosterhof, C; Bétry, C; Abrial, E; Novo-Perez, M; Rovera, R; Scarna, H; Devader, C; Mazella, J; Wegener, G; Sánchez, C; Dkhissi-Benyahya, O; Gronfier, C; Coizet, V; Beaulieu, J M; Blier, P; Lucas, G; Haddjeri, N

    2015-08-01

    Although deep brain stimulation (DBS) shows promising efficacy as a therapy for intractable depression, the neurobiological bases underlying its therapeutic action remain largely unknown. The present study was aimed at characterizing the effects of infralimbic prefrontal cortex (IL-PFC) DBS on several pre-clinical markers of the antidepressant-like response and at investigating putative non-neuronal mechanism underlying DBS action. We found that DBS induced an antidepressant-like response that was prevented by IL-PFC neuronal lesion and by adenosine A1 receptor antagonists including caffeine. Moreover, high frequency DBS induced a rapid increase of hippocampal mitosis and reversed the effects of stress on hippocampal synaptic metaplasticity. In addition, DBS increased spontaneous IL-PFC low-frequency oscillations and both raphe 5-HT firing activity and synaptogenesis. Unambiguously, a local glial lesion counteracted all these neurobiological effects of DBS. Further in vivo electrophysiological results revealed that this astrocytic modulation of DBS involved adenosine A1 receptors and K(+) buffering system. Finally, a glial lesion within the site of stimulation failed to counteract the beneficial effects of low frequency (30 Hz) DBS. It is proposed that an unaltered neuronal-glial system constitutes a major prerequisite to optimize antidepressant DBS efficacy. It is also suggested that decreasing frequency could heighten antidepressant response of partial responders.

  15. Spontaneous sensorimotor cortical activity is suppressed by deep brain stimulation in patients with advanced Parkinson's disease.

    PubMed

    Luoma, Jarkko; Pekkonen, Eero; Airaksinen, Katja; Helle, Liisa; Nurminen, Jussi; Taulu, Samu; Mäkelä, Jyrki P

    2018-06-22

    Advanced Parkinson's disease (PD) is characterized by an excessive oscillatory beta band activity in the subthalamic nucleus (STN). Deep brain stimulation (DBS) of STN alleviates motor symptoms in PD and suppresses the STN beta band activity. The effect of DBS on cortical sensorimotor activity is more ambiguous; both increases and decreases of beta band activity have been reported. Non-invasive studies with simultaneous DBS are problematic due to DBS-induced artifacts. We recorded magnetoencephalography (MEG) from 16 advanced PD patients with and without STN DBS during rest and wrist extension. The strong magnetic artifacts related to stimulation were removed by temporal signal space separation. MEG oscillatory activity at 5-25 Hz was suppressed during DBS in a widespread frontoparietal region, including the sensorimotor cortex identified by the cortico-muscular coherence. The strength of suppression did not correlate with clinical improvement. Our results indicate that alpha and beta band oscillations are suppressed at the frontoparietal cortex by STN DBS in PD. Copyright © 2018. Published by Elsevier B.V.

  16. Deep Brain Stimulation Targeting the Fornix for Mild Alzheimer Dementia (the ADvance Trial): A Two Year Follow-up Including Results of Delayed Activation.

    PubMed

    Leoutsakos, Jeannie-Marie S; Yan, Haijuan; Anderson, William S; Asaad, Wael F; Baltuch, Gordon; Burke, Anna; Chakravarty, M Mallar; Drake, Kristen E; Foote, Kelly D; Fosdick, Lisa; Giacobbe, Peter; Mari, Zoltan; McAndrews, Mary Pat; Munro, Cynthia A; Oh, Esther S; Okun, Michael S; Pendergrass, Jo Cara; Ponce, Francisco A; Rosenberg, Paul B; Sabbagh, Marwan N; Salloway, Stephen; Tang-Wai, David F; Targum, Steven D; Wolk, David; Lozano, Andres M; Smith, Gwenn S; Lyketsos, Constantine G

    2018-06-09

    Given recent challenges in developing new treatments for Alzheimer dementia (AD), it is vital to explore alternate treatment targets, such as neuromodulation for circuit dysfunction. We previously reported an exploratory Phase IIb double-blind trial of deep brain stimulation targeting the fornix (DBS-f) in mild AD (the ADvance trial). We reported safety but no clinical benefits of DBS-f versus the delayed-on (sham) treatment in 42 participants after one year. However, secondary post hoc analyses of the one-year data suggested a possible DBS-f benefit for participants≥65 years. To examine the long-term safety and clinical effects of sustained and delayed-on DBS-f treatment of mild AD after two years. 42 participants underwent implantation of DBS-f electrodes, with half randomized to active DBS-f stimulation (early on) for two years and half to delayed-on (sham) stimulation after 1 year to provide 1 year of active DBS-f stimulation (delayed on). We evaluated safety and clinical outcomes over the two years of the trial. DBS-f had a favorable safety profile with similar rates of adverse events across both trial phases (years 1 and 2) and between treatment arms. There were no differences between treatment arms on any primary clinical outcomes. However, post-hoc age group analyses suggested a possible benefit among older (>65) participants. DBS-f was safe. Additional study of mechanisms of action and methods for titrating stimulation parameters will be needed to determine if DBS has potential as an AD treatment. Future efficacy studies should focus on patients over age 65.

  17. Computational modeling of an endovascular approach to deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Teplitzky, Benjamin A.; Connolly, Allison T.; Bajwa, Jawad A.; Johnson, Matthew D.

    2014-04-01

    Objective. Deep brain stimulation (DBS) therapy currently relies on a transcranial neurosurgical technique to implant one or more electrode leads into the brain parenchyma. In this study, we used computational modeling to investigate the feasibility of using an endovascular approach to target DBS therapy. Approach. Image-based anatomical reconstructions of the human brain and vasculature were used to identify 17 established and hypothesized anatomical targets of DBS, of which five were found adjacent to a vein or artery with intraluminal diameter ≥1 mm. Two of these targets, the fornix and subgenual cingulate white matter (SgCwm) tracts, were further investigated using a computational modeling framework that combined segmented volumes of the vascularized brain, finite element models of the tissue voltage during DBS, and multi-compartment axon models to predict the direct electrophysiological effects of endovascular DBS. Main results. The models showed that: (1) a ring-electrode conforming to the vessel wall was more efficient at neural activation than a guidewire design, (2) increasing the length of a ring-electrode had minimal effect on neural activation thresholds, (3) large variability in neural activation occurred with suboptimal placement of a ring-electrode along the targeted vessel, and (4) activation thresholds for the fornix and SgCwm tracts were comparable for endovascular and stereotactic DBS, though endovascular DBS was able to produce significantly larger contralateral activation for a unilateral implantation. Significance. Together, these results suggest that endovascular DBS can serve as a complementary approach to stereotactic DBS in select cases.

  18. Rapid Modulation of Protein Expression in the Rat Hippocampus Following Deep Brain Stimulation of the Fornix.

    PubMed

    Gondard, Elise; Chau, Hien N; Mann, Amandeep; Tierney, Travis S; Hamani, Clement; Kalia, Suneil K; Lozano, Andres M

    2015-01-01

    The forniceal area is currently being evaluated as a target for deep brain stimulation (DBS) to improve cognitive function in patients with Alzheimer's disease. The molecular changes at downstream targets within the stimulated circuit are unknown. To analyze the modulation of hippocampal protein expression following 1 h of fornix DBS in the rat. Animals underwent bilateral forniceal DBS for 1 h and sacrificed at different time-points after the initiation of the stimulation (1 h, 2.5 h, 5 h, 25 h). Bilateral hippocampi were isolated for western blot analyses. Forniceal DBS led to a dramatic elevation of cFos post-stimulation, suggesting that forniceal DBS activates the hippocampus. There was also a significant increase in candidate proteins including several trophic factors, such as brain derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) but not glial cell-derived neurotrophic factor (GDNF). There was in addition, increased expression of the synaptic markers growth associated protein 43 (GAP-43), synaptophysin and α-synuclein. No changes were observed at the studied time-points in Alzheimer's-related proteins including amyloid precursor protein (APP), tau, phosphorylated tau (ptau), or selected chaperone proteins (HSP40, HSP70 and CHIP). Forniceal DBS triggers hippocampal activity and rapidly modulate the expression of neurotrophic factors and markers of synaptic plasticity known to play key roles in memory processing. The clinical effects of DBS of the fornix may, in part, be mediated by producing changes in the expression of these proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Failure to suppress low-frequency neuronal oscillatory activity underlies the reduced effectiveness of random patterns of deep brain stimulation.

    PubMed

    McConnell, George C; So, Rosa Q; Grill, Warren M

    2016-06-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for the motor symptoms of Parkinson's disease (PD). However, the mechanisms of action of DBS are unknown. Random temporal patterns of DBS are less effective than regular DBS, but the neuronal basis for this dependence on temporal pattern of stimulation is unclear. Using a rat model of PD, we quantified the changes in behavior and single-unit activity in globus pallidus externa and substantia nigra pars reticulata during high-frequency STN DBS with different degrees of irregularity. Although all stimulus trains had the same average rate, 130-Hz regular DBS more effectively reversed motor symptoms, including circling and akinesia, than 130-Hz irregular DBS. A mixture of excitatory and inhibitory neuronal responses was present during all stimulation patterns, and mean firing rate did not change during DBS. Low-frequency (7-10 Hz) oscillations of single-unit firing times present in hemiparkinsonian rats were suppressed by regular DBS, and neuronal firing patterns were entrained to 130 Hz. Irregular patterns of DBS less effectively suppressed 7- to 10-Hz oscillations and did not regularize firing patterns. Random DBS resulted in a larger proportion of neuron pairs with increased coherence at 7-10 Hz compared with regular 130-Hz DBS, which suggested that long pauses (interpulse interval >50 ms) during random DBS facilitated abnormal low-frequency oscillations in the basal ganglia. These results suggest that the efficacy of high-frequency DBS stems from its ability to regularize patterns of neuronal firing and thereby suppress abnormal oscillatory neural activity within the basal ganglia. Copyright © 2016 the American Physiological Society.

  20. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example

    PubMed Central

    Gunalan, Kabilar; Chaturvedi, Ashutosh; Howell, Bryan; Duchin, Yuval; Lempka, Scott F.; Patriat, Remi; Sapiro, Guillermo; Harel, Noam; McIntyre, Cameron C.

    2017-01-01

    Background Deep brain stimulation (DBS) is an established clinical therapy and computational models have played an important role in advancing the technology. Patient-specific DBS models are now common tools in both academic and industrial research, as well as clinical software systems. However, the exact methodology for creating patient-specific DBS models can vary substantially and important technical details are often missing from published reports. Objective Provide a detailed description of the assembly workflow and parameterization of a patient-specific DBS pathway-activation model (PAM) and predict the response of the hyperdirect pathway to clinical stimulation. Methods Integration of multiple software tools (e.g. COMSOL, MATLAB, FSL, NEURON, Python) enables the creation and visualization of a DBS PAM. An example DBS PAM was developed using 7T magnetic resonance imaging data from a single unilaterally implanted patient with Parkinson’s disease (PD). This detailed description implements our best computational practices and most elaborate parameterization steps, as defined from over a decade of technical evolution. Results Pathway recruitment curves and strength-duration relationships highlight the non-linear response of axons to changes in the DBS parameter settings. Conclusion Parameterization of patient-specific DBS models can be highly detailed and constrained, thereby providing confidence in the simulation predictions, but at the expense of time demanding technical implementation steps. DBS PAMs represent new tools for investigating possible correlations between brain pathway activation patterns and clinical symptom modulation. PMID:28441410

  1. Deep Brain Stimulation: A Paradigm Shifting Approach to Treat Parkinson's Disease.

    PubMed

    Hickey, Patrick; Stacy, Mark

    2016-01-01

    Parkinson disease (PD) is a chronic and progressive movement disorder classically characterized by slowed voluntary movements, resting tremor, muscle rigidity, and impaired gait and balance. Medical treatment is highly successful early on, though the majority of people experience significant complications in later stages. In advanced PD, when medications no longer adequately control motor symptoms, deep brain stimulation (DBS) offers a powerful therapeutic alternative. DBS involves the surgical implantation of one or more electrodes into specific areas of the brain, which modulate or disrupt abnormal patterns of neural signaling within the targeted region. Outcomes are often dramatic following DBS, with improvements in motor function and reductions motor complications having been repeatedly demonstrated. Given such robust responses, emerging indications for DBS are being investigated. In parallel with expansions of therapeutic scope, advancements within the areas of neurosurgical technique and the precision of stimulation delivery have recently broadened as well. This review focuses on the revolutionary addition of DBS to the therapeutic armamentarium for PD, and summarizes the technological advancements in the areas of neuroimaging and biomedical engineering intended to improve targeting, programming, and overall management.

  2. Development of intraoperative electrochemical detection: wireless instantaneous neurochemical concentration sensor for deep brain stimulation feedback

    PubMed Central

    Van Gompel, Jamie J.; Chang, Su-Youne; Goerss, Stephan J.; Kim, In Yong; Kimble, Christopher; Bennet, Kevin E.; Lee, Kendall H.

    2010-01-01

    Deep brain stimulation (DBS) is effective when there appears to be a distortion in the complex neurochemical circuitry of the brain. Currently, the mechanism of DBS is incompletely understood; however, it has been hypothesized that DBS evokes release of neurochemicals. Well-established chemical detection systems such as microdialysis and mass spectrometry are impractical if one is assessing changes that are happening on a second-to-second time scale or for chronically used implanted recordings, as would be required for DBS feedback. Electrochemical detection techniques such as fast-scan cyclic voltammetry (FSCV) and amperometry have until recently remained in the realm of basic science; however, it is enticing to apply these powerful recording technologies to clinical and translational applications. The Wireless Instantaneous Neurochemical Concentration Sensor (WINCS) currently is a research device designed for human use capable of in vivo FSCV and amperometry, sampling at subsecond time resolution. In this paper, the authors review recent advances in this electrochemical application to DBS technologies. The WINCS can detect dopamine, adenosine, and serotonin by FSCV. For example, FSCV is capable of detecting dopamine in the caudate evoked by stimulation of the subthalamic nucleus/substantia nigra in pig and rat models of DBS. It is further capable of detecting dopamine by amperometry and, when used with enzyme linked sensors, both glutamate and adenosine. In conclusion, WINCS is a highly versatile instrument that allows near real-time (millisecond) detection of neurochemicals important to DBS research. In the future, the neurochemical changes detected using WINCS may be important as surrogate markers for proper DBS placement as well as the sensor component for a “smart” DBS system with electrochemical feedback that allows automatic modulation of stimulation parameters. Current work is under way to establish WINCS use in humans. PMID:20672923

  3. Deep brain stimulation in the central nucleus of the amygdala decreases 'wanting' and 'liking' of food rewards.

    PubMed

    Ross, Shani E; Lehmann Levin, Emily; Itoga, Christy A; Schoen, Chelsea B; Selmane, Romeissa; Aldridge, J Wayne

    2016-10-01

    We investigated the potential of deep brain stimulation (DBS) in the central nucleus of the amygdala (CeA) in rats to modulate functional reward mechanisms. The CeA is the major output of the amygdala with direct connections to the hypothalamus and gustatory brainstem, and indirect connections with the nucleus accumbens. Further, the CeA has been shown to be involved in learning, emotional integration, reward processing, and regulation of feeding. We hypothesized that DBS, which is used to treat movement disorders and other brain dysfunctions, might block reward motivation. In rats performing a lever-pressing task to obtain sugar pellet rewards, we stimulated the CeA and control structures, and compared stimulation parameters. During CeA stimulation, animals stopped working for rewards and rejected freely available rewards. Taste reactivity testing during DBS exposed aversive reactions to normally liked sucrose tastes and even more aversive taste reactions to normally disliked quinine tastes. Interestingly, given the opportunity, animals implanted in the CeA would self-stimulate with 500 ms trains of stimulation at the same frequency and current parameters as continuous stimulation that would stop reward acquisition. Neural recordings during DBS showed that CeA neurons were still active and uncovered inhibitory-excitatory patterns after each stimulus pulse indicating possible entrainment of the neural firing with DBS. In summary, DBS modulation of CeA may effectively usurp normal neural activity patterns to create an 'information lesion' that not only decreased motivational 'wanting' of food rewards, but also blocked 'liking' of rewards. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output.

    PubMed

    Humphries, Mark D; Gurney, Kevin

    2012-07-01

    Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contributor to the effectiveness of STN DBS. We used our computational model of the complete basal ganglia circuit to show how such a mixture of responses in basal ganglia output naturally arises from the network effects of STN DBS. We replicated the diversification of responses recorded in a primate STN DBS study to show that the model's predicted mixture of responses is consistent with therapeutic STN DBS. We then showed how this 'mixture of response' perspective suggests new ideas for DBS mechanisms: first, that the therapeutic frequency of STN DBS is above 100 Hz because the diversification of responses exhibits a step change above this frequency; and second, that optogenetic models of direct STN stimulation during DBS have proven therapeutically ineffective because they do not replicate the mixture of basal ganglia output responses evoked by electrical DBS. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Ethical safety of deep brain stimulation: A study on moral decision-making in Parkinson's disease.

    PubMed

    Fumagalli, Manuela; Marceglia, Sara; Cogiamanian, Filippo; Ardolino, Gianluca; Picascia, Marta; Barbieri, Sergio; Pravettoni, Gabriella; Pacchetti, Claudio; Priori, Alberto

    2015-07-01

    The possibility that deep brain stimulation (DBS) in Parkinson's disease (PD) alters patients' decisions and actions, even temporarily, raises important clinical, ethical and legal questions. Abnormal moral decision-making can lead to ethical rules violations. Previous experiments demonstrated the subthalamic (STN) activation during moral decision-making. Here we aim to study whether STN DBS can affect moral decision-making in PD patients. Eleven patients with PD and bilateral STN DBS implant performed a computerized moral task in ON and OFF stimulation conditions. A control group of PD patients without DBS implant performed the same experimental protocol. All patients underwent motor, cognitive and psychological assessments. STN stimulation was not able to modify neither reaction times nor responses to moral task both when we compared the ON and the OFF state in the same patient (reaction times, p = .416) and when we compared DBS patients with those treated only with the best medical treatment (reaction times: p = .408, responses: p = .776). Moral judgment is the result of a complex process, requiring cognitive executive functions, problem-solving, anticipations of consequences of an action, conflict processing, emotional evaluation of context and of possible outcomes, and involving different brain areas and neural circuits. Our data show that STN DBS leaves unaffected moral decisions thus implying relevant clinical and ethical implications for DBS consequences on patients' behavior, on decision-making and on judgment ability. In conclusion, the technique can be considered safe on moral behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Deep brain stimulation of anterior nucleus thalami disrupts sleep in epilepsy patients.

    PubMed

    Voges, Berthold R; Schmitt, Friedhelm C; Hamel, Wolfgang; House, Patrick M; Kluge, Christian; Moll, Christian K E; Stodieck, Stefan R

    2015-08-01

    In view of the regulatory function of the thalamus in the sleep-wake cycle, the impact of deep brain stimulation (DBS) of the anterior nucleus thalami (ANT) on sleep was assessed in a small consecutive cohort of epilepsy patients with standardized polysomnography (PSG). In nine patients treated with ANT-DBS (voltage 5 V, frequency 145 Hz, cyclic mode), the number of arousals during stimulation and nonstimulation periods, neuropsychiatric symptoms (npS), and seizure frequency were determined. Electroclinical arousals were triggered in 14.0 to 67.0% (mean 42.4 ± SD 16.8%) of all deep brain stimuli. Six patients reported npS. Nocturnal DBS voltages were reduced in eight patients (one patient without npS refused) and PSGs were repeated. Electroclinical arousals occurred between 1.4 and 6.7 (mean 3.3 ± 1.7) times more frequently during stimulation periods compared to nonstimulation periods; the number of arousals positively correlated with the level of DBS voltage (range 1 V to 5 V) (Spearman's rank coefficient 0.53121; p < 0.05). No patient experienced seizure deterioration and four patients reported remission of npS. This case-cohort study provides evidence that ANT-DBS interrupts sleep in a voltage-dependent manner, thus putatively resulting in an increase of npS. Reduction of nocturnal DBS voltage seems to lead to improvement of npS without hampering efficacy of ANT-DBS. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  7. Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study.

    PubMed

    De Jesus, Sol; Almeida, Leonardo; Shahgholi, Leili; Martinez-Ramirez, Daniel; Roper, Jaimie; Hass, Chris J; Akbar, Umer; Wagle Shukla, Aparna; Raike, Robert S; Okun, Michael S

    2018-01-01

    Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ 2  = 16.1, p = 0.006), posture (χ 2  = 15.9, p = 0.007) and with action (χ 2  = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required. Copyright © 2017. Published by Elsevier Ltd.

  8. External trial deep brain stimulation device for the application of desynchronizing stimulation techniques.

    PubMed

    Hauptmann, C; Roulet, J-C; Niederhauser, J J; Döll, W; Kirlangic, M E; Lysyansky, B; Krachkovskyi, V; Bhatti, M A; Barnikol, U B; Sasse, L; Bührle, C P; Speckmann, E-J; Götz, M; Sturm, V; Freund, H-J; Schnell, U; Tass, P A

    2009-12-01

    In the past decade deep brain stimulation (DBS)-the application of electrical stimulation to specific target structures via implanted depth electrodes-has become the standard treatment for medically refractory Parkinson's disease and essential tremor. These diseases are characterized by pathological synchronized neuronal activity in particular brain areas. We present an external trial DBS device capable of administering effectively desynchronizing stimulation techniques developed with methods from nonlinear dynamics and statistical physics according to a model-based approach. These techniques exploit either stochastic phase resetting principles or complex delayed-feedback mechanisms. We explain how these methods are implemented into a safe and user-friendly device.

  9. Identifying the appropriate time for deep brain stimulation to achieve spatial memory improvement on the Morris water maze.

    PubMed

    Jeong, Da Un; Lee, Jihyeon; Chang, Won Seok; Chang, Jin Woo

    2017-03-07

    The possibility of using deep brain stimulation (DBS) for memory enhancement has recently been reported, but the precise underlying mechanisms of its effects remain unknown. Our previous study suggested that spatial memory improvement by medial septum (MS)-DBS may be associated with cholinergic regulation and neurogenesis. However, the affected stage of memory could not be distinguished because the stimulation was delivered during the execution of all memory processes. Therefore, this study was performed to determine the stage of memory affected by MS-DBS. Rats were administered 192 IgG-saporin to lesion cholinergic neurons. Stimulation was delivered at different times in different groups of rats: 5 days before the Morris water maze test (pre-stimulation), 5 days during the training phase of the Morris water maze test (training-stimulation), and 2 h before the Morris water maze probe test (probe-stimulation). A fourth group of rats was lesioned but received no stimulation. These four groups were compared with a normal (control) group. The most effective memory restoration occurred in the pre-stimulation group. Moreover, the pre-stimulation group exhibited better recall of the platform position than the other stimulation groups. An increase in the level of brain derived neurotrophic factor (BDNF) was observed in the pre-stimulation group; this increase was maintained for 1 week. However, acetylcholinesterase activity in the pre-stimulation group was not significantly different from the lesion group. Memory impairment due to cholinergic denervation can be improved by DBS. The improvement is significantly correlated with the up-regulation of BDNF expression and neurogenesis. Based on the results of this study, the use of MS-DBS during the early stage of disease may restore spatial memory impairment.

  10. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    PubMed

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  11. Update on Deep Brain Stimulation for Dyskinesia and Dystonia: A Literature Review

    PubMed Central

    TODA, Hiroki; SAIKI, Hidemoto; NISHIDA, Namiko; IWASAKI, Koichi

    2016-01-01

    Deep brain stimulation (DBS) has been an established surgical treatment option for dyskinesia from Parkinson disease and for dystonia. The present article deals with the timing of surgical intervention, selecting an appropriate target, and minimizing adverse effects. We provide an overview of current evidences and issues for dyskinesia and dystonia as well as emerging DBS technology. PMID:27053331

  12. Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression

    PubMed Central

    Widge, Alik S.; Malone, Donald A.; Dougherty, Darin D.

    2018-01-01

    Major depressive episodes are the largest cause of psychiatric disability, and can often resist treatment with medication and psychotherapy. Advances in the understanding of the neural circuit basis of depression, combined with the success of deep brain stimulation (DBS) in movement disorders, spurred several groups to test DBS for treatment-resistant depression. Multiple brain sites have now been stimulated in open-label and blinded studies. Initial open-label results were dramatic, but follow-on controlled/blinded clinical trials produced inconsistent results, with both successes and failures to meet endpoints. Data from follow-on studies suggest that this is because DBS in these trials was not targeted to achieve physiologic responses. We review these results within a technology-lifecycle framework, in which these early trial “failures” are a natural consequence of over-enthusiasm for an immature technology. That framework predicts that from this “valley of disillusionment,” DBS may be nearing a “slope of enlightenment.” Specifically, by combining recent mechanistic insights and the maturing technology of brain-computer interfaces (BCI), the next generation of trials will be better able to target pathophysiology. Key to that will be the development of closed-loop systems that semi-autonomously alter stimulation strategies based on a patient's individual phenotype. Such next-generation DBS approaches hold great promise for improving psychiatric care. PMID:29618967

  13. Selective left, right and bilateral stimulation of subthalamic nuclei in Parkinson's disease: differential effects on motor, speech and language function.

    PubMed

    Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.

  14. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    PubMed

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Mechanisms Underlying Decision-Making as Revealed by Deep-Brain Stimulation in Patients with Parkinson's Disease.

    PubMed

    Herz, Damian M; Little, Simon; Pedrosa, David J; Tinkhauser, Gerd; Cheeran, Binith; Foltynie, Tom; Bogacz, Rafal; Brown, Peter

    2018-04-23

    To optimally balance opposing demands of speed and accuracy during decision-making, we must flexibly adapt how much evidence we require before making a choice. Such adjustments in decision thresholds have been linked to the subthalamic nucleus (STN), and therapeutic STN deep-brain stimulation (DBS) has been shown to interfere with this function. Here, we performed continuous as well as closed-loop DBS of the STN while Parkinson's disease patients performed a perceptual decision-making task. Closed-loop STN DBS allowed temporally patterned STN stimulation and simultaneous recordings of STN activity. This revealed that DBS only affected patients' ability to adjust decision thresholds if applied in a specific temporally confined time window during deliberation. Only stimulation in that window diminished the normal slowing of response times that occurred on difficult trials when DBS was turned off. Furthermore, DBS eliminated a relative, time-specific increase in STN beta oscillations and compromised its functional relationship with trial-by-trial adjustments in decision thresholds. Together, these results provide causal evidence that the STN is involved in adjusting decision thresholds in distinct, time-limited processing windows during deliberation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. [Deep brain stimulation in parkinsonian patients with dopa intolerance].

    PubMed

    García-Ruiz, Pedro J; Feliz-Feliz, Cici; Ayerbe Gracia, Joaquín; Matías Arbelo, José; Salvador, Carlos; Val Fernández, Javier Del; García-Caldentey, Juan

    2017-10-28

    Deep brain stimulation (DBS) is at present, a useful treatment for patients with advanced Parkinson's disease and motor complications. The crucial step toward consistent DBS outcomes remains careful patient selection; several conditions must be fulfilled including excellent levo dopa response. We report two cases of early onset Parkinson's disease with severe intolerance to levo dopa but excellent and sustained response to DBS. DBS can be a useful alternative for parkinsonian patients with severe intolerance to levo dopa, provided a positive acute response to levo dopa or apomorphine is obtained. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Proceedings of the Third Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    PubMed Central

    Rossi, P. Justin; Gunduz, Aysegul; Judy, Jack; Wilson, Linda; Machado, Andre; Giordano, James J.; Elias, W. Jeff; Rossi, Marvin A.; Butson, Christopher L.; Fox, Michael D.; McIntyre, Cameron C.; Pouratian, Nader; Swann, Nicole C.; de Hemptinne, Coralie; Gross, Robert E.; Chizeck, Howard J.; Tagliati, Michele; Lozano, Andres M.; Goodman, Wayne; Langevin, Jean-Philippe; Alterman, Ron L.; Akbar, Umer; Gerhardt, Greg A.; Grill, Warren M.; Hallett, Mark; Herrington, Todd; Herron, Jeffrey; van Horne, Craig; Kopell, Brian H.; Lang, Anthony E.; Lungu, Codrin; Martinez-Ramirez, Daniel; Mogilner, Alon Y.; Molina, Rene; Opri, Enrico; Otto, Kevin J.; Oweiss, Karim G.; Pathak, Yagna; Shukla, Aparna; Shute, Jonathan; Sheth, Sameer A.; Shih, Ludy C.; Steinke, G. Karl; Tröster, Alexander I.; Vanegas, Nora; Zaghloul, Kareem A.; Cendejas-Zaragoza, Leopoldo; Verhagen, Leonard; Foote, Kelly D.; Okun, Michael S.

    2016-01-01

    The proceedings of the 3rd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, imaging, and computational work on DBS for the treatment of neurological and neuropsychiatric disease. Significant innovations of the past year are emphasized. The Think Tank's contributors represent a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers, and members of industry. Presentations and discussions covered a broad range of topics, including policy and advocacy considerations for the future of DBS, connectomic approaches to DBS targeting, developments in electrophysiology and related strides toward responsive DBS systems, and recent developments in sensor and device technologies. PMID:27092042

  18. Anterior thalamic nuclei deep brain stimulation reduces disruption of the blood-brain barrier, albumin extravasation, inflammation and apoptosis in kainic acid-induced epileptic rats.

    PubMed

    Chen, Ying-Chuan; Zhu, Guan-Yu; Wang, Xiu; Shi, Lin; Du, Ting-Ting; Liu, De-Feng; Liu, Yu-Ye; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo

    2017-12-01

    Objective The therapeutic efficacy of anterior thalamic nuclei deep brain stimulation (ATN-DBS) against seizures has been largely accepted; however, the effects of ATN-DBS on disruption of the blood-brain barrier (BBB), albumin extravasation, inflammation and apoptosis still remain unclear. Methods Rats were distributed into four treatment groups: physiological saline (PS, N = 12), kainic acid (KA, N = 12), KA-sham-DBS (N = 12) and KA-DBS (N = 12). Seizures were monitored using video-electroencephalogram (EEG). One day after surgery, all rats were sacrificed. Then, samples were prepared for quantitative real-time PCR (qPCR), western blot, immunofluorescence (IF) staining, and transmission electron microscopy to evaluate the disruption of the BBB, albumin extravasation, inflammation, and apoptosis. Result Because of the KA injection, the disruption of the BBB, albumin extravasation, inflammation and apoptosis were more severe in the KA and the KA-sham-DBS groups compared to the PS group (all Ps < 0.05 or < 0.01). The ideal outcomes were observed in the KA-DBS group. ATN-DBS produced a 46.3% reduction in seizure frequency and alleviated the disruption of the BBB, albumin extravasation, inflammatory reaction and apoptosis in comparison to the KA-sham-DBS group (all Ps < 0.05 or < 0.01). Conclusion (1) Seizures can be reduced using ATN-DBS in the epileptogenic stage. (2) ATN-DBS can reduce the disruption of the BBB and albumin extravasation. (3) ATN-DBS has an anti-inflammatory effect in epileptic models.

  19. Central thalamic deep brain stimulation for support of forebrain arousal regulation in the minimally conscious state.

    PubMed

    Schiff, Nicholas D

    2013-01-01

    This chapter considers the use of central thalamic deep brain stimulation (CT/DBS) to support arousal regulation mechanisms in the minimally conscious state (MCS). CT/DBS for selected patients in a MCS is first placed in the historical context of prior efforts to use thalamic electrical brain stimulation to treat the unconscious clinical conditions of coma and vegetative state. These previous studies and a proof of concept result from a single-subject study of a patient in a MCS are reviewed against the background of new population data providing benchmarks of the natural history of vegetative and MCSs. The conceptual foundations for CT/DBS in selected patients in a MCS are then presented with consideration of both circuit and cellular mechanisms underlying recovery of consciousness identified from empirical studies. Directions for developing future generalizable criteria for CT/DBS that focus on the integrity of necessary brain systems and behavioral profiles in patients in a MCS that may optimally response to support of arousal regulation mechanisms are proposed. © 2013 Elsevier B.V. All rights reserved.

  20. Deep Brain Stimulation of the Memory Circuit: Improving Cognition in Alzheimer's Disease.

    PubMed

    Posporelis, Sotirios; David, Anthony S; Ashkan, Keyoumars; Shotbolt, Paul

    2018-05-26

    Deep brain stimulation (DBS) is an effective invasive treatment for a wide range of neurological and psychiatric disorders. Neurosurgically implanted electrodes deliver stimulation of pre-programmed amplitude, frequency, and pulse width within deep brain structures; those settings can be adjusted at a later stage according to individual needs for optimal response. This results in variable effects dependent on the targeted region. An established treatment for movement disorders, the effectiveness of DBS in dementia remains under investigation. Translational studies have uncovered a pro-cognitive effect mediated by changes on cellular as well as network level. Several groups have attempted to examine the benefits of DBS in Alzheimer's disease; differences in inclusion criteria and methodology make generalization of results difficult. This review aims to summarize all completed and ongoing human studies of DBS in Alzheimer's disease. The results are classified by targeted anatomical structure. Future directions, as well as economical and ethical arguments, are explored in the final section.

  1. Bidirectional Modulation of Extinction of Drug Seeking by Deep Brain Stimulation of the Ventral Striatum.

    PubMed

    Martínez-Rivera, Freddyson J; Rodriguez-Romaguera, Jose; Lloret-Torres, Mario E; Do Monte, Fabricio H; Quirk, Gregory J; Barreto-Estrada, Jennifer L

    2016-11-01

    Recent research in humans and rodents has explored the use of deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VS) as a possible treatment for drug addiction. However, the optimum electrode placement and optimum DBS parameters have not been thoroughly studied. Here we varied stimulation sites and frequencies to determine whether DBS of the VS could facilitate the extinction of morphine-induced conditioned place preference in rats. Rats were implanted with DBS electrodes in the dorsal or ventral subregions of the VS and trained to the morphine conditioned place preference. Subsequently, rats received extinction sessions over 9 days, combined with 60 min of either high- (130 Hz) or low- (20 Hz) frequency DBS. To study circuit-wide activations after DBS of the VS, c-fos immunohistochemistry was performed in regions involved in the extinction of drug-seeking behaviors. High-frequency DBS of the dorsal-VS impaired both extinction training and extinction memory, whereas high-frequency DBS of the ventral-VS had no effect. In contrast, low-frequency DBS of the dorsal-VS strengthened extinction memory when tested 2 or 9 days after the cessation of stimulation. Both DBS frequencies increased c-fos expression in the infralimbic prefrontal cortex, but only low-frequency DBS increased c-fos expression in the basal amygdala and the medial portion of the central amygdala. Our results suggest that low-frequency (rather than high-frequency) DBS of the dorsal-VS strengthens extinction memory and may be a potential adjunct for extinction-based therapies for treatment-refractory opioid addiction. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Computational Modeling and Neuroimaging Techniques for Targeting during Deep Brain Stimulation

    PubMed Central

    Sweet, Jennifer A.; Pace, Jonathan; Girgis, Fady; Miller, Jonathan P.

    2016-01-01

    Accurate surgical localization of the varied targets for deep brain stimulation (DBS) is a process undergoing constant evolution, with increasingly sophisticated techniques to allow for highly precise targeting. However, despite the fastidious placement of electrodes into specific structures within the brain, there is increasing evidence to suggest that the clinical effects of DBS are likely due to the activation of widespread neuronal networks directly and indirectly influenced by the stimulation of a given target. Selective activation of these complex and inter-connected pathways may further improve the outcomes of currently treated diseases by targeting specific fiber tracts responsible for a particular symptom in a patient-specific manner. Moreover, the delivery of such focused stimulation may aid in the discovery of new targets for electrical stimulation to treat additional neurological, psychiatric, and even cognitive disorders. As such, advancements in surgical targeting, computational modeling, engineering designs, and neuroimaging techniques play a critical role in this process. This article reviews the progress of these applications, discussing the importance of target localization for DBS, and the role of computational modeling and novel neuroimaging in improving our understanding of the pathophysiology of diseases, and thus paving the way for improved selective target localization using DBS. PMID:27445709

  3. Transcranial direct current stimulation in obsessive-compulsive disorder: emerging clinical evidence and considerations for optimal montage of electrodes.

    PubMed

    Senço, Natasha M; Huang, Yu; D'Urso, Giordano; Parra, Lucas C; Bikson, Marom; Mantovani, Antonio; Shavitt, Roseli G; Hoexter, Marcelo Q; Miguel, Eurípedes C; Brunoni, André R

    2015-07-01

    Neuromodulation techniques for obsessive-compulsive disorder (OCD) treatment have expanded with greater understanding of the brain circuits involved. Transcranial direct current stimulation (tDCS) might be a potential new treatment for OCD, although the optimal montage is unclear. To perform a systematic review on meta-analyses of repetitive transcranianal magnetic stimulation (rTMS) and deep brain stimulation (DBS) trials for OCD, aiming to identify brain stimulation targets for future tDCS trials and to support the empirical evidence with computer head modeling analysis. Systematic reviews of rTMS and DBS trials on OCD in Pubmed/MEDLINE were searched. For the tDCS computational analysis, we employed head models with the goal of optimally targeting current delivery to structures of interest. Only three references matched our eligibility criteria. We simulated four different electrodes montages and analyzed current direction and intensity. Although DBS, rTMS and tDCS are not directly comparable and our theoretical model, based on DBS and rTMS targets, needs empirical validation, we found that the tDCS montage with the cathode over the pre-supplementary motor area and extra-cephalic anode seems to activate most of the areas related to OCD.

  4. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation.

    PubMed

    Grant, Peadar F; Lowery, Madeleine M

    2013-07-01

    A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.

  5. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting.

    PubMed

    Swan, Brandon D; Brocker, David T; Hilliard, Justin D; Tatter, Stephen B; Gross, Robert E; Turner, Dennis A; Grill, Warren M

    2016-02-01

    We conducted intraoperative measurements of tremor during DBS containing short pauses (⩽50 ms) to determine if there is a minimum pause duration that preserves tremor suppression. Nine subjects with ET and thalamic DBS participated during IPG replacement surgery. Patterns of DBS included regular 130 Hz stimulation interrupted by 0, 15, 25 or 50 ms pauses. The same patterns were applied to a model of the thalamic network to quantify effects of pauses on activity of model neurons. All patterns of DBS decreased tremor relative to 'off'. Patterns with pauses generated less tremor reduction than regular high frequency DBS. The model revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but pauses in stimulation allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. The temporal pattern of stimulation influences the efficacy of thalamic DBS. Pauses in stimulation resulted in decreased tremor suppression indicating that masking of pathological bursting is a mechanism of thalamic DBS for tremor. Pauses in stimulation decreased the efficacy of open-loop DBS for suppression of tremor. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Deep-Brain Stimulation for Basal Ganglia Disorders.

    PubMed

    Wichmann, Thomas; Delong, Mahlon R

    2011-07-01

    The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.

  7. Effects of Medication and Subthalamic Nucleus Deep Brain Stimulation on Tongue Movements in Speakers with Parkinson's Disease Using Electropalatography: A Pilot Study

    ERIC Educational Resources Information Center

    Hartinger, Mariam; Tripoliti, Elina; Hardcastle, William J.; Limousin, Patricia

    2011-01-01

    Parkinson's disease (PD) affects speech in the majority of patients. Subthalamic nucleus deep brain stimulation (STN-DBS) is particularly effective in reducing tremor and rigidity. However, its effect on speech is variable. The aim of this pilot study was to quantify the effects of bilateral STN-DBS and medication on articulation, using…

  8. Pitch Variability in Patients with Parkinson's Disease: Effects of Deep Brain Stimulation of Caudal Zona Incerta and Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; van Doorn, Jan

    2013-01-01

    Purpose: The purpose of the present study was to examine the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) pitch characteristics of connected speech in patients with Parkinson's disease (PD). Method: The authors evaluated 16 patients preoperatively and 12 months after DBS surgery. Eight…

  9. Deep Brain Stimulation to Alleviate Freezing of Gait and Cognitive Dysfunction in Parkinson's Disease: Update on Current Research and Future Perspectives.

    PubMed

    Huang, Chuyi; Chu, Heling; Zhang, Yan; Wang, Xiaoping

    2018-01-01

    Freezing of gait (FOG) is a gait disorder featured by recurrent episodes of temporary gait halting and mainly found in advanced Parkinson's disease (PD). FOG has a severe impact on the quality of life of patients with PD. The pathogenesis of FOG is unclear and considered to be related to several brain areas and neural circuits. Its close connection with cognitive disorder has been proposed and some researchers explain the pathogenesis using the cognitive model theory. FOG occurs concurrently with cognitive disorder in some PD patients, who are poorly responsive to medication therapy. Deep brain stimulation (DBS) proves effective for FOG in PD patients. Cognitive impairment plays a role in the formation of FOG. Therefore, if DBS works by improving the cognitive function, both two challenging conditions can be ameliorated by DBS. We reviewed the clinical studies related to DBS for FOG in PD patients over the past decade. In spite of the varying stimulation parameters used in different studies, DBS of either subthalamic nucleus (STN) or pedunculopontine nucleus (PPN) alone or in combination can improve the symptoms of FOG. Moreover, the treatment efficacy can last for 1-2 years and DBS is generally safe. Although few studies have been conducted concerning the use of DBS for cognitive disorder in FOG patients, the existing studies seem to indicate that PPN is a potential therapeutic target to both FOG and cognitive disorder. However, most of the studies have a small sample size and involve sporadic cases, so it remains uncertain which nucleus is the optimal target of stimulation. Prospective clinical trials with a larger sample size are needed to systematically assess the efficacy of DBS for FOG and cognitive disorder.

  10. Rapid effects of deep brain stimulation reactivation on symptoms and neuroendocrine parameters in obsessive-compulsive disorder

    PubMed Central

    de Koning, P P; Figee, M; Endert, E; van den Munckhof, P; Schuurman, P R; Storosum, J G; Denys, D; Fliers, E

    2016-01-01

    Improvement of obsessions and compulsions by deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) is often preceded by a rapid and transient mood elevation (hypomania). In a previous study we showed that improvement of mood by DBS for OCD is associated with a decreased activity of the hypothalamus–pituitary adrenal axis. The aim of our present study was to evaluate the time course of rapid clinical changes following DBS reactivation in more detail and to assess their association with additional neuroendocrine parameters. We included therapy-refractory OCD patients treated with DBS (>1 year) and performed a baseline assessment of symptoms, as well as plasma concentrations of thyroid-stimulating hormone (TSH), prolactin, growth hormone, copeptin and homovanillic acid. This was repeated after a 1-week DBS OFF condition. Next, we assessed the rapid effects of DBS reactivation by measuring psychiatric symptom changes using visual analog scales as well as repeated neuroendocrine measures after 30 min, 2 h and 6 h. OCD, anxiety and depressive symptoms markedly increased during the 1-week OFF condition and decreased again to a similar extent already 2 h after DBS reactivation. We found lower plasma prolactin (41% decrease, P=0.003) and TSH (39% decrease, P=0.003) levels during DBS OFF, which increased significantly already 30 min after DBS reactivation. The rapid and simultaneous increase in TSH and prolactin is likely to result from stimulation of hypothalamic thyrotropin-releasing hormone (TRH), which may underlie the commonly observed transient mood elevation following DBS. PMID:26812043

  11. Medical Management of Parkinson's Disease after Initiation of Deep Brain Stimulation.

    PubMed

    Fasano, Alfonso; Appel-Cresswell, Silke; Jog, Mandar; Zurowkski, Mateusz; Duff-Canning, Sarah; Cohn, Melanie; Picillo, Marina; Honey, Christopher R; Panisset, Michel; Munhoz, Renato Puppi

    2016-09-01

    In this review, we have gathered all the available evidence to guide medication management after deep brain stimulation (DBS) in Parkinson's disease (PD). Surprisingly, we found that almost no study addressed drug-based management in the postoperative period. Dopaminergic medications are usually reduced, but whether the levodopa or dopamine agonist is to be reduced is left to the personal preference of the treating physician. We have summarized the pros and cons of both approaches. No study on the management of cognitive problems after DBS has been done, and only a few studies have explored the pharmacological management of such DBS-resistant symptoms as voice (amantadine), balance (donepezil) or gait disorders (amantadine, methylphenidate). As for the psychiatric problems so frequently reported in PD patients, researchers have directed their attention to the complex interplay between stimulation and reduction of dopaminergic drugs only recently. In conclusion, studies addressing medical management following DBS are still needed and will certainly contribute to the ultimate success of DBS procedures.

  12. Deep brain stimulation of the ventral striatal area for poststroke pain syndrome: a magnetoencephalography study.

    PubMed

    Gopalakrishnan, Raghavan; Burgess, Richard C; Malone, Donald A; Lempka, Scott F; Gale, John T; Floden, Darlene P; Baker, Kenneth B; Machado, Andre G

    2018-06-01

    Poststroke pain syndrome (PSPS) is an often intractable disorder characterized by hemiparesis associated with unrelenting chronic pain. Although traditional analgesics have largely failed, integrative approaches targeting affective-cognitive spheres have started to show promise. Recently, we demonstrated that deep brain stimulation (DBS) of the ventral striatal area significantly improved the affective sphere of pain in patients with PSPS. In the present study, we examined whether electrophysiological correlates of pain anticipation were modulated by DBS that could serve as signatures of treatment effects. We recorded event-related fields (ERFs) of pain anticipation using magnetoencephalography (MEG) in 10 patients with PSPS preoperatively and postoperatively in DBS OFF and ON states. Simple visual cues evoked anticipation as patients awaited a painful (PS) or nonpainful stimulus (NPS) to the nonaffected or affected extremity. Preoperatively, ERFs showed no difference between PS and NPS anticipation to the affected extremity, possibly due to loss of salience in a network saturated by pain experience. DBS significantly modulated the early N1, consistent with improvements in affective networks involving restoration of salience and discrimination capacity. Additionally, DBS suppressed the posterior P2 (aberrant anticipatory anxiety) while enhancing the anterior N1 (cognitive and emotional regulation) in responders. DBS-induced changes in ERFs could potentially serve as signatures for clinical outcomes. NEW & NOTEWORTHY We examined the electrophysiological correlates of pain affect in poststroke pain patients who underwent deep brain stimulation (DBS) targeting the ventral striatal area under a randomized, controlled trial. DBS significantly modulated early event-related components, particularly N1 and P2, measured with magnetoencephalography during a pain anticipatory task, compared with baseline and the DBS-OFF condition, pointing to possible mechanisms of action. DBS-induced changes in event-related fields could potentially serve as biomarkers for clinical outcomes.

  13. Stridor and dysphagia associated with subthalamic nucleus stimulation in Parkinson disease.

    PubMed

    Fagbami, Oluwakemi Y; Donato, Anthony A

    2011-11-01

    Refractory symptoms in Parkinson disease show good response to deep brain stimulation (DBS). This procedure improves United Parkinson's Disease Rating Scale scores and reduces dyskinesias, whereas speech and swallowing dysfunction typically do not improve and may even worsen. Rarely, DBS can cause idiosyncratic dystonias of muscle groups, including those of the neck and throat. The authors describe a patient experiencing stridor and dysphagia with confirmed pulmonary restriction and aspiration following subthalamic nucleus deep brain stimulator adjustment, with a resolution of symptoms and signs when the stimulator was switched off.

  14. Characterization of oscillatory changes in hippocampus and amygdala after deep brain stimulation of the infralimbic prefrontal cortex.

    PubMed

    Cervera-Ferri, Ana; Teruel-Martí, Vicent; Barceló-Molina, Moises; Martínez-Ricós, Joana; Luque-García, Aina; Martínez-Bellver, Sergio; Adell, Albert

    2016-07-01

    Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane-anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimulation of 130 Hz of frequency, 60 μA of constant current intensity and biphasic pulse width of 80 μsec. After a period of baseline recording, local field potentials (LFP) were recorded with formvar-insulated stainless steel electrodes. DBS of the IL increased the power of slow wave (SW, <1.5 Hz) and theta (3-12 Hz) frequencies in the hippocampus and BLA Furthermore, IL DBS caused a precise coupling in different frequency bands between both brain structures. The increases in SW band synchronization in hippocampus and BLA after DBS suggest that these changes may be important for the improvement of depressive behavior. In addition, the augmentation in theta synchrony might contribute to improvement in emotional and cognitive processes. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  15. Deep brain stimulation for Parkinson's disease: recent trends and future direction.

    PubMed

    Fukaya, Chikashi; Yamamoto, Takamitsu

    2015-01-01

    To date, deep brain stimulation (DBS) has already been performed on more than 120,000 patients worldwide and in more than 7,000 patients in Japan. However, fundamental understanding of DBS effects on the pathological neural circuitry remains insufficient. Recent studies have specifically shown the importance of cortico-striato-thalamo-cortical (CSTC) loops, which were identified as functionally and anatomically discrete units. Three main circuits exist in the CSTC loops, namely, the motor, associative, and limbic circuits. From these theoretical backgrounds, it is determined that DBS sometimes influences not only motor functions but also the cognitive and affective functions of Parkinson's disease (PD) patients. The main targets of DBS for PD are subthalamic nucleus (STN) and globus pallidus interna (GPi). Ventralis intermedius (Vim)-DBS was found to be effective in improving tremor. However, Vim-DBS cannot sufficiently improve akinesia and rigidity. Therefore, Vim-DBS is seldom carried out for the treatment of PD. In this article, we review the present state of DBS, mainly STN-DBS and GPi-DBS, for PD. In the first part of the article, appropriate indications and practical effects established in previous studies are discussed. The findings of previous investigations on the complications caused by the surgical procedure and on the adverse events induced by DBS itself are reviewed. In the second part, we discuss target selection (GPi vs. STN) and the effect of DBS on nonmotor symptoms. In the final part, as issues that should be resolved, the suitable timing of surgery, symptoms unresponsive to DBS such as on-period axial symptoms, and the related postoperative programing of stimulation parameters, are discussed.

  16. Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What's in the Pipeline.

    PubMed

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P Justin; Allen, William L; Alterman, Ron L; Bronte-Stewart, Helen; Butson, Christopher R; Charles, David; Deckers, Sjaak; de Hemptinne, Coralie; DeLong, Mahlon; Dougherty, Darin; Ellrich, Jens; Foote, Kelly D; Giordano, James; Goodman, Wayne; Greenberg, Benjamin D; Greene, David; Gross, Robert; Judy, Jack W; Karst, Edward; Kent, Alexander; Kopell, Brian; Lang, Anthony; Lozano, Andres; Lungu, Codrin; Lyons, Kelly E; Machado, Andre; Martens, Hubert; McIntyre, Cameron; Min, Hoon-Ki; Neimat, Joseph; Ostrem, Jill; Pannu, Sat; Ponce, Francisco; Pouratian, Nader; Reymers, Donnie; Schrock, Lauren; Sheth, Sameer; Shih, Ludy; Stanslaski, Scott; Steinke, G Karl; Stypulkowski, Paul; Tröster, Alexander I; Verhagen, Leo; Walker, Harrison; Okun, Michael S

    2015-01-01

    The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.

  17. Proceedings of the Second Annual Deep Brain Stimulation Think Tank: What's in the Pipeline

    PubMed Central

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P. Justin; Allen, William L.; Alterman, Ron L.; Bronte-Stewart, Helen; Butson, Christopher R.; Charles, David; Deckers, Sjaak; de Hemptinne, Coralie; DeLong, Mahlon; Dougherty, Darin; Ellrich, Jens; Foote, Kelly D.; Giordano, James; Goodman, Wayne; Greenberg, Benjamin D.; Greene, David; Gross, Robert; Judy, Jack W.; Karst, Edward; Kent, Alexander; Kopell, Brian; Lang, Anthony; Lozano, Andres; Lungu, Codrin; Lyons, Kelly E.; Machado, Andre; Martens, Hubert; McIntyre, Cameron; Min, Hoon-Ki; Neimat, Joseph; Ostrem, Jill; Pannu, Sat; Ponce, Francisco; Pouratian, Nader; Reymers, Donnie; Schrock, Lauren; Sheth, Sameer; Shih, Ludy; Stanslaski, Scott; Steinke, G. Karl; Stypulkowski, Paul; Tröster, Alexander I.; Verhagen, Leo; Walker, Harrison; Okun, Michael S.

    2015-01-01

    The proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies. PMID:25526555

  18. Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy.

    PubMed

    Klinger, Neil V; Mittal, Sandeep

    2016-01-01

    Epilepsy affects 50 million people worldwide and about 30% of these patients will not be adequately controlled with antiepileptic drugs (AEDs) alone. For patients where resective surgery is not indicated, deep brain stimulation (DBS) may be an effective alternative. The majority of available literature targets the thalamic nuclei (anterior; centromedian), subthalamic nucleus, hippocampus, and cerebellum. Here, we review patient outcomes and adverse events related to DBS to these various targets. Data show DBS may be a safe and effective treatment option for refractory epilepsy. Copyright © 2015. Published by Elsevier B.V.

  19. Proceedings of the second annual deep brain stimulation think tank: What's in the pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P. Justin

    Here the proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.

  20. Proceedings of the second annual deep brain stimulation think tank: What's in the pipeline

    DOE PAGES

    Gunduz, Aysegul; Morita, Hokuto; Rossi, P. Justin; ...

    2015-05-25

    Here the proceedings of the 2nd Annual Deep Brain Stimulation Think Tank summarize the most contemporary clinical, electrophysiological, and computational work on DBS for the treatment of neurological and neuropsychiatric disease and represent the insights of a unique multidisciplinary ensemble of expert neurologists, neurosurgeons, neuropsychologists, psychiatrists, scientists, engineers and members of industry. Presentations and discussions covered a broad range of topics, including advocacy for DBS, improving clinical outcomes, innovations in computational models of DBS, understanding of the neurophysiology of Parkinson's disease (PD) and Tourette syndrome (TS) and evolving sensor and device technologies.

  1. Deep Brain Stimulation of Medial Dorsal and Ventral Anterior Nucleus of the Thalamus in OCD: A Retrospective Case Series

    PubMed Central

    Lenartz, Doris; Kuhn, Jens; Sturm, Volker

    2016-01-01

    Background The current notion that cortico-striato-thalamo-cortical circuits are involved in the pathophysiology of obsessive-compulsive disorder (OCD) has instigated the search for the most suitable target for deep brain stimulation (DBS). However, despite extensive research, uncertainty about the ideal target remains with many structures being underexplored. The aim of this report is to address a new target for DBS, the medial dorsal (MD) and the ventral anterior (VA) nucleus of the thalamus, which has thus far received little attention in the treatment of OCD. Methods In this retrospective trial, four patients (three female, one male) aged 31–48 years, suffering from therapy-refractory OCD underwent high-frequency DBS of the MD and VA. In two patients (de novo group) the thalamus was chosen as a primary target for DBS, whereas in two patients (rescue DBS group) lead implantation was performed in a rescue DBS attempt following unsuccessful primary stimulation. Results Continuous thalamic stimulation yielded no significant improvement in OCD symptom severity. Over the course of thalamic DBS symptoms improved in only one patient who showed “partial response” on the Yale-Brown Obsessive Compulsive (Y-BOCS) Scale. Beck Depression Inventory scores dropped by around 46% in the de novo group; anxiety symptoms improved by up to 34%. In the de novo DBS group no effect of DBS on anxiety and mood was observable. Conclusion MD/VA-DBS yielded no adequate alleviation of therapy-refractory OCD, the overall strategy in targeting MD/VA as described in this paper can thus not be recommended in DBS for OCD. The magnocellular portion of MD (MDMC), however, might prove a promising target in the treatment of mood related and anxiety disorders. PMID:27504631

  2. Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease.

    PubMed

    Meissner, Sarah Nadine; Südmeyer, Martin; Keitel, Ariane; Pollok, Bettina; Bellebaum, Christian

    2016-10-15

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. [Deep brain stimulation in movement disorders: evidence and therapy standards].

    PubMed

    Parpaley, Yaroslav; Skodda, Sabine

    2017-07-01

    The deep brain stimulation (DBS) in movement disorders is well established and in many aspects evidence-based procedure. The treatment indications are very heterogeneous and very specific in their course and therapy. The deep brain stimulation plays very important, but usually not the central role in this conditions. The success in the application of DBS is essentially associated with the correct, appropriate and timely indication of the therapy in the course of these diseases. Thanks to the good standardization of the DBS procedure and sufficient published data, the recommendations for indication, diagnosis and operative procedures can be generated. The following article attempts to summarize the most important decision-making criteria and current therapy standards in this fairly comprehensive subject and to present them in close proximity to practice. Georg Thieme Verlag KG Stuttgart · New York.

  4. Voice Tremor Outcomes of Subthalamic Nucleus and Zona Incerta Deep Brain Stimulation in Patients With Parkinson Disease.

    PubMed

    Karlsson, Fredrik; Malinova, Elin; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; Nordh, Erik

    2018-01-17

    We aimed to study the effect of deep brain stimulation (DBS) in the subthalamic nucleus (STN) and caudal zona incerta (cZi) on level of perceived voice tremor in patients with Parkinson disease (PD). This is a prospective nonrandomized design with consecutive patients. Perceived voice tremor was assessed in patients with PD having received either STN-DBS (8 patients, 5 bilateral and 3 unilateral, aged 43.1-73.6 years; median = 61.2 years) or cZi-DBS (14 bilateral patients, aged 39.0-71.9 years; median = 56.6 years) 12 months before the assessment. Sustained vowels that were produced OFF and ON stimulation (with simultaneous l-DOPA medication) were assessed perceptually in terms of voice tremor by two raters on a four-point rating scale. The assessments were repeated five times per sample and rated in a blinded and randomized procedure. Three out of the 22 patients (13%) were concluded to have voice tremor OFF stimulation. Patients with PD with STN-DBS showed mild levels of perceived voice tremor OFF stimulation and a group level improvement. Patients with moderate/severe perceived voice tremor and cZi-DBS showed marked improvements, but there was no overall group effect. Six patients with cZi-DBS showed small increases in perceived voice tremor severity. STN-DBS decreased perceived voice tremor on a group level. cZi-DBS decreased perceived voice tremor in patients with PD with moderate to severe preoperative levels of the symptom. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Deep brain stimulation and spinal cord stimulation for vegetative state and minimally conscious state.

    PubMed

    Yamamoto, Takamitsu; Katayama, Yoichi; Obuchi, Toshiki; Kobayashi, Kazutaka; Oshima, Hideki; Fukaya, Chikashi

    2013-01-01

    On the basis of the findings of the electrophysiological evaluation of vegetative state (VS) and minimally conscious state (MCS), the effect of deep brain stimulation (DBS) was examined according to long-term follow-up results. The results of spinal cord stimulation (SCS) on MCS was also examined and compared with that of DBS. One hundred seven patients in VS and 21 patients in MCS were evaluated neurologically and electrophysiologically over 3 months after the onset of brain injury. Among the 107 VS patients, 21 were treated by DBS. Among the 21 MCS patients, 5 were treated by DBS and 10 by SCS. Eight of the 21 patients recovered from VS and were able to follow verbal instructions. These eight patients showed desynchronization on continuous electroencephalographic frequency analysis. The Vth wave of the auditory brainstem response and N20 of somatosensory evoked potential were recorded even with a prolonged latency, and pain-related P250 was recorded with an amplitude of more than 7 μV. In addition, DBS and SCS induced a marked functional recovery in MCS patients who satisfied the electrophysiological inclusion criteria. DBS for VS and MCS patients and SCS for MCS patients may be useful, when the candidates are selected on the basis of the electrophysiological inclusion criteria. Only 16 (14.9%) of the 107 VS patients and 15 (71.4%) of the 21 MCS patients satisfied the electrophysiological inclusion criteria. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Differential effects of deep brain stimulation target on motor subtypes in Parkinson's disease.

    PubMed

    Katz, Maya; Luciano, Marta San; Carlson, Kimberly; Luo, Ping; Marks, William J; Larson, Paul S; Starr, Philip A; Follett, Kenneth A; Weaver, Frances M; Stern, Matthew B; Reda, Domenic J; Ostrem, Jill L

    2015-04-01

    The Veterans Administration Cooperative Studies Program #468, a multicenter study that randomized Parkinson's disease (PD) patients to either subthalamic nucleus (STN) or globus pallidus internus (GPi) deep brain stimulation (DBS), found that stimulation at either target provided similar overall motoric benefits. We conducted an additional analysis of this data set to evaluate whether PD motor subtypes responded differently to the 2 stimulation targets. We classified 235 subjects by motor subtype: tremor dominant (TD), intermediate (I), or postural instability gait difficulty (PIGD), based on pre-DBS baseline Unified Parkinson's Disease Rating Scale (UPDRS) scores off-medication. The primary outcome was change in UPDRS part III (UPDRS-III) off-medication scores from baseline to 24 months post-DBS, compared among subjects with particular PD motor subtypes and by DBS target (STN vs GPi). Changes in tremor, rigidity, akinesia, and gait scores were also assessed using the UPDRS. TD patients had greater mean overall motor improvement, measured by UPDRS-III, after GPi DBS, compared to STN DBS (17.5 ± 13.0 vs 14.6 ± 14.9, p = 0.02), with improvement in gait accounting for this difference. Regardless of stimulation target, PIGD subjects had lower mean overall improvement in UPDRS-III scores compared with I or TD subjects (8.7 ± 12.2 vs 21.7 ± 11.2 vs 16.3 ± 13.8, p = 0.001). Our results suggest that responsiveness to both GPi and STN DBS is similar among different PD motor subtypes, although the TD motor subtype may have a greater response to GPi DBS with respect to gait. PIGD patients obtained less overall benefit from stimulation. © 2015 American Neurological Association.

  7. A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies.

    PubMed

    Grahn, Peter J; Mallory, Grant W; Khurram, Obaid U; Berry, B Michael; Hachmann, Jan T; Bieber, Allan J; Bennet, Kevin E; Min, Hoon-Ki; Chang, Su-Youne; Lee, Kendall H; Lujan, J L

    2014-01-01

    Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a "smart" neuroprosthetic system for treatment of neurologic and psychiatric disorders.

  8. [Deep brain stimulation in the treatment of movement disorders].

    PubMed

    Goto, Satoshi

    2007-11-01

    The introduction of deep brain stimulation (DBS) was a historical step forward for the treatment of advanced and medically intractable movement disorders that include Parkinson's disease, dystonias, essential tremor, and Holmes' tremor. DBS is able to modulate the target region electrically in a reversible and adjustable fashion in contrast to an irreversible and destructive lesioning procedure. In the treatment of movement disorders, the potential targets are the thalamic ventral intermediate nucleus (Vim), globus pallidus internus (GPi), subthalamic nucleus (STN), pedunculopontine nucleus (PPN), and thalamic Vo-complex nucleus. With the development of DBS technology and stereotactic neurosurgical techniques, its therapeutic efficacy has been increased while reducing surgical complications. DBS has become an established therapy for disabling movement disorders and is currently being used to treat neuropsychiatric disorders.

  9. Thalamic deep brain stimulation decelerates automatic lexical activation.

    PubMed

    Ehlen, Felicitas; Vonberg, Isabelle; Tiedt, Hannes O; Horn, Andreas; Fromm, Ortwin; Kühn, Andrea A; Klostermann, Fabian

    2017-02-01

    Deep Brain Stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) is a therapeutic option for patients with essential tremor. Despite a generally low risk of side effects, declines in verbal fluency (VF) have previously been reported. We aimed to specify effects of VIM-DBS on major cognitive operations needed for VF task performance, represented by clusters and switches. Clusters are word production spurts, thought to arise from automatic activation of associated information pertaining to a given lexical field. Switches are slow word-to-word transitions, presumed to indicate controlled operations for stepping from one lexical field to another. Thirteen essential tremor patients with VIM-DBS performed verbal fluency tasks in their VIM-DBS ON and OFF conditions. Clusters and switches were formally defined by mathematical criteria. All results were compared to those of fifteen healthy control subjects, and significant OFF-ON-change scores were correlated to stimulation parameters. Patients produced fewer words than healthy controls. DBS ON compared to DBS OFF aggravated this deficit by prolonging the intervals between words within clusters, whereas switches remained unaffected. This stimulation effect correlated with more anterior electrode positions. VIM-DBS seems to influence word output dynamics during verbal fluency tasks on the level of word clustering. This suggests a perturbation of automatic lexical co-activation by thalamic stimulation, particularly if delivered relatively anteriorly. The findings are discussed in the context of the hypothesized role of the thalamus in lexical processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Deep Brain Stimulation Reveals a Dissociation of Consummatory and Motivated Behaviour in the Medial and Lateral Nucleus Accumbens Shell of the Rat

    PubMed Central

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P.; Vanderschuren, Louk J. M. J.

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa. PMID:22428054

  11. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat.

    PubMed

    van der Plasse, Geoffrey; Schrama, Regina; van Seters, Sebastiaan P; Vanderschuren, Louk J M J; Westenberg, Herman G M

    2012-01-01

    Following the successful application of deep brain stimulation (DBS) in the treatment of Parkinson's disease and promising results in clinical trials for obsessive compulsive disorder and major depression, DBS is currently being tested in small patient-populations with eating disorders and addiction. However, in spite of its potential use in a broad spectrum of disorders, the mechanisms of action of DBS remain largely unclear and optimal neural targets for stimulation in several disorders have yet to be established. Thus, there is a great need to examine site-specific effects of DBS on a behavioural level and to understand how DBS may modulate pathological behaviour. In view of the possible application of DBS in the treatment of disorders characterized by impaired processing of reward and motivation, like addiction and eating disorders, we examined the effect of DBS of the nucleus accumbens (NAcc) on food-directed behavior. Rats were implanted with bilateral stimulation electrodes in one of three anatomically and functionally distinct sub-areas of the NAcc: the core, lateral shell (lShell) and medial shell (mShell). Subsequently, we studied the effects of DBS on food consumption, and the motivational and appetitive properties of food. The data revealed a functional dissociation between the lShell and mShell. DBS of the lShell reduced motivation to respond for sucrose under a progressive ratio schedule of reinforcement, mShell DBS, however, profoundly and selectively increased the intake of chow. DBS of the NAcc core did not alter any form of food-directed behavior studied. DBS of neither structure affected sucrose preference. These data indicate that the intake of chow and the motivation to work for palatable food can independently be modulated by DBS of subregions of the NAcc shell. As such, these findings provide important leads for the possible future application of DBS as a treatment for eating disorders such as anorexia nervosa.

  12. Thalamic deep brain stimulation for writer's cramp.

    PubMed

    Fukaya, Chikashi; Katayama, Yoichi; Kano, Toshikazu; Nagaoka, Takafumi; Kobayashi, Kazutaka; Oshima, Hideki; Yamamoto, Takamitsu

    2007-11-01

    Writer's cramp is a type of idiopathic focal hand dystonia characterized by muscle cramps that accompany execution of the writing task specifically. In this report, the authors describe the clinical outcome after thalamic deep brain stimulation (DBS) therapy in patients with writer's cramp and present an illustrative case with which they compare the effects of pallidal and thalamic stimulation. In addition to these results for the clinical effectiveness, they also examine the best point and pattern for therapeutic stimulation of the motor thalamus, including the nucleus ventrooralis (VO) and the ventralis intermedius nucleus (VIM), for writer's cramp. The authors applied thalamic DBS in five patients with writer's cramp. The inclusion criteria for the DBS trial in this disorder were a diagnosis of idiopathic writer's cramp and the absence of a positive response to medication. The exclusion criteria included significant cognitive dysfunction, active psychiatric symptoms, and evidence of other central nervous system diseases or other medical disorders. In one of the cases, DBS leads were implanted into both the globus pallidus internus and the VO/VIM, and test stimulation was performed for 1 week. The authors thus had an opportunity to compare the effects of pallidal and thalamic stimulation in this patient. Immediately after the initiation of thalamic stimulation, the neurological deficits associated with writer's cramp were improved in all five cases. Postoperatively all preoperative scale scores indicating the seriousness of the writer's cramp were significantly lower (p < 0.001). In the patient in whom two DBS leads were implanted, the clinical effect of thalamic stimulation was better than that of pallidal stimulation. During the thalamic stimulation, the maximum effect was obtained when stimulation was applied to both the VO and the VIM widely, compared with being applied only within the VO. The authors successfully treated patients with writer's cramp by thalamic DBS. Insofar as they are aware, this is the first series in which writer's cramp has been treated with DBS. Thalamic stimulation appears to be a safe and valuable therapeutic option for writer's cramp.

  13. Deep brain stimulation of the subthalamic nucleus modulates reward processing and action selection in Parkinson patients.

    PubMed

    Wagenbreth, Caroline; Zaehle, Tino; Galazky, Imke; Voges, Jürgen; Guitart-Masip, Marc; Heinze, Hans-Jochen; Düzel, Emrah

    2015-06-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for motor impairments in Parkinson's disease (PD) but its effect on the motivational regulation of action control is still not fully understood. We investigated whether DBS of the STN influences the ability of PD patients to act for anticipated reward or loss, or whether DBS improves action execution independent of motivational valence. 16 PD patients (12 male, mean age = 58.5 ± 10.17 years) treated with bilateral STN-DBS and an age- and gender-matched group of healthy controls (HC) performed a go/no-go task whose contingencies explicitly decouple valence and action. Patients were tested with (ON) and without (OFF) active STN stimulation. For HC, there was a benefit in performing rewarded actions when compared to actions that avoided punishment. PD patients showed such a benefit reliably only when STN stimulation was ON. In fact, the relative behavioral benefit for go for reward over go to avoid losing was stronger in the PD patients under DBS ON than in HC. In PD patients, rather than generally improving motor functions independent of motivational valence, modulation of the STN by DBS improves action execution specifically when rewards are anticipated. Thus, STN-DBS establishes a reliable congruency between action and reward ("Pavlovian congruency") and remarkably enhances it over the level observed in HC.

  14. Choreatic Side Effects of Deep Brain Stimulation of the Anteromedial Subthalamic Nucleus for Treatment-Resistant Obsessive-Compulsive disorder.

    PubMed

    Mulders, Anne E P; Leentjens, Albert F G; Schruers, Koen; Duits, Annelien; Ackermans, Linda; Temel, Yasin

    2017-08-01

    Patients with treatment-resistant obsessive-compulsive disorder (OCD) are potential candidates for deep brain stimulation (DBS). The anteromedial subthalamic nucleus (STN) is among the most commonly used targets for DBS in OCD. We present a patient with a 30-year history of treatment-resistant OCD who underwent anteromedial STN-DBS. Despite a clear mood-enhancing effect, stimulation caused motor side effects, including bilateral hyperkinesia, dyskinesias, and sudden large amplitude choreatic movements of arms and legs when stimulating at voltages greater than approximately 1.5 V. DBS at lower amplitudes and at other contact points failed to result in a significant reduction of obsessions and compulsions without inducing motor side effects. Because of this limitation in programming options, we decided to reoperate and target the ventral capsule/ventral striatum (VC/VS), which resulted in a substantial reduction in key obsessive and compulsive symptoms without serious side effects. Choreatic movements and hemiballismus have previously been linked to STN dysfunction and have been incidentally reported as side effects of DBS of the dorsolateral STN in Parkinson disease (PD). However, in PD, these side effects were usually transient, and they rarely interfered with DBS programming. In our patient, the motor side effects were persistent, and they made optimal DBS programming impossible. To our knowledge, such severe and persistent motor side effects have not been described previously for anteromedial STN-DBS. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Novel fingerprinting method characterises the necessary and sufficient structural connectivity from deep brain stimulation electrodes for a successful outcome

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique M.; Van Hartevelt, Tim J.; Boccard, Sandra G. J.; Owen, Sarah L. F.; Cabral, Joana; Deco, Gustavo; Green, Alex L.; Fitzgerald, James J.; Aziz, Tipu Z.; Kringelbach, Morten L.

    2015-01-01

    Deep brain stimulation (DBS) is a remarkably effective clinical tool, used primarily for movement disorders. DBS relies on precise targeting of specific brain regions to rebalance the oscillatory behaviour of whole-brain neural networks. Traditionally, DBS targeting has been based upon animal models (such as MPTP for Parkinson’s disease) but has also been the result of serendipity during human lesional neurosurgery. There are, however, no good animal models of psychiatric disorders such as depression and schizophrenia, and progress in this area has been slow. In this paper, we use advanced tractography combined with whole-brain anatomical parcellation to provide a rational foundation for identifying the connectivity ‘fingerprint’ of existing, successful DBS targets. This knowledge can then be used pre-surgically and even potentially for the discovery of novel targets. First, using data from our recent case series of cingulate DBS for patients with treatment-resistant chronic pain, we demonstrate how to identify the structural ‘fingerprints’ of existing successful and unsuccessful DBS targets in terms of their connectivity to other brain regions, as defined by the whole-brain anatomical parcellation. Second, we use a number of different strategies to identify the successful fingerprints of structural connectivity across four patients with successful outcomes compared with two patients with unsuccessful outcomes. This fingerprinting method can potentially be used pre-surgically to account for a patient’s individual connectivity and identify the best DBS target. Ultimately, our novel fingerprinting method could be combined with advanced whole-brain computational modelling of the spontaneous dynamics arising from the structural changes in disease, to provide new insights and potentially new targets for hitherto impenetrable neuropsychiatric disorders.

  16. Deep-Brain Stimulation for Basal Ganglia Disorders

    PubMed Central

    Wichmann, Thomas; DeLong, Mahlon R.

    2011-01-01

    The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of ‘motor’ portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the ‘limbic’ basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders. PMID:21804953

  17. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.

    PubMed

    Howell, Bryan; McIntyre, Cameron C

    2016-06-01

    Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  18. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; McIntyre, Cameron C.

    2016-06-01

    Objective. Deep brain stimulation (DBS) is an adjunctive therapy that is effective in treating movement disorders and shows promise for treating psychiatric disorders. Computational models of DBS have begun to be utilized as tools to optimize the therapy. Despite advancements in the anatomical accuracy of these models, there is still uncertainty as to what level of electrical complexity is adequate for modeling the electric field in the brain and the subsequent neural response to the stimulation. Approach. We used magnetic resonance images to create an image-based computational model of subthalamic DBS. The complexity of the volume conductor model was increased by incrementally including heterogeneity, anisotropy, and dielectric dispersion in the electrical properties of the brain. We quantified changes in the load of the electrode, the electric potential distribution, and stimulation thresholds of descending corticofugal (DCF) axon models. Main results. Incorporation of heterogeneity altered the electric potentials and subsequent stimulation thresholds, but to a lesser degree than incorporation of anisotropy. Additionally, the results were sensitive to the choice of method for defining anisotropy, with stimulation thresholds of DCF axons changing by as much as 190%. Typical approaches for defining anisotropy underestimate the expected load of the stimulation electrode, which led to underestimation of the extent of stimulation. More accurate predictions of the electrode load were achieved with alternative approaches for defining anisotropy. The effects of dielectric dispersion were small compared to the effects of heterogeneity and anisotropy. Significance. The results of this study help delineate the level of detail that is required to accurately model electric fields generated by DBS electrodes.

  19. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

    PubMed

    Kumaravelu, Karthik; Brocker, David T; Grill, Warren M

    2016-04-01

    Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

  20. Frequency-dependent, transient effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling and neuronal activity in the hemiparkinsonian rat.

    PubMed

    So, Rosa Q; McConnell, George C; Grill, Warren M

    2017-03-01

    Methamphetamine-induced circling is used to quantify the behavioral effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in hemiparkinsonian rats. We observed a frequency-dependent transient effect of DBS on circling, and quantified this effect to determine its neuronal basis. High frequency STN DBS (75-260Hz) resulted in transient circling contralateral to the lesion at the onset of stimulation, which was not sustained after the first several seconds of stimulation. Following the transient behavioral change, DBS resulted in a frequency-dependent steady-state reduction in pathological ipsilateral circling, but no change in overall movement. Recordings from single neurons in globus pallidus externa (GPe) and substantia nigra pars reticulata (SNr) revealed that high frequency, but not low frequency, STN DBS elicited transient changes in both firing rate and neuronal oscillatory power at the stimulation frequency in a subpopulation of GPe and SNr neurons. These transient changes were not sustained, and most neurons exhibited a different response during the steady-state phase of DBS. During the steady-state, DBS produced elevated neuronal oscillatory power at the stimulus frequency in a majority of GPe and SNr neurons, and the increase was more pronounced during high frequency DBS than during low frequency DBS. Changes in oscillatory power during both transient and steady-state DBS were highly correlated with changes in firing rates. These results suggest that distinct neural mechanisms were responsible for transient and sustained behavioral responses to STN DBS. The transient contralateral turning behavior following the onset of high frequency DBS was paralleled by transient changes in firing rate and oscillatory power in the GPe and SNr, while steady-state suppression of ipsilateral turning was paralleled by sustained increased synchronization of basal ganglia neurons to the stimulus pulses. Our analysis of distinct frequency-dependent transient and steady-state responses to DBS lays the foundation for future mechanistic studies of the immediate and persistent effects of DBS. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation

    PubMed Central

    Kent, Alexander R.; Grill, Warren M.

    2012-01-01

    Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000x over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894

  2. [Mental competence in the context of deep brain stimulation].

    PubMed

    Berghmans, R L P; De Wert, G M W R

    2004-07-10

    In a case of Parkinson's disease, the patient was treated with deep brain stimulation of the subthalamic nucleus (STN-DBS). STN-DBS affected the mental competence of the patient and ethical questions were raised about the decision as to the direction of further treatment. The patient was asked for his opinion on the therapeutic options during a phase of non-stimulation and chose to be stimulated and admitted to a psychiatric hospital because of mental incompetence rather than remaining unstimulated, mentally competent but bedridden. Developments in the neurosciences (including STN-DBS) raise a number of different fundamental (theoretical and philosophical) as well as practical questions. STN-DBS can have various unintended (behavioural) effects. In the case presented, more weight was rightly given to the mental competence of the unstimulated patient, although comments can be made with regard to his decision making, as his choice was made in a phase of serious distress. Attention is paid to the relevance of a so-called self-binding directive. STN-DBS is not morally neutral and the case involves a tragic dilemma: a conflict between irreconcilable duties for the physician. The further development and proliferation of STN-DBS requires caution and moral deliberation. It remains important to search for alternative treatment strategies with less undesirable side effects.

  3. PyDBS: an automated image processing workflow for deep brain stimulation surgery.

    PubMed

    D'Albis, Tiziano; Haegelen, Claire; Essert, Caroline; Fernández-Vidal, Sara; Lalys, Florent; Jannin, Pierre

    2015-02-01

    Deep brain stimulation (DBS) is a surgical procedure for treating motor-related neurological disorders. DBS clinical efficacy hinges on precise surgical planning and accurate electrode placement, which in turn call upon several image processing and visualization tasks, such as image registration, image segmentation, image fusion, and 3D visualization. These tasks are often performed by a heterogeneous set of software tools, which adopt differing formats and geometrical conventions and require patient-specific parameterization or interactive tuning. To overcome these issues, we introduce in this article PyDBS, a fully integrated and automated image processing workflow for DBS surgery. PyDBS consists of three image processing pipelines and three visualization modules assisting clinicians through the entire DBS surgical workflow, from the preoperative planning of electrode trajectories to the postoperative assessment of electrode placement. The system's robustness, speed, and accuracy were assessed by means of a retrospective validation, based on 92 clinical cases. The complete PyDBS workflow achieved satisfactory results in 92 % of tested cases, with a median processing time of 28 min per patient. The results obtained are compatible with the adoption of PyDBS in clinical practice.

  4. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.

    PubMed

    Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile

    2018-02-01

    The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Pseudobulbar laughter as a levodopa off phenomenon exacerbated by subthalamic deep brain stimulation.

    PubMed

    Chattha, P K; Greene, P E; Ramdhani, Ritesh A

    2015-01-01

    Pseudobulbar affect is a common symptom in neurodegenerative diseases and can also result from lesions in cortical, subcortical and brainstem regions. In Parkinson's disease (PD), pseudobulbar affect (PBA) can occur as a wearing off phenomenon, manifested usually as crying without emotionality. In addition, subthalamic (STN) deep brain stimulation (DBS) has been reported to induce PBA in PD patients with no prior history of such episodes. We present a case of inappropriate laughter lacking mirth as a levodopa OFF phenomenon in a patient with PD, whose laughter also worsened with STN-DBS in his non-medicated state. Levodopa ameliorated his PBA both with and without stimulation. The case demonstrates pseudobulbar laughter as a levodopa OFF phenomenon that is also exacerbated by STN-DBS.

  6. A critical reflection on the technological development of deep brain stimulation (DBS)

    PubMed Central

    Ineichen, Christian; Glannon, Walter; Temel, Yasin; Baumann, Christian R.; Sürücü, Oguzkan

    2014-01-01

    Since the translational research findings of Benabid and colleagues which partly led to their seminal paper regarding the treatment of mainly tremor-dominant Parkinson patients through thalamic high-frequency-stimulation (HFS) in 1987, we still struggle with identifying a satisfactory mechanistic explanation of the underlying principles of deep brain stimulation (DBS). Furthermore, the technological advance of DBS devices (electrodes and implantable pulse generators, IPG’s) has shown a distinct lack of dynamic progression. In light of this we argue that it is time to leave the paleolithic age and enter hellenistic times: the device-manufacturing industry and the medical community together should put more emphasis on advancing the technology rather than resting on their laurels. PMID:25278864

  7. No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients123

    PubMed Central

    Wojtecki, Lars; Storzer, Lena; Schnitzler, Alfons

    2016-01-01

    Abstract Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson’s disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making—delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)—we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS. PMID:27257622

  8. Hearing assessment during deep brain stimulation of the central nucleus of the inferior colliculus and dentate cerebellar nucleus in rat.

    PubMed

    Smit, Jasper V; Jahanshahi, Ali; Janssen, Marcus L F; Stokroos, Robert J; Temel, Yasin

    2017-01-01

    Recently it has been shown in animal studies that deep brain stimulation (DBS) of auditory structures was able to reduce tinnitus-like behavior. However, the question arises whether hearing might be impaired when interfering in auditory-related network loops with DBS. The auditory brainstem response (ABR) was measured in rats during high frequency stimulation (HFS) and low frequency stimulation (LFS) in the central nucleus of the inferior colliculus (CIC, n  = 5) or dentate cerebellar nucleus (DCBN, n  = 5). Besides hearing thresholds using ABR, relative measures of latency and amplitude can be extracted from the ABR. In this study ABR thresholds, interpeak latencies (I-III, III-V, I-V) and V/I amplitude ratio were measured during off-stimulation state and during LFS and HFS. In both the CIC and the CNBN groups, no significant differences were observed for all outcome measures. DBS in both the CIC and the CNBN did not have adverse effects on hearing measurements. These findings suggest that DBS does not hamper physiological processing in the auditory circuitry.

  9. Deep brain stimulation surgery for alcohol addiction.

    PubMed

    Voges, Juergen; Müller, Ulf; Bogerts, Bernhard; Münte, Thomas; Heinze, Hans-Jochen

    2013-01-01

    The consequences of chronic alcohol dependence cause important health and economic burdens worldwide. Relapse rates after standard treatment (medication and psychotherapy) are high. There is evidence from in vivo investigations and from studies in patients that the brain's reward system is critically involved in the development and maintenance of addictive behavior, suggesting that modification of this system could significantly improve the prognosis of addictive patients. Motivated by an accidental observation, we used the nucleus accumbens (NAc), which has a central position in the dopaminergic reward system for deep brain stimulation (DBS) of alcohol addiction. We report our first experiences with NAc DBS for alcohol dependence and review the literature addressing the mechanisms leading to addiction. Five patients were treated off-label with bilateral NAc DBS for severe alcohol addiction (average follow-up 38 months). All patients experienced significant and ongoing improvement of craving. Two patients remained completely abstinent for more than 4 years. NAc stimulation was tolerated without permanent side effects. Simultaneous recording of local field potentials from the target area and surface electroencephalography while patients performed neuropsychological tasks gave a hint on the pivotal role of the NAc in processing alcohol-related cues. To our knowledge, the data presented here reflect the first attempt to treat alcohol-addicted patients with NAc DBS. Electrical NAc stimulation probably counterbalances the effect of drug-related stimuli triggering involuntarily drug-seeking behavior. Meanwhile, two prospective clinical studies using randomized, double-blind, and crossover stimulation protocols for DBS are underway to corroborate these preliminary results. Published by Elsevier Inc.

  10. Smile and laughter induction and intraoperative predictors of response to deep brain stimulation for obsessive-compulsive disorder.

    PubMed

    Haq, Ihtsham U; Foote, Kelly D; Goodman, Wayne G; Wu, Samuel S; Sudhyadhom, Atchar; Ricciuti, Nicola; Siddiqui, Mustafa S; Bowers, Dawn; Jacobson, Charles E; Ward, Herbert; Okun, Michael S

    2011-01-01

    We recently treated six patients for OCD utilizing deep brain stimulation (DBS) of the anterior limb of the internal capsule and the nucleus accumbens region (ALIC-NA). We individually tested leads via a scripted intraoperative protocol designed to determine DBS-induced side effects and mood changes. We previously published qualitative data regarding our observations of induced emotional behaviors in our first five subjects. We have now studied these same behaviors in the full cohort of six patients over 2 years of follow-up and have examined the relationship of these behaviors to intraoperative mood changes and postoperative clinical outcomes. Five patients experienced at least one smile response during testing. At higher voltages of stimulation, some of these smiles progressed to natural laughter. Smiles and laughter were associated with mood elevation. At stimulation locations at which smiles were observed, voltage and mood were significantly correlated (p=0.0004 for right brain and p<0.0001 for left brain). In contrast, at contacts where smiles were not observed, mood was negatively correlated with voltage (p=0.0591 for right brain and p=0.0086 for left). Smile and laughter-inducing sites were located relatively medial, posterior, and deep in the ALIC-NA. The presence of stimulation induced laughter predicted improvement in OCD symptoms at 2 years. The higher the percentage of laugh conditions experienced in an individual patient, the greater the reduction in YBOCS (24 months, p=0.034). Other correlations between clinical outcomes and percent of smile/laugh conditions were not significant. These stimulation-induced behaviors were less frequently observed with 1 and 2-month postoperative test stimulation and were not observed at subsequent test stimulation sessions. Intraoperative stimulation-induced laughter may predict long-term OCD response to DBS. Identifying other potential response predictors for OCD will become increasingly important as more patients are implanted with DBS devices. A larger study is needed to better delineate the relationship between induced intraoperative and postoperative emotional behavior and clinical outcome in patients treated with DBS therapy. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Smile and Laughter Induction and Intraoperative Predictors of Response to Deep Brain Stimulation for Obsessive Compulsive Disorder

    PubMed Central

    Haq, Ihtsham U; Foote, Kelly D; Goodman, Wayne G; Wu, Samuel S; Sudhyadhom, Atchar; Ricciutti, Nicola; Siddiqui, Mustafa S.; Bowers, Dawn; Jacobson, Charles E; Ward, Herbert; Okun, Michael S

    2010-01-01

    We recently treated six patients for OCD utilizing deep brain stimulation (DBS) of the anterior limb of the internal capsule and the nucleus accumbens region (ALIC-NA). We individually tested leads via a scripted intraoperative protocol designed to determine DBS-induced side effects and mood changes. We previously published qualitative data regarding our observations of induced emotional behaviors in our first five subjects. We have now studied these same behaviors in the full cohort of six patients over two years of follow-up and have examined the relationship of these behaviors to intraoperative mood changes and postoperative clinical outcomes. Five patients experienced at least one smile response during testing. At higher voltages of stimulation some of these smiles progressed to natural laughter. Smiles and laughter were associated with mood elevation. At stimulation locations at which smiles were observed, voltage and mood were significantly correlated (p=0.0004 for right brain and p<0.0001 for left brain). In contrast, at contacts where smiles were not observed, mood was negatively correlated with voltage (p=0.0591 for right brain and p=0.0086 for left). Smile and laughter-inducing sites were located relatively medial, posterior, and deep in the ALIC-NA. The presence of stimulation induced laughter predicted improvement in OCD symptoms at two years. The higher the percentage of laugh conditions experienced in an individual patient, the greater the reduction in YBOCS (24 months, p=0.034). Other correlations between clinical outcomes and percent of smile/laugh conditions were not significant. These stimulation-induced behaviors were less frequently observed with one and two-month postoperative test stimulation and were not observed at subsequent test stimulation sessions. Intraoperative stimulation-induced laughter may predict long-term OCD response to DBS. Identifying other potential response predictors for OCD will become increasingly important as more patients are implanted with DBS devices. A larger study is needed to better delineate the relationship between induced intraoperative and postoperative emotional behavior and clinical outcome in patients treated with DBS therapy. PMID:20226259

  12. Deep brain stimulation with a pre-existing cochlear implant: Surgical technique and outcome.

    PubMed

    Eddelman, Daniel; Wewel, Joshua; Wiet, R Mark; Metman, Leo V; Sani, Sepehr

    2017-01-01

    Patients with previously implanted cranial devices pose a special challenge in deep brain stimulation (DBS) surgery. We report the implantation of bilateral DBS leads in a patient with a cochlear implant. Technical nuances and long-term interdevice functionality are presented. A 70-year-old patient with advancing Parkinson's disease and a previously placed cochlear implant for sensorineural hearing loss was referred for placement of bilateral DBS in the subthalamic nucleus (STN). Prior to DBS, the patient underwent surgical removal of the subgaleal cochlear magnet, followed by stereotactic MRI, frame placement, stereotactic computed tomography (CT), and merging of imaging studies. This technique allowed for successful computational merging, MRI-guided targeting, and lead implantation with acceptable accuracy. Formal testing and programming of both the devices were successful without electrical interference. Successful DBS implantation with high resolution MRI-guided targeting is technically feasible in patients with previously implanted cochlear implants by following proper precautions.

  13. Deep brain stimulation for psychiatric disorders: Is there an impact on social functioning?

    PubMed Central

    Saleh, Christian; Hasler, Gregor

    2017-01-01

    Background: Deep brain stimulation (DBS) for refractory psychiatric disorders shows promising effects on symptom-reduction, however, little is known regarding the effects of DBS on social outcome. Methods: A PubMed search based on original studies of DBS for psychiatric disorders [treatment resistant depression (TRD), Gilles de la Tourette's syndrome (GTS), and obsessive compulsive disorder (OCD)] was conducted. Data on social outcome following surgery were extracted and analyzed. Results: Social functioning was not a primary outcome measure in the reviewed article. The literature is incomplete and inconclusive on this variable, however from the reported data, there is some evidence that DBS has the potential to improve social functioning. Conclusions: More systematic and detailed data gathering and reporting on social outcome with longer follow-ups are needed to evaluate more exhaustively the role of DBS in refractory psychiatric disorders. PMID:28781911

  14. Evolution of Deep Brain Stimulation: Human Electrometer and Smart Devices Supporting the Next Generation of Therapy

    PubMed Central

    Lee, Kendall H.; Blaha, Charles D.; Garris, Paul A.; Mohseni, Pedram; Horne, April E.; Bennet, Kevin E.; Agnesi, Filippo; Bledsoe, Jonathan M.; Lester, Deranda B.; Kimble, Chris; Min, Hoon-Ki; Kim, Young-Bo; Cho, Zang-Hee

    2010-01-01

    Deep Brain Stimulation (DBS) provides therapeutic benefit for several neuropathologies including Parkinson’s disease (PD), epilepsy, chronic pain, and depression. Despite well established clinical efficacy, the mechanism(s) of DBS remains poorly understood. In this review we begin by summarizing the current understanding of the DBS mechanism. Using this knowledge as a framework, we then explore a specific hypothesis regarding DBS of the subthalamic nucleus (STN) for the treatment of PD. This hypothesis states that therapeutic benefit is provided, at least in part, by activation of surviving nigrostriatal dopaminergic neurons, subsequent striatal dopamine release, and resumption of striatal target cell control by dopamine. While highly controversial, we present preliminary data that are consistent with specific predications testing this hypothesis. We additionally propose that developing new technologies, e.g., human electrometer and closed-loop smart devices, for monitoring dopaminergic neurotransmission during STN DBS will further advance this treatment approach. PMID:20657744

  15. Deep Brain Stimulation Frequency—A Divining Rod for New and Novel Concepts of Nervous System Function and Therapy

    PubMed Central

    Montgomery, Erwin B.; He, Huang

    2016-01-01

    The efficacy of Deep Brain Stimulation (DBS) for an expanding array of neurological and psychiatric disorders demonstrates directly that DBS affects the basic electroneurophysiological mechanisms of the brain. The increasing array of active electrode configurations, stimulation currents, pulse widths, frequencies, and pulse patterns provides valuable tools to probe electroneurophysiological mechanisms. The extension of basic electroneurophysiological and anatomical concepts using sophisticated computational modeling and simulation has provided relatively straightforward explanations of all the DBS parameters except frequency. This article summarizes current thought about frequency and relevant observations. Current methodological and conceptual errors are critically examined in the hope that future work will not replicate these errors. One possible alternative theory is presented to provide a contrast to many current theories. DBS, conceptually, is a noisy discrete oscillator interacting with the basal ganglia–thalamic–cortical system of multiple re-entrant, discrete oscillators. Implications for positive and negative resonance, stochastic resonance and coherence, noisy synchronization, and holographic memory (related to movement generation) are presented. The time course of DBS neuronal responses demonstrates evolution of the DBS response consistent with the dynamics of re-entrant mechanisms. Finally, computational modeling demonstrates identical dynamics as seen by neuronal activities recorded from human and nonhuman primates, illustrating the differences of discrete from continuous harmonic oscillators and the power of conceptualizing the nervous system as composed on interacting discrete nonlinear oscillators. PMID:27548234

  16. State of the Art: Novel Applications for Deep Brain Stimulation.

    PubMed

    Roy, Holly A; Green, Alexander L; Aziz, Tipu Z

    2018-02-01

    Deep brain stimulation (DBS) is a rapidly developing field of neurosurgery with potential therapeutic applications that are relevant to conditions traditionally viewed as beyond the limits of neurosurgery. Our objective, in this review, is to highlight some of the emerging applications of DBS within three distinct but overlapping spheres, namely trauma, neuropsychiatry, and autonomic physiology. An extensive literature review was carried out in MEDLINE, to identify relevant studies and review articles describing applications of DBS in the areas of trauma, neuropsychiatry and autonomic neuroscience. A wide range of applications of DBS in these spheres was identified, some having only been tested in one or two cases, others much better studied. We have identified various avenues for DBS to be applied for patient benefit in cases relevant to trauma, neuropsychiatry and autonomic neuroscience. Further developments in DBS technology and clinical trial design will enable these novel applications to be effectively and rigorously assessed and utilized most effectively. © 2017 International Neuromodulation Society.

  17. Role of dysphagia in evaluating Parkinson patients for subthalamic nucleus stimulation: a case report.

    PubMed

    Allert, Niels; Kelm, Daniela; Spottke, Annika; Coenen, Volker A

    2011-09-01

    In the selection of Parkinson patients for deep brain stimulation (DBS) of the subthalamic nucleus (STN) a risk-benefit-analysis is performed regarding symptoms that commonly improve and symptoms that may deteriorate. Speech is among the symptoms that may deteriorate. In contrast, the differential effects of STN-DBS on swallowing are less clear. Here, we present a Parkinson patient with dysphagia from concomitant oculo-pharyngeal muscle dystrophy successfully treated by STN-DBS. The role of dysphagia in evaluating Parkinson patients for STN-DBS is discussed.

  18. A network analysis of ¹⁵O-H₂O PET reveals deep brain stimulation effects on brain network of Parkinson's disease.

    PubMed

    Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo; Chang, Jin Woo

    2015-05-01

    As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. We obtained [¹⁵O]H₂O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.

  19. Deep brain stimulation, brain maps and personalized medicine: lessons from the human genome project.

    PubMed

    Fins, Joseph J; Shapiro, Zachary E

    2014-01-01

    Although the appellation of personalized medicine is generally attributed to advanced therapeutics in molecular medicine, deep brain stimulation (DBS) can also be so categorized. Like its medical counterpart, DBS is a highly personalized intervention that needs to be tailored to a patient's individual anatomy. And because of this, DBS like more conventional personalized medicine, can be highly specific where the object of care is an N = 1. But that is where the similarities end. Besides their differing medical and surgical provenances, these two varieties of personalized medicine have had strikingly different impacts. The molecular variant, though of a more recent vintage has thrived and is experiencing explosive growth, while DBS still struggles to find a sustainable therapeutic niche. Despite its promise, and success as a vetted treatment for drug resistant Parkinson's Disease, DBS has lagged in broadening its development, often encountering regulatory hurdles and financial barriers necessary to mount an adequate number of quality trials. In this paper we will consider why DBS-or better yet neuromodulation-has encountered these challenges and contrast this experience with the more successful advance of personalized medicine. We will suggest that personalized medicine and DBS's differential performance can be explained as a matter of timing and complexity. We believe that DBS has struggled because it has been a journey of scientific exploration conducted without a map. In contrast to molecular personalized medicine which followed the mapping of the human genome and the Human Genome Project, DBS preceded plans for the mapping of the human brain. We believe that this sequence has given personalized medicine a distinct advantage and that the fullest potential of DBS will be realized both as a cartographical or electrophysiological probe and as a modality of personalized medicine.

  20. Deep Brain Stimulation of the Subthalamic Nucleus Improves Lexical Switching in Parkinsons Disease Patients.

    PubMed

    Vonberg, Isabelle; Ehlen, Felicitas; Fromm, Ortwin; Kühn, Andrea A; Klostermann, Fabian

    2016-01-01

    Reduced verbal fluency (VF) has been reported in patients with Parkinson's disease (PD), especially those treated by Deep Brain Stimulation of the subthalamic nucleus (STN DBS). To delineate the nature of this dysfunction we aimed at identifying the particular VF-related operations modified by STN DBS. Eleven PD patients performed VF tasks in their STN DBS ON and OFF condition. To differentiate VF-components modulated by the stimulation, a temporal cluster analysis was performed, separating production spurts (i.e., 'clusters' as correlates of automatic activation spread within lexical fields) from slower cluster transitions (i.e., 'switches' reflecting set-shifting towards new lexical fields). The results were compared to those of eleven healthy control subjects. PD patients produced significantly more switches accompanied by shorter switch times in the STN DBS ON compared to the STN DBS OFF condition. The number of clusters and time intervals between words within clusters were not affected by the treatment state. Although switch behavior in patients with DBS ON improved, their task performance was still lower compared to that of healthy controls. Beyond impacting on motor symptoms, STN DBS seems to influence the dynamics of cognitive procedures. Specifically, the results are in line with basal ganglia roles for cognitive switching, in the particular case of VF, from prevailing lexical concepts to new ones.

  1. Lack of benefit of accumbens/capsular deep brain stimulation in a patient with both tics and obsessive-compulsive disorder.

    PubMed

    Burdick, Adam; Foote, Kelly D; Goodman, Wayne; Ward, Herbert E; Ricciuti, Nicola; Murphy, Tanya; Haq, Ihtsham; Okun, Michael S

    2010-08-01

    LAY SUMMARY: This case report illustrates lack of clinical efficacy of deep brain stimulation (DBS) for control of tics in a case of mild Tourette syndrome (TS) with severe comorbid obsessive-compulsive disorder (OCD). The brain target for stimulation was the anterior limb internal capsule (ALIC). To investigate the effect of anterior limb of internal capsule/nucleus accumbens (ALIC-NA) DBS on mild motor and vocal tics in a Tourette syndrome (TS) patient with severe OCD. The optimum target to address symptoms of TS with DBS remains unknown. Earlier lesional therapy utilized thalamic targets and also the ALIC for select cases which had been diagnosed with other psychiatric disorders. Evidence regarding the efficacy of DBS for the symptoms of TS may aid in better defining a brain target's suitability for use. We report efficacy data on ALIC-NA DBS in a patient with severe OCD and mild TS. A 33-year-old man underwent bilateral ALIC-NA DBS. One month following implantation, a post-operative CT scan was obtained to verify lead locations. Yale Global Tic Severity Scales (YGTSS) and modified Rush Videotape Rating scales (MRVRS) were obtained throughout the first 6 months, as well as careful clinical examinations by a specialized neurology and psychiatry team. The patient has been followed for 30 months. YGTSS scores worsened by 17% during the first 6 months. MRVRS scores also worsened over 30 total months of follow-up. There was a lack of clinically significant tic reduction although subjectively the patient felt tics improved mildly. DBS in the ALIC-NA failed to effectively address mild vocal and motor tics in a patient with TS and severe comorbid OCD.

  2. Subthalamic nucleus deep brain stimulation improves deglutition in Parkinson's disease.

    PubMed

    Ciucci, Michelle R; Barkmeier-Kraemer, Julie M; Sherman, Scott J

    2008-04-15

    Relatively little is known about the role of the basal ganglia in human deglutition. Deep brain stimulation (DBS) affords us a model for examining deglutition in humans with known impairment of the basal ganglia. The purpose of this study was to examine the effects of subthalamic nuclei (STN) DBS on the oral and pharyngeal stages of deglutition in individuals with Parkinson's Disease (PD). It was hypothesized that DBS would be associated with improved deglutition. Within participant, comparisons were made between DBS in the ON and OFF conditions using the dependent variables: pharyngeal transit time, maximal hyoid bone excursion, oral total composite score, and pharyngeal total composite score. Significant improvement occurred for the pharyngeal composite score and pharyngeal transit time in the DBS ON condition compared with DBS OFF. Stimulation of the STN may excite thalamocortical or brainstem targets to sufficiently overcome the bradykinesia/hypokinesia associated with PD and return some pharyngeal stage motor patterns to performance levels approximating those of "normal" deglutition. However, the degree of hyoid bone excursion and oral stage measures did not improve, suggesting that these motor acts may be under the control of different sensorimotor pathways within the basal ganglia. 2007 Movement Disorder Society

  3. Deep brain stimulation of the ventral striatum enhances extinction of conditioned fear

    PubMed Central

    Rodriguez-Romaguera, Jose; Do Monte, Fabricio H. M.; Quirk, Gregory J.

    2012-01-01

    Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) reduces symptoms of intractable obsessive-compulsive disorder (OCD), but the mechanism of action is unknown. OCD is characterized by avoidance behaviors that fail to extinguish, and DBS could act, in part, by facilitating extinction of fear. We investigated this possibility by using auditory fear conditioning in rats, for which the circuits of fear extinction are well characterized. We found that DBS of the VS (the VC/VS homolog in rats) during extinction training reduced fear expression and strengthened extinction memory. Facilitation of extinction was observed for a specific zone of dorsomedial VS, just above the anterior commissure; stimulation of more ventrolateral sites in VS impaired extinction. DBS effects could not be obtained with pharmacological inactivation of either dorsomedial VS or ventrolateral VS, suggesting an extrastriatal mechanism. Accordingly, DBS of dorsomedial VS (but not ventrolateral VS) increased expression of a plasticity marker in the prelimbic and infralimbic prefrontal cortices, the orbitofrontal cortex, the amygdala central nucleus (lateral division), and intercalated cells, areas known to learn and express extinction. Facilitation of fear extinction suggests that, in accord with clinical observations, DBS could augment the effectiveness of cognitive behavioral therapies for OCD. PMID:22586125

  4. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities.

    PubMed

    Giacino, Joseph; Fins, Joseph J; Machado, Andre; Schiff, Nicholas D

    2012-07-01

    Central thalamic deep brain stimulation (CT-DBS) may have therapeutic potential to improve behavioral functioning in patients with severe traumatic brain injury (TBI), but its use remains experimental. Current research suggests that the central thalamus plays a critical role in modulating arousal during tasks requiring sustained attention, working memory, and motor function. The aim of the current article is to review the methodology used in the CT-DBS protocol developed by our group, outline the challenges we encountered and offer suggestions for future DBS trials in this population. RATIONAL FOR CT-DBS IN TBI:  CT-DBS may therefore be able to stimulate these functions by eliciting action potentials that excite thalamocortical and thalamostriatal pathways. Because patients in chronic minimally conscious state (MCS) have a very low probability of regaining functional independence, yet often have significant sparing of cortical connectivity, they may represent a particularly appropriate target group for CT-DBS. PIlOT STUDY RESULTS:  We have conducted a series of single-subject studies of CT-DBS in patients with chronic posttraumatic MCS, with 24-month follow-up. Outcomes were measured using the Coma Recovery Scale-Revised as well as a battery of secondary outcome measures to capture more granular changes. Findings from our index case suggest that CT-DBS can significantly increase functional communication, motor performance, feeding, and object naming in the DBS on state, with performance in some domains remaining above baseline even after DBS was turned off. The use of CT-DBS in patients in MCS, however, presents challenges at almost every step, including during surgical planning, outcome measurement, and postoperative care. Additionally, given the difficulties of obtaining informed consent from patients in MCS and the experimental nature of the treatment, a robust, scientifically rooted ethical framework is resented for pursuing this line of work. © 2012 International Neuromodulation Society.

  5. Programming Deep Brain Stimulation for Tremor and Dystonia: The Toronto Western Hospital Algorithms.

    PubMed

    Picillo, Marina; Lozano, Andres M; Kou, Nancy; Munhoz, Renato Puppi; Fasano, Alfonso

    2016-01-01

    Deep brain stimulation (DBS) is an effective treatment for essential tremor (ET) and dystonia. After surgery, a number of extensive programming sessions are performed, mainly relying on neurologist's personal experience as no programming guidelines have been provided so far, with the exception of recommendations provided by groups of experts. Finally, fewer information is available for the management of DBS in ET and dystonia compared with Parkinson's disease. Our aim is to review the literature on initial and follow-up DBS programming procedures for ET and dystonia and integrate the results with our current practice at Toronto Western Hospital (TWH) to develop standardized DBS programming protocols. We conducted a literature search of PubMed from inception to July 2014 with the keywords "balance", "bradykinesia", "deep brain stimulation", "dysarthria", "dystonia", "gait disturbances", "initial programming", "loss of benefit", "micrographia", "speech", "speech difficulties" and "tremor". Seventy-six papers were considered for this review. Based on the literature review and our experience at TWH, we refined three algorithms for management of ET, including: (1) initial programming, (2) management of balance and speech issues and (3) loss of stimulation benefit. We also depicted algorithms for the management of dystonia, including: (1) initial programming and (2) management of stimulation-induced hypokinesia (shuffling gait, micrographia and speech impairment). We propose five algorithms tailored to an individualized approach to managing ET and dystonia patients with DBS. We encourage the application of these algorithms to supplement current standards of care in established as well as new DBS centers to test the clinical usefulness of these algorithms in supplementing the current standards of care. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Intraoperative acceleration measurements to quantify improvement in tremor during deep brain stimulation surgery.

    PubMed

    Shah, Ashesh; Coste, Jérôme; Lemaire, Jean-Jacques; Taub, Ethan; Schüpbach, W M Michael; Pollo, Claudio; Schkommodau, Erik; Guzman, Raphael; Hemm-Ode, Simone

    2017-05-01

    Deep brain stimulation (DBS) surgery is extensively used in the treatment of movement disorders. Nevertheless, methods to evaluate the clinical response during intraoperative stimulation tests to identify the optimal position for the implantation of the chronic DBS lead remain subjective. In this paper, we describe a new, versatile method for quantitative intraoperative evaluation of improvement in tremor with an acceleration sensor that is mounted on the patient's wrist during surgery. At each anatomical test position, the improvement in tremor compared to the initial tremor is estimated on the basis of extracted outcome measures. This method was tested on 15 tremor patients undergoing DBS surgery in two centers. Data from 359 stimulation tests were acquired. Our results suggest that accelerometric evaluation detects tremor changes more sensitively than subjective visual ratings. The effective stimulation current amplitudes identified from the quantitative data (1.1 ± 0.8 mA) are lower than those identified by visual evaluation (1.7 ± 0.8 mA) for similar improvement in tremor. Additionally, if these data had been used to choose the chronic implant position of the DBS lead, 15 of the 26 choices would have been different. These results show that our method of accelerometric evaluation can potentially improve DBS targeting.

  7. [Deep brain stimulation - expectations and doubts. A nationwide questionnaire study of patients with Parkinson's disease and their family members].

    PubMed

    Südmeyer, M; Volkmann, J; Wojtecki, L; Deuschl, G; Schnitzler, A; Möller, B

    2012-04-01

    The aim of this questionnaire-based study was to determine the decision-making motives from Parkinson's patients and their family members for deep brain stimulation (DBS), which are crucial for the attitude towards this therapy and which should be considered during the clinical interview. The questionnaire was sent out nationwide to members of the German Parkinson Association. Patient and family specific data as well as information sources, doubts and expectations with respect to DBS were assessed. A total of 582 patients and 476 family members answered the questionnaire, revealing that 96% of the patients and 91% of the family members already possessed information regarding DBS. While a large proportion of interviewees had specific expectations concerning DBS, more than two thirds expressed concerns regarding DBS; the most frequent with respect to intraoperative complications and stimulation-induced worsening of symptoms. The quantity of realistic patients and family expectations significantly correlated with a positive evaluation of DBS and doubts as well as unrealistic expectations of family members correlated with a negative attitude towards the operation. The findings suggest that patients and their relatives organized in support groups indeed possess detailed information regarding DBS. However, for the acceptance of the treatment a timely elucidation about DBS as well as responding to the individual concerns by the consulting physician is essential.

  8. The impact of Parkinson's disease and subthalamic deep brain stimulation on reward processing.

    PubMed

    Evens, Ricarda; Stankevich, Yuliya; Dshemuchadse, Maja; Storch, Alexander; Wolz, Martin; Reichmann, Heinz; Schlaepfer, Thomas E; Goschke, Thomas; Lueken, Ulrike

    2015-08-01

    Due to its position in cortico-subthalamic and cortico-striatal pathways, the subthalamic nucleus (STN) is considered to play a crucial role not only in motor, but also in cognitive and motivational functions. In the present study we aimed to characterize how different aspects of reward processing are affected by disease and deep brain stimulation of the STN (DBS-STN) in patients with idiopathic Parkinson's disease (PD). We compared 33 PD patients treated with DBS-STN under best medical treatment (DBS-on, medication-on) to 33 PD patients without DBS, but optimized pharmacological treatment and 34 age-matched healthy controls. We then investigated DBS-STN effects using a postoperative stimulation-on/ -off design. The task set included a delay discounting task, a task to assess changes in incentive salience attribution, and the Iowa Gambling Task. The presence of PD was associated with increased incentive salience attribution and devaluation of delayed rewards. Acute DBS-STN increased risky choices in the Iowa Gambling Task under DBS-on condition, but did not further affect incentive salience attribution or the evaluation of delayed rewards. Findings indicate that acute DBS-STN affects specific aspects of reward processing, including the weighting of gains and losses, while larger-scale effects of disease or medication are predominant in others reward-related functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank

    PubMed Central

    Ramirez-Zamora, Adolfo; Giordano, James J.; Gunduz, Aysegul; Brown, Peter; Sanchez, Justin C.; Foote, Kelly D.; Almeida, Leonardo; Starr, Philip A.; Bronte-Stewart, Helen M.; Hu, Wei; McIntyre, Cameron; Goodman, Wayne; Kumsa, Doe; Grill, Warren M.; Walker, Harrison C.; Johnson, Matthew D.; Vitek, Jerrold L.; Greene, David; Rizzuto, Daniel S.; Song, Dong; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.; Hochberg, Leigh R.; Schiff, Nicholas D.; Stypulkowski, Paul; Worrell, Greg; Tiruvadi, Vineet; Mayberg, Helen S.; Jimenez-Shahed, Joohi; Nanda, Pranav; Sheth, Sameer A.; Gross, Robert E.; Lempka, Scott F.; Li, Luming; Deeb, Wissam; Okun, Michael S.

    2018-01-01

    The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques for the treatment of a range of neuropsychiatric conditions including Parkinson's disease, dystonia, essential tremor, Tourette syndrome, obsessive compulsive disorder, epilepsy and cognitive, and motor disorders. Each section of this overview of the meeting provides insight to the critical elements of discussion, current challenges, and identified future directions of scientific and technological development and application. The report addresses key issues in developing, and emphasizes major innovations that have occurred during the past year. Specifically, this year's meeting focused on technical developments in DBS, design considerations for DBS electrodes, improved sensors, neuronal signal processing, advancements in development and uses of responsive DBS (closed-loop systems), updates on National Institutes of Health and DARPA DBS programs of the BRAIN initiative, and neuroethical and policy issues arising in and from DBS research and applications in practice. PMID:29416498

  10. Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank.

    PubMed

    Ramirez-Zamora, Adolfo; Giordano, James J; Gunduz, Aysegul; Brown, Peter; Sanchez, Justin C; Foote, Kelly D; Almeida, Leonardo; Starr, Philip A; Bronte-Stewart, Helen M; Hu, Wei; McIntyre, Cameron; Goodman, Wayne; Kumsa, Doe; Grill, Warren M; Walker, Harrison C; Johnson, Matthew D; Vitek, Jerrold L; Greene, David; Rizzuto, Daniel S; Song, Dong; Berger, Theodore W; Hampson, Robert E; Deadwyler, Sam A; Hochberg, Leigh R; Schiff, Nicholas D; Stypulkowski, Paul; Worrell, Greg; Tiruvadi, Vineet; Mayberg, Helen S; Jimenez-Shahed, Joohi; Nanda, Pranav; Sheth, Sameer A; Gross, Robert E; Lempka, Scott F; Li, Luming; Deeb, Wissam; Okun, Michael S

    2017-01-01

    The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques for the treatment of a range of neuropsychiatric conditions including Parkinson's disease, dystonia, essential tremor, Tourette syndrome, obsessive compulsive disorder, epilepsy and cognitive, and motor disorders. Each section of this overview of the meeting provides insight to the critical elements of discussion, current challenges, and identified future directions of scientific and technological development and application. The report addresses key issues in developing, and emphasizes major innovations that have occurred during the past year. Specifically, this year's meeting focused on technical developments in DBS, design considerations for DBS electrodes, improved sensors, neuronal signal processing, advancements in development and uses of responsive DBS (closed-loop systems), updates on National Institutes of Health and DARPA DBS programs of the BRAIN initiative, and neuroethical and policy issues arising in and from DBS research and applications in practice.

  11. Speech outcomes in Parkinson's disease after subthalamic nucleus deep brain stimulation: A systematic review.

    PubMed

    Aldridge, Danielle; Theodoros, Deborah; Angwin, Anthony; Vogel, Adam P

    2016-12-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective in reducing motor symptoms for many individuals with Parkinson's disease (PD). However, STN DBS does not appear to influence speech in the same way, and may result in a variety of negative outcomes for people with PD (PWP). A high degree of inter-individual variability amongst PWP regarding speech outcomes following STN DBS is evident in many studies. Furthermore, speech studies in PWP following STN DBS have employed a wide variety of designs and methodologies, which complicate comparison and interpretation of outcome data amongst studies within this growing body of research. An analysis of published evidence regarding speech outcomes in PWP following STN DBS, according to design and quality, is missing. This systematic review aimed to analyse and coalesce all of the current evidence reported within observational and experimental studies investigating the effects of STN DBS on speech. It will strengthen understanding of the relationship between STN DBS and speech, and inform future research by highlighting methodological limitations of current evidence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Nucleus Accumbens Deep Brain Stimulation in Patients with Substance Use Disorders and Delay Discounting.

    PubMed

    Peisker, Canan B; Schüller, Thomas; Peters, Jan; Wagner, Ben J; Schilbach, Leonhard; Müller, Ulf J; Visser-Vandewalle, Veerle; Kuhn, Jens

    2018-01-27

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) shows first promising results in patients with severe substance use disorder (SUD), a patient group known to have deficits in self-control. One facet of self-control is the ability to forego smaller sooner rewards in favor of larger later rewards (delay discounting, DD). The NAc has been suggested to integrate motivational information to guide behavior while the consequences of NAc-DBS on DD are unknown. To this end, nine patients with SUD performed a DD task with DBS on and after a 24 h DBS off period. Furthermore, 18 healthy controls were measured to assess possible alterations in DD in patients with SUD. Our findings implicate that DD was not significantly modulated by NAc-DBS and also that patients with SUD did not differ from healthy controls. While null results must be interpreted with caution, the commonly observed association of impaired DD in SUD might suggest a long-term effect of NAc-DBS that was not sufficiently modulated by a 24 h DBS off period.

  13. Thalamic Deep Brain Stimulation for Writer's Cramp.

    PubMed

    Cho, Chul Bum; Park, Hae Kwan; Lee, Kyung Jin; Rha, Hyoung Kyun

    2009-07-01

    Writer's cramp is a type of idiopathic focal hand dystonia characterized by muscle cramps that accompany execution of the writing task specifically. There has been renewed interest in neurosurgical procedures for the treatment of dystonia over the past several years. In particular, deep brain stimulation (DBS) has received increasing attention as a therapeutic option for patients with dystonia. However, to date, limited reporters made investigations into DBS in relation to the Writer's cramp. In this case, unilateral Ventro-oralis complex (Vo) DBS resulted in a major improvement in patient's focal dystonic movement disorders. Her post-operative Burke-Fahn-Marsden Dystonia Rating (BFMDR) scale demonstrated 1 compared with pre-operative BFMDR scale 4. We conclude that thalamic Vo complex DBS may be an important neurosurgical therapeutic option for Writer's cramp.

  14. The national DBS brain tissue network pilot study: need for more tissue and more standardization.

    PubMed

    Vedam-Mai, V; Krock, N; Ullman, M; Foote, K D; Shain, W; Smith, K; Yachnis, A T; Steindler, D; Reynolds, B; Merritt, S; Pagan, F; Marjama-Lyons, J; Hogarth, P; Resnick, A S; Zeilman, P; Okun, M S

    2011-08-01

    Over 70,000 DBS devices have been implanted worldwide; however, there remains a paucity of well-characterized post-mortem DBS brains available to researchers. We propose that the overall understanding of DBS can be improved through the establishment of a Deep Brain Stimulation-Brain Tissue Network (DBS-BTN), which will further our understanding of DBS and brain function. The objectives of the tissue bank are twofold: (a) to provide a complete (clinical, imaging and pathological) database for DBS brain tissue samples, and (b) to make available DBS tissue samples to researchers, which will help our understanding of disease and underlying brain circuitry. Standard operating procedures for processing DBS brains were developed as part of the pilot project. Complete data files were created for individual patients and included demographic information, clinical information, imaging data, pathology, and DBS lead locations/settings. 19 DBS brains were collected from 11 geographically dispersed centers from across the U.S. The average age at the time of death was 69.3 years (51-92, with a standard deviation or SD of 10.13). The male:female ratio was almost 3:1. Average post-mortem interval from death to brain collection was 10.6 h (SD of 7.17). The DBS targets included: subthalamic nucleus, globus pallidus interna, and ventralis intermedius nucleus of the thalamus. In 16.7% of cases the clinical diagnosis failed to match the pathological diagnosis. We provide neuropathological findings from the cohort, and perilead responses to DBS. One of the most important observations made in this pilot study was the missing data, which was approximately 25% of all available data fields. Preliminary results demonstrated the feasibility and utility of creating a National DBS-BTN resource for the scientific community. We plan to improve our techniques to remedy omitted clinical/research data, and expand the Network to include a larger donor pool. We will enhance sample preparation to facilitate advanced molecular studies and progenitor cell retrieval.

  15. A new biomarker for subthalamic deep brain stimulation for patients with advanced Parkinson’s disease—a pilot study

    NASA Astrophysics Data System (ADS)

    Gmel, Gerrit E.; Hamilton, Tara J.; Obradovic, Milan; Gorman, Robert B.; Single, Peter S.; Chenery, Helen J.; Coyne, Terry; Silburn, Peter A.; Parker, John L.

    2015-12-01

    Objective. Deep brain stimulation (DBS) has become the standard treatment for advanced stages of Parkinson’s disease (PD) and other motor disorders. Although the surgical procedure has improved in accuracy over the years thanks to imaging and microelectrode recordings, the underlying principles that render DBS effective are still debated today. The aim of this paper is to present initial findings around a new biomarker that is capable of assessing the efficacy of DBS treatment for PD which could be used both as a research tool, as well as in the context of a closed-loop stimulator. Approach. We have used a novel multi-channel stimulator and recording device capable of measuring the response of nervous tissue to stimulation very close to the stimulus site with minimal latency, rejecting most of the stimulus artefact usually found with commercial devices. We have recorded and analyzed the responses obtained intraoperatively in two patients undergoing DBS surgery in the subthalamic nucleus (STN) for advanced PD. Main results. We have identified a biomarker in the responses of the STN to DBS. The responses can be analyzed in two parts, an initial evoked compound action potential arising directly after the stimulus onset, and late responses (LRs), taking the form of positive peaks, that follow the initial response. We have observed a morphological change in the LRs coinciding with a decrease in the rigidity of the patients. Significance. These initial results could lead to a better characterization of the DBS therapy, and the design of adaptive DBS algorithms that could significantly improve existing therapies and help us gain insights into the functioning of the basal ganglia and DBS.

  16. Deep Brain Stimulation, Continuity over Time, and the True Self.

    PubMed

    Nyholm, Sven; O'Neill, Elizabeth

    2016-10-01

    One of the topics that often comes up in ethical discussions of deep brain stimulation (DBS) is the question of what impact DBS has, or might have, on the patient's self. This is often understood as a question of whether DBS poses a threat to personal identity, which is typically understood as having to do with psychological and/or narrative continuity over time. In this article, we argue that the discussion of whether DBS is a threat to continuity over time is too narrow. There are other questions concerning DBS and the self that are overlooked in discussions exclusively focusing on psychological and/or narrative continuity. For example, it is also important to investigate whether DBS might sometimes have a positive (e.g., a rehabilitating) effect on the patient's self. To widen the discussion of DBS, so as to make it encompass a broader range of considerations that bear on DBS's impact on the self, we identify six features of the commonly used concept of a person's "true self." We apply these six features to the relation between DBS and the self. And we end with a brief discussion of the role DBS might play in treating otherwise treatment-refractory anorexia nervosa. This further highlights the importance of discussing both continuity over time and the notion of the true self.

  17. Are Patients Ready for "EARLYSTIM"? Attitudes towards Deep Brain Stimulation among Female and Male Patients with Moderately Advanced Parkinson's Disease.

    PubMed

    Sperens, Maria; Hamberg, Katarina; Hariz, Gun-Marie

    2017-01-01

    Objective . To explore, in female and male patients with medically treated, moderately advanced Parkinson's disease (PD), their knowledge and reasoning about Deep Brain Stimulation (DBS). Methods . 23 patients with PD (10 women), aged 46-70, were interviewed at a mean of 8 years after diagnosis, with open-ended questions concerning their reflections and considerations about DBS. The interviews were transcribed verbatim and analysed according to the difference and similarity technique in Grounded Theory. Results . From the patients' narratives, the core category "Processing DBS: balancing symptoms, fears and hopes" was established. The patients were knowledgeable about DBS and expressed cautious and well considered attitudes towards its outcome but did not consider themselves ill enough to undergo DBS. They were aware of its potential side-effects. They considered DBS as the last option when oral medication is no longer sufficient. There was no difference between men and women in their reasoning and attitudes towards DBS. Conclusion . This study suggests that knowledge about the pros and cons of DBS exists among PD patients and that they have a cautious attitude towards DBS. Our patients did not seem to endorse an earlier implementation of DBS, and they considered that it should be the last resort when really needed.

  18. Are Patients Ready for “EARLYSTIM”? Attitudes towards Deep Brain Stimulation among Female and Male Patients with Moderately Advanced Parkinson's Disease

    PubMed Central

    2017-01-01

    Objective. To explore, in female and male patients with medically treated, moderately advanced Parkinson's disease (PD), their knowledge and reasoning about Deep Brain Stimulation (DBS). Methods. 23 patients with PD (10 women), aged 46–70, were interviewed at a mean of 8 years after diagnosis, with open-ended questions concerning their reflections and considerations about DBS. The interviews were transcribed verbatim and analysed according to the difference and similarity technique in Grounded Theory. Results. From the patients' narratives, the core category “Processing DBS: balancing symptoms, fears and hopes” was established. The patients were knowledgeable about DBS and expressed cautious and well considered attitudes towards its outcome but did not consider themselves ill enough to undergo DBS. They were aware of its potential side-effects. They considered DBS as the last option when oral medication is no longer sufficient. There was no difference between men and women in their reasoning and attitudes towards DBS. Conclusion. This study suggests that knowledge about the pros and cons of DBS exists among PD patients and that they have a cautious attitude towards DBS. Our patients did not seem to endorse an earlier implementation of DBS, and they considered that it should be the last resort when really needed. PMID:28458943

  19. Camptocormia and deep brain stimulation: The interesting overlapping etiologies and the therapeutic role of subthalamic nucleus-deep brain stimulation in Parkinson disease with camptocormia.

    PubMed

    Ekmekci, Hakan; Kaptan, Hulagu

    2016-01-01

    Camptocormia is known as "bent spine syndrome" and defined as a forward hyperflexion. The most common etiologic factor is related with the movement disorders, mainly in Parkinson's disease (PD). We present the case of a 51-year-old woman who has been followed with PD for the last 10 years, and also under the therapy for PD. An unappreciated correlation low back pain with camptocormia developed. She underwent deep brain stimulation (DBS) in the subthalamic nucleus bilaterally and improved her bending posture. The relationship between the DBS and camptocormia is discussed in this unique condition.

  20. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Wei, Xuefeng F.; Grill, Warren M.

    2005-12-01

    Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.

  1. Deep brain stimulation for the treatment of uncommon tremor syndromes.

    PubMed

    Ramirez-Zamora, Adolfo; Okun, Michael S

    2016-08-01

    Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson's disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. In this article, we conducted a PubMed search using different combinations between the terms 'Uncommon tremors', 'Dystonic tremor', 'Holmes tremor' 'Midbrain tremor', 'Rubral tremor', 'Cerebellar tremor', 'outflow tremor', 'Multiple Sclerosis tremor', 'Post-traumatic tremor', 'Neuropathic tremor', and 'Deep Brain Stimulation/DBS'. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert commentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features.

  2. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact.

    PubMed

    Kent, A R; Grill, W M

    2012-06-01

    The clinical efficacy of deep brain stimulation (DBS) for the treatment of movement disorders depends on the identification of appropriate stimulation parameters. Since the mechanisms of action of DBS remain unclear, programming sessions can be time consuming, costly and result in sub-optimal outcomes. Measurement of electrically evoked compound action potentials (ECAPs) during DBS, generated by activated neurons in the vicinity of the stimulating electrode, could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulation parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1000 to 5000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 µs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters.

  3. Effects of deep brain stimulation of the subthalamic nucleus on perceptual decision making.

    PubMed

    Zaehle, Tino; Wagenbreth, Caroline; Voges, Jürgen; Heinze, Hans-Jochen; Galazky, Imke

    2017-02-20

    When faced with difficult decisions, people prefer to stay with the default. This status quo bias often leads to suboptimal choice behavior. Neurophysiological evidence suggests a pivot role of the Subthalamic Nucleus (STN) for overcoming such status quo bias in difficult decisions, but causal evidence is lacking. The present study investigated whether subthalamic deep brain stimulation (DBS) in patients with Parkinson's disease (PD) influences the status quo bias. Eighteen PD patients treated with STN-DBS performed a difficult perceptual decision task incorporating intrinsic status quo option. Patients were tested with (ON) and without (OFF) active STN stimulation. Our results show that DBS of the STN affected perceptual decision making in PD patients depending on the difficulty of decision. STN-DBS improved difficult perceptual decisions due to a selective increase in accuracy (hit rate) that was independent of response bias (no effect on false alarm rate). Furthermore, STN-DBS impacted status quo bias as a function of baseline impulsivity. In impulsive patients, STN-DBS increased the default bias, whereas in less impulsive PD patients, DBS of the STN reduced the status quo bias. In line with our hypothesis, STN-DBS selectively affected the tendency to stick with the default option on difficult decisions, and promoted increased decision accuracy. Moreover, we demonstrate the impact of baseline cognitive abilities on DBS-related performance changes in PD patients. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Computational modeling of pedunculopontine nucleus deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Zitella, Laura M.; Mohsenian, Kevin; Pahwa, Mrinal; Gloeckner, Cory; Johnson, Matthew D.

    2013-08-01

    Objective. Deep brain stimulation (DBS) near the pedunculopontine nucleus (PPN) has been posited to improve medication-intractable gait and balance problems in patients with Parkinson's disease. However, clinical studies evaluating this DBS target have not demonstrated consistent therapeutic effects, with several studies reporting the emergence of paresthesia and oculomotor side effects. The spatial and pathway-specific extent to which brainstem regions are modulated during PPN-DBS is not well understood. Approach. Here, we describe two computational models that estimate the direct effects of DBS in the PPN region for human and translational non-human primate (NHP) studies. The three-dimensional models were constructed from segmented histological images from each species, multi-compartment neuron models and inhomogeneous finite element models of the voltage distribution in the brainstem during DBS. Main Results. The computational models predicted that: (1) the majority of PPN neurons are activated with -3 V monopolar cathodic stimulation; (2) surgical targeting errors of as little as 1 mm in both species decrement activation selectivity; (3) specifically, monopolar stimulation in caudal, medial, or anterior PPN activates a significant proportion of the superior cerebellar peduncle (up to 60% in the human model and 90% in the NHP model at -3 V) (4) monopolar stimulation in rostral, lateral or anterior PPN activates a large percentage of medial lemniscus fibers (up to 33% in the human model and 40% in the NHP model at -3 V) and (5) the current clinical cylindrical electrode design is suboptimal for isolating the modulatory effects to PPN neurons. Significance. We show that a DBS lead design with radially-segmented electrodes may yield improved functional outcome for PPN-DBS.

  5. Connectivity Predicts Deep Brain Stimulation Outcome in Parkinson Disease

    PubMed Central

    Horn, Andreas; Reich, Martin; Vorwerk, Johannes; Li, Ningfei; Wenzel, Gregor; Fang, Qianqian; Schmitz-Hübsch, Tanja; Nickl, Robert; Kupsch, Andreas; Volkmann, Jens; Kühn, Andrea A.; Fox, Michael D.

    2018-01-01

    Objective The benefit of deep brain stimulation (DBS) for Parkinson disease (PD) may depend on connectivity between the stimulation site and other brain regions, but which regions and whether connectivity can predict outcome in patients remain unknown. Here, we identify the structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) and test its ability to predict outcome in an independent cohort. Methods A training dataset of 51 PD patients with STN DBS was combined with publicly available human connectome data (diffusion tractography and resting state functional connectivity) to identify connections reliably associated with clinical improvement (motor score of the Unified Parkinson Disease Rating Scale [UPDRS]). This connectivity profile was then used to predict outcome in an independent cohort of 44 patients from a different center. Results In the training dataset, connectivity between the DBS electrode and a distributed network of brain regions correlated with clinical response including structural connectivity to supplementary motor area and functional anticorrelation to primary motor cortex (p<0.001). This same connectivity profile predicted response in an independent patient cohort (p<0.01). Structural and functional connectivity were independent predictors of clinical improvement (p<0.001) and estimated response in individual patients with an average error of 15% UPDRS improvement. Results were similar using connectome data from normal subjects or a connectome age, sex, and disease matched to our DBS patients. Interpretation Effective STN DBS for PD is associated with a specific connectivity profile that can predict clinical outcome across independent cohorts. This prediction does not require specialized imaging in PD patients themselves. PMID:28586141

  6. Computer-Guided Deep Brain Stimulation Programming for Parkinson's Disease.

    PubMed

    Heldman, Dustin A; Pulliam, Christopher L; Urrea Mendoza, Enrique; Gartner, Maureen; Giuffrida, Joseph P; Montgomery, Erwin B; Espay, Alberto J; Revilla, Fredy J

    2016-02-01

    Pilot study to evaluate computer-guided deep brain stimulation (DBS) programming designed to optimize stimulation settings using objective motion sensor-based motor assessments. Seven subjects (five males; 54-71 years) with Parkinson's disease (PD) and recently implanted DBS systems participated in this pilot study. Within two months of lead implantation, the subject returned to the clinic to undergo computer-guided programming and parameter selection. A motion sensor was placed on the index finger of the more affected hand. Software guided a monopolar survey during which monopolar stimulation on each contact was iteratively increased followed by an automated assessment of tremor and bradykinesia. After completing assessments at each setting, a software algorithm determined stimulation settings designed to minimize symptom severities, side effects, and battery usage. Optimal DBS settings were chosen based on average severity of motor symptoms measured by the motion sensor. Settings chosen by the software algorithm identified a therapeutic window and improved tremor and bradykinesia by an average of 35.7% compared with baseline in the "off" state (p < 0.01). Motion sensor-based computer-guided DBS programming identified stimulation parameters that significantly improved tremor and bradykinesia with minimal clinician involvement. Automated motion sensor-based mapping is worthy of further investigation and may one day serve to extend programming to populations without access to specialized DBS centers. © 2015 International Neuromodulation Society.

  7. Deep brain stimulation enhances movement complexity during gait in individuals with Parkinson's disease.

    PubMed

    Powell, Douglas W; Blackmore, Sarah E; Puppa, Melissa; Lester, Deranda; Murray, Nicholas G; Reed-Jones, Rebecca J; Xia, Rui-Ping

    2018-05-08

    Deep brain stimulation (DBS) is associated with substantial improvements in motor symptoms of PD. Emerging evidence has suggested that nonlinear measures of complexity may provide greater insight into the efficacy of anti-PD treatments. This study investigated sample entropy and complexity index values in individuals with PD when DBS was OFF compared to ON. Five individuals with PD using DBS performed a four-minute treadmill walking task while 3D kinematics were collected over two periods of 30 s. Participants were tested in the DBS-ON and DBS-OFF conditions. Sample entropy (SE) and complexity index (CI) values were calculated for ankle, knee and hip joint angles. Paired samples t-tests were used to compare mean SE and CI values between the DBS-OFF and DBS-ON conditions, respectively. No differences in SE or CI were observed between the DBS-ON and DBS-OFF conditions at the ankle. At the knee, the DBS-ON was associated with greater SE and CI values than the DBS-OFF condition. At the hip, DBS-ON was associated with greater SE and CI values than the DBS-OFF condition. DBS enhances complexity of movement at the hip and knee joints while complexity at the ankle joint is not significantly altered. Greater complexity of knee and hip joint motion may represent increased adaptability and a greater number of available strategies to complete the gait task. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates

    PubMed Central

    Ryou, Jae-Wook; Wei, Xuefeng F.; Butson, Christopher R.; Schiff, Nicholas D.; Purpura, Keith P.

    2016-01-01

    The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients. PMID:27582298

  9. Moving Forward: Advances in the Treatment of Movement Disorders with Deep Brain Stimulation

    PubMed Central

    Schiefer, Terry K.; Matsumoto, Joseph Y.; Lee, Kendall H.

    2011-01-01

    The modern era of stereotactic and functional neurosurgery has ushered in state of the art technologies for the treatment of movement disorders, particularly Parkinson’s disease (PD), tremor, and dystonia. After years of experience with various surgical therapies, the eventual shortcomings of both medical and surgical treatments, and several serendipitous discoveries, deep brain stimulation (DBS) has risen to the forefront as a highly effective, safe, and reversible treatment for these conditions. Idiopathic advanced PD can be treated with thalamic, globus pallidus internus (GPi), or subthalamic nucleus (STN) DBS. Thalamic DBS primarily relieves tremor while GPi and STN DBS alleviate a wide range of Parkinsonian symptoms. Thalamic DBS is also used in the treatment of other types of tremor, particularly essential tremor, with excellent results. Both primary and various types of secondary dystonia can be treated very effectively with GPi DBS. The variety of anatomical targets for these movement disorders is indicative of the network-level dysfunction mediating these movement disturbances. Despite an increasing understanding of the clinical benefits of DBS, little is known about how DBS can create such wide sweeping neuromodulatory effects. The key to improving this therapeutic modality and discovering new ways to treat these and other neurologic conditions lies in better understanding the intricacies of DBS. Here we review the history and pertinent clinical data for DBS treatment of PD, tremor, and dystonia. While multiple regions of the brain have been targeted for DBS in the treatment of these movement disorders, this review article focuses on those that are most commonly used in current clinical practice. Our search criteria for PubMed included combinations of the following terms: DBS, neuromodulation, movement disorders, PD, tremor, dystonia, and history. Dates were not restricted. PMID:22084629

  10. Load-Dependent Interference of Deep Brain Stimulation of the Subthalamic Nucleus with Switching from Automatic to Controlled Processing During Random Number Generation in Parkinson's Disease.

    PubMed

    Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan

    2015-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson's disease (PD). However, some aspects of executive control are impaired with STN DBS. We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing.

  11. Subthalamic nucleus deep brain stimulation improves somatosensory function in Parkinson's disease.

    PubMed

    Aman, Joshua E; Abosch, Aviva; Bebler, Maggie; Lu, Chia-Hao; Konczak, Jürgen

    2014-02-01

    An established treatment for the motor symptoms of Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Mounting evidence suggests that PD is also associated with somatosensory deficits, yet the effect of STN-DBS on somatosensory processing is largely unknown. This study investigated whether STN-DBS affects somatosensory processing, specifically the processing of tactile and proprioceptive cues, by systematically examining the accuracy of haptic perception of object size. (Haptic perception refers to one's ability to extract object features such as shape and size by active touch.) Without vision, 13 PD patients with implanted STN-DBS and 13 healthy controls haptically explored the heights of 2 successively presented 3-dimensional (3D) blocks using a precision grip. Participants verbally indicated which block was taller and then used their nonprobing hand to motorically match the perceived size of the comparison block. Patients were tested during ON and OFF stimulation, following a 12-hour medication washout period. First, when compared to controls, the PD group's haptic discrimination threshold during OFF stimulation was elevated by 192% and mean hand aperture error was increased by 105%. Second, DBS lowered the haptic discrimination threshold by 26% and aperture error decreased by 20%. Third, during DBS ON, probing with the motorically more affected hand decreased haptic precision compared to probing with the less affected hand. This study offers the first evidence that STN-DBS improves haptic precision, further indicating that somatosensory function is improved by STN-DBS. We conclude that DBS-related improvements are not explained by improvements in motor function alone, but rather by enhanced somatosensory processing. © 2013 Movement Disorder Society.

  12. Load-Dependent Interference of Deep Brain Stimulation of the Subthalamic Nucleus with Switching from Automatic to Controlled Processing During Random Number Generation in Parkinson’s Disease

    PubMed Central

    Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan

    2015-01-01

    Background: Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson’s disease (PD). However, some aspects of executive control are impaired with STN DBS. Objective: We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Methods: Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. Results: The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. Conclusions: We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing. PMID:25720447

  13. Long-Term Effective Thalamic Deep Brain Stimulation for Neuropathic Tremor in Two Patients with Charcot-Marie-Tooth Disease.

    PubMed

    Cabañes-Martínez, Lidia; Del Álamo de Pedro, Marta; de Blas Beorlegui, Gema; Bailly-Bailliere, Ignacio Regidor

    2017-01-01

    It has been described that many Charcot-Marie-Tooth syndrome type 2 patients are affected by a very disabling type of tremor syndrome, the pathophysiology of which remains unclear. Deep brain stimulation (DBS) has been successfully applied to treat most types of tremors by implanting electrodes in the ventral intermediate nucleus of the thalamus (Vim). We used DBS applied to the Vim in 2 patients with severe axonal inherited polyneuropathies who developed a disabling tremor. Both patients responded positively to stimulation, with a marked reduction of the tremor and with an improvement of their quality of life. We report 2 cases of tremor associated with a hereditary neuropathy with a good response to DBS. © 2017 S. Karger AG, Basel.

  14. A Network Model of Local Field Potential Activity in Essential Tremor and the Impact of Deep Brain Stimulation

    PubMed Central

    Mace, Michael; Pavese, Nicola; Borisyuk, Roman; Bain, Peter

    2017-01-01

    Essential tremor (ET), a movement disorder characterised by an uncontrollable shaking of the affected body part, is often professed to be the most common movement disorder, affecting up to one percent of adults over 40 years of age. The precise cause of ET is unknown, however pathological oscillations of a network of a number of brain regions are implicated in leading to the disorder. Deep brain stimulation (DBS) is a clinical therapy used to alleviate the symptoms of a number of movement disorders. DBS involves the surgical implantation of electrodes into specific nuclei in the brain. For ET the targeted region is the ventralis intermedius (Vim) nucleus of the thalamus. Though DBS is effective for treating ET, the mechanism through which the therapeutic effect is obtained is not understood. To elucidate the mechanism underlying the pathological network activity and the effect of DBS on such activity, we take a computational modelling approach combined with electrophysiological data. The pathological brain activity was recorded intra-operatively via implanted DBS electrodes, whilst simultaneously recording muscle activity of the affected limbs. We modelled the network hypothesised to underlie ET using the Wilson-Cowan approach. The modelled network exhibited oscillatory behaviour within the tremor frequency range, as did our electrophysiological data. By applying a DBS-like input we suppressed these oscillations. This study shows that the dynamics of the ET network support oscillations at the tremor frequency and the application of a DBS-like input disrupts this activity, which could be one mechanism underlying the therapeutic benefit. PMID:28068428

  15. The effect of deep brain stimulation of the subthalamic nucleus on executive functions: impaired verbal fluency and intact updating, planning and conflict resolution in Parkinson's disease.

    PubMed

    Demeter, Gyula; Valálik, István; Pajkossy, Péter; Szőllősi, Ágnes; Lukács, Ágnes; Kemény, Ferenc; Racsmány, Mihály

    2017-04-24

    Although the improvement of motor symptoms in Parkinson's disease (PD) after deep brain stimulation (DBS) of the subthalamic nucleus (STN) is well documented, there are open questions regarding its impact on cognitive functions. The aim of this study was to assess the effect of bilateral DBS of the STN on executive functions in PD patients using a DBS wait-listed PD control group. Ten PD patients with DBS implantation (DBS group) and ten PD wait-listed patients (Clinical control group) participated in the study. Neuropsychological tasks were used to assess general mental ability and various executive functions. Each task was administered twice to each participant: before and after surgery (with the stimulators on) in the DBS group and with a matched delay between the two task administration points in the control group. There was no significant difference between the DBS and the control groups' performance in tasks measuring the updating of verbal, spatial or visual information (Digit span, Corsi and N-back tasks), planning and shifting (Trail Making B), and conflict resolution (Stroop task). However, the DBS group showed a significant decline on the semantic verbal fluency task after surgery compared to the control group, which is in line with findings of previous studies. Our results provide support for the relative cognitive safety of the STN DBS using a wait-listed PD control group. Differential effects of the STN DBS on frontostriatal networks are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Surgical Neuroanatomy and Programming in Deep Brain Stimulation for Obsessive Compulsive Disorder

    PubMed Central

    Morishita, Takashi; Fayad, Sarah M.; Goodman, Wayne K.; Foote, Kelly D.; Chen, Dennis; Peace, David A.; Rhoton, Albert L.; Okun, Michael S.

    2014-01-01

    Objectives Deep brain stimulation (DBS) has been established as a safe, effective therapy for movement disorders (Parkinson’s disease, essential tremor, etc.), and its application is expanding to the treatment of other intractable neuropsychiatric disorders including Depression and Obsessive-Compulsive Disorder (OCD). Several published studies have supported the efficacy of DBS for severely debilitating OCD. However, questions remain regarding the optimal anatomical target and the lack of a bedside programming paradigm for OCD DBS. Management of OCD DBS can be highly variable and is typically guided by each center’s individual expertise. In this paper, we review the various approaches to targeting and programming for OCD DBS. We also review the clinical experience for each proposed target, and discuss the relevant neuroanatomy. Methods A PubMed review was performed searching for literature on OCD DBS and included all articles published before March 2012. We included all available studies with a clear description of the anatomical targets, programming details, and the outcomes. Results Six different DBS approaches were identified. High frequency stimulation with high voltage was applied in most cases, and predictive factors for favorable outcomes were discussed in the literature. Conclusion DBS remains an experimental treatment for medication refractory OCD. Target selection and programming paradigms are not yet standardized, though, an improved understanding of the relationship between the DBS lead and the surrounding neuroanatomical structures will aid in the selection of targets and the approach to programming. We propose to form a registry to track OCD DBS cases for future clinical study design. PMID:24345303

  17. Surgical neuroanatomy and programming in deep brain stimulation for obsessive compulsive disorder.

    PubMed

    Morishita, Takashi; Fayad, Sarah M; Goodman, Wayne K; Foote, Kelly D; Chen, Dennis; Peace, David A; Rhoton, Albert L; Okun, Michael S

    2014-06-01

    Deep brain stimulation (DBS) has been established as a safe, effective therapy for movement disorders (Parkinson's disease, essential tremor, etc.), and its application is expanding to the treatment of other intractable neuropsychiatric disorders including depression and obsessive-compulsive disorder (OCD). Several published studies have supported the efficacy of DBS for severely debilitating OCD. However, questions remain regarding the optimal anatomic target and the lack of a bedside programming paradigm for OCD DBS. Management of OCD DBS can be highly variable and is typically guided by each center's individual expertise. In this paper, we review the various approaches to targeting and programming for OCD DBS. We also review the clinical experience for each proposed target and discuss the relevant neuroanatomy. A PubMed review was performed searching for literature on OCD DBS and included all articles published before March 2012. We included all available studies with a clear description of the anatomic targets, programming details, and the outcomes. Six different DBS approaches were identified. High-frequency stimulation with high voltage was applied in most cases, and predictive factors for favorable outcomes were discussed in the literature. DBS remains an experimental treatment for medication refractory OCD. Target selection and programming paradigms are not yet standardized, though an improved understanding of the relationship between the DBS lead and the surrounding neuroanatomic structures will aid in the selection of targets and the approach to programming. We propose to form a registry to track OCD DBS cases for future clinical study design. © 2013 International Neuromodulation Society.

  18. Neuroimaging and cognitive changes during déjà vu.

    PubMed

    Kovacs, Norbert; Auer, Tibor; Balas, Istvan; Karadi, Kazmer; Zambo, Katalin; Schwarcz, Attila; Klivenyi, Peter; Jokeit, Hennric; Horvath, Krisztina; Nagy, Ferenc; Janszky, Jozsef

    2009-01-01

    The cause or the physiological role of déjà vu (DV) in healthy people is unknown. The pathophysiology of DV-type epileptic aura is also unresolved. Here we describe a 22-year-old woman treated with deep brain stimulation (DBS) of the left internal globus pallidus for hemidystonia. At certain stimulation settings, DBS elicited reproducible episodes of DV. Neuropsychological tests and single-photon-emission computed tomography (SPECT) were performed during DBS-evoked DV and during normal DBS stimulation without DV. SPECT during DBS-evoked DV revealed hyperperfusion of the right (contralateral to the electrode) hippocampus and other limbic structures. Neuropsychological examinations performed during several evoked DV episodes revealed disturbances in nonverbal memory. Our results confirm the role of mesiotemporal structures in the pathogenesis of DV. We hypothesize that individual neuroanatomy and disturbances in gamma oscillations or in the dopaminergic system played a role in DBS-elicited DV in our patient.

  19. Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens.

    PubMed

    Ross, Erika K; Kim, Joo Pyung; Settell, Megan L; Han, Seong Rok; Blaha, Charles D; Min, Hoon-Ki; Lee, Kendall H

    2016-03-01

    Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc, involving excitatory glutamatergic input, and that the medial limbic and corticolimbic circuits interact in a functional loop. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Cognitive functioning in psychiatric disorders following deep brain stimulation.

    PubMed

    Bergfeld, Isidoor O; Mantione, Mariska; Hoogendoorn, Mechteld L C; Denys, Damiaan

    2013-07-01

    Deep brain stimulation (DBS) is routinely used as a treatment for treatment-refractory Parkinson's disease and has recently been proposed for psychiatric disorders such as Tourette syndrome (TS), obsessive-compulsive disorder (OCD) and major depressive disorder (MDD). Although cognitive deterioration has repeatedly been shown in patients with Parkinson's disease following DBS, the impact of DBS on cognitive functioning in psychiatric patients has not yet been reviewed. Reviewing the available literature on cognitive functioning following DBS in psychiatric patients. A systematic literature search in PubMed, EMBASE and Web of Science, last updated in September 2012, found 1470 papers. Abstracts were scrutinized and 26 studies examining cognitive functioning of psychiatric patients following DBS were included on basis of predetermined inclusion criteria. Twenty-six studies reported cognitive functioning of 130 psychiatric patients following DBS (37 TS patients, 56 OCD patients, 28 MDD patients, 6 patients with Alzheimer's disease, and 3 patients with other disorders). None of the studies reported substantial cognitive decline following DBS. On the contrary, 13 studies reported cognitive improvement following DBS. Preliminary results suggest that DBS in psychiatric disorders does not lead to cognitive decline. In selected cases cognitive functioning was improved following DBS. However, cognitive improvement cannot be conclusively attributed to DBS since studies are hampered by serious limitations. We discuss the outcomes in light of these limitations and offer suggestions for future work. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Behavioral and Neurobiological Effects of Deep Brain Stimulation in a Mouse Model of High Anxiety- and Depression-Like Behavior

    PubMed Central

    Schmuckermair, Claudia; Gaburro, Stefano; Sah, Anupam; Landgraf, Rainer; Sartori, Simone B; Singewald, Nicolas

    2013-01-01

    Increasing evidence suggests that high-frequency deep brain stimulation of the nucleus accumbens (NAcb-DBS) may represent a novel therapeutic strategy for individuals suffering from treatment-resistant depression, although the underlying mechanisms of action remain largely unknown. In this study, using a unique mouse model of enhanced depression- and anxiety-like behavior (HAB), we investigated behavioral and neurobiological effects of NAcb-DBS. HAB mice either underwent chronic treatment with one of three different selective serotonin reuptake inhibitors (SSRIs) or received NAcb-DBS for 1 h per day for 7 consecutive days. Animals were tested in established paradigms revealing depression- and anxiety-related behaviors. The enhanced depression-like behavior of HAB mice was not influenced by chronic SSRI treatment. In contrast, repeated, but not single, NAcb-DBS induced robust antidepressant and anxiolytic responses in HAB animals, while these behaviors remained unaffected in normal depression/anxiety animals (NAB), suggesting a preferential effect of NAcb-DBS on pathophysiologically deranged systems. NAcb-DBS caused a modulation of challenge-induced activity in various stress- and depression-related brain regions, including an increase in c-Fos expression in the dentate gyrus of the hippocampus and enhanced hippocampal neurogenesis in HABs. Taken together, these findings show that the normalization of the pathophysiologically enhanced, SSRI-insensitive depression-like behavior by repeated NAcb-DBS was associated with the reversal of reported aberrant brain activity and impaired adult neurogenesis in HAB mice, indicating that NAcb-DBS affects neuronal activity as well as plasticity in a defined, mood-associated network. Thus, HAB mice may represent a clinically relevant model for elucidating the neurobiological correlates of NAcb-DBS. PMID:23325324

  2. Cognitive Activation by Central Thalamic Stimulation: The Yerkes-Dodson Law Revisited.

    PubMed Central

    Mair, Robert G.; Onos, Kristen D.; Hembrook, Jacqueline R.

    2011-01-01

    Central thalamus regulates forebrain arousal, influencing activity in distributed neural networks that give rise to organized actions during alert, wakeful states. Central thalamus has been implicated in working memory by the effects of lesions and microinjected drugs in this part of the brain. Lesions and drugs that inhibit neural activity have been found to impair working memory. Drugs that increase activity have been found to enhance and impair memory depending on the dose tested. Electrical deep brain stimulation (DBS) similarly enhances working memory at low stimulating currents and impairs it at higher currents. These effects are time dependent. They were observed when DBS was applied during the memory delay (retention) or choice response (retrieval) but not earlier in trials during the sample (acquisition) phase. The effects of microinjected drugs and DBS are consistent with the Yerkes-Dodson law, which describes an inverted-U relationship between arousal and behavioral performance. Alternatively these results may reflect desensitization associated with higher levels of stimulation, spread of drugs or current to adjacent structures, or activation of less sensitive neurons or receptors at higher DBS currents or drug doses. PMID:22013395

  3. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.

    PubMed

    Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard

    2012-06-01

    A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.

  4. Target Selection Recommendations Based on Impact of Deep Brain Stimulation Surgeries on Nonmotor Symptoms of Parkinson's Disease.

    PubMed

    Wang, Xiao-Hong; Zhang, Lin; Sperry, Laura; Olichney, John; Farias, Sarah Tomaszewski; Shahlaie, Kiarash; Chang, Norika Malhado; Liu, Ying; Wang, Su-Ping; Wang, Cui

    2015-12-20

    This review examines the evidence that deep brain stimulation (DBS) has extensive impact on nonmotor symptoms (NMSs) of patients with Parkinson's disease (PD). We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi), subthalamic nucleus (STN), and ventral intermediate thalamic nucleus. We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients.

  5. Deep Brain Stimulation for Dystonia: A Novel Perspective on the Value of Genetic Testing

    PubMed Central

    Jinnah, H. A.; Alterman, Ron; Klein, Christine; Krauss, Joachim K.; Moro, Elena; Vidailhet, Marie; Raike, Robert

    2017-01-01

    The dystonias are a group of disorders characterized by excessive muscle contractions leading to abnormal movements and postures. There are many different clinical manifestations and underlying causes. Deep brain stimulation (DBS) provides an effect treatment, but outcomes can vary considerably among the different subtypes of dystonia. Several variables are thought to contribute to this variation including age of onset and duration of dystonia, specific characteristics of the dystonic movements, location of stimulation and stimulator settings, and others. The potential contributions of genetic factors have received little attention. In this review, we summarize evidence that some of the variation in DBS outcomes for dystonia is due to genetic factors. The evidence suggests that more methodical genetic testing may provide useful information in the assessment of potential surgical candidates, and in advancing our understanding of the biological mechanisms that influence DBS outcomes. PMID:28160152

  6. Effects of deep brain stimulation on rest tremor progression in early stage Parkinson disease.

    PubMed

    Hacker, Mallory L; DeLong, Mahlon R; Turchan, Maxim; Heusinkveld, Lauren E; Ostrem, Jill L; Molinari, Anna L; Currie, Amanda D; Konrad, Peter E; Davis, Thomas L; Phibbs, Fenna T; Hedera, Peter; Cannard, Kevin R; Drye, Lea T; Sternberg, Alice L; Shade, David M; Tonascia, James; Charles, David

    2018-06-29

    To evaluate whether the progression of individual motor features was influenced by early deep brain stimulation (DBS), a post hoc analysis of Unified Parkinson's Disease Rating Scale-III (UPDRS-III) score (after a 7-day washout) was conducted from the 2-year DBS in early Parkinson disease (PD) pilot trial dataset. The prospective pilot trial enrolled patients with PD aged 50-75 years, treated with PD medications for 6 months-4 years, and no history of dyskinesia or other motor fluctuations, who were randomized to receive optimal drug therapy (ODT) or DBS plus ODT (DBS + ODT). At baseline and 6, 12, 18, and 24 months, all patients stopped all PD therapy for 1 week (medication and stimulation, if applicable). UPDRS-III "off" item scores were compared between the ODT and DBS + ODT groups (n = 28); items with significant between-group differences were analyzed further. UPDRS-III "off" rest tremor score change from baseline to 24 months was worse in patients receiving ODT vs DBS + ODT ( p = 0.002). Rest tremor slopes from baseline to 24 months favored DBS + ODT both "off" and "on" therapy ( p < 0.001, p = 0.003, respectively). More ODT patients developed new rest tremor in previously unaffected limbs than those receiving DBS + ODT ( p = 0.001). These results suggest the possibility that DBS in early PD may slow rest tremor progression. Future investigation in a larger cohort is needed, and these findings will be tested in the Food and Drug Administration-approved, phase III, pivotal, multicenter clinical trial evaluating DBS in early PD. This study provides Class II evidence that for patients with early PD, DBS may slow the progression of rest tremor. © 2018 American Academy of Neurology.

  7. Hemispheric dissociation of reward processing in humans: insights from deep brain stimulation.

    PubMed

    Palminteri, Stefano; Serra, Giulia; Buot, Anne; Schmidt, Liane; Welter, Marie-Laure; Pessiglione, Mathias

    2013-01-01

    Rewards have various effects on human behavior and multiple representations in the human brain. Behaviorally, rewards notably enhance response vigor in incentive motivation paradigms and bias subsequent choices in instrumental learning paradigms. Neurally, rewards affect activity in different fronto-striatal regions attached to different motor effectors, for instance in left and right hemispheres for the two hands. Here we address the question of whether manipulating reward-related brain activity has local or general effects, with respect to behavioral paradigms and motor effectors. Neuronal activity was manipulated in a single hemisphere using unilateral deep brain stimulation (DBS) in patients with Parkinson's disease. Results suggest that DBS amplifies the representation of reward magnitude within the targeted hemisphere, so as to affect the behavior of the contralateral hand specifically. These unilateral DBS effects on behavior include both boosting incentive motivation and biasing instrumental choices. Furthermore, using computational modeling we show that DBS effects on incentive motivation can predict DBS effects on instrumental learning (or vice versa). Thus, we demonstrate the feasibility of causally manipulating reward-related neuronal activity in humans, in a manner that is specific to a class of motor effectors but that generalizes to different computational processes. As these findings proved independent from therapeutic effects on parkinsonian motor symptoms, they might provide insight into DBS impact on non-motor disorders, such as apathy or hypomania. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Sing the mind electric - principles of deep brain stimulation.

    PubMed

    Kringelbach, Morten L; Green, Alexander L; Owen, Sarah L F; Schweder, Patrick M; Aziz, Tipu Z

    2010-10-01

    The remarkable efficacy of deep brain stimulation (DBS) for a range of treatment-resistant disorders is still not matched by a comparable understanding of the underlying neural mechanisms. Some progress has been made using translational research with a range of neuroscientific techniques, and here we review the most promising emerging principles. On balance, DBS appears to work by restoring normal oscillatory activity between a network of key brain regions. Further research using this causal neuromodulatory tool may provide vital insights into fundamental brain function, as well as guide targets for future treatments. In particular, DBS could have an important role in restoring the balance of the brain's default network and thus repairing the malignant brain states associated with affective disorders, which give rise to serious disabling problems such as anhedonia, the lack of pleasure. At the same time, it is important to proceed with caution and not repeat the errors from the era of psychosurgery. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  9. Deep brain stimulation of the subthalamic nucleus improves pain in Parkinson's disease.

    PubMed

    Pellaprat, Jean; Ory-Magne, Fabienne; Canivet, Cindy; Simonetta-Moreau, Marion; Lotterie, Jean-Albert; Radji, Fatai; Arbus, Christophe; Gerdelat, Angélique; Chaynes, Patrick; Brefel-Courbon, Christine

    2014-06-01

    In Parkinson's disease (PD), chronic pain is a common symptom which markedly affects the quality of life. Some physiological arguments proposed that Deep Brain Stimulation of the Subthalamic Nucleus (STN-DBS) could improve pain in PD. We investigated in 58 PD patients the effect of STN-DBS on pain using the short McGill Pain Questionnaire and other pain parameters such as the Bodily discomfort subscore of the Parkinson's disease Questionnaire 39 and the Unified Parkinson's Disease Rating Scale section II (UPDRS II) item 17. All pain scores were significantly improved 12 months after STN-DBS. This improvement was not correlated with motor improvement, depression scores or L-Dopa reduction. STN-DBS induced a substantial beneficial effect on pain in PD, independently of its motor effects and mood status of patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.

    PubMed

    Walckiers, Grégoire; Fuchs, Benjamin; Thiran, Jean-Philippe; Mosig, Juan R; Pollo, Claudio

    2010-01-30

    Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%). (c) 2009 Elsevier B.V. All rights reserved.

  11. Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington's disease.

    PubMed

    Beste, Christian; Mückschel, Moritz; Elben, Saskia; J Hartmann, Christian; McIntyre, Cameron C; Saft, Carsten; Vesper, Jan; Schnitzler, Alfons; Wojtecki, Lars

    2015-07-01

    Deep brain stimulation of the dorsal pallidum (globus pallidus, GP) is increasingly considered as a surgical therapeutic option in Huntington's disease (HD), but there is need to identify outcome measures useful for clinical trials. Computational models consider the GP to be part of a basal ganglia network involved in cognitive processes related to the control of actions. We examined behavioural and event-related potential (ERP) correlates of action control (i.e., error monitoring) and evaluated the effects of deep brain stimulation (DBS). We did this using a standard flanker paradigm and evaluated error-related ERPs. Patients were recruited from a prospective pilot trial for pallidal DBS in HD (trial number NCT00902889). From the initial four patients with Huntington's chorea, two patients with chronic external dorsal pallidum stimulation were available for follow-up and able to perform the task. The results suggest that the external GP constitutes an important basal ganglia element not only for error processing and behavioural adaptation but for general response monitoring processes as well. Response monitoring functions were fully controllable by switching pallidal DBS stimulation on and off. When stimulation was switched off, no neurophysiological and behavioural signs of error and general performance monitoring, as reflected by the error-related negativity and post-error slowing in reaction times were evident. The modulation of response monitoring processes by GP-DBS reflects a side effect of efforts to alleviate motor symptoms in HD. From a clinical neurological perspective, the results suggest that DBS in the external GP segment can be regarded as a potentially beneficial treatment with respect to cognitive functions.

  12. Lightning may pose a danger to patients receiving deep brain stimulation: case report.

    PubMed

    Prezelj, Neža; Trošt, Maja; Georgiev, Dejan; Flisar, Dušan

    2018-05-01

    Deep brain stimulation (DBS) is an established treatment option for advanced stages of Parkinson's disease and other movement disorders. It is known that DBS is susceptible to strong electromagnetic fields (EMFs) that can be generated by various electrical devices at work, home, and in medical environments. EMFs can interfere with the proper functioning of implantable pulse generators (IPGs). Very strong EMFs can generate induction currents in implanted electrodes and even damage the brain. Manufacturers of DBS devices have issued a list of warnings on how to avoid this danger. Strong EMFs can result from natural forces as well. The authors present the case of a 66-year-old woman who was being treated with a rechargeable DBS system for neck dystonia when her apartment was struck by lightning. Domestic electronic devices that were operating during the event were burned and destroyed. The woman's IPG switched off but remained undamaged, and she suffered no neurological consequences.

  13. Orientation selective deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Lehto, Lauri J.; Slopsema, Julia P.; Johnson, Matthew D.; Shatillo, Artem; Teplitzky, Benjamin A.; Utecht, Lynn; Adriany, Gregor; Mangia, Silvia; Sierra, Alejandra; Low, Walter C.; Gröhn, Olli; Michaeli, Shalom

    2017-02-01

    Objective. Target selectivity of deep brain stimulation (DBS) therapy is critical, as the precise locus and pattern of the stimulation dictates the degree to which desired treatment responses are achieved and adverse side effects are avoided. There is a clear clinical need to improve DBS technology beyond currently available stimulation steering and shaping approaches. We introduce orientation selective neural stimulation as a concept to increase the specificity of target selection in DBS. Approach. This concept, which involves orienting the electric field along an axonal pathway, was tested in the corpus callosum of the rat brain by freely controlling the direction of the electric field on a plane using a three-electrode bundle, and monitoring the response of the neurons using functional magnetic resonance imaging (fMRI). Computational models were developed to further analyze axonal excitability for varied electric field orientation. Main results. Our results demonstrated that the strongest fMRI response was observed when the electric field was oriented parallel to the axons, while almost no response was detected with the perpendicular orientation of the electric field relative to the primary fiber tract. These results were confirmed by computational models of the experimental paradigm quantifying the activation of radially distributed axons while varying the primary direction of the electric field. Significance. The described strategies identify a new course for selective neuromodulation paradigms in DBS based on axonal fiber orientation.

  14. Does subthalamic nucleus deep brain stimulation really improve quality of life in Parkinson's disease?

    PubMed

    Gronchi-Perrin, Aline; Viollier, Sarah; Ghika, Joseph; Combremont, Pierre; Villemure, Jean-Guy; Bogousslavsky, Julien; Burkhard, Pierre R; Vingerhoets, François

    2006-09-01

    We investigated the impact of subthalamic nucleus (STN) deep brain stimulation (DBS) on quality of life (QOL) in patients with advanced Parkinson's disease, as self-assessed before and after surgery by completing the Parkinson's Disease Questionnaire (PDQ39). In addition to this prospective evaluation, we asked patients postoperatively to evaluate their preoperative QOL. In the prospective assessment, results showed that patients perceived a general improvement of QOL after the STN DBS. However, when evaluated retrospectively, they tended to overestimate their preoperative functioning, therefore obscuring the improvement found prospectively. This observation highlights the impact of the method used on obtained results when assessing the effects of STN DBS. (c) 2006 Movement Disorder Society.

  15. Long-term evaluation of impedance levels and clinical development in subthalamic deep brain stimulation for Parkinson's disease.

    PubMed

    Hartmann, C J; Wojtecki, L; Vesper, J; Volkmann, J; Groiss, S J; Schnitzler, A; Südmeyer, M

    2015-10-01

    This study was conducted to better understand the development of clinical efficacy and impedance levels in the long-term course of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD). In this retrospective study of twenty PD patients, the motor part of the Unified Parkinson's Disease Rating Scale was periodically assessed i) after withdrawal of medication and inactivated stimulation, ii) after withdrawal of medication with activated stimulation and iii) after challenge with l-Dopa during activated stimulation up to 13 years after surgery. STN-DBS with or without medication significantly improved motor function up to 13 years after surgery. The contribution of axial symptoms increased over time. While the stimulation parameters were kept constant, the therapeutic impedances progressively declined. STN-DBS in PD remains effective in the long-term course of the disease. Constant current stimulation might be preferable over voltage-controlled stimulation, as it would alleviate the impact of impedance changes on the volume of tissue activated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. European clinical guidelines for Tourette syndrome and other tic disorders. Part IV: deep brain stimulation.

    PubMed

    Müller-Vahl, Kirsten R; Cath, Danielle C; Cavanna, Andrea E; Dehning, Sandra; Porta, Mauro; Robertson, Mary M; Visser-Vandewalle, Veerle

    2011-04-01

    Ten years ago deep brain stimulation (DBS) has been introduced as an alternative and promising treatment option for patients suffering from severe Tourette syndrome (TS). It seemed timely to develop a European guideline on DBS by a working group of the European Society for the Study of Tourette Syndrome (ESSTS). For a narrative review a systematic literature search was conducted and expert opinions of the guidelines group contributed also to the suggestions. Of 63 patients reported so far in the literature 59 had a beneficial outcome following DBS with moderate to marked tic improvement. However, randomized controlled studies including a larger number of patients are still lacking. Although persistent serious adverse effects (AEs) have hardly been reported, surgery-related (e.g., bleeding, infection) as well as stimulation-related AEs (e.g., sedation, anxiety, altered mood, changes in sexual function) may occur. At present time, DBS in TS is still in its infancy. Due to both different legality and practical facilities in different European countries these guidelines, therefore, have to be understood as recommendations of experts. However, among the ESSTS working group on DBS in TS there is general agreement that, at present time, DBS should only be used in adult, treatment resistant, and severely affected patients. It is highly recommended to perform DBS in the context of controlled trials.

  17. Pathways of translation: deep brain stimulation.

    PubMed

    Gionfriddo, Michael R; Greenberg, Alexandra J; Wahegaonkar, Abhijeet L; Lee, Kendall H

    2013-12-01

    Electrical stimulation of the brain has a 2000 year history. Deep brain stimulation (DBS), one form of neurostimulation, is a functional neurosurgical approach in which a high-frequency electrical current stimulates targeted brain structures for therapeutic benefit. It is an effective treatment for certain neuropathologic movement disorders and an emerging therapy for psychiatric conditions and epilepsy. Its translational journey did not follow the typical bench-to-bedside path, but rather reversed the process. The shift from ancient and medieval folkloric remedy to accepted medical practice began with independent discoveries about electricity during the 19th century and was fostered by technological advances of the 20th. In this paper, we review that journey and discuss how the quest to expand its applications and improve outcomes is taking DBS from the bedside back to the bench. © 2013 Wiley Periodicals, Inc.

  18. Neural targets for relieving parkinsonian rigidity and bradykinesia with pallidal deep brain stimulation

    PubMed Central

    Zhang, Jianyu; Ghosh, Debabrata; McIntyre, Cameron C.; Vitek, Jerrold L.

    2012-01-01

    Clinical evidence has suggested that subtle changes in deep brain stimulation (DBS) settings can have differential effects on bradykinesia and rigidity in patients with Parkinson's disease. In this study, we first investigated the degree of improvement in bradykinesia and rigidity during targeted globus pallidus DBS in three 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rhesus macaques. Behavioral outcomes of DBS were then coupled with detailed, subject-specific computational models of neurons in the globus pallidus internus (GPi), globus pallidus externus (GPe), and internal capsule (IC) to determine which neuronal pathways when modulated with high-frequency electrical stimulation best correlate with improvement in motor symptoms. The modeling results support the hypothesis that multiple neuronal pathways can underlie the therapeutic effect of DBS on parkinsonian bradykinesia and rigidity. Across all three subjects, improvements in rigidity correlated most strongly with spread of neuronal activation into IC, driving a small percentage of fibers within this tract (<10% on average). The most robust effect on bradykinesia resulted from stimulating a combination of sensorimotor axonal projections within the GP, specifically at the site of the medial medullary lamina. Thus the beneficial effects of pallidal DBS for parkinsonian symptoms may occur from multiple targets within and near the target nucleus. PMID:22514292

  19. Shaking Up the Debate: Ensuring the Ethical Use of DBS Intervention Criteria for Mid-Stage Parkinson's Patients.

    PubMed

    Eijkholt, Marleen; Cabrera, Laura Y; Ramirez-Zamora, Adolfo; Pilitsis, Julie G

    2017-07-01

    Deep brain stimulation (DBS) is a well-established treatment for the management of severe motor fluctuations in advanced Parkinson's disease (PD). Until recently, device regulation, medical, and insurance practices limited DBS to patients with advanced stages of PD. In February 2016 this changed, however, when the US Food and Drug Administration (FDA) granted formal approval for the use of brain stimulator in mid-stage PD patients. In this article, we examine whether DBS in mid-stage PD can be ethically justified beyond the FDA approval. We scrutinize the current risk-benefit profile, the costs-benefit profile, and the capacity for informed consent requirement, to ask if use of subthalamic nucleus (STN) in mid-stage DBS is ethically appropriate. We propose that mid-stage DBS decisions could be appropriate under a shared decision-making model, which embraces a broad quality of life perspective. Although it might be too premature to know how the FDA decision will affect medical and insurance practices, we conclude by arguing that revisions to persisting guidelines seems justified both on scientific and ethical grounds. © 2017 International Neuromodulation Society.

  20. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    PubMed Central

    Deeb, Wissam; Giordano, James J.; Rossi, Peter J.; Mogilner, Alon Y.; Gunduz, Aysegul; Judy, Jack W.; Klassen, Bryan T.; Butson, Christopher R.; Van Horne, Craig; Deny, Damiaan; Dougherty, Darin D.; Rowell, David; Gerhardt, Greg A.; Smith, Gwenn S.; Ponce, Francisco A.; Walker, Harrison C.; Bronte-Stewart, Helen M.; Mayberg, Helen S.; Chizeck, Howard J.; Langevin, Jean-Philippe; Volkmann, Jens; Ostrem, Jill L.; Shute, Jonathan B.; Jimenez-Shahed, Joohi; Foote, Kelly D.; Wagle Shukla, Aparna; Rossi, Marvin A.; Oh, Michael; Pourfar, Michael; Rosenberg, Paul B.; Silburn, Peter A.; de Hemptine, Coralie; Starr, Philip A.; Denison, Timothy; Akbar, Umer; Grill, Warren M.; Okun, Michael S.

    2016-01-01

    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with the Center for Movement Disorders and Neurorestoration at the University of Florida, Gainesveille FL, USA. The Think Tank discussions first focused on policy and advocacy in DBS research and clinical practice, formation of registries, and issues involving the use of DBS in the treatment of Tourette Syndrome. Next, advances in the use of neuroimaging and electrochemical markers to enhance DBS specificity were addressed. Updates on ongoing use and developments of DBS for the treatment of Parkinson's disease, essential tremor, Alzheimer's disease, depression, post-traumatic stress disorder, obesity, addiction were presented, and progress toward innovation(s) in closed-loop applications were discussed. Each section of these proceedings provides updates and highlights of new information as presented at this year's international Think Tank, with a view toward current and near future advancement of the field. PMID:27920671

  1. Deep brain stimulation for the obsessive-compulsive and Tourette-like symptoms of Kleefstra syndrome.

    PubMed

    Segar, David J; Chodakiewitz, Yosef G; Torabi, Radmehr; Cosgrove, G Rees

    2015-06-01

    Deep brain stimulation (DBS) has been reported to have beneficial effects in severe, treatment-refractory cases of obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). In this report, the authors present the first case in which DBS was used to treat the neuropsychiatric symptoms of Kleefstra syndrome, a rare genetic disorder characterized by childhood hypotonia, intellectual disability, distinctive facial features, and myriad psychiatric and behavioral disturbances. A 24-year-old female patient with childhood hypotonia, developmental delay, and diagnoses of autism spectrum disorder, OCD, and TS refractory to medical management underwent the placement of bilateral ventral capsule/ventral striatum (VC/VS) DBS leads, with clinical improvement. Medical providers and family observed gradual and progressive improvement in the patient's compulsive behaviors, coprolalia, speech, and social interaction. Symptoms recurred when both DBS electrodes failed because of lead fracture and dislodgement, although the clinical benefits were restored by lead replacement. The symptomatic and functional improvements observed in this case of VC/VS DBS for Kleefstra syndrome suggest a novel indication for DBS worthy of further investigation.

  2. Thalamic Ventral Intermediate Nucleus Deep Brain Stimulation for Orthostatic Tremor.

    PubMed

    Lehn, Alexander C; O'Gorman, Cullen; Olson, Sarah; Salari, Mehri

    2017-01-01

    Orthostatic tremor (OT) was first described in 1977. It is characterized by rapid tremor of 13-18 Hz and can be recorded in the lower limbs and trunk muscles. OT remains difficult to treat, although some success has been reported with deep brain stimulation (DBS). We report a 68-year-old male with OT who did not improve significantly after bilateral thalamic stimulation. Although some patients were described who improved after DBS surgery, more information is needed about the effect of these treatment modalities on OT, ideally in the form of randomized trial data.

  3. Evidence from a rare case study for Hebbian-like changes in structural connectivity induced by long-term deep brain stimulation.

    PubMed

    van Hartevelt, Tim J; Cabral, Joana; Møller, Arne; FitzGerald, James J; Green, Alexander L; Aziz, Tipu Z; Deco, Gustavo; Kringelbach, Morten L

    2015-01-01

    It is unclear whether Hebbian-like learning occurs at the level of long-range white matter connections in humans, i.e., where measurable changes in structural connectivity (SC) are correlated with changes in functional connectivity. However, the behavioral changes observed after deep brain stimulation (DBS) suggest the existence of such Hebbian-like mechanisms occurring at the structural level with functional consequences. In this rare case study, we obtained the full network of white matter connections of one patient with Parkinson's disease (PD) before and after long-term DBS and combined it with a computational model of ongoing activity to investigate the effects of DBS-induced long-term structural changes. The results show that the long-term effects of DBS on resting-state functional connectivity is best obtained in the computational model by changing the structural weights from the subthalamic nucleus (STN) to the putamen and the thalamus in a Hebbian-like manner. Moreover, long-term DBS also significantly changed the SC towards normality in terms of model-based measures of segregation and integration of information processing, two key concepts of brain organization. This novel approach using computational models to model the effects of Hebbian-like changes in SC allowed us to causally identify the possible underlying neural mechanisms of long-term DBS using rare case study data. In time, this could help predict the efficacy of individual DBS targeting and identify novel DBS targets.

  4. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization

    PubMed Central

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P.; Johnson, G. Allan

    2015-01-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved 3D reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate accurate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. PMID:26043869

  5. Informed Consent Decision-Making in Deep Brain Stimulation.

    PubMed

    Mandarelli, Gabriele; Moretti, Germana; Pasquini, Massimo; Nicolò, Giuseppe; Ferracuti, Stefano

    2018-05-11

    Deep brain stimulation (DBS) has proved useful for several movement disorders (Parkinson’s disease, essential tremor, dystonia), in which first and/or second line pharmacological treatments were inefficacious. Initial evidence of DBS efficacy exists for refractory obsessive-compulsive disorder, treatment-resistant major depressive disorder, and impulse control disorders. Ethical concerns have been raised about the use of an invasive surgical approach involving the central nervous system in patients with possible impairment in cognitive functioning and decision-making capacity. Most of the disorders in which DBS has been used might present with alterations in memory, attention, and executive functioning, which may have an impact on the mental capacity to give informed consent to neurosurgery. Depression, anxiety, and compulsivity are also common in DBS candidate disorders, and could also be associated with an impaired capacity to consent to treatment or clinical research. Despite these issues, there is limited empirical knowledge on the decision-making levels of these patients. The possible informed consent issues of DBS will be discussed by focusing on the specific treatable diseases.

  6. Assessing the direct effects of deep brain stimulation using embedded axon models

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Stamatios N.; Steinmetz, Peter N.

    2007-06-01

    To better understand the spatial extent of the direct effects of deep brain stimulation (DBS) on neurons, we implemented a geometrically realistic finite element electrical model incorporating anisotropic and inhomogenous conductivities. The model included the subthalamic nucleus (STN), substantia nigra (SN), zona incerta (ZI), fields of Forel H2 (FF), internal capsule (IC) and Medtronic 3387/3389 electrode. To quantify the effects of stimulation, we extended previous studies by using multi-compartment axon models with geometry and orientation consistent with anatomical features of the brain regions of interest. Simulation of axonal firing produced a map of relative changes in axonal activation. Voltage-controlled stimulation, with clinically typical parameters at the dorso-lateral STN, caused axon activation up to 4 mm from the target. This activation occurred within the FF, IC, SN and ZI with current intensities close to the average injected during DBS (3 mA). A sensitivity analysis of model parameters (fiber size, fiber orientation, degree of inhomogeneity, degree of anisotropy, electrode configuration) revealed that the FF and IC were consistently activated. Direct activation of axons outside the STN suggests that other brain regions may be involved in the beneficial effects of DBS when treating Parkinsonian symptoms.

  7. Complications of deep brain stimulation: a collective review.

    PubMed

    Chan, Danny T M; Zhu, Xian Lun; Yeung, Jonas H M; Mok, Vincent C T; Wong, Edith; Lau, Clara; Wong, Rosanna; Lau, Christine; Poon, Wai S

    2009-10-01

    Since the first deep brain stimulation (DBS) performed for movement disorder more than a decade ago, DBS has become a standard operation for advanced Parkinson's disease. Its indications are expanding to areas of dystonia, psychiatric conditions and refractory epilepsy. Additionally, a new set of DBS-related complications have arisen. Many teams found a slow learning curve from this complication-prone operation. We would like to investigate complications arising from 100 DBS electrode insertions and its prevention. We performed an audit in all DBS patients for operation-related complications in our centre from 1997 to 2008. Complications were classified into operation-related, hardware-related and stimulation-related. Operation-related complications included intracranial haemorrhages and electrode malposition. Hardware-related complications included fracture of electrodes, electrode migration, infection and erosion. Stimulation-related complications included sensorimotor conditions, psychiatric conditions and life-threatening conditions. From 1997 to the end of 2008, 100 DBS electrodes were inserted in 55 patients for movement disorders, mostly for Parkinsons disease (50 patients). There was one symptomatic cerebral haemorrhage (1%) and two electrode malpositions (2%). Meticulous surgical planning, use of microdriver and a reliable electrode anchorage device would minimise this group of complications. There were two electrode fractures, one electrode migration and one pulse-generator infection which contributed to the hardware-related complication rate of 5%. There were no sensorimotor or life-threatening complications in our group. However, three patients suffered from reversible psychiatric symptoms after DBS. DBS is, on the one hand, an effective surgical treatment for movement disorders. On the other hand, it is a complication-prone operation. A dedicated "Movement Disorder Team" consisting of neurologists, neurophysiologists, functional neurosurgeons, neuropsychologists and nursing specialists is essential. Liaison among team members in peri-operative periods and postoperative care is the key to avoiding complications and having a successful patient outcome.

  8. Bilateral subthalamic deep brain stimulation initial impact on nonmotor and motor symptoms in Parkinson's disease

    PubMed Central

    Kurcova, Sandra; Bardon, Jan; Vastik, Miroslav; Vecerkova, Marketa; Frolova, Monika; Hvizdosova, Lenka; Nevrly, Martin; Mensikova, Katerina; Otruba, Pavel; Krahulik, David; Kurca, Egon; Sivak, Stefan; Zapletalova, Jana; Kanovsky, Petr

    2018-01-01

    Abstract Numerous studies document significant improvement in motor symptoms in patients with Parkinson's disease (PD) after deep brain stimulation of the subthalamic nucleus (STN-DBS). However, little is known about the initial effects of STN-DBS on nonmotor domains. Our objective was to elucidate the initial effects of STN-DBS on non-motor and motor symptoms in PD patients in a 4-month follow-up. This open prospective study followed 24 patients with PD who underwent STN-DBS. The patients were examined using dedicated rating scales preoperatively and at 1 and 4 months following STN-DBS to determine initial changes in motor and nonmotor symptoms. Patients at month 1 after STN-DBS had significantly reduced the Parkinson's disease Questionnaire scores (P = .018) and Scales for Outcomes in Parkinson's disease – Autonomic scores (P = .002); these scores had increased at Month 4 after DBS-STN. Nonmotor Symptoms Scale for Parkinson's Disease had improved significantly at Month 1 (P < .001); at Month 4, it remained significantly lower than before stimulation (P = .036). There was no significant difference in The Parkinson's Disease Sleep Scaleat Month 1 and significant improvement at Month 4 (P = .026). There were no significant changes in The Female Sexual Function Index or International Index of Erectile Function. Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III scores show significant improvements at Month 1 (P < .001) and at Month 4 (P < .001). STN-DBS in patients with advanced PD clearly improves not only motor symptoms, but also several domains of nonmotor functions, namely sleep, autonomic functions and quality of life quickly following the start of stimulation. PMID:29384860

  9. Deep brain stimulation of the basolateral amygdala for treatment-refractory combat post-traumatic stress disorder (PTSD): study protocol for a pilot randomized controlled trial with blinded, staggered onset of stimulation.

    PubMed

    Koek, Ralph J; Langevin, Jean-Philippe; Krahl, Scott E; Kosoyan, Hovsep J; Schwartz, Holly N; Chen, James W Y; Melrose, Rebecca; Mandelkern, Mark J; Sultzer, David

    2014-09-10

    Combat post-traumatic stress disorder (PTSD) involves significant suffering, impairments in social and occupational functioning, substance use and medical comorbidity, and increased mortality from suicide and other causes. Many veterans continue to suffer despite current treatments. Deep brain stimulation (DBS) has shown promise in refractory movement disorders, depression and obsessive-compulsive disorder, with deep brain targets chosen by integration of clinical and neuroimaging literature. The basolateral amygdala (BLn) is an optimal target for high-frequency DBS in PTSD based on neurocircuitry findings from a variety of perspectives. DBS of the BLn was validated in a rat model of PTSD by our group, and limited data from humans support the potential safety and effectiveness of BLn DBS. We describe the protocol design for a first-ever Phase I pilot study of bilateral BLn high-frequency DBS for six severely ill, functionally impaired combat veterans with PTSD refractory to conventional treatments. After implantation, patients are monitored for a month with stimulators off. An electroencephalographic (EEG) telemetry session will test safety of stimulation before randomization to staggered-onset, double-blind sham versus active stimulation for two months. Thereafter, patients will undergo an open-label stimulation for a total of 24 months. Primary efficacy outcome is a 30% decrease in the Clinician Administered PTSD Scale (CAPS) total score. Safety outcomes include extensive assessments of psychiatric and neurologic symptoms, psychosocial function, amygdala-specific and general neuropsychological functions, and EEG changes. The protocol requires the veteran to have a cohabiting significant other who is willing to assist in monitoring safety and effect on social functioning. At baseline and after approximately one year of stimulation, trauma script-provoked 18FDG PET metabolic changes in limbic circuitry will also be evaluated. While the rationale for studying DBS for PTSD is ethically and scientifically justified, the importance of the amygdaloid complex and its connections for a myriad of emotional, perceptual, behavioral, and vegetative functions requires a complex trial design in terms of outcome measures. Knowledge generated from this pilot trial can be used to design future studies to determine the potential of DBS to benefit both veterans and nonveterans suffering from treatment-refractory PTSD. PCC121657, 19 March 2014.

  10. Parafascicular thalamic nucleus deep brain stimulation decreases NMDA receptor GluN1 subunit gene expression in the prefrontal cortex.

    PubMed

    Fernández-Cabrera, Mónica R; Selvas, Abraham; Miguéns, Miguel; Higuera-Matas, Alejandro; Vale-Martínez, Anna; Ambrosio, Emilio; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma

    2017-04-21

    The rodent parafascicular nucleus (PFn) or the centromedian-parafascicular complex of primates is a posterior intralaminar nucleus of the thalamus related to cortical activation and maintenance of states of consciousness underlying attention, learning and memory. Deep brain stimulation (DBS) of the PFn has been proved to restore arousal and consciousness in humans and to enhance performance in learning and memory tasks in rats. The primary expected effect of PFn DBS is to induce plastic changes in target neurons of brain areas associated with cognitive function. In this study, Wistar rats were stimulated for 20mins in the PFn following a DBS protocol that had previously facilitated memory in rats. NMDA and GABA B receptor binding, and gene expression of the GluN1subunit of the NMDA receptor (NMDAR) were assessed in regions related to cognitive functions, such as the prefrontal cortex and hippocampus. The results showed that PFn DBS induced a decrease in NMDAR GluN1 subunit gene expression in the cingulate and prelimbic cortices, but no significant statistical differences were found in the density of NMDA or GABA B receptors in any of the analyzed regions. Taken together, our findings suggest a possible role for the NMDAR GluN1 subunit in the prefrontal cortex in the procognitive actions of the PFn DBS. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Remotely Programmed Deep Brain Stimulation of the Bilateral Subthalamic Nucleus for the Treatment of Primary Parkinson Disease: A Randomized Controlled Trial Investigating the Safety and Efficacy of a Novel Deep Brain Stimulation System.

    PubMed

    Li, Dianyou; Zhang, Chencheng; Gault, Judith; Wang, Wei; Liu, Jianmin; Shao, Ming; Zhao, Yanyan; Zeljic, Kristina; Gao, Guodong; Sun, Bomin

    2017-01-01

    Deep brain stimulation (DBS) is the most commonly performed surgery for the debilitating symptoms of Parkinson disease (PD). However, DBS systems remain largely unaffordable to patients in developing countries, warranting the development of a safe, economically viable, and functionally comparable alternative. To investigate the efficacy and safety of wirelessly programmed DBS of bilateral subthalamic nucleus (STN) in patients with primary PD. Sixty-four patients with primary PD were randomly divided into test and control groups (1:1), where DBS was initiated at either 1 month or 3 months, respectively, after surgery. Safety and efficacy of the treatment were compared between on- and off-medication states 3 months after surgery. Outcome measures included analysis of Unified Parkinson's Disease Rating Scale (UPDRS) scores, duration of "on" periods, and daily equivalent doses of levodopa. All patients were followed up both 6 and 12 months after surgery. Three months after surgery, significant decrease in the UPDRS motor scores were observed for the test group in the off-medication state (25.08 ± 1.00) versus the control group (4.20 ± 1.99). Bilateral wireless programming STN-DBS is safe and effective for patients with primary PD in whom medical management has failed to restore motor function. © 2017 S. Karger AG, Basel.

  12. Cognition and Depression Following Deep Brain Stimulation of the Subthalamic Nucleus and Globus Pallidus Pars Internus in Parkinson's Disease: A Meta-Analysis.

    PubMed

    Combs, Hannah L; Folley, Bradley S; Berry, David T R; Segerstrom, Suzanne C; Han, Dong Y; Anderson-Mooney, Amelia J; Walls, Brittany D; van Horne, Craig

    2015-12-01

    Parkinson's disease (PD) is a common, degenerative disorder of the central nervous system. Individuals experience predominantly extrapyramidal symptoms including resting tremor, rigidity, bradykinesia, gait abnormalities, cognitive impairment, depression, and neurobehavioral concerns. Cognitive impairments associated with PD are diverse, including difficulty with attention, processing speed, executive functioning, memory recall, visuospatial functions, word-retrieval, and naming. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi) is FDA approved and has been shown to be effective in reducing motor symptoms of PD. Studies have found that stimulating STN and GPi are equally effective at improving motor symptoms and dyskinesias; however, there has been discrepancy as to whether the cognitive, behavioral, and mood symptoms are affected differently between the two targets. The present study used random-effects meta-analytic models along with a novel p-curve analytic procedure to compare the potential cognitive and emotional impairments associated with STN-DBS in the current literature to those associated with GPi-DBS. Forty-one articles were reviewed with an aggregated sample size of 1622 patients. Following STN-DBS, small declines were found in psychomotor speed, memory, attention, executive functions, and overall cognition; and moderate declines were found in both semantic and phonemic fluency. However, GPi-DBS resulted in fewer neurocognitive declines than STN-DBS (small declines in attention and small-moderate declines in verbal fluency). With regards to its effect on depression symptomatology, both GPi-DBS and STN-DBS resulted in lower levels of depressive symptoms post-surgery. From a neurocognitive standpoint, both GPi-DBS and STN-DBS produce subtle cognitive declines but appears to be relatively well tolerated.

  13. Stimulation of subgenual cingulate area decreases limbic top-down effect on ventral visual stream: A DBS-EEG pilot study.

    PubMed

    Kibleur, Astrid; Polosan, Mircea; Favre, Pauline; Rudrauf, David; Bougerol, Thierry; Chabardès, Stéphan; David, Olivier

    2017-02-01

    Deep brain stimulation (DBS) of the subgenual cingulate gyrus (area CG25) is beneficial in treatment resistant depression. Though the mechanisms of action of Cg25 DBS remain largely unknown, it is commonly believed that Cg25 DBS modulates limbic activity of large networks to achieve thymic regulation of patients. To investigate how emotional attention is influenced by Cg25 DBS, we assessed behavioral and electroencephalographic (EEG) responses to an emotional Stroop task in 5 patients during ON and OFF stimulation conditions. Using EEG source localization, we found that the main effect of DBS was a reduction of neuronal responses in limbic regions (temporal pole, medial prefrontal and posterior cingulate cortices) and in ventral visual areas involved in face processing. In the dynamic causal modeling (DCM) approach, the changes of the evoked response amplitudes are assumed to be due to changes of long range connectivity induced by Cg25 DBS. Here, using a simplified neural mass model that did not take explicitly into account the cytoarchitecture of the considered brain regions, we showed that the remote action of Cg25 DBS could be explained by a reduced top-down effective connectivity of the amygdalo-temporo-polar complex. Overall, our results thus indicate that Cg25 DBS during the emotional Stroop task causes a decrease of top-down limbic influence on the ventral visual stream itself, rather than a modulation of prefrontal cognitive processes only. Tuning down limbic excitability in relation to sensory processing might be one of the biological mechanisms through which Cg25 DBS produces positive clinical outcome in the treatment of resistant depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Panic and fear induced by deep brain stimulation.

    PubMed

    Shapira, N A; Okun, M S; Wint, D; Foote, K D; Byars, J A; Bowers, D; Springer, U S; Lang, P J; Greenberg, B D; Haber, S N; Goodman, W K

    2006-03-01

    Mood, cognitive, and behavioural changes have been reported with deep brain stimulation (DBS) in the thalamus, globus pallidus interna, and anterior limb of the internal capsule/nucleus accumbens region. To investigate panic and fear resulting from DBS. Intraoperative DBS in the region of the right and then left anterior limb of the internal capsule and nucleus accumbens region was undertaken to treat a 52 year old man with treatment refractory obsessive-compulsive disorder (OCD). Mood, anxiety, OCD, alertness, heart rate, and subjective feelings were recorded during intraoperative test stimulation and at follow up programming sessions. DBS at the distal (0) contact (cathode 0-, anode 2+, pulse width 210 ms, rate 135 Hz, at 6 volts) elicited a panic attack (only seen at the (0) contact). The patient felt flushed, hot, fearful, and described himself as having a "panic attack." His heart rate increased from 53 to 111. The effect (present with either device) was witnessed immediately after turning the device on, and abruptly ceased in the off condition DBS of the anterior limb of the internal capsule and nucleus accumbens region caused severe "panic." This response may result from activation of limbic and autonomic networks.

  15. Recent advances in deep brain stimulation in psychiatric disorders.

    PubMed

    Clair, Anne-Hélène; Haynes, William; Mallet, Luc

    2018-01-01

    Deep brain stimulation (DBS) has been offered to patients suffering of severe and resistant neuropsychiatric disorders like Obsessive Compulsive Disorder (OCD), Gilles de la Tourette Syndrome (TS) and Major Depression (MDD). Modulation of several targets within the cortico-striato-thalamo-cortical circuits can lead to a decrease of symptom severity in those patients. This review focuses on the recent clinical outcomes in DBS in psychiatric disorders. Studies on OCD and TS are now focusing on the long-term effects of DBS, with encouraging results regarding not only the decrease of symptoms, but also quality of life. They also highlighted efficient adjuvant techniques, like cognitive and behavioural therapy and support programs, to enhance an often-partial response to DBS. The application of DBS for MDD is more recent and, despite encouraging initial open-label studies, two large randomised studies have failed to demonstrate an efficacy of DBS in MDD according to evidence-based medicine criteria. Last years, DBS was also tested in other resistant psychiatric disorders, as anorexia nervosa and addiction, with encouraging preliminary results. However, today, no target - whatever the disease - can meet the criteria for clinical efficacy as recently defined by an international committee for neurosurgery for psychiatric disorders. Consequently, DBS in psychiatric disorders still needs to proceed within the frame of clinical trials.

  16. Reduction of influence of task difficulty on perceptual decision making by STN deep brain stimulation.

    PubMed

    Green, Nikos; Bogacz, Rafal; Huebl, Julius; Beyer, Ann-Kristin; Kühn, Andrea A; Heekeren, Hauke R

    2013-09-09

    Neurocomputational models of optimal decision making ascribe a crucial role-the computation of conflict between choice alternatives-to the subthalamic nucleus (STN). Specifically, these models predict that deep brain stimulation (DBS) of the STN will diminish the influence of decision conflict on decision making. In this work, patients with Parkinson's disease judged the direction of motion in random dot stimuli while ON and OFF DBS. To induce decision conflict, we varied the task difficulty (motion coherence), leading to increased reaction time (RT) in trials with greater task difficulty in healthy subjects. Results indicate that DBS significantly influences performance for perceptual decisions under high decision conflict. RT increased substantially OFF DBS as the task became more difficult, and a diffusion model best accounted for behavioral data. In contrast, ON DBS, the influence of task difficulty on RT was significantly reduced and a race model best accounted for the observed data. Individual data fits of evidence accumulation models demonstrate different information processing under distinct DBS states. Furthermore, ON DBS, speed-accuracy tradeoffs affected the magnitude of decision criterion adjustment significantly less compared to OFF DBS. Together, these findings suggest a crucial role for the STN in adjusting decision making during high-conflict trials in perceptual decision making. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease.

    PubMed

    Liu, Yi; Li, Weina; Tan, Changhong; Liu, Xi; Wang, Xin; Gui, Yuejiang; Qin, Lu; Deng, Fen; Hu, Changlin; Chen, Lifen

    2014-09-01

    Deep brain stimulation (DBS) is the surgical procedure of choice for patients with advanced Parkinson disease (PD). The globus pallidus internus (GPi) and the subthalamic nucleus (STN) are commonly targeted by this procedure. The purpose of this meta-analysis was to compare the efficacy of DBS in each region. MEDLINE/PubMed, EMBASE, Web of Knowledge, and the Cochrane Library were searched for English-language studies published before April 2013. of studies investigating the efficacy and clinical outcomes of DBS of the GPi and STN for PD were analyzed. Six eligible trials containing a total of 563 patients were included in the analysis. Deep brain stimulation of the GPi or STN equally improved motor function, measured by the Unified Parkinson's Disease Rating Scale Section III (UPDRSIII) (motor section, for patients in on- and off-medication phases), within 1 year postsurgery. The change score for the on-medication phase was 0.68 (95% CI - 2.12 to 3.47, p > 0.05; 5 studies, 518 patients) and for the off-medication phase was 1.83 (95% CI - 3.12 to 6.77, p > 0.05; 5 studies, 518 patients). The UPDRS Section II (activities of daily living) scores for patients on medication improved equally in both DBS groups (p = 0.97). STN DBS allowed medication dosages to be reduced more than GPi DBS (95% CI 129.27-316.64, p < 0.00001; 5 studies, 540 patients). Psychiatric symptoms, measured by Beck Depression Inventory, 2nd edition scores, showed greater improvement from baseline after GPi DBS than after STN DBS (standardized mean difference -2.28, 95% CI -3.73 to -0.84, p = 0.002; 3 studies, 382 patients). GPi and STN DBS improve motor function and activities of daily living for PD patients. Differences in therapeutic efficacy for PD were not observed between the 2 procedures. STN DBS allowed greater reduction in medication for patients, whereas GPi DBS provided greater relief from psychiatric symptoms. An understanding of other symptomatic aspects of targeting each region and long-term observations on therapeutic effects are needed.

  18. SPECT and PET analysis of subthalamic stimulation in Parkinson's disease: analysis using a manual segmentation.

    PubMed

    Haegelen, Claire; García-Lorenzo, Daniel; Le Jeune, Florence; Péron, Julie; Gibaud, Bernard; Riffaud, Laurent; Brassier, Gilles; Barillot, Christian; Vérin, Marc; Morandi, Xavier

    2010-03-01

    The subthalamic nucleus (STN) has become an effective target of deep-brain stimulation (DBS) in severely disabled patients with advanced Parkinson's disease (PD). Clinical studies have reported DBS-induced adverse effects on cognitive functions, mood, emotion and behavior. STN DBS seems to interfere with the limbic functions of the basal ganglia, but the limbic effects of STN DBS are controversial. We measured prospectively resting regional cerebral metabolism (rCMb) with 18-fluorodeoxyglucose and PET, and resting regional cerebral blood flow (rCBF) with HMPAO and SPECT in six patients with Parkinson's disease. We compared PET and SPECT 1 month before and 3 months after STN DBS. On cerebral MRI, 13 regions of interest (ROI) were manually delineated slice by slice in frontal and limbic lobes. We obtained mean rCBF and rCMb values for each ROI and the whole brain. We normalized rCBF and rCMB values to ones for the whole brain volume, which we compared before and following STN DBS. No significant difference emerged in the SPECT analysis. PET analysis revealed a significant decrease in rCMb following STN DBS in the superior frontal gyri and left and right dorsolateral prefrontal cortex (p < 0.05). A non-significant decrease in rCMb in the left anterior cingulate gyrus appeared following STN DBS (p = 0.075). Our prospective SPECT and PET study revealed significantly decreased glucose metabolism of the two superior frontal gyri without any attendant perfusion changes following STN DBS. These results suggest that STN DBS may change medial prefrontal function and therefore the integration of limbic information, either by disrupting emotional processes within the STN, or by hampering the normal function of a limbic circuit.

  19. The epistemology of Deep Brain Stimulation and neuronal pathophysiology

    PubMed Central

    Montgomery, Erwin B.

    2012-01-01

    Deep Brain Stimulation (DBS) is a remarkable therapy succeeding where all manner of pharmacological manipulations and brain transplants fail. The success of DBS has resurrected the relevance of electrophysiology and dynamics on the order of milliseconds. Despite the remarkable effects of DBS, its mechanisms of action are largely unknown. There has been an expanding catalogue of various neuronal and neural responses to DBS or DBS-like stimulation but no clear conceptual encompassing explanatory scheme has emerged despite the technological prowess and intellectual sophistication of the scientists involved. Something is amiss. If the scientific observations are sound, then why has there not been more progress? The alternative is that it may be the hypotheses that frame the questions are at fault as well as the methods of inference (logic) used to validate the hypotheses. An analysis of the past and current notions of the DBS mechanisms of action is the subject in order to identify the presuppositions (premises) and logical fallacies that may be at fault. The hope is that these problems will be avoided in the future so the DBS can realize its full potential quickly. In this regard, the discussion of the methods of inference and presuppositions that underlie many current notions is no different then a critique of experimental methods common in scientific discussions and consequently, examinations of the epistemology and logic are appropriate. This analysis is in keeping with the growing appreciation among scientists and philosophers of science, the scientific observations (data) to not “speak for themselves” nor is the scientific method self-evidently true and that consideration of the underlying inferential methods is necessary. PMID:23024631

  20. Systems for deep brain stimulation: review of technical features.

    PubMed

    Amon, A; Alesch, F

    2017-09-01

    The use of deep brain stimulation (DBS) is an important treatment option for movement disorders and other medical conditions. Today, three major manufacturers provide implantable systems for DBS. Although the underlying principle is basically the same for all available systems, the differences in the technical features vary considerably. This article outlines aspects regarding the technical features of DBS systems. The differences between voltage and current sources are addressed and their effect on stimulation is shown. To maintain clinical benefit and minimize side effects the stimulation field has to be adapted to the requirements of the patient. Shaping of the stimulation field can be achieved by the electrode design and polarity configuration. Furthermore, the electric signal consisting of stimulation rate, stimulation amplitude and pulse width affect the stimulation field. Interleaving stimulation is an additional concept, which permits improved treatment outcomes. Therefore, the electrode design, the polarity, the electric signal, and the concept of interleaving stimulation are presented. The investigated systems can be also categorized as rechargeable and non-rechargeable, which is briefly discussed. Options for interconnecting different system components from various manufacturers are presented. The present paper summarizes the technical features and their combination possibilities, which can have a major impact on the therapeutic effect.

  1. Conductive nanogel-interfaced neural microelectrode arrays with electrically controlled in-situ delivery of manganese ions enabling high-resolution MEMRI for synchronous neural tracing with deep brain stimulation.

    PubMed

    Huang, Wei-Chen; Lo, Yu-Chih; Chu, Chao-Yi; Lai, Hsin-Yi; Chen, You-Yin; Chen, San-Yuan

    2017-04-01

    Chronic brain stimulation has become a promising physical therapy with increased efficacy and efficiency in the treatment of neurodegenerative diseases. The application of deep brain electrical stimulation (DBS) combined with manganese-enhanced magnetic resonance imaging (MEMRI) provides an unbiased representation of the functional anatomy, which shows the communication between areas of the brain responding to the therapy. However, it is challenging for the current system to provide a real-time high-resolution image because the incorporated MnCl 2 solution through microinjection usually results in image blurring or toxicity due to the uncontrollable diffusion of Mn 2+ . In this study, we developed a new type of conductive nanogel-based neural interface composed of amphiphilic chitosan-modified poly(3,4 -ethylenedioxythiophene) (PMSDT) that can exhibit biomimic structural/mechanical properties and ionic/electrical conductivity comparable to that of Au. More importantly, the PMSDT enables metal-ligand bonding with Mn 2+ ions, so that the system can release Mn 2+ ions rather than MnCl 2 solution directly and precisely controlled by electrical stimulation (ES) to achieve real-time high-resolution MEMRI. With the integration of PMSDT nanogel-based coating in polyimide-based microelectrode arrays, the post-implantation DBS enables frequency-dependent MR imaging in vivo, as well as small focal imaging in response to channel site-specific stimulation on the implant. The MR imaging of the implanted brain treated with 5-min electrical stimulation showed a thalamocortical neuronal pathway after 36 h, confirming the effective activation of a downstream neuronal circuit following DBS. By eliminating the susceptibility to artifact and toxicity, this system, in combination with a MR-compatible implant and a bio-compliant neural interface, provides a harmless and synchronic functional anatomy for DBS. The study demonstrates a model of MEMRI-functionalized DBS based on functional neural interface engineering and controllable delivery technology, which can be utilized in more detailed exploration of the functional anatomy in the treatment of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Target Selection Recommendations Based on Impact of Deep Brain Stimulation Surgeries on Nonmotor Symptoms of Parkinson's Disease

    PubMed Central

    Wang, Xiao-Hong; Zhang, Lin; Sperry, Laura; Olichney, John; Farias, Sarah Tomaszewski; Shahlaie, Kiarash; Chang, Norika Malhado; Liu, Ying; Wang, Su-Ping; Wang, Cui

    2015-01-01

    Objective: This review examines the evidence that deep brain stimulation (DBS) has extensive impact on nonmotor symptoms (NMSs) of patients with Parkinson's disease (PD). Data Sources: We retrieved information from the PubMed database up to September, 2015, using various search terms and their combinations including PD, NMSs, DBS, globus pallidus internus (GPi), subthalamic nucleus (STN), and ventral intermediate thalamic nucleus. Study Selection: We included data from peer-reviewed journals on impacts of DBS on neuropsychological profiles, sensory function, autonomic symptoms, weight changes, and sleep disturbances. For psychological symptoms and cognitive impairment, we tried to use more reliable proofs: Random, control, multicenter, large sample sizes, and long period follow-up clinical studies. We categorized the NMSs into four groups: those that would improve definitively following DBS; those that are not significantly affected by DBS; those that remain controversial on their surgical benefit; and those that can be worsened by DBS. Results: In general, it seems to be an overall beneficial effect of DBS on NMSs, such as sensory, sleep, gastrointestinal, sweating, cardiovascular, odor, urological symptoms, and sexual dysfunction, GPi-DBS may produce similar results; Both STN and Gpi-DBS are safe with regard to cognition and psychology over long-term follow-up, though verbal fluency decline is related to DBS; The impact of DBS on behavioral addictions and dysphagia is still uncertain. Conclusions: As the motor effects of STN-DBS and GPi-DBS are similar, NMSs may determine the target choice in surgery of future patients. PMID:26668154

  3. Successful deep brain stimulation surgery with intraoperative magnetic resonance imaging on a difficult neuroacanthocytosis case: case report.

    PubMed

    Lim, Thien Thien; Fernandez, Hubert H; Cooper, Scott; Wilson, Kathryn Mary K; Machado, Andre G

    2013-07-01

    Chorea acanthocytosis is a progressive hereditary neurodegenerative disorder characterized by hyperkinetic movements, seizures, and acanthocytosis in the absence of any lipid abnormality. Medical treatment is typically limited and disappointing. We report on a 32-year-old patient with chorea acanthocytosis with a failed attempt at awake deep brain stimulation (DBS) surgery due to intraoperative seizures and postoperative intracranial hematoma. He then underwent a second DBS operation, but under general anesthesia and with intraoperative magnetic resonance imaging guidance. Marked improvement in his dystonia, chorea, and overall quality of life was noted 2 and 8 months postoperatively. DBS surgery of the bilateral globus pallidus pars interna may be useful in controlling the hyperkinetic movements in neuroacanthocytosis. Because of the high propensity for seizures in this disorder, DBS performed under general anesthesia, with intraoperative magnetic resonance imaging guidance, may allow successful implantation while maintaining accurate target localization.

  4. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    PubMed Central

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  5. Swallowing and deep brain stimulation in Parkinson's disease: a systematic review.

    PubMed

    Troche, Michelle S; Brandimore, Alexandra E; Foote, Kelly D; Okun, Michael S

    2013-09-01

    The purpose of this review is to assess the current state of the literature on the topic of deep brain stimulation (DBS) and its effects on swallowing function in Parkinson's disease (PD). Pubmed, Cochrane review, and web of science searches were completed on all articles addressing DBS that contained a swallowing outcome measure. Outcome measures included the penetration/aspiration scale, pharyngeal transit time, oropharyngeal residue, drooling, aspiration pneumonia, death, hyolaryngeal excursion, epiglottic inversion, UPDRS scores, and presence of coughing/throat clearing during meals. The search identified 13 studies specifically addressing the effects of DBS on swallowing. Critical assessment of the 13 identified peer-reviewed publications revealed nine studies employing an experimental design, (e.g. "on" vs. "off", pre- vs. post-DBS) and four case reports. None of the nine experimental studies were found to identify clinically significant improvement or decline in swallowing function with DBS. Despite these findings, several common threads were identified across experimental studies and will be examined in this review. Additionally, available data demonstrate that, although subthalamic nucleus (STN) stimulation has been considered to cause more impairment to swallowing function than globus pallidus internus (GPi) stimulation, there are no experimental studies directly comparing swallowing function in STN vs. GPi. Moreover, there has been no comparison of unilateral vs. bilateral DBS surgery and the coincident effects on swallowing function. This review includes a critical analysis of all experimental studies and discusses methodological issues that should be addressed in future studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Swallowing and deep brain stimulation in Parkinson’s disease: A systematic review

    PubMed Central

    Troche, Michelle S.; Brandimore, Alexandra E.; Foote, Kelly D.; Okun, Michael S.

    2013-01-01

    The purpose of this review is to assess the current state of the literature on the topic of deep brain stimulation (DBS) and its effects on swallowing function in Parkinson’s disease (PD). Pubmed, Cochrane review, and web of science searches were completed on all articles addressing DBS that contained a swallowing outcome measure. Outcome measures included the penetration/aspiration scale, pharyngeal transit time, oropharyngeal residue, drooling, aspiration pneumonia, death, hyolaryngeal excursion, epiglottic inversion, UPDRS scores, and presence of coughing/throat clearing during meals. The search identified 13 studies specifically addressing the effects of DBS on swallowing. Critical assessment of the 13 identified peer-reviewed publications revealed nine studies employing an experimental design, (e.g. “on” vs. “off”, pre- vs. post-DBS) and four case reports. None of the nine experimental studies were found to identify clinically significant improvement or decline in swallowing function with DBS. Despite these findings, several common threads were identified across experimental studies and will be examined in this review. Additionally, available data demonstrate that, although subthalamic nucleus (STN) stimulation has been considered to cause more impairment to swallowing function than globus pallidus internus (GPi) stimulation, there are no experimental studies directly comparing swallowing function in STN vs. GPi. Moreover, there has been no comparison of unilateral vs. bilateral DBS surgery and the coincident effects on swallowing function. This review includes a critical analysis of all experimental studies and discusses methodological issues that should be addressed in future studies. PMID:23726461

  7. How to improve patient education on deep brain stimulation in Parkinson's disease: the CARE Monitor study.

    PubMed

    Dinkelbach, Lars; Möller, Bettina; Witt, Karsten; Schnitzler, Alfons; Südmeyer, Martin

    2017-02-21

    The introduction of deep brain stimulation (DBS) about 25 years ago provided one of the major breakthroughs in the treatment of Parkinson's disease (PD). However, a high percentage of patients are reluctant to undergo DBS. Previous research revealed that the critical step on the patient's path to DBS is the decision whether to undergo further diagnostic assessment for surgery at a specialized DBS-center. The aims of the current study were to evaluate how effective the combination of an outpatient DBS screening tool, STIMULUS, with specially developed educational material was to enhance patient education on DBS and to identify motivational aspects which influenced the patients' willingness to undergo further assessment. In total, 264 patients were identified as appropriate candidates for DBS by general neurologists using the electronic preselection tool STIMULUS. Patient-centered information material was designed and handed out to support education on DBS. Further, several clinical characteristics and details of the patient counseling were documented. Refusal or consent to show up at a DBS center was registered over the following 16 months. 114 (43.2%) patients preselected as eligible for DBS (STIMULUS Score ≥ 6) agreed to show up at a specialized DBS center to undergo further diagnostic assessment. The patients' ages, PD classification as an akinetic-rigid type and the talks' topics side-effects of dopaminergic medication and the optimal time frame had a significant influence on the patients' decisions. The combination of preselection tools as STIMULUS with comprehensive information material is effective to increase DBS-acceptance rate in PD patients. Important topics of the information about DBS cover the optimal time frame for DBS surgery, the side-effects of dopaminergic medication as well as side-effects and complications of DBS surgery.

  8. Comparison of imaging modalities and source-localization algorithms in locating the induced activity during deep brain stimulation of the STN.

    PubMed

    Mideksa, K G; Singh, A; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Schmidt, G; Muthuraman, M

    2016-08-01

    One of the most commonly used therapy to treat patients with Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Identifying the most optimal target area for the placement of the DBS electrodes have become one of the intensive research area. In this study, the first aim is to investigate the capabilities of different source-analysis techniques in detecting deep sources located at the sub-cortical level and validating it using the a-priori information about the location of the source, that is, the STN. Secondly, we aim at an investigation of whether EEG or MEG is best suited in mapping the DBS-induced brain activity. To do this, simultaneous EEG and MEG measurement were used to record the DBS-induced electromagnetic potentials and fields. The boundary-element method (BEM) have been used to solve the forward problem. The position of the DBS electrodes was then estimated using the dipole (moving, rotating, and fixed MUSIC), and current-density-reconstruction (CDR) (minimum-norm and sLORETA) approaches. The source-localization results from the dipole approaches demonstrated that the fixed MUSIC algorithm best localizes deep focal sources, whereas the moving dipole detects not only the region of interest but also neighboring regions that are affected by stimulating the STN. The results from the CDR approaches validated the capability of sLORETA in detecting the STN compared to minimum-norm. Moreover, the source-localization results using the EEG modality outperformed that of the MEG by locating the DBS-induced activity in the STN.

  9. Neuropsychological changes following deep brain stimulation surgery for Parkinson's disease: comparisons of treatment at pallidal and subthalamic targets versus best medical therapy.

    PubMed

    Rothlind, Johannes C; York, Michele K; Carlson, Kim; Luo, Ping; Marks, William J; Weaver, Frances M; Stern, Matthew; Follett, Kenneth; Reda, Domenic

    2015-06-01

    Deep brain stimulation (DBS) improves motor symptoms in Parkinson's disease (PD), but questions remain regarding neuropsychological decrements sometimes associated with this treatment, including rates of statistically and clinically meaningful change, and whether there are differences in outcome related to surgical target. Neuropsychological functioning was assessed in patients with Parkinson's disease (PD) at baseline and after 6 months in a prospective, randomised, controlled study comparing best medical therapy (BMT, n=116) and bilateral deep brain stimulation (DBS, n=164) at either the subthalamic nucleus (STN, n=84) or globus pallidus interna (GPi, n=80), using standardised neuropsychological tests. Measures of functional outcomes were also administered. Comparison of the two DBS targets revealed few significant group differences. STN DBS was associated with greater mean reductions on some measures of processing speed, only one of which was statistically significant in comparison with stimulation of GPi. GPi DBS was associated with lower mean performance on one measure of learning and memory that requires mental control and cognitive flexibility. Compared to the group receiving BMT, the combined DBS group had significantly greater mean reductions at 6-month follow-up in performance on multiple measures of processing speed and working memory. After calculating thresholds for statistically reliable change from data obtained from the BMT group, the combined DBS group also displayed higher rates of decline in neuropsychological test performance. Among study completers, 18 (11%) study participants receiving DBS displayed reliable decline by multiple indicators in two or more cognitive domains, a significantly higher rate than in the BMT group (3%). This multi-domain cognitive decline was associated with less beneficial change in subjective ratings of everyday functioning and quality of life (QOL). The multi-domain cognitive decline group continued to function at a lower level at 24-month follow-up. In those with PD, the likelihood of significant decline in neuropsychological functioning increases with DBS, affecting a small minority of patients who also appear to respond less optimally to DBS by other indicators of QOL. NCT00056563 and NCT01076452. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Long-term implantation of deep brain stimulation electrodes in the pontine micturition centre of the Göttingen minipig.

    PubMed

    Jensen, Kristian N; Deding, Dorthe; Sørensen, Jens Christian; Bjarkam, Carsten R

    2009-07-01

    To implant deep brain stimulation (DBS) electrodes in the porcine pontine micturition centre (PMC) in order to establish a large animal model of PMC-DBS. Brain stems from four Göttingen minipigs were sectioned coronally into 40-mum-thick histological sections and stained with Nissl, auto-metallographic myelin stain, tyrosine hydroxylase and corticotrophin-releasing factor immunohistochemistry in order to identify the porcine PMC. DBS electrodes were then stereotaxically implanted on the right side into the PMC in four Göttingen minipigs, and the bladder response to electrical stimulation was evaluated by subsequent cystometry performed immediately after the operation and several weeks later. A paired CRF-dense area homologous to the PMC in other species was encountered in the rostral pontine tegmentum medial to the locus coeruleus and ventral to the floor of the fourth ventricle. Electrical stimulation of the CRF-dense area resulted in an increased detrusor pressure followed by visible voiding in some instances. The pigs were allowed to survive between 14 and 55 days, and electrical stimulation resulting in an increased detrusor pressure was performed on more than one occasion without affecting consciousness or general thriving. None of the pigs developed postoperative infections or died prematurely. DBS electrodes can be implanted for several weeks in the identified CRF-dense area resulting in a useful large animal model for basic research on micturition and the future clinical use of this treatment modality in neurogenic supra-pontine voiding disorders.

  11. Cognitive and Psychiatric Effects of STN versus GPi Deep Brain Stimulation in Parkinson's Disease: A Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Wang, Jia-Wei; Zhang, Yu-Qing; Zhang, Xiao-Hua; Wang, Yun-Peng; Li, Ji-Ping; Li, Yong-Jie

    2016-01-01

    Deep brain stimulation (DBS) of either the subthalamic nucleus (STN) or the globus pallidus interna (GPi) can reduce motor symptoms in patients with Parkinson's disease (PD) and improve their quality of life. However, the effects of STN DBS and GPi DBS on cognitive functions and their psychiatric effects remain controversial. The present meta-analysis was therefore performed to clarify these issues. We searched the PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases. Other sources, including internet-based clinical trial registries and grey literature sources, were also searched. After searching the literature, two investigators independently performed literature screens to assess the quality of the included trials and to extract the data. The outcomes included the effects of STN DBS and GPi DBS on multiple cognitive domains, depression, anxiety, and quality of life. Seven articles related to four randomized controlled trials that included 521 participants were incorporated into the present meta-analysis. Compared with GPi DBS, STN DBS was associated with declines in selected cognitive domains after surgery, including attention, working memory and processing speed, phonemic fluency, learning and memory, and global cognition. However, there were no significant differences in terms of quality of life or psychiatric effects, such as depression and anxiety, between the two groups. A selective decline in frontal-subcortical cognitive functions is observed after STN DBS in comparison with GPi DBS, which should not be ignored in the target selection for DBS treatment in PD patients. In addition, compared to GPi DBS, STN DBS does not affect depression, anxiety, and quality of life.

  12. Deep Brain Stimulation in Early Parkinson’s Disease: Enrollment Experience from a Pilot Trial

    PubMed Central

    Charles, PD; Dolhun, RM; Gill, CE; Davis, TL; Bliton, MJ; Tramontana, MG; Salomon, RM; Wang; Hedera, P; Phibbs, FT; Neimat, JS; Konrad, PE

    2011-01-01

    Background Deep brain stimulation (DBS) of the subthalamic nucleus is an accepted therapy for advanced Parkinson’s disease (PD). In animal models, pharmacologic ablation and stimulation of the subthalamic nucleus have resulted in clinical improvement and, in some cases, improved survival of dopaminergic neurons. DBS has not been studied in the early stages of PD, but early application should be explored to evaluate safety, efficacy, and the potential to alter disease progression. Methods We are conducting a prospective, randomized, single-blind clinical trial of optimal drug therapy (ODT) compared to medication plus DBS (ODT + DBS) in subjects with Hoehn & Yahr Stage II idiopathic PD who are without motor fluctuations or dementia. We report here subject screening, enrollment, baseline characteristics, and adverse events. Results 30 subjects (average age 60 ± 6.9 years, average duration of medicine 2.1 ± 1.3 years, average UPDRS-III scores 14.9 on medication and 27.0 off medication) are enrolled in the ongoing study. Twelve of 15 subjects randomized to DBS experienced perioperative adverse events, the majority of which were related to the procedure or device and resolved without sequelae. Frequently reported adverse events included wound healing problems, headache, edema, and confusion. Conclusion This report demonstrates that subjects with early stage PD can be successfully recruited, consented and retained in a long term clinical trial of DBS. Our ongoing pilot investigation will provide important preliminary safety and tolerability data concerning the application of DBS in early stage PD. PMID:22104012

  13. The Effect of Uni- and Bilateral Thalamic Deep Brain Stimulation on Speech in Patients With Essential Tremor: Acoustics and Intelligibility.

    PubMed

    Becker, Johannes; Barbe, Michael T; Hartinger, Mariam; Dembek, Till A; Pochmann, Jil; Wirths, Jochen; Allert, Niels; Mücke, Doris; Hermes, Anne; Meister, Ingo G; Visser-Vandewalle, Veerle; Grice, Martine; Timmermann, Lars

    2017-04-01

    Deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) is performed to suppress medically-resistant essential tremor (ET). However, stimulation induced dysarthria (SID) is a common side effect, limiting the extent to which tremor can be suppressed. To date, the exact pathogenesis of SID in VIM-DBS treated ET patients is unknown. We investigate the effect of inactivated, uni- and bilateral VIM-DBS on speech production in patients with ET. We employ acoustic measures, tempo, and intelligibility ratings and patient's self-estimated speech to quantify SID, with a focus on comparing bilateral to unilateral stimulation effects and the effect of electrode position on speech. Sixteen German ET patients participated in this study. Each patient was acoustically recorded with DBS-off, unilateral-right-hemispheric-DBS-on, unilateral-left-hemispheric-DBS-on, and bilateral-DBS-on during an oral diadochokinesis task and a read German standard text. To capture the extent of speech impairment, we measured syllable duration and intensity ratio during the DDK task. Naïve listeners rated speech tempo and speech intelligibility of the read text on a 5-point-scale. Patients had to rate their "ability to speak". We found an effect of bilateral compared to unilateral and inactivated stimulation on syllable durations and intensity ratio, as well as on external intelligibility ratings and patients' VAS scores. Additionally, VAS scores are associated with more laterally located active contacts. For speech ratings, we found an effect of syllable duration such that tempo and intelligibility was rated worse for speakers exhibiting greater syllable durations. Our data confirms that SID is more pronounced under bilateral compared to unilateral stimulation. Laterally located electrodes are associated with more severe SID according to patient's self-ratings. We can confirm the relation between diadochokinetic rate and SID in that listener's tempo and intelligibility ratings can be predicted by measured syllable durations from DDK tasks. © 2017 International Neuromodulation Society.

  14. Three-dimensional brain MRI for DBS patients within ultra-low radiofrequency power limits.

    PubMed

    Sarkar, Subhendra N; Papavassiliou, Efstathios; Hackney, David B; Alsop, David C; Shih, Ludy C; Madhuranthakam, Ananth J; Busse, Reed F; La Ruche, Susan; Bhadelia, Rafeeque A

    2014-04-01

    For patients with deep brain stimulators (DBS), local absorbed radiofrequency (RF) power is unknown and is much higher than what the system estimates. We developed a comprehensive, high-quality brain magnetic resonance imaging (MRI) protocol for DBS patients utilizing three-dimensional (3D) magnetic resonance sequences at very low RF power. Six patients with DBS were imaged (10 sessions) using a transmit/receive head coil at 1.5 Tesla with modified 3D sequences within ultra-low specific absorption rate (SAR) limits (0.1 W/kg) using T2 , fast fluid-attenuated inversion recovery (FLAIR) and T1 -weighted image contrast. Tissue signal and tissue contrast from the low-SAR images were subjectively and objectively compared with routine clinical images of six age-matched controls. Low-SAR images of DBS patients demonstrated tissue contrast comparable to high-SAR images and were of diagnostic quality except for slightly reduced signal. Although preliminary, we demonstrated diagnostic quality brain MRI with optimized, volumetric sequences in DBS patients within very conservative RF safety guidelines offering a greater safety margin. © 2014 International Parkinson and Movement Disorder Society.

  15. Improved spatial targeting with directionally segmented deep brain stimulation leads for treating essential tremor

    NASA Astrophysics Data System (ADS)

    Keane, Maureen; Deyo, Steve; Abosch, Aviva; Bajwa, Jawad A.; Johnson, Matthew D.

    2012-08-01

    Deep brain stimulation (DBS) in the ventral intermediate nucleus of thalamus (Vim) is known to exert a therapeutic effect on postural and kinetic tremor in patients with essential tremor (ET). For DBS leads implanted near the caudal border of Vim, however, there is an increased likelihood that one will also induce paresthesia side-effects by stimulating neurons within the sensory pathway of the ventral caudal (Vc) nucleus of thalamus. The aim of this computational study was to (1) investigate the neuronal pathways modulated by therapeutic, sub-therapeutic and paresthesia-inducing DBS settings in three patients with ET and (2) determine how much better an outcome could have been achieved had these patients been implanted with a DBS lead containing directionally segmented electrodes (dDBS). Multi-compartment neuron models of the thalamocortical, cerebellothalamic and medial lemniscal pathways were first simulated in the context of patient-specific anatomies, lead placements and programming parameters from three ET patients who had been implanted with Medtronic 3389 DBS leads. The models showed that in these patients, complete suppression of tremor was associated most closely with activating an average of 62% of the cerebellothalamic afferent input into Vim (n = 10), while persistent paresthesias were associated with activating 35% of the medial lemniscal tract input into Vc thalamus (n = 12). The dDBS lead design demonstrated superior targeting of the cerebello-thalamo-cortical pathway, especially in cases of misaligned DBS leads. Given the close proximity of Vim to Vc thalamus, the models suggest that dDBS will enable clinicians to more effectively sculpt current through and around thalamus in order to achieve a more consistent therapeutic effect without inducing side-effects.

  16. Deep brain stimulation for Parkinson's disease: defining the optimal location within the subthalamic nucleus.

    PubMed

    Bot, Maarten; Schuurman, P Richard; Odekerken, Vincent J J; Verhagen, Rens; Contarino, Fiorella Maria; De Bie, Rob M A; van den Munckhof, Pepijn

    2018-05-01

    Individual motor improvement after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) varies considerably. Stereotactic targeting of the dorsolateral sensorimotor part of the STN is considered paramount for maximising effectiveness, but studies employing the midcommissural point (MCP) as anatomical reference failed to show correlation between DBS location and motor improvement. The medial border of the STN as reference may provide better insight in the relationship between DBS location and clinical outcome. Motor improvement after 12 months of 65 STN DBS electrodes was categorised into non-responding, responding and optimally responding body-sides. Stereotactic coordinates of optimal electrode contacts relative to both medial STN border and MCP served to define theoretic DBS 'hotspots'. Using the medial STN border as reference, significant negative correlation (Pearson's correlation -0.52, P<0.01) was found between the Euclidean distance from the centre of stimulation to this DBS hotspot and motor improvement. This hotspot was located at 2.8 mm lateral, 1.7 mm anterior and 2.5 mm superior relative to the medial STN border. Using MCP as reference, no correlation was found. The medial STN border proved superior compared with MCP as anatomical reference for correlation of DBS location and motor improvement, and enabled defining an optimal DBS location within the nucleus. We therefore propose the medial STN border as a better individual reference point than the currently used MCP on preoperative stereotactic imaging, in order to obtain optimal and thus less variable motor improvement for individual patients with PD following STN DBS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Treating post-traumatic tremor with deep brain stimulation: report of five cases.

    PubMed

    Issar, Neil M; Hedera, Peter; Phibbs, Fenna T; Konrad, Peter E; Neimat, Joseph S

    2013-12-01

    Post-traumatic tremor is one of the most common movement disorders resulting from severe head trauma. However, literature regarding successful deep brain stimulation (DBS) treatment is scarce, resulting in ambiguity regarding the optimal lead location. Most cases support the ventral intermediate nucleus, but there is evidence to defend DBS of the zona incerta, ventral oralis anterior/posterior, and/or a combination of these targets. We report five patients with disabling post-traumatic tremor treated with DBS of the ventral intermediate nucleus and of the globus pallidus internus. Patients were referred to the Vanderbilt Movement Disorders Division, and surgical intervention was determined by a DBS Multidisciplinary Committee. Standard DBS procedure was followed. Patients 1-4 sustained severe diffuse axonal injuries. Patients 1-3 underwent unilateral ventral intermediate nucleus DBS for contralateral tremor, while Patient 4 underwent bilateral ventral intermediate nucleus DBS. Patients 1-3 experienced good tremor reduction, while Patient 4 experienced moderate tremor reduction with some dystonic posturing of the hands. Patient 5 had dystonic posturing of the right upper extremity with tremor of the left upper extremity. He was treated with bilateral DBS of the globus pallidus internus and showed good tremor reduction at follow-up. Unilateral or bilateral DBS of the ventral intermediate nucleus and bilateral DBS of the globus pallidus internus may be effective and safe treatment modalities for intractable post-traumatic tremor. Further studies are needed to clarify the optimal target for surgical treatment of post-traumatic tremor. Published by Elsevier Ltd.

  18. Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network.

    PubMed

    Kang, Guiyeom; Lowery, Madeleine M

    2013-03-01

    Growing evidence suggests that synchronized neural oscillations in the cortico-basal ganglia network may play a critical role in the pathophysiology of Parkinson's disease. In this study, a new model of the closed loop network is used to explore the generation and interaction of network oscillations and their suppression through deep brain stimulation (DBS). Under simulated dopamine depletion conditions, increased gain through the hyperdirect pathway resulted in the interaction of neural oscillations at different frequencies in the cortex and subthalamic nucleus (STN), leading to the emergence of synchronized oscillations at a new intermediate frequency. Further increases in synaptic gain resulted in the cortex driving synchronous oscillatory activity throughout the network. When DBS was added to the model a progressive reduction in STN power at the tremor and beta frequencies was observed as the frequency of stimulation was increased, with resonance effects occurring for low frequency DBS (40 Hz) in agreement with experimental observations. The results provide new insights into the mechanisms by which synchronous oscillations can arise within the network and how DBS may suppress unwanted oscillatory activity.

  19. Addition of deep brain stimulation signal to a local field potential driven Izhikevich model masks the pathological firing pattern of an STN neuron.

    PubMed

    Michmizos, Kostis P; Nikita, Konstantina S

    2011-01-01

    The crucial engagement of the subthalamic nucleus (STN) with the neurosurgical procedure of deep brain stimulation (DBS) that alleviates medically intractable Parkinsonian tremor augments the need to refine our current understanding of STN. To enhance the efficacy of DBS as a result of precise targeting, STN boundaries are accurately mapped using extracellular microelectrode recordings (MERs). We utilized the intranuclear MER to acquire the local field potential (LFP) and drive an Izhikevich model of an STN neuron. Using the model as the test bed for clinically acquired data, we demonstrated that stimulation of the STN neuron produces excitatory responses that tonically increase its average firing rate and alter the pattern of its neuronal activity. We also found that the spiking rhythm increases linearly with the increase of amplitude, frequency, and duration of the DBS pulse, inside the clinical range. Our results are in agreement with the current hypothesis that DBS increases the firing rate of STN and masks its pathological bursting firing pattern.

  20. The effects of Thalamic Deep Brain Stimulation on speech dynamics in patients with Essential Tremor: An articulographic study.

    PubMed

    Mücke, Doris; Hermes, Anne; Roettger, Timo B; Becker, Johannes; Niemann, Henrik; Dembek, Till A; Timmermann, Lars; Visser-Vandewalle, Veerle; Fink, Gereon R; Grice, Martine; Barbe, Michael T

    2018-01-01

    Acoustic studies have revealed that patients with Essential Tremor treated with thalamic Deep Brain Stimulation (DBS) may suffer from speech deterioration in terms of imprecise oral articulation and reduced voicing control. Based on the acoustic signal one cannot infer, however, whether this deterioration is due to a general slowing down of the speech motor system (e.g., a target undershoot of a desired articulatory goal resulting from being too slow) or disturbed coordination (e.g., a target undershoot caused by problems with the relative phasing of articulatory movements). To elucidate this issue further, we here investigated both acoustics and articulatory patterns of the labial and lingual system using Electromagnetic Articulography (EMA) in twelve Essential Tremor patients treated with thalamic DBS and twelve age- and sex-matched controls. By comparing patients with activated (DBS-ON) and inactivated stimulation (DBS-OFF) with control speakers, we show that critical changes in speech dynamics occur on two levels: With inactivated stimulation (DBS-OFF), patients showed coordination problems of the labial and lingual system in terms of articulatory imprecision and slowness. These effects of articulatory discoordination worsened under activated stimulation, accompanied by an additional overall slowing down of the speech motor system. This leads to a poor performance of syllables on the acoustic surface, reflecting an aggravation either of pre-existing cerebellar deficits and/or the affection of the upper motor fibers of the internal capsule.

  1. Modulation of human time processing by subthalamic deep brain stimulation.

    PubMed

    Wojtecki, Lars; Elben, Saskia; Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons

    2011-01-01

    Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥ 130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥ 130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds.

  2. Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation

    PubMed Central

    Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons

    2011-01-01

    Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds. PMID:21931767

  3. Deep brain stimulation: a return journey from psychiatry to neurology.

    PubMed

    Ashkan, Keyoumars; Shotbolt, Paul; David, Anthony S; Samuel, Michael

    2013-06-01

    Deep brain stimulation (DBS) has emerged as an effective neurosurgical tool to treat a range of conditions. Its use in movement disorders such as Parkinson's disease, tremor and dystonia is now well established and has been approved by the National Institute of Clinical Excellence (NICE). The NICE does, however, emphasise the need for a multidisciplinary team to manage these patients. Such a team is traditionally composed of neurologists, neurosurgeons and neuropsychologists. Neuropsychiatrists, however, are increasingly recognised as essential members given many psychiatric considerations that may arise in patients undergoing DBS. Patient selection, assessment of competence to consent and treatment of postoperative psychiatric disease are just a few areas where neuropsychiatric input is invaluable. Partly driven by this close team working and partly based on the early history of DBS for psychiatric disorders, there is increasing interest in re-exploring the potential of neurosurgery to treat patients with psychiatric disease, such as depression and obsessive-compulsive disorder. Although the clinical experience and evidence with DBS in this group of patients are steadily increasing, many questions remain unanswered. Yet, the characteristics of optimal surgical candidates, the best choice of DBS target, the most effective stimulating parameters and the extent of postoperative improvement are not clear for most psychiatric conditions. Further research is therefore required to define how DBS can be best utilised to improve the quality of life of patients with psychiatric disease.

  4. Differentiated effects of deep brain stimulation and medication on somatosensory processing in Parkinson's disease.

    PubMed

    Sridharan, Kousik Sarathy; Højlund, Andreas; Johnsen, Erik Lisbjerg; Sunde, Niels Aagaard; Johansen, Lars Gottfried; Beniczky, Sándor; Østergaard, Karen

    2017-07-01

    Deep brain stimulation (DBS) and dopaminergic medication effectively alleviate the motor symptoms in Parkinson's disease (PD) patients, but their effects on the sensory symptoms of PD are still not well understood. To explore early somatosensory processing in PD, we recorded magnetoencephalography (MEG) from thirteen DBS-treated PD patients and ten healthy controls during median nerve stimulation. PD patients were measured during DBS-treated, untreated and dopaminergic-medicated states. We focused on early cortical somatosensory processing as indexed by N20m, induced gamma augmentation (31-45Hz and 55-100Hz) and induced beta suppression (13-30Hz). PD patients' motor symptoms were assessed by UPDRS-III. Using Bayesian statistics, we found positive evidence for differentiated effects of treatments on the induced gamma augmentation (31-45Hz) with highest gamma in the dopaminergic-medicated state and lowest in the DBS-treated and untreated states. In contrast, UPDRS-III scores showed beneficial effects of both DBS and dopaminergic medication on the patients' motor symptoms. Furthermore, treatments did not affect the amplitude of N20m. Our results suggest differentiated effects of DBS and dopaminergic medication on cortical somatosensory processing in PD patients despite consistent ameliorating effects of both treatments on PD motor symptoms. The differentiated effect suggests differences in the effect mechanisms of the two treatments. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  5. Neurosurgery of the future: Deep brain stimulations and manipulations.

    PubMed

    Nicolaidis, Stylianos

    2017-04-01

    Important advances are afoot in the field of neurosurgery-particularly in the realms of deep brain stimulation (DBS), deep brain manipulation (DBM), and the newly introduced refinement "closed-loop" deep brain stimulation (CLDBS). Use of closed-loop technology will make both DBS and DBM more precise as procedures and will broaden their indications. CLDBS utilizes as feedback a variety of sources of electrophysiological and neurochemical afferent information about the function of the brain structures to be treated or studied. The efferent actions will be either electric, i.e. the classic excitatory or inhibitory ones, or micro-injection of such things as neural proteins and transmitters, neural grafts, implants of pluripotent stem cells or mesenchymal stem cells, and some variants of gene therapy. The pathologies to be treated, beside Parkinson's disease and movement disorders, include repair of neural tissues, neurodegenerative pathologies, psychiatric and behavioral dysfunctions, i.e. schizophrenia in its various guises, bipolar disorders, obesity, anorexia, drug addiction, and alcoholism. The possibility of using these new modalities to treat a number of cognitive dysfunctions is also under consideration. Because the DBS-CLDBS technology brings about a cross-fertilization between scientific investigation and surgical practice, it will also contribute to an enhanced understanding of brain function. Copyright © 2017. Published by Elsevier Inc.

  6. Dissociable Effects of Subthalamic Stimulation in Obsessive Compulsive Disorder on Risky Reward and Loss Prospects.

    PubMed

    Voon, Valerie; Droux, Fabien; Chabardes, Stephan; Bougerol, Thierry; Kohl, Sina; David, Olivier; Krack, Paul; Polosan, Mircea

    2018-07-01

    Our daily decisions involve an element of risk, a behavioral process that is potentially modifiable. Here we assess the role of the associative-limbic subthalamic nucleus (STN) in obsessive compulsive disorder (OCD) testing on and off deep-brain stimulation (DBS) on anticipatory risk taking to obtain rewards and avoid losses. We assessed 12 OCD STN DBS in a randomized double-blind within-subject cross-over design. STN DBS decreased risk taking to rewards (p = 0.02) and greater risk taking to rewards was positively correlated with OCD severity (p = 0.01) and disease duration (p = 0.01). STN DBS was also associated with impaired subjective discrimination of loss magnitude (p < 0.05), an effect mediated by acute DBS rather than chronic DBS. We highlight a role for the STN in mediating dissociable valence prospects on risk seeking. STN stimulation decreases risk taking to rewards and impairs discrimination of loss magnitude. These findings may have implications for behavioral symptoms related to STN DBS and the potential for STN DBS for the treatment of psychiatric disorders. Copyright © 2018. Published by Elsevier Ltd.

  7. Recording evoked potentials during deep brain stimulation: development and validation of instrumentation to suppress the stimulus artefact

    PubMed Central

    Kent, A R; Grill, W M

    2012-01-01

    Deep brain stimulation (DBS) is an effective treatment for movement disorders, but the selection of stimulus parameters is a clinical burden and often yields sub-optimal outcomes for patients. Measurement of electrically evoked compound action potentials (ECAPs) during DBS could offer insight into the type and spatial extent of neural element activation and provide a potential feedback signal for the rational selection of stimulus parameters and closed-loop DBS. However, recording ECAPs presents a significant technical challenge due to the large stimulus artefact, which can saturate recording amplifiers and distort short latency ECAP signals. We developed DBS-ECAP recording instrumentation combining commercial amplifiers and circuit elements in a serial configuration to reduce the stimulus artefact and enable high fidelity recording. We used an electrical circuit equivalent model of the instrumentation to understand better the sources of the stimulus artefact and the mechanisms of artefact reduction by the circuit elements. In vitro testing validated the capability of the instrumentation to suppress the stimulus artefact and increase gain by a factor of 1,000 to 5,000 compared to a conventional biopotential amplifier. The distortion of mock ECAP (mECAP) signals was measured across stimulation parameters, and the instrumentation enabled high fidelity recording of mECAPs with latencies of only 0.5 ms for DBS pulse widths of 50 to 100 μs/phase. Subsequently, the instrumentation was used to record in vivo ECAPs, without contamination by the stimulus artefact, during thalamic DBS in an anesthetized cat. The characteristics of the physiological ECAP were dependent on stimulation parameters. The novel instrumentation enables high fidelity ECAP recording and advances the potential use of the ECAP as a feedback signal for the tuning of DBS parameters. PMID:22510375

  8. Deep brain stimulation of the inferior colliculus: a possible animal model to study paradoxical kinesia observed in some parkinsonian patients?

    PubMed

    Melo-Thomas, Liana; Thomas, Uwe

    2015-02-15

    The inferior colliculus (IC) plays an important role in the normal processing of the acoustic message and is also involved in the filtering of acoustic stimuli of aversive nature. The neural substrate of the IC can also influence haloperidol-induced catalepsy. Considering that (i) paradoxical kinesia, observed in some parkinsonian patients, seems to be dependent of their emotional state and (ii) deep brain stimulation (DBS) represents an alternative therapeutic route for the relief of parkinsonian symptoms, the present study investigated the consequence of DBS at the IC on the catalepsy induced by haloperidol in rats. Additionally, we investigated if DBS of the IC can elicit motor responses in anesthetized rats and whether DBS elicits distinct neural firing patterns of activity at the dorsal cortex (DCIC) or central nucleus (CNIC) of the IC. A significant reduction of the catalepsy response was seen in rats previously given haloperidol and receiving DBS at the IC. In addition, electrical stimulation to the ventral part of the CNIC induced immediate motor responses in anesthetized rats. The neuronal spontaneous activity was higher at the ventral part of the CNIC than the dorsal part. DBS to the ventral part but not to the dorsal part of the CNIC increased the spike rate at neurons a few hundred microns away from the stimulation site. It is possible that the IC plays a role in the sensorimotor gating activated by emotional stimuli, and that DBS at the IC can be a promising new animal model to study paradoxical kinesia in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Exploring risk factors for stuttering development in Parkinson disease after deep brain stimulation.

    PubMed

    Picillo, Marina; Vincos, Gustavo B; Sammartino, Francesco; Lozano, Andres M; Fasano, Alfonso

    2017-05-01

    Stuttering is a speech disorder with disruption of verbal fluency, occasionally present in Parkinson's disease (PD). PD co-incident stuttering may either worsen or improve after Deep Brain Stimulation (DBS). Sixteen out of 453 PD patients (3.5%) exhibited stuttering after DBS (PD-S) and were compared with a group of patients without stuttering (PD-NS) using non-parametric statistics. After DBS, stuttering worsened in 3 out of 4 patients with co-incidental stuttering. Most PD-S underwent subthalamic (STN) DBS, but 4 were implanted in the globus pallidus (GPi). Nine out of 16 PD-S (56.3%) reported a positive familial history for stuttering compared to none of the PD-NS. PD-S were mainly male (81.3%) with slight worse motor features compared to PD-NS. Herein, we describe a group of PD patients developing stuttering after DBS and report the presence of a positive familial history for stuttering as the most relevant risk factor, suggesting a possible underlying genetic cause. The fact that stuttering occurred after either STN or GPi DBS is an argument against the impact of medication reduction on stuttering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization.

    PubMed

    Calabrese, Evan; Hickey, Patrick; Hulette, Christine; Zhang, Jingxian; Parente, Beth; Lad, Shivanand P; Johnson, G Allan

    2015-08-01

    Deep brain stimulation (DBS) is an established surgical therapy for medically refractory tremor disorders including essential tremor (ET) and is currently under investigation for use in a variety of other neurologic and psychiatric disorders. There is growing evidence that the anti-tremor effects of DBS for ET are directly related to modulation of the dentatorubrothalamic tract (DRT), a white matter pathway that connects the cerebellum, red nucleus, and ventral intermediate nucleus of the thalamus. Emerging white matter targets for DBS, like the DRT, will require improved three-dimensional (3D) reference maps of deep brain anatomy and structural connectivity for accurate electrode targeting. High-resolution diffusion MRI of postmortem brain specimens can provide detailed volumetric images of important deep brain nuclei and 3D reconstructions of white matter pathways with probabilistic tractography techniques. We present a high spatial and angular resolution diffusion MRI template of the postmortem human brainstem and thalamus with 3D reconstructions of the nuclei and white matter tracts involved in ET circuitry. We demonstrate registration of these data to in vivo, clinical images from patients receiving DBS therapy, and correlate electrode proximity to tractography of the DRT with improvement of ET symptoms. © 2015 Wiley Periodicals, Inc.

  11. Administration of electroconvulsive therapy for depression associated with deep brain stimulation in a patient with post-traumatic Parkinson's Disease: a case study.

    PubMed

    Cunningham, Miles G; Yadollahikhales, Golnaz; Vitaliano, Gordana; van Horne, Craig

    2016-11-15

    Deep brain stimulation (DBS) has been shown to be effective for parkinsonian symptoms poorly responsive to medications. DBS is typically well-tolerated, as are the maintenance battery changes. Here we describe an adverse event during a battery replacement procedure that caused rapid onset of severe depression. The patient is a 58-year-old woman who was in a serious motor vehicle accident and sustained a concussion with loss of consciousness. Within weeks of the accident she began developing parkinsonian symptoms that progressively worsened over the subsequent 10 years. Responding poorly to medications, she received DBS, which controlled her movement symptoms. Five years after initiating DBS, during a routine battery change, an apparent electrical event occurred that triggered the rapid onset of severe depression. Anti-seizure and antidepressant medications were ineffective, and the patient was offered a course of electroconvulsive therapy (ECT), which resulted in complete reversal of her depressive episode. Parkinson's syndrome can be seen after a single closed head injury event. Post-traumatic parkinsonism is responsive to DBS; however, DBS has been associated with an infrequent occurrence of dramatic disruption in mood. ECT is a therapeutic option for patients who develop intractable depressive illness associated with DBS.

  12. Accuracy of Intraoperative Computed Tomography during Deep Brain Stimulation Procedures: Comparison with Postoperative Magnetic Resonance Imaging

    PubMed Central

    Bot, Maarten; van den Munckhof, Pepijn; Bakay, Roy; Stebbins, Glenn; Verhagen Metman, Leo

    2017-01-01

    Objective To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). Background Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. Methods DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. Results Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). Conclusion Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary. PMID:28601874

  13. Accuracy of Intraoperative Computed Tomography during Deep Brain Stimulation Procedures: Comparison with Postoperative Magnetic Resonance Imaging.

    PubMed

    Bot, Maarten; van den Munckhof, Pepijn; Bakay, Roy; Stebbins, Glenn; Verhagen Metman, Leo

    2017-01-01

    To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary. © 2017 The Author(s) Published by S. Karger AG, Basel.

  14. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Tianhe C.; Grill, Warren M.

    2010-12-01

    Deep brain stimulation (DBS) has emerged as an effective treatment for movement disorders; however, the fundamental mechanisms by which DBS works are not well understood. Computational models of DBS can provide insights into these fundamental mechanisms and typically require two steps: calculation of the electrical potentials generated by DBS and, subsequently, determination of the effects of the extracellular potentials on neurons. The objective of this study was to assess the validity of using a point source electrode to approximate the DBS electrode when calculating the thresholds and spatial distribution of activation of a surrounding population of model neurons in response to monopolar DBS. Extracellular potentials in a homogenous isotropic volume conductor were calculated using either a point current source or a geometrically accurate finite element model of the Medtronic DBS 3389 lead. These extracellular potentials were coupled to populations of model axons, and thresholds and spatial distributions were determined for different electrode geometries and axon orientations. Median threshold differences between DBS and point source electrodes for individual axons varied between -20.5% and 9.5% across all orientations, monopolar polarities and electrode geometries utilizing the DBS 3389 electrode. Differences in the percentage of axons activated at a given amplitude by the point source electrode and the DBS electrode were between -9.0% and 12.6% across all monopolar configurations tested. The differences in activation between the DBS and point source electrodes occurred primarily in regions close to conductor-insulator interfaces and around the insulating tip of the DBS electrode. The robustness of the point source approximation in modeling several special cases—tissue anisotropy, a long active electrode and bipolar stimulation—was also examined. Under the conditions considered, the point source was shown to be a valid approximation for predicting excitation of populations of neurons in response to DBS.

  15. Effect of subthalamic nucleus deep brain stimulation on dual-task cognitive and motor performance in isolated dystonia.

    PubMed

    Mills, Kelly A; Markun, Leslie C; San Luciano, Marta; Rizk, Rami; Allen, I Elaine; Racine, Caroline A; Starr, Philip A; Alberts, Jay L; Ostrem, Jill L

    2015-04-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor complications of Parkinson's disease (PD) but may worsen specific cognitive functions. The effect of STN DBS on cognitive function in dystonia patients is less clear. Previous reports indicate that bilateral STN stimulation in patients with PD amplifies the decrement in cognitive-motor dual-task performance seen when moving from a single-task to dual-task paradigm. We aimed to determine if the effect of bilateral STN DBS on dual-task performance in isolated patients with dystonia, who have less cognitive impairment and no dementia, is similar to that seen in PD. Eight isolated predominantly cervical patients with dystonia treated with bilateral STN DBS, with average dystonia duration of 10.5 years and Montreal Cognitive Assessment score of 26.5, completed working memory (n-back) and motor (forced-maintenance) tests under single-task and dual-task conditions while on and off DBS. A multivariate, repeated-measures analysis of variance showed no effect of stimulation status (On vs Off) on working memory (F=0.75, p=0.39) or motor function (F=0.22, p=0.69) when performed under single-task conditions, though as working memory task difficulty increased, stimulation disrupted the accuracy of force-tracking. There was a very small worsening in working memory performance (F=9.14, p=0.019) when moving from single-task to dual-tasks when using the 'dual-task loss' analysis. This study suggests the effect of STN DBS on working memory and attention may be much less consequential in patients with dystonia than has been reported in PD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Effect of subthalamic nucleus deep brain stimulation on dual-task cognitive and motor performance in isolated dystonia

    PubMed Central

    Mills, Kelly A; Markun, Leslie C; Luciano, Marta San; Rizk, Rami; Allen, I Elaine; Racine, Caroline A; Starr, Philip A; Alberts, Jay L; Ostrem, Jill L

    2015-01-01

    Objective Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor complications of Parkinson's disease (PD) but may worsen specific cognitive functions. The effect of STN DBS on cognitive function in dystonia patients is less clear. Previous reports indicate that bilateral STN stimulation in patients with PD amplifies the decrement in cognitive-motor dual-task performance seen when moving from a single-task to dual-task paradigm. We aimed to determine if the effect of bilateral STN DBS on dual-task performance in isolated patients with dystonia, who have less cognitive impairment and no dementia, is similar to that seen in PD. Methods Eight isolated predominantly cervical patients with dystonia treated with bilateral STN DBS, with average dystonia duration of 10.5 years and Montreal Cognitive Assessment score of 26.5, completed working memory (n-back) and motor (forced-maintenance) tests under single-task and dual-task conditions while on and off DBS. Results A multivariate, repeated-measures analysis of variance showed no effect of stimulation status (On vs Off) on working memory (F=0.75, p=0.39) or motor function (F=0.22, p=0.69) when performed under single-task conditions, though as working memory task difficulty increased, stimulation disrupted the accuracy of force-tracking. There was a very small worsening in working memory performance (F=9.14, p=0.019) when moving from single-task to dual-tasks when using the ‘dual-task loss’ analysis. Conclusions This study suggests the effect of STN DBS on working memory and attention may be much less consequential in patients with dystonia than has been reported in PD. PMID:25012202

  17. Atlas-Independent, Electrophysiological Mapping of the Optimal Locus of Subthalamic Deep Brain Stimulation for the Motor Symptoms of Parkinson Disease.

    PubMed

    Conrad, Erin C; Mossner, James M; Chou, Kelvin L; Patil, Parag G

    2018-05-23

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms of Parkinson disease (PD). However, motor outcomes can be variable, perhaps due to inconsistent positioning of the active contact relative to an unknown optimal locus of stimulation. Here, we determine the optimal locus of STN stimulation in a geometrically unconstrained, mathematically precise, and atlas-independent manner, using Unified Parkinson Disease Rating Scale (UPDRS) motor outcomes and an electrophysiological neuronal stimulation model. In 20 patients with PD, we mapped motor improvement to active electrode location, relative to the individual, directly MRI-visualized STN. Our analysis included a novel, unconstrained and computational electrical-field model of neuronal activation to estimate the optimal locus of DBS. We mapped the optimal locus to a tightly defined ovoid region 0.49 mm lateral, 0.88 mm posterior, and 2.63 mm dorsal to the anatomical midpoint of the STN. On average, this locus is 11.75 lateral, 1.84 mm posterior, and 1.08 mm ventral to the mid-commissural point. Our novel, atlas-independent method reveals a single, ovoid optimal locus of stimulation in STN DBS for PD. The methodology, here applied to UPDRS and PD, is generalizable to atlas-independent mapping of other motor and non-motor effects of DBS. © 2018 S. Karger AG, Basel.

  18. Effects of Subthalamic Stimulation on Olfactory Function in Parkinson Disease.

    PubMed

    Cury, Rubens Gisbert; Carvalho, Margarete de Jesus; Lasteros, Fernando Jeyson Lopez; Dias, Alice Estevo; Dos Santos Ghilardi, Maria Gabriela; Paiva, Anderson Rodrigues Brandão; Coutinho, Artur Martins; Buchpiguel, Carlos Alberto; Teixeira, Manoel J; Barbosa, Egberto Reis; Fonoff, Erich Talamoni

    2018-06-01

    Olfactory dysfunction is a nonmotor symptom of Parkinson disease (PD) associated with reduction in quality of life. There is no evidence on whether improvements in olfaction after subthalamic deep brain stimulation (STN-DBS) may be directly attributable to motor improvement or whether this reflects a direct effect of DBS on olfactory brain areas. The aim of the present study was to evaluate the effect of DBS on olfactory function in PD, as well as to explore the correlation between these changes and changes in motor symptoms and brain metabolism. Thirty-two patients with PD were screened for STN-DBS. Patients were evaluated before and 1 year after surgery. Primary outcome was the change in olfactory function (Sniffin' Sticks odor-identification test [SST]) after surgery among the patients with hyposmia at baseline. Secondary outcomes included the relationship between motor outcomes and olfactory changes and [ 18 F]fluorodeoxyglucose-positron emission tomography analysis between subgroups with improvement versus no improvement of smell. STN-DBS improved SST after surgery (preoperative SST, median 7.3 ± 2.4 vs. postoperative SST, median 8.2 ± 2.1; P = 0.045) in a subset of patients among 29 of 32 patients who presented with hyposmia at baseline. The improvement in SST was correlated with DBS response (r = 0.424; P = 0.035). There was also an increase in glucose metabolism in the midbrain, cerebellum, and right frontal lobe in patients with SST improvement (P < 0.001). STN-DBS improves odor identification in a subset of patients with PD. Motor improvement together with changes in the brain metabolism may be linked to this improvement. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Some Clinically Useful Information that Neuropsychology Provides Patients, Carepartners, Neurologists, and Neurosurgeons About Deep Brain Stimulation for Parkinson's Disease

    PubMed Central

    Tröster, Alexander I

    2017-01-01

    Abstract Deep brain stimulation (DBS) is an effective (but non-curative) treatment for some of the motor symptoms and treatment complications associated with dopaminergic agents in Parkinson's disease (PD). DBS can be done relatively safely and is associated with quality of life gains. In most DBS centers, neuropsychological evaluations are performed routinely before surgery, and sometimes after surgery. The purpose of such evaluation is not to decide solely on its results whether or not to offer DBS to a given candidate, but to provide the patient and treatment team with the best available information to make reasonable risk-benefit assessments. This review provides information relevant to the questions often asked by patients and their carepartners, neurologists, and neurosurgeons about neuropsychological outcomes of DBS, including neuropsychological adverse event rates, magnitude of cognitive changes, outcomes after unilateral versus bilateral surgery directed at various targets, impact of mild cognitive impairment (MCI) on outcome, factors implicated in neurobehavioral outcomes, and safety of newer interventions or techniques such as asleep surgery and current steering. PMID:29077802

  20. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    PubMed

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.

  1. Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson's Disease Is Not Associated with Increased Body Mass Index

    PubMed Central

    Hacker, Mallory L.; Turchan, Maxim; Molinari, Anna L.; Currie, Amanda D.

    2017-01-01

    Previous studies suggest that deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease (PD) leads to weight gain. This study analyzes changes in body mass index (BMI) in 29 subjects from a prospective, single-blind trial of DBS in early stage PD (age 50–75, Hoehn & Yahr stage II off medication, treated with antiparkinsonian medications for ≥6 months but <4 years, and without a history of motor fluctuations, dyskinesias, or dementia). Subjects were randomized to DBS plus optimal drug therapy (DBS+ODT; n = 15) or ODT (n = 14) and followed for 24 months. Weight and height were recorded at baseline and each follow-up visit and used to calculate BMI. BMIs were compared within and between groups using nonparametric t-tests. Mean BMI at baseline was 29.7 in the ODT group and 32.3 in the DBS+ODT group (p > 0.05). BMI change over two years was not different between the groups (p = 0.62, ODT = −0.89; DBS+ODT = −0.17). This study suggests that STN-DBS is not associated with weight gain in subjects with early stage PD. This finding will be tested in an upcoming FDA-approved phase III multicenter, randomized, double-blind, placebo-controlled, pivotal clinical trial evaluating DBS in early stage PD (ClinicalTrials.gov identifier NCT00282152). PMID:28676842

  2. Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson's Disease Is Not Associated with Increased Body Mass Index.

    PubMed

    Millan, Sarah H; Hacker, Mallory L; Turchan, Maxim; Molinari, Anna L; Currie, Amanda D; Charles, David

    2017-01-01

    Previous studies suggest that deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease (PD) leads to weight gain. This study analyzes changes in body mass index (BMI) in 29 subjects from a prospective, single-blind trial of DBS in early stage PD (age 50-75, Hoehn & Yahr stage II off medication, treated with antiparkinsonian medications for ≥6 months but <4 years, and without a history of motor fluctuations, dyskinesias, or dementia). Subjects were randomized to DBS plus optimal drug therapy (DBS+ODT; n = 15) or ODT ( n = 14) and followed for 24 months. Weight and height were recorded at baseline and each follow-up visit and used to calculate BMI. BMIs were compared within and between groups using nonparametric t -tests. Mean BMI at baseline was 29.7 in the ODT group and 32.3 in the DBS+ODT group ( p > 0.05). BMI change over two years was not different between the groups ( p = 0.62, ODT = -0.89; DBS+ODT = -0.17). This study suggests that STN-DBS is not associated with weight gain in subjects with early stage PD. This finding will be tested in an upcoming FDA-approved phase III multicenter, randomized, double-blind, placebo-controlled, pivotal clinical trial evaluating DBS in early stage PD (ClinicalTrials.gov identifier NCT00282152).

  3. Association between subthalamic nucleus deep brain stimulation and weight gain: Results of a case-control study.

    PubMed

    Strowd, Roy E; Herco, Maja; Passmore-Griffin, Leah; Avery, Bradley; Haq, Ihtsham; Tatter, Stephen B; Tate, Jessica; Siddiqui, Mustafa S

    2016-01-01

    To evaluate whether weight change in patients with Parkinson's disease (PD) is different in those undergoing deep brain stimulation (DBS) of the subthalamic nucleus (STN) compared to those not undergoing DBS. A retrospective case-control study was performed in PD patients who had undergone STN DBS (cases) compared to matched PD patients without DBS (controls). Demographic and clinical data including Unified Parkinson's Disease Rating Scale (UPDRS) motor scores were collected. Repeated measures mixed model regression was used to identify variables associated with weight gain. Thirty-five cases and 34 controls were identified. Baseline age, gender, diagnosis and weight were similar. Duration of diagnosis was longer in cases (6.3 vs 4.9 years, p=0.0015). At 21.3 months, cases gained 2.9 kg (+4.65%) while controls lost 1.8 kg (-3.05%, p<0.02). Postoperative UPDRS motor scores improved by 49% indicating surgical efficacy. Only younger age (p=0.0002) and DBS (p=0.008) were significantly associated with weight gain. In this case-control study, PD patients undergoing STN DBS experienced post-operative weight gain that was significantly different from the weight loss observed in non-DBS PD controls. Patients, especially overweight individuals, should be informed that STN DBS can result in weight gain. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. What parents think and feel about deep brain stimulation in paediatric secondary dystonia including cerebral palsy: A qualitative study of parental decision-making.

    PubMed

    Austin, Allana; Lin, Jean-Pierre; Selway, Richard; Ashkan, Keyoumars; Owen, Tamsin

    2017-01-01

    Dystonia is characterised by involuntary movements and postures. Deep Brain Stimulation (DBS) is effective in reducing dystonic symptoms in primary dystonia in childhood and to lesser extent in secondary dystonia. How families and children decide to choose DBS surgery has never been explored. To explore parental decision-making for DBS in paediatric secondary dystonia. Data was gathered using semi-structured interviews with eight parents of children with secondary dystonia who had undergone DBS. Interviews were analysed using Interpretative Phenomenological Analysis. For all parents the decision was viewed as significant, with life altering consequences for the child. These results suggested that parents were motivated by a hope for a better life and parental duty. This was weighed against consideration of risks, what the child had to lose, and uncertainty of DBS outcome. Decisions were also influenced by the perspectives of their child and professionals. The decision to undergo DBS was an ongoing process for parents, who ultimately were struggling in the face of uncertainty whilst trying to do their best as parents for their children. These findings have important clinical implications given the growing referrals for consideration of DBS childhood dystonia, and highlights the importance of further quantitative research to fully establish the efficacy of DBS in secondary dystonia to enhance informed decision-making. Copyright © 2016. Published by Elsevier Ltd.

  5. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases

    PubMed Central

    Fox, Michael D.; Buckner, Randy L.; Liu, Hesheng; Chakravarty, M. Mallar; Lozano, Andres M.; Pascual-Leone, Alvaro

    2014-01-01

    Brain stimulation, a therapy increasingly used for neurological and psychiatric disease, traditionally is divided into invasive approaches, such as deep brain stimulation (DBS), and noninvasive approaches, such as transcranial magnetic stimulation. The relationship between these approaches is unknown, therapeutic mechanisms remain unclear, and the ideal stimulation site for a given technique is often ambiguous, limiting optimization of the stimulation and its application in further disorders. In this article, we identify diseases treated with both types of stimulation, list the stimulation sites thought to be most effective in each disease, and test the hypothesis that these sites are different nodes within the same brain network as defined by resting-state functional-connectivity MRI. Sites where DBS was effective were functionally connected to sites where noninvasive brain stimulation was effective across diseases including depression, Parkinson's disease, obsessive-compulsive disorder, essential tremor, addiction, pain, minimally conscious states, and Alzheimer’s disease. A lack of functional connectivity identified sites where stimulation was ineffective, and the sign of the correlation related to whether excitatory or inhibitory noninvasive stimulation was found clinically effective. These results suggest that resting-state functional connectivity may be useful for translating therapy between stimulation modalities, optimizing treatment, and identifying new stimulation targets. More broadly, this work supports a network perspective toward understanding and treating neuropsychiatric disease, highlighting the therapeutic potential of targeted brain network modulation. PMID:25267639

  6. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex.

    PubMed

    Gjedde, Albert; Geday, Jacob

    2009-12-07

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact of emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated and the change of blood flow associated with the DBS. In subjects with a low emotional impact, activity measured as blood flow rose when the electrode was turned on, while in subjects of high impact, the activity at this site in the ventromedial prefrontal cortex declined when the electrode was turned on. We conclude that changes of neurotransmission in the ventromedial prefrontal cortex had an effect on the tissue that depends on changes of monoamine concentration interacting with specific combinations of inhibitory and excitatory monoamine receptors.

  7. Role of deep brain stimulation in modulating memory formation and recall

    PubMed Central

    Hu, Rollin; Eskandar, Emad; Williams, Ziv

    2010-01-01

    Deep brain stimulation (DBS) has become an increasingly popular tool for treating a variety of medically refractory neurological and psychiatric disorders such as Parkinson disease, essential tremor, depression, and obsessive-compulsive disorder. Several targets have been identified for ablation or stimulation based on their anatomical location and presumed function. Areas such as the subthalamic nucleus, globus pallidus, and thalamus, for example, are believed to play a key role in motor control and execution, and they are commonly used in the treatment of motor disorders. Limbic structures such as the cingulate cortex and ventral striatum, believed to be important in motivation, emotion, and higher cognition, have also been targeted for treatment of a number of psychiatric disorders. In all of these settings, DBS is largely aimed at addressing the deleterious aspects of these diseases. In Parkinson disease, for example, DBS has been used to reduce rigidity and tremor, whereas in obsessive-compulsive disorder it has been used to limit compulsive behavior. More recently, however, attention has also turned to the potential use of DBS for enhancing or improving otherwise nonpathological aspects of cognitive function. This review explores the potential role of DBS in augmenting memory formation and recall, and the authors discuss recent studies and future trends in this emerging field. PMID:19569891

  8. Diffusion Tensor Imaging Based Thalamic Segmentation in Deep Brain Stimulation for Chronic Pain Conditions

    PubMed Central

    Kim, Won; Chivukula, Srinivas; Hauptman, Jason; Pouratian, Nader

    2016-01-01

    Background/Aims Thalamic deep brain stimulation (DBS) for the treatment of medically refractory pain has largely been abandoned on account of its inconsistent and oftentimes poor efficacy. Our aim here was to use diffusion tensor imaging (DTI)-based segmentation to assess the internal thalamic nuclei of patients who have undergone thalamic DBS for intractable pain and retrospectively correlate lead position with clinical outcome. Methods DTI-based segmentation was performed on 5 patients who underwent sensory thalamus DBS for chronic pain. Postoperative computed tomography (CT) images obtained for electrode placement were fused with preoperative MRIs that had undergone DTI-based thalamic segmentation. Sensory thalamus maps of 4 patients were analyzed for lead positioning and interpatient variability. Results Four patients who experienced significant pain relief following DBS demonstrated contact positions within the DTI-determined sensory thalamus or in its vicinity, whereas one who did not respond to stimulation did not. Only four voxels (2%) within the sensory thalamus were mutually shared among patients; 108 voxels (58%) were uniquely represented. Conclusions DTI-based segmentation of the thalamus can be used to confirm thalamic lead placement relative to the sensory thalamus, and may serve as a useful tool to guide thalamic DBS electrode implantation in the future. PMID:27537848

  9. Deep brain stimulation does not change neurovascular coupling in non-motor visual cortex: an autonomic and visual evoked blood flow velocity response study.

    PubMed

    Azevedo, Elsa; Santos, Rosa; Freitas, João; Rosas, Maria-José; Gago, Miguel; Garrett, Carolina; Rosengarten, Bernhard

    2010-11-01

    In Parkinson's disease (PD) subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function. Also an effect on the neurovascular coupling in motor cortex was reported due to a parallel activation of a subthalamic vasodilator area (SVA). To address this issue further we analysed neurovascular coupling in a non-motor area. Twenty PD patients selected for bilateral STN-DBS were investigated with functional transcranial Doppler (f-TCD) before and after surgery. Hemodynamic responses to visual stimulation were registered in left posterior cerebral artery (PCA) and analysed with a control-system approach (parameters gain, rate time, attenuation and natural frequency). To exclude autonomic effects of STN-DBS, we also addressed spectrum analysis of heart rate and of systolic arterial blood pressure variability, and baroreceptor gain. Findings in the PD group were compared with healthy age-matched controls. PD patients showed no neurovascular coupling changes in PCA territory, compared to controls, and STN-DBS changed neither blood flow regulatory parameters nor autonomic function. Improvement of vasoregulation in some motor cortical areas after STN-DBS might be related to an improved neuronal functional rather than indicating an effect on the neurovascular coupling or autonomic function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Deep-brain stimulation for aggressive and disruptive behavior.

    PubMed

    Franzini, Angelo; Broggi, Giovanni; Cordella, Roberto; Dones, Ivano; Messina, Giuseppe

    2013-01-01

    To describe our institutional experience with deep-brain stimulation (DBS) used in the treatment of aggressive and disruptive behavior refractory to conservative treatment. With stereotactic methodology and under general anesthesia, seven patients (from 2002 to 2010) were given DBS in the posterior hypothalamic region, bilaterally, and with the aid of intraoperative microrecording. Six of seven patients presented a clear reduction in the aggression and disruptive bouts, with subsequent simplification of familiar management. DBS of the posterior hypothalamic region could be an effective treatment for patients affected by mental retardation in whom disruptive and drug-refractory aggressive behavior coexists. Although several experimental data are available on this target, further studies are necessary to confirm the long-term efficacy and safety of this procedure. Copyright © 2013. Published by Elsevier Inc.

  11. Ventral pallidum deep brain stimulation attenuates acute partial, generalized and tonic-clonic seizures in two rat models.

    PubMed

    Mahoney, Emily C; Zeng, Andrew; Yu, Wilson; Rowe, Mackenzie; Sahai, Siddhartha; Feustel, Paul J; Ramirez-Zamora, Adolfo; Pilitsis, Julie G; Shin, Damian S

    2018-05-01

    Approximately 30% of individuals with epilepsy are refractory to antiepileptic drugs and currently approved neuromodulatory approaches fall short of providing seizure freedom for many individuals with limited utility for generalized seizures. Here, we expand on previous findings and investigate whether ventral pallidum deep brain stimulation (VP-DBS) can be efficacious for various acute seizure phenotypes. For rats administered pilocarpine, we found that VP-DBS (50 Hz) decreased generalized stage 4/5 seizure median frequency from 9 to 6 and total duration from 1667 to 264 s even after generalized seizures emerged. The transition to brainstem seizures was prevented in almost all animals. VP-DBS immediately after rats exhibited their first partial forebrain stage 3 seizure did not affect the frequency of partial seizures but reduced median partial seizure duration from 271 to 54 s. Stimulation after partial seizures also reduced the occurrence and duration of secondarily generalized stage 4/5 seizures. VP-DBS prior to pilocarpine administration prevented the appearance of partial seizures in almost all animals. Lastly, VP-DBS delayed the onset of generalized tonic-clonic seizures (GTCSs) from 111 to 823 s in rats administered another chemoconvulsant, pentylenetetrazol (PTZ, 90 mg/kg). In this particular rat seizure model, stimulating electrodes placed more laterally in both VP hemispheres and more posterior in the left VP hemisphere provided greatest efficacy for GTCSs. In conclusion, our findings posit that VP-DBS can serve as an effective novel neuromodulatory approach for a variety of acute seizure phenotypes. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Causes of failure of pallidal deep brain stimulation in cases with pre-operative diagnosis of isolated dystonia.

    PubMed

    Pauls, K Amande M; Krauss, Joachim K; Kämpfer, Constanze E; Kühn, Andrea A; Schrader, Christoph; Südmeyer, Martin; Allert, Niels; Benecke, Rainer; Blahak, Christian; Boller, Jana K; Fink, Gereon R; Fogel, Wolfgang; Liebig, Thomas; El Majdoub, Faycal; Mahlknecht, Philipp; Kessler, Josef; Mueller, Joerg; Voges, Juergen; Wittstock, Matthias; Wolters, Alexander; Maarouf, Mohammad; Moro, Elena; Volkmann, Jens; Bhatia, Kailash P; Timmermann, Lars

    2017-10-01

    Pallidal deep brain stimulation (GPi-DBS) is an effective therapy for isolated dystonia, but 10-20% of patients show improvement below 25-30%. We here investigated causes of insufficient response to GPi-DBS in isolated dystonia in a cross-sectional study. Patients with isolated dystonia at time of surgery, and <30% improvement on the Burke-Fahn-Marsden dystonia-rating-scale (BFMDRS) after ≥6 months of continuous GPi-DBS were videotaped ON and OFF stimulation, and history, preoperative videos, brain MRI, medical records, stimulation settings, stimulation system integrity, lead location, and genetic information were obtained and reviewed by an expert panel. 22 patients from 11 centres were included (8 men, 14 women; 9 generalized, 9 segmental, 3 focal, 1 bibrachial dystonia; mean (range): age 48.7 (25-72) years, disease duration 22.0 (2-40) years, DBS duration 45.5 (6-131) months). Mean BFMDRS-score was 31.7 (4-93) preoperatively and 32.3 (5-101) postoperatively. Half of the patients (n = 11) had poor lead positioning alone or in combination with other problems (combined with: other disease n = 6, functional dystonia n = 1, other problems n = 2). Other problems were disease other than isolated inherited or idiopathic dystonia (n = 5), fixed deformities (n = 2), functional dystonia (n = 3), and other causes (n = 1). Excluding patients with poor lead location from further analysis, non-isolated dystonia accounted for 45.5%, functional dystonia for 27.3%, and fixed deformities for 18.2%. In patients with true isolated dystonia, lead location was the most frequent problem. After exclusion of lead placement and stimulation programming issues, non-isolated dystonia, functional dystonia and fixed deformities account for the majority of GPi-DBS failures in dystonia. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.

    PubMed

    Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Evaluation of Interactive Visualization on Mobile Computing Platforms for Selection of Deep Brain Stimulation Parameters

    PubMed Central

    Butson, Christopher R.; Tamm, Georg; Jain, Sanket; Fogal, Thomas; Krüger, Jens

    2012-01-01

    In recent years there has been significant growth in the use of patient-specific models to predict the effects of neuromodulation therapies such as deep brain stimulation (DBS). However, translating these models from a research environment to the everyday clinical workflow has been a challenge, primarily due to the complexity of the models and the expertise required in specialized visualization software. In this paper, we deploy the interactive visualization system ImageVis3D Mobile, which has been designed for mobile computing devices such as the iPhone or iPad, in an evaluation environment to visualize models of Parkinson’s disease patients who received DBS therapy. Selection of DBS settings is a significant clinical challenge that requires repeated revisions to achieve optimal therapeutic response, and is often performed without any visual representation of the stimulation system in the patient. We used ImageVis3D Mobile to provide models to movement disorders clinicians and asked them to use the software to determine: 1) which of the four DBS electrode contacts they would select for therapy; and 2) what stimulation settings they would choose. We compared the stimulation protocol chosen from the software versus the stimulation protocol that was chosen via clinical practice (independently of the study). Lastly, we compared the amount of time required to reach these settings using the software versus the time required through standard practice. We found that the stimulation settings chosen using ImageVis3D Mobile were similar to those used in standard of care, but were selected in drastically less time. We show how our visualization system, available directly at the point of care on a device familiar to the clinician, can be used to guide clinical decision making for selection of DBS settings. In our view, the positive impact of the system could also translate to areas other than DBS. PMID:22450824

  15. Delayed and lasting effects of deep brain stimulation on locomotion in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Beuter, Anne; Modolo, Julien

    2009-06-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by a variety of motor signs affecting gait, postural stability, and tremor. These symptoms can be improved when electrodes are implanted in deep brain structures and electrical stimulation is delivered chronically at high frequency (>100 Hz). Deep brain stimulation (DBS) onset or cessation affects PD signs with different latencies, and the long-term improvements of symptoms affecting the body axis and those affecting the limbs vary in duration. Interestingly, these effects have not been systematically analyzed and modeled. We compare these timing phenomena in relation to one axial (i.e., locomotion) and one distal (i.e., tremor) signs. We suggest that during DBS, these symptoms are improved by different network mechanisms operating at multiple time scales. Locomotion improvement may involve a delayed plastic reorganization, which takes hours to develop, whereas rest tremor is probably alleviated by an almost instantaneous desynchronization of neural activity in subcortical structures. Even if all PD patients develop both distal and axial symptoms sooner or later, current computational models of locomotion and rest tremor are separate. Furthermore, a few computational models of locomotion focus on PD and none exploring the effect of DBS was found in the literature. We, therefore, discuss a model of a neuronal network during DBS, general enough to explore the subcircuits controlling locomotion and rest tremor simultaneously. This model accounts for synchronization and plasticity, two mechanisms that are believed to underlie the two types of symptoms analyzed. We suggest that a hysteretic effect caused by DBS-induced plasticity and synchronization modulation contributes to the different therapeutic latencies observed. Such a comprehensive, generic computational model of DBS effects, incorporating these timing phenomena, should assist in developing a more efficient, faster, durable treatment of distal and axial signs in PD.

  16. Beta oscillations in freely moving Parkinson's subjects are attenuated during deep brain stimulation.

    PubMed

    Quinn, Emma J; Blumenfeld, Zack; Velisar, Anca; Koop, Mandy Miller; Shreve, Lauren A; Trager, Megan H; Hill, Bruce C; Kilbane, Camilla; Henderson, Jaimie M; Brontë-Stewart, Helen

    2015-11-01

    Investigations into the effect of deep brain stimulation (DBS) on subthalamic (STN) beta (13-30 Hz) oscillations have been performed in the perioperative period with the subject tethered to equipment. Using an embedded sensing neurostimulator, this study investigated whether beta power was similar in different resting postures and during forward walking in freely moving subjects with Parkinson's disease (PD) and whether STN DBS attenuated beta power in a voltage-dependent manner. Subthalamic local field potentials were recorded from the DBS lead, using a sensing neurostimulator (Activa(®) PC+S, Medtronic, Inc., Food and Drug Administration- Investigational Device Exemption (IDE)-, institutional review board-approved) from 15 PD subjects (30 STNs) off medication during lying, sitting, and standing, during forward walking, and during randomized periods of 140 Hz DBS at 0 V, 1 V, and 2.5/3 V. Continuous video, limb angular velocity, and forearm electromyography recordings were synchronized with neural recordings. Data were parsed to avoid any movement or electrical artifact during resting states. Beta power was similar during lying, sitting, and standing (P = 0.077, n = 28) and during forward walking compared with the averaged resting state (P = 0.466, n = 24), although akinetic rigid PD subjects tended to exhibit decreased beta power when walking. Deep brain stimulation at 3 V and at 1 V attenuated beta power compared with 0 V (P < 0.003, n = 14), and this was voltage dependent (P < 0.001). Beta power was conserved during resting and forward walking states and was attenuated in a voltage-dependent manner during 140-Hz DBS. Phenotype may be an important consideration if this is used for closed-loop DBS. © 2015 International Parkinson and Movement Disorder Society.

  17. Validation of a Portable Low-Power Deep Brain Stimulation Device Through Anxiolytic Effects in a Laboratory Rat Model.

    PubMed

    Kouzani, Abbas Z; Kale, Rajas P; Zarate-Garza, Pablo Patricio; Berk, Michael; Walder, Ken; Tye, Susannah J

    2017-09-01

    Deep brain stimulation (DBS) devices deliver electrical pulses to neural tissue through an electrode. To study the mechanisms and therapeutic benefits of deep brain stimulation, murine preclinical research is necessary. However, conducting naturalistic long-term, uninterrupted animal behavioral experiments can be difficult with bench-top systems. The reduction of size, weight, power consumption, and cost of DBS devices can assist the progress of this research in animal studies. A low power, low weight, miniature DBS device is presented in this paper. This device consists of electronic hardware and software components including a low-power microcontroller, an adjustable current source, an n-channel metal-oxide-semiconductor field-effect transistor, a coin-cell battery, electrode wires and a software program to operate the device. Evaluation of the performance of the device in terms of battery lifetime and device functionality through bench and in vivo tests was conducted. The bench test revealed that this device can deliver continuous stimulation current pulses of strength [Formula: see text], width [Formula: see text], and frequency 130 Hz for over 22 days. The in vivo tests demonstrated that chronic stimulation of the nucleus accumbens (NAc) with this device significantly increased psychomotor activity, together with a dramatic reduction in anxiety-like behavior in the elevated zero-maze test.

  18. Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain

    PubMed Central

    Shirvalkar, Prasad; Veuthey, Tess L.; Dawes, Heather E.; Chang, Edward F.

    2018-01-01

    Pain is a subjective experience that alerts an individual to actual or potential tissue damage. Through mechanisms that are still unclear, normal physiological pain can lose its adaptive value and evolve into pathological chronic neuropathic pain. Chronic pain is a multifaceted experience that can be understood in terms of somatosensory, affective, and cognitive dimensions, each with associated symptoms and neural signals. While there have been many attempts to treat chronic pain, in this article we will argue that feedback-controlled ‘closed-loop’ deep brain stimulation (DBS) offers an urgent and promising route for treatment. Contemporary DBS trials for chronic pain use “open-loop” approaches in which tonic stimulation is delivered with fixed parameters to a single brain region. The impact of key variables such as the target brain region and the stimulation waveform is unclear, and long-term efficacy has mixed results. We hypothesize that chronic pain is due to abnormal synchronization between brain networks encoding the somatosensory, affective and cognitive dimensions of pain, and that multisite, closed-loop DBS provides an intuitive mechanism for disrupting that synchrony. By (1) identifying biomarkers of the subjective pain experience and (2) integrating these signals into a state-space representation of pain, we can create a predictive model of each patient's pain experience. Then, by establishing how stimulation in different brain regions influences individual neural signals, we can design real-time, closed-loop therapies tailored to each patient. While chronic pain is a complex disorder that has eluded modern therapies, rich historical data and state-of-the-art technology can now be used to develop a promising treatment. PMID:29632482

  19. Motor and non-motor circuitry activation induced by subthalamic nucleus deep brain stimulation (STN DBS) in Parkinson’s disease patients: Intraoperative fMRI for DBS

    PubMed Central

    Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.

    2015-01-01

    Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412

  20. Motor and Nonmotor Circuitry Activation Induced by Subthalamic Nucleus Deep Brain Stimulation in Patients With Parkinson Disease: Intraoperative Functional Magnetic Resonance Imaging for Deep Brain Stimulation.

    PubMed

    Knight, Emily J; Testini, Paola; Min, Hoon-Ki; Gibson, William S; Gorny, Krzysztof R; Favazza, Christopher P; Felmlee, Joel P; Kim, Inyong; Welker, Kirk M; Clayton, Daniel A; Klassen, Bryan T; Chang, Su-youne; Lee, Kendall H

    2015-06-01

    To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. clinicaltrials.gov Identifier: NCT01809613. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  1. Clinical Phenotype Predicts Early Staged Bilateral Deep Brain Stimulation in Parkinson’s Disease

    PubMed Central

    Sung, Victor W.; Watts, Ray L.; Schrandt, Christian J.; Guthrie, Stephanie; Wang, Deli; Amara, Amy W.; Guthrie, Barton L.; Walker, Harrison C.

    2014-01-01

    Object While many centers place bilateral DBS systems simultaneously, unilateral STN DBS followed by a staged contralateral procedure has emerged as a treatment option for many patients. However little is known about whether the preoperative phenotype predicts when staged placement of a DBS electrode in the opposite subthalamic nucleus will be required. We aimed to determine whether preoperative clinical phenotype predicts early staged placement of a second subthalamic deep brain stimulation (DBS) electrode in patients who undergo unilateral subthalamic DBS for Parkinson's disease (PD). Methods Eighty-two consecutive patients with advanced PD underwent unilateral subthalamic DBS contralateral to the most affected hemibody and had at least 2 years of follow-up. Multivariate logistic regression determined preoperative characteristics that predicted staged placement of a second electrode in the opposite subthalamic nucleus. Preoperative measurements included aspects of the Unified Parkinson Disease Rating Scale (UPDRS), motor asymmetry index, and body weight. Results At 2 years follow-up, 28 of the 82 patients (34%) had undergone staged placement of a contralateral electrode while the remainder chose to continue with unilateral stimulation. Statistically significant improvements in UPDRS total and part 3 scores were retained at the end of the 2 year follow-up period in both subsets of patients. Multivariate logistic regression showed that the most important predictors for early staged placement of a second subthalamic stimulator were low asymmetry index (odds ratio 13.4; 95% confidence interval 2.8, 64.9), high tremor subscore (OR 7.2; CI 1.5, 35.0), and low body weight (OR 5.5; CI 1.4, 22.3). Conclusions This single center study provides evidence that elements of the preoperative PD phenotype predict whether patients will require early staged bilateral subthalamic DBS. These data may aid in the management of patients with advanced PD who undergo subthalamic DBS. PMID:24074493

  2. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease.

    PubMed

    Lammers, Nicolette M; Sondermeijer, Brigitte M; Twickler, Th B Marcel; de Bie, Rob M; Ackermans, Mariëtte T; Fliers, Eric; Schuurman, P Richard; La Fleur, Susanne E; Serlie, Mireille J

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.

  3. Improvements in Memory after Medial Septum Stimulation Are Associated with Changes in Hippocampal Cholinergic Activity and Neurogenesis

    PubMed Central

    Jeong, Da Un; Lee, Ji Eun; Lee, Sung Eun; Chang, Won Seok; Kim, Sung June; Chang, Jin Woo

    2014-01-01

    Deep brain stimulation (DBS) has been found to have therapeutic effects in patients with dementia, but DBS mechanisms remain elusive. To provide evidence for the effectiveness of DBS as a treatment for dementia, we performed DBS in a rat model of dementia with intracerebroventricular administration of 192 IgG-saporins. We utilized four groups of rats, group 1, unlesioned control; group 2, cholinergic lesion; group 3, cholinergic lesion plus medial septum (MS) electrode implantation (sham stimulation); group 4, cholinergic lesions plus MS electrode implantation and stimulation. During the probe test in the water maze, performance of the lesion group decreased for measures of time spent and the number of swim crossings over the previous platform location. Interestingly, the stimulation group showed an equivalent performance to the normal group on all measures. And these are partially reversed by the electrode implantation. Acetylcholinesterase activity in the hippocampus was decreased in lesion and implantation groups, whereas activity in the stimulation group was not different from the normal group. Hippocampal neurogenesis was increased in the stimulation group. Our results revealed that DBS of MS restores spatial memory after damage to cholinergic neurons. This effect is associated with an increase in hippocampal cholinergic activity and neurogenesis. PMID:25101288

  4. Deep Brain Stimulation of the Internal Globus Pallidus Improves Response Initiation and Proactive Inhibition in Patients With Parkinson’s Disease

    PubMed Central

    Pan, Yixin; Wang, Linbin; Zhang, Yingying; Zhang, Chencheng; Qiu, Xian; Tan, Yuyan; Zhou, Haiyan; Sun, Bomin; Li, Dianyou

    2018-01-01

    Background: Impulse control disorder is not uncommon in patients with Parkinson’s disease (PD) who are treated with dopamine replacement therapy and subthalamic deep brain stimulation (DBS). Internal globus pallidus (GPi)-DBS is increasingly used, but its role in inhibitory control has rarely been explored. In this study, we evaluated the effect of GPi-DBS on inhibitory control in PD patients. Methods: A stop-signal paradigm was used to test response initiation, proactive inhibition, and reactive inhibition. The subjects enrolled in the experiment were 27 patients with PD, of whom 13 had received only drug treatment and 14 had received bilateral GPi-DBS in addition to conventional medical treatment and 15 healthy individuals. Results: Our results revealed that with GPi-DBS on, patients with PD showed significantly faster responses than the other groups in trials where it was certain that no stop signal would be presented. Proactive inhibition was significantly different in the surgical patients with GPi-DBS on versus when GPi-DBS was off, in surgical patients with GPi-DBS on versus drug-treated patients, and in healthy controls versus drug-treated patients. Correlation analyses revealed that when GPi-DBS was on, there was a statistically significant moderate positive relationship between proactive inhibition and dopaminergic medication. Conclusion: GPi-DBS may lead to an increase in response initiation speed and improve the dysfunctional proactive inhibitory control observed in PD patients. Our results may help us to understand the role of the GPi in cortical-basal ganglia circuits. PMID:29681869

  5. The impact of pallidal and subthalamic deep brain stimulation on urologic function in Parkinson’s disease

    PubMed Central

    Mock, Stephen; Osborn, David J.; Brown, Elizabeth T.; Reynolds, W. Stuart; Turchan, Maxim; Pallavaram, Srivatsan; Rodriguez, William; Dmochowski, Roger; Tolleson, Christopher M.

    2016-01-01

    Objective Deep Brain Stimulation (DBS) is an established adjunctive surgical intervention for treating Parkinson’s disease (PD) motor symptoms. Both surgical targets, the globus pallidus interna (GPi) and subthalamic nucleus (STN), appear equally beneficial when treating motor symptoms but effects on nonmotor symptoms are not clear. Lower urinary tract symptoms (LUTS) are a common PD complaint. Given prior data in STN-DBS, we aimed to further explore potential benefits in LUTS in both targets. Methods We performed a prospective, non-blinded clinical trial evaluating LUTS in PD patients in both targets pre and post DBS using validated urologic surveys. Participants were already slated for DBS and target selection predetermined before study entry. LUTS was evaluated using: the American Urological Association (AUA-SI), Quality of Life score (QOL), Overactive bladder 8 questionnaire (OAB-q), and sexual health inventory for men (SHIM). Results Of 33 participants, 20 underwent STN DBS and 13 had GPi DBS. Patients demonstrated moderate baseline LUTS. The urologic QOL score significantly improved post DBS (3.24±1.77vs 2.52±1.30; p=0.03). Analyzed by target, only the STN showed significant change in QOL (vs. 2.25±1.33; p=0.04). There were no other significant differences in urologic scores post DBS noted in either target. Conclusion In PD patients with moderate LUTS, there were notable improvements in QOL for LUTS post DBS in the total sample and STN target. There may be differences in DBS effects on LUTS between targets but this will require further larger, blinded studies. PMID:27172446

  6. Deep brain stimulation in uncommon tremor disorders: indications, targets, and programming.

    PubMed

    Artusi, Carlo Alberto; Farooqi, Ashar; Romagnolo, Alberto; Marsili, Luca; Balestrino, Roberta; Sokol, Leonard L; Wang, Lily L; Zibetti, Maurizio; Duker, Andrew P; Mandybur, George T; Lopiano, Leonardo; Merola, Aristide

    2018-03-06

    In uncommon tremor disorders, clinical efficacy and optimal anatomical targets for deep brain stimulation (DBS) remain inadequately studied and insufficiently quantified. We performed a systematic review of PubMed.gov and ClinicalTrials.gov. Relevant articles were identified using the following keywords: "tremor", "Holmes tremor", "orthostatic tremor", "multiple sclerosis", "multiple sclerosis tremor", "neuropathy", "neuropathic tremor", "fragile X-associated tremor/ataxia syndrome", and "fragile X." We identified a total of 263 cases treated with DBS for uncommon tremor disorders. Of these, 44 had Holmes tremor (HT), 18 orthostatic tremor (OT), 177 multiple sclerosis (MS)-associated tremor, 14 neuropathy-associated tremor, and 10 fragile X-associated tremor/ataxia syndrome (FXTAS). DBS resulted in favorable, albeit partial, clinical improvements in HT cases receiving Vim-DBS alone or in combination with additional targets. A sustained improvement was reported in OT cases treated with bilateral Vim-DBS, while the two cases treated with unilateral Vim-DBS demonstrated only a transient effect. MS-associated tremor responded to dual-target Vim-/VO-DBS, but the inability to account for the progression of MS-associated disability impeded the assessment of its long-term clinical efficacy. Neuropathy-associated tremor substantially improved with Vim-DBS. In FXTAS patients, while Vim-DBS was effective in improving tremor, equivocal results were observed in those with ataxia. DBS of select targets may represent an effective therapeutic strategy for uncommon tremor disorders, although the level of evidence is currently in its incipient form and based on single cases or limited case series. An international registry is, therefore, warranted to clarify selection criteria, long-term results, and optimal surgical targets.

  7. Speed effects of deep brain stimulation for Parkinson's disease.

    PubMed

    Klostermann, Fabian; Wahl, Michael; Marzinzik, Frank; Vesper, Jan; Sommer, Werner; Curio, Gabriel

    2010-12-15

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) accelerates reaction time (RT) in patients with Parkinson's disease (PD), particularly in tasks in which decisions on the response side have to be made. This might indicate that DBS speeds up both motor and nonmotor operations. Therefore, we studied the extent to which modifications of different processing streams could explain changes of RT under subthalamic DBS. Ten PD patients on-DBS and off-DBS and 10 healthy subjects performed a choice-response task (CRT), requiring either right or left finger button presses. At the same time, EEG recordings were performed, so that RTs could be assessed together with lateralized readiness potentials (LRP), indicative of movement preparation. Additionally, an oddball task (OT) was run, in which right finger responses to target stimuli were recorded along with cognitive P300 responses. Generally, PD patients off-DBS had longer RTs than controls. Subthalamic DBS accelerated RT only in CRT. This could largely be explained by analog shortenings of LRP. No DBS-dependent changes were identified in OT, neither on the level of RT nor on the level of P300 latencies. It follows that RT accelerations under DBS of the STN are predominantly due to effects on the timing of motor instead of nonmotor processes. This starting point explains why DBS gains of response speed are low in tasks in which reactions are initiated from an advanced level of movement preparation (as in OT), and high whenever motor responses have to be raised from scratch (as in CRT). © 2010 Movement Disorder Society.

  8. Effects of thalamic deep brain stimulation on spontaneous language production.

    PubMed

    Ehlen, Felicitas; Vonberg, Isabelle; Kühn, Andrea A; Klostermann, Fabian

    2016-08-01

    The thalamus is thought to contribute to language-related processing, but specifications of this notion remain vague. An assessment of potential effects of thalamic deep brain stimulation (DBS) on spontaneous language may help to delineate respective functions. For this purpose, we analyzed spontaneous language samples from thirteen (six female / seven male) patients with essential tremor treated with DBS of the thalamic ventral intermediate nucleus (VIM) in their respective ON vs. OFF conditions. Samples were obtained from semi-structured interviews and examined on multidimensional linguistic levels. In the VIM-DBS ON condition, participants used a significantly higher proportion of paratactic as opposed to hypotactic sentence structures. This increase correlated negatively with the change in the more global cognitive score, which in itself did not change significantly. In conclusion, VIM-DBS appears to induce the use of a simplified syntactic structure. The findings are discussed in relation to concepts of thalamic roles in language-related cognitive behavior. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    PubMed

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  10. Deep Brain Stimulation for Essential Tremor: Aligning Thalamic and Posterior Subthalamic Targets in 1 Surgical Trajectory.

    PubMed

    Bot, Maarten; van Rootselaar, Fleur; Contarino, Maria Fiorella; Odekerken, Vincent; Dijk, Joke; de Bie, Rob; Schuurman, Richard; van den Munckhof, Pepijn

    2017-12-21

    Ventral intermediate nucleus (VIM) deep brain stimulation (DBS) and posterior subthalamic area (PSA) DBS suppress tremor in essential tremor (ET) patients, but it is not clear which target is optimal. Aligning both targets in 1 surgical trajectory would facilitate exploring stimulation of either target in a single patient. To evaluate aligning VIM and PSA in 1 surgical trajectory for DBS in ET. Technical aspects of trajectories, intraoperative stimulation findings, final electrode placement, target used for chronic stimulation, and adverse and beneficial effects were evaluated. In 17 patients representing 33 trajectories, we successfully aligned VIM and PSA targets in 26 trajectories. Trajectory distance between targets averaged 7.2 (range 6-10) mm. In all but 4 aligned trajectories, optimal intraoperative tremor suppression was obtained in the PSA. During follow-up, active electrode contacts were located in PSA in the majority of cases. Overall, successful tremor control was achieved in 69% of patients. Stimulation-induced dysarthria or gait ataxia occurred in, respectively, 56% and 44% of patients. Neither difference in tremor suppression or side effects was noted between aligned and nonaligned leads nor between the different locations of chronic stimulation. Alignment of VIM and PSA for DBS in ET is feasible and enables intraoperative exploration of both targets in 1 trajectory. This facilitates positioning of electrode contacts in both areas, where multiple effective points of stimulation can be found. In the majority of aligned leads, optimal intraoperative and chronic stimulation were located in the PSA. Copyright © 2017 by the Congress of Neurological Surgeons

  11. Stimulation of the Rat Subthalamic Nucleus is Neuroprotective Following Significant Nigral Dopamine Neuron Loss

    PubMed Central

    Spieles-Engemann, A. L.; Behbehani, M. M.; Collier, T. J.; Wohlgenant, S. L.; Steece-Collier, K.; Paumier, K.; Daley, B. F.; Gombash, S.; Madhavan, L.; Mandybur, G. T.; Lipton, J.W.; Terpstra, B.T.; Sortwell, C.E.

    2010-01-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is efficacious in treating the motor symptoms of Parkinson’s disease (PD). However, the impact of STN-DBS on the progression of PD is unknown. Previous preclinical studies have demonstrated that STN-DBS can attenuate the degeneration of a relatively intact nigrostriatal system from dopamine (DA)-depleting neurotoxins. The present study examined whether STN-DBS can provide neuroprotection in the face of prior significant nigral DA neuron loss similar to PD patients at the time of diagnosis. STN-DBS between two and four weeks after intrastriatal 6-hydroxydopamine (6-OHDA) provided significant sparing of DA neurons in the SN of rats. This effect was not due to inadvertent lesioning of the STN and was dependent upon proper electrode placement. Since STN-DBS appears to have significant neuroprotective properties, initiation of STN-DBS earlier in the course of PD may provide added neuroprotective benefits in addition to its ability to provide symptomatic relief. PMID:20307668

  12. A Computerized Microelectrode Recording to Magnetic Resonance Imaging Mapping System for Subthalamic Nucleus Deep Brain Stimulation Surgery.

    PubMed

    Dodani, Sunjay S; Lu, Charles W; Aldridge, J Wayne; Chou, Kelvin L; Patil, Parag G

    2018-06-01

    Accurate electrode placement is critical to the success of deep brain stimulation (DBS) surgery. Suboptimal targeting may arise from poor initial target localization, frame-based targeting error, or intraoperative brain shift. These uncertainties can make DBS surgery challenging. To develop a computerized system to guide subthalamic nucleus (STN) DBS electrode localization and to estimate the trajectory of intraoperative microelectrode recording (MER) on magnetic resonance (MR) images algorithmically during DBS surgery. Our method is based upon the relationship between the high-frequency band (HFB; 500-2000 Hz) signal from MER and voxel intensity on MR images. The HFB profile along an MER trajectory recorded during surgery is compared to voxel intensity profiles along many potential trajectories in the region of the surgically planned trajectory. From these comparisons of HFB recordings and potential trajectories, an estimate of the MER trajectory is calculated. This calculated trajectory is then compared to actual trajectory, as estimated by postoperative high-resolution computed tomography. We compared 20 planned, calculated, and actual trajectories in 13 patients who underwent STN DBS surgery. Targeting errors for our calculated trajectories (2.33 mm ± 0.2 mm) were significantly less than errors for surgically planned trajectories (2.83 mm ± 0.2 mm; P = .01), improving targeting prediction in 70% of individual cases (14/20). Moreover, in 4 of 4 initial MER trajectories that missed the STN, our method correctly indicated the required direction of targeting adjustment for the DBS lead to intersect the STN. A computer-based algorithm simultaneously utilizing MER and MR information potentially eases electrode localization during STN DBS surgery.

  13. Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets.

    PubMed

    Teplitzky, Benjamin A; Zitella, Laura M; Xiao, YiZi; Johnson, Matthew D

    2016-01-01

    Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with radially distributed electrodes raises practical design and stimulation programming challenges. We used computational modeling to investigate: (1) how the number of radial electrodes impact the ability to steer, shift, and sculpt a region of neural activation (RoA), and (2) which RoA features are best used in combination with machine learning classifiers to predict programming settings to target a particular area near the lead. Stimulation configurations were modeled using 27 lead designs with one to nine radially distributed electrodes. The computational modeling framework consisted of a three-dimensional finite element tissue conductance model in combination with a multi-compartment biophysical axon model. For each lead design, two-dimensional threshold-dependent RoAs were calculated from the computational modeling results. The models showed more radial electrodes enabled finer resolution RoA steering; however, stimulation amplitude, and therefore spatial extent of the RoA, was limited by charge injection and charge storage capacity constraints due to the small electrode surface area for leads with more than four radially distributed electrodes. RoA shifting resolution was improved by the addition of radial electrodes when using uniform multi-cathode stimulation, but non-uniform multi-cathode stimulation produced equivalent or better resolution shifting without increasing the number of radial electrodes. Robust machine learning classification of 15 monopolar stimulation configurations was achieved using as few as three geometric features describing a RoA. The results of this study indicate that, for a clinical-scale DBS lead, more than four radial electrodes minimally improved in the ability to steer, shift, and sculpt axonal activation around a DBS lead and a simple feature set consisting of the RoA center of mass and orientation enabled robust machine learning classification. These results provide important design constraints for future development of high-density DBS arrays.

  14. Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets

    PubMed Central

    Teplitzky, Benjamin A.; Zitella, Laura M.; Xiao, YiZi; Johnson, Matthew D.

    2016-01-01

    Deep brain stimulation (DBS) leads with radially distributed electrodes have potential to improve clinical outcomes through more selective targeting of pathways and networks within the brain. However, increasing the number of electrodes on clinical DBS leads by replacing conventional cylindrical shell electrodes with radially distributed electrodes raises practical design and stimulation programming challenges. We used computational modeling to investigate: (1) how the number of radial electrodes impact the ability to steer, shift, and sculpt a region of neural activation (RoA), and (2) which RoA features are best used in combination with machine learning classifiers to predict programming settings to target a particular area near the lead. Stimulation configurations were modeled using 27 lead designs with one to nine radially distributed electrodes. The computational modeling framework consisted of a three-dimensional finite element tissue conductance model in combination with a multi-compartment biophysical axon model. For each lead design, two-dimensional threshold-dependent RoAs were calculated from the computational modeling results. The models showed more radial electrodes enabled finer resolution RoA steering; however, stimulation amplitude, and therefore spatial extent of the RoA, was limited by charge injection and charge storage capacity constraints due to the small electrode surface area for leads with more than four radially distributed electrodes. RoA shifting resolution was improved by the addition of radial electrodes when using uniform multi-cathode stimulation, but non-uniform multi-cathode stimulation produced equivalent or better resolution shifting without increasing the number of radial electrodes. Robust machine learning classification of 15 monopolar stimulation configurations was achieved using as few as three geometric features describing a RoA. The results of this study indicate that, for a clinical-scale DBS lead, more than four radial electrodes minimally improved in the ability to steer, shift, and sculpt axonal activation around a DBS lead and a simple feature set consisting of the RoA center of mass and orientation enabled robust machine learning classification. These results provide important design constraints for future development of high-density DBS arrays. PMID:27375470

  15. Analysis of electrodes' placement and deformation in deep brain stimulation from medical images

    NASA Astrophysics Data System (ADS)

    Mehri, Maroua; Lalys, Florent; Maumet, Camille; Haegelen, Claire; Jannin, Pierre

    2012-02-01

    Deep brain stimulation (DBS) is used to reduce the motor symptoms such as rigidity or bradykinesia, in patients with Parkinson's disease (PD). The Subthalamic Nucleus (STN) has emerged as prime target of DBS in idiopathic PD. However, DBS surgery is a difficult procedure requiring the exact positioning of electrodes in the pre-operative selected targets. This positioning is usually planned using patients' pre-operative images, along with digital atlases, assuming that electrode's trajectory is linear. However, it has been demonstrated that anatomical brain deformations induce electrode's deformations resulting in errors in the intra-operative targeting stage. In order to meet the need of a higher degree of placement accuracy and to help constructing a computer-aided-placement tool, we studied the electrodes' deformation in regards to patients' clinical data (i.e., sex, mean PD duration and brain atrophy index). Firstly, we presented an automatic algorithm for the segmentation of electrode's axis from post-operative CT images, which aims to localize the electrodes' stimulated contacts. To assess our method, we applied our algorithm on 25 patients who had undergone bilateral STNDBS. We found a placement error of 0.91+/-0.38 mm. Then, from the segmented axis, we quantitatively analyzed the electrodes' curvature and correlated it with patients' clinical data. We found a positive significant correlation between mean curvature index of the electrode and brain atrophy index for male patients and between mean curvature index of the electrode and mean PD duration for female patients. These results help understanding DBS electrode' deformations and would help ensuring better anticipation of electrodes' placement.

  16. Monitoring Dopamine ex Vivo during Electrical Stimulation Using Liquid-Microjunction Surface Sampling.

    PubMed

    Gill, Emily L; Marks, Megan; Yost, Richard A; Vedam-Mai, Vinata; Garrett, Timothy J

    2017-12-19

    Liquid-microjunction surface sampling (LMJ-SS) is an ambient ionization technique based on the continuous flow of solvent using an in situ microextraction device in which solvent moves through the probe, drawing in the analytes in preparation for ionization using an electrospray ionization source. However, unlike traditional mass spectrometry (MS) techniques, it operates under ambient pressure and requires no sample preparation, thereby making it ideal for rapid sampling of thicker tissue sections for electrophysiological and other neuroscientific research studies. Studies interrogating neural synapses, or a specific neural circuit, typically employ thick, ex vivo tissue sections maintained under near-physiological conditions to preserve tissue viability and maintain the neural networks. Deep brain stimulation (DBS) is a surgical procedure used to treat the neurological symptoms that are associated with certain neurodegenerative and neuropsychiatric diseases. Parkinson's disease (PD) is a neurological disorder which is commonly treated with DBS therapy. PD is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta portion of the brain. Here, we demonstrate that the LMJ-SS methodology can provide a platform for ex vivo analysis of the brain during electrical stimulation, such as DBS. We employ LMJ-SS in the ex vivo analysis of mouse brain tissue for monitoring dopamine during electrical stimulation of the striatum region. The mouse brain tissue was sectioned fresh post sacrifice and maintained in artificial cerebrospinal fluid to create near-physiological conditions before direct sampling using LMJ-SS. A selection of metabolites, including time-sensitive metabolites involved in energy regulation in the brain, were identified using standards, and the mass spectral database mzCloud was used to assess the feasibility of the methodology. Thereafter, the intensity of m/z 154 corresponding to protonated dopamine was monitored before and after electrical stimulation of the striatum region, showing an increase in signal directly following a stimulation event. Dopamine is the key neurotransmitter implicated in PD, and although electrochemical detectors have shown such increases in dopamine post-DBS, this is the first study to do so using MS methodologies.

  17. Deep brain stimulation macroelectrodes compared to multiple microelectrodes in rat hippocampus

    PubMed Central

    Arcot Desai, Sharanya; Gutekunst, Claire-Anne; Potter, Steve M.; Gross, Robert E.

    2014-01-01

    Microelectrode arrays (wire diameter <50 μm) were compared to traditional macroelectrodes for deep brain stimulation (DBS). Understanding the neuronal activation volume may help solve some of the mysteries associated with DBS, e.g., its mechanisms of action. We used c-fos immunohistochemistry to investigate neuronal activation in the rat hippocampus caused by multi-micro- and macroelectrode stimulation. At ± 1V stimulation at 25 Hz, microelectrodes (33 μm diameter) had a radius of activation of 100 μm, which is 50% of that seen with 150 μm diameter macroelectrode stimulation. Macroelectrodes activated about 5.8 times more neurons than a single microelectrode, but displaced ~20 times more neural tissue. The sphere of influence of stimulating electrodes can be significantly increased by reducing their impedance. By ultrasonic electroplating (sonicoplating) the microelectrodes with platinum to increase their surface area and reduce their impedance by an order of magnitude, the radius of activation increased by 50 μm and more than twice the number of neurons were activated within this increased radius compared to unplated microelectrodes. We suggest that a new approach to DBS, one that uses multiple high-surface area microelectrodes, may be more therapeutically effective due to increased neuronal activation. PMID:24971060

  18. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.

    PubMed

    Jun, Xu; Luming, Li; Hongwei, Hao

    2009-01-01

    With the rapid growth of clinical application of Deep Brain Stimulation, its safety and functional concern in the electromagnetic field, another pollution becoming much more serious, has become more and more significant. Meanwhile, the measuring standards on Electromagnetic Compatibility (EMC) for DBS are still incomplete. Particularly, the knowledge of the electromagnetic field induced signals on the implanted lead is ignorant while some informal reports some side effects. This paper briefly surmised the status of EMC standards on implantable medical devices. Based on the EMC experiments of DBS device we developed, two experiments for measuring the induced voltage of the deep brain stimulator in RF electromagnetic field were reported. The measured data showed that the induced voltage in some frequency was prominent, for example over 2V. As a primary research, we think these results would be significant to cause researcher to pay more attention to the EMC safety problem and biological effects of the induced voltage in deep brain stimulation and other implantable devices.

  19. Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease.

    PubMed

    Grafton, S T; Turner, R S; Desmurget, M; Bakay, R; Delong, M; Vitek, J; Crutcher, M

    2006-04-25

    To test whether therapeutic unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson disease (PD) leads to normalization in the pattern of brain activation during movement execution and control of movement extent. Six patients with PD were imaged off medication by PET during performance of a visually guided tracking task with the DBS voltage programmed for therapeutic (effective) or subtherapeutic (ineffective) stimulation. Data from patients with PD during ineffective stimulation were compared with a group of 13 age-matched control subjects to identify sites with abnormal patterns of activation. Conjunction analysis was used to identify those areas in patients with PD where activity normalized when they were treated with effective stimulation. For movement execution, effective DBS caused an increase of activation in the supplementary motor area (SMA), superior parietal cortex, and cerebellum toward a more normal pattern. At rest, effective stimulation reduced overactivity of SMA. Therapeutic stimulation also induced reductions of movement related "overactivity" compared with healthy subjects in prefrontal, temporal lobe, and basal ganglia circuits, consistent with the notion that many areas are recruited to compensate for ineffective motor initiation. Normalization of activity related to the control of movement extent was associated with reductions of activity in primary motor cortex, SMA, and basal ganglia. Effective subthalamic nucleus stimulation leads to task-specific modifications with appropriate recruitment of motor areas as well as widespread, nonspecific reductions of compensatory or competing cortical activity.

  20. Effects of subcallosal cingulate deep brain stimulation on negative self-bias in patients with treatment-resistant depression.

    PubMed

    Hilimire, Matthew R; Mayberg, Helen S; Holtzheimer, Paul E; Broadway, James M; Parks, Nathan A; DeVylder, Jordan E; Corballis, Paul M

    2015-01-01

    The cognitive neuropsychological model states that antidepressant treatment alters emotional biases early in treatment, and after this initial change in emotional processing, environmental and social interactions allow for long-term/sustained changes in mood and behavior. Changes in negative self-bias after chronic subcallosal cingulate (SCC) deep brain stimulation (DBS) were investigated with the hypothesis that treatment would lead to changes in emotional biases followed by changes in symptom severity. Patients (N = 7) with treatment-resistant depression were assessed at three time points: pre-treatment; after one month stimulation; and after six months stimulation. The P1, P2, P3, and LPP (late positive potential) components of the event-related potential elicited by positive and negative trait adjectives were recorded in both a self-referential task and a general emotion recognition task. Results indicate that DBS reduced automatic attentional bias toward negative words early in treatment, as indexed by the P1 component, and controlled processing of negative words later in treatment, as indexed by the P3 component. Reduction in negative words endorsed as self-descriptive after six months DBS was associated with reduced depression severity after six months DBS. Change in emotional processing may be restricted to the self-referential task. Together, these results suggest that the cognitive neuropsychological model, developed to explain the time-course of monoamine antidepressant treatment, may also be used as a framework to interpret the antidepressant effects of SCC DBS. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  2. Case Study of Image-Guided Deep Brain Stimulation: Magnetic Resonance Imaging-Based White Matter Tractography Shows Differences in Responders and Nonresponders.

    PubMed

    O'Halloran, Rafael L; Chartrain, Alexander G; Rasouli, Jonathan J; Ramdhani, Ritesh A; Kopell, Brian Harris

    2016-12-01

    The caudal zona incerta (cZI) is an increasingly popular deep brain stimulation (DBS) target for the treatment of tremor-predominant disease. The dentatorubrothalamic tract (DRTT) is a white matter fiber bundle that traverses the cZI and can be identified using diffusion-weighted magnetic resonance imaging fiber tractography to ascertain its precise course. In this report, we compare 2 patient cases of cZI DBS, a responder and a nonresponder. Patient 1 (responder) is a 65-year-old man with medically refractory Parkinson disease who underwent bilateral DBS lead placement in the cZI. Postoperatively he demonstrated >90% reduction in baseline tremor and was not limited by stimulation side effects. Postoperative imaging showed correct lead placement in the cZI. Tractography revealed a DRTT within the field of stimulation, bilaterally. Patient 2 (nonresponder) is a 61-year-old man with medically refractory Parkinson disease who also underwent bilateral DBS lead placement in the cZI. He initially demonstrated >90% reduction in baseline tremor but developed disabling dystonia of his left leg and significant slurring of his speech in the months after surgery. Postoperative imaging showed bilateral lead placement in the cZI. Right-sided electrode revision was recommended and resulted in relief of tremor and reduced dystonic side effects. Tractography analysis of the original leads revealed a DRTT with an atypical anterior trajectory and a location outside the field of stimulation. Tractography analysis of the revised lead showed a DRTT within the field of stimulation. Preoperative diffusion-weighted magnetic resonance imaging fiber tractography imaging of the DRTT has the potential to improve and individualize DBS planning. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Anatomic Connections of the Subgenual Cingulate Region.

    PubMed

    Vergani, Francesco; Martino, Juan; Morris, Christopher; Attems, Johannes; Ashkan, Keyoumars; DellʼAcqua, Flavio

    2016-09-01

    The subgenual cingulate gyrus (SCG) has been proposed as a target for deep brain stimulation (DBS) in neuropsychiatric disorders, mainly major depression. Despite promising clinical results, the mechanism of action of DBS in this region is poorly understood. Knowledge of the connections of the SCG can elucidate the network involved by DBS in this area and can help refine the targeting for DBS electrode placement. To investigate the anatomic connections of the SCG region. An anatomic study of the connections of the SCG was performed on postmortem specimens and in vivo with MR diffusion imaging tractography. Postmortem dissections were performed according to the Klingler technique. Specimens were fixed in 10% formalin and frozen at -15°C for 2 weeks. After thawing, dissection was performed with blunt dissectors. Whole brain tractography was performed using spherical deconvolution tractography. Four main connections were found: (1) fibers of the cingulum, originating at the level of the SCG and terminating at the medial aspect of the temporal lobe (parahippocampal gyrus); (2) fibers running toward the base of the frontal lobe, connecting the SCG with frontopolar areas; (3) fibers running more laterally, converging onto the ventral striatum (nucleus accumbens); (4) fibers of the uncinate fasciculus, connecting the orbitofrontal with the anterior temporal region. The SCG shows a wide range of white matter connections with limbic, prefrontal, and mesiotemporal areas. These findings can help to explain the role of the SCG in DBS for psychiatric disorders. DBS, deep brain stimulationSCG, subgenual cingulate gyrus.

  4. Brain Stimulation Therapies

    MedlinePlus

    ... its use in depression remains only on an experimental basis. A review of all 22 published studies testing DBS for depression found that only three of them were of high quality because they not only had a treatment group but also a control group which did not receive DBS. The review ...

  5. Improvement of Isolated Myoclonus Phenotype in Myoclonus Dystonia after Pallidal Deep Brain Stimulation

    PubMed Central

    Ramdhani, Ritesh A.; Frucht, Steven J.; Behnegar, Anousheh; Kopell, Brian H.

    2016-01-01

    Background Myoclonus–dystonia is a condition that manifests predominantly as myoclonic jerks with focal dystonia. It is genetically heterogeneous with most mutations in the epsilon sarcoglycan gene (SGCE). In medically refractory cases, deep brain stimulation (DBS) has been shown to provide marked sustainable clinical improvement, especially in SGCE-positive patients. We present two patients with myoclonus–dystonia (one SGCE positive and the other SGCE negative) who have the isolated myoclonus phenotype and had DBS leads implanted in the bilateral globus pallidus internus (GPi). Methods We review their longitudinal Unified Myoclonus Rating Scale scores along with their DBS programming parameters and compare them with published cases in the literature. Results Both patients demonstrated complete amelioration of all aspects of myoclonus within 6–12 months after surgery. The patient with the SGCE-negative mutation responded just as well as the patient who was SGCE positive. High-frequency stimulation (130 Hz) with amplitudes greater than 2.5 V provided therapeutic benefit. Discussion This case series demonstrates that high frequency GPi-DBS is effective in treating isolated myoclonus in myoclonus–dystonia, regardless of the presence of SGCE mutation. PMID:26989574

  6. Subthalamic nucleus stimulation impairs emotional conflict adaptation in Parkinson's disease.

    PubMed

    Irmen, Friederike; Huebl, Julius; Schroll, Henning; Brücke, Christof; Schneider, Gerd-Helge; Hamker, Fred H; Kühn, Andrea A

    2017-10-01

    The subthalamic nucleus (STN) occupies a strategic position in the motor network, slowing down responses in situations with conflicting perceptual input. Recent evidence suggests a role of the STN in emotion processing through strong connections with emotion recognition structures. As deep brain stimulation (DBS) of the STN in patients with Parkinson's disease (PD) inhibits monitoring of perceptual and value-based conflict, STN DBS may also interfere with emotional conflict processing. To assess a possible interference of STN DBS with emotional conflict processing, we used an emotional Stroop paradigm. Subjects categorized face stimuli according to their emotional expression while ignoring emotionally congruent or incongruent superimposed word labels. Eleven PD patients ON and OFF STN DBS and eleven age-matched healthy subjects conducted the task. We found conflict-induced response slowing in healthy controls and PD patients OFF DBS, but not ON DBS, suggesting STN DBS to decrease adaptation to within-trial conflict. OFF DBS, patients showed more conflict-induced slowing for negative conflict stimuli, which was diminished by STN DBS. Computational modelling of STN influence on conflict adaptation disclosed DBS to interfere via increased baseline activity. © The Author (2017). Published by Oxford University Press.

  7. Self-Reported Executive Functioning in Everyday Life in Parkinson's Disease after Three Months of Subthalamic Deep Brain Stimulation.

    PubMed

    Pham, Uyen Ha Gia; Andersson, Stein; Toft, Mathias; Pripp, Are Hugo; Konglund, Ane Eidahl; Dietrichs, Espen; Malt, Ulrik Fredrik; Skogseid, Inger Marie; Haraldsen, Ira Ronit Hebolt; Solbakk, Anne-Kristin

    2015-01-01

    Objective. Studies on the effect of subthalamic deep brain stimulation (STN-DBS) on executive functioning in Parkinson's disease (PD) are still controversial. In this study we compared self-reported daily executive functioning in PD patients before and after three months of STN-DBS. We also examined whether executive functioning in everyday life was associated with motor symptoms, apathy, and psychiatric symptoms. Method. 40 PD patients were examined with the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A), the Symptom Checklist 90-Revised (SCL-90-R), and the Apathy Evaluation Scale (AES-S). Results. PD patients reported significant improvement in daily life executive functioning after 3 months of STN-DBS. Anxiety scores significantly declined, while other psychiatric symptoms remained unchanged. The improvement of self-reported executive functioning did not correlate with motor improvement after STN-DBS. Apathy scores remained unchanged after surgery. Only preoperative depressed mood had predictive value to the improvement of executive function and appears to prevent potentially favorable outcomes from STN-DBS on some aspects of executive function. Conclusion. PD patients being screened for STN-DBS surgery should be evaluated with regard to self-reported executive functioning. Depressive symptoms in presurgical PD patients should be treated. Complementary information about daily life executive functioning in PD patients might enhance further treatment planning of STN-DBS.

  8. Chronic Deep Brain Stimulation of the Hypothalamic Nucleus in Wistar Rats Alters Circulatory Levels of Corticosterone and Proinflammatory Cytokines

    PubMed Central

    Calleja-Castillo, Juan Manuel; De La Cruz-Aguilera, Dora Luz; Manjarrez, Joaquín; Velasco-Velázquez, Marco Antonio; Morales-Espinoza, Gabriel; Moreno-Aguilar, Julia; Hernández, Maria Eugenia; Aguirre-Cruz, Lucinda

    2013-01-01

    Deep brain stimulation (DBS) is a therapeutic option for several diseases, but its effects on HPA axis activity and systemic inflammation are unknown. This study aimed to detect circulatory variations of corticosterone and cytokines levels in Wistar rats, after 21 days of DBS-at the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), unilateral cervical vagotomy (UCVgX), or UCVgX plus DBS. We included the respective control (C) and sham (S) groups (n = 6 rats per group). DBS treated rats had higher levels of TNF-α (120%; P < 0.01) and IFN-γ (305%; P < 0.001) but lower corticosterone concentration (48%; P < 0.001) than C and S. UCVgX animals showed increased corticosterone levels (154%; P < 0.001) versus C and S. UCVgX plus DBS increased IL-1β (402%; P < 0.001), IL-6 (160%; P < 0.001), and corsticosterone (178%; P < 0.001 versus 48%; P < 0.001) compared with the C and S groups. Chronic DBS at VMHvl induced a systemic inflammatory response accompanied by a decrease of HPA axis function. UCVgX rats experienced HPA axis hyperactivity as result of vagus nerve injury; however, DBS was unable to block the HPA axis hyperactivity induced by unilateral cervical vagotomy. Further studies are necessary to explore these findings and their clinical implication. PMID:24235973

  9. Cognitive outcome and reliable change indices two years following bilateral subthalamic nucleus deep brain stimulation.

    PubMed

    Williams, Amy E; Arzola, Gladys Marina; Strutt, Adriana M; Simpson, Richard; Jankovic, Joseph; York, Michele K

    2011-06-01

    Subthalamic nucleus deep brain stimulation (STN-DBS) is currently the treatment of choice for medication-resistant levodopa-related motor complications in patients with Parkinson's disease (PD). While STN-DBS often results in meaningful motor improvements, consensus regarding long-term neuropsychological outcome continues to be debated. We assessed the cognitive outcomes of 19 STN-DBS patients compared to a group of 18 medically-managed PD patients on a comprehensive neuropsychological battery at baseline and two years post-surgery. Patients did not demonstrate changes in global cognitive functioning on screening measures. However, neuropsychological results revealed impairments in nonverbal recall, oral information processing speed, and lexical and semantic fluency in STN-DBS patients compared to PD controls 2 years post-surgery in these preliminary analyses. Additionally, reliable change indices revealed that approximately 50% of STN-DBS patients demonstrated significant declines in nonverbal memory and oral information processing speed compared to 25-30% of PD controls, and 26% of STN-DBS patients declined on lexical fluency compared to 11% of PD patients. Approximately 30% of both groups declined on semantic fluency. The number of STN-DBS patients who converted to dementia 2 years following surgery was not significantly different from the PD participants (32% versus 16%, respectively). Our results suggest that neuropsychological evaluations may identify possible mild cognitive changes following surgery. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Development of the Mayo Investigational Neuromodulation Control System: toward a closed-loop electrochemical feedback system for deep brain stimulation

    PubMed Central

    Chang, Su-Youne; Kimble, Christopher J.; Kim, Inyong; Paek, Seungleal B.; Kressin, Kenneth R.; Boesche, Joshua B.; Whitlock, Sidney V.; Eaker, Diane R.; Kasasbeh, Aimen; Horne, April E.; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.

    2014-01-01

    Object Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS “smart” device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). Methods To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between −0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of −0.4 V between scans. Results By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine release that was time-locked to stimulation and increased progressively with stimulation frequency. Conclusions Here, the authors report a series of proof-of-principle tests in the rat brain demonstrating MINCS to be a reliable and flexible stimulation device that, when used in conjunction with WINCS, performs wirelessly controlled stimulation concurrent with artifact-free neurochemical recording. These findings suggest that the integration of neurochemical recording with neurostimulation may be a useful first step toward the development of a closed-loop DBS system for human application. PMID:24116724

  11. Optimal control of directional deep brain stimulation in the parkinsonian neuronal network

    NASA Astrophysics Data System (ADS)

    Fan, Denggui; Wang, Zhihui; Wang, Qingyun

    2016-07-01

    The effect of conventional deep brain stimulation (DBS) on debilitating symptoms of Parkinson's disease can be limited because it can only yield the spherical field. And, some side effects are clearly induced with influencing their adjacent ganglia. Recent experimental evidence for patients with Parkinson's disease has shown that a novel DBS electrode with 32 independent stimulation source contacts can effectively optimize the clinical therapy by enlarging the therapeutic windows, when it is applied on the subthalamic nucleus (STN). This is due to the selective activation in clusters of various stimulation contacts which can be steered directionally and accurately on the targeted regions of interest. In addition, because of the serious damage to the neural tissues, the charge-unbalanced stimulation is not typically indicated and the real DBS utilizes charge-balanced bi-phasic (CBBP) pulses. Inspired by this, we computationally investigate the optimal control of directional CBBP-DBS from the proposed parkinsonian neuronal network of basal ganglia-thalamocortical circuit. By appropriately tuning stimulation for different neuronal populations, it can be found that directional steering CBBP-DBS paradigms are superior to the spherical case in improving parkinsonian dynamical properties including the synchronization of neuronal populations and the reliability of thalamus relaying the information from cortex, which is in a good agreement with the physiological experiments. Furthermore, it can be found that directional steering stimulations can increase the optimal stimulation intensity of desynchronization by more than 1 mA compared to the spherical case. This is consistent with the experimental result with showing that there exists at least one steering direction that can allow increasing the threshold of side effects by 1 mA. In addition, we also simulate the local field potential (LFP) and dominant frequency (DF) of the STN neuronal population induced by the activation of 32 different contacts with optimal stimulation intensity and immediately after the stimulation, respectively. These can reveal regional differences in pathological activity within STN nucleus. It is shown that in line with the experimental results directional steering stimulation can induce the low-amplitude LFP which implies the occurrence of desynchronizing regime, as well as the distribution of DF can locate at the 13-40 Hz of beta frequency range. Hopefully, the obtained results can provide theoretical evidences in exploring pathophysiologic activity of brain.

  12. Swallowing Quality of Life After Zona Incerta Deep Brain Stimulation.

    PubMed

    Sundstedt, Stina; Nordh, Erik; Linder, Jan; Hedström, Johanna; Finizia, Caterina; Olofsson, Katarina

    2017-02-01

    The management of Parkinson's disease (PD) has been improved, but management of signs like swallowing problems is still challenging. Deep brain stimulation (DBS) alleviates the cardinal motor symptoms and improves quality of life, but its effect on swallowing is not fully explored. The purpose of this study was to examine self-reported swallowing-specific quality of life before and after caudal zona incerta DBS (cZI DBS) in comparison with a control group. Nine PD patients (2 women and 7 men) completed the self-report Swallowing Quality of Life questionnaire (SWAL-QOL) before and 12 months after cZI DBS surgery. The postoperative data were compared to 9 controls. Median ages were 53 years (range, 40-70 years) for patients and 54 years (range, 42-72 years) for controls. No significant differences were found between the pre- or postoperative scores. The SWAL-QOL total scores did not differ significantly between PD patients and controls. The PD patients reported significantly lower scores in the burden subscale and the symptom scale. Patients with PD selected for cZI DBS showed good self-reported swallowing-specific quality of life, in many aspects equal to controls. The cZI DBS did not negatively affect swallowing-specific quality of life in this study.

  13. Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats.

    PubMed

    Guercio, Leonardo A; Schmidt, Heath D; Pierce, R Christopher

    2015-03-15

    Stimuli previously associated with drug taking can become triggers that can elicit craving and lead to relapse of drug-seeking behavior. Here, we examined the influence of deep brain stimulation (DBS) in the nucleus accumbens shell on cue-induced reinstatement of cocaine seeking, an animal model of relapse. Rats were allowed to self-administer cocaine (0.254 mg, i.v.) for 2 h daily for 21 days, with each infusion of cocaine being paired with a cue light. After 21 days of self-administration, cocaine-taking behavior was extinguished by replacing cocaine with saline in the absence of the cue light. Next, during the reinstatement phase, DBS was administered bilaterally into the nucleus accumbens shell through bipolar stainless steel electrodes immediately prior to re-exposure to cues previously associated with cocaine reinforcement. DBS continued throughout the 2 h reinstatement session. Parallel studies examined the influence of accumbens shell DBS on reinstatement induced by cues previously associated with sucrose reinforcement. Results indicated that DBS of the nucleus accumbens shell significantly attenuated cue-induced reinstatement of cocaine and sucrose seeking. Together, these results indicate that DBS of the accumbens shell disrupts cue-induced reinstatement associated with both a drug and a natural reinforcer. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Cognitive function in children with primary dystonia before and after deep brain stimulation.

    PubMed

    Owen, Tamsin; Gimeno, Hortensia; Selway, Richard; Lin, Jean-Pierre

    2015-01-01

    Dystonia is characterised by involuntary movements (twisting, writhing and jerking) and postures. The effects of deep brain stimulation (DBS) surgery on the motor aspect of primary dystonias have been well reported, however, there is a paucity of research investigating its impact on cognitive function, particularly in childhood dystonia. We performed a follow-up of cognitive function in children with primary dystonia following DBS pallidal surgery. Cognitive function was measured in a cohort of 13 children with primary or primary plus dystonia who had undergone DBS surgery using a retrospective case series design. Baseline pre-DBS neuropsychological measures were compared to scores obtained at least one year following DBS. Cognitive function was assessed using standardised measures of intellectual ability and memory. All children demonstrated improvements with regard to dystonia reduction, as measured by the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Overall, cognition remained stable following DBS in the majority of the cohort. Individual case analysis revealed improvements in some domains of cognitive function in eight members of the cohort and a deterioration of certain domains in four. Cognition largely remained stable in children with primary/primary plus dystonia following DBS surgery, although further research with a larger sample is necessary to explore this statistically. Notwithstanding the limitations of a small size, this preliminary data has potentially positive implications for the impact of DBS on cognitive functioning within a paediatric population. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Deep brain stimulation and treatment-resistant obsessive-compulsive disorder: A systematic review.

    PubMed

    Vázquez-Bourgon, Javier; Martino, Juan; Sierra Peña, María; Infante Ceberio, Jon; Martínez Martínez, M Ángeles; Ocón, Roberto; Menchón, José Manuel; Crespo Facorro, Benedicto; Vázquez-Barquero, Alfonso

    2017-07-01

    At least 10% of patients with Obsessive-compulsive Disorder (OCD) are refractory to psychopharmacological treatment. The emergence of new technologies for the modulation of altered neuronal activity in Neurosurgery, deep brain stimulation (DBS), has enabled its use in severe and refractory OCD cases. The objective of this article is to review the current scientific evidence on the effectiveness and applicability of this technique to refractory OCD. We systematically reviewed the literature to identify the main characteristics of deep brain stimulation, its use and applicability as treatment for obsessive-compulsive disorder. Therefore, we reviewed PubMed/Medline, Embase and PsycINFO databases, combining the key-words 'Deep brain stimulation', 'DBS' and 'Obsessive-compulsive disorder' 'OCS'. The articles were selected by two of the authors independently, based on the abstracts, and if they described any of the main characteristics of the therapy referring to OCD: applicability; mechanism of action; brain therapeutic targets; efficacy; side-effects; co-therapies. All the information was subsequently extracted and analysed. The critical analysis of the evidence shows that the use of DBS in treatment-resistant OCD is providing satisfactory results regarding efficacy, with assumable side-effects. However, there is insufficient evidence to support the use of any single brain target over another. Patient selection has to be done following analyses of risks/benefits, being advisable to individualize the decision of continuing with concomitant psychopharmacological and psychological treatments. The use of DBS is still considered to be in the field of research, although it is increasingly used in refractory-OCD, producing in the majority of studies significant improvements in symptomatology, and in functionality and quality of life. It is essential to implement random and controlled studies regarding its long-term efficacy, cost-risk analyses and cost/benefit. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Surgical treatment of Parkinson’s disease: Past, present, and future

    PubMed Central

    Duker, Andrew P.; Espay, Alberto J.

    2013-01-01

    Advances in functional neurosurgery have expanded the treatment of Parkinson’s disease (PD), from early lesional procedures to targeted electrical stimulation of specific nodes in the basal ganglia circuitry. Deep brain stimulation (DBS), applied to selected patients with Parkinson’s disease (PD) and difficult-to-manage motor fluctuations, yields substantial reductions in off time and dyskinesia. Outcomes for DBS targeting the two major studied targets in PD, the subthalamic nucleus (STN) and the internal segment of the globus pallidus (GPi), appear to be broadly similar and the choice is best made based on individual patient factors and surgeon preference. Emerging concepts in DBS include examination of new targets, such as the potential efficacy of pedunculopontine nucleus (PPN) stimulation for treatment of freezing and falls, the utilization of pathologic oscillations in the beta band to construct an adaptive “closed-loop” DBS, and new technologies, including segmented electrodes to steer current toward specific neural populations. PMID:23896506

  17. Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation.

    PubMed

    Hahn, Philip J; McIntyre, Cameron C

    2010-06-01

    Deep brain stimulation (DBS) of the subthlamic nucleus (STN) represents an effective treatment for medically refractory Parkinson's disease; however, understanding of its effects on basal ganglia network activity remains limited. We constructed a computational model of the subthalamopallidal network, trained it to fit in vivo recordings from parkinsonian monkeys, and evaluated its response to STN DBS. The network model was created with synaptically connected single compartment biophysical models of STN and pallidal neurons, and stochastically defined inputs driven by cortical beta rhythms. A least mean square error training algorithm was developed to parameterize network connections and minimize error when compared to experimental spike and burst rates in the parkinsonian condition. The output of the trained network was then compared to experimental data not used in the training process. We found that reducing the influence of the cortical beta input on the model generated activity that agreed well with recordings from normal monkeys. Further, during STN DBS in the parkinsonian condition the simulations reproduced the reduction in GPi bursting found in existing experimental data. The model also provided the opportunity to greatly expand analysis of GPi bursting activity, generating three major predictions. First, its reduction was proportional to the volume of STN activated by DBS. Second, GPi bursting decreased in a stimulation frequency dependent manner, saturating at values consistent with clinically therapeutic DBS. And third, ablating STN neurons, reported to generate similar therapeutic outcomes as STN DBS, also reduced GPi bursting. Our theoretical analysis of stimulation induced network activity suggests that regularization of GPi firing is dependent on the volume of STN tissue activated and a threshold level of burst reduction may be necessary for therapeutic effect.

  18. Failed DBS for palliation of visual problems in a case of oculopalatal tremor.

    PubMed

    Wang, David; Sanchez, Justin; Foote, Kelly D; Sudhyadhom, Atchar; Bhatti, M Tariq; Lewis, Steven; Okun, Michael S

    2009-01-01

    To report the results of attempted bilateral red nucleus (RN) deep brain stimulation (DBS) for the palliative treatment of visual problems associated with oculopalatal tremor (OPT). It is hypothesized that OPT results from a defect in the Guillain-Mollaret triangle, a circuit that includes connections with the dentate nucleus, the contralateral red nucleus, and the inferior olive. We present a high functioning patient (an accountant) who underwent a palliative trial of RN region DBS in an approach targeted through the subthalamic nucleus region. The aim was to reduce eye tremor and improve vision through interruption of the pathologically oscillating circuit in the Guillain-Mollaret triangle. Following informed consent, a patient with OPT (and failure of multiple classes of medication and botulinum toxin therapy) underwent placement of bilateral DBS electrodes within the region of the RN. He underwent preoperative testing and testing after 12 months of continuous stimulation with the device in monopolar, bipolar, low frequency, and high frequency settings. The patient did not demonstrate significant changes in the neurological examination following the procedure and postoperative programming sessions. Eye tremor was monitored pre- and postoperatively by ocular EMG and did not change in frequency. Following the one-year trial, stimulation was discontinued as there were no improvements in vision. DBS for OPT was not clinically effective. There were many potential reasons for failed efficacy including a failure to implant the electrodes deep and medial enough into the target region because of stimulation induced side effects. Other targets within the Guillain-Mollaret circuit (and outside of the circuit) may be more useful, though they may prove to be less safe and even more difficult to access. Better custom designed DBS leads may be needed for such small targets in critical brain regions.

  19. The effect of unilateral thalamic deep brain stimulation on the vocal dysfunction in a patient with spasmodic dysphonia: interrogating cerebellar and pallidal neural circuits.

    PubMed

    Poologaindran, Anujan; Ivanishvili, Zurab; Morrison, Murray D; Rammage, Linda A; Sandhu, Mini K; Polyhronopoulos, Nancy E; Honey, Christopher R

    2018-02-01

    Spasmodic dysphonia (SD) is a neurological disorder of the voice where a patient's ability to speak is compromised due to involuntary contractions of the intrinsic laryngeal muscles. Since the 1980s, SD has been treated with botulinum toxin A (BTX) injections into the throat. This therapy is limited by the delayed-onset of benefits, wearing-off effects, and repeated injections required every 3 months. In a patient with essential tremor (ET) and coincident SD, the authors set out to quantify the effects of thalamic deep brain stimulation (DBS) on vocal function while investigating the underlying motor thalamic circuitry. A 79-year-old right-handed woman with ET and coincident adductor SD was referred to our neurosurgical team. While primarily treating her limb tremor, the authors studied the effects of unilateral, thalamic DBS on vocal function using the Unified Spasmodic Dysphonia Rating Scale (USDRS) and voice-related quality of life (VRQOL). Since dystonia is increasingly being considered a multinodal network disorder, an anterior trajectory into the left thalamus was deliberately chosen such that the proximal contacts of the electrode were in the ventral oralis anterior (Voa) nucleus (pallidal outflow) and the distal contacts were in the ventral intermediate (Vim) nucleus (cerebellar outflow). In addition to assessing on/off unilateral thalamic Vim stimulation on voice, the authors experimentally assessed low-voltage unilateral Vim, Voa, or multitarget stimulation in a prospective, randomized, doubled-blinded manner. The evaluators were experienced at rating SD and were familiar with the vocal tremor of ET. A Wilcoxon signed-rank test was used to study the pre- and posttreatment effect of DBS on voice. Unilateral left thalamic Vim stimulation (DBS on) significantly improved SD vocal dysfunction compared with no stimulation (DBS off), as measured by the USDRS (p < 0.01) and VRQOL (p < 0.01). In the experimental interrogation, both low-voltage Vim (p < 0.01) and multitarget Vim + Voa (p < 0.01) stimulation were significantly superior to low-voltage Voa stimulation. For the first time, the effects of high-frequency stimulation of different neural circuits in SD have been quantified. Unexpectedly, focused Voa (pallidal outflow) stimulation was inferior to Vim (cerebellar outflow) stimulation despite the classification of SD as a dystonia. While only a single case, scattered reports exist on the positive effects of thalamic DBS on dysphonia. A Phase 1 pilot trial (DEBUSSY; clinical trial no. NCT02558634, clinicaltrials.gov) is underway at the authors' center to evaluate the safety and preliminary efficacy of DBS in SD. The authors hope that this current report stimulates neurosurgeons to investigate this new indication for DBS.

  20. Impulsivity and decision-making in obsessive-compulsive disorder after effective deep brain stimulation or treatment as usual.

    PubMed

    Grassi, Giacomo; Figee, Martijn; Ooms, Pieter; Righi, Lorenzo; Nakamae, Takashi; Pallanti, Stefano; Schuurman, Rick; Denys, Damiaan

    2018-06-04

    Impulsivity and impaired decision-making have been proposed as obsessive-compulsive disorder (OCD) endophenotypes, running in OCD and their healthy relatives independently of symptom severity and medication status. Deep brain stimulation (DBS) targeting the ventral limb of the internal capsule (vALIC) and the nucleus accumbens (Nacc) is an effective treatment strategy for treatment-refractory OCD. The effectiveness of vALIC-DBS for OCD has been linked to its effects on a frontostriatal network that is also implicated in reward, impulse control, and decision-making. While vALIC-DBS has been shown to restore reward dysfunction in OCD patients, little is known about the effects of vALIC-DBS on impulsivity and decision-making. The aim of the study was to compare cognitive impulsivity and decision-making between OCD patients undergoing effective vALIC-DBS or treatment as usual (TAU), and healthy controls. We used decision-making performances under ambiguity on the Iowa Gambling Task and reflection impulsivity on the Beads Task to compare 20 OCD patients effectively treated with vALIC-DBS, 40 matched OCD patients undergoing effective TAU (medication and/or cognitive behavioural therapy), and 40 healthy subjects. Effective treatment was defined as at least 35% improvement of OCD symptoms. OCD patients, irrespective of treatment modality (DBS or TAU), showed increased reflection impulsivity and impaired decision-making compared to healthy controls. No differences were observed between OCD patients treated with DBS or TAU. OCD patients effectively treated with vALIC-DBS or TAU display increased reflection impulsivity and impaired decision-making independent of the type of treatment.

  1. Deep brain stimulation and ethics: perspectives from a multisite qualitative study of Canadian neurosurgical centers.

    PubMed

    Bell, Emily; Maxwell, Bruce; McAndrews, Mary Pat; Sadikot, Abbas; Racine, Eric

    2011-12-01

    Deep brain stimulation (DBS) is an approved neurosurgical intervention for motor disorders such as Parkinson disease. The emergence of psychiatric uses for DBS combined with the fact that it is an invasive and expensive procedure creates important ethical and social challenges in the delivery of care that need further examination. We endeavored to examine health care provider perspectives on ethical and social challenges encountered in DBS. Health care providers working in Canadian DBS surgery programs participated in a semistructured interview to identify and characterize ethical and social challenges of DBS. A content analysis of the interviews was conducted. Several key ethical issues, such as patient screening and resource allocation, were identified by members of neurosurgical teams. Providers described challenges in selecting patients for DBS on the basis of unclear evidence-based guidance regarding behavioral issues or cognitive criteria. Varied contexts of resource allocation, including some very challenging schemas, were also reported. In addition, the management of patients in the community was highlighted as a source of ethical and clinical complexity, given the need for coordinated long-term care. This study provides insights into the complexity of ethical challenges that providers face in the use of DBS across different neurosurgical centers. We propose actions for health care providers for the long-term care and postoperative monitoring of patients with DBS. More data on patient perspectives in DBS would complement the understanding of key challenges, as well as contribute to best practices, for patient selection, management, and resource allocation. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Cognition following bilateral deep brain stimulation surgery of the subthalamic nucleus for Parkinson's disease.

    PubMed

    Halpern, Casey H; Rick, Jacqueline H; Danish, Shabbar F; Grossman, Murray; Baltuch, Gordon H

    2009-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by significant motor dysfunction and various non-motor disturbances, including cognitive alterations. Deep brain stimulation (DBS) is an increasingly utilized therapeutic option for patients with PD that yields remarkable success in alleviating disabling motor symptoms. DBS has additionally been associated with changes in cognition, yet the evidence is not consistent across studies. The following review sought to provide a clearer understanding of the various cognitive sequelae of bilateral subthalamic nucleus (STN) DBS while taking into account corresponding neuroanatomy and potential confounding variables. A literature search was performed using the following inclusion criteria: (1) at least five subjects followed for a mean of at least 3 months after surgery; (2) pre- and postoperative cognitive data using at least one standardized measure; (3) adequate report of study results using means and standard deviations. Two recent meta-analyses found mild post-operative impairments in verbal learning and executive function in patients who underwent DBS surgery. However, studies have revealed improved working memory and psychomotor speed in the 'on' vs 'off' stimulation state. A deficit in language may be a consequence of the surgical procedure. While cognitive decline has been observed in some domains, our review of the data suggests that STN DBS is a worthwhile and safe method to treat PD. (c) 2008 John Wiley & Sons, Ltd.

  3. Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson's Disease Model Rats

    PubMed Central

    Ryu, Sang Baek; Bae, Eun Kyung; Kim, Jinhyung; Hwang, Yong Sup; Im, Changkyun; Chang, Jin Woo; Shin, Hyung-Cheul

    2013-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been widely used as a treatment for the movement disturbances caused by Parkinson's disease (PD). Despite successful application of DBS, its mechanism of therapeutic effect is not clearly understood. Because PD results from the degeneration of dopamine neurons that affect the basal ganglia (BG) network, investigation of neuronal responses of BG neurons during STN DBS can provide informative insights for the understanding of the mechanism of therapeutic effect. However, it is difficult to observe neuronal activity during DBS because of large stimulation artifacts. Here, we report the observation of neuronal activities of the globus pallidus (GP) in normal and PD model rats during electrical stimulation of the STN. A custom artifact removal technique was devised to enable monitoring of neural activity during stimulation. We investigated how GP neurons responded to STN stimulation at various stimulation frequencies (10, 50, 90 and 130 Hz). It was observed that activities of GP neurons were modulated by stimulation frequency of the STN and significantly inhibited by high frequency stimulation above 50 Hz. These findings suggest that GP neuronal activity is effectively modulated by STN stimulation and strongly dependent on the frequency of stimulation. PMID:23946689

  4. Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson's disease.

    PubMed

    Obeso, Ignacio; Wilkinson, Leonora; Rodríguez-Oroz, Maria-Cruz; Obeso, Jose A; Jahanshahi, Marjan

    2013-05-01

    It has been proposed that the subthalamic nucleus (STN) mediates response inhibition and conflict resolution through the fronto-basal ganglia pathways. Our aim was to compare the effects of deep brain stimulation (DBS) of the STN on reactive and proactive inhibition and conflict resolution in Parkinson's disease using a single task. We used the conditional Stop signal reaction time task that provides the Stop signal reaction time (SSRT) as a measure of reactive inhibition, the response delay effect (RDE) as a measure of proactive inhibition and conflict-induced slowing (CIS) as a measure of conflict resolution. DBS of the STN significantly prolonged SSRT relative to stimulation off. However, while the RDE measure of proactive inhibition was not significantly altered by DBS of the STN, relative to healthy controls, RDE was significantly lower with DBS off but not DBS on. DBS of the STN did not alter the mean CIS but produced a significant differential effect on the slowest and fastest RTs on conflict trials, further prolonging the slowest RTs on the conflict trials relative to DBS off and to controls. These results are the first demonstration, using a single task in the same patient sample, that DBS of the STN produces differential effects on reactive and proactive inhibition and on conflict resolution, suggesting that these effects are likely to be mediated through the impact of STN stimulation on different fronto-basal ganglia pathways: hyperdirect, direct and indirect.

  5. Neuroversion: using electroconvulsive therapy as a bridge to deep brain stimulation implantation.

    PubMed

    Williams, Nolan R; Sahlem, Greg; Pannu, Jaspreet; Takacs, Istvan; Short, Baron; Revuelta, Gonzalo; George, Mark S

    2017-02-01

    Parkinson's disease (PD) is a movement disorder with significant neuropsychiatric comorbidities. Electroconvulsive therapy (ECT) is effective in treating these neuropsychiatric symptoms; however, clinicians are reluctant to use ECT in patients with deep brain stimulation (DBS) implantations for fear of damaging the device, as well as potential cognitive side effects. Right unilateral ultra-brief pulse (RUL UBP) ECT has a more favorable cognitive side-effect profile yet has never been reported in PD patients with DBS implants. We present a case series of three patients with a history of PD that all presented with psychiatric decompensation immediately prior to planned DBS surgery. All three patients had DBS electrode(s) in place at the time and an acute course of ECT was utilized in a novel method to "bridge" these individuals to neurosurgery. The patients all experienced symptom resolution (psychosis and/or depression and/or anxiety) without apparent cognitive side effects. This case series not only illustrates that right unilateral ultra-brief pulse can be utilized in patients with DBS electrodes but also illustrates that this intervention can be utilized as a neuromodulatory "bridge", where nonoperative surgical candidates with unstable psychiatric symptoms can be converted to operative candidates in a manner similar to electrical cardioversion.

  6. Ultra-high magnetic resonance imaging (MRI): a potential examination for deep brain stimulation devices and the limitation study concerning MRI-related heating injury.

    PubMed

    Chen, Ying-Chuan; Li, Jun-Ju; Zhu, Guan-Yu; Shi, Lin; Yang, An-Chao; Jiang, Yin; Zhang, Xin; Zhang, Jian-Guo

    2017-03-01

    Nowadays, the patients with deep brain stimulation (DBS) devices are restricted to undertake 1.5T magnetic resonance imaging (MRI) according to the guideline. Nevertheless, we conducted an experiment to test pathological change near the leads in different field-strength MRI. Twenty-four male New Zealand rabbits were assigned to Group 1 (G1, n = 6, 7.0T, DBS), Group 2 (G2, n = 6, 3.0T, DBS), Group 3 (G3, n = 6, 1.5T, DBS), and Group 4 (G4, n = 6, 1.5T, paracentesis). DBS leads were implanted in G1, G2 and G3, targeting left nucleus ventralis posterior thalami. Paracentesis was performed in G4. 24 h after MRI scan, all animals were killed for examining pathological alternation (at different distance from lead) via transmission electron microscopy. Our results suggest that the severity of tissue injury correlates with the distance to electrode instead of field strength of MRI. Up to now, the reason for the restriction of MRI indicated no significantly different pathological change.

  7. Endoventricular Deep Brain Stimulation of the Third Ventricle: Proof of Concept and Application to Cluster Headache.

    PubMed

    Chabardès, Stéphan; Carron, Romain; Seigneuret, Eric; Torres, Napoleon; Goetz, Laurent; Krainik, Alexandre; Piallat, Brigitte; Pham, Pascale; David, Olivier; Giraud, Pierrick; Benabid, Alim Louis

    2016-12-01

    The third ventricle (3rd V) is surrounded by centers related to satiety, homeostasis, hormones, sleep, memory, and pain. Stimulation of the wall of the 3rd V could be useful to treat disorders related to dysfunction of the hypothalamus. To assess safety and efficacy of endoventricular electrical stimulation of the hypothalamus using a floating deep brain stimulation (DBS) lead laid on the floor of the 3rd V to treat refractory cluster headaches (CH). Seven patients, aged 24 to 60 years, experiencing chronic CH (mean chronic duration 5.8 ± 2.5 years) were enrolled in this pilot, prospective, open study assessing the safety and potential efficacy of chronic DBS of the 3rd V. Number of attacks was collected during baseline and was compared with those occurring at 3, 6, and 12 months postoperation. Any side effects that occurred during or after surgery were reported. Effect on mood was assessed using the Hospital Anxiety and Depression scale during baseline and at 6 and 12 months postoperation. Insertion of the lead into the posterior 3rd V and chronic stimulation was feasible and safe in all patients. The voltage ranged from 0.9 to 2.3 volts. The most common side effect was transient trembling vision during stimulation. At 12 months, 3 of 7 patients were pain free, 2 had 90% improvement, 1 of 7 had 75% improvement, and 1 of 7 was not significantly improved. This proof of concept demonstrates the feasibility, safety, and potential efficacy of 3rd V DBS using an endoventricular road that could be applied to treat various diseases involving hypothalamic areas. CCH, chronic cluster headacheCH, cluster headacheDBS, deep brain stimulationHAD, hospital anxiety depressionONS, occipital nerve stimulationPAG, periaqueductal gray matterPH, posterior hypothalamusPVG, periventricular gray matter3rd V, third ventricle.

  8. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.

    2016-09-01

    Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.

  9. Deep brain stimulation of the subthalamic nucleus modulates sensitivity to decision outcome value in Parkinson’s disease

    PubMed Central

    Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.

    2016-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought. PMID:27624437

  10. Gait and Balance in Essential Tremor: Variable Effects of Bilateral Thalamic Stimulation

    PubMed Central

    Earhart, Gammon M.; Clark, B. Ruth; Tabbal, Samer D.; Perlmutter, Joel S.

    2010-01-01

    Essential tremor (ET) is a multi-faceted condition best known for postural and action tremor but also may include disordered gait and postural instability. Deep brain stimulation (DBS) of the ventral intermediate nucleus (VIM) of the thalamus provides substantial tremor reduction yet some patients with bilateral VIM DBS have gait and balance impairment. This study examines gait and balance performance in 13 participants with ET who have bilateral VIM DBS compared to a matched control group. Participants with ET were tested with their stimulators off (DBS OFF) and on (DBS ON). For both standard and tandem walking, participants with ET walked significantly more slowly than controls, with significantly lower cadence, spending a lower percentage of the gait cycle in single limb support and a higher percentage in double support compared to controls. Participants with ET also had significantly lower tandem and one leg stance times, Berg balance scores, balance confidence, and required significantly greater time to perform the Timed Up-and-Go relative to controls. There were no significant differences in any gait or balance measures in the DBS OFF versus DBS ON conditions, but the effects of DBS on gait and balance were highly variable among individuals. Future studies are needed to determine why some individuals experience gait and balance difficulties after bilateral thalamic DBS and others do not. A better understanding of the mechanisms underlying gait and balance impairments in those with bilateral DBS is critical in order to reduce falls and fractures in this group. PMID:19006189

  11. Deep brain stimulation of the subthalamic nucleus affects resting EEG and visual evoked potentials in Parkinson's disease.

    PubMed

    Jech, Robert; Růzicka, Evzen; Urgosík, Dusan; Serranová, Tereza; Volfová, Markéta; Nováková, Olga; Roth, Jan; Dusek, Petr; Mecír, Petr

    2006-05-01

    We studied changes of the EEG spectral power induced by deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease (PD). Also analyzed were changes of visual evoked potentials (VEP) with DBS on and off. Eleven patients with advanced PD treated with bilateral DBS STN were examined after an overnight withdrawal of L-DOPA and 2 h after switching off the neurostimulators. All underwent clinical examination followed by resting EEG and VEP recordings, a procedure repeated after DBS STN was switched on. With DBS switched on, the dominant EEG frequency increased from 9.44+/-1.3 to 9.71+/-1.3 Hz (P<0.01) while its relative spectral power dropped by 11% on average (P<0.05). Switching on the neurostimulators caused a decrease in the N70/P100 amplitude of the VEP (P<0.01), which inversely correlated with the intensity of DBS (black-and-white pattern: P<0.01; color pattern: P<0.05). Despite artifacts generated by neurostimulators, the VEP and resting EEG were suitable for the detection of effects related to DBS STN. The acceleration of dominant frequency in the alpha band may be evidence of DBS STN influence on speeding up of intracortical oscillations. The spectral power decrease, seen mainly in the fronto-central region, might reflect a desynchronization in the premotor and motor circuits, though no movement was executed. Similarly, desynchronization of the cortical activity recorded posteriorly may by responsible for the VEP amplitude decrease implying DBS STN-related influence even on the visual system. Changes in idling EEG activity observed diffusely over scalp together with involvement of the VEP suggest that the effects of DBS STN reach far beyond the motor system influencing the basic mechanisms of rhythmic cortical oscillations.

  12. Episodic memory following deep brain stimulation of the ventral anterior limb of the internal capsule and electroconvulsive therapy.

    PubMed

    Bergfeld, Isidoor O; Mantione, Mariska; Hoogendoorn, Mechteld L C; Horst, Ferdinand; Notten, Peter; Schuurman, P Richard; Denys, Damiaan

    Electroconvulsive Therapy (ECT) and Deep Brain Stimulation (DBS) are effective treatments for patients with treatment-resistant depression (TRD). However, a common side effect of ECT is autobiographical memory loss (e.g., personal experiences), whereas the impact of DBS on autobiographical memories has never been established. Comparing autobiographical memories following DBS and ECT. In two hospitals in The Netherlands, we interviewed 25 TRD patients treated with DBS of the ventral anterior limb of the internal capsule (vALIC), 14 TRD patients treated with ECT and 22 healthy controls (HC) with the Autobiographical Memory Inventory - Short Form (AMI-SF) in a prospective, longitudinal study between March 2010 and August 2016. Patients treated with DBS were interviewed before surgery, after surgery, and twice during treatment over 122.7 (SD: ±22.2) weeks. Patients treated with ECT were tested before ECT, after six right unilateral (RUL) ECT sessions and twice following ECT over 65.1 (±9.3) weeks. Controls were tested four times over 81.5 (±15.6) weeks. Compared to HC, the AMI-SF score decreased faster in both TRD groups (P < 0.001). More specifically, AMI-SF score decreased in a comparable rate as HC after DBS surgery, but decreased more during treatment. The AMI-SF decrease in the ECT group was larger than both the DBS and HC groups. Both ECT and vALIC DBS result in a faster autobiographical memory decline compared to HC. DBS might have a negative impact on autobiographical memories, although less so than ECT. Future work should dissect whether DBS or characteristics of TRD cause this decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Short- and Long-Term Outcomes of Deep Brain Stimulation in Patients 70 Years and Older with Parkinson Disease.

    PubMed

    Mathkour, Mansour; Garces, Juanita; Scullen, Tyler; Hanna, Joshua; Valle-Giler, Edison; Kahn, Lora; Arrington, Teresa; Houghton, David; Lea, Georgia; Biro, Erin; Bui, Cuong J; Sulaiman, Olawale A R; Smith, Roger D

    2017-01-01

    Parkinson disease (PD) is a common neurodegenerative disease in elderly patients that may be treated with deep brain stimulation (DBS). DBS is an accepted surgical treatment in PD patients <70 years that demonstrates marked improvement in disease symptomology. Patients ≥70 years historically have been excluded from DBS therapy. Our objective is to evaluate the short- and long-term outcomes in patients with PD ≥70 years who underwent DBS at our center. In our single-center study, we retrospectively assessed a prospective registry of patients with PD treated with DBS who were ≥70 years old at the time of their procedure. Univariate analyses and 1-sample paired t test were used to evaluate data. Motor scores were evaluated with the Unified Parkinson's Disease Rating Scale III, and the effects on medication requirements were evaluated with levodopa equivalence daily doses (LEDD). Thirty-seven patients were followed for an average of 42.2 months post-DBS. The average ages at diagnosis and at the time of DBS surgery were 63.05 years and 72.45 years, respectively. Significant reductions in the average Unified Parkinson's Disease Rating Scale III score were observed (preoperative 31.8; postoperative 15.6; P < 0.0001). Significant reductions in the average LEDD (preoperative 891.94 mg; postoperative 559.6 mg; P = 0.0008) and medication doses per day (preoperative 11.54; postoperative 7.97; P = 0.0112) also were present. DBS is effective in treating elderly patients with PD. Patients experienced improvement in motor function, LEDD, and medication doses per day after DBS. Our results suggest that DBS is an effective treatment modality in elderly patients with PD. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Sleep-wake functions and quality of life in patients with subthalamic deep brain stimulation for Parkinson’s disease

    PubMed Central

    Eugster, Lukas; Oberholzer, Michael; Debove, Ines; Lachenmayer, M. Lenard; Mathis, Johannes; Pollo, Claudio; Schüpbach, W. M. Michael; Bassetti, Claudio L.

    2017-01-01

    Objectives Sleep-wake disturbances (SWD) are frequent in Parkinson’s disease (PD). The effect of deep brain stimulation (DBS) on SWD is poorly known. In this study we examined the subjective and objective sleep-wake profile and the quality of life (QoL) of PD patients in the context of subthalamic DBS. Patients and methods We retrospectively analyzed data from PD patients and candidates for DBS in the nucleus suthalamicus (STN). Pre-DBS, sleep-wake assessments included subjective and objective (polysomnography, vigilance tests and actigraphy) measures. Post-DBS, subjective measures were collected. QoL was assessed using the Parkinson’s Disease Questionnaire (PDQ-39) and the RAND SF-36-item Health Survey (RAND SF-36). Results Data from 74 PD patients (62% male, mean age 62.2 years, SD = 8.9) with a mean UPDRS-III (OFF) of 34.2 (SD = 14.8) and 11.8 (SD = 4.5) years under PD treatment were analyzed. Pre-DBS, daytime sleepiness, apathy, fatigue and depressive symptoms were present in 49%, 34%, 38% and 25% of patients respectively but not always as co-occurring symptoms. Sleep-wake disturbances were significantly correlated with QoL scores. One year after STN DBS, motor signs, QoL and sleepiness improved but apathy worsened. Changes in QoL were associated with changes in sleepiness and apathy but baseline sleep-wake functions were not predictive of STN DBS outcome. Conclusion In PD patients presenting for STN DBS, subjective and objective sleep-wake disturbances are common and have a negative impact on QoL before and after neurosurgery. Given the current preliminary evidence, prospective observational studies assessing subjective and objective sleep-wake variables prior to and after DBS are needed. PMID:29253029

  15. Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum.

    PubMed

    Mazzone, Paolo; Vilela Filho, Osvaldo; Viselli, Fabio; Insola, Angelo; Sposato, Stefano; Vitale, Flora; Scarnati, Eugenio

    2016-07-01

    The region of the pedunculopontine tegmental nucleus (PPTg) has been proposed as a novel target for deep brain stimulation (DBS) to treat levodopa resistant symptoms in motor disorders. Recently, the anatomical organization of the brainstem has been revised and four new distinct structures have been represented in the ventrolateral pontine tegmentum area in which the PPTg was previously identified. Given this anatomical reassessment, and considering the increasing of our experience, in this paper we revisit the value of DBS applied to that area. The reappraisal of clinical outcomes in the light of this revisitation may also help to understand the consequences of DBS applied to structures located in the ventrolateral pontine tegmentum, apart from the PPTg. The implantation of 39 leads in 32 patients suffering from Parkinson's disease (PD, 27 patients) and progressive supranuclear palsy (PSP, four patients) allowed us to reach two major conclusions. The first is that the results of the advancement of our technique in brainstem DBS matches the revision of brainstem anatomy. The second is that anatomical and functional aspects of our findings may help to explain how DBS acts when applied in the brainstem and to identify the differences when it is applied either in the brainstem or in the subthalamic nucleus. Finally, in this paper we discuss how the loss of neurons in brainstem nuclei occurring in both PD and PSP, the results of intraoperative recording of somatosensory evoked potentials, and the improvement of postural control during DBS point toward the potential role of ascending sensory pathways and/or other structures in mediating the effects of DBS applied in the ventrolateral pontine tegmentum region.

  16. Skin complications in deep brain stimulation for Parkinson's disease: frequency, time course, and risk factors.

    PubMed

    Sixel-Döring, Friederike; Trenkwalder, Claudia; Kappus, Christoph; Hellwig, Dieter

    2010-02-01

    Deep brain stimulation (DBS) has been recognized as an efficacious treatment for movement disorders. Its beneficial effects however may be lost due to skin complications such as erosions or infections over the implanted foreign material. We sought to document skin complications in the entire Parkinson's disease patient population who received a DBS system at the Marburg/Kassel implantation centre since the start of our DBS program in January 2002 to analyze frequency, time course, and possible risk factors. We investigated 85 consecutive patients with Parkinson's disease (PD) from a single center/single surgeon DBS series for the occurrence of skin complications and analyzed localization, time course, and possible risk factors. Mean follow-up was 3 years (range 1-7 years). In total, 21/85 patients (24.7%) suffered a total of 30 single skin complications. Sixty percent of all incidents occurred within the first post-operative year. Forty percent of all incidents occurred later than the first year following primary implantation. Complications involved the burr hole cap in 37%, the course of the cables in 33%, and the impulse generator (IPG) site in 30%. Six of 21 patients suffered recurring skin complications. Eight patients permanently lost their DBS system. Factor analysis for age, gender, disease duration, disease severity, the incidence of hypertension or diabetes as well as a 2-day period with externalized electrodes for continuous test stimulation did not have any statistically significant impact on skin complications. We conclude that (1) PD patients have a risk for skin complications after DBS as long as the system remains in situ and (2) there are at present no identifiable risk factors for skin complications after DBS, other than PD itself.

  17. Deep Brain Stimulation in Anorexia Nervosa: Hope for the Hopeless or Exploitation of the Vulnerable? The Oxford Neuroethics Gold Standard Framework

    PubMed Central

    Park, Rebecca J.; Singh, Ilina; Pike, Alexandra C.; Tan, Jacinta O. A.

    2017-01-01

    Neurosurgical interventions for psychiatric disorders have a long and troubled history (1, 2) but have become much more refined in the last few decades due to the rapid development of neuroimaging and robotic technologies (2). These advances have enabled the design of less invasive techniques, which are more focused, such as deep brain stimulation (DBS) (3). DBS involves electrode insertion into specific neural targets implicated in pathological behavior, which are then repeatedly stimulated at adjustable frequencies. DBS has been used for Parkinson’s disease and movement disorders since the 1960s (4–6) and over the last decade has been applied to treatment-refractory psychiatric disorders, with some evidence of benefit in obsessive–compulsive disorder (OCD), major depressive disorder, and addictions (7). Recent consensus guidelines on best practice in psychiatric neurosurgery (8) stress, however, that DBS for psychiatric disorders remains at an experimental and exploratory stage. The ethics of DBS—in particular for psychiatric conditions—is debated (1, 8–10). Much of this discourse surrounds the philosophical implications of competence, authenticity, personality, or identity change following neurosurgical interventions, but there is a paucity of applied guidance on neuroethical best practice in psychiatric DBS, and health-care professionals have expressed that they require more (11). This paper aims to redress this balance by providing a practical, applied neuroethical gold standard framework to guide research ethics committees, researchers, and institutional sponsors. We will describe this as applied to our protocol for a particular research trial of DBS in severe and enduring anorexia nervosa (SE-AN) (https://clinicaltrials.gov/ct2/show/NCT01924598, unique identifier NCT01924598), but believe it may have wider application to DBS in other psychiatric disorders. PMID:28373849

  18. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice

    PubMed Central

    Hao, Shuang; Tang, Bin; Wu, Zhenyu; Ure, Kerstin; Sun, Yaling; Tao, Huifang; Gao, Yan; Patel, Akash J.; Curry, Daniel J.; Samaco, Rodney C.; Zoghbi, Huda Y.; Tang, Jianrong

    2016-01-01

    Deep brain stimulation (DBS) has improved the prospects for many individuals with diseases affecting motor control, and recently it has shown promise for improving cognitive function as well. Several studies in individuals with Alzheimer disease and in amnestic rats have demonstrated that DBS targeted to the fimbria-fornix1-3, the region that appears to regulate hippocampal activity, can mitigate defects in hippocampus-dependent memory3-5. Despite these promising results, DBS has not been tested for its ability to improve cognition in any childhood intellectual disability disorder (IDD). IDDs are a pressing concern: they affect as much as 3% of the population and involve hundreds of different genes. We hypothesized that stimulating the neural circuits that underlie learning and memory might provide a more promising route to treating these otherwise intractable disorders than seeking to adjust levels of one molecule at a time. We therefore studied the effects of forniceal DBS in a well-characterized mouse model of Rett Syndrome (RTT), which is a leading cause of intellectual disability in females. Caused by mutations that impair the function of MeCP26, RTT appears by the second year of life, causing profound impairment in cognitive, motor, and social skills along with an array of neurological features7; RTT mice, which reproduce the broad phenotype of this disorder, also show clear deficits in hippocampus-dependent learning and memory and hippocampal synaptic plasticity8-11. Here we show that forniceal DBS in RTT mice rescued contextual fear memory as well as spatial learning and memory. In parallel, forniceal DBS restored in vivo hippocampal long-term potentiation (LTP) and hippocampal neurogenesis. These results indicate that forniceal DBS might mitigate cognitive dysfunction in RTT. PMID:26469053

  19. Deep brain stimulation of the subthalamic nucleus improves temperature sensation in patients with Parkinson's disease.

    PubMed

    Maruo, Tomoyuki; Saitoh, Youichi; Hosomi, Koichi; Kishima, Haruhiko; Shimokawa, Toshio; Hirata, Masayuki; Goto, Tetsu; Morris, Shayne; Harada, Yu; Yanagisawa, Takufumi; Aly, Mohamed M; Yoshimine, Toshiki

    2011-04-01

    Patients with Parkinson's disease (PD) reportedly show deficits in sensory processing in addition to motor symptoms. However, little is known about the effects of bilateral deep brain stimulation of the subthalamic nucleus (STN-DBS) on temperature sensation as measured by quantitative sensory testing (QST). This study was designed to quantitatively evaluate the effects of STN-DBS on temperature sensation and pain in PD patients. We conducted a QST study comparing the effects of STN-DBS on cold sense thresholds (CSTs) and warm sense thresholds (WSTs) as well as on cold-induced and heat-induced pain thresholds (CPT and HPT) in 17 PD patients and 14 healthy control subjects. The CSTs and WSTs of patients were significantly smaller during the DBS-on mode when compared with the DBS-off mode (P<.001), whereas the CSTs and WSTs of patients in the DBS-off mode were significantly greater than those of healthy control subjects (P<.02). The CPTs and HPTs in PD patients were significantly larger on the more affected side than on the less affected side (P<.02). Because elevations in thermal sense and pain thresholds of QST are reportedly almost compatible with decreases in sensation, our findings confirm that temperature sensations may be disturbed in PD patients when compared with healthy persons and that STN-DBS can be used to improve temperature sensation in these patients. The mechanisms underlying our findings are not well understood, but improvement in temperature sensation appears to be a sign of modulation of disease-related brain network abnormalities. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. Subthalamic stimulation differentially modulates declarative and nondeclarative memory.

    PubMed

    Hälbig, Thomas D; Gruber, Doreen; Kopp, Ute A; Scherer, Peter; Schneider, Gerd-Helge; Trottenberg, Thomas; Arnold, Guy; Kupsch, Andreas

    2004-03-01

    Declarative memory has been reported to rely on the medial temporal lobe system, whereas non-declarative memory depends on basal ganglia structures. We investigated the functional role of the subthalamic nucleus (STN), a structure closely connected with the basal ganglia for both types of memory. Via deep brain high frequency stimulation (DBS) we manipulated neural activity of the STN in humans. We found that DBS-STN differentially modulated memory performance: declarative memory was impaired, whereas non-declarative memory was improved in the presence of STN-DBS indicating a specific role of the STN in the activation of memory systems. Copyright 2004 Lippincott Williams & Wilkins

  1. Unexpected Complications of Novel Deep Brain Stimulation Treatments: Ethical Issues and Clinical Recommendations

    PubMed Central

    Cheeran, Binith; Pugh, Jonathan; Pycroft, Laurie; Boccard, Sandra; Prangnell, Simon; Green, Alexander L.; FitzGerald, James; Savulescu, Julian; Aziz, Tipu

    2017-01-01

    Background Innovative neurosurgical treatments present a number of known risks, the natures and probabilities of which can be adequately communicated to patients via the standard procedures governing obtaining informed consent. However, due to their novelty, these treatments also come with unknown risks, which require an augmented approach to obtaining informed consent. Objective This paper aims to discuss and provide concrete procedural guidance on the ethical issues raised by serious unexpected complications of novel deep brain stimulation treatments. Approach We illustrate our analysis using a case study of the unexpected development of recurrent stereotyped events in patients following the use of deep brain stimulation (DBS) to treat severe chronic pain. Examining these unexpected complications in light of medical ethical principles, we argue that serious complications of novel DBS treatments do not necessarily make it unethical to offer the intervention to eligible patients. However, the difficulty the clinician faces in determining whether the intervention is in the patient's best interests generates reasons to take extra steps to promote the autonomous decision making of these patients. Conclusion and recommendations We conclude with clinical recommendations, including details of an augmented consent process for novel DBS treatment. PMID:28557242

  2. Deep brain stimulation for psychiatric disorders: where we are now.

    PubMed

    Cleary, Daniel R; Ozpinar, Alp; Raslan, Ahmed M; Ko, Andrew L

    2015-06-01

    Fossil records showing trephination in the Stone Age provide evidence that humans have sought to influence the mind through physical means since before the historical record. Attempts to treat psychiatric disease via neurosurgical means in the 20th century provided some intriguing initial results. However, the indiscriminate application of these treatments, lack of rigorous evaluation of the results, and the side effects of ablative, irreversible procedures resulted in a backlash against brain surgery for psychiatric disorders that continues to this day. With the advent of psychotropic medications, interest in invasive procedures for organic brain disease waned. Diagnosis and classification of psychiatric diseases has improved, due to a better understanding of psychiatric patho-physiology and the development of disease and treatment biomarkers. Meanwhile, a significant percentage of patients remain refractory to multiple modes of treatment, and psychiatric disease remains the number one cause of disability in the world. These data, along with the safe and efficacious application of deep brain stimulation (DBS) for movement disorders, in principle a reversible process, is rekindling interest in the surgical treatment of psychiatric disorders with stimulation of deep brain sites involved in emotional and behavioral circuitry. This review presents a brief history of psychosurgery and summarizes the development of DBS for psychiatric disease, reviewing the available evidence for the current application of DBS for disorders of the mind.

  3. A trial of scheduled deep brain stimulation for Tourette syndrome: moving away from continuous deep brain stimulation paradigms.

    PubMed

    Okun, Michael S; Foote, Kelly D; Wu, Samuel S; Ward, Herbert E; Bowers, Dawn; Rodriguez, Ramon L; Malaty, Irene A; Goodman, Wayne K; Gilbert, Donald M; Walker, Harrison C; Mink, Jonathan W; Merritt, Stacy; Morishita, Takashi; Sanchez, Justin C

    2013-01-01

    To collect the information necessary to design the methods and outcome variables for a larger trial of scheduled deep brain stimulation (DBS) for Tourette syndrome. We performed a small National Institutes of Health-sponsored clinical trials planning study of the safety and preliminary efficacy of implanted DBS in the bilateral centromedian thalamic region. The study used a cranially contained constant-current device and a scheduled, rather than the classic continuous, DBS paradigm. Baseline vs 6-month outcomes were collected and analyzed. In addition, we compared acute scheduled vs acute continuous vs off DBS. A university movement disorders center. Five patients with implanted DBS. A 50% improvement in the Yale Global Tic Severity Scale (YGTSS) total score. RESULTS Participating subjects had a mean age of 34.4 (range, 28-39) years and a mean disease duration of 28.8 years. No significant adverse events or hardware-related issues occurred. Baseline vs 6-month data revealed that reductions in the YGTSS total score did not achieve the prestudy criterion of a 50% improvement in the YGTSS total score on scheduled stimulation settings. However, statistically significant improvements were observed in the YGTSS total score (mean [SD] change, -17.8 [9.4]; P=.01), impairment score (-11.3 [5.0]; P=.007), and motor score (-2.8 [2.2]; P=.045); the Modified Rush Tic Rating Scale Score total score (-5.8 [2.9]; P=.01); and the phonic tic severity score (-2.2 [2.6]; P=.04). Continuous, off, and scheduled stimulation conditions were assessed blindly in an acute experiment at 6 months after implantation. The scores in all 3 conditions showed a trend for improvement. Trends for improvement also occurred with continuous and scheduled conditions performing better than the off condition. Tic suppression was commonly seen at ventral (deep) contacts, and programming settings resulting in tic suppression were commonly associated with a subjective feeling of calmness. This study provides safety and proof of concept that a scheduled DBS approach could improve motor and vocal tics in Tourette syndrome. Refinements in neurostimulator battery life, outcome measure selection, and flexibility in programming settings can be used to enhance outcomes in a future larger study. Scheduled stimulation holds promise as a potential first step for shifting movement and neuropsychiatric disorders toward more responsive neuromodulation approaches. clinicaltrials.gov Identifier: NCT01329198.

  4. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Howell, Bryan; Huynh, Brian; Grill, Warren M.

    2015-08-01

    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, the efficiency and selectivity of DBS can be improved. Our objective was to design electrode geometries that increased the efficiency and selectivity of DBS. Approach. We coupled computational models of electrodes in brain tissue with cable models of axons of passage (AOPs), terminating axons (TAs), and local neurons (LNs); we used engineering optimization to design electrodes for stimulating these neural elements; and the model predictions were tested in vivo. Main results. Compared with the standard electrode used in the Medtronic Model 3387 and 3389 arrays, model-optimized electrodes consumed 45-84% less power. Similar gains in selectivity were evident with the optimized electrodes: 50% of parallel AOPs could be activated while reducing activation of perpendicular AOPs from 44 to 48% with the standard electrode to 0-14% with bipolar designs; 50% of perpendicular AOPs could be activated while reducing activation of parallel AOPs from 53 to 55% with the standard electrode to 1-5% with an array of cathodes; and, 50% of TAs could be activated while reducing activation of AOPs from 43 to 100% with the standard electrode to 2-15% with a distal anode. In vivo, both the geometry and polarity of the electrode had a profound impact on the efficiency and selectivity of stimulation. Significance. Model-based design is a powerful tool that can be used to improve the efficiency and selectivity of DBS electrodes.

  5. The Effect of Deep Brain Stimulation Therapy on Fear-Related Capture of Attention in Parkinson's Disease and Essential Tremor: A Comparison to Healthy Individuals.

    PubMed

    Camalier, Corrie R; McHugo, Maureen; Zald, David H; Neimat, Joseph S

    2018-01-01

    In addition to motor symptoms, Parkinson's disease (PD) involves significant non-motor sequelae, including disruptions in cognitive and emotional processing. Fear recognition appears to be affected both by the course of the disease and by a common interventional therapy, deep brain stimulation of the subthalamic nucleus (STN-DBS). Here, we examined if these effects extend to other aspects of emotional processing, such as attentional capture by negative emotional stimuli. Performance on an emotional attentional blink (EAB) paradigm, a common paradigm used to study emotional capture of attention, was examined in a cohort of individuals with PD, both on and off STN-DBS therapy (n=20). To contrast effects of healthy aging and other movement disorder and DBS targets, we also examined performance in a healthy elderly (n=20) and young (n=18) sample on the same task, and a sample diagnosed with Essential Tremor (ET) undergoing therapeutic deep brain stimulation of the ventral-intermediate nucleus (VIM-DBS, n=18). All four groups showed a robust attentional capture of emotional stimuli, irrespective of aging processes, movement disorder diagnosis, or stimulation. PD patients on average had overall worse performance, but this decrement in performance was not related to the emotional capture of attention. PD patients exhibited a robust EAB, indicating that the ability of emotion to direct attention remains intact in PD. Congruent with other recent data, these findings suggest that fear recognition deficits in PD may instead reflect a highly specific problem in recognition, rather than a general deficit in emotional processing of fearful stimuli.

  6. Perioperative Brain Shift and Deep Brain Stimulating Electrode Deformation Analysis: Implications for rigid and non-rigid devices

    PubMed Central

    Sillay, Karl A.; Kumbier, L. M.; Ross, C.; Brady, M.; Alexander, A.; Gupta, A.; Adluru, N.; Miranpuri, G. S.; Williams, J. C.

    2016-01-01

    Deep brain stimulation (DBS) efficacy is related to optimal electrode placement. Several authors have quantified brain shift related to surgical targeting; yet, few reports document and discuss the effects of brain shift after insertion. Objective: To quantify brain shift and electrode displacement after device insertion. Twelve patients were retrospectively reviewed, and one post-operative MRI and one time-delayed CT were obtained for each patient and their implanted electrodes modeled in 3D. Two competing methods were employed to measure the electrode tip location and deviation from the prototypical linear implant after the resolution of acute surgical changes, such as brain shift and pneumocephalus. In the interim between surgery and a pneumocephalus free postoperative scan, electrode deviation was documented in all patients and all electrodes. Significant shift of the electrode tip was identified in rostral, anterior, and medial directions (p < 0.05). Shift was greatest in the rostral direction, measuring an average of 1.41 mm. Brain shift and subsequent electrode displacement occurs in patients after DBS surgery with the reversal of intraoperative brain shift. Rostral displacement is on the order of the height of one DBS contact. Further investigation into the time course of intraoperative brain shift and its potential effects on procedures performed with rigid and non-rigid devices in supine and semi-sitting surgical positions is needed. PMID:23010803

  7. Deep brain stimulation to reduce sexual drive.

    PubMed

    Fuss, Johannes; Auer, Matthias K; Biedermann, Sarah V; Briken, Peer; Hacke, Werner

    2015-11-01

    To date there are few treatment options to reduce high sexual drive or sexual urges in paraphilic patients with a risk for sexual offending. Pharmacological therapy aims to reduce sexual drive by lowering testosterone at the cost of severe side effects. We hypothesize that high sexual drive could also be reduced with deep brain stimulation (DBS) of circuits that generate sexual drive. This approach would help to avoid systemic side effects of antiandrogenic drug therapies. So far the best investigated target to reduce sexual drive is the ventromedial hypothalamus, which was lesioned unilaterally and bilaterally by stereotaxic interventions in paraphilic patients in the 1970s. Here, we discuss DBS as a treatment strategy in patients with severe paraphilic disorders with a serious risk of sexual offending. There are profound ethical and practical issues associated with DBS treatment of paraphilic patients that must be solved before considering such a treatment approach.

  8. Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in Parkinson disease: implications for targeting in deep brain stimulation.

    PubMed

    Sweet, Jennifer A; Walter, Benjamin L; Gunalan, Kabilar; Chaturvedi, Ashutosh; McIntyre, Cameron C; Miller, Jonathan P

    2014-04-01

    Stimulation of white matter pathways near targeted structures may contribute to therapeutic effects of deep brain stimulation (DBS) for patients with Parkinson disease (PD). Two tracts linking the basal ganglia and cerebellum have been described in primates: the subthalamopontocerebellar tract (SPCT) and the dentatothalamic tract (DTT). The authors used fiber tractography to evaluate white matter tracts that connect the cerebellum to the region of the basal ganglia in patients with PD who were candidates for DBS. Fourteen patients with advanced PD underwent 3-T MRI, including 30-directional diffusion-weighted imaging sequences. Diffusion tensor tractography was performed using 2 regions of interest: ipsilateral subthalamic and red nuclei, and contralateral cerebellar hemisphere. Nine patients underwent subthalamic DBS, and the course of each tract was observed relative to the location of the most effective stimulation contact and the volume of tissue activated. In all patients 2 distinct tracts were identified that corresponded closely to the described anatomical features of the SPCT and DTT, respectively. The mean overall distance from the active contact to the DTT was 2.18 ± 0.35 mm, and the mean proportional distance relative to the volume of tissue activated was 1.35 ± 0.48. There was a nonsignificant trend toward better postoperative tremor control in patients with electrodes closer to the DTT. The SPCT and the DTT may be related to the expression of symptoms in PD, and this may have implications for DBS targeting. The use of tractography to identify the DTT might assist with DBS targeting in the future.

  9. Perceptions of living with a device-based treatment: an account of patients treated with deep brain stimulation for Parkinson's disease.

    PubMed

    Hariz, Gun-Marie; Hamberg, Katarina

    2014-04-01

    Deep brain stimulation (DBS) is an established treatment for Parkinson's disease. Little is known about patients' own perceptions of living with the implanted hardware. We aimed to explore patients' own perceptions of living with an implanted device. Semistructured interviews with open-ended questions were conducted with 42 patients (11 women) who had been on DBS for a mean of three years. The questions focused on patients' experiences of living with and managing the DBS device. The interviews were transcribed verbatim and analyzed according to the difference and similarity technique in grounded theory. From the patients' narratives concerning living with and managing the DBS device, the following four categories emerged: 1) The device-not a big issue: although the hardware was felt inside the body and also visible from outside, the device as such was not a big issue. 2) Necessary carefulness: Patients expressed the need to be careful when performing certain daily activities in order not to dislocate or harm the device. 3) Continuous need for professional support: Most patients relied solely on professionals for fine-tuning the stimulation rather than using their handheld controller, even if this entailed numerous visits to a remote hospital. 4) Balancing symptom relief and side-effects: Patients expressed difficulties in finding the optimal match between decrease of symptoms and stimulation-induced side-effects. The in-depth interviews of patients on chronic DBS about their perceptions of living with an implanted device provided useful insights that would be difficult to capture by quantitative evaluations. © 2013 International Neuromodulation Society.

  10. Measurements of RF heating during 3.0-T MRI of a pig implanted with deep brain stimulator.

    PubMed

    Gorny, Krzysztof R; Presti, Michael F; Goerss, Stephan J; Hwang, Sun C; Jang, Dong-Pyo; Kim, Inyong; Min, Hoon-Ki; Shu, Yunhong; Favazza, Christopher P; Lee, Kendall H; Bernstein, Matt A

    2013-06-01

    To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system. DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0-T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5 T and, at both field strengths, in a phantom. At 3.0T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in vivo heating differed from those obtained in the phantom. The 3.0-T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46 °C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0-T MRI in patients with DBS. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Cost-Effectiveness of Deep Brain Stimulation for Advanced Parkinson's Disease in the United States.

    PubMed

    Pietzsch, Jan B; Garner, Abigail M; Marks, William J

    2016-10-01

    Deep brain stimulation (DBS), which uses an implantable device to modulate brain activity, is clinically superior to medical therapy for treating advanced Parkinson's disease (PD). We studied the cost-effectiveness of DBS in conjunction with medical therapy compared to best medical therapy (BMT) alone, using the latest clinical and cost data for the U.S. healthcare system. We used a decision-analytic state-transition (Markov) model to project PD progression and associated costs for the two treatment strategies. We estimated the discounted incremental cost-effectiveness ratio (ICER) in U.S. dollars per quality-adjusted life-year (QALY) from the Medicare payer perspective, considering a ten-year horizon, and evaluated the robustness of our projections through extensive deterministic sensitivity analyses. Over ten years, DBS treatment led to discounted total costs of $130,510 compared to $91,026 for BMT and added 1.69 QALYs more than BMT, resulting in an ICER of $23,404 per QALY. This ICER was relatively insensitive to variations in input parameters, with neurostimulator replacement, costs for DBS implantation, and costs for treatment of disease-related falls having the greatest effects. Across all investigated scenarios, including a five-year horizon, ICERs remained under $50,000 per QALY. Longer follow-up periods and younger treatment age were associated with greater cost-effectiveness. DBS is a cost-effective treatment strategy for advanced PD in the U.S. healthcare system across a wide range of assumptions. DBS yields substantial improvements in health-related quality of life at a value profile that compares favorably to other well-accepted therapies. © 2016 International Neuromodulation Society.

  12. Measurements of RF Heating during 3.0T MRI of a Pig Implanted with Deep Brain Stimulator

    PubMed Central

    Gorny, Krzysztof R; Presti, Michael F; Goerss, Stephan J; Hwang, Sun C; Jang, Dong-Pyo; Kim, Inyong; Shu, Yunhong; Favazza, Christopher P; Lee, Kendall H; Bernstein, Matt A

    2012-01-01

    Purpose To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system. Materials and Methods DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 W/kg and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5T and, at both field strengths, in a phantom. Results At 3.0T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in-vivo heating differed from those obtained in the phantom. Conclusion The 3.0T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46°C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0T MRI in patients with DBS. PMID:23228310

  13. Cognitive assessment instruments in Parkinson's disease patients undergoing deep brain stimulation

    PubMed Central

    Romann, Aline Juliane; Dornelles, Silvia; Maineri, Nicole de Liz; Rieder, Carlos Roberto de Mello; Olchik, Maira Rozenfeld

    2012-01-01

    Deep Brain Stimulation (DBS) is a widely used surgical technique in individuals with Parkinson's disease (PD) that can lead to significant reductions in motor symptoms. Objectives To determine, from publications, the most commonly used instruments for cognitive evaluation of individuals with PD undergoing DBS. Methods A systematic review of the databases: PubMed, Medline, EBECS, Scielo and LILACS was conducted, using the descriptors "Deep Brain Stimulation", "Verbal Fluency", "Parkinson Disease", "Executive Function", "Cognition" and "Cognitive Assessment" in combination. Results The Verbal Fluency test was found to be the most used instrument for this investigation in the studies, followed by the Boston Naming Test. References to the Stroop Test, Trail Making Test, and Rey's Auditory Verbal Learning Test were also found. Conclusions The validation of instruments for this population is needed as is the use of batteries offering greater specificity and sensitivity for the detection of cognitive impairment. PMID:29213766

  14. In Parkinson's disease STN stimulation enhances responsiveness of movement initiation speed to high reward value.

    PubMed

    Kojovic, Maja; Higgins, Andrea; Jahanshahi, Marjan

    2016-08-01

    The subthalamic nucleus (STN) is part of the motor, associative, and limbic cortico-striatal circuits through which it can influence a range of behaviours, with preclinical and clinical evidence suggesting that the STN is involved in motivational modulation of behaviour. In the present study, we investigated if in Parkinson's disease (PD) motivational modulation of movement speed is altered by deep brain stimulation (DBS) of the STN (STN-DBS). We studied the effect of monetary incentive on speed of movement initiation and execution in a computer-based simple reaction time task in 10 operated patients with Parkinson's disease using a STN DBS ON/OFF design and also in 11 healthy participants. Prospect of reward improved speed of movement initiation in PD patients both with STN-DBS ON and OFF. However, only with STN-DBS ON, the patients showed greater speeding of initiation time with higher reward magnitude, suggesting enhanced responsivity to higher reward value. Also, on the rewarded trials, PD patients ON stimulation made more anticipation errors than on unrewarded trials, reflecting a propensity to impulsive responses triggered by prospect of reward by subthalamic stimulation. The motivational modulation of movement speed was preserved and enhanced in PD with STN-DBS. Motivational modulation of movement speed in PD is maintained with STN-DBS, with STN stimulation having a further energizing effect on movement initiation in response to greater incentive value. Our results suggest that STN plays a role in integrating motivational influences into motor action, which may explain some previous reports of STN-DBS induced impulsivity with increased motivational salience of stimuli. Copyright © 2016. Published by Elsevier Ltd.

  15. Deep brain stimulation for movement disorders. Considerations on 276 consecutive patients.

    PubMed

    Franzini, Angelo; Cordella, Roberto; Messina, Giuseppe; Marras, Carlo Efisio; Romito, Luigi Michele; Carella, Francesco; Albanese, Alberto; Rizzi, Michele; Nardocci, Nardo; Zorzi, Giovanna; Zekay, Edvin; Broggi, Giovanni

    2011-10-01

    The links between Stn DBS and advanced Parkinson disease, and between GPi DBS and dystonia are nearly universally accepted by the neurologists and neurosurgeons. Nevertheless, in some conditions, targets such as the ventral thalamus and the Zona Incerta may be considered to optimize the results and avoid the side effects. Positive and negative aspects of current DBS treatments justify the research of new targets, new stimulation programs and new hardware. Since 1993, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan, 580 deep brain electrodes were implanted in 332 patients. 276 patients were affected by movement disorders. The DBS targets included Stn, GPi, Voa, Vop, Vim, CM-pf, cZi, IC. The long-term follow-up is reported and related to the chosen target. DBS gave a new therapeutic option to patients affected by severe movement disorders, and in some cases resolved life-threatening pathological conditions that would otherwise result in the death of the patient, such as in status dystonicus, and post-stroke hemiballismus. Nevertheless, the potential occurrence of severe complications still limit a wider use of DBS. At today, the use of DBS in severe movement disorders is strongly positive even if further investigations and studies are needed to unveil potential new applications, and to refine the selection criteria for the actual indications and targets. The experience of different targets may be useful to guide and tailor the target choice to the individual clinical condition.

  16. The effect of deep brain stimulation on the non-motor symptoms of Parkinson’s disease: a critical review of the current evidence

    PubMed Central

    Kurtis, Mónica M; Rajah, Thadshani; Delgado, Luisa F; Dafsari, Haidar S

    2017-01-01

    The benefit of deep brain stimulation (DBS) in controlling the motor symptoms of Parkinson’s disease is well established, however, the impact on the non-motor symptoms (NMS) remains to be elucidated, although the growing investigative efforts are promising. This article reviews the reported data and considers the level of evidence available with regard to the effect of DBS on NMS total burden and on the cognitive, neuropsychiatric, sleep, pain, dysautonomic, and weight domains. Multiple case series suggest that DBS improves the burden of NMS by reducing prevalence, intensity, and non-motor fluctuations. There is level I evidence on the effect of DBS on cognition and mood. Slight cognitive decline has been reported in most class I studies, although the functional effect is probably minimal. Two randomized prospective studies reported no change in depression while improvement of anxiety has been reported by a class I trial. Prospective cohort studies point to improvement of hyperdopaminergic behaviors, such as impulse control disorders, while others report that hypodopaminergic states, like apathy, can appear after DBS. There is only class III evidence supporting the benefit of DBS on other NMS such as nocturnal sleep, pain, dysautonomia (urinary, gastrointestinal, cardiovascular, and sweating), and weight loss. Although preliminary results are promising, randomized prospectively controlled trials with NMS as primary end points are necessary to further explore the effect of DBS on these often invalidating symptoms and offer conclusions about efficacy. PMID:28725706

  17. The effect of deep brain stimulation on the non-motor symptoms of Parkinson's disease: a critical review of the current evidence.

    PubMed

    Kurtis, Mónica M; Rajah, Thadshani; Delgado, Luisa F; Dafsari, Haidar S

    2017-01-01

    The benefit of deep brain stimulation (DBS) in controlling the motor symptoms of Parkinson's disease is well established, however, the impact on the non-motor symptoms (NMS) remains to be elucidated, although the growing investigative efforts are promising. This article reviews the reported data and considers the level of evidence available with regard to the effect of DBS on NMS total burden and on the cognitive, neuropsychiatric, sleep, pain, dysautonomic, and weight domains. Multiple case series suggest that DBS improves the burden of NMS by reducing prevalence, intensity, and non-motor fluctuations. There is level I evidence on the effect of DBS on cognition and mood. Slight cognitive decline has been reported in most class I studies, although the functional effect is probably minimal. Two randomized prospective studies reported no change in depression while improvement of anxiety has been reported by a class I trial. Prospective cohort studies point to improvement of hyperdopaminergic behaviors, such as impulse control disorders, while others report that hypodopaminergic states, like apathy, can appear after DBS. There is only class III evidence supporting the benefit of DBS on other NMS such as nocturnal sleep, pain, dysautonomia (urinary, gastrointestinal, cardiovascular, and sweating), and weight loss. Although preliminary results are promising, randomized prospectively controlled trials with NMS as primary end points are necessary to further explore the effect of DBS on these often invalidating symptoms and offer conclusions about efficacy.

  18. Subthalamic deep brain stimulation modulates conscious perception of sensory function in Parkinson's disease.

    PubMed

    Cury, Rubens G; Galhardoni, Ricardo; Teixeira, Manoel J; Dos Santos Ghilardi, Maria G; Silva, Valquiria; Myczkowski, Martin L; Marcolin, Marco A; Barbosa, Egberto R; Fonoff, Erich T; Ciampi de Andrade, Daniel

    2016-12-01

    Subthalamic deep brain stimulation (STN-DBS) is used to treat refractory motor complications in Parkinson disease (PD), but its effects on nonmotor symptoms remain uncertain. Up to 80% of patients with PD may have pain relief after STN-DBS, but it is unknown whether its analgesic properties are related to potential effects on sensory thresholds or secondary to motor improvement. We have previously reported significant and long-lasting pain relief after DBS, which did not correlate with motor symptomatic control. Here we present secondary data exploring the effects of DBS on sensory thresholds in a controlled way and have explored the relationship between these changes and clinical pain and motor improvement after surgery. Thirty-seven patients were prospectively evaluated before STN-DBS and 12 months after the procedure compared with healthy controls. Compared with baseline, patients with PD showed lower thermal and mechanical detection and higher cold pain thresholds after surgery. There were no changes in heat and mechanical pain thresholds. Compared with baseline values in healthy controls, patients with PD had higher thermal and mechanical detection thresholds, which decreased after surgery toward normalization. These sensory changes had no correlation with motor or clinical pain improvement after surgery. These data confirm the existence of sensory abnormalities in PD and suggest that STN-DBS mainly influenced the detection thresholds rather than painful sensations. However, these changes may depend on the specific effects of DBS on somatosensory loops with no correlation to motor or clinical pain improvement.

  19. Simultaneous bilateral stereotactic procedure for deep brain stimulation implants: a significant step for reducing operation time.

    PubMed

    Fonoff, Erich Talamoni; Azevedo, Angelo; Angelos, Jairo Silva Dos; Martinez, Raquel Chacon Ruiz; Navarro, Jessie; Reis, Paul Rodrigo; Sepulveda, Miguel Ernesto San Martin; Cury, Rubens Gisbert; Ghilardi, Maria Gabriela Dos Santos; Teixeira, Manoel Jacobsen; Lopez, William Omar Contreras

    2016-07-01

    OBJECT Currently, bilateral procedures involve 2 sequential implants in each of the hemispheres. The present report demonstrates the feasibility of simultaneous bilateral procedures during the implantation of deep brain stimulation (DBS) leads. METHODS Fifty-seven patients with movement disorders underwent bilateral DBS implantation in the same study period. The authors compared the time required for the surgical implantation of deep brain electrodes in 2 randomly assigned groups. One group of 28 patients underwent traditional sequential electrode implantation, and the other 29 patients underwent simultaneous bilateral implantation. Clinical outcomes of the patients with Parkinson's disease (PD) who had undergone DBS implantation of the subthalamic nucleus using either of the 2 techniques were compared. RESULTS Overall, a reduction of 38.51% in total operating time for the simultaneous bilateral group (136.4 ± 20.93 minutes) as compared with that for the traditional consecutive approach (220.3 ± 27.58 minutes) was observed. Regarding clinical outcomes in the PD patients who underwent subthalamic nucleus DBS implantation, comparing the preoperative off-medication condition with the off-medication/on-stimulation condition 1 year after the surgery in both procedure groups, there was a mean 47.8% ± 9.5% improvement in the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) score in the simultaneous group, while the sequential group experienced 47.5% ± 15.8% improvement (p = 0.96). Moreover, a marked reduction in the levodopa-equivalent dose from preoperatively to postoperatively was similar in these 2 groups. The simultaneous bilateral procedure presented major advantages over the traditional sequential approach, with a shorter total operating time. CONCLUSIONS A simultaneous stereotactic approach significantly reduces the operation time in bilateral DBS procedures, resulting in decreased microrecording time, contributing to the optimization of functional stereotactic procedures.

  20. Eight-hours adaptive deep brain stimulation in patients with Parkinson disease

    PubMed Central

    Arlotti, Mattia; Marceglia, Sara; Foffani, Guglielmo; Volkmann, Jens; Lozano, Andres M.; Moro, Elena; Cogiamanian, Filippo; Prenassi, Marco; Bocci, Tommaso; Cortese, Francesca; Rampini, Paolo; Barbieri, Sergio

    2018-01-01

    Objectives To assess the feasibility and clinical efficacy of local field potentials (LFPs)–based adaptive deep brain stimulation (aDBS) in patients with advanced Parkinson disease (PD) during daily activities in an open-label, nonblinded study. Methods We monitored neurophysiologic and clinical fluctuations during 2 perioperative experimental sessions lasting for up to 8 hours. On the first day, the patient took his/her daily medication, while on the second, he/she additionally underwent subthalamic nucleus aDBS driven by LFPs beta band power. Results The beta band power correlated in both experimental sessions with the patient's clinical state (Pearson correlation coefficient r = 0.506, p < 0.001, and r = 0.477, p < 0.001). aDBS after LFP changes was effective (30% improvement without medication [3-way analysis of variance, interaction day × medication p = 0.036; 30.5 ± 3.4 vs 22.2 ± 3.3, p = 0.003]), safe, and well tolerated in patients performing regular daily activities and taking additional dopaminergic medication. aDBS was able to decrease DBS amplitude during motor “on” states compared to “off” states (paired t test p = 0.046), and this automatic adjustment of STN-DBS prevented dyskinesias. Conclusions The main findings of our study are that aDBS is technically feasible in everyday life and provides a safe, well-tolerated, and effective treatment method for the management of clinical fluctuations. Classification of evidence This study provides Class IV evidence that for patients with advanced PD, aDBS is safe, well tolerated, and effective in controlling PD motor symptoms. PMID:29444973

  1. A decade of emerging indications: deep brain stimulation in the United States.

    PubMed

    Youngerman, Brett E; Chan, Andrew K; Mikell, Charles B; McKhann, Guy M; Sheth, Sameer A

    2016-08-01

    OBJECTIVE Deep brain stimulation (DBS) is an emerging treatment option for an expanding set of neurological and psychiatric diseases. Despite growing enthusiasm, the patterns and implications of this rapid adoption are largely unknown. National trends in DBS surgery performed for all indications between 2002 and 2011 are reported. METHODS Using a national database of hospital discharges, admissions for DBS for 14 indications were identified and categorized as either FDA approved, humanitarian device exempt (HDE), or emerging. Trends over time were examined, differences were analyzed by univariate analyses, and outcomes were analyzed by hierarchical regression analyses. RESULTS Between 2002 and 2011, there were an estimated 30,490 discharges following DBS for approved indications, 1647 for HDE indications, and 2014 for emerging indications. The volume for HDE and emerging indications grew at 36.1% annually in comparison with 7.0% for approved indications. DBS for emerging indications occurred at hospitals with more neurosurgeons and neurologists locally, but not necessarily at those with the highest DBS caseloads. Patients treated for HDE and emerging indications were younger with lower comorbidity scores. HDE and emerging indications were associated with greater rates of reported complications, longer lengths of stay, and greater total costs. CONCLUSIONS DBS for HDE and emerging indications underwent rapid growth in the last decade, and it is not exclusively the most experienced DBS practitioners leading the charge to treat the newest indications. Surgeons may be selecting younger and healthier patients for their early experiences. Differences in reported complication rates warrant further attention and additional costs should be anticipated as surgeons gain experience with new patient populations and targets.

  2. External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network.

    PubMed

    Vitek, Jerrold L; Zhang, Jianyu; Hashimoto, Takao; Russo, Gary S; Baker, Kenneth B

    2012-01-01

    Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) and the subthalamic nucleus (STN) are effective for the treatment of advanced Parkinson's disease (PD). We have shown previously that DBS of the external segment of the globus pallidus (GPe) is associated with improvements in parkinsonian motor signs; however, the mechanism of this effect is not known. In this study, we extend our findings on the effect of STN and GPi DBS on neuronal activity in the basal ganglia thalamic network to include GPe DBS using the 1-methyl-4-phenyl-1.2.3.6-tetrahydropyridine (MPTP) monkey model. Stimulation parameters that improved bradykinesia were associated with changes in the pattern and mean discharge rate of neuronal activity in the GPi, STN, and the pallidal [ventralis lateralis pars oralis (VLo) and ventralis anterior (VA)] and cerebellar [ventralis lateralis posterior pars oralis (VPLo)] receiving areas of the motor thalamus. Population post-stimulation time histograms revealed a complex pattern of stimulation-related inhibition and excitation for the GPi and VA/VLo, with a more consistent pattern of inhibition in STN and excitation in VPLo. Mean discharge rate was reduced in the GPi and STN and increased in the VPLo. Effective GPe DBS also reduced bursting in the STN and GPi. These data support the hypothesis that therapeutic DBS activates output from the stimulated structure and changes the temporal pattern of neuronal activity throughout the basal ganglia thalamic network and provide further support for GPe as a potential therapeutic target for DBS in the treatment of PD. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Impulsive and compulsive behaviors in Parkinson Study Group (PSG) centers performing deep brain stimulation surgery.

    PubMed

    Hack, Nawaz; Akbar, Umer; Thompson-Avila, Amanda; Fayad, Sarah M; Hastings, Erin M; Moro, Elena; Nestor, Kelsey; Ward, Herbert; York, Michele; Okun, Michael S

    2014-01-01

    Impulse control disorders (ICDs), dopamine dysregulation syndrome (DDS), and dopamine agonist withdrawal syndrome (DAWS) have been reported commonly in Parkinson's disease (PD) populations. The treatment approaches may be widely variable and there is not much information on these syndromes in the setting of deep brain stimulation (DBS). To evaluate (1) ICDs, DAWS and DDS pre- and post DBS in PD and (2) to investigate pre-DBS treatment strategies regarding these behaviors among Parkinson Study Group (PSG) centers. Forty-eight PSG centers were surveyed on ICDs, DAWS and DDS, as well as on potential relationships to DBS and treatment approaches. Sixty-seven percent of PSG centers reported that they served a population of over 500 PD patients per year, and 94% of centers performed DBS surgery. Most centers (92%) reported screening for ICDs, DAWS and DDS. Of the centers screening for these symptoms, 13% reported always employing a formal battery of pre-operative tests, 46% of sites inconsistently used a formal battery, while 23% of sites reported never using a formal battery to screen for these symptoms. The estimated numbers of centers observing ICDs, DAWS and DDS pre-operatively in individuals with PD were 71%, 69%, and 69%, respectively. PSG DBS centers observing at least one case of a new de novo occurrence of an ICD, DAWS or DDS after DBS surgery were 67%, 65% and 65%, respectively. The results suggest that addiction-like syndromes and withdrawal syndromes are prevalent in expert PSG centers performing DBS. Most centers reported screening for these issues without the use of a formal battery, and there were a large number of centers reporting ICDs, DAWS and DDS post-DBS. A single treatment strategy did not emerge.

  4. Deep Brain Stimulation for Parkinson Disease in the Philippines: Outcomes of the Philippine Movement Disorder Surgery Center.

    PubMed

    Diestro, Jose Danilo B; Vesagas, Theodor S; Teleg, Rosalia A; Aguilar, Jose A; Anlacan, Joseph P; Jamora, Roland Dominic G

    2018-04-28

    Deep brain stimulation (DBS) is an established treatment modality for Parkinson disease (PD). The first DBS for PD in the Philippines was performed at the Philippine Movement Disorder Surgery Center in 2006. There are no Philippine data on DBS for PD. We aim to determine the motor improvement and reduction in medication dosage of all patients with PD who underwent DBS at the Philippine Movement Disorder Surgery Center. This is a retrospective study of all patients with PD (n = 17) who underwent DBS from 2006 to 2016. The change in the Unified Parkinson's Disease Rating Scale (UPDRS) motor and levodopa equivalent dose were determined. There was a statistically significant reduction in the UPDRS motor in all patients off medication at 3 months (48.2%; P = 0.004), 1 year (47.3%; P = 0.026), 2 years (48.4%; P = 0.021), and 3 years (66.0%; P = 0.032) after DBS and on medication at 3 months (43.3%; P = 0.023), 6 months (24.7%; P = 0.053), and 1 year (38.1%; P = 0.033). A significant reduction in the dosage of PD medications was also seen until the second year of follow-up (52.3%; P < 0.001). Adverse events included an attempted suicide and a device-related infection. DBS for PD improves the UPDRS motor score in the off-medication and on-medication state, with the maximal benefit seen at 3 years after surgery and reduces PD medication dosage by half. Although the benefit from DBS is undeniable, the high cost of the procedure precludes more patients from benefitting from it. There is a need for government support to expand access to DBS. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Deep Brain Stimulation for Early Stage Parkinson's Disease: An Illustrative Case

    PubMed Central

    Gill, Chandler E.; Allen, Laura A.; Konrad, Peter E.; Davis, Thomas L.; Bliton, Mark J.; Finder, Stuart G.; Tramontana, Michael G.; Kao, C. Chris; Remple, Michael S.; Bradenham, Courtney H.; Charles, P. David

    2011-01-01

    Objectives Subthalamic nucleus (STN) deep brain stimulation (DBS) is an effective intervention in advanced Parkinson's Disease (PD), but its efficacy and safety in early PD are unknown. Our team is conducting a randomized pilot trial investigating DBS in early PD. This report describes one participant who received bilateral STN-DBS. Materials/Methods Thirty subjects have been randomized to either optimal drug therapy (ODT) or DBS + ODT. Microelectrode recordings from the STN and substantia nigra (SN) are collected at implantation. The Unified Parkinson's Disease Rating Scale Motor Subscale (UPDRS-III) is administered in the ON and OFF states semi-annually and neuropsychological function and quality of life are assessed annually. We describe a 54-year-old man with a two-year history of PD who was randomized to DBS + ODT and followed for two years. Results The subject showed a lower STN to SN ratio of neuronal activity than advanced PD patients, and higher firing rate than non-PD patients. The subject's ON total UPDRS and UPDRS-III scores improved during the two-year follow-up, while his OFF UPDRS-III score and levodopa equivalent daily dose (LEDD) increased. Quality of life, verbal fluency and verbal learning improved. He did not experience any serious adverse events. Conclusions This report details the first successful application of bilateral STN DBS for early stage PD during a clinical trial. PMID:21939467

  6. Subthalamic deep brain stimulation in Parkinson׳s disease has no significant effect on perceptual timing in the hundreds of milliseconds range

    PubMed Central

    Cope, Thomas E.; Grube, Manon; Mandal, Arnab; Cooper, Freya E.; Brechany, Una; Burn, David J.; Griffiths, Timothy D.

    2014-01-01

    Bilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the treatment of the motor symptoms of Parkinson׳s disease (PD). We present here the first psychophysical investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range, with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed with their STN-DBS ‘on’, ‘off’, and then ‘on’ again. Paired parametric analyses revealed no statistically significant differences for any task according to DBS status. We demonstrate, from the examination of confidence intervals, that any functionally relevant effect of STN-DBS on relative perceptual timing is statistically unlikely. For absolute, duration-based timing, we demonstrate that the activation of STN-DBS may either worsen performance or have no effect, but that it is unlikely to lead to significant improvement. Although these results are negative they have important implications for our understanding of perceptual timing and its relationship to motor functions within the timing network of the brain. They imply that the mechanisms involved in the perceptual processing of temporal information are likely to be functionally independent from those that underpin movement. Further, they suggest that the connections between STN and the subtantia nigra and globus pallidus are unlikely to be critical to beat-based perceptual timing. PMID:24613477

  7. Wide-bore 1.5 T MRI-guided deep brain stimulation surgery: initial experience and technique comparison.

    PubMed

    Sillay, Karl A; Rusy, Deborah; Buyan-Dent, Laura; Ninman, Nancy L; Vigen, Karl K

    2014-12-01

    We report results of the initial experience with magnetic resonance image (MRI)-guided implantation of subthalamic nucleus (STN) deep brain stimulating (DBS) electrodes at the University of Wisconsin after having employed frame-based stereotaxy with previously available MR imaging techniques and microelectrode recording for STN DBS surgeries. Ten patients underwent MRI-guided DBS implantation of 20 electrodes between April 2011 and March 2013. The procedure was performed in a purpose-built intraoperative MRI suite configured specifically to allow MRI-guided DBS, using a wide-bore (70 cm) MRI system. Trajectory guidance was accomplished with commercially available system consisting of an MR-visible skull-mounted aiming device and a software guidance system processing intraoperatively acquired iterative MRI scans. A total of 10 patients (5 male, 5 female)-representative of the Parkinson Disease (PD) population-were operated on with standard technique and underwent 20 electrode placements under MRI-guided bilateral STN-targeted DBS placement. All patients completed the procedure with electrodes successfully placed in the STN. Procedure time improved with experience. Our initial experience confirms the safety of MRI-guided DBS, setting the stage for future investigations combining physiology and MRI guidance. Further follow-up is required to compare the efficacy of the MRI-guided surgery cohort to that of traditional frame-based stereotaxy. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Long-range correlation properties in timing of skilled piano performance: the influence of auditory feedback and deep brain stimulation.

    PubMed

    Herrojo Ruiz, María; Hong, Sang Bin; Hennig, Holger; Altenmüller, Eckart; Kühn, Andrea A

    2014-01-01

    Unintentional timing deviations during musical performance can be conceived of as timing errors. However, recent research on humanizing computer-generated music has demonstrated that timing fluctuations that exhibit long-range temporal correlations (LRTC) are preferred by human listeners. This preference can be accounted for by the ubiquitous presence of LRTC in human tapping and rhythmic performances. Interestingly, the manifestation of LRTC in tapping behavior seems to be driven in a subject-specific manner by the LRTC properties of resting-state background cortical oscillatory activity. In this framework, the current study aimed to investigate whether propagation of timing deviations during the skilled, memorized piano performance (without metronome) of 17 professional pianists exhibits LRTC and whether the structure of the correlations is influenced by the presence or absence of auditory feedback. As an additional goal, we set out to investigate the influence of altering the dynamics along the cortico-basal-ganglia-thalamo-cortical network via deep brain stimulation (DBS) on the LRTC properties of musical performance. Specifically, we investigated temporal deviations during the skilled piano performance of a non-professional pianist who was treated with subthalamic-deep brain stimulation (STN-DBS) due to severe Parkinson's disease, with predominant tremor affecting his right upper extremity. In the tremor-affected right hand, the timing fluctuations of the performance exhibited random correlations with DBS OFF. By contrast, DBS restored long-range dependency in the temporal fluctuations, corresponding with the general motor improvement on DBS. Overall, the present investigations demonstrate the presence of LRTC in skilled piano performances, indicating that unintentional temporal deviations are correlated over a wide range of time scales. This phenomenon is stable after removal of the auditory feedback, but is altered by STN-DBS, which suggests that cortico-basal ganglia-thalamocortical circuits play a role in the modulation of the serial correlations of timing fluctuations exhibited in skilled musical performance.

  9. Deep brain stimulation for obsessive-compulsive disorder: Knowledge and concerns among psychiatrists, psychotherapists and patients.

    PubMed

    Naesström, Matilda; Blomstedt, Patric; Hariz, Marwan; Bodlund, Owe

    2017-01-01

    Deep brain stimulation (DBS) is under investigation for severe obsessive-compulsive disorder (OCD) resistant to other therapies. The number of implants worldwide is slowly increasing. Therefore, it is of importance to explore knowledge and concerns of this novel treatment among patients and their psychiatric healthcare contacts. This information is relevant for scientific professionals working with clinical studies for DBS for this indication. Especially, for future study designs and the creation of information targeting healthcare professionals and patients. The aim of this study was to explore the knowledge and concerns toward DBS among patients with OCD, psychiatrists, and cognitive behavioral therapists. The study was conducted through web-based surveys for the aimed target groups -psychiatrist, patients, and cognitive behavioral therapists. The surveys contained questions regarding previous knowledge of DBS, source of knowledge, attitudes, and concerns towards the therapy. The main source of information was from scientific sources among psychiatrists and psychotherapists. The patient's main source of information was the media. Common concerns among the groups included complications from surgery, anesthesia, stimulation side effects, and the novelty of the treatment. Specific concerns for the groups included; personality changes mentioned by patients and psychotherapists, and ethical concerns among psychiatrists. There are challenges for DBS in OCD as identified by the participants of this study; source and quality of information, efficacy, potential adverse effects, and eligibility. In all of which the current evidence base still is limited. A broad research agenda is needed for studies going forward.

  10. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders

    PubMed Central

    Iriki, Atsushi; Isoda, Masaki

    2015-01-01

    Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles. PMID:26180116

  11. Hyperhidrosis associated with subthalamic deep brain stimulation in Parkinson's disease: Insights into central autonomic functional anatomy.

    PubMed

    Ramirez-Zamora, Adolfo; Smith, Heather; Youn, Youngwon; Durphy, Jennifer; Shin, Damian S; Pilitsis, Julie G

    2016-07-15

    There is limited evidence regarding the precise location and connections of thermoregulatory centers in humans. We present two patients managed with subthalamic nucleus (STN) Deep Brain Stimulation (DBS) for motor fluctuations in PD that developed reproducible hyperhidrosis with high frequency DBS. To describe the clinical features and analyze the location of the electrodes leading to autonomic activation in both patients. We retrospectively assessed the anatomical localization, electrode programming settings and effects of unilateral STN DBS leading to hyperhidrosis. Unilateral stimulation of anterior and medially located contacts within the STN and zona incerta (Zi) caused bilateral, consistent, reproducible, and reversible sweating in our patients. Adequate control of motor symptoms without autonomic side effects was accomplished with alternative programming settings. Stimulation of the medial Zi and medial and anterior STN causes hyperhidrosis in a pattern similar to that described in primates and rats. We speculate that central autonomic fibers originating in the lateral hypothalamic area project laterally to the ventral/medial Zi and then to brainstem nuclei following an medial and posterior trajectory in relationship to STN. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A computational model to compare different investment scenarios for mini-stereotactic frame approach to deep brain stimulation surgery.

    PubMed

    Lanotte, M; Cavallo, M; Franzini, A; Grifi, M; Marchese, E; Pantaleoni, M; Piacentino, M; Servello, D

    2010-09-01

    Deep brain stimulation (DBS) alleviates symptoms of many neurological disorders by applying electrical impulses to the brain by means of implanted electrodes, generally put in place using a conventional stereotactic frame. A new image guided disposable mini-stereotactic system has been designed to help shorten and simplify DBS procedures when compared to standard stereotaxy. A small number of studies have been conducted which demonstrate localization accuracies of the system similar to those achievable by the conventional frame. However no data are available to date on the economic impact of this new frame. The aim of this paper was to develop a computational model to evaluate the investment required to introduce the image guided mini-stereotactic technology for stereotactic DBS neurosurgery. A standard DBS patient care pathway was developed and related costs were analyzed. A differential analysis was conducted to capture the impact of introducing the image guided system on the procedure workflow. The analysis was carried out in five Italian neurosurgical centers. A computational model was developed to estimate upfront investments and surgery costs leading to a definition of the best financial option to introduce the new frame. Investments may vary from Euro 1.900 (purchasing of Image Guided [IG] mini-stereotactic frame only) to Euro 158.000.000. Moreover the model demonstrates how the introduction of the IG mini-stereotactic frame doesn't substantially affect the DBS procedure costs.

  13. Comparison of dysphagia before and after deep brain stimulation in Parkinson's disease.

    PubMed

    Silbergleit, Alice K; LeWitt, Peter; Junn, Fred; Schultz, Lonni R; Collins, Denise; Beardsley, Tausha; Hubert, Meghan; Trosch, Richard; Schwalb, Jason M

    2012-12-01

    Although dysphagia is a common problem for many Parkinson's disease (PD) patients, the effect of deep brain stimulation (DBS) on swallowing is unclear. Fourteen subjects with advanced PD underwent videofluorographic swallowing studies prior to bilateral DBS of the subthalamic nucleus (STN) and at 3 and 12 months postprocedure. They were tested under several stimulation and medication conditions. Subjects completed the Dysphagia Handicap Index at each time. There was a strong trend toward improved swallowing response for solid intake in the medication-free condition with the stimulator on compared with the stimulator off (P = .0107). Also, there was a trend toward improved oral preparation of thin liquids (P = .0368) in the medication-free condition when the stimulator was on versus off 12 months later. The remaining swallowing parameters showed no change or worsening of swallowing function regardless of stimulator or medication status. Results of the Dysphagia Handicap Index revealed significant improvement in subject self-perception of swallowing 3 and 12 months following the procedure compared with baseline on the functional subscale (P = .020 and P = .010, respectively), the emotional subscale (P = .013 and P = .003, respectively), and the total score (P = .025 and P = .003, respectively). These data suggest that bilateral STN-DBS does not substantively impair swallowing in PD. In addition, it may improve motor sequencing of the oropharyngeal swallow for solid consistencies (which are known to provide increased sensory feedback to assist motor planning of the oropharyngeal swallow). Subjects with advanced PD who are undergoing DBS may perceive significant improvement in swallowing ability despite the lack of objective improvements in swallowing function. Copyright © 2012 Movement Disorder Society.

  14. Investigating Synchronous Oscillation and Deep Brain Stimulation Treatment in A Model of Cortico-Basal Ganglia Network.

    PubMed

    Lu, Meili; Wei, Xile; Loparo, Kenneth A

    2017-11-01

    Altered firing properties and increased pathological oscillations in the basal ganglia have been proven to be hallmarks of Parkinson's disease (PD). Increasing evidence suggests that abnormal synchronous oscillations and suppression in the cortex may also play a critical role in the pathogenic process and treatment of PD. In this paper, a new closed-loop network including the cortex and basal ganglia using the Izhikevich models is proposed to investigate the synchrony and pathological oscillations in motor circuits and their modulation by deep brain stimulation (DBS). Results show that more coherent dynamics in the cortex may cause stronger effects on the synchrony and pathological oscillations of the subthalamic nucleus (STN). The pathological beta oscillations of the STN can both be efficiently suppressed with DBS applied directly to the STN or to cortical neurons, respectively, but the underlying mechanisms by which DBS suppresses the beta oscillations are different. This research helps to understand the dynamics of pathological oscillations in PD-related motor regions and supports the therapeutic potential of stimulation of cortical neurons.

  15. Aspects of oral communication in patients with Parkinson's disease submitted to Deep Brain Stimulation.

    PubMed

    Cruz, Aline Nunes da; Beber, Bárbara Costa; Olchik, Maira Rozenfeld; Chaves, Márcia Lorena Fagundes; Rieder, Carlos Roberto de Mello; Dornelles, Sílvia

    2016-01-01

    Deep Brain Stimulation (DBS) has been satisfactorily used to control the cardinal motor symptoms of Parkinson's disease (PD), but little is known about its impact on communication. This study aimed to characterize the aspects of cognition, language, speech, voice, and self-perception in two patients with PD, pre- and post- DBS implant surgery. The patients were assessed using a cognitive screening test, a brief language evaluation, a self-declared protocol, and an analysis of the aspects of voice and speech, which was conducted by a specialized Speech-language Therapist who was blinded for the study. At the pre-surgery assessment, Case I showed impairment regarding the aspects of cognition, language and voice, whereas Case II showed impairment only with respect to the voice aspect. The post-surgery evaluation of the cases showed an opposite pattern of the effect of DBS after analysis of the communication data: Case I, who presented greater impairment before the surgery, showed improvement in some aspects; Case II, who presented lower communicative impairment before the surgery, showed worsening in other aspects. This study shows that DBS may influence different communication aspects both positively and negatively. Factors associated with the different effects caused by DBS on the communication of patients with PD need to be further investigated.

  16. Radiofrequency Lesions through Deep Brain Stimulation Electrodes in Movement Disorders: Case Report and Review of the Literature.

    PubMed

    Pérez-Suárez, Javier; Torres Díaz, Cristina V; López Manzanares, Lydia; Navas García, Marta; Pastor, Jesús; Barrio Fernández, Patricia; G de Sola, Rafael

    2017-01-01

    Although there are few reports of radiofrequency lesions performed through deep brain stimulation (DBS) electrodes in patients with movement disorders, experience with this method is scarce. We present 2 patients who had been previously treated with DBS of subthalamic nuclei (STN) and the ventral intermediate (VIM) nucleus of the thalamus for Parkinson's disease and essential tremor, respectively, and underwent a radiofrequency lesion through their DBS electrodes after developing a hardware infection. The authors conduct a review of the literature regarding this method. Both patients had a good clinical outcome after 20 and 8 months, respectively, as assessed by a reduction in Fahn-Tolosa-Marin Scale and Unified Parkinson's Disease Rating Scale scores. The second patient underwent a second DBS system implantation surgery after his radiofrequency treatment to optimize his management, achieving optimal clinical control with lower current and drug requirements than before the radiofrequency intervention. No adverse effects were observed. Radiofrequency lesions through DBS electrodes allow the creation of small and localized lesions. Its effectiveness and low-risk profile, in addition to its low cost, make this procedure suitable and a possible alternative in the therapeutic repertoire for the surgical treatment of movement disorders. © 2017 S. Karger AG, Basel.

  17. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain.

    PubMed

    Russo, Jennifer F; Sheth, Sameer A

    2015-06-01

    Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.

  18. Changes in regional blood flow induced by unilateral subthalamic nucleus stimulation in patients with Parkinson's disease.

    PubMed

    Tanei, Takafumi; Kajita, Yasukazu; Nihashi, Takashi; Kaneoke, Yoshiki; Takebayashi, Shigenori; Nakatsubo, Daisuke; Wakabayashi, Toshihiko

    2009-11-01

    Changes in regional cerebral blood flow (rCBF) induced by unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) were investigated in 7 consecutive patients with Parkinson's disease, 4 men and 3 women (mean age 62.3 +/- 8.1 years), who underwent rCBF measurement by N-isopropyl-p-(iodine-123)-iodoamphetamine single photon emission computed tomography at rest before and after unilateral STN DBS preoperatively in the on-drug condition, and postoperatively in the on-drug and on-stimulation condition. Statistical parametric mapping was used to identify significant changes in rCBF from the preoperative to the postoperative conditions. rCBF was increased in the bilateral cingulate cortices and bilateral cerebellar hemispheres. rCBF was decreased in the bilateral medial frontal cortices and left superior temporal cortex. Unilateral STN DBS produced rCBF changes in the bilateral cingulate cortices, cerebellar hemispheres, and medial frontal cortices. These findings indicate that unilateral STN DBS affects rCBF in both hemispheres.

  19. The combined effect of subthalamic nuclei deep brain stimulation and L-dopa increases emotion recognition in Parkinson's disease.

    PubMed

    Mondillon, Laurie; Mermillod, Martial; Musca, Serban C; Rieu, Isabelle; Vidal, Tiphaine; Chambres, Patrick; Auxiette, Catherine; Dalens, Hélène; Marie Coulangeon, Louise; Jalenques, Isabelle; Lemaire, Jean-Jacques; Ulla, Miguel; Derost, Philippe; Marques, Ana; Durif, Franck

    2012-10-01

    Deep brain stimulation of the subthalamic nucleus (DBS) is a widely used surgical technique to suppress motor symptoms in Parkinson's disease (PD), and as such improves patients' quality of life. However, DBS may produce emotional disorders such as a reduced ability to recognize emotional facial expressions (EFE). Previous studies have not considered the fact that DBS and l-dopa medication can have differential, common, or complementary consequences on EFE processing. A thorough way of investigating the effect of DBS and l-dopa medication in greater detail is to compare patients' performances after surgery, with the two therapies either being administered ('on') or not administered ('off'). We therefore used a four-condition (l-dopa 'on'/DBS 'on', l-dopa 'on'/DBS 'off', l-dopa 'off'/DBS 'on', and l-dopa 'off'/DBS 'off') EFE recognition paradigm and compared implanted PD patients to healthy controls. The results confirmed those of previous studies, yielding a significant impairment in the detection of some facial expressions relative to controls. Disgust recognition was impaired when patients were 'off' l-dopa and 'on' DBS, and fear recognition impaired when 'off' of both therapies. More interestingly, the combined effect of both DBS and l-dopa administration seems much more beneficial for EFE recognition than the separate administration of each individual therapy. We discuss the implications of these findings in the light of the inverted U curve function that describes the differential effects of dopamine level on the right orbitofrontal cortex (OFC). We propose that, while l-dopa could "overdose" in dopamine the ventral stream of the OFC, DBS would compensate for this over-activation by decreasing OFC activity, thereby restoring the necessary OFC-amygdala interaction. Another finding is that, when collapsing over all treatment conditions, PD patients recognized more neutral faces than the matched controls, a result that concurs with embodiment theories. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications?

    PubMed Central

    Kuhn, Jens; Lenartz, Doris; Huff, Wolfgang; Lee, Sun-Hee; Koulousakis, Athanasios; Klosterkoetter, Joachim; Sturm, Volker

    2009-01-01

    Chronic consumption of alcohol represents one of the greatest health and socioeconomic problems worldwide. We report on a 54-year-old patient with a severe anxiety disorder and secondary depressive disorder in whom bilateral deep brain stimulation (DBS) of the nucleus accumbens was carried out. Despite the absence of desired improvement in his primary disorder, we observed a remarkable although not primarily intended alleviation of the patient’s comorbid alcohol dependency. Our case report demonstrates the extremely effective treatment of alcohol dependency by means of DBS of the nucleus accumbens and may reveal new prospects in overcoming therapy resistance in dependencies in general. PMID:21686755

  1. Bibliometric profile of deep brain stimulation.

    PubMed

    Hu, Kejia; Moses, Ziev B; Xu, Wendong; Williams, Ziv

    2017-10-01

    We aimed to identify and analyze the characteristics of the 100 most highly-cited papers in the research field of deep brain stimulation (DBS). The Web of Science was searched for highly-cited papers related to DBS research. The number of citations, countries, institutions of origin, year of publication, and research area were noted and analyzed. The 100 most highly-cited articles had a mean of 304.15 citations. These accrued an average of 25.39 citations a year. The most represented target by far was the subthalamic nucleus (STN). These articles were published in 46 high-impact journals, with Brain (n = 10) topping the list. These articles came from 11 countries, with the USA contributing the most highly-cited articles (n = 29); however, it was the University of Toronto (n = 13) in Canada that was the institution with the most highly-cited studies. This study identified the 100 most highly-cited studies and highlighted a historical perspective on the progress in the field of DBS. These findings allow for the recognition of the most influential reports and provide useful information that can indicate areas requiring further investigation.

  2. Deep brain stimulation in addiction due to psychoactive substance use.

    PubMed

    Kuhn, Jens; Bührle, Christian P; Lenartz, Doris; Sturm, Volker

    2013-01-01

    Addiction is one of the most challenging health problems. It is associated with enormous individual distress and tremendous socioeconomic consequences. Unfortunately, its underlying mechanisms are not fully understood, and pharmacological, psychological, or social interventions often fail to achieve long-lasting remission. Next to genetic, social, and contextual factors, a substance-induced dysfunction of the brain's reward system is considered a decisive factor for the establishment and maintenance of addiction. Due to its successful application and approval for several neurological disorders, deep brain stimulation (DBS) is known as a powerful tool for modulating dysregulated networks and has also been considered for substance addiction. Initial promising case reports of DBS in alcohol and heroin addiction in humans have recently been published. Likewise, results from animal studies mimicking different kinds of substance addiction point in a similar direction. The objective of this review is to provide an overview of the published results on DBS in addiction, and to discuss whether these preliminary results justify further research, given the novelty of this treatment approach. © 2013 Elsevier B.V. All rights reserved.

  3. Postmortem volumetric analysis of the nucleus accumbens in male heroin addicts: implications for deep brain stimulation.

    PubMed

    Müller, Ulf J; Truebner, Kurt; Schiltz, Kolja; Kuhn, Jens; Mawrin, Christian; Dobrowolny, Henrik; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2015-12-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is increasingly investigated in neuropsychiatric disorders. DBS requires computer-assisted 3D planning to implant the stimulation electrode precisely. Recently, there has been a debate about the true dimensions of NAc in healthy as well as in mentally ill individuals. Knowing its true dimensions in different neuropsychiatric disorders may improve even more precise targeting of NAc for therapeutic DBS. Volumes of NAc of heroin addicts (n = 14) and healthy controls (n = 12) were calculated by using morphometry of serial whole-brain sections. Total brain volume was larger in the heroin group (mean 1478.85 ± 62.34 vs. mean 1352.38 ± 103.24 cm(3)), as the heroin group was more than 10 years younger (p = 0.001). However, the mean volume of the NAc in heroin addicts was smaller than in controls (0.528 ± 0.166 vs. 0.623 ± 0.196 cm(3); p = 0.019). This group effect did not significantly differ between the hemispheres. When assessed separately, left-hemispheric NAc volume was 15 % lower (p = 0.020), while right-hemispheric NAc volume was 16 % lower (p = 0.047) in the heroin-addicted group compared to controls. Based on these diagnosis-related differences, we believe it is important to further analyze NAc volumes in different psychiatric disorders to further improve precise targeting and electrode placement.

  4. Adverse events in deep brain stimulation: A retrospective long-term analysis of neurological, psychiatric and other occurrences

    PubMed Central

    Engel, Katja; Gulberti, Alessandro; Hidding, Ute; Poetter-Nerger, Monika; Goerendt, Ines; Ludewig, Peter; Braass, Hanna; Choe, Chi-un; Krajewski, Kara; Oehlwein, Christian; Mittmann, Katrin; Engel, Andreas K.; Gerloff, Christian; Westphal, Manfred; Köppen, Johannes A.; Moll, Christian K. E.; Hamel, Wolfgang

    2017-01-01

    Background and objective The extent to which deep brain stimulation (DBS) can improve quality of life may be perceived as a permanent trade-off between neurological improvements and complications of therapy, comorbidities, and disease progression. Patients and methods We retrospectively investigated 123 consecutive and non-preselected patients. Indications for DBS surgery were Parkinson's disease (82), dystonia (18), tremor of different etiology (21), Huntington's disease (1) and Gilles de la Tourette syndrome (1). AEs were defined as any untoward clinical occurrence, sign or patient complaint or unintended disease if related or unrelated to the surgical procedures, implanted devices or ongoing DBS therapy. Results Over a mean/median follow-up period of 4.7 years (578 patient-years) 433 AEs were recorded in 106 of 123 patients (86.2%). There was no mortality or persistent morbidity from the surgical procedure. All serious adverse events (SAEs) that occurred within 4 weeks of surgery were reversible. Neurological AEs (193 in 85 patients) and psychiatric AEs (78 in 48 patients) were documented most frequently. AEs in 4 patients (suicide under GPI stimulation, weight gain >20 kg, impairment of gait and speech, cognitive decline >2 years following surgery) were severe or worse, at least possibly related to DBS and non reversible. In PD 23.1% of the STN-stimulated patients experienced non-reversible (or unknown reversibility) AEs that were at least possibly related to DBS in the form of impaired speech or gait, depression, weight gain, cognitive disturbances or urinary incontinence (severity was mild or moderate in 15 of 18 patients). Age and Hoehn&Yahr stage of STN-simulated PD patients, but not preoperative motor impairment or response to levodopa, showed a weak correlation (r = 0.24 and 0.22, respectively) with the number of AEs. Conclusions DBS-related AEs that were severe or worse and non-reversible were only observed in PD (4 of 82 patients; 4.9%), but not in other diseases. PD patients exhibited a significant risk for non-severe AEs most of which also represented preexisting and progressive axial and non-motor symptoms of PD. Mild gait and/or speech disturbances were rather frequent complaints under VIM stimulation. GPI stimulation for dystonia could be applied with negligible DBS-related side effects. PMID:28678830

  5. Association of Deep Brain Stimulation Washout Effects With Parkinson Disease Duration

    PubMed Central

    Cooper, Scott E.; McIntyre, Cameron C.; Fernandez, Hubert H.; Vitek, Jerrold L.

    2016-01-01

    Background Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves symptoms of Parkinson disease (PD), including bradykinesia. When stimulation ceases abruptly, bradykinesia returns gradually. The duration of the gradual, slow washout varies across patients, and although the origin of this variability is unclear, it is hypothesized to be related to 1 or more clinical characteristics of patients. Objective To determine if a correlation exists between clinical characteristics of patients with Parkinson disease (age, age at disease onset, disease severity, disease duration, medication dose, or time since surgery) and the washout rate for bradykinesia when STN DBS is discontinued. Design Serial quantitative assessments of bradykinesia were performed during a defined period following cessation of STN DBS. Setting Academic research. Patients Twenty-four patients with Parkinson disease who underwent STN DBS were enrolled in the study. Patients were assessed while off medication (medication had been discontinued 10½ to 16½ hours before testing), and stimulator settings were unchanged for a mean (median) of 20 (14) months. Main Outcome Measures We measured bradykinesia in the dominant hand by assessing finger tapping (item 23 on the Unified Parkinson Disease Rating Scale), which was quantified using an angular velocity transducer strapped on the index finger. Finger tapping was assessed every 2 minutes for 20 seconds at a time. This was performed during a 20-minute period with DBS on (baseline period), during a 50-minute period following discontinuation of STN DBS for the dominant hand, and again during a 20-minute period after turning on the device. Results When STN DBS was turned off, an initial fast but partial loss of benefit was observed, which was followed by a further slow washout of the residual therapeutic effect. The half-life of the slow washout phase varied significantly across patients, and this variation was strongly related to disease duration: patients with shorter disease duration experienced slower washout, while patients with longer disease duration experienced faster washout. Conclusions Washout of STN DBS effects varies with Parkinson disease duration. Estimates of proper washout time based on one patient population may not apply to populations with different disease durations. In DBS clinical trials, washout intervals should be chosen conservatively or adjusted for individual variation in the rate at which washout occurs. PMID:23070397

  6. Psychiatric and neuropsychiatric adverse events associated with deep brain stimulation: A meta-analysis of ten years' experience.

    PubMed

    Appleby, Brian S; Duggan, Patrick S; Regenberg, Alan; Rabins, Peter V

    2007-09-15

    Deep brain stimulation (DBS) has been approved by the FDA for use in the treatment of Parkinson's disease, essential tremor, and dystonia. Case reports and case series have reported significant psychiatric side effects in some individuals. The goal of this meta-analysis is to characterize the risks and benefits of DBS and to assess its possible use within the psychiatric setting. A search was conducted on PubMed, EBSCO, and PsycInfo in January 2006 that covered the time period 1 Jan 1996-30 Dec 2005. All identified articles were reviewed and those describing adverse events were further examined with a structured instrument. The initial searches yielded 2667 citations; 808 articles met inclusion criteria for the meta-analysis; 98.2% of studies that specifically assessed motor function reported some level of improvement. Most reported side effects were device or procedure related (e.g., infection and lead fracture). The prevalence of depression was 2-4%, mania 0.9-1.7%, emotional changes 0.1-0.2%, and the prevalence of suicidal ideation/suicide attempt was 0.3-0.7%. The completed suicide rate was 0.16-0.32%. In conclusion, DBS is an effective treatment for Parkinson's disease, dystonia, and essential tremor, and case reports suggest that major depression and OCD may also respond to DBS. Reported rates of depression, cognitive impairment, mania, and behavior change are low, but there is a high rate of suicide in patients treated with DBS, particularly with thalamic and GPi stimulation. Because of the high suicide rate, patients should be prescreened for suicide risk prior to DBS surgery. Additionally, patients should be monitored closely for suicidal behavior post-operatively. (c) 2007 Movement Disorder Society.

  7. Perturbation and Nonlinear Dynamic Analysis of Acoustic Phonatory Signal in Parkinsonian Patients Receiving Deep Brain Stimulation

    ERIC Educational Resources Information Center

    Lee, Victoria S.; Zhou, Xiao Ping; Rahn, Douglas A., III; Wang, Emily Q.; Jiang, Jack J.

    2008-01-01

    Nineteen PD patients who received deep brain stimulation (DBS), 10 non-surgical (control) PD patients, and 11 non-pathologic age- and gender-matched subjects performed sustained vowel phonations. The following acoustic measures were obtained on the sustained vowel phonations: correlation dimension (D[subscript 2]), percent jitter, percent shimmer,…

  8. Pathological tremor prediction using surface EMG and acceleration: potential use in “ON-OFF” demand driven deep brain stimulator design

    PubMed Central

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Metman, Leo Verhagen; Corcos, Daniel M.

    2013-01-01

    Objective We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and Essential tremor (ET). Approach The tremor prediction algorithm uses a set of spectral (fourier and wavelet) and non-linear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle as well as the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage. PMID:23658233

  9. Pathological tremor prediction using surface electromyogram and acceleration: potential use in ‘ON-OFF’ demand driven deep brain stimulator design

    NASA Astrophysics Data System (ADS)

    Basu, Ishita; Graupe, Daniel; Tuninetti, Daniela; Shukla, Pitamber; Slavin, Konstantin V.; Verhagen Metman, Leo; Corcos, Daniel M.

    2013-06-01

    Objective. We present a proof of concept for a novel method of predicting the onset of pathological tremor using non-invasively measured surface electromyogram (sEMG) and acceleration from tremor-affected extremities of patients with Parkinson’s disease (PD) and essential tremor (ET). Approach. The tremor prediction algorithm uses a set of spectral (Fourier and wavelet) and nonlinear time series (entropy and recurrence rate) parameters extracted from the non-invasively recorded sEMG and acceleration signals. Main results. The resulting algorithm is shown to successfully predict tremor onset for all 91 trials recorded in 4 PD patients and for all 91 trials recorded in 4 ET patients. The predictor achieves a 100% sensitivity for all trials considered, along with an overall accuracy of 85.7% for all ET trials and 80.2% for all PD trials. By using a Pearson’s chi-square test, the prediction results are shown to significantly differ from a random prediction outcome. Significance. The tremor prediction algorithm can be potentially used for designing the next generation of non-invasive closed-loop predictive ON-OFF controllers for deep brain stimulation (DBS), used for suppressing pathological tremor in such patients. Such a system is based on alternating ON and OFF DBS periods, an incoming tremor being predicted during the time intervals when DBS is OFF, so as to turn DBS back ON. The prediction should be a few seconds before tremor re-appears so that the patient is tremor-free for the entire DBS ON-OFF cycle and the tremor-free DBS OFF interval should be maximized in order to minimize the current injected in the brain and battery usage.

  10. The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia.

    PubMed

    Kinfe, Thomas M; Vesper, Jan

    2013-01-01

    Deep brain stimulation (DBS) of the basal ganglia (Ncl. subthalamicus, Ncl. ventralis intermedius thalami, globus pallidus internus) has become an evidence-based and well-established treatment option in otherwise refractory movement disorders. The Ncl. subthalamicus (STN) is the target of choice in Parkinson's disease.However, a considerable discussion is currently ongoing with regard to the necessity for micro-electrode recording (MER) in DBS surgery.The present review provides an overview on deep brain stimulation and (MER) of the STN in patients with Parkinson's disease. Detailed description is given concerning the multichannel MER systems nowadays available for DBS of the basal ganglia, especially of the STN, as a useful tool for target refinement. Furthermore, an overview is given of the historical aspects, spatial mapping of the STN by MER, and its impact for accuracy and precision in current functional stereotactic neurosurgery.The pros concerning target refinement by MER means on the one hand, and cons including increased bleeding risk, increased operation time, local or general anesthesia, and single versus multichannel microelectrode recording are discussed in detail. Finally, the authors favor the use of MER with intraoperative testing combined with imaging to achieve a more precise electrode placement, aiming to ameliorate clinical outcome in therapy-resistant movement disorders.

  11. Double-blind optimization of subcallosal cingulate deep brain stimulation for treatment-resistant depression: a pilot study.

    PubMed

    Ramasubbu, Rajamannar; Anderson, Susan; Haffenden, Angela; Chavda, Swati; Kiss, Zelma H T

    2013-09-01

    Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is reported to be a safe and effective new treatment for treatment-resistant depression (TRD). However, the optimal electrical stimulation parameters are unknown and generally selected by trial and error. This pilot study investigated the relationship between stimulus parameters and clinical effects in SCC-DBS treatment for TRD. Four patients with TRD underwent SCC-DBS surgery. In a double-blind stimulus optimization phase, frequency and pulse widths were randomly altered weekly, and corresponding changes in mood and depression were evaluated using a visual analogue scale (VAS) and the 17-item Hamilton Rating Scale for Depression (HAM-D-17). In the open-label postoptimization phase, depressive symptoms were evaluated biweekly for 6 months to determine long-term clinical outcomes. Longer pulse widths (270-450 μs) were associated with reductions in HAM-D-17 scores in 3 patients and maximal happy mood VAS responses in all 4 patients. Only 1 patient showed acute clinical or mood effects from changing the stimulation frequency. After 6 months of open-label therapy, 2 patients responded and 1 patient partially responded. Limitations include small sample size, weekly changes in stimulus parameters, and fixed-order and carry-forward effects. Longer pulse width stimulation may have a role in stimulus optimization for SCC-DBS in TRD. Longer pulse durations produce larger apparent current spread, suggesting that we do not yet know the optimal target or stimulus parameters for this therapy. Investigations using different stimulus parameters are required before embarking on large-scale randomized sham-controlled trials.

  12. A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression.

    PubMed

    Fenoy, Albert J; Schulz, Paul E; Selvaraj, Sudhakar; Burrows, Christina L; Zunta-Soares, Giovanna; Durkin, Kathryn; Zanotti-Fregonara, Paolo; Quevedo, Joao; Soares, Jair C

    2018-06-04

    Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle (MFB) has been reported to lead to rapid antidepressant effects. In this longitudinal study, we expand upon the initial results we reported at 26 weeks (Fenoy et al., 2016), showing sustained antidepressant effects of MFB DBS on six patients with treatment-resistant depression (TRD) over 1 year. The Montgomery-Åsberg Depression Rating Scale (MADRS) was used as the primary assessment tool. Deterministic fiber tracking was used to individually map the target area; analysis was performed to compare modulated fiber tracts between patients. Intraoperatively, upon stimulation at target, responders reported immediate increases in energy and motivation. An insertional effect was seen during the 4-week sham stimulation phase from baseline (28% mean MADRS reduction, p = 0.02). However, after 1 week of initiating stimulation, three of six patients had a > 50% decrease in MADRS scores relative to baseline (43% mean MADRS reduction, p = 0.005). One patient withdrew from study participation. At 52 weeks, four of remaining five patients have > 70% decrease in MADRS scores relative to baseline (73% mean MADRS reduction, p = 0.007). Evaluation of modulated fiber tracts reveals significant common orbitofrontal connectivity to the target region in all responders. Neuropsychological testing and 18 F-fluoro-deoxyglucose-positron emission tomography cerebral metabolism evaluations performed at baseline and at 52 weeks showed minimal changes and verified safety. This longitudinal evaluation of MFB DBS demonstrated rapid antidepressant effects, as initially reported by Schlaepfer et al. (2013), and supports the use of DBS for TRD.

  13. The Impact of Deep Brain Stimulation on the Quality of Life and Swallowing in Individuals with Parkinson's Disease

    PubMed Central

    Olchik, Maira Rozenfel; Ghisi, Marciéle; Ayres, Annelise; Schuh, Arthur Francisco Shumacher; Oppitz, Paulo Petry; Rieder, Carlos Roberto de Mello

    2018-01-01

    Introduction  Deep brain stimulation (DBS) is an established treatment for Parkinson's disease (PD). However, there is little evidence regarding the effect of DBS on dysphagia. Objective  To assess the swallowing and quality of life of individuals with PD before and after DBS surgery. Methods  Our sample consisted of people who had undergone DBS surgery in a referral hospital in the state of Rio Grande do Sul, Brazil. The inclusion criteria were a diagnosis of PD and having undergone DBS surgery. A cognitive screening, through a questionnaire about depression and quality of life, was conducted. Evaluations of each patient's swallowing were performed before and after surgery. The assessment consisted of anamnesis, clinical assessment, the Functional Oral Intake Scale, clinical evaluation of swallowing, and the Hoehn and Yahr scale. Results  The sample included 10 individuals, all male, with a mean age of 57.3 years (±4.7), a mean disease duration of 13.0 years (±2.4), and mean level education of 8.1 years (±4.0). In the clinical evaluation of the swallowing, a significant improvement after DBS was not observed. However, little changes in the signs and symptoms of dysphagia that had a positive impact on the quality of life were observed. Furthermore, there was no relation between the patients' motor subtype and swallowing pre- and post-DBS. Conclusion  There was an improvement in the quality of life of the patients after DBS. However, the improvement in the clinical signs and symptoms of dysphagia did not cause an overall improvement in the swallowing function. PMID:29619099

  14. Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson’s Disease

    PubMed Central

    Charles, David; Konrad, Peter E.; Neimat, Joseph S.; Molinari, Anna L.; Tramontana, Michael G.; Finder, Stuart G.; Gill, Chandler E.; Bliton, Mark J.; Kao, Chris C.; Phibbs, Fenna T.; Hedera, Peter; Salomon, Ronald M.; Cannard, Kevin R.; Wang, Lily; Song, Yanna; Davis, Thomas L.

    2014-01-01

    Background Deep brain stimulation (DBS) is an effective and approved therapy for advanced Parkinson’s disease (PD), and a recent study suggests efficacy in mid-stage disease. This manuscript reports the results of a pilot trial investigating preliminary safety and tolerability of DBS in early PD. Methods Thirty subjects with idiopathic PD (Hoehn & Yahr Stage II off medication), age 50–75, on medication ≥ 6 months but < 4 years, and without motor fluctuations or dyskinesias were randomized to optimal drug therapy (ODT) (n=15) or DBS+ODT (n=15). Co-primary endpoints were the time to reach a 4-point worsening from baseline in the UPDRS-III off therapy and the change in levodopa equivalent daily dose from baseline to 24 months. Results As hypothesized, the mean UPDRS total and part III scores were not significantly different on or off therapy at 24 months. The DBS+ODT group took less medication at all time points, and this reached maximum difference at 18 months. With a few exceptions, differences in neuropsychological functioning were not significant. Two subjects in the DBS+ODT group suffered serious adverse events; remaining adverse events were mild or transient. Conclusions This study demonstrates that subjects with early stage PD will enroll in and complete trials testing invasive therapies and provides preliminary evidence that DBS is well tolerated in early PD. The results of this trial provide the data necessary to design a large, phase III, double-blind, multicenter trial investigating the safety and efficacy of DBS in early PD. PMID:24768120

  15. Subthalamic nucleus deep brain stimulation in early stage Parkinson's disease.

    PubMed

    Charles, David; Konrad, Peter E; Neimat, Joseph S; Molinari, Anna L; Tramontana, Michael G; Finder, Stuart G; Gill, Chandler E; Bliton, Mark J; Kao, Chris; Phibbs, Fenna T; Hedera, Peter; Salomon, Ronald M; Cannard, Kevin R; Wang, Lily; Song, Yanna; Davis, Thomas L

    2014-07-01

    Deep brain stimulation (DBS) is an effective and approved therapy for advanced Parkinson's disease (PD), and a recent study suggests efficacy in mid-stage disease. This manuscript reports the results of a pilot trial investigating preliminary safety and tolerability of DBS in early PD. Thirty subjects with idiopathic PD (Hoehn & Yahr Stage II off medication), age 50-75, on medication ≥6 months but ≤4 years, and without motor fluctuations or dyskinesias were randomized to optimal drug therapy (ODT) (n = 15) or DBS + ODT (n = 15). Co-primary endpoints were the time to reach a 4-point worsening from baseline in the UPDRS-III off therapy and the change in levodopa equivalent daily dose from baseline to 24 months. As hypothesized, the mean UPDRS total and part III scores were not significantly different on or off therapy at 24 months. Medication requirements in the DBS + ODT group were lower at all time points with a maximal difference at 18 months. With a few exceptions, differences in neuropsychological functioning were not significant. Two subjects in the DBS + ODT group suffered serious adverse events; remaining adverse events were mild or transient. This study demonstrates that subjects with early stage PD will enroll in and complete trials testing invasive therapies and provides preliminary evidence that DBS is well tolerated in early PD. The results of this trial provide the data necessary to design a large, phase III, double-blind, multicenter trial investigating the safety and efficacy of DBS in early PD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Mental Health-Related Healthcare Use Following Bilateral Deep Brain Stimulation For Parkinson's Disease.

    PubMed

    Westbay, Lauren C; Cao, Lishan; Burnett-Zeigler, Inger; Reizine, Natalie; Barton, Brandon; Ippolito, Dolores; Weaver, Frances M; Stroupe, Kevin T

    2015-01-01

    The subthalamic nucleus (STN) and the globus pallidus internus (GPi) are both effective targets for deep brain stimulation (DBS) to relieve motor symptoms of Parkinson's disease. However, studies have reported varied effects on mental health-related adverse events and depressed mood following DBS. The current observational study sought to compare mental health healthcare utilization and costs for three years following STN or GPi DBS. For a cohort of Veterans (n = 161) with Parkinson's disease who participated in a larger multi-site randomized trial, we compared mental health outpatient visits, medication use, inpatient admissions, and associated costs by DBS target site (STN vs. GPi). Neither group nor time differences were significant for mental health outpatient or inpatient utilization following DBS. Overall costs associated with mental health visits and medications did not differ by time or by group. However, the percentage of patients with mental health medication use increased in the 6-month and 6 to 12 month periods post-surgery. The STN group had significantly greater increase in medication use at 6 to 12 months post-surgery compared to the GPi group (p <  0.05). Despite a brief increase in medication use following surgery, this study suggests that mental health healthcare use and costs are stable over time and similar between DBS targets. Prior research findings of mental health-related adverse events and mood following DBS did not translate to greater mental health service utilization in our cohort. The changes seen in the year following surgery may reflect temporary adjustments with stabilization over time.

  17. Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.

    PubMed

    Phillips, Lara; Litcofsky, Kaitlyn A; Pelster, Michael; Gelfand, Matthew; Ullman, Michael T; Charles, P David

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.

  18. Subthalamic Nucleus Deep Brain Stimulation Impacts Language in Early Parkinson's Disease

    PubMed Central

    Phillips, Lara; Litcofsky, Kaitlyn A.; Pelster, Michael; Gelfand, Matthew

    2012-01-01

    Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated. PMID:22880117

  19. Sustained Medication Reduction Following Unilateral VIM Thalamic Stimulation for Essential Tremor.

    PubMed

    Resnick, Andrew S; Okun, Michael S; Malapira, Teresita; Smith, Donald; Vale, Fernando L; Sullivan, Kelly; Miller, Amber; Jahan, Israt; Zesiewicz, Theresa

    2012-01-01

    Deep brain stimulation (DBS) is an increasingly utilized therapeutic modality for the management of medication refractory essential tremor (ET). The aim of this study was to determine whether DBS allowed for anti-tremor medication reduction within the year after the procedure was performed. We conducted a retrospective chart review and telephone interviews on 34 consecutive patients who had been diagnosed with ET, and who had undergone unilateral DBS surgery. Of the 34 patients in our cohort, 31 patients (91%) completely stopped all anti-tremor medications either before surgery (21 patients, 62%) or in the year following DBS surgery (10 patients, 29%). Patients who discontinued tremor medications before DBS surgery did so because their tremors either became refractory to anti-tremor medication, or they developed adverse events to tremor medications. Patients who stopped tremor medications after DBS surgery did so due to sufficient tremor control. Only three patients (9%) who were taking tremor medications at the time of surgery continued the use of a beta-blocker post-operatively for the purpose of hypertension management in all cases. The data from this study indicate that medication cessation is common following unilateral DBS for ET.

  20. Sustained Medication Reduction Following Unilateral VIM Thalamic Stimulation for Essential Tremor

    PubMed Central

    Resnick, Andrew S.; Okun, Michael S.; Malapira, Teresita; Smith, Donald; Vale, Fernando L.; Sullivan, Kelly; Miller, Amber; Jahan, Israt; Zesiewicz, Theresa

    2012-01-01

    Background Deep brain stimulation (DBS) is an increasingly utilized therapeutic modality for the management of medication refractory essential tremor (ET). The aim of this study was to determine whether DBS allowed for anti-tremor medication reduction within the year after the procedure was performed. Methods We conducted a retrospective chart review and telephone interviews on 34 consecutive patients who had been diagnosed with ET, and who had undergone unilateral DBS surgery. Results Of the 34 patients in our cohort, 31 patients (91%) completely stopped all anti-tremor medications either before surgery (21 patients, 62%) or in the year following DBS surgery (10 patients, 29%). Patients who discontinued tremor medications before DBS surgery did so because their tremors either became refractory to anti-tremor medication, or they developed adverse events to tremor medications. Patients who stopped tremor medications after DBS surgery did so due to sufficient tremor control. Only three patients (9%) who were taking tremor medications at the time of surgery continued the use of a beta-blocker post-operatively for the purpose of hypertension management in all cases. Discussion The data from this study indicate that medication cessation is common following unilateral DBS for ET. PMID:23440408

  1. Clinical outcomes of asleep vs awake deep brain stimulation for Parkinson disease.

    PubMed

    Brodsky, Matthew A; Anderson, Shannon; Murchison, Charles; Seier, Mara; Wilhelm, Jennifer; Vederman, Aaron; Burchiel, Kim J

    2017-11-07

    To compare motor and nonmotor outcomes at 6 months of asleep deep brain stimulation (DBS) for Parkinson disease (PD) using intraoperative imaging guidance to confirm electrode placement vs awake DBS using microelectrode recording to confirm electrode placement. DBS candidates with PD referred to Oregon Health & Science University underwent asleep DBS with imaging guidance. Six-month outcomes were compared to those of patients who previously underwent awake DBS by the same surgeon and center. Assessments included an "off"-levodopa Unified Parkinson's Disease Rating Scale (UPDRS) II and III, the 39-item Parkinson's Disease Questionnaire, motor diaries, and speech fluency. Thirty participants underwent asleep DBS and 39 underwent awake DBS. No difference was observed in improvement of UPDRS III (+14.8 ± 8.9 vs +17.6 ± 12.3 points, p = 0.19) or UPDRS II (+9.3 ± 2.7 vs +7.4 ± 5.8 points, p = 0.16). Improvement in "on" time without dyskinesia was superior in asleep DBS (+6.4 ± 3.0 h/d vs +1.7 ± 1.2 h/d, p = 0.002). Quality of life scores improved in both groups (+18.8 ± 9.4 in awake, +8.9 ± 11.5 in asleep). Improvement in summary index ( p = 0.004) and subscores for cognition ( p = 0.011) and communication ( p < 0.001) were superior in asleep DBS. Speech outcomes were superior in asleep DBS, both in category (+2.77 ± 4.3 points vs -6.31 ± 9.7 points ( p = 0.0012) and phonemic fluency (+1.0 ± 8.2 points vs -5.5 ± 9.6 points, p = 0.038). Asleep DBS for PD improved motor outcomes over 6 months on par with or better than awake DBS, was superior with regard to speech fluency and quality of life, and should be an option considered for all patients who are candidates for this treatment. NCT01703598. This study provides Class III evidence that for patients with PD undergoing DBS, asleep intraoperative CT imaging-guided implantation is not significantly different from awake microelectrode recording-guided implantation in improving motor outcomes at 6 months. © 2017 American Academy of Neurology.

  2. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity.

    PubMed

    Ewert, Siobhan; Plettig, Philip; Li, Ningfei; Chakravarty, M Mallar; Collins, D Louis; Herrington, Todd M; Kühn, Andrea A; Horn, Andreas

    2018-04-15

    Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The pros and cons of intraoperative CT scan in evaluation of deep brain stimulation lead implantation: A retrospective study

    PubMed Central

    Servello, Domenico; Zekaj, Edvin; Saleh, Christian; Pacchetti, Claudio; Porta, Mauro

    2016-01-01

    Background: Deep brain stimulation (DBS) is an established therapy for movement disorders, such as Parkinson's disease (PD), dystonia, and tremor. The efficacy of DBS depends on the correct lead positioning. The commonly adopted postoperative radiological evaluation is performed with computed tomography (CT) scan and/or magnetic resonance imaging (MRI). Methods: We conducted a retrospective study on 202 patients who underwent DBS from January 2009 to October 2013. DBS indications were PD, progressive supranuclear palsy, tremor, dystonia, Tourette syndrome, obsessive compulsive disorder, depression, and Huntington's disease. Preoperatively, all patients underwent brain MRI and brain CT scan with the stereotactic frame positioned. The lead location was confirmed intraoperatively with CT. The CT images were subsequently transferred to the Stealth Station Medtronic and merged with the preoperative planning. On the first or second day after, implantation we performed a brain MRI to confirm the correct position of the lead. Results: In 14 patients, leads were in suboptimal position after intraoperative CT scan positioning. The cases with alteration in the Z-axis were corrected immediately under fluoroscopic guidance. In all the 14 patients, an immediate repositioning was done. Conclusions: Based on our data, intraoperative CT scan is fast, safe, and a useful tool in the evaluation of the position of the implanted lead. It also reduces the patient's discomfort derived from the transfer of the patient from the operating room to the radiological department. However, intraoperative CT should not be considered as a substitute for postoperative MRI. PMID:27583182

  4. Neuropsychological performance changes following subthalamic versus pallidal deep brain stimulation in Parkinson's disease: a systematic review and metaanalysis.

    PubMed

    Elgebaly, Ahmed; Elfil, Mohamed; Attia, Attia; Magdy, Mayar; Negida, Ahmed

    2018-02-01

    Studies comparing subthalamus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) for the management of Parkinson's disease in terms of neuropsychological performance are scarce and heterogeneous. Therefore, we performed a systematic review and metaanalysis to compare neuropsychological outcomes following STN DBS versus GPi DBS. A computer literature search of PubMed, the Web of Science, and Cochrane Central was conducted. Records were screened for eligible studies, and data were extracted and synthesized using Review Manager (v. 5.3 for Windows). Seven studies were included in the qualitative synthesis. Of them, four randomized controlled trials (n=345 patients) were pooled in the metaanalysis models. The standardized mean difference (SMD) of change in the Stroop color-naming test favored the GPi DBS group (SMD=-0.31, p=0.009). However, other neuropsychological outcomes did not favor either of the two groups (Stroop word-reading: SMD=-0.21, p=0.08; the Wechsler Adult Intelligence Scale (WAIS) digits forward: SMD=0.08, p=0.47; Trail Making Test Part A: SMD=-0.05, p=0.65; WAIS-R digit symbol: SMD=-0.16, p=0.29; Trail Making Test Part B: SMD=-0.14, p=0.23; Stroop color-word interference: SMD=-0.16, p=0.18; phonemic verbal fluency: bilateral DBS SMD=-0.04, p=0.73, and unilateral DBS SMD=-0.05, p=0.83; semantic verbal fluency: bilateral DBS SMD=-0.09, p=0.37, and unilateral DBS SMD=-0.29, p=0.22; Boston Naming Test: SMD=-0.11, p=0.33; Beck Depression Inventory: bilateral DBS SMD=0.15, p=0.31, and unilateral DBS SMD=0.36, p=0.11). There was no statistically significant difference in most of the neuropsychological outcomes. The present evidence does not favor any of the targets in terms of neuropsychological performance.

  5. Short circuit in deep brain stimulation.

    PubMed

    Samura, Kazuhiro; Miyagi, Yasushi; Okamoto, Tsuyoshi; Hayami, Takehito; Kishimoto, Junji; Katano, Mitsuo; Kamikaseda, Kazufumi

    2012-11-01

    The authors undertook this study to investigate the incidence, cause, and clinical influence of short circuits in patients treated with deep brain stimulation (DBS). After the incidental identification of a short circuit during routine follow-up, the authors initiated a policy at their institution of routinely evaluating both therapeutic impedance and system impendence at every outpatient DBS follow-up visit, irrespective of the presence of symptoms suggesting possible system malfunction. This study represents a report of their findings after 1 year of this policy. Implanted DBS leads exhibiting short circuits were identified in 7 patients (8.9% of the patients seen for outpatient follow-up examinations during the 12-month study period). The mean duration from DBS lead implantation to the discovery of the short circuit was 64.7 months. The symptoms revealing short circuits included the wearing off of therapeutic effect, apraxia of eyelid opening, or dysarthria in 6 patients with Parkinson disease (PD), and dystonia deterioration in 1 patient with generalized dystonia. All DBS leads with short circuits had been anchored to the cranium using titanium miniplates. Altering electrode settings resulted in clinical improvement in the 2 PD cases in which patients had specific symptoms of short circuits (2.5%) but not in the other 4 cases. The patient with dystonia underwent repositioning and replacement of a lead because the previous lead was located too anteriorly, but did not experience symptom improvement. In contrast to the sudden loss of clinical efficacy of DBS caused by an open circuit, short circuits may arise due to a gradual decrease in impedance, causing the insidious development of neurological symptoms via limited or extended potential fields as well as shortened battery longevity. The incidence of short circuits in DBS may be higher than previously thought, especially in cases in which DBS leads are anchored with miniplates. The circuit impedance of DBS should be routinely checked, even after a long history of DBS therapy, especially in cases of miniplate anchoring.

  6. Effect of unilateral versus bilateral electrostimulation in subthalamic nucleus on speech in Parkinsons disease

    NASA Astrophysics Data System (ADS)

    Wang, Emily; Verhagen Metman, Leo; Bakay, Roy; Arzbaecher, Jean; Bernard, Bryan

    2004-05-01

    Previously, it was found that 16 right-handed patients with idiopathic Parkinsons disease who underwent unilateral implantation of deep brain stimulator in subthalamic nucleus (STN) showed significant improvement in their nonspeech motor functions. Eight of the 16 patients had stimulator in the left STN and eight in the right STN. In contrast, their speech function showed very mild improvement that was limited to the respiratory/phonotory subsystems. Further, there seemed a trend that the patients with right STN stimulation did better than those with left STN stimulation. It was speculated that the difference might be due to a micro lesion caused by the surgical procedure to the corticobulbar fibers run in the left internal capsule. This paper reports speech changes associated with bilateral DBS in STN in four of the 16 subjects who elected to have deep brain stimulator implanted in STN on the opposite side of the brain at a later time. Results show negative changes in speech after bilateral DBS in STN. The changes were not limited to the micro lesion effect due to the surgery itself, but also related to the active stimulation on the dominant hemisphere for speech processing. [Work supported by NIH.

  7. Hardware-related infections after deep brain stimulation surgery: review of incidence, severity and management in 212 single-center procedures in the first year after implantation.

    PubMed

    Piacentino, Massimo; Pilleri, Manuela; Bartolomei, Luigi

    2011-12-01

    Device-related infection is a common occurrence after deep brain stimulation (DBS) surgery, and may result in additional interventions and a loss of efficacy of therapy. This retrospective review aimed to evaluate the incidence, severity and management of device-related infections in 212 DBS procedures performed in our institute. Data on 106 patients, in whom 212 DBS procedures were performed between 2001 and 2011 at our institute by a single neurosurgeon (M.P.), were reviewed to assess the incidence, severity, management and clinical characteristics of infections in the first year after the implantation of a DBS system. Infections occurred in 8.5% of patients and 4.2% of procedures. Of the nine infections, eight involved the neurostimulator and extensions, and one the whole system. The infections occurred 30.7 days after implantation: 7 within 30 days and 2 within 6 months. Infected and uninfected patients were comparable in terms of age, sex, indication for DBS implantation and neurostimulator location. In eight cases, the system components involved were removed and re-implanted after 3 months, while in one case the complete hardware was removed and not re-implanted. The overall incidence of postoperative infections after DBS system implantation was 4.2%; this rate decreased over time. All infections required further surgery. Correct and timely management of partial infections may result in successful salvage of part of the system.

  8. Subthalamic deep brain stimulation in Parkinson׳s disease has no significant effect on perceptual timing in the hundreds of milliseconds range.

    PubMed

    Cope, Thomas E; Grube, Manon; Mandal, Arnab; Cooper, Freya E; Brechany, Una; Burn, David J; Griffiths, Timothy D

    2014-05-01

    Bilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the treatment of the motor symptoms of Parkinson׳s disease (PD). We present here the first psychophysical investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range, with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed with their STN-DBS 'on', 'off', and then 'on' again. Paired parametric analyses revealed no statistically significant differences for any task according to DBS status. We demonstrate, from the examination of confidence intervals, that any functionally relevant effect of STN-DBS on relative perceptual timing is statistically unlikely. For absolute, duration-based timing, we demonstrate that the activation of STN-DBS may either worsen performance or have no effect, but that it is unlikely to lead to significant improvement. Although these results are negative they have important implications for our understanding of perceptual timing and its relationship to motor functions within the timing network of the brain. They imply that the mechanisms involved in the perceptual processing of temporal information are likely to be functionally independent from those that underpin movement. Further, they suggest that the connections between STN and the subtantia nigra and globus pallidus are unlikely to be critical to beat-based perceptual timing. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study

    NASA Astrophysics Data System (ADS)

    Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans

    2015-03-01

    Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.

  10. And Then There Was Light: Perspectives of Optogenetics for Deep Brain Stimulation and Neuromodulation

    PubMed Central

    Delbeke, Jean; Hoffman, Luis; Mols, Katrien; Braeken, Dries; Prodanov, Dimiter

    2017-01-01

    Deep Brain Stimulation (DBS) has evolved into a well-accepted add-on treatment for patients with severe Parkinsons disease as well as for other chronic neurological conditions. The focal action of electrical stimulation can yield better responses and it exposes the patient to fewer side effects compared to pharmaceuticals distributed throughout the body toward the brain. On the other hand, the current practice of DBS is hampered by the relatively coarse level of neuromodulation achieved. Optogenetics, in contrast, offers the perspective of much more selective actions on the various physiological structures, provided that the stimulated cells are rendered sensitive to the action of light. Optogenetics has experienced tremendous progress since its first in vivo applications about 10 years ago. Recent advancements of viral vector technology for gene transfer substantially reduce vector-associated cytotoxicity and immune responses. This brings about the possibility to transfer this technology into the clinic as a possible alternative to DBS and neuromodulation. New paths could be opened toward a rich panel of clinical applications. Some technical issues still limit the long term use in humans but realistic perspectives quickly emerge. Despite a rapid accumulation of observations about patho-physiological mechanisms, it is still mostly serendipity and empiric adjustments that dictate clinical practice while more efficient logically designed interventions remain rather exceptional. Interestingly, it is also very much the neuro technology developed around optogenetics that offers the most promising tools to fill in the existing knowledge gaps about brain function in health and disease. The present review examines Parkinson's disease and refractory epilepsy as use cases for possible optogenetic stimulation therapies. PMID:29311765

  11. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial.

    PubMed

    Holtzheimer, Paul E; Husain, Mustafa M; Lisanby, Sarah H; Taylor, Stephan F; Whitworth, Louis A; McClintock, Shawn; Slavin, Konstantin V; Berman, Joshua; McKhann, Guy M; Patil, Parag G; Rittberg, Barry R; Abosch, Aviva; Pandurangi, Ananda K; Holloway, Kathryn L; Lam, Raymond W; Honey, Christopher R; Neimat, Joseph S; Henderson, Jaimie M; DeBattista, Charles; Rothschild, Anthony J; Pilitsis, Julie G; Espinoza, Randall T; Petrides, Georgios; Mogilner, Alon Y; Matthews, Keith; Peichel, DeLea; Gross, Robert E; Hamani, Clement; Lozano, Andres M; Mayberg, Helen S

    2017-11-01

    Deep brain stimulation (DBS) of the subcallosal cingulate white matter has shown promise as an intervention for patients with chronic, unremitting depression. To test the safety and efficacy of DBS for treatment-resistant depression, a prospective, randomised, sham-controlled trial was conducted. Participants with treatment-resistant depression were implanted with a DBS system targeting bilateral subcallosal cingulate white matter and randomised to 6 months of active or sham DBS, followed by 6 months of open-label subcallosal cingulate DBS. Randomisation was computer generated with a block size of three at each site before the site started the study. The primary outcome was frequency of response (defined as a 40% or greater reduction in depression severity from baseline) averaged over months 4-6 of the double-blind phase. A futility analysis was performed when approximately half of the proposed sample received DBS implantation and completed the double-blind phase. At the conclusion of the 12-month study, a subset of patients were followed up for up to 24 months. The study is registered at ClinicalTrials.gov, number NCT00617162. Before the futility analysis, 90 participants were randomly assigned to active (n=60) or sham (n=30) stimulation between April 10, 2008, and Nov 21, 2012. Both groups showed improvement, but there was no statistically significant difference in response during the double-blind, sham-controlled phase (12 [20%] patients in the stimulation group vs five [17%] patients in the control group). 28 patients experienced 40 serious adverse events; eight of these (in seven patients) were deemed to be related to the study device or surgery. This study confirmed the safety and feasibility of subcallosal cingulate DBS as a treatment for treatment-resistant depression but did not show statistically significant antidepressant efficacy in a 6-month double-blind, sham-controlled trial. Future studies are needed to investigate factors such as clinical features or electrode placement that might improve efficacy. Abbott (previously St Jude Medical). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A new feature extraction method and classification of early stage Parkinsonian rats with and without DBS treatment.

    PubMed

    Iravani, B; Towhidkhah, F; Roghani, M

    2014-12-01

    Parkinson Disease (PD) is one of the most common neural disorders worldwide. Different treatments such as medication and deep brain stimulation (DBS) have been proposed to minimize and control Parkinson's symptoms. DBS has been recognized as an effective approach to decrease most movement disorders of PD. In this study, a new method is proposed for feature extraction and separation of treated and untreated Parkinsonan rats. For this purpose, unilateral intrastriatal 6-hydroxydopamine (6-OHDA, 12.5 μg/5 μl of saline-ascorbate)-lesioned rats were treated with DBS. We performed a behavioral experiment and video tracked traveled trajectories of rats. Then, we investigated the effect of deep brain stimulation of subthalamus nucleus on their behavioral movements. Time, frequency and chaotic features of traveled trajectories were extracted. These features provide the ability to quantify the behavioral movements of Parkinsonian rats. The results showed that the traveled trajectories of untreated were more convoluted with the different time/frequency response. Compared to the traditional features used before to quantify the animals' behavior, the new features improved classification accuracy up to 80 % for untreated and treated rats.

  13. Deep brain stimulation in the media: over-optimistic portrayals call for a new strategy involving journalists and scientists in ethical debates.

    PubMed

    Gilbert, Frédéric; Ovadia, Daniela

    2011-01-01

    Deep brain stimulation (DBS) is optimistically portrayed in contemporary media. This already happened with psychosurgery during the first half of the twentieth century. The tendency of popular media to hype the benefits of DBS therapies, without equally highlighting risks, fosters public expectations also due to the lack of ethical analysis in the scientific literature. Media are not expected (and often not prepared) to raise the ethical issues which remain unaddressed by the scientific community. To obtain a more objective portrayal of DBS in the media, a deeper collaboration between the science community and journalists, and particularly specialized ones, must be promoted. Access to databases and articles, directly or through science media centers, has also been proven effective in increasing the quality of reporting. This article has three main objectives. Firstly, to explore the past media coverage of leukotomy, and to examine its widespread acceptance and the neglect of ethical issues in its depiction. Secondly, to describe how current enthusiastic coverage of DBS causes excessive optimism and neglect of ethical issues in patients. Thirdly, to discuss communication models and strategies to enhance media and science responsibility.

  14. Deep Brain Stimulation in the Media: Over-Optimistic Portrayals Call for a New Strategy Involving Journalists and Scientists in Ethical Debates

    PubMed Central

    Gilbert, Frédéric; Ovadia, Daniela

    2011-01-01

    Deep brain stimulation (DBS) is optimistically portrayed in contemporary media. This already happened with psychosurgery during the first half of the twentieth century. The tendency of popular media to hype the benefits of DBS therapies, without equally highlighting risks, fosters public expectations also due to the lack of ethical analysis in the scientific literature. Media are not expected (and often not prepared) to raise the ethical issues which remain unaddressed by the scientific community. To obtain a more objective portrayal of DBS in the media, a deeper collaboration between the science community and journalists, and particularly specialized ones, must be promoted. Access to databases and articles, directly or through science media centers, has also been proven effective in increasing the quality of reporting. This article has three main objectives. Firstly, to explore the past media coverage of leukotomy, and to examine its widespread acceptance and the neglect of ethical issues in its depiction. Secondly, to describe how current enthusiastic coverage of DBS causes excessive optimism and neglect of ethical issues in patients. Thirdly, to discuss communication models and strategies to enhance media and science responsibility. PMID:21617733

  15. Secondary chronic cluster headache treated by posterior hypothalamic deep brain stimulation: first reported case.

    PubMed

    Messina, Giuseppe; Rizzi, Michele; Cordella, Roberto; Caraceni, Augusto; Zecca, Ernesto; Bussone, Gennaro; Franzini, Angelo; Leone, Massimo

    2013-01-01

    Deep brain stimulation (DBS) of the posterior hypothalamus (pHyp) has been reported as an effective treatment for primary, drug-refractory and chronic cluster headache (CCH). We here describe the use of such a procedure for the treatment of secondary CCH due to a neoplasm affecting the soft tissues of the right hemiface. A 27-year-old man affected by infiltrating angiomyolipoma of the right hemiface who subsequently developed drug refractory homolateral CCH underwent DBS of the right pHyp region at the Fondazione IRCCS Istituto Nazionale Neurologico Carlo Besta. After surgery, the patient presented a significant reduction in frequency of pain bouts. However, because of a subsequent infection, the entire system was removed. After re-implantation of the system, successful outcome was observed at 2 years follow-up. This brief report shows the feasibility of pHyp DBS in secondary drug-refractory CCH syndromes; future reports are needed in order to confirm our positive result.

  16. Deep Brain Stimulation of Pedunculopontine Nucleus for Postural Instability and Gait Disorder After Parkinson Disease: A Meta-Analysis of Individual Patient Data.

    PubMed

    Wang, Jia-Wei; Zhang, Yu-Qing; Zhang, Xiao-Hua; Wang, Yun-Peng; Li, Ji-Ping; Li, Yong-Jie

    2017-06-01

    Postural instability and gait disorder (PIGD) in Parkinson disease (PD) has been a great challenge in clinical practice because PIGD is closely linked to major morbidity and mortality in PD. Pedunculopontine nucleus (PPN) has been considered as a potential promising target for deep brain stimulation (DBS) in the treatment of PIGD. A meta-analysis of individual patient data was performed to assess the effects of PPN DBS on PIGD in patients with PD and explore the factors predicting good outcome. According to the study strategy, we searched PubMed, Embase, and the Cochrane Central Register of Controlled Trials, and other sources. After searching the literature, 2 investigators independently screened the literature, assessed the quality of the included trials, and extracted the data. The outcome measures included PIGD, freezing of gait, and falling in PD. Then, individual patient data were incorporated into SPSS software for statistical analyses across series. Six studies reporting individual patient data were included for final analysis. PPN DBS significantly improved PIGD as well as freezing of gait and falling after PD, which was depending on the duration of follow-up and types of outcome measures. In addition, patient age, disease duration, levodopa-equivalent dosage, and the choice of unilateral or bilateral stimulation were similar in groups of patients with PD with or without improvement in PIGD after PPN DBS. Our study provides evidence that PPN DBS may improve PIGD, which should be interpreted with caution and needs further verification before making generalization of our results. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Deep brain stimulation for obsessive-compulsive disorder: Knowledge and concerns among psychiatrists, psychotherapists and patients

    PubMed Central

    Naesström, Matilda; Blomstedt, Patric; Hariz, Marwan; Bodlund, Owe

    2017-01-01

    Background: Deep brain stimulation (DBS) is under investigation for severe obsessive-compulsive disorder (OCD) resistant to other therapies. The number of implants worldwide is slowly increasing. Therefore, it is of importance to explore knowledge and concerns of this novel treatment among patients and their psychiatric healthcare contacts. This information is relevant for scientific professionals working with clinical studies for DBS for this indication. Especially, for future study designs and the creation of information targeting healthcare professionals and patients. The aim of this study was to explore the knowledge and concerns toward DBS among patients with OCD, psychiatrists, and cognitive behavioral therapists. Methods: The study was conducted through web-based surveys for the aimed target groups –psychiatrist, patients, and cognitive behavioral therapists. The surveys contained questions regarding previous knowledge of DBS, source of knowledge, attitudes, and concerns towards the therapy. Results: The main source of information was from scientific sources among psychiatrists and psychotherapists. The patient's main source of information was the media. Common concerns among the groups included complications from surgery, anesthesia, stimulation side effects, and the novelty of the treatment. Specific concerns for the groups included; personality changes mentioned by patients and psychotherapists, and ethical concerns among psychiatrists. Conclusion: There are challenges for DBS in OCD as identified by the participants of this study; source and quality of information, efficacy, potential adverse effects, and eligibility. In all of which the current evidence base still is limited. A broad research agenda is needed for studies going forward. PMID:29285414

  18. Post-Traumatic Tremor and Thalamic Deep Brain Stimulation: Evidence for Use of Diffusion Tensor Imaging.

    PubMed

    Boccard, Sandra G J; Rebelo, Pedro; Cheeran, Binith; Green, Alexander; FitzGerald, James J; Aziz, Tipu Z

    2016-12-01

    Deep brain stimulation (DBS) is a well-established treatment to reduce tremor, notably in Parkinson disease. DBS may also be effective in post-traumatic tremor, one of the most common movement disorders caused by head injury. However, the cohorts of patients often have multiple lesions that may impact the outcome depending on which fiber tracts are affected. A 20-year-old man presented after road traffic accident with severe closed head injury and polytrauma. Computed tomography scan showed left frontal and basal ganglia hemorrhagic contusions and intraventricular hemorrhage. A disabling tremor evolved in step with motor recovery. Despite high-intensity signals in the intended thalamic target, a visual analysis of the preoperative diffusion tensor imaging revealed preservation of connectivity of the intended target, ventralis oralis posterior thalamic nucleus (VOP). This was confirmed by the postoperative tractography study presented here. DBS of the VOP/zona incerta was performed. Six months postimplant, marked improvement of action (postural, kinetic, and intention) tremor was achieved. We demonstrated a strong connectivity between the VOP and the superior frontal gyrus containing the premotor cortex and other central brain areas responsible for movement control. In spite of an existing lesion in the target, the preservation of these tracts may be relevant to the improvement of the patient's symptoms by DBS. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Intensive Voice Treatment (LSVT[R]LOUD) for Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus

    ERIC Educational Resources Information Center

    Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine

    2011-01-01

    Purpose: Intensive voice therapy (LSVT[R]LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes…

  20. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.

    PubMed

    LeMoyne, Robert; Tomycz, Nestor; Mastroianni, Timothy; McCandless, Cyrus; Cozza, Michael; Peduto, David

    2015-01-01

    Essential tremor (ET) is a highly prevalent movement disorder. Patients with ET exhibit a complex progressive and disabling tremor, and medical management often fails. Deep brain stimulation (DBS) has been successfully applied to this disorder, however there has been no quantifiable way to measure tremor severity or treatment efficacy in this patient population. The quantified amelioration of kinetic tremor via DBS is herein demonstrated through the application of a smartphone (iPhone) as a wireless accelerometer platform. The recorded acceleration signal can be obtained at a setting of the subject's convenience and conveyed by wireless transmission through the Internet for post-processing anywhere in the world. Further post-processing of the acceleration signal can be classified through a machine learning application, such as the support vector machine. Preliminary application of deep brain stimulation with a smartphone for acquisition of a feature set and machine learning for classification has been successfully applied. The support vector machine achieved 100% classification between deep brain stimulation in `on' and `off' mode based on the recording of an accelerometer signal through a smartphone as a wireless accelerometer platform.

  1. The use of neurocomputational models as alternatives to animal models in the development of electrical brain stimulation treatments.

    PubMed

    Beuter, Anne

    2017-05-01

    Recent publications call for more animal models to be used and more experiments to be performed, in order to better understand the mechanisms of neurodegenerative disorders, to improve human health, and to develop new brain stimulation treatments. In response to these calls, some limitations of the current animal models are examined by using Deep Brain Stimulation (DBS) in Parkinson's disease as an illustrative example. Without focusing on the arguments for or against animal experimentation, or on the history of DBS, the present paper argues that given recent technological and theoretical advances, the time has come to consider bioinspired computational modelling as a valid alternative to animal models, in order to design the next generation of human brain stimulation treatments. However, before computational neuroscience is fully integrated in the translational process and used as a substitute for animal models, several obstacles need to be overcome. These obstacles are examined in the context of institutional, financial, technological and behavioural lock-in. Recommendations include encouraging agreement to change long-term habitual practices, explaining what alternative models can achieve, considering economic stakes, simplifying administrative and regulatory constraints, and carefully examining possible conflicts of interest. 2017 FRAME.

  2. Particle Swarm Optimization for Programming Deep Brain Stimulation Arrays

    PubMed Central

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.

    2017-01-01

    Objective Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main Results The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (≤9.2%) and ROA (≤1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n=3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies of <1% between approaches. Significance The PSO algorithm provides a computationally efficient way to program DBS systems especially those with higher electrode counts. PMID:28068291

  3. Particle swarm optimization for programming deep brain stimulation arrays

    NASA Astrophysics Data System (ADS)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.

    2017-02-01

    Objective. Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach. Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main results. The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n  =  3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies of  <1% between approaches. Significance. The PSO algorithm provides a computationally efficient way to program DBS systems especially those with higher electrode counts.

  4. [Effects of bilateral deep brain stimulation in the subthalamic nucleus using two methods of target structure verification].

    PubMed

    Goubareva, N N; Fedorova, N V; Bril', E V; Tomskiy, A A; Gamaleya, A A; Poddubskaya, A A; Shabalov, V A; Omarova, S M

    To evaluate the efficacy of deep brain stimulation in the subthalamic nucleus (DBS STN) in patients with Parkinson's disease (PD) using different methods of targeting according to the dynamics of motor symptoms of PD. The study involved 90 patients treated with DBS STN. In 30 cases intraoperative microelectrode recording (MER) was used. MER was not performed in 30 patients of the comparison group. The control group consisted of 30 patients with PD who received conservative treatment. Hoehn and Yahr scale, Tinetti Balance and Mobility Scale (TBMS), Unified Parkinson's Disease Rating Scale (UPDRS), Parkinson's Disease Quality of Life-39 Scoring System (РDQ-39), Schwab & England ADL Scale were used. Levodopa equivalent daily dose (LEDD, 2010) was calculated for each patient. The effect of DBS STN using intraoperative microelectrode recording on the main motor symptoms, motor complications, walking as well as indicators of quality of life and daily activities was shown. In both DBS STN groups, there was a significant reduction in the LEDD and marked improvement of the control of motor symptoms of PD. A significant reduction in the severity of motor fluctuations (50%) and drug-induced dyskinesia (51%) was observed. Quality of life and daily activity in off-medication condition were significantly improved in both DBS STN groups of patients, irrespective of the method of target planning (75-100%), compared with the control group.

  5. Alternating verbal fluency performance following bilateral subthalamic nucleus deep brain stimulation for Parkinson's disease.

    PubMed

    Marshall, D F; Strutt, A M; Williams, A E; Simpson, R K; Jankovic, J; York, M K

    2012-12-01

    Despite common occurrences of verbal fluency declines following bilateral subthalamic nucleus deep brain stimulation (STN-DBS) for the treatment of Parkinson's disease (PD), alternating fluency measures using cued and uncued paradigms have not been evaluated. Twenty-three STN-DBS patients were compared with 20 non-surgical PD patients on a comprehensive neuropsychological assessment, including cued and uncued intradimensional (phonemic/phonemic and semantic/semantic) and extradimensional (phonemic/semantic) alternating fluency measures at baseline and 6-month follow-up. STN-DBS patients demonstrated a greater decline on the cued phonemic/phonemic fluency and the uncued phonemic/semantic fluency tasks compared to the PD patients. For STN-DBS patients, verbal learning and information processing speed accounted for a significant proportion of the variance in declines in alternating phonemic/phonemic and phonemic/semantic fluency scores, respectively, whilst only naming was related to uncued phonemic/semantic performance for the PD patients. Both groups were aided by cueing for the extradimensional task at baseline and follow-up, and the PD patients were also aided by cueing for the phonemic/phonemic task on follow-up. These findings suggest that changes in alternating fluency are not related to disease progression alone as STN-DBS patients demonstrated greater declines over time than the PD patients, and this change was related to declines in information processing speed. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.

  6. To move or not to move: subthalamic deep brain stimulation effects on implicit motor simulation.

    PubMed

    Tomasino, Barbara; Marin, Dario; Eleopra, Roberto; Rinaldo, Sara; Cristian, Lettieri; Marco, Mucchiut; Enrico, Belgrado; Zanier, Monica; Budai, Riccardo; Mondani, Massimo; D'Auria, Stanislao; Skrap, Miran; Fabbro, Franco

    2014-07-29

    We explored implicit motor simulation processes in Parkinson's Disease (PD) patients with ON-OFF subthalamic deep brain stimulation (DBS) of the sub-thalamic nucleus (STN). Participants made lexical decisions about hand action-related verbs, abstract verbs, and pseudowords presented either within a positive (e.g., "Do …") or a negative (e.g., "Don't …") sentence context. Healthy controls showed significantly slower responses for hand-action verbs (vs. abstract verbs) in the negative (vs. positive) context, which suggests that negative contexts may suppress motor simulation or preparation processes. The STN-DBS improves cortical motor functions, thus patients are expected to perform at the same level as unimpaired subjects in the ON condition. By contrast, the 50% reduced DBS is expected to result in a reduced activation for motor information, which in turn might cause a reduced, if not absent, context modulation. PD patients exhibited the same pattern as controls when their DBS was at 100% ON; however, reducing the DBS to 50% had a deleterious outcome on the positive faster than negative context effect, suggesting that the altered inhibition mechanism in PD could be responsible for the missed effect. In addition, our results confirm the view that implicit motor simulation mechanisms behind action-related verb processing are flexible and context-dependent. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Deep brain stimulation for the treatment of uncommon tremor syndromes

    PubMed Central

    Ramirez-Zamora, Adolfo; Okun, Michael S.

    2016-01-01

    ABSTRACT Introduction: Deep brain stimulation (DBS) has become a standard therapy for the treatment of select cases of medication refractory essential tremor and Parkinson’s disease however the effectiveness and long-term outcomes of DBS in other uncommon and complex tremor syndromes has not been well established. Traditionally, the ventralis intermedius nucleus (VIM) of the thalamus has been considered the main target for medically intractable tremors; however alternative brain regions and improvements in stereotactic techniques and hardware may soon change the horizon for treatment of complex tremors. Areas covered: In this article, we conducted a PubMed search using different combinations between the terms ‘Uncommon tremors’, ‘Dystonic tremor’, ‘Holmes tremor’ ‘Midbrain tremor’, ‘Rubral tremor’, ‘Cerebellar tremor’, ‘outflow tremor’, ‘Multiple Sclerosis tremor’, ‘Post-traumatic tremor’, ‘Neuropathic tremor’, and ‘Deep Brain Stimulation/DBS’. Additionally, we examined and summarized the current state of evolving interventions for treatment of complex tremor syndromes. Expert c ommentary: Recently reported interventions for rare tremors include stimulation of the posterior subthalamic area, globus pallidus internus, ventralis oralis anterior/posterior thalamic subnuclei, and the use of dual lead stimulation in one or more of these targets. Treatment should be individualized and dictated by tremor phenomenology and associated clinical features. PMID:27228280

  8. Brain Stimulation in Alzheimer's Disease.

    PubMed

    Chang, Chun-Hung; Lane, Hsien-Yuan; Lin, Chieh-Hsin

    2018-01-01

    Brain stimulation techniques can modulate cognitive functions in many neuropsychiatric diseases. Pilot studies have shown promising effects of brain stimulations on Alzheimer's disease (AD). Brain stimulations can be categorized into non-invasive brain stimulation (NIBS) and invasive brain stimulation (IBS). IBS includes deep brain stimulation (DBS), and invasive vagus nerve stimulation (VNS), whereas NIBS includes transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), electroconvulsive treatment (ECT), magnetic seizure therapy (MST), cranial electrostimulation (CES), and non-invasive VNS. We reviewed the cutting-edge research on these brain stimulation techniques and discussed their therapeutic effects on AD. Both IBS and NIBS may have potential to be developed as novel treatments for AD; however, mixed findings may result from different study designs, patients selection, population, or samples sizes. Therefore, the efficacy of NIBS and IBS in AD remains uncertain, and needs to be further investigated. Moreover, more standardized study designs with larger sample sizes and longitudinal follow-up are warranted for establishing a structural guide for future studies and clinical application.

  9. Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients.

    PubMed

    Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth R; Penny, William D; Zrinzo, Ludvic; Hariz, Marwan I; Limousin, Patricia; Friston, Karl J; Brown, Peter

    2010-05-01

    Insight into how brain structures interact is critical for understanding the principles of functional brain architectures and may lead to better diagnosis and therapy for neuropsychiatric disorders. We recorded, simultaneously, magnetoencephalographic (MEG) signals and subcortical local field potentials (LFP) in a Parkinson's disease (PD) patient with bilateral deep brain stimulation (DBS) electrodes in the subthalamic nucleus (STN). These recordings offer a unique opportunity to characterize interactions between the subcortical structures and the neocortex. However, high-amplitude artefacts appeared in the MEG. These artefacts originated from the percutaneous extension wire, rather than from the actual DBS electrode and were locked to the heart beat. In this work, we show that MEG beamforming is capable of suppressing these artefacts and quantify the optimal regularization required. We demonstrate how beamforming makes it possible to localize cortical regions whose activity is coherent with the STN-LFP, extract artefact-free virtual electrode time-series from regions of interest and localize cortical areas exhibiting specific task-related power changes. This furnishes results that are consistent with previously reported results using artefact-free MEG data. Our findings demonstrate that physiologically meaningful information can be extracted from heavily contaminated MEG signals and pave the way for further analysis of combined MEG-LFP recordings in DBS patients. 2009 Elsevier Inc. All rights reserved.

  10. Closed Loop Deep Brain Stimulation for PTSD, Addiction, and Disorders of Affective Facial Interpretation: Review and Discussion of Potential Biomarkers and Stimulation Paradigms

    PubMed Central

    Bina, Robert W.; Langevin, Jean-Phillipe

    2018-01-01

    The treatment of psychiatric diseases with Deep Brain Stimulation (DBS) is becoming more of a reality as studies proliferate the indications and targets for therapies. Opinions on the initial failures of DBS trials for some psychiatric diseases point to a certain lack of finesse in using an Open Loop DBS (OLDBS) system in these dynamic, cyclical pathologies. OLDBS delivers monomorphic input into dysfunctional brain circuits with modulation of that input via human interface at discrete time points with no interim modulation or adaptation to the changing circuit dynamics. Closed Loop DBS (CLDBS) promises dynamic, intrinsic circuit modulation based on individual physiologic biomarkers of dysfunction. Discussed here are several psychiatric diseases which may be amenable to CLDBS paradigms as the neurophysiologic dysfunction is stochastic and not static. Post-Traumatic Stress Disorder (PTSD) has several peripheral and central physiologic and neurologic changes preceding stereotyped hyper-activation behavioral responses. Biomarkers for CLDBS potentially include skin conductance changes indicating changes in the sympathetic nervous system, changes in serum and central neurotransmitter concentrations, and limbic circuit activation. Chemical dependency and addiction have been demonstrated to be improved with both ablation and DBS of the Nucleus Accumbens and as a serendipitous side effect of movement disorder treatment. Potential peripheral biomarkers are similar to those proposed for PTSD with possible use of environmental and geolocation based cues, peripheral signs of physiologic arousal, and individual changes in central circuit patterns. Non-substance addiction disorders have also been serendipitously treated in patients with OLDBS for movement disorders. As more is learned about these behavioral addictions, DBS targets and effectors will be identified. Finally, discussed is the use of facial recognition software to modulate activation of inappropriate responses for psychiatric diseases in which misinterpretation of social cues feature prominently. These include Autism Spectrum Disorder, PTSD, and Schizophrenia—all of which have a common feature of dysfunctional interpretation of facial affective clues. Technological advances and improvements in circuit-based, individual-specific, real-time adaptable modulation, forecast functional neurosurgery treatments for heretofore treatment-resistant behavioral diseases. PMID:29780303

  11. Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture.

    PubMed

    Elwassif, Maged M; Datta, Abhishek; Rahman, Asif; Bikson, Marom

    2012-08-01

    There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. magnetic resonance imaging) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method (FEM) simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: (1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); (2) it does not interfere with device efficacy; and (3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure.

  12. Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture

    NASA Astrophysics Data System (ADS)

    Elwassif, Maged M.; Datta, Abhishek; Rahman, Asif; Bikson, Marom

    2012-08-01

    There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. magnetic resonance imaging) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method (FEM) simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: (1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); (2) it does not interfere with device efficacy; and (3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure.

  13. An algorithm for management of deep brain stimulation battery replacements: devising a web-based battery estimator and clinical symptom approach.

    PubMed

    Montuno, Michael A; Kohner, Andrew B; Foote, Kelly D; Okun, Michael S

    2013-01-01

    Deep brain stimulation (DBS) is an effective technique that has been utilized to treat advanced and medication-refractory movement and psychiatric disorders. In order to avoid implanted pulse generator (IPG) failure and consequent adverse symptoms, a better understanding of IPG battery longevity and management is necessary. Existing methods for battery estimation lack the specificity required for clinical incorporation. Technical challenges prevent higher accuracy longevity estimations, and a better approach to managing end of DBS battery life is needed. The literature was reviewed and DBS battery estimators were constructed by the authors and made available on the web at http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. A clinical algorithm for management of DBS battery life was constructed. The algorithm takes into account battery estimations and clinical symptoms. Existing methods of DBS battery life estimation utilize an interpolation of averaged current drains to calculate how long a battery will last. Unfortunately, this technique can only provide general approximations. There are inherent errors in this technique, and these errors compound with each iteration of the battery estimation. Some of these errors cannot be accounted for in the estimation process, and some of the errors stem from device variation, battery voltage dependence, battery usage, battery chemistry, impedance fluctuations, interpolation error, usage patterns, and self-discharge. We present web-based battery estimators along with an algorithm for clinical management. We discuss the perils of using a battery estimator without taking into account the clinical picture. Future work will be needed to provide more reliable management of implanted device batteries; however, implementation of a clinical algorithm that accounts for both estimated battery life and for patient symptoms should improve the care of DBS patients. © 2012 International Neuromodulation Society.

  14. Neurotransmitter activity is linked to outcome following subthalamic deep brain stimulation in Parkinson's disease.

    PubMed

    O'Gorman Tuura, Ruth L; Baumann, Christian R; Baumann-Vogel, Heide

    2018-05-01

    While the mechanisms underlying the therapeutic effects of deep brain stimulation (DBS) in Parkinson's Disease (PD) are not yet fully understood, DBS appears to exert a wide range of neurochemical effects on the network level, thought to arise from activation of inhibitory and excitatory pathways. The activity within the primary inhibitory (GABAergic) and excitatory (glutamatergic) neurotransmitter systems may therefore play an important role in the therapeutic efficacy of DBS in PD. The purpose of this study was to investigate abnormalities in GABA-ergic and glutamatergic neurotransmission in PD, and to examine the link between neurotransmitter levels and outcome following DBS. Magnetic resonance spectra were acquired from the pons and basal ganglia in sixteen patients with PD and sixteen matched control participants. GABA and glutamate levels were quantified with LCModel, an automated spectral fitting package. Fourteen patients subsequently underwent DBS, and PD symptoms were evaluated with the MDS-UPDRS at baseline and six months after surgery. The efficacy of DBS treatment was evaluated from the percentage improvement in MDS-UPDRS scores. Basal ganglia GABA levels were significantly higher in PD patients relative to control participants (p < 0.01), while pontine glutamate + glutamine (Glx) levels were significantly lower in patients with PD (p < 0.05). While GABA levels were not significantly related to outcome post-surgery, basal ganglia glutamate levels emerged as a significant predictor of outcome, suggesting a possible role for glutamatergic neurotransmission in the therapeutic mechanism of DBS. GABAergic and glutamatergic neurotransmission is altered in PD, and glutamatergic activity in particular may influence outcome post-surgery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Neuropsychological function before and after subcallosal cingulate deep brain stimulation in patients with treatment-resistant depression.

    PubMed

    Moreines, Jared L; McClintock, Shawn M; Kelley, Mary E; Holtzheimer, Paul E; Mayberg, Helen S

    2014-08-01

    Treatment-resistant depression (TRD) is a pervasive and difficult to treat condition for which deep brain stimulation (DBS) of the subcallosal cingulate white matter (SCCwm) is an emerging therapeutic option. However, neuropsychological safety data for this novel treatment have only been published for a small number of subjects. Moreover, little is known regarding the neuropsychological profile present in TRD patients at baseline, prior to initiation of DBS therapy. This report describes the neuropsychological effects of TRD and acute and chronic DBS of the SCCwm in patients with unipolar and bipolar TRD. Patients with TRD (N = 17) were compared to a healthy control group (N = 15) on subtests from the Cambridge Neuropsychological Test Automated Battery and the Stroop Task. Patients were then tested again at subsequent time points of 1 and 6 months following the initiation of chronic DBS of the SCCwm. Patients with TRD showed similar levels of performance to healthy controls on most neuropsychological measures, with the exception that the TRD group had slower processing speed. Patients with bipolar TRD, relative to those with unipolar TRD, obtained lower scores on measures of executive function and memory only at baseline. With acute and chronic SCCwm DBS, neuropsychological function improved in multiple domains including processing speed and executive function (planning, set shifting, response inhibition), and memory remained stable. Patients with TRD show slowed processing speed but otherwise largely preserved neuropsychological functioning. DBS of the SCCwm does not result in worsening of any aspect of neuropsychological function and may improve certain domains. Future research is warranted to better understand the effects of TRD and DBS on neuropsychological function. © 2014 Wiley Periodicals, Inc.

  16. NEUROPSYCHOLOGICAL FUNCTION BEFORE AND AFTER SUBCALLOSAL CINGULATE DEEP BRAIN STIMULATION IN PATIENTS WITH TREATMENT-RESISTANT DEPRESSION

    PubMed Central

    Moreines, Jared L.; McClintock, Shawn M.; Kelley, Mary E.; Holtzheimer, Paul E.; Mayberg, Helen S.

    2014-01-01

    Background Treatment-resistant depression (TRD) is a pervasive and difficult to treat condition for which deep brain stimulation (DBS) of the subcallosal cingulate white matter (SCCwm) is an emerging therapeutic option. However, neuropsychological safety data for this novel treatment have only been published for a small number of subjects. Moreover, little is known regarding the neuropsychological profile present in TRD patients at baseline, prior to initiation of DBS therapy. This report describes the neuropsychological effects of TRD and acute and chronic DBS of the SCCwm in patients with unipolar and bipolar TRD. Methods Patients with TRD (N =17) were compared to a healthy control group (N = 15) on subtests from the Cambridge Neuropsychological Test Automated Battery and the Stroop Task. Patients were then tested again at subsequent time points of 1 and 6 months following the initiation of chronic DBS of the SCCwm. Results Patients with TRD showed similar levels of performance to healthy controls on most neuropsychological measures, with the exception that the TRD group had slower processing speed. Patients with bipolar TRD, relative to those with unipolar TRD, obtained lower scores on measures of executive function and memory only at baseline. With acute and chronic SCCwm DBS, neuropsychological function improved in multiple domains including processing speed and executive function (planning, set shifting, response inhibition), and memory remained stable. Conclusions Patients with TRD show slowed processing speed but otherwise largely preserved neuropsychological functioning. DBS of the SCCwm does not result in worsening of any aspect of neuropsychological function and may improve certain domains. Future research is warranted to better understand the effects of TRD and DBS on neuropsychological function. PMID:24753183

  17. Optical coherence tomography and optical coherence domain reflectometry for deep brain stimulation probe guidance

    NASA Astrophysics Data System (ADS)

    Jeon, Sung W.; Shure, Mark A.; Baker, Kenneth B.; Chahlavi, Ali; Hatoum, Nagi; Turbay, Massud; Rollins, Andrew M.; Rezai, Ali R.; Huang, David

    2005-04-01

    Deep Brain Stimulation (DBS) is FDA-approved for the treatment of Parkinson's disease and essential tremor. Currently, placement of DBS leads is guided through a combination of anatomical targeting and intraoperative microelectrode recordings. The physiological mapping process requires several hours, and each pass of the microelectrode into the brain increases the risk of hemorrhage. Optical Coherence Domain Reflectometry (OCDR) in combination with current methodologies could reduce surgical time and increase accuracy and safety by providing data on structures some distance ahead of the probe. For this preliminary study, we scanned a rat brain in vitro using polarization-insensitive Optical Coherence Tomography (OCT). For accurate measurement of intensity and attenuation, polarization effects arising from tissue birefringence are removed by polarization diversity detection. A fresh rat brain was sectioned along the coronal plane and immersed in a 5 mm cuvette with saline solution. OCT images from a 1294 nm light source showed depth profiles up to 2 mm. Light intensity and attenuation rate distinguished various tissue structures such as hippocampus, cortex, external capsule, internal capsule, and optic tract. Attenuation coefficient is determined by linear fitting of the single scattering regime in averaged A-scans where Beer"s law is applicable. Histology showed very good correlation with OCT images. From the preliminary study using OCT, we conclude that OCDR is a promising approach for guiding DBS probe placement.

  18. [Early Experience with the VerciseTM DBS System in the Treatment of Dystonic Tremor].

    PubMed

    Miyagi, Yasushi

    2017-03-01

    Six cases of dystonic tremor were treated with the VerciseTM deep brain stimulation(DBS)system, which has the multiple independent current control(MICC)technology. The mean preoperative score of Burke-Fahn-Marsden dystonia rating scale was 16.2±9.4, which was reduced to 6.1±4.6 at 5 months postoperatively. A 65-year-old male presented an intractable dystonic tremor of the jaw, neck, and shoulders due to tardive syndrome. He experienced the successful tremor relief after unipolar DBS in the globus pallidus internus(GPi)with VerciseTM but complained of dysarthria. Steering the current ventrally induced nausea without alleviating dysarthria, while steering the current dorsally alleviated dysarthria but a further dorsal current induced mandibular dyskinesia. The current steering with MICC enabled the simulation field in GPi with successful balance, maximizing tremor suppression, and minimizing the adverse effects. In a second case, 61-year-old male in whom cervical dystonia with rotatory tremor had been successfully treated with interleaving stimulation of GPi-DBS had needed to repeat the replacement of a non-rechargeable pulse generator in only 15-month interval. After the substitution of VerciseTM, the interleaving stimulation of 9.5mA in total was replaced by 8.5mA with the current steering of MICC, while the patient's symptomatic control was unchanged. The microlesion effects after lead implantation are unclear and therapeutic effects are often delayed in cases of dystonia;therefore, the submaximal stimulation intensities must be frequently applied in the early phase following the implantation of DBS. A fine current steering of VerciseTM DBS is very useful in both, the early and late phases of GPi-DBS for dystonic syndrome.

  19. Articulatory Closure Proficiency in Patients with Parkinson's Disease Following Deep Brain Stimulation of the Subthalamic Nucleus and Caudal Zona Incerta

    ERIC Educational Resources Information Center

    Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; Nordh, Erik; van Doorn, Jan

    2014-01-01

    Purpose: The present study aimed at comparing the effects of deep brain stimulation (DBS) treatment of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) on the proficiency in achieving oral closure and release during plosive production of people with Parkinson's disease. Method: Nineteen patients participated preoperatively and…

  20. Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation

    DTIC Science & Technology

    2015-10-01

    currently investigating the effects of CG stimulation in subjects with debilitating pain due to cervical or thoracic SCI. This study stemmed from...had a low thoracic injury and pain in lumbar dermatomes, whereas Subject 1 had mainly mid- cervical pain that responded minimally to DBS and matched...AWARD NUMBER: W81XWH-12-1-0559 TITLE: Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation PRINCIPAL

  1. Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease

    PubMed Central

    Zrinzo, L.; Martinez-Torres, I.; Frost, E.; Pinto, S.; Foltynie, T.; Holl, E.; Petersen, E.; Roughton, M.; Hariz, M.I.; Limousin, P.

    2011-01-01

    Objective: Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for advanced Parkinson disease (PD). Following STN-DBS, speech intelligibility can deteriorate, limiting its beneficial effect. Here we prospectively examined the short- and long-term speech response to STN-DBS in a consecutive series of patients to identify clinical and surgical factors associated with speech change. Methods: Thirty-two consecutive patients were assessed before surgery, then 1 month, 6 months, and 1 year after STN-DBS in 4 conditions on- and off-medication with on- and off-stimulation using established and validated speech and movement scales. Fifteen of these patients were followed up for 3 years. A control group of 12 patients with PD were followed up for 1 year. Results: Within the surgical group, speech intelligibility significantly deteriorated by an average of 14.2% ± 20.15% off-medication and 16.9% ± 21.8% on-medication 1 year after STN-DBS. The medical group deteriorated by 3.6% ± 5.5% and 4.5% ± 8.8%, respectively. Seven patients showed speech amelioration after surgery. Loudness increased significantly in all tasks with stimulation. A less severe preoperative on-medication motor score was associated with a more favorable speech response to STN-DBS after 1 year. Medially located electrodes on the left STN were associated with a significantly higher risk of speech deterioration than electrodes within the nucleus. There was a strong relationship between high voltage in the left electrode and poor speech outcome at 1 year. Conclusion: The effect of STN-DBS on speech is variable and multifactorial, with most patients exhibiting decline of speech intelligibility. Both medical and surgical issues contribute to deterioration of speech in STN-DBS patients. Classification of evidence: This study provides Class III evidence that STN-DBS for PD results in deterioration in speech intelligibility in all combinations of medication and stimulation states at 1 month, 6 months, and 1 year compared to baseline and to control subjects treated with best medical therapy. PMID:21068426

  2. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.

    PubMed

    Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin

    Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of a closed-loop DBS controller. A DBS controller based on a fuzzy expert system was devised to automatically control DBS according to the predicted physiological marker via a set of rules. The simulated experimental results demonstrate that the ceDBS based on the closed-loop control architecture not only reduced power consumption using the predictive physiological marker, but also achieved a desired level of physiological marker through the DBS controller. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Motor outcome and electrode location in deep brain stimulation in Parkinson's disease.

    PubMed

    Koivu, Maija; Huotarinen, Antti; Scheperjans, Filip; Laakso, Aki; Kivisaari, Riku; Pekkonen, Eero

    2018-05-30

    To evaluate the efficacy and adverse effects of subthalamic deep brain stimulation (STN-DBS) in patients with advanced Parkinson's disease (PD) and the possible correlation between electrode location and clinical outcome. We retrospectively reviewed 87 PD-related STN-DBS operations at Helsinki University Hospital (HUH) from 2007 to 2014. The changes of Unified Parkinson's Disease Rating Scale (UPDRS) part III score, Hoehn & Yahr stage, antiparkinson medication, and adverse effects were studied. We estimated the active electrode location in three different coordinate systems: direct visual analysis of MRI correlated to brain atlas, location in relation to the nucleus borders and location in relation to the midcommisural point. At 6 months after operation, both levodopa equivalent doses (LEDs; 35%, Wilcoxon signed-rank test = 0.000) and UPDRS part III scores significantly decreased (38%, Wilcoxon signed-rank test = 0.000). Four patients (5%) suffered from moderate DBS-related dysarthria. The generator and electrodes had to be removed in one patient due to infection (1%). Electrode coordinates in the three coordinate systems correlated well with each other. On the left side, more ventral location of the active contact was associated with greater LED decrease. STN-DBS improves motor function and enables the reduction in antiparkinson medication with an acceptable adverse effect profile. More ventral location of the active contact may allow stronger LED reduction. Further research on the correlation between contact location, clinical outcome, and LED reduction is warranted. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  4. Technological Advances in Deep Brain Stimulation.

    PubMed

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  5. Analysis of Oscillatory Neural Activity in Series Network Models of Parkinson's Disease During Deep Brain Stimulation.

    PubMed

    Davidson, Clare M; de Paor, Annraoi M; Cagnan, Hayriye; Lowery, Madeleine M

    2016-01-01

    Parkinson's disease is a progressive, neurodegenerative disorder, characterized by hallmark motor symptoms. It is associated with pathological, oscillatory neural activity in the basal ganglia. Deep brain stimulation (DBS) is often successfully used to treat medically refractive Parkinson's disease. However, the selection of stimulation parameters is based on qualitative assessment of the patient, which can result in a lengthy tuning period and a suboptimal choice of parameters. This study explores fourth-order, control theory-based models of oscillatory activity in the basal ganglia. Describing function analysis is applied to examine possible mechanisms for the generation of oscillations in interacting nuclei and to investigate the suppression of oscillations with high-frequency stimulation. The theoretical results for the suppression of the oscillatory activity obtained using both the fourth-order model, and a previously described second-order model, are optimized to fit clinically recorded local field potential data obtained from Parkinsonian patients with implanted DBS. Close agreement between the power of oscillations recorded for a range of stimulation amplitudes is observed ( R(2)=0.69-0.99 ). The results suggest that the behavior of the system and the suppression of pathological neural oscillations with DBS is well described by the macroscopic models presented. The results also demonstrate that in this instance, a second-order model is sufficient to model the clinical data, without the need for added complexity. Describing the system behavior with computationally efficient models could aid in the identification of optimal stimulation parameters for patients in a clinical environment.

  6. Movement-Related Discharge in the Macaque Globus Pallidus during High-Frequency Stimulation of the Subthalamic Nucleus

    PubMed Central

    Zimnik, Andrew J.; Nora, Gerald J.; Desmurget, Michel

    2015-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) has largely replaced ablative therapies for Parkinson's disease. Because of the similar efficacies of the two treatments, it has been proposed that DBS acts by creating an “informational lesion,” whereby pathologic neuronal firing patterns are replaced by low-entropy, stimulus-entrained firing patterns. The informational lesion hypothesis, in its current form, states that DBS blocks the transmission of all information from the basal ganglia, including both pathologic firing patterns and normal, task-related modulations in activity. We tested this prediction in two healthy rhesus macaques by recording single-unit spiking activity from the globus pallidus (232 neurons) while the animals completed choice reaction time reaching movements with and without STN-DBS. Despite strong effects of DBS on the activity of most pallidal cells, reach-related modulations in firing rate were equally prevalent in the DBS-on and DBS-off states. This remained true even when the analysis was restricted to cells affected significantly by DBS. In addition, the overall form and timing of perimovement modulations in firing rate were preserved between DBS-on and DBS-off states in the majority of neurons (66%). Active movement and DBS had largely additive effects on the firing rate of most neurons, indicating an orthogonal relationship in which both inputs contribute independently to the overall firing rate of pallidal neurons. These findings suggest that STN-DBS does not act as an indiscriminate informational lesion but rather as a filter that permits task-related modulations in activity while, presumably, eliminating the pathological firing associated with parkinsonism. PMID:25740526

  7. Deep brain stimulation for disorders of consciousness: Systematic review of cases and ethics.

    PubMed

    Vanhoecke, Jonathan; Hariz, Marwan

    A treatment for patients suffering from prolonged severely altered consciousness is not available. The success of Deep Brain Stimulation (DBS) in diseases such as Parkinson's, dystonia and essential tremor provided a renewed impetus for its application in Disorders of Consciousness (DoC). To evaluate the rationale for DBS in patients with DoC, through systematic review of literature containing clinical data and ethical considerations. Articles from PubMed, Embase, Medline and Web of Science were systematically reviewed. The outcomes of 78 individual patients reported in 19 articles from 1968 onwards were pooled and elements of ethical discussions were compared. There is no clear clinical evidence that DBS is a treatment for DoC that can restore both consciousness and the ability to communicate. In patients who benefitted, the outcome of DBS is often confounded by the time frame of spontaneous recovery from DoC. Difficult ethical considerations remain, such as the risk of increasing self-awareness of own limitations, without improving overall wellbeing, and the issues of proxy consent. DBS is far from being evident as a possible future therapeutic avenue for patients with DoC. Double-blind studies are lacking, and many clinical and ethical issues have to be addressed. In the rare cases when DBS for patients with DoC is considered, this needs to be evaluated meticulously on a case by case basis, with comprehensive overall outcome measures including psychological and quality-of-life assessments, and with the guidance of an ethical and interdisciplinary panel, especially in relation to proxy consent. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Influence of subthalamic deep-brain stimulation on cognitive action control in incentive context.

    PubMed

    Houvenaghel, Jean-François; Duprez, Joan; Argaud, Soizic; Naudet, Florian; Dondaine, Thibaut; Robert, Gabriel Hadrien; Drapier, Sophie; Haegelen, Claire; Jannin, Pierre; Drapier, Dominique; Vérin, Marc; Sauleau, Paul

    2016-10-01

    Subthalamic nucleus deep-brain stimulation (STN-DBS) is an effective treatment in Parkinson's disease (PD), but can have cognitive side effects, such as increasing the difficulty of producing appropriate responses when a habitual but inappropriate responses represent strong alternatives. STN-DBS also appears to modulate representations of incentives such as monetary rewards. Furthermore, conflict resolution can be modulated by incentive context. We therefore used a rewarded Simon Task to assess the influence of promised rewards on cognitive action control in 50 patients with PD, half of whom were being treated with STN-DBS. Results were analyzed according to the activation-suppression model. We showed that STN-DBS (i) favored the expression of motor impulsivity, as measured with the Barratt Impulsiveness Scale, (ii) facilitated the expression of incentive actions as observed with a greater increase in speed according to promised reward in patients with versus without DBS and (iii) may increase impulsive action selection in an incentive context. In addition, analysis of subgroups of implanted patients suggested that those who exhibited the most impulsive action selection had the least severe disease. This may indicate that patients with less marked disease are more at risk of developing impulsivity postoperatively. Finally, in these patients, incentive context increased the difficulty of resolving conflict situations. As a whole, the current study revealed that in patients with PD, STN-DBS affects the cognitive processes involved in conflict resolution, reward processing and the influence of promised rewards on conflict resolution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of subthalamic nucleus stimulation during exercise on the mesolimbocortical dopaminergic region in Parkinson's disease: a positron emission tomography study.

    PubMed

    Nozaki, Takao; Sugiyama, Kenji; Yagi, Shunsuke; Yoshikawa, Etsuji; Kanno, Toshihiko; Asakawa, Tetsuya; Ito, Tae; Terada, Tatsuhiro; Namba, Hiroki; Ouchi, Yasuomi

    2013-03-01

    To elucidate the dynamic effects of deep brain stimulation (DBS) in the subthalamic nucleus (STN) during activity on the dopaminergic system, 12 PD patients who had STN-DBS operations at least 1 month prior, underwent two positron emission tomography scans during right-foot movement in DBS-off and DBS-on conditions. To quantify motor performance changes, the motion speed and mobility angle of the foot at the ankle were measured twice. Estimations of the binding potential of [(11)C]raclopride (BP(ND)) were based on the Logan plot method. Significant motor recovery was found in the DBS-on condition. The STN-DBS during exercise significantly reduced the [(11)C]raclopride BP(ND) in the caudate and the nucleus accumbens (NA), but not in the dorsal or ventral putamen. The magnitude of dopamine release in the NA correlated negatively with the magnitude of motor load, indicating that STN-DBS facilitated motor behavior more smoothly and at less expense to dopamine neurons in the region. The lack of dopamine release in the putamen and the significant dopamine release in the ventromedial striatum by STN-DBS during exercise indicated dopaminergic activation occurring in the motivational circuit during action, suggesting a compensatory functional activation of the motor loop from the nonmotor to the motor loop system.

  10. Temperature Control at DBS Electrodes using Heat Sink: Experimentally Validated FEM Model of DBS lead Architecture

    PubMed Central

    Elwassif, Maged M.; Datta, Abhishek; Rahman, Asif; Bikson, Marom

    2012-01-01

    There is a growing interest in the use of Deep Brain Stimulation for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. MRI) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols, and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: 1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); 2) does not interfere with device efficacy; and 3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure. PMID:22764359

  11. Deep brain stimulation of the anterior limb of the internal capsule for treatment of therapy-refractory obsessive compulsive disorder (OCD): a case study highlighting neurocognitive and psychiatric changes.

    PubMed

    Choudhury, Tabina K; Davidson, Joyce E; Viswanathan, Ashwin; Strutt, Adriana M

    2017-04-01

    Obsessive compulsive disorder (OCD) is an anxiety disorder characterized by repeated, unwanted thoughts and behaviors. Individuals with this condition often experience significant emotional distress secondary to their symptoms. Additionally, impairments in attention/concentration, processing speed, and executive functions are typically observed. The exact pathology of OCD remains unknown; consequently, it can be difficult to treat patients with severe symptomatology. Deep brain stimulation (DBS) may be a viable treatment option for individuals who do not respond to medication and/or cognitive behavioral therapy. The following case discusses DBS of the anterior limb of the internal capsule for a patient with severe, therapy-refractory OCD, including pre- to postoperative neurocognitive and psychiatric changes.

  12. Effects of medication and subthalamic nucleus deep brain stimulation on tongue movements in speakers with Parkinson's disease using electropalatography: a pilot study.

    PubMed

    Hartinger, Mariam; Tripoliti, Elina; Hardcastle, William J; Limousin, Patricia

    2011-03-01

    Parkinson's disease (PD) affects speech in the majority of patients. Subthalamic nucleus deep brain stimulation (STN-DBS) is particularly effective in reducing tremor and rigidity. However, its effect on speech is variable. The aim of this pilot study was to quantify the effects of bilateral STN-DBS and medication on articulation, using electropalatography (EPG). Two patients, PT1 and PT2, were studied under four conditions: on and off medication and ON and OFF stimulation. The EPG protocol consisted of a number of target words with alveolar and velar stops, repeated 10 times in random order. The motor part III of the Unified Parkinson Disease Rating Scale (UPDRS) indicated significantly improved motor scores in the ON stimulation condition in both patients. However, PT1's articulation patterns deteriorated with stimulation whereas PT2 showed improving articulatory accuracy in the same condition. The results revealed different effects of stimulation and medication on articulation particularly with regard to timing. The study quantified less articulatory undershoot for velar stops in comparison to alveolars. Furthermore, the findings provided preliminary evidence that stimulation with medication has a more detrimental effect on articulation than stimulation without medication.

  13. Electric stimulation of the tuberomamillary nucleus affects epileptic activity and sleep-wake cycle in a genetic absence epilepsy model.

    PubMed

    Blik, Vitaliya

    2015-01-01

    Deep brain stimulation (DBS) is a promising approach for epilepsy treatment, but the optimal targets and parameters of stimulation are yet to be investigated. Tuberomamillary nucleus (TMN) is involved in EEG desynchronization-one of the proposed mechanisms for DBS action. We studied whether TMN stimulation could interfere with epileptic spike-wave discharges (SWDs) in WAG/Rij rats with inherited absence epilepsy and whether such stimulation would affect sleep-wake cycle. EEG and video registration were used to determine SWD occurrence and stages of sleep and wake during three-hours recording sessions. Stimulation (100Hz) was applied in two modes: closed-loop (with previously determined interruption threshold intensity) or open-loop mode (with 50% or 70% threshold intensity). Closed-loop stimulation successfully interrupted SWDs but elevated their number by 148 ± 54% compared to baseline. It was accompanied by increase in number of episodes but not total duration of both active and passive wakefulness. Open-loop stimulation with amplitude 50% threshold did not change measured parameters, though 70% threshold stimulation reduced SWDs number by 40 ± 9%, significantly raised the amount of active wakefulness and decreased the amount of both slow-wave and rapid eye movement sleep. These results suggest that the TMN is unfavorable as a target for DBS as its stimulation may cause alterations in sleep-wake cycle. A careful choosing of parameters and control of sleep-wake activity is necessary when applying DBS in epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease.

    PubMed

    DeLong, Mahlon R; Wichmann, Thomas

    2015-11-01

    The revival of stereotactic surgery for Parkinson disease (PD) in the 1990s, with pallidotomy and then with high-frequency deep brain stimulation (DBS), has led to a renaissance in functional surgery for movement and other neuropsychiatric disorders. To examine the scientific foundations and rationale for the use of ablation and DBS for treatment of neurologic and psychiatric diseases, using PD as the primary example. A summary of the large body of relevant literature is presented on anatomy, physiology, pathophysiology, and functional surgery for PD and other basal ganglia disorders. The signs and symptoms of movement disorders appear to result largely from signature abnormalities in one of several parallel and largely segregated basal ganglia thalamocortical circuits (ie, the motor circuit). The available evidence suggests that the varied movement disorders resulting from dysfunction of this circuit result from propagated disruption of downstream network activity in the thalamus, cortex, and brainstem. Ablation and DBS act to free downstream networks to function more normally. The basal ganglia thalamocortical circuit may play a key role in the expression of disordered movement, and the basal ganglia-brainstem projections may play roles in akinesia and disturbances of gait. Efforts are under way to target circuit dysfunction in brain areas outside of the traditionally implicated basal ganglia thalamocortical system, in particular, the pedunculopontine nucleus, to address gait disorders that respond poorly to levodopa and conventional DBS targets. Deep brain stimulation is now the treatment of choice for many patients with advanced PD and other movement disorders. The success of DBS and other forms of neuromodulation for neuropsychiatric disorders is the result of the ability to modulate circuit activity in discrete functional domains within the basal ganglia circuitry with highly focused interventions, which spare uninvolved areas that are often disrupted with drugs.

  15. Aim for the Suprasternal Notch: Technical Note to Avoid Bowstringing after Deep Brain Stimulation.

    PubMed

    Akram, Harith; Limousin, Patricia; Hyam, Jonathan; Hariz, Marwan I; Zrinzo, Ludvic

    2015-01-01

    Bowstringing may occur when excessive fibrosis develops around extension cables in the neck after deep brain stimulation (DBS) surgery. Though the occurrence of this phenomenon is rare, we have noted that it tends to cause maximal discomfort when the cables cross superficially over the convexity of the clavicle. We hypothesise that bowstringing may be avoided by directing the extension cables towards the suprasternal notch. When connecting DBS leads to an infraclavicular pectoral implantable pulse generator (IPG), tunnelling is directed towards the suprasternal notch, before being directed laterally towards the IPG pocket. In previously operated patients with established fibrosis, the fibrous tunnel is opened and excised as far cranially as possible, allowing medial rerouting of cables. Using this approach, we reviewed our series of patients who underwent DBS surgery over 10 years. In 429 patients, 7 patients (2%) with cables tunnelled over the convexity of the clavicle complaining of bowstringing underwent cable exploration and rerouting. This eliminated bowstringing and provided better cosmetic results. When the cable trajectory was initially directed towards the suprasternal notch, no bowstringing was observed. The tunnelling trajectory appears to influence postoperative incidence of fibrosis associated with DBS cables. Modifying the surgical technique may reduce the incidence of this troublesome adverse event.

  16. Effects of deep brain stimulation of the subthalamic nucleus on inhibitory and executive control over prepotent responses in Parkinson's disease

    PubMed Central

    Jahanshahi, Marjan

    2013-01-01

    Inhibition of inappropriate, habitual or prepotent responses is an essential component of executive control and a cornerstone of self-control. Via the hyperdirect pathway, the subthalamic nucleus (STN) receives inputs from frontal areas involved in inhibition and executive control. Evidence is reviewed from our own work and the literature suggesting that in Parkinson's disease (PD), deep brain stimulation (DBS) of the STN has an impact on executive control during attention-demanding tasks or in situations of conflict when habitual or prepotent responses have to be inhibited. These results support a role for the STN in an inter-related set of processes: switching from automatic to controlled processing, inhibitory and executive control, adjusting response thresholds and influencing speed-accuracy trade-offs. Such STN DBS-induced deficits in inhibitory and executive control may contribute to some of the psychiatric problems experienced by a proportion of operated cases after STN DBS surgery in PD. However, as no direct evidence for such a link is currently available, there is a need to provide direct evidence for such a link between STN DBS-induced deficits in inhibitory and executive control and post-surgical psychiatric complications experienced by operated patients. PMID:24399941

  17. Probe-pin device for optical neurotransmitter sensing in the brain

    NASA Astrophysics Data System (ADS)

    Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn

    2015-04-01

    Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.

  18. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation

    PubMed Central

    Birdno, Merrill J.; Kuncel, Alexis M.; Dorval, Alan D.; Turner, Dennis A.; Gross, Robert E.

    2012-01-01

    Deep brain stimulation (DBS) provides dramatic tremor relief when delivered at high-stimulation frequencies (more than ∼100 Hz), but its mechanisms of action are not well-understood. Previous studies indicate that high-frequency stimulation is less effective when the stimulation train is temporally irregular. The purpose of this study was to determine the specific characteristics of temporally irregular stimulus trains that reduce their effectiveness: long pauses, bursts, or irregularity per se. We isolated these characteristics in stimulus trains and conducted intraoperative measurements of postural tremor in eight volunteers. Tremor varied significantly across stimulus conditions (P < 0.015), and stimulus trains with pauses were significantly less effective than stimulus trains without (P < 0.002). There were no significant differences in tremor between trains with or without bursts or between trains that were irregular or periodic. Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus. PMID:21994263

  19. Intraoperative MR-guided DBS implantation for treating PD and ET

    NASA Astrophysics Data System (ADS)

    Liu, Haiying; Maxwell, Robert E.; Truwit, Charles L.

    2001-05-01

    Deep brain stimulator (DBS) implantation is a promising treatment alternative for suppressing the motor tremor symptoms in Parkinson disease (PD) patient. The main objective is to develop a minimally invasive approach using high spatial resolution and soft-tissue contrast MR imaging techniques to guide the surgical placement of DBS. In the MR-guided procedure, the high spatial resolution MR images were obtained intra-operatively and used to target stereotactically a specific deep brain location. The neurosurgery for craniotomy was performed in the front of the magnet outside of the 10 Gauss line. Aided with positional registration assembly for the stereotactic head frame, the target location (VIM or GPi or STN) in deep brain areas was identified and measured from the MR images in reference to the markers in the calibration assembly of the head frame before the burrhole prep. In 20 patients, MR- guided DBS implantations have been performed according to the new methodology. MR-guided DBS implantation at high magnetic field strength has been shown to be feasible and desirable. In addition to the improved outcome, this offers a new surgical approach in which intra-operative visualization is possible during intervention, and any complications such as bleeding can be assessed in situ immediately prior to dural closure.

  20. Perspective on the Economic Evaluation of Deep Brain Stimulation

    PubMed Central

    McIntosh, Emma Sarah

    2011-01-01

    Parkinson's disease (PD) is an example of a disease area experiencing increasing use of deep brain stimulation (DBS) to treat symptoms. PD is a major cause of morbidity and has a substantial economic impact on the patients, their caregivers, the health service, and broader social and community services. The PDSURG Collaborators Group reported that DBS surgery for patients with advanced PD improves motor function and quality of life that medical therapy alone at 1 year but there are surgery related side effects in a minority (Williams et al., 2010). The aim of this paper however is to build upon the knowledge generated from evaluating DBS in PD and to provide a detailed perspective on the economic evaluation of DBS more generally with a view to providing a framework for informative design of DBS economic evaluations. This perspective will outline the key categories of resource use pertinent to DBS beyond the surgical scenario and into the broader aspects of follow-up care, adverse events, repeat procedures, social and community care, patient and carer costs, and will explore the importance of handling capital costs of DBS equipment appropriately as well as including costs occurring in the future. In addition, this perspective article will outline the importance of capturing broader aspects of “outcome” or benefits as compared to those traditional clinical measures used. The key message is the importance of employing a broad “perspective” on the measurement and valuation of costs and benefits as well as the importance of adopting the appropriate time horizon for evaluating the costs and benefits of DBS. In order to do this effectively it may be that alternative methods of economic evaluation in health care to the commonly used cost-effectiveness analysis may have to be used, such as cost-benefit analysis (McIntosh et al., 2010). PMID:21779238

  1. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease.

    PubMed

    Karimi, M; Golchin, N; Tabbal, S D; Hershey, T; Videen, T O; Wu, J; Usche, J W M; Revilla, F J; Hartlein, J M; Wernle, A R; Mink, J W; Perlmutter, J S

    2008-10-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (r(s) = -0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (r(s) = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (r(s) = -0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor signs of Parkinson's disease.

  2. Subthalamic nucleus stimulation-induced regional blood flow responses correlate with improvement of motor signs in Parkinson disease

    PubMed Central

    Karimi, M.; Golchin, N.; Tabbal, S. D.; Hershey, T.; Videen, T. O.; Wu, J.; Usche, J. W. M.; Revilla, F. J.; Hartlein, J. M.; Wernle, A. R.; Mink, J. W.

    2008-01-01

    Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (rs = –0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (rs = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (rs = –0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor signs of Parkinson's disease. PMID:18697909

  3. Surgical Accuracy of 3-Tesla Versus 7-Tesla Magnetic Resonance Imaging in Deep Brain Stimulation for Parkinson Disease.

    PubMed

    van Laar, Peter Jan; Oterdoom, D L Marinus; Ter Horst, Gert J; van Hulzen, Arjen L J; de Graaf, Eva K L; Hoogduin, Hans; Meiners, Linda C; van Dijk, J Marc C

    2016-09-01

    In deep brain stimulation (DBS), accurate placement of the lead is critical. Target definition is highly dependent on visual recognition on magnetic resonance imaging (MRI). We prospectively investigated whether the 7-T MRI enabled better visualization of targets and led to better placement of leads compared with the 1.5-T and the 3-T MRI. Three patients with PD (mean, 55 years) were scanned on 1.5-, 3-, and 7-T MRI before surgery. Tissue contrast and signal-to-noise ratio were measured. Target coordinates were noted on MRI and during surgery. Differences were analyzed with post-hoc analysis of variance. The 7-T MRI demonstrated a significant improvement in tissue visualization (P < 0.005) and signal-to-noise ratio (P < 0.005). However, no difference in the target coordinates was found between the 7-T and the 3-T MRI. Although the 7-T MRI enables a significant better visualization of the DBS target in patients with PD, we found no clinical benefit for the placement of the DBS leads. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Aggravated stuttering following subthalamic deep brain stimulation in Parkinson's disease - two cases

    PubMed Central

    2011-01-01

    Stuttering is a speech disorder with disruption of verbal fluency which is occasionally present in patients with Parkinson's disease (PD). Long-term medical management of PD is frequently complicated by fluctuating motor functions and dyskinesias. High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment of motor fluctuations and is the most common surgical procedure in PD. Here we report the re-occurrence and aggravation of stuttering following STN-DBS in two male patients treated for advanced PD. In both patients the speech fluency improved considerably when the neurostimulator was turned off, indicating that stuttering aggravation was related to neurostimulation of the STN itself, its afferent or efferent projections and/or to structures localized in the immediate proximity. This report supports previous studies demonstrating that lesions of the basal ganglia-thalamocortical motor circuit, including the STN, is involved in the development of stuttering. In advanced PD STN-DBS is generally an effective and safe treatment. However, patients with PD and stuttering should be informed about the risk of aggravated symptoms following surgical therapy. PMID:21477305

  5. Developing a Deep Brain Stimulation Neuromodulation Network for Parkinson Disease, Essential Tremor, and Dystonia: Report of a Quality Improvement Project

    PubMed Central

    O’Suilleabhain, Padraig E.; Sanghera, Manjit; Patel, Neepa; Khemani, Pravin; Lacritz, Laura H.; Chitnis, Shilpa; Whitworth, Louis A.; Dewey, Richard B.

    2016-01-01

    Objective To develop a process to improve patient outcomes from deep brain stimulation (DBS) surgery for Parkinson disease (PD), essential tremor (ET), and dystonia. Methods We employed standard quality improvement methodology using the Plan-Do-Study-Act process to improve patient selection, surgical DBS lead implantation, postoperative programming, and ongoing assessment of patient outcomes. Results The result of this quality improvement process was the development of a neuromodulation network. The key aspect of this program is rigorous patient assessment of both motor and non-motor outcomes tracked longitudinally using a REDCap database. We describe how this information is used to identify problems and to initiate Plan-Do-Study-Act cycles to address them. Preliminary outcomes data is presented for the cohort of PD and ET patients who have received surgery since the creation of the neuromodulation network. Conclusions Careful outcomes tracking is essential to ensure quality in a complex therapeutic endeavor like DBS surgery for movement disorders. The REDCap database system is well suited to store outcomes data for the purpose of ongoing quality assurance monitoring. PMID:27711133

  6. Developing a Deep Brain Stimulation Neuromodulation Network for Parkinson Disease, Essential Tremor, and Dystonia: Report of a Quality Improvement Project.

    PubMed

    Dewey, Richard B; O'Suilleabhain, Padraig E; Sanghera, Manjit; Patel, Neepa; Khemani, Pravin; Lacritz, Laura H; Chitnis, Shilpa; Whitworth, Louis A; Dewey, Richard B

    2016-01-01

    To develop a process to improve patient outcomes from deep brain stimulation (DBS) surgery for Parkinson disease (PD), essential tremor (ET), and dystonia. We employed standard quality improvement methodology using the Plan-Do-Study-Act process to improve patient selection, surgical DBS lead implantation, postoperative programming, and ongoing assessment of patient outcomes. The result of this quality improvement process was the development of a neuromodulation network. The key aspect of this program is rigorous patient assessment of both motor and non-motor outcomes tracked longitudinally using a REDCap database. We describe how this information is used to identify problems and to initiate Plan-Do-Study-Act cycles to address them. Preliminary outcomes data is presented for the cohort of PD and ET patients who have received surgery since the creation of the neuromodulation network. Careful outcomes tracking is essential to ensure quality in a complex therapeutic endeavor like DBS surgery for movement disorders. The REDCap database system is well suited to store outcomes data for the purpose of ongoing quality assurance monitoring.

  7. Effects of neurostimulation for advanced Parkinson’s disease patients on motor symptoms: A multiple-treatments meta-analysas of randomized controlled trials

    PubMed Central

    Xie, Cheng-Long; Shao, Bei; Chen, Jie; Zhou, Yi; Lin, Shi-Yi; Wang, Wen-Wen

    2016-01-01

    Deep brain stimulation (DBS) is the surgical procedure of choice for patients with advanced Parkinson disease (PD). We aim to evaluate the efficacy of GPi (globus pallidus internus), STN (subthalamic nucleus)-DBS and medical therapy for PD. We conducted a systematic review and multiple-treatments meta-analysis to investigate the efficacy of neurostimulation and medical therapy for PD patients. Sixteen eligible studies were included in this analysis. We pooled the whole data and found obvious difference between GPi-DBS versus medical therapy and STN-DBS versus medical therapy in terms of UPDRS scores (Unified Parkinson’s Disease Rating Scale). Meanwhile, we found GPi-DBS had the similar efficacy on the UPDRS scores when compared with STN-DBS. What is more, quality of life, measured by PDQ-39 (Parkinson’s disease Questionnaire) showed greater improvement after GPi-DBS than STN-DBS. Five studies showed STN-DBS was more effective for reduction in medication than GPi-DBS. Overall, either GPi-DBS or STN-DBS was an effective technique to control PD patients’ symptoms and improved their functionality and quality of life. Meanwhile, the UPDRS scores measuring parkinsonian symptoms revealed no significant difference between GPi-DBS and STN-DBS. STN-DBS was more effective for reduction in medication than GPi-DBS. Alternatively, GPi-DBS was more effective for improving the PDQ-39 score than STN-DBS. PMID:27142183

  8. Sexual well being in parkinsonian patients after deep brain stimulation of the subthalamic nucleus

    PubMed Central

    Castelli, L; Perozzo, P; Genesia, M; Torre, E; Pesare, M; Cinquepalmi, A; Lanotte, M; Bergamasco, B; Lopiano, L

    2004-01-01

    Objectives: To evaluate changes in sexual well being in a group of patients with Parkinson's disease following deep brain stimulation (DBS) of the subthalamic nucleus (STN). Methods: 31 consecutive patients with Parkinson's disease (21 men and 10 women), bilaterally implanted for DBS of STN, were evaluated one month before and 9–12 months after surgery. Sexual functioning was assessed using a reduced form of the Gollombok Rust inventory of sexual satisfaction (GRISS). Depression (Beck depression inventory) and anxiety (STAI-X1/X2) were also evaluated. Relations between sexual functioning and modifications in the severity of disease (Hoehn and Yahr stage), reduction in levodopa equivalent daily dosage (LEDD), age, and duration of disease were analysed. Results: While no modifications were found in female patients, male patients reported slightly but significantly more satisfaction with their sexual life after DBS of STN. When only male patients under 60 years old were considered, a greater improvement in sexual functioning was found, though still small. Modifications in depressive symptoms and anxiety, as well as duration of the disease, reduction in LEDD, and improvement in the severity of disease, showed no relation with changes in sexual functioning after DBS of STN. Conclusions: DBS of STN appears to affect sexual functioning in a small but positive way. Male patients with Parkinson's disease, especially when under 60, appeared more satisfied with their sexual well being over a short term follow up period. PMID:15314111

  9. Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.

    PubMed

    Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, Wuwei

    2018-03-13

    Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Electrode Position and Current Amplitude Modulate Impulsivity after Subthalamic Stimulation in Parkinsons Disease—A Computational Study

    PubMed Central

    Mandali, Alekhya; Chakravarthy, V. Srinivasa; Rajan, Roopa; Sarma, Sankara; Kishore, Asha

    2016-01-01

    Background: Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) is highly effective in alleviating motor symptoms of Parkinson's disease (PD) which are not optimally controlled by dopamine replacement therapy. Clinical studies and reports suggest that STN-DBS may result in increased impulsivity and de novo impulse control disorders (ICD). Objective/Hypothesis: We aimed to compare performance on a decision making task, the Iowa Gambling Task (IGT), in healthy conditions (HC), untreated and medically-treated PD conditions with and without STN stimulation. We hypothesized that the position of electrode and stimulation current modulate impulsivity after STN-DBS. Methods: We built a computational spiking network model of basal ganglia (BG) and compared the model's STN output with STN activity in PD. Reinforcement learning methodology was applied to simulate IGT performance under various conditions of dopaminergic and STN stimulation where IGT total and bin scores were compared among various conditions. Results: The computational model reproduced neural activity observed in normal and PD conditions. Untreated and medically-treated PD conditions had lower total IGT scores (higher impulsivity) compared to HC (P < 0.0001). The electrode position that happens to selectively stimulate the part of the STN corresponding to an advantageous panel on IGT resulted in de-selection of that panel and worsening of performance (P < 0.0001). Supratherapeutic stimulation amplitudes also worsened IGT performance (P < 0.001). Conclusion(s): In our computational model, STN stimulation led to impulsive decision making in IGT in PD condition. Electrode position and stimulation current influenced impulsivity which may explain the variable effects of STN-DBS reported in patients. PMID:27965590

  11. A General Method for Evaluating Deep Brain Stimulation Effects on Intravenous Methamphetamine Self-Administration

    PubMed Central

    Batra, Vinita; Guerin, Glenn F.; Goeders, Nicholas E.; Wilden, Jessica A.

    2016-01-01

    Substance use disorders, particularly to methamphetamine, are devastating, relapsing diseases that disproportionally affect young people. There is a need for novel, effective and practical treatment strategies that are validated in animal models. Neuromodulation, including deep brain stimulation (DBS) therapy, refers to the use of electricity to influence pathological neuronal activity and has shown promise for psychiatric disorders, including drug dependence. DBS in clinical practice involves the continuous delivery of stimulation into brain structures using an implantable pacemaker-like system that is programmed externally by a physician to alleviate symptoms. This treatment will be limited in methamphetamine users due to challenging psychosocial situations. Electrical treatments that can be delivered intermittently, non-invasively and remotely from the drug-use setting will be more realistic. This article describes the delivery of intracranial electrical stimulation that is temporally and spatially separate from the drug-use environment for the treatment of IV methamphetamine dependence. Methamphetamine dependence is rapidly developed in rodents using an operant paradigm of intravenous (IV) self-administration that incorporates a period of extended access to drug and demonstrates both escalation of use and high motivation to obtain drug. PMID:26863392

  12. One-pass deep brain stimulation of dentato-rubro-thalamic tract and subthalamic nucleus for tremor-dominant or equivalent type Parkinson's disease.

    PubMed

    Coenen, Volker Arnd; Rijntjes, Michel; Prokop, Thomas; Piroth, Tobias; Amtage, Florian; Urbach, Horst; Reinacher, Peter Christoph

    2016-04-01

    Refractory tremor in tremor-dominant (TD) or equivalent-type (EQT) idiopathic Parkinson's syndrome (IPS) poses the challenge of choosing the best target region to for deep brain stimulation (DBS). While the subthalamic nucleus is typically chosen in younger patients as the target for dopamine-responsive motor symptoms, it is more complicated if tremor does not (fully) respond under trial conditions. In this report, we present the first results from simultaneous bilateral DBS of the DRT (dentato-rubro-thalamic tract) and the subthalamic nucleus (STN) in two elderly patients with EQT and TD IPS and dopamine-refractory tremor. Two patients received bilateral octopolar DBS electrodes in the STN additionally traversing the DRT region. Achieved electrode positions were determined with helical CT, overlaid onto DTI tractography data, and compared with clinical data of stimulation response. Both patients showed immediate and sustained improvement of their tremor, bilaterally. The proposed approach appears to be safe and feasible and a combined stimulation of the two target regions was performed tailored to the patients' symptoms. Clinically, no neuropsychiatric effects were seen. Our pilot data suggest a viable therapeutic option to treat the subgroup of TD and EQT IPS and with tremor as the predominant symptom. A clinical study to further investigate this approach ( www.clinicaltrials.gov ; NCT02288468) is the focus of our ongoing research.

  13. Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia.

    PubMed

    Hadar, R; Bikovski, L; Soto-Montenegro, M L; Schimke, J; Maier, P; Ewing, S; Voget, M; Wieske, F; Götz, T; Desco, M; Hamani, C; Pascau, J; Weiner, I; Winter, C

    2018-04-01

    The notion that schizophrenia is a neurodevelopmental disorder in which neuropathologies evolve gradually over the developmental course indicates a potential therapeutic window during which pathophysiological processes may be modified to halt disease progression or reduce its severity. Here we used a neurodevelopmental maternal immune stimulation (MIS) rat model of schizophrenia to test whether early targeted modulatory intervention would affect schizophrenia's neurodevelopmental course. We applied deep brain stimulation (DBS) or sham stimulation to the medial prefrontal cortex (mPFC) of adolescent MIS rats and respective controls, and investigated its behavioral, biochemical, brain-structural and -metabolic effects in adulthood. We found that mPFC-DBS successfully prevented the emergence of deficits in sensorimotor gating, attentional selectivity and executive function in adulthood, as well as the enlargement of lateral ventricle volumes and mal-development of dopaminergic and serotonergic transmission. These data suggest that the mPFC may be a valuable target for effective preventive treatments. This may have significant translational value, suggesting that targeting the mPFC before the onset of psychosis via less invasive neuromodulation approaches may be a viable preventive strategy.

  14. A Miniaturized, Programmable Deep-Brain Stimulator for Group-Housing and Water Maze Use

    PubMed Central

    Pinnell, Richard C.; Pereira de Vasconcelos, Anne; Cassel, Jean C.; Hofmann, Ulrich G.

    2018-01-01

    Pre-clinical deep-brain stimulation (DBS) research has observed a growing interest in the use of portable stimulation devices that can be carried by animals. Not only can such devices overcome many issues inherent with a cable tether, such as twisting or snagging, they can also be utilized in a greater variety of arenas, including enclosed or large mazes. However, these devices are not inherently designed for water-maze environments, and their use has been restricted to individually-housed rats in order to avoid damage from various social activities such as grooming, playing, or fighting. By taking advantage of 3D-printing techniques, this study demonstrates an ultra-small portable stimulator with an environmentally-protective device housing, that is suitable for both social-housing and water-maze environments. The miniature device offers 2 channels of charge-balanced biphasic pulses with a high compliance voltage (12 V), a magnetic switch, and a diverse range of programmable stimulus parameters and pulse modes. The device's capabilities have been verified in both chronic pair-housing and water-maze experiments that asses the effects of nucleus reuniens DBS. Theta-burst stimulation delivered during a reference-memory water-maze task (but not before) had induced performance deficits during both the acquisition and probe trials of a reference memory task. The results highlight a successful application of 3D-printing for expanding on the range of measurement modalities capable in DBS research. PMID:29706862

  15. Deep brain stimulation of the subcallosal cingulate for treatment-refractory anorexia nervosa: 1 year follow-up of an open-label trial.

    PubMed

    Lipsman, Nir; Lam, Eileen; Volpini, Matthew; Sutandar, Kalam; Twose, Richelle; Giacobbe, Peter; Sodums, Devin J; Smith, Gwenn S; Woodside, D Blake; Lozano, Andres M

    2017-04-01

    Anorexia nervosa is a life-threatening illness. Brain circuits believed to drive anorexia nervosa symptoms can be accessed with surgical techniques such as deep brain stimulation (DBS). Initial results suggest that DBS of the subcallosal cingulate is safe and associated with improvements in mood and anxiety. Here, we investigated the safety, clinical, and neuroimaging outcomes of DBS of the subcallosal cingulate in a group of patients during 12 months of active stimulation. We did this prospective open-label trial at the Department of Surgery of the University of Toronto (Toronto, ON, Canada). Patients were eligible to participate if they were aged 20-60 years and had a diagnosis of anorexia nervosa (restricting or binge-purging subtype) and a demonstrated history of chronicity or treatment resistance. Following a period of medical stabilisation, patients underwent surgery for DBS and received open-label continuous stimulation for the entire 1 year study duration. The primary outcome was safety and acceptability of the procedure. The secondary outcomes were body-mass index (BMI), mood, anxiety, affective regulation, and anorexia nervosa-specific behaviours at 12 months after surgery, as well as changes in neural circuitry (measured with PET imaging of cerebral glucose metabolism at baseline and at 6 and 12 months after surgery). This trial was registered with ClinicalTrials.gov, number NCT01476540. 16 patients with treatment-refractory anorexia nervosa were enrolled between September, 2011, and January, 2014, and underwent DBS of the subcallosal cingulate between November, 2011, and April, 2014. Patients had a mean age of 34 years (SD 8) and average illness duration of 18 years (SD 6). Two patients requested that their devices be removed or deactivated during the study, although their reasons for doing so were poorly defined. The most common adverse event was pain related to surgical incision or positioning that required oral analgesics for longer than 3-4 days after surgery (five [31%] of 16 patients). Seven (44%) of 16 patients had serious adverse events, most of which were related to the underlying illness, including electrolyte disturbances. Average BMI at surgery was 13·83 (SD 1·49) and 14 (88%) of the 16 patients had comorbid mood disorders, anxiety disorders, or both. Mean BMI after 12 months of stimulation was 17·34 (SD 3·40; p=0·0009 vs baseline). DBS was associated with significant improvements in measures of depression (mean Hamilton Depression Rating Scale scores 19·40 [SD 6·76] at baseline vs 8·79 [7·64] at 12 months; p=0·00015), anxiety (mean Beck Anxiety Inventory score 38·00 [15·55] vs 27·14 [18·39]; p=0·035), and affective regulation (mean Dysfunction in Emotional Regulation Scale score 131·80 [22·04] vs 104·36 [31·27]; p=0·019). We detected significant changes in cerebral glucose metabolism in key anorexia nervosa-related structures at both 6 months and 12 months of ongoing brain stimulation. In patients with chronic treatment-refractory anorexia nervosa, DBS is well tolerated and is associated with significant and sustained improvements in affective symptoms, BMI, and changes in neural circuitry at 12 months after surgery. Klarman Family Foundation Grants Program in Eating Disorders Research and Canadian Institutes of Health Research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Changing of the guard: reducing infection when replacing neural pacemakers.

    PubMed

    Pepper, Joshua; Meliak, Lara; Akram, Harith; Hyam, Jonathan; Milabo, Catherine; Candelario, Joseph; Foltynie, Thomas; Limousin, Patricia; Curtis, Carmel; Hariz, Marwan; Zrinzo, Ludvic

    2017-04-01

    OBJECTIVE Infection of deep brain stimulation (DBS) hardware has a significant impact on patient morbidity. Previous experience suggests that infection rates appear to be higher after implantable pulse generator (IPG) replacement surgery than after the de novo DBS procedure. In this study the authors examine the effect of a change in practice during DBS IPG replacements at their institution. METHODS Starting in January 2012, patient screening for methicillin-resistant Staphylococcus aureus (MRSA) and, and where necessary, eradication was performed prior to elective DBS IPG change. Moreover, topical vancomycin was placed in the IPG pocket during surgery. The authors then prospectively examined the infection rate in patients undergoing DBS IPG replacement at their center over a 3-year period with at least 9 months of follow-up. RESULTS The total incidence of infection in this prospective consecutive series of 101 IPG replacement procedures was 0%, with a mean follow-up duration of 24 ± 11 months. This was significantly lower than the authors' previously published historical control group, prior to implementing the change in practice, where the infection rate for IPG replacement was 8.5% (8/94 procedures; p = 0.003). CONCLUSIONS This study suggests that a change in clinical practice can significantly lower infection rates in patients undergoing DBS IPG replacement. These simple measures can minimize unnecessary surgery, loss of benefit from chronic stimulation, and costly hardware replacement, further improving the cost efficacy of DBS therapies.

  17. Simulation and assessment of cerebrovascular damage in deep brain stimulation using a stereotactic atlas of vasculature and structure derived from multiple 3- and 7-tesla scans.

    PubMed

    Nowinski, Wieslaw L; Chua, Beng Choon; Volkau, Ihar; Puspitasari, Fiftarina; Marchenko, Yevgen; Runge, Val M; Knopp, Michael V

    2010-12-01

    The most severe complication of deep brain stimulation (DBS) is intracranial hemorrhage. Detailed knowledge of the cerebrovasculature could reduce the rate of this disorder. Morphological scans typically acquired in stereotactic and functional neurosurgery (SFN) by using 1.5-T (or sometimes even 3-T) imaging units poorly depict the vasculature. Advanced angiographic imaging, including 3- and 7-T 3D time-of-flight and susceptibility weighted imaging as well as 320-slice CT angiography, depict the vessels in great detail. However, these acquisitions are not used in SFN clinical practice, and robust methods for their processing are not available yet. Therefore, the authors proposed the use of a detailed 3D stereotactic cerebrovascular atlas to assist in SFN planning and to potentially reduce DBS-induced hemorrhage. A very detailed 3D cerebrovascular atlas of arteries, veins, and dural sinuses was constructed from multiple 3- and 7-T scans. The atlas contained>900 vessels, each labeled with a name and diameter with the smallest having a 90-μm diameter. The cortical areas, ventricular system, and subcortical structures were fully segmented and labeled, including the main stereotactic target structures: subthalamic nucleus, ventral intermediate nucleus of the thalamus, and internal globus pallidus. The authors also developed a computer simulator with the embedded atlas that was able to compute the effective electrode trajectory by minimizing penetration of the cerebrovascular system and vital brain structures by a DBS electrode. The simulator provides the neurosurgeon with functions for atlas manipulation, target selection, trajectory planning and editing, 3D display and manipulation, and electrode-brain penetration calculation. This simulation demonstrated that a DBS electrode inserted in the middle frontal gyrus may intersect several arteries and veins including 1) the anteromedial frontal artery of the anterior cerebral artery as well as the prefrontal artery and the precentral sulcus artery of the middle cerebral artery (range of diameters 0.4-0.6 mm); and 2) the prefrontal, anterior caudate, and medullary veins (range of diameters 0.1-2.3 mm). This work also shows that field strength and pulse sequence have a substantial impact on vessel depiction. The numbers of 3D vascular segments are 215, 363, and 907 for 1.5-, 3-, and 7-T scans, respectively. Inserting devices into the brain during microrecording and stimulation may cause microbleeds not discernible on standard scans. A small change in the location of the DBS electrode can result in a major change for the patient. The described simulation increases the neurosurgeon's awareness of this phenomenon. The simulator enables the neurosurgeon to analyze the spatial relationships between the track and the cerebrovasculature, ventricles, subcortical structures, and cortical areas, which allows the DBS electrode to be placed more effectively, and thus potentially reducing the invasiveness of the stimulation procedure for the patient.

  18. Cost-effectiveness of subthalmic nucleus deep brain stimulation for the treatment of advanced Parkinson disease in Hong Kong: a prospective study.

    PubMed

    Zhu, X L; Chan, Danny T M; Lau, Claire K Y; Poon, Wai S; Mok, Vincent C T; Chan, Anne Y Y; Wong, Lawrence K S; Yeung, Jonas H M; Leung, Michael C M; Tang, Venus Y H; Wong, Rosanna K M; Yeung, Carol

    2014-12-01

    Deep brain stimulation (DBS) is an effective but costly treatment for patients with advanced Parkinson disease (PD). This study examined the cost-effectiveness of DBS in relation to its improved effectiveness to help funding decision makers decide whether the treatment should be adopted. The incremental cost-effective ratio (ICER) per quality-adjusted life year has been benchmarked as being between US$50,000 and US$100,000 by US agencies, whereas it is less than €30,000 per quality-adjusted life year in Europe. To provide cost-effectiveness information of subthalamic nucleus DBS for patients with advanced PD. Direct medical expenses during the year before the DBS treatment were used to measure the baseline cost. Cost-effectiveness was measured by the ICER for the Unified Parkinson's Disease Rating Scale Part III and the ICER for the EuroQol Group's Health-Related Quality of Life measurement. Thirteen patients with advanced PD were recruited between January 2009 and January 2011. A 1-point improvement in the Unified Parkinson's Disease Rating Scale Part III score was associated with an ICER of US$926 in the first year and US$421 in the second year. A 1-point improvement on the EuroQol Group's Health-Related Quality of Life measurement was associated with an ICER of US$123,110 in the first year and US$62,846 in the second year. Cost-effectiveness of subthalamic nucleus DBS for treatment of advanced PD is greater during a 2-year period than 1 year only. These results can be used as a reference for the use of DBS for PD in a region with public health financing. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Analyzing 7000 texts on deep brain stimulation: what do they tell us?

    PubMed

    Ineichen, Christian; Christen, Markus

    2015-01-01

    The enormous increase in numbers of scientific publications in the last decades requires quantitative methods for obtaining a better understanding of topics and developments in various fields. In this exploratory study, we investigate the emergence, trends, and connections of topics within the whole text corpus of the deep brain stimulation (DBS) literature based on more than 7000 papers (title and abstracts) published between 1991 to 2014 using a network approach. Taking the co-occurrence of basic terms that represent important topics within DBS as starting point, we outline the statistics of interconnections between DBS indications, anatomical targets, positive, and negative effects, as well as methodological, technological, and economic issues. This quantitative approach confirms known trends within the literature (e.g., regarding the emergence of psychiatric indications). The data also reflect an increased discussion about complex issues such as personality connected tightly to the ethical context, as well as an apparent focus on depression as important DBS indication, where the co-occurrence of terms related to negative effects is low both for the indication as well as the related anatomical targets. We also discuss consequences of the analysis from a bioethical perspective, i.e., how such a quantitative analysis could uncover hidden subject matters that have ethical relevance. For example, we find that hardware-related issues in DBS are far more robustly connected to an ethical context compared to impulsivity, concrete side-effects or death/suicide. Our contribution also outlines the methodology of quantitative text analysis that combines statistical approaches with expert knowledge. It thus serves as an example how innovative quantitative tools can be made useful for gaining a better understanding in the field of DBS.

  20. Analyzing 7000 texts on deep brain stimulation: what do they tell us?

    PubMed Central

    Ineichen, Christian; Christen, Markus

    2015-01-01

    The enormous increase in numbers of scientific publications in the last decades requires quantitative methods for obtaining a better understanding of topics and developments in various fields. In this exploratory study, we investigate the emergence, trends, and connections of topics within the whole text corpus of the deep brain stimulation (DBS) literature based on more than 7000 papers (title and abstracts) published between 1991 to 2014 using a network approach. Taking the co-occurrence of basic terms that represent important topics within DBS as starting point, we outline the statistics of interconnections between DBS indications, anatomical targets, positive, and negative effects, as well as methodological, technological, and economic issues. This quantitative approach confirms known trends within the literature (e.g., regarding the emergence of psychiatric indications). The data also reflect an increased discussion about complex issues such as personality connected tightly to the ethical context, as well as an apparent focus on depression as important DBS indication, where the co-occurrence of terms related to negative effects is low both for the indication as well as the related anatomical targets. We also discuss consequences of the analysis from a bioethical perspective, i.e., how such a quantitative analysis could uncover hidden subject matters that have ethical relevance. For example, we find that hardware-related issues in DBS are far more robustly connected to an ethical context compared to impulsivity, concrete side-effects or death/suicide. Our contribution also outlines the methodology of quantitative text analysis that combines statistical approaches with expert knowledge. It thus serves as an example how innovative quantitative tools can be made useful for gaining a better understanding in the field of DBS. PMID:26578908

Top