Sample records for brain tissue levels

  1. Effects of Antioxidant N-acetylcysteine Against Paraquat-Induced Oxidative Stress in Vital Tissues of Mice

    PubMed Central

    Ortiz, Maricelly Santiago; Forti, Kevin Muñoz; Suárez Martinez, Edu B.; Muñoz, Lenin Godoy; Husain, Kazim

    2016-01-01

    Paraquat (PQ) is a commonly used herbicide that induces oxidative stress via reactive oxygen species (ROS) generation. This study aimed to investigate the effects of the antioxidant N-acetylcysteine (NAC) against PQ-induced oxidative stress in mice. Male Balb/C mice (24) were randomly divided into 4 groups and treated for 3 weeks: 1) control (saline), 2) NAC (0.5% in diet), 3) PQ (20 mg/kg, IP) and 4) combination (PQ + NAC). Afterwards mice were sacrificed and oxidative stress markers were analyzed. Our data showed no significant change in serum antioxidant capacity. PQ enhanced lipid peroxidation (MDA) levels in liver tissue compared to control whereas NAC decreased MDA levels (p<0.05). NAC significantly increased MDA in brain tissue (p<0.05). PQ significantly depleted glutathione (GSH) levels in liver (p=0.001) and brain tissue (p<0.05) but non-significant GSH depletion in lung tissue. NAC counteracted PQ, showing a moderate increase GSH levels in liver and brain tissues. PQ significantly increased 8-oxodeoxyguanosine (8-OH-dG) levels (p<0.05) in liver tissue compared to control without a significant change in brain tissue. NAC treatment ameliorated PQ-induced oxidative DNA damage in the liver tissue. PQ significantly decreased the relative mtDNA amplification and increased the frequency of lesions in liver and brain tissue (p<0.0001), while NAC restored the DNA polymerase activity in liver tissue but not in brain tissue. In conclusion, PQ induced lipid peroxidation, oxidative nuclear DNA and mtDNA damage in liver tissues and depleted liver and brain GSH levels. NAC supplementation ameliorated the PQ-induced oxidative stress response in liver tissue of mice. PMID:27398384

  2. Effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and related gene expression.

    PubMed

    Wu, C; Zhao, X; Zhang, X; Liu, S; Zhao, H; Chen, Y

    2015-06-11

    We investigated the effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and apoptosis-related gene expression. Rat models of acute cerebral infarction were constructed using the suture method, and randomly divided into the control group, model, and treatment groups. In the treatment group, 4 mg/kg G. biloba extract was intravenously injected into the rat tail vein. Phosphate-buffered saline solution was injected in the model group. Seventy-two hours after treatment, rats were euthanized, and brain tissues were removed to analyze the changes in caspase-3, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) mRNA and protein levels, and variation in brain tissue cells' apoptosis indices was measured. Compared with the control group, the model and treatment groups showed significantly upregulated caspase-3, Bcl-2, and Bax mRNA and protein levels in brain tissues, but remarkably downregulated Bcl-2 mRNA and protein levels (P < 0.05). After treatment, in treatment group brain tissues, caspase-3 and Bax mRNA and protein levels were significantly lower than those in the model group, while Bcl-2 mRNA and protein levels were higher than that in the model group (P < 0.05). The model and treatment groups showed increased cell apoptosis indices of brain tissues compared to the control group; after treatment, the apoptosis index in the treatment group was significantly downregulated compared with that in the model group (P < 0.05). In conclusion, G. biloba extract significantly reduced apoptosis in rat brain tissue cells with acute cerebral infarction and thus protected brain tissues.

  3. Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) from Delaware Bay, New Jersey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, Joanna, E-mail: burger@biology.rutgers.edu; Environmental and Occupational Health Sciences Institute; Gochfeld, Michael

    2014-08-15

    There is an abundance of field data on levels of metals for feathers in a variety of birds, but relatively few data for tissues, especially for migrant species from one location. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in muscle, liver, brain, fat and breast feathers from migrant semipalmated sandpipers (Calidris pusilla) collected from Delaware Bay, New Jersey. Our primary objectives were to (1) examine variation as a function of tissue, (2) determine the relationship of metal levels among tissues, and (3) determine the selenium:mercury molar ratio in different tissues sincemore » selenium is thought to protect against mercury toxicity. We were also interested in whether the large physiological changes that occur while shorebirds are on Delaware Bay (e.g. large weight gains in 2–3 weeks) affected metal levels, especially in the brain. There were significant differences among tissues for all metals. The brain had the lowest levels of arsenic and cadmium, and was tied for the lowest levels of all other metals except lead and selenium. Correlations among metals in tissues were varied, with mercury levels being positively correlated for muscle and brain, and for liver and breast feathers. Weights vary among individuals at the Delaware Bay stopover, as they arrive light, and gain weight prior to migration north. Bird weight and levels of arsenic, cadmium, and selenium in the brain were negatively correlated, while they were positively correlated for lead. There was no positive correlation for mercury in the brain as a function of body weight. The selenium:mercury molar ratio varied significantly among tissues, with brain (ratio of 141) and fat having the highest ratios, and liver and breast feathers having the lowest. In all cases, the ratio was above 21, suggesting the potential for amelioration of mercury toxicity. - Highlights: • Metal levels were examined for migrant semipalmated sandpipers. • There were differences in metal levels among internal tissues. • Brain had the lowest levels of arsenic and cadmium. • Bird weight and arsenic, cadmium, and selenium levels in brain were negatively correlated. • Selenium:mercury molar ratio varied among tissues (21–141, suggesting protection)« less

  4. Light interference as a possible stressor altering HSP70 and its gene expression levels in brain and hepatic tissues of golden spiny mice.

    PubMed

    Ashkenazi, Lilach; Haim, Abraham

    2012-11-15

    Light at night and light interference (LI) disrupt the natural light:dark cycle, causing alterations at physiological and molecular levels, partly by suppressing melatonin (MLT) secretion at night. Heat shock proteins (HSPs) can be activated in response to environmental changes. We assessed changes in gene expression and protein level of HSP70 in brain and hepatic tissues of golden spiny mice (Acomys russatus) acclimated to LI for two (SLI), seven (MLI) and 21 nights (LLI). The effect of MLT treatment on LI-mice was also assessed. HSP70 levels increased in brain and hepatic tissues after SLI, whereas after MLI and LLI, HSP70 decreased to control levels. Changes in HSP70 levels as a response to MLT occurred after SLI only in hepatic tissue. However, hsp70 expression following SLI increased in brain tissue, but not in hepatic tissue. MLT treatment and SLI caused a decrease in hsp70 levels in brain tissue and an increase in hsp70 in hepatic tissue. SLI acclimation elicited a stress response in A. russatus, as expressed by increased HSP70 levels and gene expression. Longer acclimation decreases protein and gene expression to their control levels. We conclude that for brain and hepatic tissues of A. russatus, LI is a short-term stressor. Our results also revealed that A. russatus can acclimate to LI, possibly because of its circadian system plasticity, which allows it to behave both as a nocturnal and as a diurnal rodent. To the best of our knowledge, this is the first study showing the effect of LI as a stressor at the cellular level, by activating HSP70.

  5. Regular aerobic exercise correlates with reduced anxiety and incresed levels of irisin in brain and white adipose tissue.

    PubMed

    Uysal, Nazan; Yuksel, Oguz; Kizildag, Servet; Yuce, Zeynep; Gumus, Hikmet; Karakilic, Aslı; Guvendi, Guven; Koc, Basar; Kandis, Sevim; Ates, Mehmet

    2018-05-29

    We have recently shown that regular voluntary aerobic exercised rats have low levels of anxiety. Irisin is an exercise-induced myokine that is produced by many tissues; and the role it plays in anxiolytic behavior is unknown. In this study we aimed to investigate the correlation between anxiety like behavior and irisin levels following regular voluntary aerobic exercise in male mice. We've have shown that anxiety levels decreased in exercised mice, while irisin levels increased in the brain, brown adipose tissue, white adipose tissue, kidney, and pancreas tissues. No significant difference of irisin levels in the liver, muscle and serum were detected in the exercise group, when compared to controls. In addition, there was a strong positive correlation between brain irisin levels and activity in middle area of open field test and in the open arms of elevated plus maze test; both which are indicators of low anxiety levels. Our results suggest that decrease in anxiolytic behavior due to regular voluntary exercise may be associated with locally produced brain irisin. White adipose tissue irisin levels also correlated very strongly with low anxiety. However, no serum irisin increase was detected, ruling out the possibility of increased peripheral irisin levels affecting the brain via the bloodstream. Further research is necessary to explain the mechanisms of which peripheral and central irisin effects anxiety and the brain region affected. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A study on the antioxidant effect of Coriolus versicolor polysaccharide in rat brain tissues.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Zhang, Liting; Yang, Linjun

    2013-01-01

    The objective of the study was to investigate the antioxidant effect of Chinese medicine Coriolus versicolor polysaccharide on brain tissue and its mechanism in rats. SOD, MDA and GSH-Px levels in rat brain tissues were determined with SD rats as the animal model. The results showed that Coriolus versicolor polysaccharide can reduce the lipid peroxidation level in brain tissues during exhaustive exercise in rats, and can accelerate the removal of free radicals. The study concluded that its antioxidant effect is relatively apparent.

  7. Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: A pilot study.

    PubMed

    Nemer, Sérgio Nogueira; Caldeira, Jefferson B; Santos, Ricardo G; Guimarães, Bruno L; Garcia, João Márcio; Prado, Darwin; Silva, Ricardo T; Azeredo, Leandro M; Faria, Eduardo R; Souza, Paulo Cesar P

    2015-12-01

    To verify whether high positive end-expiratory pressure levels can increase brain tissue oxygen pressure, and also their effects on pulse oxygen saturation, intracranial pressure, and cerebral perfusion pressure. Twenty traumatic brain injury patients with acute respiratory distress syndrome were submitted to positive end-expiratory pressure levels of 5, 10, and 15 cm H2O progressively. The 3 positive end-expiratory pressure levels were used during 20 minutes for each one, whereas brain tissue oxygen pressure, oxygen saturation, intracranial pressure, and cerebral perfusion pressure were recorded. Brain tissue oxygen pressure and oxygen saturation increased significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.0001 and P=.0001 respectively). Intracranial pressure and cerebral perfusion pressure did not differ significantly with increasing positive end-expiratory pressure from 5 to 10 and from 10 to 15 cm H2O (P=.16 and P=.79 respectively). High positive end-expiratory pressure levels increased brain tissue oxygen pressure and oxygen saturation, without increase in intracranial pressure or decrease in cerebral perfusion pressure. High positive end-expiratory pressure levels can be used in severe traumatic brain injury patients with acute respiratory distress syndrome as a safe alternative to improve brain oxygenation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla.

    PubMed

    Jensen, J Eric; Miller, Jodi; Williamson, Peter C; Neufeld, Richard W J; Menon, Ravi S; Malla, Ashok; Manchanda, Rahul; Schaefer, Betsy; Densmore, Maria; Drost, Dick J

    2006-03-31

    Altered high energy and membrane metabolism, measured with phosphorus magnetic resonance spectroscopy (31P-MRS), has been inconsistently reported in schizophrenic patients in several anatomical brain regions implicated in the pathophysiology of this illness, with little attention to the effects of brain tissue type on the results. Tissue regression analysis correlates brain tissue type to measured metabolite levels, allowing for the extraction of "pure" estimated grey and white matter compartment metabolite levels. We use this tissue analysis technique on a clinical dataset of first episode schizophrenic patients and matched controls to investigate the effect of brain tissue specificity on altered energy and membrane metabolism. In vivo brain spectra from two regions, (a) the fronto-temporal-striatal region and (b) the frontal-lobes, were analyzed from 12 first episode schizophrenic patients and 11 matched controls from a (31)P chemical shift imaging (CSI) study at 4 Tesla (T) field strength. Tissue regression analyses using voxels from each region were performed relating metabolite levels to tissue content, examining phosphorus metabolite levels in grey and white matter compartments. Compared with controls, the first episode schizophrenic patient group showed significantly increased adenosine triphosphate levels (B-ATP) in white matter and decreased B-ATP levels in grey matter in the fronto-temporal-striatal region. No significant metabolite level differences were found in grey or white matter compartments in the frontal cortex. Tissue regression analysis reveals grey and white matter specific aberrations in high-energy phosphates in first episode schizophrenia. Although past studies report inconsistent regional differences in high-energy phosphate levels in schizophrenia, the present analysis suggests more widespread differences that seem to be strongly related to tissue type. Our data suggest that differences in grey and white matter tissue content between past studies may account for some of the variance in the literature.

  9. Effect of baculovirus P35 protein on apoptosis in brain tissue of rats with acute cerebral infarction.

    PubMed

    Ji, J F; Ma, X H

    2015-08-10

    We explored the effect of baculovirus P35 protein on apoptosis in the brain tissue of rats with acute cerebral infarction (ACI). A rat model of middle cerebral artery infarction was created. The rats were randomly divided into sham, model, and treatment groups. Baculovirus P35 protein was injected into the intracranial arteries of the treatment group rats. The rats in the model group were given an equal volume of phosphate-buffered saline. The rats were sacrificed after 72 h and the brain tissue was separated. The levels of caspase-3, Bcl-2, and Bax mRNA, the brain cell apoptosis index, and the infarct size were determined. After 72 h, the levels of caspase-3 and Bax mRNA in the model and treatment groups were significantly greater than in the sham group, and the levels of Bcl-2 mRNA were significantly smaller (P < 0.05). The levels of caspase-3 and Bax mRNA were significantly lower in the treatment group than in the model group, and the level of Bcl-2 mRNA was significantly greater (P < 0.05). Compared with the sham group, the brain tissue apoptosis index and the cerebral infarction area increased significantly in the model and treatment groups (P < 0.05). The brain tissue apoptosis index and cerebral infarction area in the treatment group were significantly lower than in the model group (P < 0.05). Baculovirus P35 protein can effectively inhibit brain cell apoptosis in rats with ACI. It delayed apoptosis and necrosis in subjects with ACI tissue and had a protective effect on brain tissue.

  10. Expression of hypoxia-inducible carbonic anhydrases in brain tumors

    PubMed Central

    Proescholdt, Martin A.; Mayer, Christina; Kubitza, Marion; Schubert, Thomas; Liao, Shu-Yuan; Stanbridge, Eric J.; Ivanov, Sergey; Oldfield, Edward H.; Brawanski, Alexander; Merrill, Marsha J.

    2005-01-01

    Malignant brain tumors exhibit distinct metabolic characteristics. Despite high levels of lactate, the intracellular pH of brain tumors is more alkaline than normal brain. Additionally, with increasing malignancy, brain tumors display intratumoral hypoxia. Carbonic anhydrase (CA) IX and XII are transmembrane isoenzymes that are induced by tissue hypoxia. They participate in regulation of pH homeostasis by catalyzing the reversible hydration of carbon dioxide. The aim of our study was to investigate whether brain tumors of different histology and grade of malignancy express elevated levels of CA IX and XII as compared to normal brain. We analyzed 120 tissue specimens from brain tumors (primary and metastatic) and normal brain for CA IX and XII expression by immunohistochemistry, Western blot, and in situ hybridization. Whereas normal brain tissue showed minimal levels of CA IX and XII expression, expression in tumors was found to be upregulated with increased level of malignancy. Hemangioblastomas, from patients with von Hippel–Lindau disease, also displayed high levels of CA IX and XII expression. Comparison of CA IX and XII staining with HIF-1α staining revealed a similar microanatomical distribution, indicating hypoxia as a major, but not the only, induction factor. The extent of CA IX and XII staining correlated with cell proliferation, as indicated by Ki67 labeling. The results demonstrate that CA IX and XII are upregulated in intrinsic and metastatic brain tumors as compared to normal brain tissue. This may contribute to the management of tumor-specific acid load and provide a therapeutic target. PMID:16212811

  11. Effects of valerian consumption during pregnancy on cortical volume and the levels of zinc and copper in the brain tissue of mouse fetus.

    PubMed

    Mahmoudian, Alireza; Rajaei, Ziba; Haghir, Hossein; Banihashemian, Shahaboldin; Hami, Javad

    2012-04-01

    The aim of the present study was to determine the effects of valerian (Valeriana officinalis) consumption in pregnancy on cortical volume and the levels of zinc and copper, two essential elements that affect brain development and function, in the brain tissues of mouse fetuses. Pregnant female mice were treated with either saline or 1.2 g/kg body weight valerian extract intraperitoneally daily on gestation days (GD) 7 to 17. On GD 20, mice were sacrificed and their fetuses were collected. Fetal brains were dissected, weighed and processed for histological analysis. The volume of cerebral cortex was estimated by the Cavalieri principle. The levels of zinc and copper in the brain tissues were measured by atomic absorption spectroscopy. The results indicated that valerian consumption in pregnancy had no significant effect on brain weight, cerebral cortex volume and copper level in fetal brain. However,it significantly decreased the level of zinc in the brain (P<0.05). Using valerian during midgestation do not have an adverse effect on cerebral cortex; however,it caused a significant decrease in zinc level in the fetal brain. This suggests that valerian use should be limited during pregnancy.

  12. Differential Responses of Brain, Gonad and Muscle Steroid Levels to Changes in Social Status and Sex in a Sequential and Bidirectional Hermaphroditic Fish

    PubMed Central

    Lorenzi, Varenka; Earley, Ryan L.; Grober, Matthew S.

    2012-01-01

    Sex steroids can both modulate and be modulated by behavior, and their actions are mediated by complex interactions among multiple hormone sources and targets. While gonadal steroids delivered via circulation can affect behavior, changes in local brain steroid synthesis also can modulate behavior. The relative steroid load across different tissues and the association of these levels with rates of behavior have not been well studied. The bluebanded goby (Lythrypnus dalli) is a sex changing fish in which social status determines sexual phenotype. We examined changes in steroid levels in brain, gonad and body muscle at either 24 hours or 6 days after social induction of protogynous sex change, and from individuals in stable social groups not undergoing sex change. For each tissue, we measured levels of estradiol (E2), testosterone (T) and 11-ketotestosterone (KT). Females had more T than males in the gonads, and more E2 in all tissues but there was no sex difference in KT. For both sexes, E2 was higher in the gonad than in other tissues while androgens were higher in the brain. During sex change, brain T levels dropped while brain KT increased, and brain E2 levels did not change. We found a positive relationship between androgens and aggression in the most dominant females but only when the male was removed from the social group. The results demonstrate that steroid levels are responsive to changes in the social environment, and that their concentrations vary in different tissues. Also, we suggest that rapid changes in brain androgen levels might be important in inducing behavioral and/or morphological changes associated with protogynous sex change. PMID:23251444

  13. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats.

    PubMed

    Avci, Bahattin; Akar, Ayşegül; Bilgici, Birşen; Tunçel, Özgür Korhan

    2012-11-01

    We aimed to study the oxidative damage induced by radiofrequency electromagnetic radiation (RF-EMR) emitted by mobile telephones and the protective effect of garlic extract used as an anti-oxidant against this damage. A total of 66 albino Wistar rats were divided into three groups. The first group of rats was given 1.8 GHz, 0.4 W/kg specific absorption rate (SAR) for 1 h a day for three weeks. The second group was given 500 mg/kg garlic extract in addition to RF-EMR. The third group of rats was used as the control group. At the end of the study, blood and brain tissue samples were collected from the rats. After the RF-EMR exposed, the advanced oxidation protein product (AOPP) levels of brain tissue increased compared with the control group (p < 0.001). Garlic administration accompanying the RF-EMR, on the other hand, significantly reduced AOPP levels in brain tissue (p < 0.001). The serum nitric oxide (NO) levels significantly increased both in the first and second group (p < 0.001). However, in the group for which garlic administration accompanied that of RF-EMR, there was no difference in serum NO levels compared with the RF-EMR exposed group (p > 0.05). There was no significant difference among the groups with respect to malondialdehyde (MDA) levels in brain tissue and blood samples (p > 0.05). Similarly, no difference was detected among the groups regarding serum paroxonase (PON) levels (p > 0.05). We did not detect any PON levels in the brain tissue. The exposure of RF-EMR similar to 1.8 GHz Global system for mobile communication (GSM) leads to protein oxidation in brain tissue and an increase in serum NO. We observed that garlic administration reduced protein oxidation in brain tissue and that it did not have any effects on serum NO levels.

  14. Evaluation of chlorpyrifos toxicity through a 28-day study: Cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats.

    PubMed

    Kopjar, Nevenka; Žunec, Suzana; Mendaš, Gordana; Micek, Vedran; Kašuba, Vilena; Mikolić, Anja; Lovaković, Blanka Tariba; Milić, Mirta; Pavičić, Ivan; Čermak, Ana Marija Marjanović; Pizent, Alica; Lucić Vrdoljak, Ana; Želježić, Davor

    2018-01-05

    In this 28 day-study, we evaluated the effects of the insecticide chlorpyrifos orally administered to Wistar rats at doses 0.160, 0.015, and 0.010 mg/kg b. w./day. Following treatment, total cholinesterase activity and activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were measured. Oxidative stress responses were evaluated using a battery of endpoints to establish lipid peroxidation, changes in total antioxidant capacity, level of reactive oxygen species (ROS), glutathione (GSH) level and activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase. Using HPLC-UV DAD analysis, levels of the parent compound and its main metabolite 3,5,6-trichloro-2-pyridinol in plasma and brain tissue were measured. The genotoxic effect was estimated using alkaline comet assay in leukocytes and brain tissue. The exposure did not result in significant effects on total cholinesterase, AChE and BChE activity in plasma and brain tissue. Lipid peroxidation slightly increased both in plasma and brain tissue. Total antioxidant capacity, ROS and GSH levels were marginally influenced by the exposure. Treatment led to significant increases of GSH-Px activity in blood, SOD activity in erythrocytes and a slight increase of catalase activity in plasma. HPLC-UV DAD analysis revealed the presence of both the parent compound and its main metabolite in the plasma of all of the experimental animals and brain tissue of the animals treated at the two higher doses. All of the tested doses of chlorpyrifos were slightly genotoxic, both to leukocytes and brain tissue. Our results call for further research using other sensitive biomarkers of effect, along with different exposure scenarios. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Brain metastasis detection by resonant Raman optical biopsy method

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Cheng, Gangge; Zhou, Lixin; Zhang, Chunyuan; Pu, Yang; Li, Zhongwu; Liu, Yulong; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2014-03-01

    Resonant Raman (RR) spectroscopy provides an effective way to enhance Raman signal from particular bonds associated with key molecules due to changes on a molecular level. In this study, RR is used for detection of human brain metastases of five kinds of primary organs of lung, breast, kidney, rectal and orbital in ex-vivo. The RR spectra of brain metastases cancerous tissues were measured and compared with those of normal brain tissues and the corresponding primary cancer tissues. The differences of five types of brain metastases tissues in key bio-components of carotene, tryptophan, lactate, alanine and methyl/methylene group were investigated. The SVM-KNN classifier was used to categorize a set of RR spectra data of brain metastasis of lung cancerous tissues from normal brain tissue, yielding diagnostic sensitivity and specificity at 100% and 75%, respectively. The RR spectroscopy may provide new moleculebased optical probe tools for diagnosis and classification of brain metastatic of cancers.

  16. Adoptive transfer of T regulatory cells inhibits lipopolysaccharide-induced inflammation in fetal brain tissue in a late-pregnancy preterm birth mouse model.

    PubMed

    Wang, Fan; Xiao, Mi; Chen, Ru-Juan; Lin, Xiao-Jie; Siddiq, Muhammad; Liu, Li

    2017-02-01

    To evaluate the effect of regulatory T cells (Tregs) on the inflammation resulting from lipopolysaccharide (LPS) challenge in prenatal brain tissue, Tregs isolated from pregnant mice were transferred into model mice, and the expression levels of fork head family transcription factor (Foxp3), interleukin-6 (IL-6), CD68 (a marker of microglia), and toll-like receptor 4 (TLR-4) were assessed in the fetal brain tissue. Foxp3, IL-6, and TLR-4 expression were detected by polymerase chain reaction and Western blot; CD68 expression level was detected using immunochemical analysis. Foxp3, IL-6, TLR-4, and CD68 expressions in fetal brain were significantly induced by maternal LPS administration, and the increased expression levels were markedly reduced by adoptive transfer of Tregs. Maternal LPS exposure significantly induced inflammation in perinatal brain tissue, and Tregs negatively regulated this LPS-induced inflammation. © 2016 International Federation for Cell Biology.

  17. Advantages of analyzing postmortem brain samples in routine forensic drug screening-Case series of three non-natural deaths tested positive for lysergic acid diethylamide (LSD).

    PubMed

    Mardal, Marie; Johansen, Sys Stybe; Thomsen, Ragnar; Linnet, Kristian

    2017-09-01

    Three case reports are presented, including autopsy findings and toxicological screening results, which were tested positive for the potent hallucinogenic drug lysergic acid diethylamide (LSD). LSD and its main metabolites were quantified in brain tissue and femoral blood, and furthermore hematoma and urine when available. LSD, its main metabolite 2-oxo-3-hydroxy-LSD (oxo-HO-LSD), and iso-LSD were quantified in biological samples according to a previously published procedure involving liquid-liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). LSD was measured in the brain tissue of all presented cases at a concentration level from 0.34-10.8μg/kg. The concentration level in the target organ was higher than in peripheral blood. Additional psychoactive compounds were quantified in blood and brain tissue, though all below toxic concentration levels. The cause of death in case 1 was collision-induced brain injury, while it was drowning in case 2 and 3 and thus not drug intoxication. However, the toxicological findings could help explain the decedent's inability to cope with brain injury or drowning incidents. The presented findings could help establish reference concentrations in brain samples and assist in interpretation of results from forensic drug screening in brain tissue. This is to the author's knowledge the first report of LSD, iso-LSD, and oxo-HO-LSD measured in brain tissue samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  19. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions.

    PubMed

    Li, Hongyun; Ruberu, Kalani; Karl, Tim; Garner, Brett

    2016-01-01

    Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer's disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.

  20. Evidence for brain glucose dysregulation in Alzheimer's disease.

    PubMed

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  1. Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity

    PubMed Central

    Puig, Kendra L.; Floden, Angela M.; Adhikari, Ramchandra; Golovko, Mikhail Y.; Combs, Colin K.

    2012-01-01

    Background Middle age obesity is recognized as a risk factor for Alzheimer's disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur. PMID:22276186

  2. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vijay; Kalita, Jayantee, E-mail: jayanteek@yahoo.com; Bora, Himangsu K.

    Copper (Cu) at a higher level becomes toxic and it can catalyze the formation of highly reactive hydroxyl radical. We report the vulnerability of liver, kidney and brain to different dose of copper sulfate (CuSO{sub 4}) induced oxidative stress at different time duration. Fifty-four male Wistar rats (weight range = 205 ± 10 g) were equally divided into three groups. CuSO{sub 4} was administered orally to the experimental groups (Group-II and III) up to 90 days in a dose of 100 and 200 mg/Kg body weight per day. Saline water was given to the control group (Group-I). At the endmore » of 30, 60 and 90 days of administration, neurobehavioral studies were done and six rats from each group were sacrificed. Their liver, kidney and brain tissues were subjected for Cu, glutathione (GSH), malondialdehyde (MDA) and total antioxidant capacity (TAC) assay. Blood urea nitrogen (BUN), serum creatinine, bilirubin and transaminases were measured. GSH, TAC and MDA levels were correlated with the markers of respective organ dysfunction. Administration of CuSO{sub 4} resulted in increased free Cu and MDA level, and decrease GSH and TAC levels in group-II and III compared with group-I. In experimental groups, the reduction in TAC and GSH levels was maximum in liver tissue followed by brain and kidney; whereas increase in MDA level was highest in liver followed by brain and kidney at 30, 60 and 90 days. TAC and GSH levels in the liver inversely correlated with serum transaminases and bilirubin, and tissue free Cu, and positively correlated with MDA levels. Free Cu level in kidney tissue and BUN inversely correlated with TAC and GSH, and positively with MDA level. Grip-strength, rotarod and Y-maze findings were inversely correlated with brain free Cu and MDA levels and positively with GSH and TAC levels. The oxidative stress was highest in liver followed by brain and kidney after oral CuSO{sub 4} exposure in a rat model. These levels correlated with the respective organ dysfunction and tissue free Cu concentration. - Highlights: • Oral dosing of CuSO{sub 4} leads to oxidative stress in liver, brain and kidney. • Liver has maximum oxidative stress followed by brain and kidney. • Oxidative stress correlated with the respective organ dysfunction and tissue Cu concentration.« less

  3. Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats.

    PubMed

    Vasatkova, Anna; Krizova, Sarka; Krystofova, Olga; Adam, Vojtech; Zeman, Ladislav; Beklova, Miroslava; Kizek, Rene

    2009-01-01

    The aim of this study is to determine level of metallothioneins (MTs) in brain tissues of rats administered by feed mixtures with different content of mouldy wheat or fungi. Selected male laboratory rats of Wistar albino at age of 28 days were used in our experiments. The rats were administered by feed mixtures with different content of vitamins, naturally mouldy wheat or fungi for 28 days. At the very end of the experiment, the animals were put to death and brains were sampled. MT level was determined by differential pulse voltammetry Brdicka reaction. We found that MTs' level in brain tissues from rats administered by standard feed mixtures was significantly higher compared to the level of MTs in rats supplemented by vitamins. Further we studied the effect of supplementation of naturally mouldy wheat on MTs level in rats. In mouldy wheat we detected the presence of following fungi species: Mucor spp., Absidia spp., Penicillium spp., Aspergillus spp. and Fusarium spp. Moreover we also identified and quantified following mycotoxins - deoxynivalenol, zearalenone, T2-toxin and aflatoxins. Level of MTs determined in rats treated with 33 or 66% of mouldy wheat was significantly lower compared to control ones. On the other hand rats treated with 100% of mouldy wheat had less MTs but not significantly. Supplementation of vitamins to rats fed by mouldy wheat had adverse effect on MTs level compared to rats with no other supplementation by vitamins. Moreover vitamins supplementation has no effect on MTs level in brain tissues of rats treated or non-treated with Ganoderma lucidum L. Both mycotoxins and vitamins have considerable effect on level of MTs in brain tissues. It can be assumed that the administered substances markedly influence redox metabolism, which could negatively influence numerous biochemical pathways including those closely related with MTs.

  4. Responses of the Human Brain to Mild Dehydration and Rehydration Explored In Vivo by 1H-MR Imaging and Spectroscopy.

    PubMed

    Biller, A; Reuter, M; Patenaude, B; Homola, G A; Breuer, F; Bendszus, M; Bartsch, A J

    2015-12-01

    As yet, there are no in vivo data on tissue water changes and associated morphometric changes involved in the osmo-adaptation of normal brains. Our aim was to evaluate osmoadaptive responses of the healthy human brain to osmotic challenges of de- and rehydration by serial measurements of brain volume, tissue fluid, and metabolites. Serial T1-weighted and (1)H-MR spectroscopy data were acquired in 15 healthy individuals at normohydration, on 12 hours of dehydration, and during 1 hour of oral rehydration. Osmotic challenges were monitored by serum measures, including osmolality and hematocrit. MR imaging data were analyzed by using FreeSurfer and LCModel. On dehydration, serum osmolality increased by 0.67% and brain tissue fluid decreased by 1.63%, on average. MR imaging morphometry demonstrated corresponding decreases of cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus. These changes reversed during rehydration. Continuous fluid ingestion of 1 L of water for 1 hour within the scanner lowered serum osmolality by 0.96% and increased brain tissue fluid by 0.43%, on average. Concomitantly, cortical thickness and volumes of the whole brain, cortex, white matter, and hypothalamus/thalamus increased. Changes in brain tissue fluid were related to volume changes of the whole brain, the white matter, and hypothalamus/thalamus. Only volume changes of the hypothalamus/thalamus significantly correlated with serum osmolality. This is the first study simultaneously evaluating changes in brain tissue fluid, metabolites, volume, and cortical thickness. Our results reflect cellular volume regulatory mechanisms at a macroscopic level and emphasize that it is essential to control for hydration levels in studies on brain morphometry and metabolism in order to avoid confounding the findings. © 2015 by American Journal of Neuroradiology.

  5. VARIATION IN CHOLINESTERASE ACTIVITY IN TISSUES OF RATS AT DIFFERENT TIMES AFTER IRRADIATION (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubkova, S.R.; Chernavskaya, N.M.

    1959-06-11

    It was found that a single lethal dose (1000 r) changes the cholinesterase activity in the brain, liver, and blood serum. After 5 hr and 45 min the cholinesterase activity in tissues drops from the normal level (15.9% in blood serum, 20.6% in the brain, and 18.4% in the liver). After three days the activity changes in various tissues: in the liver it continues to drop, in the brain it rises but does not reach the standard level, and it increases sharply in the blood serum. (R.V.J.)

  6. Expression of Bcl-2 and NF-κB in brain tissue after acute renal ischemia-reperfusion in rats.

    PubMed

    Zhang, Na; Cheng, Gen-Yang; Liu, Xian-Zhi; Zhang, Feng-Jiang

    2014-05-01

    To investigate the effect of acute renal ischemia reperfusion on brain tissue. Fourty eight rats were randomly divided into four groups (n=12): sham operation group, 30 min ischemia 60 min reperfusion group, 60 min ischemia 60 min reperfusion group, and 120 min ischemia 60 min reperfusion group. The brain tissues were taken after the experiment. TUNEL assay was used to detect the brain cell apoptosis, and western blot was used to detect the expression of apoptosis-related proteins and inflammatory factors. Renal ischemia-reperfusion induced apoptosis of brain tissues, and the apoptosis increased with prolongation of ischemia time. The detection at the molecular level showed decreased Bcl-2 expression, increased Bax expression, upregulated expression of NF-κB and its downstream factor COX-2/PGE2. Acute renal ischemia-reperfusion can cause brain tissue damage, manifested as induced brain tissues apoptosis and inflammation activation. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  7. Dynamical properties of the brain tissue under oscillatory shear stresses at large strain range

    NASA Astrophysics Data System (ADS)

    Boudjema, F.; Khelidj, B.; Lounis, M.

    2017-01-01

    In this experimental work, we study the viscoelastic behaviour of in vitro brain tissue, particularly the white matter, under oscillatory shear strain. The selective vulnerability of this tissue is the anisotropic mechanical properties of theirs different regions lead to a sensitivity to the angular shear rate and magnitude of strain. For this aim, shear storage modulus (G‧) and loss modulus (G″) were measured over a range of frequencies (1 to 100 Hz), for different levels of strain (1 %, to 50 %). The mechanical responses of the brain matter samples showed a viscoelastic behaviour that depend on the correlated strain level and frequency range and old age sample. The samples have been showed evolution behaviour by increasing then decreasing the strain level. Also, the stiffness anisotropy of brain matter was showed between regions and species.

  8. Effects of dietary selenium of organic form against lead toxicity on the antioxidant system in Cyprinus carpio.

    PubMed

    Özkan-Yilmaz, Ferbal; Özlüer-Hunt, Arzu; Gündüz, Suna Gül; Berköz, Mehmet; Yalin, Serap

    2014-04-01

    In this study was evaluated potential protective effect of organic selenium (Se) on heavy metal stress induced by lead (Pb) in Cyprinus carpio. For this reason, C. carpio was exposed to sublethal concentration of Pb (1.5 mg/L Pb(NO3)2) for 14 days. The fish were fed a basal (control; measured 0.55 mg/kg Se) diet or a basal diet supplemented with 2.50 mg/kg (measured 2.92 mg/kg Se) organic Se (Sel-Plex(®)) during the experiment period. The variations in glutathione peroxidase (GSH-Px), glutathione S-transferase (GST) activities, and levels of reduced glutathione (GSH) with malondialdehyde (MDA) in liver and brain tissues of C. carpio were investigated in experimental groups. GSH levels in liver and brain tissues were significantly decreased by exposure to Pb. GST activity was significantly increased (p < 0.05) in liver tissue, but decreased in brain of treated fish by exposure to Pb. Also, GSH-Px activity was significantly increased in liver tissue, but decreased in brain of Pb-treated fish. Levels of MDA were increased in liver and brain of Pb-treated fish. The organic Se treatment for Pb-intoxicated animals improved activities of GSH-Px, GST and levels of MDA within normal limits. Supplemented Se could be able to improve Pb-induced oxidative stress by decreasing lipid peroxidation and regulating antioxidant defense system in tissues.

  9. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA.

    PubMed

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2013-01-15

    A number of contaminants affect fish health, including mercury and selenium, and the selenium:mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) (n=40) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium:mercury molar ratios by tissues. Total mercury averaged 0.32±0.02 ppm wet weight in edible muscle and 0.09±0.01 ppm in brain. Selenium concentration averaged 0.37±0.03 in muscle and 0.36±0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium:mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium:mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.

    PubMed

    Moncrieff, J

    1989-11-24

    Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.

  11. Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue

    NASA Astrophysics Data System (ADS)

    Sams, Michael; Silye, Rene; Göhring, Janett; Muresan, Leila; Schilcher, Kurt; Jacak, Jaroslaw

    2014-01-01

    We present a cluster spatial analysis method using nanoscopic dSTORM images to determine changes in protein cluster distributions within brain tissue. Such methods are suitable to investigate human brain tissue and will help to achieve a deeper understanding of brain disease along with aiding drug development. Human brain tissue samples are usually treated postmortem via standard fixation protocols, which are established in clinical laboratories. Therefore, our localization microscopy-based method was adapted to characterize protein density and protein cluster localization in samples fixed using different protocols followed by common fluorescent immunohistochemistry techniques. The localization microscopy allows nanoscopic mapping of serotonin 5-HT1A receptor groups within a two-dimensional image of a brain tissue slice. These nanoscopically mapped proteins can be confined to clusters by applying the proposed statistical spatial analysis. Selected features of such clusters were subsequently used to characterize and classify the tissue. Samples were obtained from different types of patients, fixed with different preparation methods, and finally stored in a human tissue bank. To verify the proposed method, samples of a cryopreserved healthy brain have been compared with epitope-retrieved and paraffin-fixed tissues. Furthermore, samples of healthy brain tissues were compared with data obtained from patients suffering from mental illnesses (e.g., major depressive disorder). Our work demonstrates the applicability of localization microscopy and image analysis methods for comparison and classification of human brain tissues at a nanoscopic level. Furthermore, the presented workflow marks a unique technological advance in the characterization of protein distributions in brain tissue sections.

  12. Pathological changes in Alzheimer"s brain evaluated with fluorescence emission analysis (FEA)

    NASA Astrophysics Data System (ADS)

    Christov, Alexander; Ottman, Todd; Grammas, Paula

    2004-07-01

    Development of AD is associated with cerebrovascular deposition of amyloid beta (Aβ) as well as a progressive increase in vasular collagen content. Both AΒ and collagen are naturally fluorescent compounds when exposed to UV light. We analyzed autofluorescence emitted from brain tissue samples and isolated brain resistance vessels harvested postmortem from patients with Alzheimer's disease (AD) and age-matched controls. Fluorescence emission, excited at 355 nm with an Nd:YAG laser, was measured using a fiber-optic based fluorescence spectroscopic system for tissue analysis. Significantly higher values of fluorescence emission intensity (P<0.001) in the spectral region from 465 to 490 nm were detected in brain resistance vessel samples from AD patients compared to the normal individuals. Results from western blot analysis showed elevated levels of type I and type III collagen, and reduced levels of type IV collagen in resistance vessels from AD patients, compared to control samples. In addition, using direct scanning of the cortical suface for fluoresxcence emission by the laser-induced fluorescence spectroscopy system we detected a significantly (P<0.05) higher level of apoptosis in AD brain tissue compared to age-matched controls. Fluorescence emission analysis (FEA) appears to be a sensitive technique for detecting structural changes in AD brain tissue.

  13. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields.

    PubMed

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-21

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform's size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke's brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  14. Time resolved dosimetry of human brain exposed to low frequency pulsed magnetic fields

    NASA Astrophysics Data System (ADS)

    Paffi, Alessandra; Camera, Francesca; Lucano, Elena; Apollonio, Francesca; Liberti, Micaela

    2016-06-01

    An accurate dosimetry is a key issue to understanding brain stimulation and related interaction mechanisms with neuronal tissues at the basis of the increasing amount of literature revealing the effects on human brain induced by low-level, low frequency pulsed magnetic fields (PMFs). Most literature on brain dosimetry estimates the maximum E field value reached inside the tissue without considering its time pattern or tissue dispersivity. Nevertheless a time-resolved dosimetry, accounting for dispersive tissues behavior, becomes necessary considering that the threshold for an effect onset may vary depending on the pulse waveform and that tissues may filter the applied stimulatory fields altering the predicted stimulatory waveform’s size and shape. In this paper a time-resolved dosimetry has been applied on a realistic brain model exposed to the signal presented in Capone et al (2009 J. Neural Transm. 116 257-65), accounting for the broadband dispersivity of brain tissues up to several kHz, to accurately reconstruct electric field and current density waveforms inside different brain tissues. The results obtained by exposing the Duke’s brain model to this PMF signal show that the E peak in the brain is considerably underestimated if a simple monochromatic dosimetry is carried out at the pulse repetition frequency of 75 Hz.

  15. The protective effect of 2-mercaptoethane sulfonate (MESNA) against traumatic brain injury in rats.

    PubMed

    Yilmaz, Erdal Resit; Kertmen, Hayri; Gürer, Bora; Kanat, Mehmet Ali; Arikok, Ata Türker; Ergüder, Berrin Imge; Hasturk, Askin Esen; Ergil, Julide; Sekerci, Zeki

    2013-01-01

    The agent, 2-mercaptoethane sulfonate (MESNA), is a synthetic small molecule, widely used as a systemic protective agent against chemotherapy toxicity, but is primarily used to reduce hemorrhagic cystitis induced by cyclophosphamide. Because MESNA has potential antioxidant and cytoprotective effects, so we hypothesized that MESNA may protect the brain against traumatic injury. Thirty-two rats were randomized into four groups of eight animals each; Group 1 (sham), Group 2 (trauma), Group 3 (150 mg/kg MESNA), Group 4 (30 mg/kg methylprednisolone). Only skin incision was performed in the sham group. In all the other groups, the traumatic brain injury model was created by an object weighing 450 g falling freely from a height of 70 cm through a copper tube on to the metal disc over the skull. The drugs were administered immediately after the injury. The animals were killed 24 h later. Brain tissues were extracted for analysis, where levels of tissue malondialdehyde, caspase-3, glutathione peroxidase, superoxide dismutase, nitric oxide, nitric oxide synthetase and xanthine oxidase were analyzed. Also, histopathological evaluation of the tissues was performed. After head trauma, tissue malondialdehyde levels increased; these levels were significantly decreased by MESNA administration. Caspase-3 levels were increased after trauma, but no effect of MESNA was determined in caspase-3 activity. Following trauma, both glutathione peroxidase and superoxide dismutase levels were decreased; MESNA increased the activity of both these antioxidant enzymes. Also, after trauma, nitric oxide, nitric oxide synthetase and xanthine oxidase levels were increased; administration of MESNA significantly decreased the levels of nitric oxide, nitric oxide synthetase and xanthine oxidase, promising an antioxidant activity. Histopathological analysis showed that MESNA protected the brain tissues well from injury. Although further studies considering different dose regimens and time intervals are required, MESNA was shown to be at least as effective as methylprednisolone in the traumatic brain injury model.

  16. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes.

    PubMed

    Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin

    2013-08-01

    We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.

  17. Uptake of selenium and mercury by captive mink: Results of a controlled feeding experiment.

    PubMed

    Evans, R D; Grochowina, N M; Basu, N; O'Connor, E M; Hickie, B E; Rouvinen-Watt, K; Evans, H E; Chan, H M

    2016-02-01

    Captive, juvenile, ranch-bred, male mink (Neovison vison) were fed diets containing various concentrations of methyl-mercury (MeHg) and selenium (Se) for a period of 13 weeks and then sacrificed to determine total Hg levels in fur, blood, brain, liver and kidneys and total Se concentrations in brain tissue. As MeHg concentrations in the diet increased, concentrations of total Hg in the tissues also increased with the highest level occurring in the fur > liver = kidney > brain > blood. Concentrations of Hg in the fur were correlated (r(2) > 0.97) with liver, kidney, blood and brain concentrations. The addition of Se to the mink diet did not appear to affect most tissue concentrations of total Hg nor did it affect the partitioning of Hg between the liver:blood, kidney:blood and brain:blood; however, partitioning of Hg between fur and blood was apparently affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ectopic High Expression of E2-EPF Ubiquitin Carrier Protein Indicates a More Unfavorable Prognosis in Brain Glioma.

    PubMed

    Zhang, Xiaohui; Zhao, Fangbo; Zhang, Shujun; Song, Yichun

    2017-04-01

    Ubiquitination of proteins meant for elimination is a primary method of eukaryotic cellular protein degradation. The ubiquitin carrier protein E2-EPF is a key degradation enzyme that is highly expressed in many tumors. However, its expression and prognostic significance in brain glioma are still unclear. The aim of this study was to reveal how the level of E2-EPF relates to prognosis in brain glioma. Thirty low-grade and 30 high-grade brain glioma samples were divided into two tissue microarrays each. Levels of E2-EPF protein were examined by immunohistochemistry and immunofluorescence. Quantitative real-time polymerase chain reaction was used to analyze the level of E2-EPF in 60 glioma and 3 normal brain tissue samples. The relationship between E2-EPF levels and prognosis was analyzed by Kaplan-Meier survival curves. E2-EPF levels were low in normal brain tissue samples but high in glioma nuclei. E2-EPF levels gradually increased as glioma grade increased (p < 0.05). Ectopic E2-EPF levels in high-grade glioma were significantly higher than in low-grade glioma (p < 0.01). The 5-year survival rate of glioma patients with high E2-EPF levels was shorter than in patients with low expression (p < 0.05). Furthermore, the 5-year survival rate of patients with ectopic E2-EPF was significantly shorter than patients with only nuclear E2-EPF (p < 0.01). These results suggest that higher E2-EPF levels, especially ectopic, are associated with higher grade glioma and shorter survival. E2-EPF levels may play a key role in predicting the prognosis for patients with brain glioma.

  19. Tissue redox activity as a hallmark of carcinogenesis: from early to terminal stages of cancer.

    PubMed

    Bakalova, Rumiana; Zhelev, Zhivko; Aoki, Ichio; Saga, Tsuneo

    2013-05-01

    The study aimed to clarify the dynamics of tissue redox activity (TRA) in cancer progression and assess the importance of this parameter for therapeutic strategies. The experiments were carried out on brain tissues of neuroblastoma-bearing, glioma-bearing, and healthy mice. TRA was visualized in vivo by nitroxide-enhanced MRI on anesthetized animals or in vitro by electron paramagnetic resonance spectroscopy on isolated tissue specimens. Two biochemical parameters were analyzed in parallel: tissue total antioxidant capacity (TTAC) and plasma levels of matrix metalloproteinases (MMP). In the early stage of cancer, the brain tissues were characterized by a shorter-lived MRI signal than that from healthy brains (indicating a higher reducing activity for the nitroxide radical), which was accompanied by an enhancement of TTAC and MMP9 plasma levels. In the terminal stage of cancer, tissues in both hemispheres were characterized by a longer-lived MRI signal than in healthy brains (indicating a high-oxidative activity) that was accompanied by a decrease in TTAC and an increase in the MMP2/MMP9 plasma levels. Cancer progression also affected the redox potential of tissues distant from the primary tumor locus (liver and lung). Their oxidative status increased in both stages of cancer. The study shows that tissue redox balance is very sensitive to the progression of cancer and can be used as a diagnostic marker of carcinogenesis. The study also suggests that the noncancerous tissues of a cancer-bearing organism are susceptible to oxidative damage and should be considered a therapeutic target. ©2013 AACR.

  20. Over-hydration detection in brain by magnetic induction spectroscopy

    NASA Astrophysics Data System (ADS)

    González, César A.; Pérez, María; Hevia, Nidiyare; Arámbula, Fernándo; Flores, Omar; Aguilar, Eliot; Hinojosa, Ivonne; Joskowicz, Leo; Rubinsky, Boris

    2010-04-01

    Detection and continuous monitoring of edema in the brain in early stages is useful for assessment of medical condition and treatment. We have proposed a solution in which the bulk measurements of the tissue electrical properties to detect edema or in general accumulation of fluids are made through measurement of the magnetic induction phase shift between applied and measured currents at different frequencies (Magnetic Induction Spectroscopy; MIS). Magnetic Resonant Imaging (MRI) has been characterized because its capability to detect different levels of brain tissue hydration by differences in diffusion-weighted (DW) sequences and it's involve apparent diffusion coefficient (ADC). The objective of this study was to explore the viability to use measurements of the bulk tissue electrical properties to detect edema or in general accumulation of fluids by MIS. We have induced a transitory and generalized tissue over-hydration condition in ten volunteers ingesting 1.5 to 2 liters of water in ten minutes. Basal and over-hydration conditions were monitored by MIS and MRI. Changes in the inductive phase shift at certain frequencies were consistent with changes in the brain tissue hydration level observed by DW-ADC. The results suggest that MIS has the potential to detect pathologies associated to changes in the content of fluids in brain tissue such as edema and hematomas.

  1. Mesh electronics: a new paradigm for tissue-like brain probes.

    PubMed

    Hong, Guosong; Yang, Xiao; Zhou, Tao; Lieber, Charles M

    2018-06-01

    Existing implantable neurotechnologies for understanding the brain and treating neurological diseases have intrinsic properties that have limited their capability to achieve chronically-stable brain interfaces with single-neuron spatiotemporal resolution. These limitations reflect what has been dichotomy between the structure and mechanical properties of living brain tissue and non-living neural probes. To bridge the gap between neural and electronic networks, we have introduced the new concept of mesh electronics probes designed with structural and mechanical properties such that the implant begins to 'look and behave' like neural tissue. Syringe-implanted mesh electronics have led to the realization of probes that are neuro-attractive and free of the chronic immune response, as well as capable of stable long-term mapping and modulation of brain activity at the single-neuron level. This review provides a historical overview of a 10-year development of mesh electronics by highlighting the tissue-like design, syringe-assisted delivery, seamless neural tissue integration, and single-neuron level chronic recording stability of mesh electronics. We also offer insights on unique near-term opportunities and future directions for neuroscience and neurology that now are available or expected for mesh electronics neurotechnologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Histopathological effects, responses of oxidative stress, inflammation, apoptosis biomarkers and alteration of gene expressions related to apoptosis, oxidative stress, and reproductive system in chlorpyrifos-exposed common carp (Cyprinus carpio L.).

    PubMed

    Altun, Serdar; Özdemir, Selçuk; Arslan, Harun

    2017-11-01

    In this study, we aimed to identify the toxic effects of chlorpyrifos exposure on the tissues of common carp. For this purpose, we evaluated histopathological changes in the brain, gills, liver, kidney, testis, and ovaries after 21 days of chlorpyrifos exposure. Activation of 8-OHdG, cleaved caspase-3, and iNOS were assesed by immunofluorescence assay in chlorpyrifos-exposed brain and liver tissue. Additionally, we measured the expression levels of caspase-3, caspase-8, iNOS, MT1, CYP1A, and CYP3A genes in chlorpyrifos-exposed brain tissue, as well as the expression levels of FSH and LH genes in chlorpyrifos-exposed ovaries, using qRT-PCR. We observed severe histopathological lesions, including inflammation, degeneration, necrosis, and hemorrhage, in the evaluated tissues of common carp after both high and low levels of exposure to chlorpyrifos. We detected strong and diffuse signs of immunofluorescence reaction for 8-OHdG, iNOS, and cleaved caspase-3 in the chlorpyrifos-exposed brain and liver tissues. Furthermore, we found that chlorpyrifos exposure significantly upregulated the expressions of caspase-3, caspase-8, iNOS, and MT1, and also moderately upregulated CYP1A and CYP3A in the brain tissue of exposed carp. We also noted downregulation of FSH and LH gene expressions in chlorpyrifos-exposed ovary tissues. Based on our results, chlorpyrifos toxication caused crucial histopathological lesions in vital organs, induced oxidative stress, inflammation, and apoptosis in liver and brain tissues, and triggered reproductive sterility in common carp. Therefore, we can propose that chlorpyrifos toxication is highly dangerous to the health of common carp. Moreover, chlorpyrifos pollution in the water could threaten the common carp population. Use of chlorpyrifos should be restricted, and aquatic systems should be monitored for chlorpyrifos pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells.

    PubMed Central

    McKinnon, R D; Danielson, P; Brow, M A; Bloom, F E; Sutcliffe, J G

    1987-01-01

    We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture. Images PMID:2439903

  4. Hydrogen Ion Buffering During Complete Brain Ischemia

    PubMed Central

    KRAIG, RICHARD P.; PULSINELLI, WILLIAM A.; PLUM, FRED

    2011-01-01

    As a first step to quantify [H+] changes in brain during ischemia we used H+-selective microelectrodes and enzyme fluorometric techniques to describe the relationship between interstitial [H+] ([H+]o) and peak tissue lactate after cardiac arrest. We found a step function relationship between [H+]o and tissue lactate rather than the linear titration expected in a homogeneous protein solution. Within a blood glucose range from 3–7 mM, brain lactate rose from 8–13 mmol/kg along with a rise in [H+]o of 99 ± 6 nM (0.44 ± 0.02 pH). At higher blood glucose levels (17–80 mM), brain lactate accumulated to levels of 16–31 mmol/kg; concurrently [H+]o rose by 608 ± 16 nM (1.07 ± 0.02 pH). The unchanging level of [H+]o between 8–13 and 16–31 mmol/kg lactate implies that [H+]o is at a steady-state, but not equilibrium with respect to [H+] in other brain compartments. We propose that ion-transport characteristics of astroglia account for the observed relationship of [H+]o to tissue lactate during complete ischemia and suggest that brain infarction develops after plasma membranes in brain cells can no longer transport ions to regulate [H+]. PMID:4041829

  5. Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer's disease brain: A meta-analysis in human pathological specimens.

    PubMed

    Zabel, Matthew; Nackenoff, Alex; Kirsch, Wolff M; Harrison, Fiona E; Perry, George; Schrag, Matthew

    2018-02-01

    Oxidative stress and decreased cellular responsiveness to oxidative stress are thought to influence brain aging and Alzheimer's disease, but the specific patterns of oxidative damage and the underlying mechanism leading to this damage are not definitively known. The objective of this study was to define the pattern of changes in oxidative-stress related markers by brain region in human Alzheimer's disease and mild cognitive impairment brain tissue. Observational case-control studies were identified from systematic queries of PubMed, ISI Web of Science and Scopus databases and studies were evaluated with appropriate quality measures. The data was used to construct a region-by-region meta-analysis of malondialdehyde, 4-hydroxynonenal, protein carbonylation, 8-hydroxyguanine levels and superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase activities. We also evaluated ascorbic acid, tocopherol, uric acid and glutathione levels. The analysis was complicated in several cases by publication bias and/or outlier data. We found that malondialdehyde levels were slightly increased in the temporal and occipital lobes and hippocampus, but this analysis was significantly impacted by publication bias. 4-hydroxynonenal levels were unchanged in every brain region. There was no change in 8-hydroxyguanine level in any brain region and protein carbonylation levels were unchanged except for a slight increase in the occipital lobe. Superoxide dismutase, glutathione peroxidase and reductase and catalase activities were not decreased in any brain region. There was limited data reporting non-enzymatic antioxidant levels in Alzheimer's disease brain, although glutathione and tocopherol levels appear to be unchanged. Minimal quantitative data is available from brain tissue from patients with mild cognitive impairment. While there is modest evidence supporting minor regional changes in markers of oxidative damage, this analysis fails to identify a consistent pattern of pro-oxidative changes and accumulation of oxidative damage in bulk tissue analysis in the setting of Alzheimer's disease, as has been widely reported. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Serotonin release varies with brain tryptophan levels

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1990-01-01

    This study examines directly the effects on serotonin release of varying brain tryptophan levels within the physiologic range. It also addresses possible interactions between tryptophan availability and the frequency of membrane depolarization in controlling serotonin release. We demonstrate that reducing tryptophan levels in rat hypothalamic slices (by superfusing them with medium supplemented with 100 microM leucine) decreases tissue serotonin levels as well as both the spontaneous and the electrically-evoked serotonin release. Conversely, elevating tissue tryptophan levels (by superfusing slices with medium supplemented with 2 microM tryptophan) increases both the tissue serotonin levels and the serotonin release. Serotonin release was found to be affected independently by the tryptophan availability and the frequency of electrical field-stimulation (1-5 Hz), since increasing both variables produced nearly additive increases in release. These observations demonstrate for the first time that both precursor-dependent elevations and reductions in brain serotonin levels produce proportionate changes in serotonin release, and that the magnitude of the tryptophan effect is unrelated to neuronal firing frequency. The data support the hypothesis that serotonin release is proportionate to intracellular serotonin levels.

  7. Quantification of VGF- and pro-SAAS-derived peptides in endocrine tissues and the brain, and their regulation by diet and cold stress.

    PubMed

    Chakraborty, Tandra R; Tkalych, Oleg; Nanno, Daniela; Garcia, Angelo L; Devi, Lakshmi A; Salton, Stephen R J

    2006-05-17

    Two novel granin-like polypeptides, VGF and pro-SAAS, which are stored in and released from secretory vesicles and are expressed widely in nervous, endocrine, and neuroendocrine tissues, play roles in the regulation of body weight, feeding, and energy expenditure. Both VGF and pro-SAAS are cleaved into peptide fragments, several of which are biologically active. We utilized a highly sensitive and specific radioimmunoassay (RIA) to immunoreactive, pro-SAAS-derived PEN peptides, developed another against immunoreactive, VGF-derived AQEE30 peptides, and quantified these peptides in various mouse tissues and brain regions. Immunoreactive AQEE30 was most abundant in the pituitary, while brain levels were highest in hypothalamus, striatum, and frontal cortex. Immunoreactive PEN levels were highest in the pancreas and spinal cord, and in brain, PEN was most abundant in striatum, hippocampus, pons and medulla, and cortex. Since both peptides were expressed in hypothalamus, a region of the brain that controls feeding and energy expenditure, double label immunofluorescence studies were employed. These demonstrated that 42% of hypothalamic arcuate neurons coexpress VGF and SAAS peptides, and that the intracellular distributions of these peptides in arcuate neurons differed. By RIA, cold stress increased immunoreactive AQEE30 and PEN peptide levels in female but not male hypothalamus, while a high fat diet increased AQEE30 and PEN peptide levels in female but not male hippocampus. VGF and SAAS-derived peptides are therefore widely expressed in endocrine, neuroendocrine, and neural tissues, can be accurately quantified by RIA, and are differentially regulated in the brain by diet and cold stress.

  8. Caspase-3 inhibitor prevents the apoptosis of brain tissue in rats with acute cerebral infarction.

    PubMed

    Sun, Yuhua; Xu, Yuming; Geng, Lijiao

    2015-07-01

    The aim of the present study was to investigate the effect of the caspase-3 inhibitor z-DEVD-fmk on the apoptosis of the brain tissues of rats with acute cerebral infarction. Middle cerebral artery occlusion was used to establish a rat model of infarction, and the rats were randomly divided into a sham group (n=15), model group (n=15) and treatment group (n=15). z-DEVD-fmk (2.5 µg/kg) was injected into the intracranial artery of rats in the treatment group, while the same volume of phosphate-buffered saline solution was administered to the rats of the sham and model groups. After 48 h, all rats were sacrificed and their brain tissues were removed. The caspase-3 mRNA level, protein level and activity, brain cell apoptosis index and infarction scope of the three groups were analyzed. Neurological impairment was also assessed. At 48 h after model establishment, the caspase-3 mRNA and protein levels in the brain tissues of the model group were significantly higher than those of the sham group, and those in the treatment group were significantly lower than those in the model group (P<0.05); however, they remained significantly higher than those in the sham group. Caspase-3 activity in the model group was significantly higher than that in the sham group, and treatment with the caspase-3 inhibitor significantly reduced caspase-3 activity compared with that in the model group (P<0.05). The apoptosis index and infarction scope in the model and treatment groups were significantly increased compared with those in the sham group, and were significantly lower in the treatment group than in the model group (P<0.05). The neurological impairment of rats in the model and treatment groups was increased significantly compared with that in the sham group, and the treatment group exhibited a significantly lower level of neurological impairment than the model group (P<0.05). In conclusion, the caspase-3 inhibitor z-DEVD-fmk effectively inhibited apoptosis and delayed the necrosis of brain tissue cells in rats with acute cerebral infarction, and had certain protective effects on brain tissue.

  9. Effect of Resveratrol Administration on the Element Metabolism in the Blood and Brain Tissues of Rats Subjected to Acute Swimming Exercise.

    PubMed

    Baltaci, Abdulkerim Kasim; Arslangil, Dilek; Mogulkoc, Rasim; Patlar, Suleyman

    2017-02-01

    The aim of the present study is to examine how resveratrol administration affects the element metabolism in the blood and brain cortex tissues of rats subjected to an acute swimming exercise. The study was carried out on Wistar-Albino-type adult male rats supplied by the Center. Group 1 is the control group. Group 2 is the swimming control group. Group 3 is the resveratrol (10 mg/kg/day) + swimming group. Group 4 is the resveratrol (10 mg/kg/day) group. Blood and brain cortex tissues were analyzed for some elements. The acute swimming exercise led to increases in the rats' serum iron, selenium, lead, cobalt, and boron levels, while the resveratrol-swimming group has increases in copper, phosphorus, and calcium values. The brain cortex tissue of the resveratrol-swimming group had significantly higher molybdenum levels than others. The results obtained in the study indicate that acute swimming exercise altered the distribution of elements in the serum to a considerable extent; however, resveratrol's affect is limited. Especially, resveratrol supplementation may have a regulatory affect on serum iron and magnesium levels.

  10. Three levels of neuroelectronic interfacing: silicon chips with ion channels, nerve cells, and brain tissue.

    PubMed

    Fromherz, Peter

    2006-12-01

    We consider the direct electrical interfacing of semiconductor chips with individual nerve cells and brain tissue. At first, the structure of the cell-chip contact is studied. Then we characterize the electrical coupling of ion channels--the electrical elements of nerve cells--with transistors and capacitors in silicon chips. On that basis it is possible to implement signal transmission between microelectronics and the microionics of nerve cells in both directions. Simple hybrid neuroelectronic systems are assembled with neuron pairs and with small neuronal networks. Finally, the interfacing with capacitors and transistors is extended to brain tissue cultured on silicon chips. The application of highly integrated silicon chips allows an imaging of neuronal activity with high spatiotemporal resolution. The goal of the work is an integration of neuronal network dynamics with digital electronics on a microscopic level with respect to experiments in brain research, medical prosthetics, and information technology.

  11. The biochemical, nanomechanical and chemometric signatures of brain cancer

    NASA Astrophysics Data System (ADS)

    Abramczyk, Halina; Imiela, Anna

    2018-01-01

    Raman spectroscopy and imaging combined with AFM topography and mechanical indentation by AFM have been shown to be an effective tool for analysis and discrimination of human brain tumors from normal structures. Raman methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n = 5) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma (IV grade), and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational spectra and Raman images we provide a real-time feedback that is label-free method to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, and proteins. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have shown that the ratio of Raman intensities I2930/I2845 at 2930 and 2845 cm- 1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the lipid and protein contents of tumorous brain tissue compared to the non-tumor tissue. Almost all brain tumors have the Raman intensity ratios significantly higher (1.99 ± 0.026) than that found in non-tumor brain tissue, which is 1.456 ± 0.02, and indicates that the relative amount of lipids compared to proteins is significantly higher in the normal brain tissue. Mechanical indentation using AFM on sliced human brain tissues (medulloblastoma, grade IV) revealed that the mechanical properties of this tissue are strongly heterogeneous, between 1.8 and 75.7 kPa, and the mean of 27.16 kPa. The sensitivity and specificity obtained directly from PLSDA and cross validation gives a sensitivity and specificity of 98.5% and 96% and 96.3% and 92% for cross-validation, respectively. The high sensitivity and specificity demonstrates usefulness for a proper decision for a Raman diagnostic test on biochemical alterations monitored by Raman spectroscopy related to brain cancer development.

  12. [Changes in 2,3-diphosphoglycerate Levels in Blood and Brain Tissue after Craniocerebral Trauma and Cardiac Surgery].

    PubMed

    Hausdörfer, J; Heller, W; Junger, H; Oldenkott, P; Stunkat, R

    1976-10-01

    The response of the 2,3-diphosphoglycerate (DPG) levels in the blood and brain tissue to a craniocerebral trauma of varying severity was studied in anaesthetized rats. A trauma producing cerebral contusion was followed within two hours by a highly significant rise in DPG concentration in the blood as compared with the control animals or only mildly traumatized rats. The DPG levels in the brain tissue showed no significant differences. Similar changes in DPG concentration were observed in the blood of patients with craniocerebral injuries. The DPG-mediated increased release of oxygen to the tissues represents a compensatory mechanism and is pathognomic for craniocerebral trauma. Patients undergoing surgery with extracorporeal circulation lack this mechanism for counteracting hypoxaemia; already during thoracotomy the DPG concentration in the blood fell significantly and did not reach its original level until 72 hours after the operation. In stored, ACD stabilized, blood the DPG concentration gradually decreases. Estimations carried out over 28 days showed a continuous statistically significant loss of DPG. After 24 hours the DPG levels in stored blood had already dropped to the lower limits of normal - a fact that has to be taken into account in massive blood transfusions.

  13. Is 2-dimethylaminoethanol (deanol) indeed a precursor of brain acetylcholine? A gas chromatographic evaluation.

    PubMed

    Zahniser, N R; Chou, D; Hanin, I

    1977-03-01

    Acute administration of deanol-p-acetamidobenzoate (Deaner; deanol) has been reported to elevate brain choline (CH) and acetylcholine (ACh) levels. We have developed a specific and sensitive gas chromatographic assay to measure deanol levels in tissue and have applied this assay to our studies of the effect of acute deanol administration on deanol, ACh and Ch levels in rodent brains. Details of the method are described in this text. This procedure is quantitative and yields reproducible results over a wide range of deanol concentrations (0.30-200 nmol). Seven endogenous and pharmacological parameters have been studied using this procedure. In control rodent brain, liver, heart, lung and plasma, we detected no free endogenous deanol (less than 1 nmol/g). After deanol administration, we were able to detect deanol in tissue and have attempted to determine a relationship between these levels and values of ACh in the same tissue. Regardless of deanol pretreatment time (1-30 minutes) or doses (33.3-3000 mg/kg i.p.) used, we detected no increase in mouse whole brain ACh levels. Likewise, there was no detectable elevation in ACh levels in rat whole brain, cortex, striatum or hippocampus after a 15-minute pretreatment with 550 mg/kg of deanol (i.p.). The only elevation in ACh levels which we detected occurred selectively in the striatum of mice pretreated with a massive dose (900 mg/kg i.p.) of deanol for 30 minutes. This selective increase in striatal ACh levels oculd not, however, be related to levels of deanol in the striatum because there was no greater accumulation of deanol in the striatum than in other brain areas tested or in whole brain. These data do not confirm the results of other investigators who reported elevations in whole brain or striatal ACh levels after acute administration of lower doses of deanol. The data emphasize the need for further investigation into the mode of action of deanol and question its suggested role as an immediate precursor of ACh synthesis in the central nervous system.

  14. Effects of Chronic Ghrelin Treatment on Hypoxia-Induced Brain Oxidative Stress and Inflammation in a Rat Normobaric Chronic Hypoxia Model.

    PubMed

    Omrani, Hasan; Alipour, Mohammad Reza; Farajdokht, Fereshteh; Ebrahimi, Hadi; Mesgari Abbasi, Mehran; Mohaddes, Gisou

    2017-06-01

    Omrani, Hasan, Mohammad Reza Alipour, Fereshteh Farajdokht, Hadi Ebrahimi, Mehran Mesgari Abbasi, and Gisou Mohaddes. Effects of chronic ghrelin treatment on hypoxia-induced brain oxidative stress and inflammation in a rat normobaric chronic hypoxia model. High Alt Med Biol. 18:145-151, 2017. This study aimed to evaluate the probable antioxidant effects of ghrelin in the brain and serum and its effect on tumor necrosis factor-alpha (TNF-α) levels in the brain in a model of chronic systemic hypoxia in rats. Systemic hypoxia was induced by a normobaric hypoxic chamber (O 2 11%) for ten days. Adult male Wistar rats were divided into control (C), chronic ghrelin (80 μg/kg/10 days) (Ghr), chronic hypoxia (CH), and CH and ghrelin (80 μg/kg/ip/10 days) (CH + Gh) groups. The activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and malondialdehyde (MDA), total antioxidant capacity, and TNF-α levels were assessed in the serum and brain tissue. Our results showed that chronic ghrelin administration attenuated the CH-increased oxidative stress by decreasing MDA levels in the serum and brain tissue. Moreover, ghrelin enhanced the antioxidant defense against hypoxia-induced oxidative stress in the serum and brain tissue. Brain TNF-α levels in CH did not change significantly; however, ghrelin significantly (p < 0.001) decreased it. These results indicated that ghrelin promoted antioxidative and anti-inflammatory defense under chronic exposure to hypoxia. Therefore, ghrelin might be used as a potential therapy in normobaric hypoxia and oxidative stress induced by CH.

  15. Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain.

    PubMed

    Cao-Lei, Lei; Suwansirikul, Songkiet; Jutavijittum, Prapan; Mériaux, Sophie B; Turner, Jonathan D; Muller, Claude P

    2013-11-01

    Glucocorticoids and the glucocorticoid (GR) and mineralocorticoid (MR) receptors have been implicated in many processes, particularly in negative feedback regulation of the hypothalamic-pituitary-adrenal axis. Epigenetically programmed GR alternative promoter usage underlies transcriptional control of GR levels, generation of GR 3' splice variants, and the overall GC response in the brain. No detailed analysis of GR first exons or GR transcript variants throughout the human brain has been reported. Therefore we investigated post mortem tissues from 28 brain regions of 5 individuals. GR first exons were expressed throughout the healthy human brain with no region-specific usage patterns. First exon levels were highly inter-correlated suggesting that they are co-regulated. GR 3' splice variants (GRα and GR-P) were equally distributed in all regions, and GRβ expression was always low. GR/MR ratios showed significant differences between the 28 tissues with the highest ratio in the pituitary gland. Modification levels of individual CpG dinucleotides, including 5-mC and 5-hmC, in promoters 1D, 1E, 1F, and 1H were low, and diffusely clustered; despite significant heterogeneity between the donors. In agreement with this clustering, sum modification levels rather than individual CpG modifications correlated with GR expression. Two-way ANOVA showed that this sum modification was both promoter and brain region specific, but that there was however no promoter*tissue interaction. The heterogeneity between donors may however hide such an interaction. In both promoters 1F and 1H modification levels correlated with GRα expression suggesting that 5-mC and 5-hmC play an important role in fine tuning GR expression levels throughout the brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Cerebrospinal fluid levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in subacute sclerosing panencephalitis.

    PubMed

    Ichiyama, Takashi; Matsushige, Takeshi; Siba, Peter; Suarkia, Dagwin; Takasu, Toshiaki; Miki, Kenji; Furukawa, Susumu

    2008-05-01

    To investigate the brain inflammation and damage in subacute sclerosing panencephalitis (SSPE), the cerebrospinal fluid (CSF) concentrations of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1) were determined in SSPE patients. CSF MMP-9 and TIMP-1 levels were measured in 23 patients with SSPE in Papua New Guinea by ELISA. CSF MMP-9 levels and MMP-9/TIMP-1 ratios of SSPE patients were significantly higher than controls (p<0.001 and p=0.005, respectively). There were no significant differences in CSF TIMP-1 levels between SSPE patients and controls. Previous studies suggested that CSF MMP-9 levels reflect inflammatory damage to the brain. Our findings suggest that the MMP-9 level in CSF is an indicator of inflammatory damage to the brain in SSPE.

  17. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues.

    PubMed

    Van Herck, Stijn L J; Geysens, Stijn; Bald, Edward; Chwatko, Grazyna; Delezie, Evelyne; Dianati, Elham; Ahmed, R G; Darras, Veerle M

    2013-07-01

    Methimazole (MMI) is an anti-thyroid drug used in the treatment of chronic hyperthyroidism. There is, however, some debate about its use during pregnancy as MMI is known to cross the mammalian placenta and reach the developing foetus. A similar problem occurs in birds, where MMI is deposited in the egg and taken up by the developing embryo. To investigate whether maternally derived MMI can have detrimental effects on embryonic development, we treated laying hens with MMI (0.03% in drinking water) and measured total and reduced MMI contents in the tissues of hens and embryos at different stages of development. In hens, MMI was selectively increased in the thyroid gland, while its levels in the liver and especially brain remained relatively low. Long-term MMI treatment induced a pronounced goitre with a decrease in thyroxine (T₄) content but an increase in thyroidal 3,5,3'-triiodothyronine (T₃) content. This resulted in normal T₃ levels in tissues except in the brain. In chicken embryos, MMI levels were similar in the liver and brain. They gradually decreased during development but always remained above those in the corresponding maternal tissues. Contrary to the situation in hens, T₄ availability was only moderately affected in embryos. Peripheral T₃ levels were reduced in 14-day-old embryos but normal in 18-day-old embryos, while brain T₃ content was decreased at all embryonic stages tested. We conclude that all embryonic tissues are exposed to relatively high doses of MMI and its oxidised metabolites. The effect of maternal MMI treatment on embryonic thyroid hormone availability is most pronounced for brain T₃ content, which is reduced throughout the embryonic development period.

  18. Keratin 13 expression reprograms bone and brain metastases of human prostate cancer cells.

    PubMed

    Li, Qinlong; Yin, Lijuan; Jones, Lawrence W; Chu, Gina C-Y; Wu, Jason B-Y; Huang, Jen-Ming; Li, Quanlin; You, Sungyong; Kim, Jayoung; Lu, Yi-Tsung; Mrdenovic, Stefan; Wang, Ruoxiang; Freeman, Michael R; Garraway, Isla; Lewis, Michael S; Chung, Leland W K; Zhau, Haiyen E

    2016-12-20

    Lethal progression of prostate cancer metastasis can be improved by developing animal models that recapitulate the clinical conditions. We report here that cytokeratin 13 (KRT13), an intermediate filament protein, plays a directive role in prostate cancer bone, brain, and soft tissue metastases. KRT13 expression was elevated in bone, brain, and soft tissue metastatic prostate cancer cell lines and in primary and metastatic clinical prostate, lung, and breast cancer specimens. When KRT13 expression was determined at a single cell level in primary tumor tissues of 44 prostate cancer cases, KRT13 level predicted bone metastasis and the overall survival of prostate cancer patients. Genetically enforced KRT13 expression in human prostate cancer cell lines drove metastases toward mouse bone, brain and soft tissues through a RANKL-independent mechanism, as KRT13 altered the expression of genes associated with EMT, stemness, neuroendocrine/neuromimicry, osteomimicry, development, and extracellular matrices, but not receptor activator NF-κB ligand (RANKL) signaling networks in prostate cancer cells. Our results suggest new inhibitors targeting RANKL-independent pathways should be developed for the treatment of prostate cancer bone and soft tissue metastases.

  19. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats

    PubMed Central

    Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar

    2014-01-01

    Background & objectives: Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Methods: Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. Results: SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. Interpretation & conclusions: The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney. PMID:24927349

  20. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats.

    PubMed

    Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar

    2014-04-01

    Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney.

  1. In vivo three-photon microscopy of subcortical structures within an intact mouse brain

    NASA Astrophysics Data System (ADS)

    Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris

    2013-03-01

    Two-photon fluorescence microscopy enables scientists in various fields including neuroscience, embryology and oncology to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue.

  2. Simultaneous recording of eeg and direct current (DC) potential makes it possible to assess functional and metabolic state of nervous tissue.

    PubMed

    Murik, S E; Shapkin, A G

    2004-08-01

    It has been proposed to assess functional and metabolic state of the brain nervous tissue in terms of bioelectrical parameters. Simultaneous recording of the DC potential level and total slow electrical activity of the nervous tissue was performed in the object of study by nonpolarizable Ag/AgCl electrodes with a DC amplifier. The functional and metabolic state of the brain was determined in terms of enhancement or reduction in the total slow electrical activity and positive or negative shifts in the DC potential level.

  3. The cytokine temporal profile in rat cortex after controlled cortical impact

    PubMed Central

    Dalgard, Clifton L.; Cole, Jeffrey T.; Kean, William S.; Lucky, Jessica J.; Sukumar, Gauthaman; McMullen, David C.; Pollard, Harvey B.; Watson, William D.

    2012-01-01

    Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may provide increased insight into a number of secondary cascade events that are initiated or regulated by inflammatory responses. PMID:22291617

  4. The cytokine temporal profile in rat cortex after controlled cortical impact.

    PubMed

    Dalgard, Clifton L; Cole, Jeffrey T; Kean, William S; Lucky, Jessica J; Sukumar, Gauthaman; McMullen, David C; Pollard, Harvey B; Watson, William D

    2012-01-01

    Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may provide increased insight into a number of secondary cascade events that are initiated or regulated by inflammatory responses.

  5. Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus.

    PubMed

    Gonzalez-Riano, Carolina; Tapia-González, Silvia; García, Antonia; Muñoz, Alberto; DeFelipe, Javier; Barbas, Coral

    2017-08-01

    Understanding the human brain is the ultimate goal in neuroscience, but this is extremely challenging in part due to the fact that brain tissue obtained from autopsy is practically the only source of normal brain tissue and also since changes at different levels of biological organization (genetic, molecular, biochemical, anatomical) occur after death due to multiple mechanisms. Here we used metabolomic and anatomical techniques to study the possible relationship between post-mortem time (PT)-induced changes that may occur at both the metabolomics and anatomical levels in the same brains. Our experiments have mainly focused on the hippocampus of the mouse. We found significant metabolomic changes at 2 h PT, whereas the integrity of neurons and glia, at the anatomical/ neurochemical level, was not significantly altered during the first 5 h PT for the majority of histological markers.

  6. Confocal laser endomicroscopy for brain tumor surgery: a milestone journey from microscopy to cellular surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Charalampaki, Cleopatra

    2017-02-01

    The aim in brain tumor surgery is maximal tumor resection with minimal damage of normal neuronal tissue. Today diagnosis of tumor and definition of tumor borders intraoperatively is based on various visualization methods as well as on the histopathologic examination of a limited number of biopsy specimens via frozen sections. Unfortunately, intraoperative histopathology bears several shortcomings, and many biopsies are inconclusive. Therefore, the desirable treatment could be to have the ability to identify intraoperative cellular structures, and differentiate tumor from normal functional brain tissue on a cellular level. To achieve this goal new technological equipment integrated with new surgical concepts is needed.Confocal Laser Endomicroscopy (CLE) is an imaging technique which provides microscopic information of tissue in real-time. We are able to use these technique to perform intraoperative "optical biopsies" in bringing the microscope inside to the patients brain through miniaturized fiber-optic probes, and allow real-time histopathology. In our knowledge we are worldwide the only one neurosurgical group using CLE intraoperative for brain tumor surgery. We can detect and characterize intraoperative tumor cells, providing immediate online diagnosis without the need for frozen sections. It also provides delineation of borders between tumor and normal tissue on a cellular level, making surgical margins more accurate than ever before. The applications of CLE-assisted neurosurgery help to accurate the therapy by extending the resection borders and protecting the functionality of normal brain tissue in critical eloquent areas.

  7. Tissue organ distribution and behavioral effects of platinum following acute and repeated exposure of the mouse to platinum sulfate.

    PubMed Central

    Lown, B A; Morganti, J B; Stineman, C H; D'Agostino, R B; Massaro, E J

    1980-01-01

    Platinum sulfate was administered intragastrically (IG) to adult male Swiss mice in a single dose at the 7 day LD5 or LD25 level. Control groups received 0.25M H2SO4 (pH 0.85) or 0.14M NaCl. Open field behavior (ambulations, rearings) was measured, and tissue/organ Pt levels determined at 4 hr, or 1, 3, or 7 days post administration. At all times, the LD25 depressed ambulations significantly and rearings marginally. It did not effect exploratory ("hole-in-board") behavior. The LD25 resulted in disproportionately high tissue Pt levels relateive to the LD5. There were significant inverse correlations between behavior and tissue Pt levels for most tissues, but not for brain. In related experiments, adult male mice were subjected to repeated IG administration of Pt(SO4)2 at the LD1 level (one dose every 72 hr for up to 10 doses). Three days after administration of the final dose of each series, open-field and exploratory performance were measured and tissue/organ Pt levels determined. Tissue/organ Pt levels were variable but generally increased with dose number. No Pt was detected in the brain. Activity and explorations were marginally depressed. Only rearings correlated significantly with tissue Pt levels. PMID:7389684

  8. Use of a rapid brain-sampling technique in a physiologic preparation: effects of morphine, ketamine, and halothane on tissue energy intermediates.

    PubMed

    Dedrick, D F; Sherer, Y D; Biebuyck, J F

    1975-06-01

    A new method of rapid sampling of brain tissue, "freeze-blowing," has been used to compare the neurochemistry of the brain during anesthesia with that in the awake state. The method avoids anoxia associated with the sampling process. Physiologic variables, including body temperature, blood-gas tensions and blood pressure, were carefully monitored and controlled in the experimental animals. None of the agents tested (halothane, morphine, and ketamine) reduced the brain tissue high-energy phosphate reserved. All three drugs doubled glucose levels. Morphine lowered both lactate and the lactate/pyruvate ratio. Uniformly, the three anesthetic agents led to twofold increases of brain cyclic 3'-5' adenosine monophosphate concentrations. These changes suggest a possible role for cyclic nucleotides in central neurotransmission.

  9. MOMENTARY BRAIN CONCENTRATION OF TRICHLOROETHYLENE PREDICTS THE EFFECTS ON RAT VISUAL FUNCTION.

    EPA Science Inventory

    This manuscript demonstrates that the level neurological impairment following acute reversible exposure to trichloroethylene, a volatile organic compound, is more accurately described when extrapolations across exposure conditions are based on target tissue (brain) dose level, th...

  10. Proliferation zones in the axolotl brain and regeneration of the telencephalon

    PubMed Central

    2013-01-01

    Background Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. Results There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. Conclusion There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain. Variable rates of proliferation were detected across brain regions. These neural progenitor cells appear to mediate telencephalic tissue regeneration through an injury-induced olfactory cue. Identification of this cue is our future goal. PMID:23327114

  11. Proliferation zones in the axolotl brain and regeneration of the telencephalon.

    PubMed

    Maden, Malcolm; Manwell, Laurie A; Ormerod, Brandi K

    2013-01-17

    Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain. Variable rates of proliferation were detected across brain regions. These neural progenitor cells appear to mediate telencephalic tissue regeneration through an injury-induced olfactory cue. Identification of this cue is our future goal.

  12. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO(2).

    PubMed

    Ortiz-Prado, E; Natah, Siraj; Srinivasan, Sathyanarayanan; Dunn, Jeff F

    2010-11-30

    The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Brain infection with Staphylococcus aureus leads to high extracellular levels of glutamate, aspartate, γ-aminobutyric acid, and zinc.

    PubMed

    Hassel, Bjørnar; Dahlberg, Daniel; Mariussen, Espen; Goverud, Ingeborg Løstegaard; Antal, Ellen-Ann; Tønjum, Tone; Maehlen, Jan

    2014-12-01

    Staphylococcal brain infections may cause mental deterioration and epileptic seizures, suggesting interference with normal neurotransmission in the brain. We injected Staphylococcus aureus into rat striatum and found an initial 76% reduction in the extracellular level of glutamate as detected by microdialysis at 2 hr after staphylococcal infection. At 8 hr after staphylococcal infection, however, the extracellular level of glutamate had increased 12-fold, and at 20 hr it had increased >30-fold. The extracellular level of aspartate and γ-aminobutyric acid (GABA) also increased greatly. Extracellular Zn(2+) , which was estimated at ∼2.6 µmol/liter in the control situation, was increased by 330% 1-2.5 hr after staphylococcal infection and by 100% at 8 and 20 hr. The increase in extracellular glutamate, aspartate, and GABA appeared to reflect the degree of tissue damage. The area of tissue damage greatly exceeded the area of staphylococcal infiltration, pointing to soluble factors being responsible for cell death. However, the N-methyl-D-aspartate receptor antagonist MK-801 ameliorated neither tissue damage nor the increase in extracellular neuroactive amino acids, suggesting the presence of neurotoxic factors other than glutamate and aspartate. In vitro staphylococci incubated with glutamine and glucose formed glutamate, so bacteria could be an additional source of infection-related glutamate. We conclude that the dramatic increase in the extracellular concentration of neuroactive amino acids and zinc could interfere with neurotransmission in the surrounding brain tissue, contributing to mental deterioration and a predisposition to epileptic seizures, which are often seen in brain abscess patients. © 2014 Wiley Periodicals, Inc.

  14. Baicalin Attenuates Subarachnoid Hemorrhagic Brain Injury by Modulating Blood-Brain Barrier Disruption, Inflammation, and Oxidative Damage in Mice

    PubMed Central

    Fu, Yongjian; Zhang, SongSong; Ding, Hao; Chen, Jin

    2017-01-01

    In subarachnoid hemorrhagic brain injury, the early crucial events are edema formation due to inflammatory responses and blood-brain barrier disruption. Baicalin, a flavone glycoside, has antineuroinflammatory and antioxidant properties. We examined the effect of baicalin in subarachnoid hemorrhagic brain injury. Subarachnoid hemorrhage was induced through filament perforation and either baicalin or vehicle was administered 30 min prior to surgery. Brain tissues were collected 24 hours after surgery after evaluation of neurological scores. Brain tissues were processed for water content, real-time PCR, and immunoblot analyses. Baicalin improved neurological score and brain water content. Decreased levels of tight junction proteins (occludin, claudin-5, ZO-1, and collagen IV) required for blood-brain barrier function were restored to normal level by baicalin. Real-time PCR data demonstrated that baicalin attenuated increased proinflammatory cytokine (IL-1β, IL-6, and CXCL-3) production in subarachnoid hemorrhage mice. In addition to that, baicalin attenuated microglial cell secretion of IL-1β and IL-6 induced by lipopolysaccharide (100 ng/ml) dose dependently. Finally, baicalin attenuated induction of NOS-2 and NOX-2 in SAH mice at the mRNA and protein level. Thus, we demonstrated that baicalin inhibited microglial cell activation and reduced inflammation, oxidative damage, and brain edema. PMID:28912935

  15. Hydrogen-Rich Saline Attenuates Brain Injury Induced by Cardiopulmonary Bypass and Inhibits Microvascular Endothelial Cell Apoptosis Via the PI3K/Akt/GSK3β Signaling Pathway in Rats.

    PubMed

    Chen, Keyan; Wang, Nan; Diao, Yugang; Dong, Wanwei; Sun, YingJie; Liu, Lidan; Wu, Xiuying

    2017-01-01

    Cardiopulmonary bypass (CPB) is prone to inducing brain injury during open heart surgery. A hydrogen-rich solution (HRS) can prevent oxidation and apoptosis, and inhibit inflammation. This study investigated effects of HRS on brain injury induced by CPB and regulatory mechanisms of the PI3K/Akt/GSK3β signaling pathway. A rat CPB model and an in vitro cell hypoxia model were established. After HRS treatment, Rat behavior was measured using neurological deficit score; Evans blue (EB) was used to assess permeability of the blood-brain barrier (BBB); HE staining was used to observe pathological changes; Inflammatory factors and brain injury markers were detected by ELISA; the PI3K/Akt/GSK3β pathway-related proteins and apoptosis were assessed by western blot, immunohistochemistry and qRT -PCR analyses of brain tissue and neurons. After CPB, brain tissue anatomy was disordered, and cell structure was abnormal. Brain tissue EB content increased. There was an increase in the number of apoptotic cells, an increase in expression of Bax and caspase-3, a decrease in expression of Bcl2, and increases in levels of Akt, GSK3β, P-Akt, and P-GSK3β in brain tissue. HRS treatment attenuated the inflammatory reaction ,brain tissue EB content was significantly reduced and significantly decreased expression levels of Bax, caspase-3, Akt, GSK3β, P-Akt, and P-GSK3β in the brain. After adding the PI3K signaling pathway inhibitor, LY294002, to rat cerebral microvascular endothelial cells (CMECs), HRS could reduce activated Akt expression and downstream regulatory gene phosphorylation of GSK3β expression, and inhibit CMEC apoptosis. The PI3K/Akt/GSK3β signaling pathway plays an important role in the mechanism of CPB-induced brain injury. HRS can reduce CPB-induced brain injury and inhibit CMEC apoptosis through the PI3K/Akt/GSK3β signaling pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Brain tissue segmentation based on DTI data

    PubMed Central

    Liu, Tianming; Li, Hai; Wong, Kelvin; Tarokh, Ashley; Guo, Lei; Wong, Stephen T.C.

    2008-01-01

    We present a method for automated brain tissue segmentation based on the multi-channel fusion of diffusion tensor imaging (DTI) data. The method is motivated by the evidence that independent tissue segmentation based on DTI parametric images provides complementary information of tissue contrast to the tissue segmentation based on structural MRI data. This has important applications in defining accurate tissue maps when fusing structural data with diffusion data. In the absence of structural data, tissue segmentation based on DTI data provides an alternative means to obtain brain tissue segmentation. Our approach to the tissue segmentation based on DTI data is to classify the brain into two compartments by utilizing the tissue contrast existing in a single channel. Specifically, because the apparent diffusion coefficient (ADC) values in the cerebrospinal fluid (CSF) are more than twice that of gray matter (GM) and white matter (WM), we use ADC images to distinguish CSF and non-CSF tissues. Additionally, fractional anisotropy (FA) images are used to separate WM from non-WM tissues, as highly directional white matter structures have much larger fractional anisotropy values. Moreover, other channels to separate tissue are explored, such as eigenvalues of the tensor, relative anisotropy (RA), and volume ratio (VR). We developed an approach based on the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm that combines these two-class maps to obtain a complete tissue segmentation map of CSF, GM, and WM. Evaluations are provided to demonstrate the performance of our approach. Experimental results of applying this approach to brain tissue segmentation and deformable registration of DTI data and spoiled gradient-echo (SPGR) data are also provided. PMID:17804258

  17. Oxidative stress in juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum)

    USGS Publications Warehouse

    Welker, T.L.; Congleton, J.L.

    2004-01-01

    Juvenile chinook salmon, Oncorhynchus tshawytscha (Walbaum), were held in 8-11??C freshwater, starved for 3 days and subjected to a low-water stressor to determine the relationship between the general stress response and oxidative stress. Lipid peroxidation (LPO) levels (lipid hydroperoxides) were measured in kidney, liver and brain samples taken at the beginning of the experiment (0-h unstressed controls) and at 6, 24 and 48 h after application of a continuous low-water stressor. Tissue samples were also taken at 48 h from fish that had not been exposed to the stressor (48-h unstressed controls). Exposure to the low-water stressor affected LPO in kidney and brain tissues. In kidney, LPO decreased 6 h after imposition of the stressor; similar but less pronounced decreases also occurred in the liver and brain. At 48 h, LPO increased (in comparison with 6-h stressed tissues) in the kidney and brain. In comparison with 48-h unstressed controls, LPO levels were higher in the kidney and brain of stressed fish. Although preliminary, results suggest that stress can cause oxidative tissue damage in juvenile chinook salmon. Measures of oxidative stress have shown similar responses to stress in mammals; however, further research is needed to determine the extent of the stress-oxidative stress relationship and the underlying physiological mechanisms in fish.

  18. Novel strategies of Raman imaging for brain tumor research.

    PubMed

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-10-17

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real-time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I 2930 /I 2845 at 2930 and 2845 cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that levels of the saturated fatty acids were significantly reduced in the high grade medulloblastoma samples compared with non-tumor brain samples and low grade astrocytoma. Differences were also noted in the n-6/n-3 polyunsaturated fatty acids (PUFA) content between medulloblastoma and non-tumor brain samples. The content of the oleic acid (OA) was significantly smaller in almost all brain high grade brain tumors than that observed in the control samples. It indicates that the fatty acid composition of human brain tumors differs from that found in non-tumor brain tissue. The iodine number N I for the normal brain tissue is 60. For comparison OA has 87, docosahexaenoic acid (DHA) 464, α-linolenic acid (ALA) 274. The high grade tumors have the iodine numbers between that for palmitic acid, stearic acid, arachidic acid (N I =0) and oleic acid (N I =87). Most low grade tumors have N I similar to that of OA. The iodine number for arachidonic acid (AA) (N I =334) is much higher than those observed for all studied samples.

  19. Novel strategies of Raman imaging for brain tumor research

    PubMed Central

    Anna, Imiela; Bartosz, Polis; Lech, Polis; Halina, Abramczyk

    2017-01-01

    Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real–time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I2930/I2845 at 2930 and 2845 cm-1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that levels of the saturated fatty acids were significantly reduced in the high grade medulloblastoma samples compared with non-tumor brain samples and low grade astrocytoma. Differences were also noted in the n-6/n-3 polyunsaturated fatty acids (PUFA) content between medulloblastoma and non-tumor brain samples. The content of the oleic acid (OA) was significantly smaller in almost all brain high grade brain tumors than that observed in the control samples. It indicates that the fatty acid composition of human brain tumors differs from that found in non-tumor brain tissue. The iodine number NI for the normal brain tissue is 60. For comparison OA has 87, docosahexaenoic acid (DHA) 464, α-linolenic acid (ALA) 274. The high grade tumors have the iodine numbers between that for palmitic acid, stearic acid, arachidic acid (NI=0) and oleic acid (NI=87). Most low grade tumors have NI similar to that of OA. The iodine number for arachidonic acid (AA) (NI=334) is much higher than those observed for all studied samples. PMID:29156720

  20. The biochemical, nanomechanical and chemometric signatures of brain cancer.

    PubMed

    Abramczyk, Halina; Imiela, Anna

    2018-01-05

    Raman spectroscopy and imaging combined with AFM topography and mechanical indentation by AFM have been shown to be an effective tool for analysis and discrimination of human brain tumors from normal structures. Raman methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n=5) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma (IV grade), and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational spectra and Raman images we provide a real-time feedback that is label-free method to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, and proteins. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have shown that the ratio of Raman intensities I2930/I2845 at 2930 and 2845cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the lipid and protein contents of tumorous brain tissue compared to the non-tumor tissue. Almost all brain tumors have the Raman intensity ratios significantly higher (1.99±0.026) than that found in non-tumor brain tissue, which is 1.456±0.02, and indicates that the relative amount of lipids compared to proteins is significantly higher in the normal brain tissue. Mechanical indentation using AFM on sliced human brain tissues (medulloblastoma, grade IV) revealed that the mechanical properties of this tissue are strongly heterogeneous, between 1.8 and 75.7kPa, and the mean of 27.16kPa. The sensitivity and specificity obtained directly from PLSDA and cross validation gives a sensitivity and specificity of 98.5% and 96% and 96.3% and 92% for cross-validation, respectively. The high sensitivity and specificity demonstrates usefulness for a proper decision for a Raman diagnostic test on biochemical alterations monitored by Raman spectroscopy related to brain cancer development. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads

    PubMed Central

    Lamers, Susanna L.; Rose, Rebecca; Maidji, Ekaterina; Agsalda-Garcia, Melissa; Nolan, David J.; Fogel, Gary B.; Salemi, Marco; Garcia, Debra L.; Bracci, Paige; Yong, William; Commins, Deborah; Said, Jonathan; Khanlou, Negar; Hinkin, Charles H.; Sueiras, Miguel Valdes; Mathisen, Glenn; Donovan, Suzanne; Shiramizu, Bruce; Stoddart, Cheryl A.; Singer, Elyse J.

    2016-01-01

    ABSTRACT HIV infection treatment strategies have historically defined effectiveness through measuring patient plasma HIV RNA. While combined antiretroviral therapy (cART) can reduce plasma viral load (pVL) to undetectable levels, the degree that HIV is eliminated from other anatomical sites remains unclear. We investigated the HIV DNA levels in 229 varied autopsy tissues from 20 HIV-positive (HIV+) cART-treated study participants with low or undetectable plasma VL and cerebrospinal fluid (CSF) VL prior to death who were enrolled in the National Neurological AIDS Bank (NNAB) longitudinal study and autopsy cohort. Extensive medical histories were obtained for each participant. Autopsy specimens, including at least six brain and nonbrain tissues per participant, were reviewed by study pathologists. HIV DNA, measured in tissues by quantitative and droplet digital PCR, was identified in 48/87 brain tissues and 82/142 nonbrain tissues at levels >200 HIV copies/million cell equivalents. No participant was found to be completely free of tissue HIV. Parallel sequencing studies from some tissues recovered intact HIV DNA and RNA. Abnormal histological findings were identified in all participants, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. All brain tissues demonstrated some degree of pathology. Ninety-five percent of participants had some degree of atherosclerosis, and 75% of participants died with cancer. This study assists in characterizing the anatomical locations of HIV, in particular, macrophage-rich tissues, such as the central nervous system (CNS) and testis. Additional studies are needed to determine if the HIV recovered from tissues promotes the pathogenesis of inflammatory diseases, such as HIV-associated neurocognitive disorders, cancer, and atherosclerosis. IMPORTANCE It is well-known that combined antiretroviral therapy (cART) can reduce plasma HIV to undetectable levels; however, cART cannot completely clear HIV infection. An ongoing question is, “Where is HIV hiding?” A well-studied HIV reservoir is “resting” T cells, which can be isolated from blood products and succumb to cART once activated. Less-studied reservoirs are anatomical tissue samples, which have unknown cART penetration, contain a comparably diverse spectrum of potentially HIV-infected immune cells, and are important since <2% of body lymphocytes actually reside in blood. We examined 229 varied autopsy specimens from 20 HIV+ participants who died while on cART and identified that >50% of tissues were HIV infected. Additionally, we identified considerable pathology in participants' tissues, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. This study substantiates that tissue-associated HIV is present despite cART and can inform future studies into HIV persistence. PMID:27466426

  2. HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads.

    PubMed

    Lamers, Susanna L; Rose, Rebecca; Maidji, Ekaterina; Agsalda-Garcia, Melissa; Nolan, David J; Fogel, Gary B; Salemi, Marco; Garcia, Debra L; Bracci, Paige; Yong, William; Commins, Deborah; Said, Jonathan; Khanlou, Negar; Hinkin, Charles H; Sueiras, Miguel Valdes; Mathisen, Glenn; Donovan, Suzanne; Shiramizu, Bruce; Stoddart, Cheryl A; McGrath, Michael S; Singer, Elyse J

    2016-10-15

    HIV infection treatment strategies have historically defined effectiveness through measuring patient plasma HIV RNA. While combined antiretroviral therapy (cART) can reduce plasma viral load (pVL) to undetectable levels, the degree that HIV is eliminated from other anatomical sites remains unclear. We investigated the HIV DNA levels in 229 varied autopsy tissues from 20 HIV-positive (HIV(+)) cART-treated study participants with low or undetectable plasma VL and cerebrospinal fluid (CSF) VL prior to death who were enrolled in the National Neurological AIDS Bank (NNAB) longitudinal study and autopsy cohort. Extensive medical histories were obtained for each participant. Autopsy specimens, including at least six brain and nonbrain tissues per participant, were reviewed by study pathologists. HIV DNA, measured in tissues by quantitative and droplet digital PCR, was identified in 48/87 brain tissues and 82/142 nonbrain tissues at levels >200 HIV copies/million cell equivalents. No participant was found to be completely free of tissue HIV. Parallel sequencing studies from some tissues recovered intact HIV DNA and RNA. Abnormal histological findings were identified in all participants, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. All brain tissues demonstrated some degree of pathology. Ninety-five percent of participants had some degree of atherosclerosis, and 75% of participants died with cancer. This study assists in characterizing the anatomical locations of HIV, in particular, macrophage-rich tissues, such as the central nervous system (CNS) and testis. Additional studies are needed to determine if the HIV recovered from tissues promotes the pathogenesis of inflammatory diseases, such as HIV-associated neurocognitive disorders, cancer, and atherosclerosis. It is well-known that combined antiretroviral therapy (cART) can reduce plasma HIV to undetectable levels; however, cART cannot completely clear HIV infection. An ongoing question is, "Where is HIV hiding?" A well-studied HIV reservoir is "resting" T cells, which can be isolated from blood products and succumb to cART once activated. Less-studied reservoirs are anatomical tissue samples, which have unknown cART penetration, contain a comparably diverse spectrum of potentially HIV-infected immune cells, and are important since <2% of body lymphocytes actually reside in blood. We examined 229 varied autopsy specimens from 20 HIV(+) participants who died while on cART and identified that >50% of tissues were HIV infected. Additionally, we identified considerable pathology in participants' tissues, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. This study substantiates that tissue-associated HIV is present despite cART and can inform future studies into HIV persistence. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Molecular and histological changes in cerebral cortex and lung tissues under the effect of tramadol treatment.

    PubMed

    Awadalla, Eatemad A; Salah-Eldin, Alaa-Eldin

    2016-08-01

    Tramadol abuse is one of the most frequent health problems in Egypt and worldwide. In most cases, tramadol abused by men face a problem with premature ejaculation. Tramadol like other opioids induces a decrease in plasma antioxidant levels, which may reflect a failure of the antioxidant defense mechanism against oxidative damage. The present work aimed to study the possible deleterious effects of oral administration of tramadol on brain and lung tissues in rats. Twenty adult male albino rats were divided into two groups; a control administered with normal saline and tramadol-treated (40mg/kg b.w.) group for 20 successive days. At the end of experimental period, blood was collected and specimens from brains and lungs were taken for histopathological and molecular studies. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities were measured in serum of control and tramadol-treated groups. Brain and lung specimens were histopathological evaluated using light microscopy. The expression levels of apoptotic related genes; Bcl-2, Bax and Caspase-3 were study in brain and lung tissues using RT-PCR analysis. We recorded a significant increase MDA level, while antioxidant enzymes; GSH, SOD and CAT were significantly decreased after tramadol-treatment. The obtained results revealed that tramadol induced a remarkable histomorphological changes in rats' brains (cerebral cortex and hippocampus) and severe histopathological changes in rats' lung when compared to that of control. On molecular level, the expression of the pro-apoptotic Bax and Caspase-3 showed a significant increase whereas the anti-apoptotic Bcl-2 decreased markedly indicating that tramadol is harmful at cellular level and can induce apoptotic changes in brain tissues. Our data confirmed the risk of increased oxidative stress, neuronal and pulmonary damage due to tramadol abuse. Although tramadol is reported to be effective in pain management, its toxicity should be kept in mind. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Accumulation of polybrominated diphenyl ethers in the brain compared with the levels in other tissues among different vertebrates from an e-waste recycling site.

    PubMed

    Zhao, Yaxian; Li, Yuanyuan; Qin, Xiaofei; Lou, Qinqin; Qin, Zhanfen

    2016-11-01

    This study aimed to investigate the accumulation of polybrominated diphenyl ethers (PBDEs) in the brain compared with that in other tissues among different vertebrates. We collected mice, chickens, ducks, frogs, and fish from an e-waste recycling region in Taizhou, China, and measured PBDE concentrations in brain, liver and muscle tissues. The levels of PBDE in the tissues of mice, chickens, ducks, frogs and fish ranged 0.45-206, 0.06-18.8, 1.83-112, 2.75-108, and 0.02-32.0 ng/g wet weight, respectively. Preferential distribution in the liver and muscle relative to the brain was observed for PBDEs in mice, chickens, ducks and frogs. However, a high retention in the brain compared to the liver and muscle was observed in fish. Comparison of the brain/liver concentration (B/L) ratios revealed differences in PBDEs accumulation in the brain among these vertebrates. PBDEs accumulation in the brain was greatest in fish, followed by frogs, while the lowest accumulation occurred in the brains of mammals and birds. The findings apparently coincided with the evolution of the blood-brain barrier (BBB) across vertebrates, i.e. the BBB of fish might be less efficient than those of mammals, birds and amphibian. Low brominated congeners (such as BDE-28, BDE-47 and BDE-99) were predominant in the brains of investigated vertebrates, whereas BDE-209 was most abundant in liver and muscle tissues of mice, chickens and ducks. Significant differences in B/L ratios among PBDE congeners were found in both mice and chickens (p < 0.05). Particularly in mice, the B/L ratios of PBDE congeners presented a declining trend with increased bromine number. Our findings suggested that low brominated congeners might have a higher capacity to penetrate the BBB and accumulate in the brain, whereas high brominated congeners such as BDE-209 might have less potency to pass through the barrier. Further experimental studies are needed to confirm our findings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge

    USGS Publications Warehouse

    Palmisano, Aldo N.; Winton, J.R.; Dickhoff, Walton W.

    2000-01-01

    In studying the whole-body response of chinook salmon (Oncorhynchus tshawytscha) to various stressors, we found that 5-hour exposure to elevated temperature (mean 21.6??C; + 10.6??C over ambient) induced a marked increase in Hsp90 messenger RNA accumulation in heart, brain, gill, muscle, liver, kidney, and tail fin tissues. The most vital tissues (heart, brain, gill, and muscle) showed the greatest Hsp90-mRNA response, with heart tissue increasing approximately 35-fold, Heat shock induced no increase in plasma cortisol. In contrast, a standard handling challenge induced high plasma cortisol levels, but no elevation in Hsp90 mRNA in any tissue, clearly separating the physiological and cellular stress responses. We saw no increase either in tissue Hsp90 mRNA levels or in plasma cortisol concentrations after exposing the fish to seawater overnight.

  6. Optical imaging characterizing brain response to thermal insult in injured rodent

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shaul, Oren; Meitav, Omri; Pinhasi, Gadi A.

    2018-02-01

    We used spatially modulated optical imaging system to assess the effect of temperature elevation on intact brain tissue in a mouse heatstress model. Heatstress or heatstroke is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological and hematological changes. During experiments, brain temperature was measured concurrently with a thermal camera while core body temperature was monitored with rectal thermocouple probe. Changes in a battery of macroscopic brain physiological parameters, such as hemoglobin oxygen saturation level, cerebral water content, as well as intrinsic tissue optical properties were monitored during temperature elevation. These concurrent changes reflect the pathophysiology of the brain during heatstress and demonstrate successful monitoring of thermoregulation mechanisms. In addition, the variation of tissue refractive index was calculated showing a monotonous decrease with increasing wavelength. We found increased temperature to greatly affect both the scattering properties and refractive index which represent cellular and subcellular swelling indicative of neuronal damage. The overall trends detected in brain tissue parameters were consistent with previous observations using conventional medical devices and optical modalities.

  7. Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.

    PubMed

    Özevren, Hüseyin; İrtegün, Sevgi; Deveci, Engin; Aşır, Fırat; Pektanç, Gülsüm; Deveci, Şenay

    2017-10-01

    Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum ( G. lucidum ) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum , trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.

  8. Anesthetic Sevoflurane Causes Neurotoxicity Differently in Neonatal Naïve and Alzheimer's Disease Transgenic Mice

    PubMed Central

    Lu, Yan; Wu, Xu; Dong, Yuanlin; Xu, Zhipeng; Zhang, Yiying; Xie, Zhongcong

    2010-01-01

    Background Recent studies have suggested that children having surgery under anesthesia could be at an increased risk for the development of learning disabilities, but whether anesthetics contribute to this learning disability is unclear. We therefore set out to assess effects of sevoflurane, the most commonly used inhalation anesthetic, on caspase activation, apoptosis, β-amyloid protein levels, and neuroinflammation in brain tissues of neonatal naïve and Alzheimer's disease (AD) transgenic mice. Methods Six-day-old naïve and AD transgenic [B6.Cg-Tg(amyloid precursor protein swe, PSEN1dE9)85Dbo/J] mice were treated with sevoflurane. The mice were euthanized at the end of the anesthesia and brain tissues were harvested, and were then subjected to Western blot, immunocytochemistry, ELISA and real-time polymerase chain reaction. Results Here we show for the first time that sevoflurane anesthesia induced caspase activation and apoptosis, altered amyloid precursor protein processing, and increased β-amyloid protein levels in the brain tissues of the neonatal mice. Furthermore, the sevoflurane anesthesia led to a greater degree of neurotoxicity in the brain tissues of the AD transgenic mice as compared to the naïve mice, and increased tumor necrosis factor-α levels only in the brain tissues of the AD transgenic mice. Finally, inositol 1,4,5-trisphosphate receptor antagonist 2-APB attenuated the sevoflurane-induced caspase-3 activation and β-amyloid protein accumulation in vivo. Conclusion These results suggest that sevoflurane may induce the neurotoxicity in neonatal mice. AD transgenic mice could be more venerable to such neurotoxicity. These findings should promote more studies to determine the potential neurotoxicity of anesthesia in animals and humans, especially in children. PMID:20460993

  9. Protein analysis through Western blot of cells excised individually from human brain and muscle tissue

    PubMed Central

    Koob, A.O.; Bruns, L.; Prassler, C.; Masliah, E.; Klopstock, T.; Bender, A.

    2016-01-01

    Comparing protein levels from single cells in tissue has not been achieved through Western blot. Laser capture microdissection allows for the ability to excise single cells from sectioned tissue and compile an aggregate of cells in lysis buffer. In this study we analyzed proteins from cells excised individually from brain and muscle tissue through Western blot. After we excised individual neurons from the substantia nigra of the brain, the accumulated surface area of the individual cells was 120,000, 24,000, 360,000, 480,000, 600,000 μm2. We used an optimized Western blot protocol to probe for tyrosine hydroxylase in this cell pool. We also took 360,000 μm2 of astrocytes (1700 cells) and analyzed the specificity of the method. In muscle we were able to analyze the proteins of the five complexes of the electron transport chain through Western blot from 200 human cells. With this method, we demonstrate the ability to compare cell-specific protein levels in the brain and muscle and describe for the first time how to visualize proteins through Western blot from cells captured individually. PMID:22402104

  10. Protein analysis through Western blot of cells excised individually from human brain and muscle tissue.

    PubMed

    Koob, A O; Bruns, L; Prassler, C; Masliah, E; Klopstock, T; Bender, A

    2012-06-15

    Comparing protein levels from single cells in tissue has not been achieved through Western blot. Laser capture microdissection allows for the ability to excise single cells from sectioned tissue and compile an aggregate of cells in lysis buffer. In this study we analyzed proteins from cells excised individually from brain and muscle tissue through Western blot. After we excised individual neurons from the substantia nigra of the brain, the accumulated surface area of the individual cells was 120,000, 24,000, 360,000, 480,000, 600,000 μm2. We used an optimized Western blot protocol to probe for tyrosine hydroxylase in this cell pool. We also took 360,000 μm2 of astrocytes (1700 cells) and analyzed the specificity of the method. In muscle we were able to analyze the proteins of the five complexes of the electron transport chain through Western blot from 200 human cells. With this method, we demonstrate the ability to compare cell-specific protein levels in the brain and muscle and describe for the first time how to visualize proteins through Western blot from cells captured individually. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Neuroprotective effects of Quercetin on radiation-induced brain injury in rats.

    PubMed

    Kale, Aydemir; Piskin, Özcan; Bas, Yilmaz; Aydin, Bengü Gülhan; Can, Murat; Elmas, Özlem; Büyükuysal, Çagatay

    2018-04-24

    Extensive research has been focused on radiation-induced brain injury. Animal and human studies have shown that flavonoids have remarkable toxicological profiles. This study aims to investigate the neuroprotective effects of quercetin in an experimental radiation-induced brain injury. A total of 32 adult male Wistar-Albino rats were randomly divided into four groups (control, quercetin, radiation, and radiation+quercetin groups, with eight rats in each group). Doses (50 mg/kg) of quercetin were administered to the animals in the quercetin and radiation+quercetin groups; radiation and radiation+quercetin groups were exposed to a dose of 20 Gy to the cranium region. Tissue samples, and biochemical levels of tissue injury markers in the four groups were compared. In all measured parameters of oxidative stress, administration of quercetin significantly demonstrated favorable effects. Both plasma and tissue levels of malondialdehyde and total antioxidant status significantly changed in favor of antioxidant activity. Histopathological evaluation of the tissues also demonstrated a significant decrease in cellular degeneration and infiltration parameters after quercetin administration. Quercetin demonstrated significant neuroprotection after radiation-induced brain injury. Further studies of neurological outcomes under different experimental settings are required in order to achieve conclusive results.

  12. Effect of Carotenoid Supplemented Formula on Carotenoid Bioaccumulation in Tissues of Infant Rhesus Macaques: A Pilot Study Focused on Lutein

    PubMed Central

    Jeon, Sookyoung; Neuringer, Martha; Johnson, Emily E.; Kuchan, Matthew J.; Pereira, Suzette L.; Johnson, Elizabeth J.; Erdman, John W.

    2017-01-01

    Lutein is the predominant carotenoid in the developing primate brain and retina, and may have important functional roles. However, its bioaccumulation pattern during early development is not understood. In this pilot study, we investigated whether carotenoid supplementation of infant formula enhanced lutein tissue deposition in infant rhesus macaques. Monkeys were initially breastfed; from 1 to 3 months of age they were fed either a formula supplemented with lutein, zeaxanthin, β-carotene and lycopene, or a control formula with low levels of these carotenoids, for 4 months (n = 2/group). All samples were analyzed by high pressure liquid chromatography (HPLC). Final serum lutein in the supplemented group was 5 times higher than in the unsupplemented group. All brain regions examined showed a selective increase in lutein deposition in the supplemented infants. Lutein differentially accumulated across brain regions, with highest amounts in occipital cortex in both groups. β-carotene accumulated, but zeaxanthin and lycopene were undetectable in any brain region. Supplemented infants had higher lutein concentrations in peripheral retina but not in macular retina. Among adipose sites, abdominal subcutaneous adipose tissue exhibited the highest lutein level and was 3-fold higher in the supplemented infants. The supplemented formula enhanced carotenoid deposition in several other tissues. In rhesus infants, increased intake of carotenoids from formula enhanced their deposition in serum and numerous tissues and selectively increased lutein in multiple brain regions. PMID:28075370

  13. HZE particle radiation induces tissue-specific and p53-dependent mutagenesis in transgenic animals

    NASA Technical Reports Server (NTRS)

    Chang, P. Y.; Kanazawa, N.; Lutze-Mann, L.; Winegar, R.

    2001-01-01

    Transgenic animals, with the integrated target gene, provide a unique approach for measuring and characterizing mutations in any tissue of the animal. We are using the plasmid-based lacZ transgenic mice with different p53 genetic background to examine radiation-induced genetic damage resulting from exposure to heavy particle radiation. We measured lacZ mutation frequencies (MF) in the brain and spleen tissues at various times after exposing animals to an acute dose of 1 Gy of 1GeV/amu iron particles. MF in the spleen of p53+/+ animals increased up to 2.6-fold above spontaneous levels at 8 weeks post irradiation. In contrast, brain MF from the same animals increased 1.7-fold above controls in the same period. In the p53-/- animals, brain MF increased to 2.2-fold above spontaneous levels at 1 week after treatment, but returned to control levels thereafter. Radiation also induced alterations in the spectrum of mutants in both tissues, accompanied by changes in the frequency of mutants with deletions extending past the transgene into mouse genomic DNA. Our results indicate that the accumulation of transgene MF after radiation exposure is dependant on the tissue examined as well as the p53 genetic background of the animals.

  14. Age-related differences in GABA levels are driven by bulk tissue changes.

    PubMed

    Maes, Celine; Hermans, Lize; Pauwels, Lisa; Chalavi, Sima; Leunissen, Inge; Levin, Oron; Cuypers, Koen; Peeters, Ronald; Sunaert, Stefan; Mantini, Dante; Puts, Nicolaas A J; Edden, Richard A E; Swinnen, Stephan P

    2018-05-02

    Levels of GABA, the main inhibitory neurotransmitter in the brain, can be regionally quantified using magnetic resonance spectroscopy (MRS). Although GABA is crucial for efficient neuronal functioning, little is known about age-related differences in GABA levels and their relationship with age-related changes in brain structure. Here, we investigated the effect of age on GABA levels within the left sensorimotor cortex and the occipital cortex in a sample of 85 young and 85 older adults using the MEGA-PRESS sequence. Because the distribution of GABA varies across different brain tissues, various correction methods are available to account for this variation. Considering that these correction methods are highly dependent on the tissue composition of the voxel of interest, we examined differences in voxel composition between age groups and the impact of these various correction methods on the identification of age-related differences in GABA levels. Results indicated that, within both voxels of interest, older (as compared to young adults) exhibited smaller gray matter fraction accompanied by larger fraction of cerebrospinal fluid. Whereas uncorrected GABA levels were significantly lower in older as compared to young adults, this age effect was absent when GABA levels were corrected for voxel composition. These results suggest that age-related differences in GABA levels are at least partly driven by the age-related gray matter loss. However, as alterations in GABA levels might be region-specific, further research should clarify to what extent gray matter changes may account for age-related differences in GABA levels within other brain regions. © 2018 Wiley Periodicals, Inc.

  15. Leukemia inhibitory factor in the neuroimmune communication pathways in allergic asthma.

    PubMed

    Lin, Min-Juan; Lao, Xue-Jun; Liu, Sheng-Ming; Xu, Zhen-Hua; Zou, Wei-Feng

    2014-03-20

    In the pathogenesis of asthma, central sensitization is suggested to be an important neural mechanism, and neurotrophins and cytokines are likely to be the major mediators in the neuroimmune communication pathways of asthma. However, their impact on the central nervous system in allergic asthma remains unclear. We hypothesize that central neurogenic inflammation develops in the pathogenesis of allergic asthma, and nerve growth factor (NGF) and leukemia inhibitory factor (LIF) are important mediators in its development. An asthma model of rats was established by sensitization and challenged with ovalbumin (OVA). For further confirmation of the role of LIF in neurogenic inflammation, a subgroup was pretreated with intraperitoneally (i.p.) LIF antibody before OVA challenge. The levels of LIF and NGF were measured with reverse transcription and polymerase chain reaction (RT-PCR), in situ hybridization (ISH) and immunohistochemistry stain in lung tissue, airway-specific dorsal root ganglia (DRG, C7-T5) and brain stem of asthmatic rats, anti-LIF pretreated rats and controls. A significantly increased number of LIF- and NGF-immunoreactive cells were detected in lung tissue, DRG and the brain stem of asthmatic rats. In the asthma group a significantly increase level of mRNA encoding LIF and NGF in lung tissue was detected, but not in DRG and the brain stem. Pretreatment with LIF antibody decreased the level of LIF and NGF in all tissues. LIF is an important mediator in the crosstalk between nerve and immune systems. Our study demonstrate that the increased level of LIF and NGF in DRG and brain stem may be not based on result from de novo synthesis, but rather on result from retrograde nerve transport or passage across the blood-brain-barrier. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Protective effect of chlorogenic acid on the focal cerebral ischemia reperfusion rat models.

    PubMed

    Miao, Mingsan; Cao, Lihua; Li, Ruiqi; Fang, Xiaoyan; Miao, Yanyan

    2017-05-01

    The aim of the study was to investigate the protective characteristic of chlorogenic acid, a natural glucosyl xanthone found in Lonicera Japonica on the cerebral ischemia reperfusion injury and the underlying mechanism. Focal cerebral ischemia reperfusion model was built by blocking the left middle cerebral artery in rats by using the suture-occluded method. Before operation, the corresponding drugs were given for each group once a day for 7 days. After 1 h of final administration, the model was built, after operation, reperfusion was conducted for 22 h, Before the reperfusion 10 min tail vein injection of large, medium and small dose of chlorogenic acid and then mortality was calculated, and Neurological deficit score (NDS) was conducted, and serum was collected to measure the NSE level; a 2 mm thick brain slice located at the intersection of optic nerves was collected for TTC staining, and the percentage of cerebral infarction area was calculated; brain homogenate was collected to measure the ICAM-1, VCAM-1, EPO and HIF-1α levels in brain tissue of cerebral ischemia reperfusion rat models; NGF was detected using immunohistochemical method; the morphological changes in brain tissue was observed with HE staining. All focal cerebral ischemia reperfusion rat models were duplicated successfully. Every chlorogenic acid group with different dosage can significantly reduce the mortality, NDS and cerebral infarction area of rats, and significantly increase the EPO, HIF-1α and NGF levels in brain tissue; significantly improve the pathological lesions of hippocampus and cortex in brain tissue. The results showed that chlorogenic acid could protect the focal cerebral ischemia reperfusion injury rat models by adjusting the inflammatory factor, hypoxia factor and nerve growth factor.

  17. FTIR Imaging of Brain Tissue Reveals Crystalline Creatine Deposits Are an ex Vivo Marker of Localized Ischemia during Murine Cerebral Malaria: General Implications for Disease Neurochemistry

    PubMed Central

    2012-01-01

    Phosphocreatine is a major cellular source of high energy phosphates, which is crucial to maintain cell viability under conditions of impaired metabolic states, such as decreased oxygen and energy availability (i.e., ischemia). Many methods exist for the bulk analysis of phosphocreatine and its dephosphorylated product creatine; however, no method exists to image the distribution of creatine or phosphocreatine at the cellular level. In this study, Fourier transform infrared (FTIR) spectroscopic imaging has revealed the ex vivo development of creatine microdeposits in situ in the brain region most affected by the disease, the cerebellum of cerebral malaria (CM) diseased mice; however, such deposits were also observed at significantly lower levels in the brains of control mice and mice with severe malaria. In addition, the number of deposits was observed to increase in a time-dependent manner during dehydration post tissue cutting. This challenges the hypotheses in recent reports of FTIR spectroscopic imaging where creatine microdeposits found in situ within thin sections from epileptic, Alzheimer’s (AD), and amlyoid lateral sclerosis (ALS) diseased brains were proposed to be disease specific markers and/or postulated to contribute to the brain pathogenesis. As such, a detailed investigation was undertaken, which has established that the creatine microdeposits exist as the highly soluble HCl salt or zwitterion and are an ex-vivo tissue processing artifact and, hence, have no effect on disease pathogenesis. They occur as a result of creatine crystallization during dehydration (i.e., air-drying) of thin sections of brain tissue. As ischemia and decreased aerobic (oxidative metabolism) are common to many brain disorders, regions of elevated creatine-to-phosphocreatine ratio are likely to promote crystal formation during tissue dehydration (due to the lower water solubility of creatine relative to phosphocreatine). The results of this study have demonstrated that although the deposits do not occur in vivo, and do not directly play any role in disease pathogenesis, increased levels of creatine deposits within air-dried tissue sections serve as a highly valuable marker for the identification of tissue regions with an altered metabolic status. In this study, the location of crystalline creatine deposits were used to identify whether an altered metabolic state exists within the molecular and granular layers of the cerebellum during CM, which complements the recent discovery of decreased oxygen availability in the brain during this disease. PMID:23259037

  18. Amelioration of ischemic brain damage by peritoneal dialysis

    PubMed Central

    Godino, María del Carmen; Romera, Victor G.; Sánchez-Tomero, José Antonio; Pacheco, Jesus; Canals, Santiago; Lerma, Juan; Vivancos, José; Moro, María Angeles; Torres, Magdalena; Lizasoain, Ignacio; Sánchez-Prieto, José

    2013-01-01

    Ischemic stroke is a devastating condition, for which there is still no effective therapy. Acute ischemic stroke is associated with high concentrations of glutamate in the blood and interstitial brain fluid. The inability of the tissue to retain glutamate within the cells of the brain ultimately provokes neuronal death. Increased concentrations of interstitial glutamate exert further excitotoxic effects on healthy tissue surrounding the infarct zone. We developed a strategy based on peritoneal dialysis to reduce blood glutamate levels, thereby accelerating brain-to-blood glutamate clearance. In a rat model of stroke, this simple procedure reduced the transient increase in glutamate, consequently decreasing the size of the infarct area. Functional magnetic resonance imaging demonstrated that the rescued brain tissue remained functional. Moreover, in patients with kidney failure, peritoneal dialysis significantly decreased glutamate concentrations. Our results suggest that peritoneal dialysis may represent a simple and effective intervention for human stroke patients. PMID:23999426

  19. Oral uridine-5'-monophosphate (UMP) increases brain CDP-choline levels in gerbils.

    PubMed

    Cansev, Mehmet; Watkins, Carol J; van der Beek, Eline M; Wurtman, Richard J

    2005-10-05

    We examined the biochemical pathways whereby oral uridine-5'-monophosphate (UMP) increases membrane phosphatide synthesis in brains of gerbils. We previously showed that supplementing PC12 cells with uridine caused concentration-related increases in CDP-choline levels, and that this effect was mediated by elevations in intracellular uridine triphosphate (UTP) and cytidine triphosphate (CTP). In the present study, adult gerbils received UMP (1 mmol/kg), a constituent of human breast milk and infant formulas, by gavage, and plasma samples and brains were collected for assay between 5 min and 8 h thereafter. Thirty minutes after gavage, plasma uridine levels were increased from 6.6 +/- 0.58 to 32.7 +/- 1.85 microM (P < 0.001), and brain uridine from 22.6 +/- 2.9 to 89.1 +/- 8.82 pmol/mg tissue (P < 0.001). UMP also significantly increased plasma and brain cytidine levels; however, both basally and following UMP, these levels were much lower than those of uridine. Brain UTP, CTP, and CDP-choline were all elevated 15 min after UMP (from 254 +/- 31.9 to 417 +/- 50.2, [P < 0.05]; 56.8 +/- 1.8 to 71.7 +/- 1.8, [P < 0.001]; and 11.3 +/- 0.5 to 16.4 +/- 1, [P < 0.001] pmol/mg tissue, respectively), returning to basal levels after 20 and 30 min. The smallest UMP dose that significantly increased brain CDP-choline was 0.05 mmol/kg. These results show that oral UMP, a uridine source, enhances the synthesis of CDP-choline, the immediate precursor of PC, in gerbil brain.

  20. [Effect of Guanmaitong Tablet on ERK and p38 Protein of TLR2 Pathway Expression in Cerebral Ischemia/Reperfusion Rats: an Experimental Study].

    PubMed

    Zhang, Cui-xiang; Liu, Jian-xun; Li, Dan; Li, Lei; Fu, Jian-hua; Hou, Jin-cai; Du, Xue-mei; Zhang, Fa-chang

    2015-06-01

    To explore the inflammatory cascade mechanism through Toll like receptor 2 (TLR2) pathway after cerebral ischemia/reperfusion, and to study molecular mechanisms of Guanmaitong (GMT) Tablet for protecting brain damage. We used bolt-line method to block/release the middle cerebral artery, causing cerebral ischemia/reperfusion (I/R) injury model. GMT Tablet was given by gastrogavage. Rats were then divided into the high dose GMT group (1200 mg/kg), the middle dose GMT group (600 mg/kg), the low dose GMT group (300 mg/kg), the positive control group (Tanakan, 20 mg/kg). Their right brain tissues were fixed in 10% neutral formalin. TLR2 expressions were detected by immunofluorescence staining. The total protein was extracted from right brain tissues by ultrasonica- tion. Expression levels of extracellular regulated protein kinases (ERK), phospho-extracellular regulated protein kinases (p-ERK), p38-mitogen activated protein kinases (p-ERK), phospho-p38-mitogen activated protein kinases [p-p38-MAPKs(p-p38)] were assessed by Western blot. Abdominal aortic blood was withdrawn. IL-6 and IL-1β levels were detected by ELISA in brain tissues and serum. Compared with the sham-oepration group, expression levels of TLR2, ERK, p-ERK, p38, p-p38 protein were up-regulated (P < 0.05, P < 0.01), and contents of IL-6 and IL-1β in brain tissues and serum were increased in the model group (P < 0.01). Expression levels of TLR2, ERK, p-ERK, p38, p-p38 were down-regulated (P < 0.05, P < 0.01), and contents of IL-6 and IL-1β were reduced in brain tissues and serum in middle and high dose GMT groups (P < 0.05, P < 0.01). TLR2 pathway was involved in cerebral I/R injury. GMT protected neurons by down-regulating protein expressions of TLR2, ERK, p-ERK, p38, p-p38 and contents of IL-1β and IL-6.

  1. Effects of ebselen on ischemia/reperfusion injury in rat brain.

    PubMed

    Aras, M; Altaş, M; Meydan, S; Nacar, E; Karcıoğlu, M; Ulutaş, K T; Serarslan, Y

    2014-10-01

    Interruption of blood flow may result in considerable tissue damage via ischemia/reperfusion (I/R) injury-induced oxidative stress in brain tissues. The aim of the present study was to investigate the effects of Ebselen treatment in short-term global brain I/R injury in rats. The study was carried out on 27 Wistar-albino rats, divided into three groups including Sham group (n = 11), I/R group (n = 8) and I/R+Ebselen group (n = 8). Malondialdehyde (MDA) levels were significantly increased in I/R group in comparison with the Sham group and I/R+Ebselen group (p < 0.001 and p < 0.01). Superoxide dismutase (SOD) activity was significantly lower in I/R group in comparison to both Sham (p < 0.001) and I/R+Ebselen (p < 0.01) groups. Similarly, SOD activity was decreased in I/R+Ebselen group when compared with Sham group (p < 0.001). Sham and I/R groups were similar in terms of nitric oxide (NO) levels. In contrast, the NO level was lower in I/R+Ebselen group when compared with Sham (p < 0.001) and I/R (p < 0.01) groups. There was no significant difference among the groups in terms of glutathione peroxidase and catalase activities. In histopathological examination, the brain tissues of rats that received Ebselen showed morphological improvement. Ebselen has neuron-protective effects due to its antioxidant properties as shown by the decrease in MDA overproduction, increase in SOD activity and the histological improvement after administration of Ebselen to I/R in brain tissue.

  2. Gene expression changes with age in skin, adipose tissue, blood and brain.

    PubMed

    Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D

    2013-07-26

    Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.

  3. Tissue-like Neural Probes for Understanding and Modulating the Brain.

    PubMed

    Hong, Guosong; Viveros, Robert D; Zwang, Theodore J; Yang, Xiao; Lieber, Charles M

    2018-03-19

    Electrophysiology tools have contributed substantially to understanding brain function, yet the capabilities of conventional electrophysiology probes have remained limited in key ways because of large structural and mechanical mismatches with respect to neural tissue. In this Perspective, we discuss how the general goal of probe design in biochemistry, that the probe or label have a minimal impact on the properties and function of the system being studied, can be realized by minimizing structural, mechanical, and topological differences between neural probes and brain tissue, thus leading to a new paradigm of tissue-like mesh electronics. The unique properties and capabilities of the tissue-like mesh electronics as well as future opportunities are summarized. First, we discuss the design of an ultraflexible and open mesh structure of electronics that is tissue-like and can be delivered in the brain via minimally invasive syringe injection like molecular and macromolecular pharmaceuticals. Second, we describe the unprecedented tissue healing without chronic immune response that leads to seamless three-dimensional integration with a natural distribution of neurons and other key cells through these tissue-like probes. These unique characteristics lead to unmatched stable long-term, multiplexed mapping and modulation of neural circuits at the single-neuron level on a year time scale. Last, we offer insights on several exciting future directions for the tissue-like electronics paradigm that capitalize on their unique properties to explore biochemical interactions and signaling in a "natural" brain environment.

  4. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  5. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.

    PubMed

    Chen, Hao; Dou, Qi; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann

    2018-04-15

    Segmentation of key brain tissues from 3D medical images is of great significance for brain disease diagnosis, progression assessment and monitoring of neurologic conditions. While manual segmentation is time-consuming, laborious, and subjective, automated segmentation is quite challenging due to the complicated anatomical environment of brain and the large variations of brain tissues. We propose a novel voxelwise residual network (VoxResNet) with a set of effective training schemes to cope with this challenging problem. The main merit of residual learning is that it can alleviate the degradation problem when training a deep network so that the performance gains achieved by increasing the network depth can be fully leveraged. With this technique, our VoxResNet is built with 25 layers, and hence can generate more representative features to deal with the large variations of brain tissues than its rivals using hand-crafted features or shallower networks. In order to effectively train such a deep network with limited training data for brain segmentation, we seamlessly integrate multi-modality and multi-level contextual information into our network, so that the complementary information of different modalities can be harnessed and features of different scales can be exploited. Furthermore, an auto-context version of the VoxResNet is proposed by combining the low-level image appearance features, implicit shape information, and high-level context together for further improving the segmentation performance. Extensive experiments on the well-known benchmark (i.e., MRBrainS) of brain segmentation from 3D magnetic resonance (MR) images corroborated the efficacy of the proposed VoxResNet. Our method achieved the first place in the challenge out of 37 competitors including several state-of-the-art brain segmentation methods. Our method is inherently general and can be readily applied as a powerful tool to many brain-related studies, where accurate segmentation of brain structures is critical. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Mercury levels, reproduction, and hematology in western grebes from three California Lakes, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elbert, R.A.; Anderson, D.W.

    1998-02-01

    Twenty-three healthy adult western and Clark`s grebes (Aechmorphorus occidentalis and Aechmorphorus clarkii) were collected at three study sites in California, USA, in 1992: Clear Lake, Lake County; Eagle Lake, Lassen County; and Tule Lake, Siskiyou County. Liver, kidney, breast muscle, and brain were analyzed for total mercury (Hg) concentration (ppm wet weight), and blood was analyzed for various blood parameters. Clear Lake birds had greater Hg concentrations in kidney, breast muscle, and brain than birds from the other two lakes whereas liver concentrations were not statistically different. Average concentrations for Clear Lake birds were 2.74 ppm for liver, 2.06 ppmmore » for kidney, 1.06 ppm for breast muscle, and 0.28 ppm for brain. The tissue levels of kidney, breast muscle, and brain at the other two study sites were one half the levels found at Clear Lake. These mean tissue levels were near, but below, those known to cause adverse effects. When data from all sites were merged, kidney, breast muscle, and brain concentrations are positively correlated to each other. Liver concentrations were not correlated to any other value. Brain Hg concentrations were also negatively correlated to blood potassium and blood phosphorus levels. Kidney Hg levels were positively correlated to percent blood heterophils and negatively correlated to percent eosinophils, suggesting that mercury levels might be affecting immune function. These biomarkers could not be related to any obvious ecological effects.« less

  7. Prohormone convertase 7 is necessary for the normal processing of cholecystokinin in mouse brain.

    PubMed

    Anyetei-Anum, Emmanuel N; Blum, Alissa; Seidah, Nabil G; Beinfeld, Margery C

    2017-01-22

    Endoproteases in the secretory pathway process pro-cholecystokinin (CCK) into the biologically active forms found in the tissues that express CCK mRNA. Thus far, the endoproteases involved in CCK processing include cathepsin L and the prohormone convertases (PC) 1, 2, and 5. This study finds that PC7 is also critical for normal production of CCK in specific areas of the brain. Loss of PC7 results in decreased levels of CCK in more brain regions than any other endoprotease studied to date. Substantial decreases in brain levels of CCK are found in the prefrontal, frontal, parietal-insular-pyriform, and temporal cortex, caudate-putamen, basal forebrain, thalamus, hippocampus, septum, and medulla of PC7 knock-out (KO) mice. A tissue-specific sexual dimorphism of PC7 activity was also identified. This is the first report that loss of PC7 alters levels of a neuropeptide in the brain. This loss of PC7 and CCK may independently contribute to the decrease in Brain Derived Neurotrophic Factor production and be partially responsible for the learning and memory defects observed in mice that lack PC7. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Proton MRS of the peritumoral brain.

    PubMed

    Chernov, Mikhail F; Kubo, Osami; Hayashi, Motohiro; Izawa, Masahiro; Maruyama, Takashi; Usukura, Masao; Ono, Yuko; Hori, Tomokatsu; Takakura, Kintomo

    2005-02-15

    Long-echo (TR: 2000 ms, TE: 136 ms) proton MRS of the cerebral tissue in the vicinity to intracranial lesion was done in 15 patients, mainly with parenchymal brain tumors. Significant decrease of N-acetylaspartate (NAA) (P<0.001) and more frequent presence of lactate (P<0.01) comparing with distant normal white matter were found in the perilesional brain tissue. The level of NAA in the perilesional brain tissue had negative associations with presence of lactate in the lesion (P<0.05), excess of lactate in the lesion compared to perilesional brain (P<0.01), grade of the perilesional edema (P<0.01) and patient's age (P<0.05). Multivariate analysis disclosed that identification of lactate in the lesion is associated with lower relative NAA content in the perilesional brain tissue, independently on the presence or absence of any other factor, including brain edema (P<0.001). In patients with lobar lesions who had at least one epileptic seizure during course of their disease the relative NAA content in the perilesional brain was significantly lower, comparing with those who were seizure-free (P<0.05). Therefore, lactate diffused from the tumor, or other metabolites secreted by lactate-producing neoplasm, should be considered as important contributors to the neuronal dysfunction in the surrounding brain. Decrease of NAA in the vicinity to intracranial lesions may reflect neuronal alteration responsible for associated epilepsy.

  9. Serrapeptase and nattokinase intervention for relieving Alzheimer's disease pathophysiology in rat model.

    PubMed

    Fadl, N N; Ahmed, H H; Booles, H F; Sayed, A H

    2013-07-01

    Serrapeptase (SP) and nattokinase (NK) are proteolytic enzymes belonging to serine proteases. In this study, we hypothesized that SP and NK could modulate certain factors that are associated with Alzheimer's disease (AD) pathophysiology in the experimental model. Oral administration of aluminium chloride (AlCl3) in a dose of 17 mg/kg body weight (bw) daily for 45 days induced AD-like pathology in male rats with a significant increase in brain acetylcholinesterase (AchE) activity, transforming growth factor β (TGF-β), Fas and interleukin-6 (IL-6) levels. Meanwhile, AlCl3 supplementation produced significant decrease in brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) when compared with control values. Also, AlCl3 administration caused significant decline in the expression levels of disintegrin and metalloproteinase domain 9 (ADAM9) and a disintegrin and metalloproteinase domain 10 (ADAM10) genes in the brain. Histological investigation of brain tissue of rat model of AD showed neuronal degeneration in the hippocampus and focal hyalinosis with cellular as well as a cellular amyloid plaques formation. Oral administration of SP or NK in a rat model of AD daily for 45 days resulted in a significant decrease in brain AchE activity, TGF-β, Fas and IL-6 levels. Also, the treatment with these enzymes produced significant increase in BDNF and IGF-1 levels when compared with the untreated AD-induced rats. Moreover, both SP and NK could markedly increase the expression levels of ADAM9 and ADAM10 genes in the brain tissue of the treated rats. These findings were well confirmed by the histological examination of the brain tissue of the treated rats. The present results support our hypothesis that the oral administration of proteolytitc enzymes, SP and/or NK, would have an effective role in modulating certain factors characterizing AD. Thus, these enzymes may have a therapeutic application in the treatment of AD.

  10. Quantitative measurement of intact alpha-synuclein proteoforms from post-mortem control and Parkinson's disease brain tissue by intact protein mass spectrometry.

    PubMed

    Kellie, John F; Higgs, Richard E; Ryder, John W; Major, Anthony; Beach, Thomas G; Adler, Charles H; Merchant, Kalpana; Knierman, Michael D

    2014-07-23

    A robust top down proteomics method is presented for profiling alpha-synuclein species from autopsied human frontal cortex brain tissue from Parkinson's cases and controls. The method was used to test the hypothesis that pathology associated brain tissue will have a different profile of post-translationally modified alpha-synuclein than the control samples. Validation of the sample processing steps, mass spectrometry based measurements, and data processing steps were performed. The intact protein quantitation method features extraction and integration of m/z data from each charge state of a detected alpha-synuclein species and fitting of the data to a simple linear model which accounts for concentration and charge state variability. The quantitation method was validated with serial dilutions of intact protein standards. Using the method on the human brain samples, several previously unreported modifications in alpha-synuclein were identified. Low levels of phosphorylated alpha synuclein were detected in brain tissue fractions enriched for Lewy body pathology and were marginally significant between PD cases and controls (p = 0.03).

  11. A Nth-order linear algorithm for extracting diffuse correlation spectroscopy blood flow indices in heterogeneous tissues.

    PubMed

    Shang, Yu; Yu, Guoqiang

    2014-09-29

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a N th-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD B ). The purpose of this study is to extend the capability of the N th-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different types of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD B in the brain layer with a step decrement of 10% while maintaining αD B values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order ( N  ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The N th-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.

  12. Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues.

    PubMed

    Oikari, Sanna; Venäläinen, Tuula; Tammi, Markku

    2014-01-03

    In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Expression of APG-2 protein, a member of the heat shock protein 110 family, in developing rat brain.

    PubMed

    Okui, M; Ito, F; Ogita, K; Kuramoto, N; Kudoh, J; Shimizu, N; Ide, T

    2000-01-01

    APG-2 protein is a member of the heat shock protein 110 family, and it is thought to play an important role in the maintenance of neuronal functions under physiological and stress conditions. However, neither the tissue-distribution of APG-2 protein nor developmental change of its expression has been studied at the protein level. Therefore, we generated an antiserum against APG-2 protein and studied expression of this protein in rat brain and other tissues by use of the Western blot method. The results showed a high expression of APG-2 protein in various regions of the central nervous system (cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla pons, and spinal cord) throughout the entire postnatal stage. Similarly, a high level of APG-2 protein was detected in the whole brain of rat embryos and in adult rat tissues such as liver, lung, spleen, and kidney. In contrast, its expression in heart was high at postnatal days 1 and 3, but thereafter drastically decreased to a low level. Furthermore, APG-2 protein was detected in neuronal primary cultures prepared from rat cerebral cortex, and its level did not change notably during neuronal differentiation. These results show that APG-2 protein is constitutively expressed in various tissues and also in neuronal cells throughout the entire embryonic and postnatal period. suggesting that it might play an important role in these tissues under non-stress conditions.

  14. Neural restrictive silencer factor and choline acetyltransferase expression in cerebral tissue of Alzheimer’s Disease patients: A pilot study

    PubMed Central

    González-Castañeda, Rocío E.; Sánchez-González, Víctor J.; Flores-Soto, Mario; Vázquez-Camacho, Gonzalo; Macías-Islas, Miguel A.; Ortiz, Genaro G.

    2013-01-01

    Decreased Choline Acetyltransferase (ChAT) brain level is one of the main biochemical disorders in Alzheimer’s Disease (AD). In rodents, recent data show that the CHAT gene can be regulated by a neural restrictive silencer factor (NRSF). The aim of the present work was to evaluate the gene and protein expression of CHAT and NRSF in frontal, temporal, entorhinal and parietal cortices of AD patient brains. Four brains from patients with AD and four brains from subjects without dementia were studied. Cerebral tissues were obtained and processed by the guanidine isothiocyanate method for RNA extraction. CHAT and NRSF gene and protein expression were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. CHAT gene expression levels were 39% lower in AD patients as compared to the control group (p < 0.05, U test). ChAT protein levels were reduced by 17% (p = 0.02, U test). NRSF gene expression levels were 86% higher in the AD group (p = 0.001, U test) as compared to the control group. In the AD subjects, the NRSF protein levels were 57% higher (p > 0.05, U test) than in the control subjects. These findings suggest for the first time that in the brain of AD patients high NRSF protein levels are related to low CHAT gene expression levels. PMID:23569405

  15. ANTIRABIES ANTIBODY RESPONSE IN MAN TO VACCINE MADE FROM INFECTED SUCKLING-MOUSE BRAINS.

    PubMed

    FUENZALIDA, E; PALACIOS, R; BORGONO, J M

    1964-01-01

    Antirabies vaccines produced from infected brains of adult mammals have always had the potentiality of causing post-vaccinal paralysis or allergic encephalitis in man. Attempts in recent years either to remove the paralytic factor from brain-tissue vaccines or to use as the virus source infected tissue other than nervous tissue (e.g., chick embryos) have usually resulted in a substantial reduction of the specific antirabies potency.The authors' laboratory had previously developed a vaccine made from infected suckling-mouse brains in which the virus was inactivated by ultraviolet irradiation. This vaccine was found highly potent in animal tests and low in organ-specific antigens. Others have found the brains of newborn mammals to be free of the allergic encephalitic factor. The studies reported in this paper show that the antirabies antibody responses to a 14-dose course of this suckling-mouse-brain vaccine in children are at a high level even when the vaccine is used at a 1% tissue concentration. There was no evidence of deleterious reactions to this treatment in 31 children.It is concluded that these results justify a long-term trial of this vaccine for antirabies prophylaxis in man.

  16. Antirabies antibody response in man to vaccine made from infected suckling-mouse brains

    PubMed Central

    Fuenzalida, E.; Palacios, R.; Borgoño, J. M.

    1964-01-01

    Antirabies vaccines produced from infected brains of adult mammals have always had the potentiality of causing post-vaccinal paralysis or allergic encephalitis in man. Attempts in recent years either to remove the paralytic factor from brain-tissue vaccines or to use as the virus source infected tissue other than nervous tissue (e.g., chick embryos) have usually resulted in a substantial reduction of the specific antirabies potency. The authors' laboratory had previously developed a vaccine made from infected suckling-mouse brains in which the virus was inactivated by ultraviolet irradiation. This vaccine was found highly potent in animal tests and low in organ-specific antigens. Others have found the brains of newborn mammals to be free of the allergic encephalitic factor. The studies reported in this paper show that the antirabies antibody responses to a 14-dose course of this suckling-mouse-brain vaccine in children are at a high level even when the vaccine is used at a 1% tissue concentration. There was no evidence of deleterious reactions to this treatment in 31 children. It is concluded that these results justify a long-term trial of this vaccine for antirabies prophylaxis in man. PMID:14163964

  17. [Influence of n-hexane on vascular endothelial active substances in brain tissue in mice].

    PubMed

    Lin, L; Zhang, Z Q; Zhang, C Z

    2017-01-20

    Objective: To investigate the influence of n - hexane on vascular endothelial active substances in brain tissue in mice and its significance. Methods: A total of 48 healthy Kunming mice were randomly divided into high - dose exposure group, middle - dose exposure group, low - dose exposure group, and control group, with 12 mice in each group. All groups except the control group were exposed to n - hexane via static inhalation (0.035 g/L, 0.018 g/L, and 0.009 g/L for the high - , middle - , and low - dose exposure groups, respectively) 4 hours a day for 21 days. the mice in the control groups were not exposed to n - hexane. After the exposure, the lev-els of endothelin - 1 (ET - 1) , nitric oxide (NO) , and angiotensin II (Ang II) in brain tissue were measured in all groups. Results: There were significant differences in the levels of ET - 1, NO, and Ang II between the three ex-posure groups and the control group ( P <0.05). Compared with the control group, the high - and middle - dose expo-sure group had significant increases in the levels of ET - 1 and Ang II and the high - dose exposure group had a sig-nificant reduction in the level of NO ( P <0.05 or P <0.01). Conclusion: n - Hexane can affect the vascular endothe-lial active substances in brain tissue in mice, and the changes and imbalance in vascular endothelial active sub-stances may be one of the reasons for central nervous system impairment caused by n - hexane.

  18. Per- and polyfluoroalkyl substances (PFASs) - New endocrine disruptors in polar bears (Ursus maritimus)?

    PubMed

    Pedersen, Kathrine Eggers; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Styrishave, Bjarne

    2016-11-01

    Per- and polyfluoroalkyl substances (PFASs) are emerging in the Arctic and accumulate in brain tissues of East Greenland (EG) polar bears. In vitro studies have shown that PFASs might possess endocrine disrupting abilities and therefore the present study was conducted to investigate potential PFAS induced alterations in brain steroid concentrations. The concentrations of eleven steroid hormones were determined in eight brain regions from ten EG polar bears. Pregnenolone (PRE), the dominant progestagen, was found in mean concentrations of 5-47ng/g (ww) depending on brain region. PRE showed significantly (p<0.01) higher concentrations in female compared to male bears. Dehydroepiandrosterone (DHEA) found in mean concentrations 0.67-4.58ng/g (ww) was the androgen found in highest concentrations. Among the estrogens estrone (E1) showed mean concentrations of 0.90-2.21ng/g (ww) and was the most abundant. Remaining steroid hormones were generally present in concentrations below 2ng/g (ww). Steroid levels in brain tissue could not be explained by steroid levels in plasma. There was however a trend towards increasing estrogen levels in plasma resulting in increasing levels of androgens in brain tissue. Correlative analyses showed positive associations between PFASs and 17α-hydroxypregnenolone (OH-PRE) (e.g. perflouroalkyl sulfonates (∑PFSA): p<0.01, r=0.39; perfluoroalkyl carboxylates (∑PFCA): p<0.01, r=0.61) and PFCA and testosterone (TS) (∑PFCA: p=0.03, r=0.30) across brain regions. Further when investigating correlative associations in specific brain regions significant positive correlations were found between ∑PFCA and several steroid hormones in the occipital lobe. Correlative positive associations between PFCAs and steroids were especially observed for PRE, progesterone (PRO), OH-PRE, DHEA, androstenedione (AN) and testosterone (TS) (all p≤0.01, r≥0.7). The results from the present study generally indicate that an increase in PFASs concentration seems to concur with an increase in steroid hormones of EG polar bears. It is, however, not possible to determine whether alterations in brain steroid concentrations arise from interference with de novo steroid synthesis or via disruption of peripheral steroidogenic tissues mainly in gonads and feedback mechanisms. Steroids are important for brain plasticity and gender specific behavior as well as postnatal development and sexually dimorph brain function. The present work indicates an urgent need for a better mechanistic understanding of how PFASs may affect the endocrine system of polar bears and potentially other mammal species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. HISTOLOGICAL STUDIES OF THE EFFECTS OF CHRONIC IMPLANTATION OF CERAMIC-BASED MICROELECTRODE ARRAYS AND MICRODIALYSIS PROBES IN RAT PREFRONTAL CORTEX

    PubMed Central

    Hascup, Erin R.; Bjerkén, Sara af; Hascup, Kevin N.; Pomerleau, Francois; Huettl, Peter; Strömberg, Ingrid; Gerhardt, Greg A.

    2010-01-01

    Chronic implantation of neurotransmitter measuring devices is essential for awake, behavioral studies occurring over multiple days. Little is known regarding the effects of long term implantation on surrounding brain parenchyma and the resulting alterations in the functional properties of this tissue. We examined the extent of tissue damage produced by chronic implantation of either ceramic microelectrode arrays (MEAs) or microdialysis probes. Histological studies were carried out on fixed tissues using stains for neurons (cresyl violet), astrocytes (GFAP), microglia (Iba-1), glutamatergic nerve fibers (VGLUT1), and the blood-brain barrier (SMI-71). Nissl staining showed pronounced tissue body loss with microdialysis implants compared to MEAs. The MEAs produced mild gliosis extending 50–100 µm from the tracks, with a significant change in the affected areas starting at 3 days. By contrast, the microdialysis probes produced gliosis extending 200–300 µm from the track, which was significant at 3 and 7 days. Markers for microglia and glutamatergic fibers supported that the MEAs produce minimal damage with significant changes occurring only at 3 and 7 days that return to control levels by one month. SMI-71 staining supported integrity of the blood brain barrier out to 1 week for both the microdialysis probes and the MEAs. This data support that the ceramic MEAs small size and biocompatibility are necessary to accurately measure neurotransmitter levels in the intact brain. The minimal invasiveness of the MEAs reduce tissue loss, allowing for long term (>6 month) electrochemical and electrophysiological monitoring of brain activity. PMID:19577548

  20. Roles of elevated 20‑HETE in the breakdown of blood brain barrier and the severity of brain edema in experimental traumatic brain injury.

    PubMed

    Lu, Liyan; Wang, Mingliang; Yuan, Fang; Wei, Xiaoer; Li, Wenbin

    2018-05-01

    Breakdown of the blood brain barrier (BBB) is a secondary injury following traumatic brain injury (TBI) and can lead to the development of brain edema. However, the factors that contribute to the disruption of the BBB and increase the severity of brain edema in TBI remain to be elucidated. 20‑hydroxyeicosatetraenoic acid (20‑HETE) is a metabolite of arachidonic acid. The inhibition of 20‑HETEsynthesis by HET0016 has been suggested as a strategy to decrease brain edema. The present study aimed to investigate whether the elevated production of 20‑HETE in cerebral tissue may contribute to BBB breakdown and increase the severity of brain edema in rats with TBI. BBB permeability was quantified using dynamic contrast‑enhanced magnetic resonance imaging and brain edema was measured according to brain water content. Superoxide production in injured tissue was also assessed. Liquid chromatography‑mass spectrometry was used to evaluate 20‑HETE production in injured tissue. Western blot analysis was used to assess the expression of occludin, zonula occludens (ZO)‑1, matrix metalloproteinase (MMP)‑9, and proteins of the c‑Jun N‑terminal kinase (JNK) pathway. A total of 3, 24 and 72 h following the induction of TBI, 20‑HETE levels, BBB permeability and brain edema were identified to be increased, accompanied by an increase in superoxide production. Conversely, superoxide dismutase levels, in addition to the total antioxidative capability were decreased. In addition, the expression of MMP‑9 and proteins of the JNK pathway was upregulated, whereas the expression of occludin and ZO‑1 was observed to be suppressed. These results suggested that 20‑HETE may aggravate BBB disruption following TBI, via enhancing the expression of MMP‑9 and tight junction proteins. Furthermore, oxidative stress and the JNK signaling pathway may be involved in BBB dysregulation. In conclusion, the results of the present demonstrated that the production of 20‑HETE was increased in cerebral tissue following traumatic injury, thus suggesting that it may contribute to the compromise of BBB integrity and the development of brain edema.

  1. Tissue mechanics regulate brain development, homeostasis and disease

    PubMed Central

    Barnes, J. Matthew

    2017-01-01

    ABSTRACT All cells sense and integrate mechanical and biochemical cues from their environment to orchestrate organismal development and maintain tissue homeostasis. Mechanotransduction is the evolutionarily conserved process whereby mechanical force is translated into biochemical signals that can influence cell differentiation, survival, proliferation and migration to change tissue behavior. Not surprisingly, disease develops if these mechanical cues are abnormal or are misinterpreted by the cells – for example, when interstitial pressure or compression force aberrantly increases, or the extracellular matrix (ECM) abnormally stiffens. Disease might also develop if the ability of cells to regulate their contractility becomes corrupted. Consistently, disease states, such as cardiovascular disease, fibrosis and cancer, are characterized by dramatic changes in cell and tissue mechanics, and dysregulation of forces at the cell and tissue level can activate mechanosignaling to compromise tissue integrity and function, and promote disease progression. In this Commentary, we discuss the impact of cell and tissue mechanics on tissue homeostasis and disease, focusing on their role in brain development, homeostasis and neural degeneration, as well as in brain cancer. PMID:28043968

  2. The effect of nimodipine on cerebral oxygenation in patients with poor-grade subarachnoid hemorrhage.

    PubMed

    Stiefel, Michael F; Heuer, Gregory G; Abrahams, John M; Bloom, Stephanie; Smith, Michelle J; Maloney-Wilensky, Eileen; Grady, M Sean; LeRoux, Peter D

    2004-10-01

    Nimodipine has been shown to improve neurological outcome after subarachnoid hemorrhage (SAH); the mechanism of this improvement, however, is uncertain. In addition, adverse systemic effects such as hypotension have been described. The authors investigated the effect of nimodipine on brain tissue PO2. Patients in whom Hunt and Hess Grade IV or V SAH had occurred who underwent aneurysm occlusion and had stable blood pressure were prospectively evaluated using continuous brain tissue PO2 monitoring. Nimodipine (60 mg) was delivered through a nasogastric or Dobhoff tube every 4 hours. Data were obtained from 11 patients and measurements of brain tissue PO2, intracranial pressure (ICP), mean arterial blood pressure (MABP), and cerebral perfusion pressure (CPP) were recorded every 15 minutes. Nimodipine resulted in a significant reduction in brain tissue PO2 in seven (64%) of 11 patients. The baseline PO2 before nimodipine administration was 38.4+/-10.9 mm Hg. The baseline MABP and CPP were 90+/-20 and 84+/-19 mm Hg, respectively. The greatest reduction in brain tissue PO2 occurred 15 minutes after administration, when the mean pressure was 26.9+/-7.7 mm Hg (p < 0.05). The PO2 remained suppressed at 30 minutes (27.5+/-7.7 mm Hg [p < 0.05]) and at 60 minutes (29.7+/-11.1 mm Hg [p < 0.05]) after nimodipine administration but returned to baseline levels 2 hours later. In the seven patients in whom brain tissue PO2 decreased, other physiological variables such as arterial saturation, end-tidal CO2, heart rate, MABP, ICP, and CPP did not demonstrate any association with the nimodipine-induced reduction in PO2. In four patients PO2 remained stable and none of these patients had a significant increase in brain tissue PO2. Although nimodipine use is associated with improved outcome following SAH, in some patients it can temporarily reduce brain tissue PO2.

  3. Coexisting order and disorder within a common 40-residue amyloid-β fibril structure in Alzheimer's disease brain tissue.

    PubMed

    Ghosh, Ujjayini; Yau, Wai-Ming; Tycko, Robert

    2018-05-15

    Fibrils formed by 40- and 42-residue amyloid-β (Aβ40 and Aβ42) peptides exhibit molecular-level structural polymorphisms. A recent screen of fibrils derived from brain tissue of Alzheimer's disease patients revealed a single predominant Aβ40 polymorph. We present solid state nuclear magnetic resonance (ssNMR) data that define its coexisting structurally ordered and disordered segments.

  4. Simulation of Changes in Diffusion Related to Different Pathologies at Cellular Level After Traumatic Brain Injury

    PubMed Central

    Lin, Mu; He, Hongjian; Schifitto, Giovanni; Zhong, Jianhui

    2016-01-01

    Purpose The goal of the current study was to investigate tissue pathology at the cellular level in traumatic brain injury (TBI) as revealed by Monte Carlo simulation of diffusion tensor imaging (DTI)-derived parameters and elucidate the possible sources of conflicting findings of DTI abnormalities as reported in the TBI literature. Methods A model with three compartments separated by permeable membranes was employed to represent the diffusion environment of water molecules in brain white matter. The dynamic diffusion process was simulated with a Monte Carlo method using adjustable parameters of intra-axonal diffusivity, axon separation, glial cell volume fraction, and myelin sheath permeability. The effects of tissue pathology on DTI parameters were investigated by adjusting the parameters of the model corresponding to different stages of brain injury. Results The results suggest that the model is appropriate and the DTI-derived parameters simulate the predominant cellular pathology after TBI. Our results further indicate that when edema is not prevalent, axial and radial diffusivity have better sensitivity to axonal injury and demyelination than other DTI parameters. Conclusion DTI is a promising biomarker to detect and stage tissue injury after TBI. The observed inconsistencies among previous studies are likely due to scanning at different stages of tissue injury after TBI. PMID:26256558

  5. GDNF family receptor α-1 in the catfish: Possible implication to brain dopaminergic activity.

    PubMed

    Mamta, Sajwan-Khatri; Senthilkumaran, Balasubramanian

    2018-05-31

    Glial cell line-derived neurotrophic factor (GDNF)is a potent trophic factor that preferentially binds to GDNF family receptor α-1 (GFRα-1)by regulating dopaminergic (DA-ergic) neuronsin brain. Present study aimed to evaluate the significance of GFRα-1 expression during early brain development in catfish. Initially, the full-length cDNA of GFRα-1 was cloned from adult brain which showed high homology with other vertebrate counterparts. Quantitative PCR analysis of tissue distribution revealed ubiquitous expression of GFRα-1 in the tissues analyzed with high levels in female brain and ovary. Significant high expression was evident in brain at 75 and 100 days post hatch females than the respective age-match males. Expression of GFRα-1 was high in brain during the spawning phase when compared to other reproductive phases. Localization of GFRα-1 revealed its presence in preoptic area-hypothalamus which correlated well with the expression profile in discrete areas of brain in adult catfish. Transient silencing of GFRα-1through siRNA lowered expression levels of GFRα-1, which further down regulated the expression of certain brain-specific genes. Expression of GFRα-1 in brain declined significantly upon treatment with the 1-methyl-1,2,3,6-tetrahydropyridinecausing neurodegeneration which further correlated with catecholamines (CA), L-3,4-dihydroxyphenylalanine, DA and norepinephrine levels. Taken together, GFRα-1 plausibly entrains gonadotropin-releasing hormone and gonadotropin axiseither directly or indirectly, at least by partially targeting CA-ergic activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    PubMed Central

    Weaver, John; Yang, Yirong; Purvis, Rebecca; Weatherwax, Theodore; Rosen, Gerald M.; Liu, Ke Jian

    2014-01-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O2 may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O2 is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO2 in vivo remains largely uncharacterized. This study investigated striatal tissue pO2 changes in male C57BL/6 mice (16–20g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO2 in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO2 was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO2 to 64%. More importantly, pO2 did not recover fully to control levels even 24 hrs after administration of a single dose of METH. and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO2 indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO2, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. PMID:24412707

  7. Differential HIF and NOS responses to acute anemia: defining organ-specific hemoglobin thresholds for tissue hypoxia.

    PubMed

    Tsui, Albert K Y; Marsden, Philip A; Mazer, C David; Sled, John G; Lee, Keith M; Henkelman, R Mark; Cahill, Lindsay S; Zhou, Yu-Qing; Chan, Neville; Liu, Elaine; Hare, Gregory M T

    2014-07-01

    Tissue hypoxia likely contributes to anemia-induced organ injury and mortality. Severe anemia activates hypoxia-inducible factor (HIF) signaling by hypoxic- and neuronal nitric oxide (NO) synthase- (nNOS) dependent mechanisms. However, organ-specific hemoglobin (Hb) thresholds for increased HIF expression have not been defined. To assess organ-specific Hb thresholds for tissue hypoxia, HIF-α (oxygen-dependent degradation domain, ODD) luciferase mice were hemodiluted to mild, moderate, or severe anemia corresponding to Hb levels of 90, 70, and 50 g/l, respectively. HIF luciferase reporter activity, HIF protein, and HIF-dependent RNA levels were assessed. In the brain, HIF-1α was paradoxically decreased at mild anemia, returned to baseline at moderate anemia, and then increased at severe anemia. Brain HIF-2α remained unchanged at all Hb levels. Both kidney HIF-1α and HIF-2α increased earlier (Hb ∼70-90 g/l) in response to anemia. Liver also exhibited an early HIF-α response. Carotid blood flow was increased early (Hb ∼70, g/l), but renal blood flow remained relatively constant, only increased at Hb of 50 g/l. Anemia increased nNOS (brain and kidney) and endothelia NOS (eNOS) (kidney) levels. Whereas anemia-induced increases in brain HIFα were nNOS-dependent, our current data demonstrate that increased renal HIFα was nNOS independent. HIF-dependent RNA levels increased linearly (∼10-fold) in the brain. However, renal HIF-RNA responses (MCT4, EPO) increased exponentially (∼100-fold). Plasma EPO levels increased near Hb threshold of 90 g/l, suggesting that the EPO response is sensitive. Collectively, these observations suggest that each organ expresses a different threshold for cellular HIF/NOS hypoxia responses. This knowledge may help define the mechanism(s) by which the brain and kidney maintain oxygen homeostasis during anemia. Copyright © 2014 the American Physiological Society.

  8. Brain volumetric changes and cognitive ageing during the eighth decade of life

    PubMed Central

    Dickie, David Alexander; Cox, Simon R.; Valdes Hernandez, Maria del C.; Corley, Janie; Royle, Natalie A.; Pattie, Alison; Aribisala, Benjamin S.; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M.; Sibbett, Ruth; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.

    2015-01-01

    Abstract Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26769551

  9. Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue.

    PubMed

    Tedford, Clark E; DeLapp, Scott; Jacques, Steven; Anders, Juanita

    2015-04-01

    Photobiomodulation (PBM) also known as low-level light therapy has been used successfully for the treatment of injury and disease of the nervous system. The use of PBM to treat injury and diseases of the brain requires an in-depth understanding of light propagation through tissues including scalp, skull, meninges, and brain. This study investigated the light penetration gradients in the human cadaver brain using a Transcranial Laser System with a 30 mm diameter beam of 808 nm wavelength light. In addition, the wavelength-dependence of light scatter and absorbance in intraparenchymal brain tissue using 660, 808, and 940 nm wavelengths was investigated. Intact human cadaver heads (n = 8) were obtained for measurement of light propagation through the scalp/skull/meninges and into brain tissue. The cadaver heads were sectioned in either the transverse or mid-sagittal. The sectioned head was mounted into a cranial fixture with an 808 nm wavelength laser system illuminating the head from beneath with either pulsed-wave (PW) or continuous-wave (CW) laser light. A linear array of nine isotropic optical fibers on a 5 mm pitch was inserted into the brain tissue along the optical axis of the beam. Light collected from each fiber was delivered to a multichannel power meter. As the array was lowered into the tissue, the power from each probe was recorded at 5 mm increments until the inner aspect of the dura mater was reached. Intraparenchymal light penetration measurements were made by delivering a series of wavelengths (660, 808, and 940 nm) through a separate optical fiber within the array, which was offset from the array line by 5 mm. Local light penetration was determined and compared across the selected wavelengths. Unfixed cadaver brains provide good anatomical localization and reliable measurements of light scatter and penetration in the CNS tissues. Transcranial application of 808 nm wavelength light penetrated the scalp, skull, meninges, and brain to a depth of approximately 40 mm with an effective attenuation coefficient for the system of 2.22 cm(-1) . No differences were observed in the results between the PW and CW laser light. The intraparenchymal studies demonstrated less absorption and scattering for the 808 nm wavelength light compared to the 660 or 940 nm wavelengths. Transcranial light measurements of unfixed human cadaver brains allowed for determinations of light penetration variables. While unfixed human cadaver studies do not reflect all the conditions seen in the living condition, comparisons of light scatter and penetration and estimates of fluence levels can be used to establish further clinical dosing. The 808 nm wavelength light demonstrated superior CNS tissue penetration. © 2015 Wiley Periodicals, Inc.

  10. Protective effect of Corchorus olitorius leaves against arsenic-induced oxidative stress in rat brain.

    PubMed

    Das, Anup K; Dewanjee, Saikat; Sahu, Ranabir; Dua, Tarun K; Gangopadhyay, Moumita; Sinha, Mohit K

    2010-01-01

    The present study was undertaken to evaluate the protective effect of an aqueous extract of Corchorus olitorius leaves (AECO) against NaAsO(2) induced brain toxicity in experimental rats. The animals exposed to NaAsO(2) (10mg/kg, p.o.) for 10 days exhibited a significant inhibition (p<0.01) of superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase and reduced glutathione levels in rat brain. In addition, the toxin increased (p<0.01) the levels of oxidized glutathione and thiobarbituric acid reactive substances in the brain tissue of experimental rats. Treatment with AECO (50 and 100mg/kg, p.o.) for 15 days prior to arsenic intoxication significantly improved antioxidant markers in a dose dependant manner. Histological studies on the ultrastructural changes of brain tissue supported the protective activity of the AECO. The results suggest that treatment with AECO prior to arsenic intoxication has a significant role in protecting animals from arsenic-induced toxicity. Copyright © 2009 Elsevier B.V. All rights reserved.

  11. HPLC determination of strychnine and brucine in rat tissues and the distribution study of processed semen strychni.

    PubMed

    Chen, Jun; Hou, Ting; Fang, Yun; Chen, Zhi-peng; Liu, Xiao; Cai, Hao; Lu, Tu-lin; Yan, Guo-jun; Cai, Bao-chang

    2011-01-01

    A simple and low-cost HPLC method with UV absorbance detection was developed and validated to simultaneously determine strychnine and brucine, the most abundant alkaloids in the processed Semen Strychni, in rat tissues (kidney, liver, spleen, lung, heart, stomach, small intestine, brain and plasma). The tissue samples were treated with a simple liquid-liquid extraction prior to HPLC. The LOQs were in the range of 0.039-0.050 µg/ml for different tissue or plasma samples. The extraction recoveries varied from 71.63 to 98.79%. The linear range was 0.05-2 µg/ml with correlation coefficient of over 0.991. The intra- and inter-day precision was less than 15%. Then the method was used to measure the tissue distribution of strychnine and brucine after intravenous administration of 1 mg/kg crude alkaloids fraction (CAF) extracted from the processed Semen Strychni. The results revealed that strychnine and brucine possessed similar tissue distribution characterization. The highest level was observed in kidney, while the lowest level was found in brain. It was indicated that kidney might be the primary excretion organ of prototype strychnine and brucine. It was also deduced that strychnine and brucine had difficulty in crossing the blood-brain barrier. Furthermore, no long-term accumulation of strychnine and brucine was found in rat tissues.

  12. In vivo evidence of methamphetamine induced attenuation of brain tissue oxygenation as measured by EPR oximetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, John, E-mail: jmweaver@salud.unm.edu; Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131; Yang, Yirong

    2014-03-01

    Abuse of methamphetamine (METH) is a major and significant societal problem in the US, as a number of studies have suggested that METH is associated with increased cerebrovascular events, hemorrhage or vasospasm. Although cellular and molecular mechanisms involved in METH-induced toxicity are not completely understood, changes in brain O{sub 2} may play an important role and contribute to METH-induced neurotoxicity including dopaminergic receptor degradation. Given that O{sub 2} is the terminal electron acceptor for many enzymes that are important in brain function, the impact of METH on brain tissue pO{sub 2}in vivo remains largely uncharacterized. This study investigated striatal tissuemore » pO{sub 2} changes in male C57BL/6 mice (16–20 g) following METH administration using EPR oximetry, a highly sensitive modality to measure pO{sub 2}in vivo, in situ and in real time. We demonstrate that 20 min after a single injection of METH (8 mg/kg i.v.), the striatal pO{sub 2} was reduced to 81% of the pretreatment level and exposure to METH for 3 consecutive days further attenuated striatal pO{sub 2} to 64%. More importantly, pO{sub 2} did not recover fully to control levels even 24 h after administration of a single dose of METH and continual exposure to METH exacerbates the condition. We also show a reduction in cerebral blood flow associated with a decreased brain pO{sub 2} indicating an ischemic condition. Our findings suggests that administration of METH can attenuate brain tissue pO{sub 2}, which may lead to hypoxic insult, thus a risk factor for METH-induced brain injury and the development of stroke in young adults. - Highlights: • Explored striatal tissue pO{sub 2}in vivo after METH administration by EPR oximetry. • pO{sub 2} was reduced by 81% after a single dose and 64% after 3 consecutive daily doses. • pO{sub 2} did not recover fully to control levels even 24 h after a single dose. • Decrease in brain tissue pO{sub 2} may be associated with a decrease in CBF. • Administration of methamphetamine may lead to hypoxic insult.« less

  13. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication

    PubMed Central

    Ouzzine, Mohamed; Gulberti, Sandrine; Ramalanjaona, Nick; Magdalou, Jacques; Fournel-Gigleux, Sylvie

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-D-glucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds) by the linkage of glucuronic acid from the high energy donor, UDP-α-D-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier (BBB). They are also associated to brain interfaces devoid of BBB, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine (DA) that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed. PMID:25389387

  14. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    PubMed

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  15. Aged rats are more vulnerable than adolescents to "ecstasy"-induced toxicity.

    PubMed

    Feio-Azevedo, R; Costa, V M; Barbosa, D J; Teixeira-Gomes, A; Pita, I; Gomes, S; Pereira, F C; Duarte-Araújo, M; Duarte, J A; Marques, F; Fernandes, E; Bastos, M L; Carvalho, F; Capela, J P

    2018-06-04

    3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a widespread drug of abuse with known neurotoxic properties. The present study aimed to evaluate the differential toxic effects of MDMA in adolescent and aged Wistar rats, using doses pharmacologically comparable to humans. Adolescent (post-natal day 40) (3 × 5 mg/kg, 2 h apart) and aged (mean 20 months old) (2 × 5 mg/kg, 2 h apart) rats received MDMA intraperitoneally. Animals were killed 7 days later, and the frontal cortex, hippocampus, striatum and cerebellum brain areas were dissected, and heart, liver and kidneys were collected. MDMA caused hyperthermia in both treated groups, but aged rats had a more dramatic temperature elevation. MDMA promoted serotonergic neurotoxicity only in the hippocampus of aged, but not in the adolescents' brain, and did not change the levels of dopamine or serotonin metabolite in the striatum of both groups. Differential responses according to age were also seen regarding brain p-Tau levels, a hallmark of a degenerative brain, since only aged animals had significant increases. MDMA evoked brain oxidative stress in the hippocampus and striatum of aged, and in the hippocampus, frontal cortex, and striatum brain areas of adolescents according to protein carbonylation, but only decreased GSH levels in the hippocampus of aged animals. The brain maturational stage seems crucial for MDMA-evoked serotonergic neurotoxicity. Aged animals were more susceptible to MDMA-induced tissue damage in the heart and kidneys, and both ages had an increase in liver fibrotic tissue content. In conclusion, age is a determinant factor for the toxic events promoted by "ecstasy". This work demonstrated special susceptibility of aged hippocampus to MDMA neurotoxicity, as well as impressive damage to the heart and kidney tissue following "ecstasy".

  16. Glutathione Levels in Human Tumors

    PubMed Central

    Gamcsik, Michael P.; Kasibhatla, Mohit S.; Teeter, Stephanie D.; Colvin, O. Michael

    2013-01-01

    This review summarizes clinical studies in which glutathione was measured in tumor tissue from patients with brain, breast, gastrointestinal, gynecological, head and neck and lung cancer. Glutathione tends to be elevated in breast, ovarian, head and neck and lung cancer and lower in brain and liver tumors compared to disease-free tissue. Cervical, colorectal, gastric and esophageal cancers show both higher and lower levels of tumor glutathione. Some studies show an inverse relationship between patient survival and tumor glutathione. Based on this survey, we recommend approaches that may improve the clinical value of glutathione as a biomarker. PMID:22900535

  17. Dynamics of Viral and Proviral Loads of Feline Immunodeficiency Virus within the Feline Central Nervous System during the Acute Phase following Intravenous Infection

    PubMed Central

    Ryan, G.; Klein, D.; Knapp, E.; Hosie, M. J.; Grimes, T.; Mabruk, M. J. E. M. F.; Jarrett, O.; Callanan, J. J.

    2003-01-01

    Animal models of human immunodeficiency virus 1, such as feline immunodeficiency virus (FIV), provide the opportunities to dissect the mechanisms of early interactions of the virus with the central nervous system (CNS). The aims of the present study were to evaluate viral loads within CNS, cerebrospinal fluid (CSF), ocular fluid, and the plasma of cats in the first 23 weeks after intravenous inoculation with FIVGL8. Proviral loads were also determined within peripheral blood mononuclear cells (PBMCs) and brain tissue. In this acute phase of infection, virus entered the brain in the majority of animals. Virus distribution was initially in a random fashion, with more diffuse brain involvement as infection progressed. Virus in the CSF was predictive of brain parenchymal infection. While the peak of virus production in blood coincided with proliferation within brain, more sustained production appeared to continue in brain tissue. In contrast, proviral loads in the brain decreased to undetectable levels in the presence of a strengthening PBMC load. A final observation in this study was that there was no direct correlation between viral loads in regions of brain or ocular tissue and the presence of histopathology. PMID:12805447

  18. Bioavailability and tissue distribution of Dechloranes in wild frogs (Rana limnocharis) from an e-waste recycling area in Southeast China.

    PubMed

    Li, Long; Wang, Wenyue; Lv, Quanxia; Ben, Yujie; Li, Xinghong

    2014-03-01

    Dechlorane Plus (DP), a flame retardant used as an alternative to decabromodiphenylether, has been frequently detected in organisms, indicating its bioaccumulation and biomagnification potential in aquatic and terrestrial species. However, little data is available on the bioaccumulation of DP in amphibians. Dechlorane Plus and its analogs (DPs) were detected in the liver, muscle and brain tissues of wild frogs (Rana limnocharis), which were collected from an e-waste recycling site, Southeast China. DP, Mirex, Dec 602 and a dechlorinated compound of DP (anti-Cl11-DP) varied in the range of 2.01-291, 0.650-179, 0.260-12.4, and not detected (nd)-8.67 ng/g lipid weight, respectively. No difference of tissue distribution was found for syn-DP, Mirex and Dec 602 between the liver and muscle tissue (liver/muscle concentration ratio close to 1, p > 0.05). However, higher retention was observed for anti-DP and anti-Cl11-DP in the frog muscle relative to the liver tissue (liver/muscle concentration ratio < 1, p < 0.05). Additionally, the blood-brain barrier was found to work efficiently to suppress these compounds entering brain tissues in this species (liver/brain concentration ratio > 1, p < 0.05), and the molecular weight was a key factor impacting the extent of the blood-brain barrier. Compared to levels in the muscle and brain tissue, a preferential enrichment of syn-DP was observed in the liver tissue, suggesting the occurrence of stereo-selective bioaccumulation in the wild frog. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  19. Photon Entanglement Through Brain Tissue.

    PubMed

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  20. Photon Entanglement Through Brain Tissue

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-12-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  1. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism.

    PubMed

    Li, Shuang; Wang, S U; Guo, Zhi-Gang; Huang, Ning; Zhao, Fan-Rong; Zhu, Mo-Li; Ma, Li-Juan; Liang, Jin-Ying; Zhang, Yu-Lin; Huang, Zhong-Lin; Wan, Guang-Rui

    2015-11-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism.

  2. In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain.

    PubMed

    Kisler, Kassandra; Lazic, Divna; Sweeney, Melanie D; Plunkett, Shane; El Khatib, Mirna; Vinogradov, Sergei A; Boas, David A; Sakadži, Sava; Zlokovic, Berislav V

    2018-06-01

    Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O 2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO 2 ) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1-2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO 2 level, which is better suited to a more experienced, postdoctoral-level researcher.

  3. Antioxidant potential properties of mushroom extract (Agaricus bisporus) against aluminum-induced neurotoxicity in rat brain.

    PubMed

    Waly, Mostafa I; Guizani, Nejib

    2014-09-01

    Aluminum (Al) is an environmental toxin that induces oxidative stress in neuronal cells. Mushroom cultivar extract (MCE) acted as a potent antioxidant agent and protects against cellular oxidative stress in human cultured neuronal cells. This study aimed to investigate the neuroprotective effect of MCE against Al-induced neurotoxicity in rat brain. Forty Sprague-Dawley rats were divided into 4 groups (10 rats per group), control group, MCE-fed group, Al-administered group and MCE/Al-treated group. Animals were continuously fed ad-libitum their specific diets for 4 weeks. At the end of the experiment, all rats were sacrificed and the brain tissues were homogenized and examined for biochemical measurements of neurocellular oxidative stress indices [glutathione (GSH), Total Antioxidant Capacity (TAC), antioxidant enzymes and oxidized dichlorofluorescein (DCF)]. Al-administration caused inhibition of antioxidant enzymes and a significant decrease in GSH and TAC levels, meanwhile it positively increased cellular oxidized DCF level, as well as Al concentration in brain tissues. Feeding animals with MCE had completely offset the Al-induced oxidative stress and significantly restrict the Al accumulation in brain tissues of Al-administered rats. The results obtained suggest that MCE acted as a potent dietary antioxidant and protects against Al-mediated neurotoxicity, by abrogating neuronal oxidative stress.

  4. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Hu, Fanghao; Lamprecht, Michael R.; Wei, Lu; Morrison, Barclay; Min, Wei

    2016-12-01

    Brain is an immensely complex system displaying dynamic and heterogeneous metabolic activities. Visualizing cellular metabolism of nucleic acids, proteins, and lipids in brain with chemical specificity has been a long-standing challenge. Recent development in metabolic labeling of small biomolecules allows the study of these metabolisms at the global level. However, these techniques generally require nonphysiological sample preparation for either destructive mass spectrometry imaging or secondary labeling with relatively bulky fluorescent labels. In this study, we have demonstrated bioorthogonal chemical imaging of DNA, RNA, protein and lipid metabolism in live rat brain hippocampal tissues by coupling stimulated Raman scattering microscopy with integrated deuterium and alkyne labeling. Heterogeneous metabolic incorporations for different molecular species and neurogenesis with newly-incorporated DNA were observed in the dentate gyrus of hippocampus at the single cell level. We further applied this platform to study metabolic responses to traumatic brain injury in hippocampal slice cultures, and observed marked upregulation of protein and lipid metabolism particularly in the hilus region of the hippocampus within days of mechanical injury. Thus, our method paves the way for the study of complex metabolic profiles in live brain tissue under both physiological and pathological conditions with single-cell resolution and minimal perturbation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu

    Conventional semi-infinite analytical solutions of correlation diffusion equation may lead to errors when calculating blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements in tissues with irregular geometries. Very recently, we created an algorithm integrating a Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in homogenous tissues with arbitrary geometries for extraction of BFI (i.e., αD{sub B}). The purpose of this study is to extend the capability of the Nth-order linear algorithm for extracting BFI in heterogeneous tissues with arbitrary geometries. The previous linear algorithm was modified to extract BFIs in different typesmore » of tissues simultaneously through utilizing DCS data at multiple source-detector separations. We compared the proposed linear algorithm with the semi-infinite homogenous solution in a computer model of adult head with heterogeneous tissue layers of scalp, skull, cerebrospinal fluid, and brain. To test the capability of the linear algorithm for extracting relative changes of cerebral blood flow (rCBF) in deep brain, we assigned ten levels of αD{sub B} in the brain layer with a step decrement of 10% while maintaining αD{sub B} values constant in other layers. Simulation results demonstrate the accuracy (errors < 3%) of high-order (N ≥ 5) linear algorithm in extracting BFIs in different tissue layers and rCBF in deep brain. By contrast, the semi-infinite homogenous solution resulted in substantial errors in rCBF (34.5% ≤ errors ≤ 60.2%) and BFIs in different layers. The Nth-order linear model simplifies data analysis, thus allowing for online data processing and displaying. Future study will test this linear algorithm in heterogeneous tissues with different levels of blood flow variations and noises.« less

  6. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR).more » The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.« less

  7. Differences in Relative Levels of 88 microRNAs in Various Regions of the Normal Adult Human Brain.

    PubMed

    Filatova, Elena V; Alieva, Anelya; Shadrina, Maria I; Slominsky, Petr A

    2017-08-16

    Since the discovery of microRNAs (miRNAs) in the 1990s, our knowledge about their biology has grown considerably. The increasing number of studies addressing the role of miRNAs in development and in various diseases emphasizes the need for a comprehensive catalogue of accurate sequence, expression and conservation information regarding the large number of miRNAs proposed recently in all organs and tissues. The objective of this study was to provide data on the levels of miRNA expression in 15 tissues of the normal human brain. We conducted an analysis of the relative levels of 88 of the most abundantly expressed and best characterized miRNA derived postmortem from well-characterized samples of various regions of the brains from five normal individuals. The cluster analysis revealed some differences in the relative levels of these miRNAs among the brain regions studied. Such diversity can be explained by different functioning of these brain regions. We hope that the data from the current study are a resource that will be useful to our colleagues in this exciting field, as more hypotheses will be generated and tested with regard to small noncoding RNA in the human brain in healthy and disease states. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Human exposure to metals: levels in autopsy tissues of individuals living near a hazardous waste incinerator.

    PubMed

    Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Barbería, Eneko; García, Francisco; Domingo, José L

    2014-06-01

    The concentrations of a number of metals were determined in the brain, bone, kidney, liver, and lung of 20 autopsied subjects who had lived, at least 10 years, in the neighborhood of a hazardous waste incinerator (HWI) in Tarragona (Catalonia, Spain). Results were compared with those obtained in 1998 (baseline survey) and previous surveys (2003 and 2007). Arsenic, Be, Ni, Tl, and V showed concentrations below the corresponding detection limits in all tissues. Cadmium showed the highest levels in the kidney, with a mean value of 21.15 μg/g. However, Cd was found below the detection limit in the brain and bone. Chromium showed similar concentrations in the kidney, brain, and lung (range of mean values, 0.57-0.66 μg/g) and higher in the bone (1.38 μg/g). In turn, Hg was below the detection limit in all tissues with the exception of the kidney, where the mean concentration was 0.15 μg/g (range, <0.05-0.58 μg/g). On the other hand, Mn could be detected in all tissues showing the highest levels in the liver and kidney (1.45 and 1.09 μg/g, respectively). Moreover, Pb showed the highest concentrations in bone (mean, 1.39 μg/g; range, <0.025-4.88 μg/g). Finally, Sn could be detected only in some tissue samples, reaching the highest values in the bone (0.17 μg/g). The current metal levels in human tissues from individuals living near the HWI of Tarragona are comparable and of a similar magnitude to previously reported results corresponding to general populations, as well as those of our previous surveys.

  9. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice.

    PubMed

    Cahill, Lindsay S; Gazdzinski, Lisa M; Tsui, Albert Ky; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory Mt; Kassner, Andrea; Sled, John G

    2017-03-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO 2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia.

  10. Functional and anatomical evidence of cerebral tissue hypoxia in young sickle cell anemia mice

    PubMed Central

    Gazdzinski, Lisa M; Tsui, Albert KY; Zhou, Yu-Qing; Portnoy, Sharon; Liu, Elaine; Mazer, C David; Hare, Gregory MT; Kassner, Andrea; Sled, John G

    2016-01-01

    Cerebral ischemia is a significant source of morbidity in children with sickle cell anemia; however, the mechanism of injury is poorly understood. Increased cerebral blood flow and low hemoglobin levels in children with sickle cell anemia are associated with increased stroke risk, suggesting that anemia-induced tissue hypoxia may be an important factor contributing to subsequent morbidity. To better understand the pathophysiology of brain injury, brain physiology and morphology were characterized in a transgenic mouse model, the Townes sickle cell model. Relative to age-matched controls, sickle cell anemia mice demonstrated: (1) decreased brain tissue pO2 and increased expression of hypoxia signaling protein in the perivascular regions of the cerebral cortex; (2) elevated basal cerebral blood flow , consistent with adaptation to anemia-induced tissue hypoxia; (3) significant reduction in cerebrovascular blood flow reactivity to a hypercapnic challenge; (4) increased diameter of the carotid artery; and (5) significant volume changes in white and gray matter regions in the brain, as assessed by ex vivo magnetic resonance imaging. Collectively, these findings support the hypothesis that brain tissue hypoxia contributes to adaptive physiological and anatomic changes in Townes sickle cell mice. These findings may help define the pathophysiology for stroke in children with sickle cell anemia. PMID:27165012

  11. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats.

    PubMed

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p<0.01). In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS) latency. Malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p<0.001). Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (p<0.01 - p<0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in the brain tissues (p<0.05). Pretreatment with WF and NBF significantly elevated thiol concentrations in cortical and hippocampal tissues, respectively (p<0.05). The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects.

  12. Investigation of the effects of acrylamide applied during pregnancy on fetal brain development in rats and protective role of the vitamin E.

    PubMed

    Erdemli, M E; Turkoz, Y; Altinoz, E; Elibol, E; Dogan, Z

    2016-12-01

    A liberal amount of acrylamide (AA) is produced as a result of frying or baking foods in high temperatures, and individuals take certain amounts of AA everyday by consuming these food items. Pregnant women are also exposed to AA originating from food during pregnancy and their fetus are probably affected. The rats were divided into five different groups: control (C), corn oil (CO), vitamin E (Vit E), AA, and Vit E + AA, with eight pregnant rats in each group. On the 20th day of pregnancy, fetuses were removed and brain tissues of fetuses were examined for biochemical and histological changes. AA caused degeneration in neuron structures in fetal brain tissue and caused hemorrhagic damages; dramatically decreased brain-derived neurotrophic factor levels; increased malondialdehyde, total oxidant capacity levels; and decreased reduced glutathione and total antioxidant capacity levels (p < 0.05). On the other hand, it was determined that the Vit E, a neuroprotectant and a powerful antioxidant, suppressed the effects of AA on fetal development and fetal brain tissue damage for the above-mentioned parameters (p < 0.05). It is recommended to consume food containing Vit E as a protection to minimize the toxic effects of food-oriented AA on fetus development due to the widespread nature of fast-food culture in today's life and the impossibility of protection from AA toxicity. © The Author(s) 2016.

  13. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    PubMed

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (P<0.001). Intraperitoneal administration of CUR significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (P<0.05). This study shows that CUR can prevent restraint stress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse

    NASA Astrophysics Data System (ADS)

    Crespi, F.; Donini, M.; Bandera, A.; Congestri, F.; Formenti, F.; Sonntag, V.; Heidbreder, C.; Rovati, L.

    2006-07-01

    The feasibility of non-invasive analysis of brain activities was studied in the attempt to overcome the major limitation of actual in vivo methodologies, i.e. invasiveness. Optic fibre probes were used as the optical head of a novel, highly sensitive near-infrared continuous wave spectroscopy (CW-NIR) instrument. This prototype was designed for non-invasive analysis of the two main forms of haemoglobin: oxy-haemoglobin (HbO2) and deoxy-haemoglobin (Hb), chromophores present in biological tissues. It was tested in peripheral tissue (human gastrocnemius muscle) and then reset to perform the measurement on rat brain. In animal studies, the optical head was firmly placed using stereotaxic apparatus upon the sagittal line of the head of anaesthetized adult rats, without any surgery. Then pharmacological treatments with saline (300 µl s.c.) amphetamine (2 mg kg-1) or nicotine (0.4 mg kg-1) were performed. Within 10-20 min amphetamine substantially increased HbO2 and reduced Hb control levels. Nicotine produced a rapid initial increase followed by a decrease in HbO2. In contrast to amphetamine, nicotine treatment also reduced Hb and blood volume. These results support the capacity of our CW-NIR prototype to measure non-invasively HbO2 and Hb levels in the rat brain, that are markers of the degree of tissue oxygenation, thus providing an index of blood levels and therefore of brain metabolism.

  15. Unsupervised MRI segmentation of brain tissues using a local linear model and level set.

    PubMed

    Rivest-Hénault, David; Cheriet, Mohamed

    2011-02-01

    Real-world magnetic resonance imaging of the brain is affected by intensity nonuniformity (INU) phenomena which makes it difficult to fully automate the segmentation process. This difficult task is accomplished in this work by using a new method with two original features: (1) each brain tissue class is locally modeled using a local linear region representative, which allows us to account for the INU in an implicit way and to more accurately position the region's boundaries; and (2) the region models are embedded in the level set framework, so that the spatial coherence of the segmentation can be controlled in a natural way. Our new method has been tested on the ground-truthed Internet Brain Segmentation Repository (IBSR) database and gave promising results, with Tanimoto indexes ranging from 0.61 to 0.79 for the classification of the white matter and from 0.72 to 0.84 for the gray matter. To our knowledge, this is the first time a region-based level set model has been used to perform the segmentation of real-world MRI brain scans with convincing results. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Mercury concentrations in wild mink (Mustela vison) and river otters (Lontra canadensis) collected from eastern and Atlantic Canada: relationship to age and parasitism.

    PubMed

    Klenavic, Katherine; Champoux, Louise; Mike, O'Brien; Daoust, Pierre-Y; Evans, R Douglas; Evans, Hayla E

    2008-11-01

    Total mercury (Hg) concentrations were measured in the fur, brain and liver of wild mink (Mustela vison) and river otters (Lontra canadensis) collected from eastern and Atlantic Canada. Total Hg concentrations in fur were strongly correlated with levels in the brain and liver. There was no difference in tissue concentrations between male and female mink; however, female otters had significantly higher fur, brain and liver Hg levels than males. Similarly, there was not a significant relationship between Hg concentration and age of mink, whereas in otters, Hg concentrations in all three tissues decreased significantly with age. In both species, only a very small percentage of the variability in Hg concentration was explained by age. After adjusting the data for site-to-site differences in Hg levels, Hg concentrations in the fur of mink infected by the parasite, Dioctophyma renale, were found to be significantly higher than Hg levels in uninfected mink.

  17. Comprehensive Analysis of Human Endogenous Retrovirus Group HERV-W Locus Transcription in Multiple Sclerosis Brain Lesions by High-Throughput Amplicon Sequencing

    PubMed Central

    Schmitt, Katja; Richter, Christin; Backes, Christina; Meese, Eckart; Ruprecht, Klemens

    2013-01-01

    Human endogenous retroviruses (HERVs) of the HERV-W group comprise hundreds of loci in the human genome. Deregulated HERV-W expression and HERV-W locus ERVWE1-encoded Syncytin-1 protein have been implicated in the pathogenesis of multiple sclerosis (MS). However, the actual transcription of HERV-W loci in the MS context has not been comprehensively analyzed. We investigated transcription of HERV-W in MS brain lesions and white matter brain tissue from healthy controls by employing next-generation amplicon sequencing of HERV-W env-specific reverse transcriptase (RT) PCR products, thus revealing transcribed HERV-W loci and the relative transcript levels of those loci. We identified more than 100 HERV-W loci that were transcribed in the human brain, with a limited number of loci being predominantly transcribed. Importantly, relative transcript levels of HERV-W loci were very similar between MS and healthy brain tissue samples, refuting deregulated transcription of HERV-W env in MS brain lesions, including the high-level-transcribed ERVWE1 locus encoding Syncytin-1. Quantitative RT-PCR likewise did not reveal differences in MS regarding HERV-W env general transcript or ERVWE1- and ERVWE2-specific transcript levels. However, we obtained evidence for interindividual differences in HERV-W transcript levels. Reporter gene assays indicated promoter activity of many HERV-W long terminal repeats (LTRs), including structurally incomplete LTRs. Our comprehensive analysis of HERV-W transcription in the human brain thus provides important information on the biology of HERV-W in MS lesions and normal human brain, implications for study design, and mechanisms by which HERV-W may (or may not) be involved in MS. PMID:24109235

  18. REVISITING GLYCOGEN CONTENT IN THE HUMAN BRAIN

    PubMed Central

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R.

    2015-01-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3–4 µmol/g brain glycogen content using in vivo 13C magnetic resonance spectroscopy (MRS) in conjunction with [1-13C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3–5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state 13C labeling in glycogen, here we administered [1-13C]glucose to healthy volunteers for 80 hours. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-13C]glucose administration and 13C-glycogen levels in the occipital lobe were measured by 13C MRS approximately every 12 hours. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the 13C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425

  19. Revisiting Glycogen Content in the Human Brain.

    PubMed

    Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R

    2015-12-01

    Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.

  20. Confocal multispot microscope for fast and deep imaging in semicleared tissues

    NASA Astrophysics Data System (ADS)

    Adam, Marie-Pierre; Müllenbroich, Marie Caroline; Di Giovanna, Antonino Paolo; Alfieri, Domenico; Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio

    2018-02-01

    Although perfectly transparent specimens are imaged faster with light-sheet microscopy, less transparent samples are often imaged with two-photon microscopy leveraging its robustness to scattering; however, at the price of increased acquisition times. Clearing methods that are capable of rendering strongly scattering samples such as brain tissue perfectly transparent specimens are often complex, costly, and time intensive, even though for many applications a slightly lower level of tissue transparency is sufficient and easily achieved with simpler and faster methods. Here, we present a microscope type that has been geared toward the imaging of semicleared tissue by combining multispot two-photon excitation with rolling shutter wide-field detection to image deep and fast inside semicleared mouse brain. We present a theoretical and experimental evaluation of the point spread function and contrast as a function of shutter size. Finally, we demonstrate microscope performance in fixed brain slices by imaging dendritic spines up to 400-μm deep.

  1. Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury.

    PubMed

    Sarkaki, Alireza; Farbood, Yaghoub; Gharib-Naseri, Mohammad Kazem; Badavi, Mohammad; Mansouri, Mohammad Taghi; Haghparast, Abbas; Mirshekar, Mohammad Ali

    2015-08-01

    Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. In the clinic it is essential to limit the development of cognitive impairment after TBI. In this study, the effects of gallic acid (GA; 100 mg/kg, per oral, from 7 days before to 2 days after TBI induction) on neurological score, passive avoidance memory, long-term potentiation (LTP) deficits, and levels of proinflammatory cytokines including interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in the brain have been evaluated. Brain injury was induced following Marmarou's method. Data were analyzed by one-way and repeated measures ANOVA followed by Tukey's post-hoc test. The results indicated that memory was significantly impaired (p < 0.001) in the group treated with TBI + vehicle, together with deterioration of the hippocampal LTP and increased brain tissue levels of IL-1β, IL-6, and TNF-α. GA treatment significantly improved memory and LTP in the TBI rats. The brain tissue levels of IL-1β, IL-6, and TNF-α were significantly reduced (p < 0.001) in the group treated with GA. The results suggest that GA has neuroprotective properties against TBI-induced behavioral, electrophysiological, and inflammatory disorders, probably via the decrease of cerebral proinflammatory cytokines.

  2. Carbohydrate management, anaerobic metabolism, and adenosine levels in the armoured catfish, Liposarcus pardalis (castelnau), during hypoxia.

    PubMed

    Maccormack, Tyson James; Lewis, Johanne Mari; Almeida-Val, Vera Maria Fonseca; Val, Adalberto Luis; Driedzic, William Robert

    2006-04-01

    The armoured catfish, Liposarcus pardalis, tolerates severe hypoxia at high temperatures. Although this species can breathe air, it also has a strong anaerobic metabolism. We assessed tissue to plasma glucose ratios and glycogen and lactate in a number of tissues under "natural" pond hypoxia, and severe aquarium hypoxia without aerial respiration. Armour lactate content and adenosine in brain and heart were also investigated. During normoxia, tissue to plasma glucose ratios in gill, brain, and heart were close to one. Hypoxia increased plasma glucose and decreased tissue to plasma ratios to less than one, suggesting glucose phosphorylation is activated more than uptake. High normoxic white muscle glucose relative to plasma suggests gluconeogenesis or active glucose uptake. Excess muscle glucose may serve as a metabolic reserve since hypoxia decreased muscle to plasma glucose ratios. Mild pond hypoxia changed glucose management in the absence of lactate accumulation. Lactate was elevated in all tissues except armour following aquarium hypoxia; however, confinement in aquaria increased armour lactate, even under normoxia. A stress-associated acidosis may contribute to armour lactate sequestration. High plasma lactate levels were associated with brain adenosine accumulation. An increase in heart adenosine was triggered by confinement in aquaria, although not by hypoxia alone.

  3. NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus).

    PubMed

    Li, Minghui; Wang, Junsong; Lu, Zhaoguang; Wei, Dandan; Yang, Minghua; Kong, Lingyi

    2014-01-01

    In this study, a (1)H nuclear magnetic resonance (NMR) based metabolomics approach was applied to investigate the toxicity of lambda-cyhalothrin (LCT) in goldfish (Carassius auratus). LCT showed tissue-specific damage to gill, heart, liver and kidney tissues of goldfish. NMR profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) was developed to discern metabolite changes occurring after one week LCT exposure in brain, heart and kidney tissues of goldfish. LCT exposure influenced levels of many metabolites (e.g., leucine, isoleucine and valine in brain and kidney; lactate in brain, heart and kidney; alanine in brain and kidney; choline in brain, heart and kidney; taurine in brain, heart and kidney; N-acetylaspartate in brain; myo-inositol in brain; phosphocreatine in brain and heart; 2-oxoglutarate in brain; cis-aconitate in brain, and etc.), and broke the balance of neurotransmitters and osmoregulators, evoked oxidative stress, disturbed metabolisms of energy and amino acids. The implication of glutamate-glutamine-gamma-aminobutyric axis in LCT induced toxicity was demonstrated for the first time. Our findings demonstrated the applicability and potential of metabolomics approach for the elucidation of toxicological effects of pesticides and the underlying mechanisms, and the discovery of biomarkers for pesticide pollution in aquatic environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  5. Disposition of the herbicide 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (Atrazine) and its major metabolites in mice: a liquid chromatography/mass spectrometry analysis of urine, plasma, and tissue levels.

    PubMed

    Ross, Matthew K; Jones, Toni L; Filipov, Nikolay M

    2009-04-01

    2-Chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine, ATR) is a toxicologically important and widely used herbicide. Recent studies have shown that it can elicit neurological, immunological, developmental, and biochemical alterations in several model organisms, including in mice. Because disposition data in mice are lacking, we evaluated ATR's metabolism and tissue dosimetry after single oral exposures (5-250 mg/kg) in C57BL/6 mice using liquid chromatography/mass spectrometry (Ross and Filipov, 2006). ATR was metabolized and cleared rapidly; didealkyl ATR (DACT) was the major metabolite detected in urine, plasma, and tissues. Plasma ATR peaked at 1 h postdosing and rapidly declined, whereas DACT peaked at 2 h and slowly declined. Most ATR and metabolite residues were excreted within the first 24 h. However, substantial amounts of DACT were still present in 25- to 48-h and 49- to 72-h urine. ATR reached maximal brain levels (0.06-1.5 microM) at 4 h (5-125 mg/kg) and 1 h (250 mg/kg) after dosing, but levels quickly declined to <0.1 microM by 12 h in all the groups. In contrast, strikingly high concentrations of DACT (1.5-50 microM), which are comparable with liver DACT levels, were detectable in brain at 2 h. Brain DACT levels slowly declined, paralleling the kinetics of plasma DACT. Our findings suggest that in mice ATR is widely distributed and extensively metabolized and that DACT is a major metabolite detected in the brain at high levels and is ultimately excreted in urine. Our study provides a starting point for the establishment of models that link target tissue dose to biological effects caused by ATR and its in vivo metabolites.

  6. Use of Video Goggles to Distract Patients During PET/CT Studies of School-Aged Children.

    PubMed

    Gelfand, Michael J; Harris, Jennifer M; Rich, Amanda C; Kist, Chelsea S

    2016-12-01

    This study was designed to evaluate the effectiveness of video goggles in distracting children undergoing PET/CT and to determine whether the goggles create CT and PET artifacts. Video goggles with small amounts of internal radioopaque material were used. During whole-body PET/CT imaging, 30 nonsedated patients aged 4-13 y watched videos of their choice using the goggles. Fifteen of the PET/CT studies were performed on a scanner installed in 2006, and the other 15 were performed on a scanner installed in 2013. The fused scans were reviewed for evidence of head movement, and the individual PET and CT scans of the head were reviewed for the presence and severity of streak artifact. The CT exposure settings were recorded for each scan at the anatomic level at which the goggles were worn. Only one of the 30 scans had evidence of significant head motion. Two of the 30 had minor coregistration problems due to motion, and 27 of the 30 had very good to excellent coregistration. For the 2006 scanner, 2 of the 14 evaluable localization CT scans of the head demonstrated no streak artifact in brain tissue, 6 of the 14 had mild streak artifact in brain tissue, and 6 of the 14 had moderate streak artifact in brain tissue. Mild streak artifact in bone was noted in 2 of the 14 studies. For the 2013 scanner, 7 of 15 studies had mild streak artifact in brain tissue and 8 of 15 had no streak artifact in brain tissue, whereas none of the 15 had streak artifact in bone. There were no artifacts attributable to the goggles on the 18 F-FDG PET brain images of any of the 29 evaluable studies. The average CT exposure parameters at the level of the orbits were 36% lower on the 2013 scanner than on the 2006 scanner. Video goggles may be used successfully to distract children undergoing PET with localization CT. The goggles cause no significant degradation of the PET brain images or the CT skull images. The degree of artifact on brain tissue images varies from none to moderate and depends on the CT equipment used. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Understanding the pathophysiology of schizophrenia: Contributions from the Melbourne Psychiatric Brain Bank.

    PubMed

    Dean, Brian; Copolov, David; Scarr, Elizabeth

    2016-11-01

    The Melbourne Psychiatric Brain Bank came into existence 25years ago. This review focusses on lines of research that have used tissue from the Brain Bank over periods of time. Hence there is a discussion on the significance of changes in levels of serotonin 2A receptors in the cortex of patients with schizophrenia and the relevance of such changes with regards to the pathophysiology of the disorder. The extensive contribution made by studies using tissue from the Melbourne Psychiatric Brain Bank to understanding the role of muscarinic receptors in the pathophysiology and treatment of schizophrenia is summarised. Finally, findings using brain bank tissue and "omics" technologies are reviewed. In each case, findings using tissue from the Melbourne Psychiatric Brain Bank is placed in context with research carried out on human postmortem CNS in schizophrenia and with findings in other lines of research that can help explain the causes or consequences of changes in CNS molecular cytoarchitecture. This timely review of data from the Melbourne Psychiatric Brain Bank reinforces the challenges faced in trying to increase our understanding of the molecular pathophysiology of schizophrenia. Continuing to increase our understanding of the disorder is important as a precursor to identifying new drug targets that can be exploited to improve the treatment of a disorder where treatment resistance remains a significant problem (Millan et al., 2016). Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results aremore » consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.« less

  9. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, P; Park, P; Li, H

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated withmore » PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.« less

  10. Effect of One Month Duration Ketogenic and non-Ketogenic High Fat Diets on Mouse Brain Bioenergetic Infrastructure

    PubMed Central

    Selfridge, J. Eva; Wilkins, Heather M.; Lezi, E; Carl, Steven M.; Koppel, Scott; Funk, Eric; Fields, Timothy; Lu, Jianghua; Tang, Ee Phie; Slawson, Chad; Wang, WenFang; Zhu, Hao; Swerdlow, Russell H.

    2014-01-01

    Diet composition may affect energy metabolism in a tissue-specific manner. Using C57Bl/6J mice, we tested the effect of ketosis-inducing and non-inducing high fat diets on genes relevant to brain bioenergetic infrastructures, and on proteins that constitute and regulate that infrastructure. At the end of a one-month study period the two high fat diets appeared to differentially affect peripheral insulin signaling, but brain insulin signaling was not obviously altered. Some bioenergetic infrastructure parameters were similarly impacted by both high fat diets, while other parameters were only impacted by the ketogenic diet. For both diets, mRNA levels for CREB, PGC1α, and NRF2 increased while NRF1, TFAM, and COX4I1 mRNA levels decreased. PGC1β mRNA increased and TNFα mRNA decreased only with the ketogenic diet. Brain mtDNA levels fell in both the ketogenic and non-ketogenic high fat diet groups, although TOMM20 and COX4I1 protein levels were maintained, and mRNA and protein levels of the mtDNA-encoded COX2 subunit were also preserved. Overall, the pattern of changes observed in mice fed ketogenic and non-ketogenic high fat diets over a one month time period suggests these interventions enhance some aspects of the brain’s aerobic infrastructure, and may enhance mtDNA transcription efficiency. Further studies to determine which diet effects are due to changes in brain ketone body levels, fatty acid levels, glucose levels, altered brain insulin signaling, or other factors such as adipose tissue-associated hormones are indicated. PMID:25104046

  11. A method for monitoring of oxygen saturation changes in brain tissue using diffuse reflectance spectroscopy.

    PubMed

    Rejmstad, Peter; Johansson, Johannes D; Haj-Hosseini, Neda; Wårdell, Karin

    2017-03-01

    Continuous measurement of local brain oxygen saturation (SO 2 ) can be used to monitor the status of brain trauma patients in the neurocritical care unit. Currently, micro-oxygen-electrodes are considered as the "gold standard" in measuring cerebral oxygen pressure (pO 2 ), which is closely related to SO 2 through the oxygen dissociation curve (ODC) of hemoglobin, but with the drawback of slow in response time. The present study suggests estimation of SO 2 in brain tissue using diffuse reflectance spectroscopy (DRS) for finding an analytical relation between measured spectra and the SO 2 for different blood concentrations. The P 3 diffusion approximation is used to generate a set of spectra simulating brain tissue for various levels of blood concentrations in order to estimate SO 2 . The algorithm is evaluated on optical phantoms mimicking white brain matter (blood volume of 0.5-2%) where pO 2 and temperature is controlled and on clinical data collected during brain surgery. The suggested method is capable of estimating the blood fraction and oxygen saturation changes from the spectroscopic signal and the hemoglobin absorption profile. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Rapamycin ameliorates brain metabolites alterations after transient focal ischemia in rats.

    PubMed

    Chauhan, Anjali; Sharma, Uma; Jagannathan, Naranamangalam R; Gupta, Yogendra Kumar

    2015-06-15

    Rapamycin has been shown to protect against middle cerebral artery occlusion (MCAo) induced ischemic injury. In this study, the neuroprotective effect of rapamycin on the metabolic changes induced by MCAo was evaluated using nuclear magnetic resonance (NMR) spectroscopy of brain tissues. MCAo in rats was induced by insertion of nylon filament. One hour after ischemia, rapamycin (250 µg/kg, i.p.) in dimethyl sulfoxide was administered. Reperfusion was done 2h after ischemia. Twenty-four hours after ischemia phospholipase A2 (PLA2) levels and metabolic changes were assessed. Perchloric acid extraction was performed on the brain of all animals (n=7; sham, vehicle; DMSO and rapamycin 250 µg/kg) and the various brain metabolites were assessed by NMR spectroscopy. In all 44 metabolites were assigned in the proton NMR spectrum of rat brain tissues. In the vehicle group, we observed increased lactate levels and decreased levels of glutamate/glutamine, choline containing compounds, creatine/phosphocreatine (Cr/PCr), taurine, myo-inositol, γ-amino butryic acid (GABA), N-aspartyl aspartate (NAA), purine and pyrimidine metabolites. In rapamycin treated rats, there was increase in the levels of choline containing compounds, NAA, myo-inositol, glutamate/glutamine, GABA, Cr/PCr and taurine as compared to those of vehicle control (P<0.05). Rapamycin treatment reduced PLA2 levels as compared to vehicle group (P<0.05). Our findings indicated that rapamycin reduced the increased PLA2 levels and altered brain metabolites after MCAo. These protective effects might be attributed to its effect on cell membrane metabolism; glutamate induced toxicity and calcium homeostasis in stroke. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A comprehensive glycome profiling of Huntington's disease transgenic mice.

    PubMed

    Gizaw, Solomon T; Koda, Toshiaki; Amano, Maho; Kamimura, Keiko; Ohashi, Tetsu; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2015-09-01

    Huntington's disease (HD) is an autosomal, dominantly inherited and progressive neurodegenerative disease, nosologically classified as the presence of intranuclear inclusion bodies and the loss of GABA-containing neurons in the neostriatum and subsequently in the cerebellar cortex. Abnormal processing of neuronal proteins can result in the misfolding of proteins and altered post-translational modification of newly synthesized proteins. Total glycomics, namely, N-glycomics, O-glycomics, and glycosphingolipidomics (GSL-omics) of HD transgenic mice would be a hallmark for central nervous system disorders in order to discover disease specific biomarkers. Glycoblotting method, a high throughput glycomic protocol, and matrix-assisted laser desorption ionization-time of flight/mass spectrometry (MALDI-TOF/MS) were used to study the total glycome expression levels in the brain tissue (3 mice of each sex) and sera (5 mice of each sex) of HD transgenic and control mice. All experiments were performed twice and differences in the expression levels of major glycoforms were compared between HD transgenic and control mice. We estimated the structure and expression levels of 87 and 58N-glycans in brain tissue and sera, respectively, of HD transgenic and control mice. The present results clearly indicated that the brain glycome and their expression levels are significantly gender specific when compared with those of other tissues and serum. Core-fucosylated and bisecting-GlcNAc types of N-glycans were found in increased levels in the brain tissue HD transgenic mice. Accordingly, core-fucosylated and sialic acid (particularly N-glycolylneuraminic acid, NeuGc) for biantennary type glycans were found in increased amounts in the sera of HD transgenic mice compared to that of control mice. Core 3 type O-glycans were found in increased levels in male and in decreased levels in both the striatum and cortexes of female HD transgenic mice. Furthermore, serum levels of core 1 type O-glycans decreased and were undetected for core 2 type O-glycans for HD transgenic mice. In glycosphingolipids, GD1a in brain tissue and GM2-NeuGc serum levels were found to have increased and decreased, respectively, in HD transgenic mice compared to those of the control group mice. Total glycome expression levels are significantly different between HD transgenic and control group mice. Glycoblotting combined with MALDI-TOF/MS total glycomics warrants a comprehensive, effective, novel and versatile technique for qualitative and quantitative analysis of total glycome expression levels. Furthermore, glycome-focused studies of both environmentally and genetically rooted neurodegenerative diseases are promising candidates for the discovery of potential disease glyco-biomarkers in the post-genome era. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Numerical impact simulation of gradually increased kinetic energy transfer has the potential to break up folded protein structures resulting in cytotoxic brain tissue edema.

    PubMed

    von Holst, Hans; Li, Xiaogai

    2013-07-01

    Although the consequences of traumatic brain injury (TBI) and its treatment have been improved, there is still a substantial lack of understanding the mechanisms. Numerical simulation of the impact can throw further lights on site and mechanism of action. A finite element model of the human head and brain tissue was used to simulate TBI. The consequences of gradually increased kinetic energy transfer was analyzed by evaluating the impact intracranial pressure (ICP), strain level, and their potential influences on binding forces in folded protein structures. The gradually increased kinetic energy was found to have the potential to break apart bonds of Van der Waals in all impacts and hydrogen bonds at simulated impacts from 6 m/s and higher, thereby superseding the energy in folded protein structures. Further, impacts below 6 m/s showed none or very slight increase in impact ICP and strain levels, whereas impacts of 6 m/s or higher showed a gradual increase of the impact ICP and strain levels reaching over 1000 KPa and over 30%, respectively. The present simulation study shows that the free kinetic energy transfer, impact ICP, and strain levels all have the potential to initiate cytotoxic brain tissue edema by unfolding protein structures. The definition of mild, moderate, and severe TBI should thus be looked upon as the same condition and separated only by a gradual severity of impact.

  15. Liver X receptor-β improves autism symptoms via downregulation of β-amyloid expression in cortical neurons.

    PubMed

    Zhang, Ji-Xiang; Zhang, Jun; Li, Ye

    2016-05-06

    We study the effect of liver X receptor β (LXRβ) on β-amyloid (Aβ) peptide generation and autism behaviors by conducting an animal experiment. In autistic mice treated with LXRβ agonist T0901317, enzyme linked immunosorbent assay was used to measure Aβ in brain tissue homogenates. Western blot was used to detect Aβ precursors, Aβ degradation and secretase enzymes, and expression of autophagy-related proteins and Ras/Raf/Erkl/2 signaling pathway proteins in brain tissue. Changes in autism spectrum disorder syndromes of the BTBR mice were compared before and after T0901317 treatment. Compared with the control group, autistic mice treated with LXRβ agonist T0901317 showed significantly lower Aβ level in brain tissue (P < 0.05), significantly higher Aβ degradation enzyme (NEP, IDE proteins) levels (all P < 0.05), significantly lower Aβ secretase enzyme BACE1 protein level (P < 0.05), and significantly lower Ras, P-C-Raf, C-Raf, P-Mekl/2, P-Erkl/2 protein levels (all P < 0.05). BTBR mice treated with T0901317 showed improvements in repetitive stereotyped behavior, inactivity, wall-facing standing time, self-combing time and center stay time, stayed longer in platform quadrant, and crossed the platform more frequently (all P < 0.05). LXRβ could potentially reduce brain Aβ generation by inhibiting Aβ production and promoting Aβ degradation, thereby increasing the expression of autophagy-related proteins, reducing Ras/Raf/Erkl/2 signaling pathway proteins, and improving autism behaviors.

  16. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  17. The effect of piracetam on brain damage and serum nitric oxide levels in dogs submitted to hemorrhagic shock.

    PubMed

    Ozkan, Seda; Ikizceli, Ibrahim; Sözüer, Erdoğan Mütevelli; Avşaroğullari, Levent; Oztürk, Figen; Muhtaroğlu, Sebahattin; Akdur, Okhan; Küçük, Can; Durukan, Polat

    2008-10-01

    To demonstrate the effect of piracetam on changes in brain tissue and serum nitric oxide levels in dogs submitted to hemorrhagic shock. The subjects were randomized into four subgroups each consisting of 10 dogs. Hemorrhagic shock was induced in Group I for 1 hour and no treatment was given to this group. Blood and saline solutions were administered to Group II following 1 hour hemorrhagic shock. Blood and piracetam were given to Group III following 1 hour shock. No shock was induced and no treatment was applied to Group IV. Blood samples were obtained at the onset of the experiment and at 60, 120 and 180 minutes for nitric oxide analysis. For histopathological examination, brain tissue samples were obtained at the end of the experiment. The observed improvement in blood pressure and pulse rates in Group III was more than in Group II. Nitric oxide levels were increased in Group I; however, no correlation between piracetam and nitric oxide levels was determined. It was seen that recovery in brain damage in Group III was greater than in the control group. Piracetam, added to the treatment, may ecrease ischemic damage in hemorrhagic shock.

  18. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels.

    PubMed

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F; Eszes, Marika; Faull, Richard L M; Curtis, Maurice A; Waldvogel, Henry J; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V; Coppola, Giovanni; Yang, X William

    2016-07-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=-0.41, p=5.5×10-8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels.

  19. Huntington's disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels

    PubMed Central

    Horvath, Steve; Langfelder, Peter; Kwak, Seung; Aaronson, Jeff; Rosinski, Jim; Vogt, Thomas F.; Eszes, Marika; Faull, Richard L.M.; Curtis, Maurice A.; Waldvogel, Henry J.; Choi, Oi-Wa; Tung, Spencer; Vinters, Harry V.; Coppola, Giovanni; Yang, X. William

    2016-01-01

    Age of Huntington's disease (HD) motoric onset is strongly related to the number of CAG trinucleotide repeats in the huntingtin gene, suggesting that biological tissue age plays an important role in disease etiology. Recently, a DNA methylation based biomarker of tissue age has been advanced as an epigenetic aging clock. We sought to inquire if HD is associated with an accelerated epigenetic age. DNA methylation data was generated for 475 brain samples from various brain regions of 26 HD cases and 39 controls. Overall, brain regions from HD cases exhibit a significant epigenetic age acceleration effect (p=0.0012). A multivariate model analysis suggests that HD status increases biological age by 3.2 years. Accelerated epigenetic age can be observed in specific brain regions (frontal lobe, parietal lobe, and cingulate gyrus). After excluding controls, we observe a negative correlation (r=−0.41, p=5.5×10−8) between HD gene CAG repeat length and the epigenetic age of HD brain samples. Using correlation network analysis, we identify 11 co-methylation modules with a significant association with HD status across 3 broad cortical regions. In conclusion, HD is associated with an accelerated epigenetic age of specific brain regions and more broadly with substantial changes in brain methylation levels. PMID:27479945

  20. Alterations in DNA Methylation of Fkbp5 as a Determinant of Blood-brain Correlation of Glucocorticoid Exposure

    PubMed Central

    Ewald, Erin R.; Wand, Gary S.; Seifuddin, Fayaz; Yang, Xiaoju; Tamashiro, Kellie L.; Potash, James B.; Zandi, Peter; Lee, Richard S.

    2014-01-01

    Summary Background Epigenetic studies that utilize peripheral tissues to identify molecular substrates of neuropsychiatric disorders rely on the assumption that disease-relevant, cellular alterations that occur in the brain are mirrored and detectable in peripheral tissues such as blood. We sought to test this assumption by using a mouse model of Cushing’s disease and asking whether epigenetic changes induced by glucocorticoids can be correlated between these tissue types. Methods Mice were treated with different doses of glucocorticoids in their drinking water for four weeks to assess gene expression and DNA methylation (DNAm) changes in the stress response gene Fkbp5. Results Significant linear relationships were observed between DNAm and four-week mean plasma corticosterone levels for both blood (R2 = 0.68, P = 7.1×10−10) and brain (R2 = 0.33, P = 0.001). Further, degree of methylation change in blood correlated significantly with both methylation (R2 = 0.49, P = 2.7×10−5) and expression (R2 = 0.43, P = 3.5×10−5) changes in hippocampus, with the notable observation that methylation changes occurred at different intronic regions between blood and brain tissues. Conclusion Although our findings are limited to several intronic CpGs in a single gene, our results demonstrate that DNA from blood can be used to assess dynamic, glucocorticoid-induced changes occurring in the brain. However, for such correlation analyses to be effective, tissue-specific locations of these epigenetic changes may need to be considered when investigating brain-relevant changes in peripheral tissues. PMID:24767625

  1. Alterations in DNA methylation of Fkbp5 as a determinant of blood-brain correlation of glucocorticoid exposure.

    PubMed

    Ewald, Erin R; Wand, Gary S; Seifuddin, Fayaz; Yang, Xiaoju; Tamashiro, Kellie L; Potash, James B; Zandi, Peter; Lee, Richard S

    2014-06-01

    Epigenetic studies that utilize peripheral tissues to identify molecular substrates of neuropsychiatric disorders rely on the assumption that disease-relevant, cellular alterations that occur in the brain are mirrored and detectable in peripheral tissues such as blood. We sought to test this assumption by using a mouse model of Cushing's disease and asking whether epigenetic changes induced by glucocorticoids can be correlated between these tissue types. Mice were treated with different doses of glucocorticoids in their drinking water for four weeks to assess gene expression and DNA methylation (DNAm) changes in the stress response gene Fkbp5. Significant linear relationships were observed between DNAm and four-week mean plasma corticosterone levels for both blood (R(2)=0.68, P=7.1×10(-10)) and brain (R(2)=0.33, P=0.001). Further, degree of methylation change in blood correlated significantly with both methylation (R(2)=0.49, P=2.7×10(-5)) and expression (R(2)=0.43, P=3.5×10(-5)) changes in hippocampus, with the notable observation that methylation changes occurred at different intronic regions between blood and brain tissues. Although our findings are limited to several intronic CpGs in a single gene, our results demonstrate that DNA from blood can be used to assess dynamic, glucocorticoid-induced changes occurring in the brain. However, for such correlation analyses to be effective, tissue-specific locations of these epigenetic changes may need to be considered when investigating brain-relevant changes in peripheral tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Tissue-specific thyroid hormone regulation of gene transcripts encoding iodothyronine deiodinases and thyroid hormone receptors in striped parrotfish (Scarus iseri).

    PubMed

    Johnson, Kaitlin M; Lema, Sean C

    2011-07-01

    In fish as in other vertebrates, the diverse functions of thyroid hormones are mediated at the peripheral tissue level through iodothyronine deiodinase (dio) enzymes and thyroid hormone receptor (tr) proteins. In this study, we examined thyroid hormone regulation of mRNAs encoding the three deiodinases dio1, dio2 and dio3 - as well as three thyroid hormone receptors trαA, trαB and trβ - in initial phase striped parrotfish (Scarus iseri). Parrotfish were treated with dissolved phase T(3) (20 nM) or methimazole (3 mM) for 3 days. Treatment with exogenous T(3) elevated circulating T(3), while the methimazole treatment depressed plasma T(4). Experimentally-induced hyperthyroidism increased the relative abundance of transcripts encoding trαA and trβ in the liver and brain, but did not affect trαB mRNA levels in either tissue. In both sexes, methimazole-treated fish exhibited elevated dio2 transcripts in the liver and brain, suggesting enhanced outer-ring deiodination activity in these tissues. Accordingly, systemic hyperthyroidism elevated relative dio3 transcript levels in these same tissues. In the gonad, however, patterns of transcript regulation were distinctly different with elevated T(3) increasing mRNAs encoding dio2 in testicular and ovarian tissues and dio3, trαA and trαB in the testes only. Thyroid hormone status did not affect dio1 transcript abundance in the liver, brain or gonads. Taken as a whole, these results demonstrate that thyroidal status influences relative transcript abundance for dio2 and dio3 in the liver, provide new evidence for similar patterns of dio2 and dio3 mRNA regulation in the brain, and make evident that fish exhibit tr subtype-specific transcript abundance changes to altered thyroid status. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Quantitative detection of Toxoplasma gondii in tissues of experimentally infected turkeys and in retail turkey products by magnetic-capture PCR.

    PubMed

    Koethe, Martin; Straubinger, Reinhard K; Pott, Susan; Bangoura, Berit; Geuthner, Anne-Catrin; Daugschies, Arwid; Ludewig, Martina

    2015-12-01

    Magnetic-capture PCR was applied for the quantitative detection of Toxoplasma gondii in tissues of experimentally infected turkeys and retail turkey meat products. For experimental infection, three T. gondii strains (ME49, CZ-Tiger, NED), varying infectious doses in different matrices (organisms in single mouse brains or 10(3), 10(5), or 10(6) oocysts in buffer) were used. From all animals, breast, thigh, and drumstick muscle tissues and for CZ-Tiger-infected animals additionally brains and hearts were analyzed. Using the magnetic-capture PCR large volumes of up to 100 g were examined. Our results show that most T. gondii parasites are present in brain and heart tissue. Of the three skeletal muscle types, drumsticks were affected at the highest and breast at the lowest level. Type III strain (NED) seems to be less efficient in infecting turkeys compared to type II strains, because only few tissues of NED infected animals contained T. gondii DNA. Furthermore, the number of detected parasitic stages increased with the level of infectious dose. Infection mode by either oocyst or tissue cyst stage did not have an effect on the amount of T. gondii present in tissues. In retail turkey meat products T. gondii DNA was not detectable although a contact with the parasite was inferred by serology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Photon Entanglement Through Brain Tissue

    PubMed Central

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-01-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness. PMID:27995952

  5. Autism BrainNet: A network of postmortem brain banks established to facilitate autism research.

    PubMed

    Amaral, David G; Anderson, Matthew P; Ansorge, Olaf; Chance, Steven; Hare, Carolyn; Hof, Patrick R; Miller, Melissa; Nagakura, Ikue; Pickett, Jane; Schumann, Cynthia; Tamminga, Carol

    2018-01-01

    Autism spectrum disorder (ASD or autism) is a neurodevelopmental condition that affects over 1% of the population worldwide. Developing effective preventions and treatments for autism will depend on understanding the genetic perturbations and underlying neuropathology of the disorder. While evidence from magnetic resonance imaging and other noninvasive techniques points to altered development and organization of the autistic brain, these tools lack the resolution for identifying the cellular and molecular underpinnings of the disorder. Postmortem studies of high-quality human brain tissue currently represent the only viable option to pursuing these types of studies. However, the availability of high-quality ASD brain tissue has been extremely limited. Here we describe the establishment of a privately funded tissue bank, Autism BrainNet, a network of brain collection sites that work in a coordinated fashion to develop an adequate library of human postmortem brain tissues. Autism BrainNet was initiated as a collaboration between the Simons Foundation and Autism Speaks, and is currently funded by the Simons Foundation Autism Research Initiative. Autism BrainNet has collection sites (nodes) in California, Texas, New York, and Massachusetts; an affiliated, international node is located in Oxford, England. All donations to this network become part of a consolidated pool of tissue that is distributed to qualified investigators worldwide to carry out autism research. An essential component of this program is a widespread outreach program that highlights the need for postmortem brain donations to families affected by autism, led by the Autism Science Foundation. Challenges include an outreach campaign that deals with a disorder beginning in early childhood, collecting an adequate number of donations to deal with the high level of biologic heterogeneity of autism, and preparing this limited resource for optimal distribution to the greatest number of investigators. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study.

    PubMed

    Yuan, Hong; Zhang, Lei; Frank, Jonathan E; Inscoe, Christina R; Burk, Laurel M; Hadsell, Mike; Lee, Yueh Z; Lu, Jianping; Chang, Sha; Zhou, Otto

    2015-09-01

    Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 μm wide and spaced at 900 μm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.

  7. MOK, a pharmacopuncture medicine, regulates thyroid dysfunction in L-thyroxin-induced hyperthyroidism in rats through the regulation of oxidation and the TRPV1 ion channel.

    PubMed

    Hwang, Ji Hye; Kang, Seok Yong; Kang, An Na; Jung, Hyo Won; Jung, Chul; Jeong, Jin-Ho; Park, Yong-Ki

    2017-12-15

    In this study, we evaluated the therapeutic effect of MOK, a pharmacopuncture medicine, on thyroid dysfunction in L-thyroxin (LT4)-induced hyperthyroidism rats. The experimental hyperthyroidism model was prepared by the intraperitoneal injection of LT4 (0.5 mg/kg) once daily for 2 weeks in SD rats. MOK extract was injected at doses of 0.3 or 3 mg/kg on acupuncture points in the thyroid glands of LT4-induced hypothyroidism rats once a day for 2 weeks. The body temperature, body weight, and food/water intake were measured once a week for 2 weeks. The levels of thyroid hormones, total cholesterol, LDL-cholesterol, GOT, and GPT were measured in the sera of rats using ELISA and an automatic blood analyzer. The histological changes of thyroid tissues were observed by H&E staining. The expression of thermo-regulating protein, TRPV1 was determined by western blot in dorsal root ganglion (DRG) and brain tissues. We also measured the contents of GSH in the liver and antioxidant enzymes, SOD, and catalase in the liver, heart, and brain tissues by enzyme-based assay and Western blot, respectively. The acupuncture of MOK extract on the thyroid gland of LT4-induced hyperthyroidism rats significantly decreased the body temperature, and did not change body weight and food and water intakes. MOK acupuncture significantly increased the level of TSH, and decreased the levels of T3 and T4 in hyperthyroidism rats. The expression of TRPV1 was inhibited in both DRG and brain tissues after MOK acupuncture, and the levels of GOT, GPT, total cholesterol, and LDL-cholesterol were also decreased. MOK acupuncture also inhibited the pathological feature with follicular lining epithelial thicknesses and increased follicular colloid depositions in the thyroid glands of hypothyroidism. MOK acupuncture significantly increased hepatic GSH levels and decreased the expression of SOD and catalase in the liver, heart, and brain tissues of hyperthyroidism rats. These results suggest that the pharmacopuncture with MOK extract in hyperthyroidism can improve the pathophysiological changes through regulating the body temperature, thyroid hormones imbalance, lipid accumulation, and oxidation. This anti-hyperthyroidism effect of MOK pharmacopuncture is thought to be related to the control of thermo-regulating protein TRPV1 in DRG and brain.

  8. Human brains found in a fire-affected 4000-years old Bronze Age tumulus layer rich in soil alkalines and boron in Kutahya, Western Anatolia.

    PubMed

    Altinoz, M A; Ince, B; Sav, A; Dincer, A; Cengiz, S; Mercan, S; Yazici, Z; Bilgen, M N

    2014-02-01

    Undecomposed human bodies and organs always attracted interest in terms of understanding biological tissue stability and immortality. Amongst these, cases of natural mummification found in glaciers, bog sediments and deserts caused even more attention. In 2010, an archeological excavation of a Bronze Age layer in a tumulus near the Western Anatolia city Kütahya revealed fire affected regions with burnt human skeletons and charred wooden objects. Inside of the cracked skulls, undecomposed brains were discernible. To analyze the burial taphonomy of the rare phenomenon of brain preservation, we analyzed brains, bone, teeth and surrounding soils elements using Inductively Coupled Plasma-Mass Spectrometer (ICP-MS). Adipocere formation or saponification of postmortem tissue fat requires high levels of alkalinity and especially potassium. Indeed, ICP-MS analysis of the brain, teeth and bone and also of the surrounding soil revealed high levels of potassium, magnesium, aluminum and boron, which are compatible with the famous role of Kütahya in tile production with its soil containing high level of alkalines and tile-glazing boron. Fatty acid chromatography revealed simultaneous saturation of fats and protection of fragile unsaturated fatty acids consistent with soil-presence of both pro-oxidant and anti-oxidant trace metals. Computerized tomography revealed protection of diencephalic, metencephalic and occipital tissue in one of the best-preserved specimens. Boron was previously found as an intentional preservative of Tutankhamen and Deir el Bahari mummies. Here, in natural soil with its insect-repellant, anti-bacterial and fire-resistance qualities it may be a factor to preserve heat-affected brains as almost bioporcellain specimens. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Nonthermal ablation in the rat brain using focused ultrasound and an ultrasound contrast agent: long-term effects

    PubMed Central

    McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia

    2016-01-01

    OBJECTIVE Thermal ablation with transcranial MRI-guided focused ultrasound (FUS) is currently under investigation as a less invasive alternative to radiosurgery and resection. A major limitation of the method is that its use is currently restricted to centrally located brain targets. The combination of FUS and a microbubble-based ultrasound contrast agent greatly reduces the ultrasound exposure level needed to ablate brain tissue and could be an effective means to increase the “treatment envelope” for FUS in the brain. This method, however, ablates tissue through a different mechanism: destruction of the microvasculature. It is not known whether nonthermal FUS ablation in substantial volumes of tissue can safely be performed without unexpected effects. The authors investigated this question by ablating volumes in the brains of normal rats. METHODS Overlapping sonications were performed in rats (n = 15) to ablate a volume in 1 hemisphere per animal. The sonications (10-msec bursts at 1 Hz for 60 seconds; peak negative pressure 0.8 MPa) were combined with the ultrasound contrast agent Optison (100 μl/kg). The rats were followed with MRI for 4–9 weeks after FUS, and the brains were examined with histological methods. RESULTS Two weeks after sonication and later, the lesions appeared as cyst-like areas in T2-weighted MR images that were stable over time. Histological examination demonstrated well-defined lesions consisting of a cyst-like cavity that remained lined by astrocytic tissue. Some white matter structures within the sonicated area were partially intact. CONCLUSIONS The results of this study indicate that nonthermal FUS ablation can be used to safely ablate tissue volumes in the brain without unexpected delayed effects. The findings are encouraging for the use of this ablation method in the brain. PMID:26848919

  10. Human primitive brain displays negative mitochondrial-nuclear expression correlation of respiratory genes.

    PubMed

    Barshad, Gilad; Blumberg, Amit; Cohen, Tal; Mishmar, Dan

    2018-06-14

    Oxidative phosphorylation (OXPHOS), a fundamental energy source in all human tissues, requires interactions between mitochondrial (mtDNA)- and nuclear (nDNA)-encoded protein subunits. Although such interactions are fundamental to OXPHOS, bi-genomic coregulation is poorly understood. To address this question, we analyzed ∼8500 RNA-seq experiments from 48 human body sites. Despite well-known variation in mitochondrial activity, quantity, and morphology, we found overall positive mtDNA-nDNA OXPHOS genes' co-expression across human tissues. Nevertheless, negative mtDNA-nDNA gene expression correlation was identified in the hypothalamus, basal ganglia, and amygdala (subcortical brain regions, collectively termed the "primitive" brain). Single-cell RNA-seq analysis of mouse and human brains revealed that this phenomenon is evolutionarily conserved, and both are influenced by brain cell types (involving excitatory/inhibitory neurons and nonneuronal cells) and by their spatial brain location. As the "primitive" brain is highly oxidative, we hypothesized that such negative mtDNA-nDNA co-expression likely controls for the high mtDNA transcript levels, which enforce tight OXPHOS regulation, rather than rewiring toward glycolysis. Accordingly, we found "primitive" brain-specific up-regulation of lactate dehydrogenase B ( LDHB ), which associates with high OXPHOS activity, at the expense of LDHA , which promotes glycolysis. Analyses of co-expression, DNase-seq, and ChIP-seq experiments revealed candidate RNA-binding proteins and CEBPB as the best regulatory candidates to explain these phenomena. Finally, cross-tissue expression analysis unearthed tissue-dependent splice variants and OXPHOS subunit paralogs and allowed revising the list of canonical OXPHOS transcripts. Taken together, our analysis provides a comprehensive view of mito-nuclear gene co-expression across human tissues and provides overall insights into the bi-genomic regulation of mitochondrial activities. © 2018 Barshad et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Comparative toxicity and tissue distribution of lead acetate in weanling and adult rats.

    PubMed Central

    Rader, J I; Peeler, J T; Mahaffey, K R

    1981-01-01

    The relative toxicity of low doses of lead acetate provided steadily in drinking water or by mouth once per week was studied in weanling and adult rats. Free erythrocyte protoporphyrin and urinary delta-aminolevulinic acid levels were measured, as well as lead levels in blood and kidney. The accumulation of lead in brain tissue and in bone (femur) was measured to determine the effect of age and schedule of administration on tissue distribution and retention of lead. Total intakes of lead during the 60-week experimental period were: weanling and adult rats exposed to drinking water supplemented with 200 microgram of lead acetate/ml: 127 +/- 10 mg and 160 +/- 16 mg, respectively; weanling and adult rats dosed with lead acetate orally once per week: 132 mg and 161 mg, respectively. Increased toxic effects of lead in the weanling animals were apparent in most of the parameters measured (urinary delta-aminolevulinic acid and blood, brain, femur and kidney lead levels). This pattern was observed in weanling rats exposed to lead steadily through drinking water or dosed orally with an equivalent quantity of lead once per week. Lead levels in blood were highly correlated with the accumulation of lead in brain, femur, and kidney tissue in both groups of weanling rats. In adult rats, significant correlations between blood lead and kidney lead and between blood lead and femur lead were found only in the rats receiving lead steadily in drinking water. PMID:7333253

  12. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable themore » differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i.e. cerebellum versus heart for differential variation at the gene, isoform, and transcription start site (TSS), and promoter level showed that several of the genes differed at all four levels. Interestingly, these genes were mainly annotated to the “electron transport chain” and neuronal differentiation, emphasizing that “tissue important” genes are regulated at several levels. Furthermore, our analysis shows that the “across tissue approach” has a promising potential when screening for possible explanations for variations, such as those observed at the gene expression levels.« less

  13. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.

    PubMed

    Chia, L S; Thompson, J E; Moscarello, M A

    1984-09-05

    Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.

  14. A survey of human brain transcriptome diversity at the single cell level.

    PubMed

    Darmanis, Spyros; Sloan, Steven A; Zhang, Ye; Enge, Martin; Caneda, Christine; Shuer, Lawrence M; Hayden Gephart, Melanie G; Barres, Ben A; Quake, Stephen R

    2015-06-09

    The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.

  15. Penetration of immunoreagents in Vibratome-sectioned brain: a light and electron microscopic study.

    PubMed

    Piekut, D T; Casey, S M

    1983-05-01

    Immunocytochemical studies on the localization of peptides at the ultrastructural level have most frequently involved the application of the peroxidase--antiperoxidase (PAP) method of immunocytochemistry and the use of the preembedding or postembedding staining procedures. The present study was designed to determine the depth of penetration of Vibratome tissue sections by immunoreagents used in the preembedding method in which immunostaining of unembedded fixed tissue sections is accomplished prior to tissue dehydration and embedment. Our data indicate that penetration of immunoreagents is restricted to the superficial 8-9 micrometers of a 80-micrometers thick Vibratome tissue section of hypothalamus of brain using antisera generated against arginine vasopressin. The final immunoreaction product visualized in a Vibratome tissue section may reflect only a fraction of the amount of hormone contained within the thickness of the tissue section.

  16. Grating-based tomography of human tissues

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  17. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    PubMed

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.

  18. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  20. Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors.

    PubMed

    Kiyatkin, Eugene A; Wakabayashi, Ken T

    2015-01-21

    Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between "active" and "passive" glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the "neuronal" hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism.

  1. Nuclear microscopy in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Makjanic, Jagoda; Watt, Frank

    1999-04-01

    The elemental composition of the two types of brain lesions which characterise Alzheimer's disease (AD) has been the subject of intense scrutiny over the last decade, ever since it was proposed that inorganic trace elements, particularly aluminium, might be implicated in the pathogenesis of the disease. The major evidence for this involvement was the detection of aluminium in the characteristic lesions of the AD brain; neuritic plaques and neurofibrillary tangles (NFTs). Using the powerful combination of Particle-Induced X-ray Emission (PIXE), Rutherford Backscattering Spectrometry (RBS) and Scanning Transmission Ion Microscopy (STIM), it is possible to image and analyse structures in brain sections without recourse to chemical staining. Previous results on elemental composition of senile plaques indicated the absence of aluminium at the 15 parts per million level. We have more recently focused on the analysis of neurofibrillary tangles (NFTs), destructive structural defects within neurons. Imaging and analysis of neurons in brain tissue presented a greater challenge due to the small dimensional size compared with the plaques. We describe the methodology and the results of imaging and analysing neurons in brain tissue sections using Nuclear Microscopy. Our results show that aluminium is not present in either neurons or surrounding tissue in unstained sections at the 20 ppm level, but can be observed in stained sections. We also report elemental concentrations showing significant elevations of phosphorus, sulphur, chlorine, iron and zinc.

  2. The effects of different fractions of Coriandrum sativum on pentylenetetrazole-induced seizures and brain tissues oxidative damage in rats

    PubMed Central

    Anaeigoudari, Akbar; Hosseini, Mahmoud; Karami, Reza; Vafaee, Farzaneh; Mohammadpour, Toktam; Ghorbani, Ahmad; Sadeghnia, Hamid Reza

    2016-01-01

    Objective: In the present work, the effects of different fractions of Coriandrum sativum (C. sativum), on pentylenetetrazole (PTZ)-induced seizures and brain tissues oxidative damage were investigated in rats. Materials and Methods: The rats were divided into the following groups: (1) vehicle, (2) PTZ (90 mg/kg), (3) water fraction (WF) of C. sativum (25 and 100 mg/kg), (4) n-butanol fraction (NBF) of C. sativum (25 and 100 mg/kg), and (5) ethyl acetate fraction (EAF) of C. sativum (25 and 100 mg/kg). Results: The first generalized tonic-clonic seizures (GTCS) latency in groups treated with 100 mg /kg of WF or EAF was significantly higher than that of PTZ group (p<0.01). In contrast to WF, the EAF and NBF were not effective in increasing the first minimal clonic seizure (MCS) latency. Malondialdehyde (MDA) levels in both cortical and hippocampal tissues of PTZ group were significantly higher than those of control animals (p<0.001). Pretreatment with WF, NBF, or EAF resulted in a significant reduction in the MDA levels of hippocampi (p<0.01 - p<0.001). Following PTZ administration, a significant reduction in total thiol groups was observed in the brain tissues (p<0.05). Pretreatment with WF and NBF significantly elevated thiol concentrations in cortical and hippocampal tissues, respectively (p<0.05). Conclusion: The present study showed that different fractions of C. sativum possess antioxidant activity in the brain and WF and EAF of this plant have anticonvulsant effects. PMID:27222836

  3. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury.

    PubMed

    Rosenthal, Guy; Hemphill, J Claude; Sorani, Marco; Martin, Christine; Morabito, Diane; Obrist, Walter D; Manley, Geoffrey T

    2008-06-01

    Despite the growing clinical use of brain tissue oxygen monitoring, the specific determinants of low brain tissue oxygen tension (P(bt)O2) following severe traumatic brain injury (TBI) remain poorly defined. The objective of this study was to evaluate whether P(bt)O2 more closely reflects variables related to cerebral oxygen diffusion or reflects cerebral oxygen delivery and metabolism. Prospective observational study. Level I trauma center. Fourteen TBI patients with advanced neuromonitoring underwent an oxygen challenge (increase in FiO2 to 1.0) to assess tissue oxygen reactivity, pressure challenge (increase in mean arterial pressure) to assess autoregulation, and CO2 challenge (hyperventilation) to assess cerebral vasoreactivity. None. P(bt)O2 was measured directly with a parenchymal probe in the least-injured hemisphere. Local cerebral blood flow (CBF) was measured with a parenchymal thermal diffusion probe. Cerebral venous blood gases were drawn from a jugular bulb venous catheter. We performed 119 measurements of PaO2, arterial oxygen content (CaO2), jugular bulb venous oxygen tension (PVO2), venous oxygen content (CVO2), arteriovenous oxygen content difference (AVDO2), and local cerebral metabolic rate of oxygen (locCMRO2). In multivariable analysis adjusting for various variables of cerebral oxygen delivery and metabolism, the only statistically significant relationship was that between P(bt)O2 and the product of CBF and cerebral arteriovenous oxygen tension difference (AVTO2), suggesting a strong association between brain tissue oxygen tension and diffusion of dissolved plasma oxygen across the blood-brain barrier. Measurements of P(bt)O2 represent the product of CBF and the cerebral AVTO2 rather than a direct measurement of total oxygen delivery or cerebral oxygen metabolism. This improved understanding of the cerebral physiology of P(bt)O2 should enhance the clinical utility of brain tissue oxygen monitoring in patients with TBI.

  4. Differentiating the Influences of Aging and Adiposity on Brain Weights, Levels of Serum and Brain Cytokines, Gastrointestinal Hormones, and Amyloid Precursor Protein.

    PubMed

    Banks, William A; Abrass, Christine K; Hansen, Kim M

    2016-01-01

    Aging and obesity exert important effects on disease. Differentiating these effects is difficult, however, because weight gain often accompanies aging. Here, we used a nested design of aged, calorically restricted, and refed rats to measure changes in brain and blood levels of cytokines and gastrointestinal hormones, brain amyloid precursor protein levels, and brain and body weights. By comparing groups and using path analysis, we found divergent influences of chronological aging versus body weight, our main findings being (i) changes in whole brain weight and serum macrophage colony-stimulating factor levels correlated better with body weight than with chronological aging, (ii) a decrease in brain cytokines and brain plasminogen activator inhibitor levels correlated better with chronological aging than with body weight, (iii) serum erythropoietin levels were influenced by both body weight and aging, (iv) serum plasminogen activator inhibitor, serum cytokines, and brain tumor necrosis factor were not influenced by aging or body weight, and (v) brain amyloid precursor protein more closely related to body weight and serum levels of gastrointestinal hormones than to brain weight, chronological aging, or cytokines. These findings show that although aging and body weight interact, their influences are distinct not only among various cytokines and hormones but also between the central nervous system and the peripheral tissue compartments. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  5. Rough Sets and Stomped Normal Distribution for Simultaneous Segmentation and Bias Field Correction in Brain MR Images.

    PubMed

    Banerjee, Abhirup; Maji, Pradipta

    2015-12-01

    The segmentation of brain MR images into different tissue classes is an important task for automatic image analysis technique, particularly due to the presence of intensity inhomogeneity artifact in MR images. In this regard, this paper presents a novel approach for simultaneous segmentation and bias field correction in brain MR images. It integrates judiciously the concept of rough sets and the merit of a novel probability distribution, called stomped normal (SN) distribution. The intensity distribution of a tissue class is represented by SN distribution, where each tissue class consists of a crisp lower approximation and a probabilistic boundary region. The intensity distribution of brain MR image is modeled as a mixture of finite number of SN distributions and one uniform distribution. The proposed method incorporates both the expectation-maximization and hidden Markov random field frameworks to provide an accurate and robust segmentation. The performance of the proposed approach, along with a comparison with related methods, is demonstrated on a set of synthetic and real brain MR images for different bias fields and noise levels.

  6. In vivo functional neurochemistry of human cortical cholinergic function during visuospatial attention

    PubMed Central

    Lindner, Michael; Bell, Tiffany; Iqbal, Somya; Mullins, Paul Gerald

    2017-01-01

    Cortical acetylcholine is involved in key cognitive processes such as visuospatial attention. Dysfunction in the cholinergic system has been described in a number of neuropsychiatric disorders. Levels of brain acetylcholine can be pharmacologically manipulated, but it is not possible to directly measure it in vivo in humans. However, key parts of its biochemical cascade in neural tissue, such as choline, can be measured using magnetic resonance spectroscopy (MRS). There is evidence that levels of choline may be an indirect but proportional measure of acetylcholine availability in brain tissue. In this study, we measured relative choline levels in the parietal cortex using functional (event-related) MRS (fMRS) during performance of a visuospatial attention task, with a modelling approach verified using simulated data. We describe a task-driven interaction effect on choline concentration, specifically driven by contralateral attention shifts. Our results suggest that choline MRS has the potential to serve as a proxy of brain acetylcholine function in humans. PMID:28192451

  7. The Exosome Secretory Pathway Transports Amyloid Precursor Protein Carboxyl-terminal Fragments from the Cell into the Brain Extracellular Space*

    PubMed Central

    Perez-Gonzalez, Rocio; Gauthier, Sebastien A.; Kumar, Asok; Levy, Efrat

    2012-01-01

    In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-β precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-β (Aβ). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and Aβ, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted Aβ, is harmful to the brain. PMID:23129776

  8. Hypothalamic vitamin D improves glucose homeostasis and reduces weight

    USDA-ARS?s Scientific Manuscript database

    Despite clear associations between vitamin D deficiency and obesity and/or type 2 diabetes, a causal relationship is not established. Vitamin D receptors (VDRs) are found within multiple tissues, including the brain. Given the importance of the brain in controlling both glucose levels and body weigh...

  9. Fetal fuels. I. Utilization of ketones by isolated tissues at various stages of maturation and maternal nutrition during late gestation.

    PubMed

    Shambaugh, G E; Mrozak, S C; Freinkel, N

    1977-06-01

    The availability and utilization of B-hydroxybutyrate as an alternate oxidative fuel during fasting hypoglycemia has been examined in the rat conceptus at 18 and 20 days gestation. A 48-hr maternal fast between days 16 and 18 or 18 and 20 resulted in a 50% fall in fetal glucose levels and a marked rise in B-hydroxybutyrate, i.e., 30-fold at 18 and 60-fold at 20 days. Tissue concentrations of B-hydroxybutyrate or acetoacetate did not exceed extracellular levels. Placenta, fetal brain, carcass, and liver all oxidized 14C-labeled B-hydroxybutyrate to 14CO2 when incubated in vitro in the presence of B-hydroxybutyrate. Highest rates of oxidation were apparent in the placenta, followed by brain, liver, and carcass. The D isomer of B-hydroxybutyrate appeared to be oxidized preferentially by all tissues studied. Despite levels of 3-ketoacid CoA transferase and acetoacetyl CoA thiolase lower at 18 than at 20 days, rates of oxidation in individual tissues incubated under identical concentrations of substrate were similar at both times. In liver and brain, increasing rates of 14CO2 generation proportionate to graded concentrations of B-hydroxybutyrate in vitro indicated that such rates were probably determined by substrate availability. B-hydroxybutyrate oxidation in extrahepatic fetal tissues was unaffected by maternal fasting. By contrast, fetal liver derived from fasted mothers generated significantly less 14CO2 from B-hydroxybutyrate than livers from fed mothers. It has been suggested that capabilities for ketone utilization are widespread in tissues of the conceptus, and that such utilization may fulfill in part the oxidative demands for continued anabolic growth during fasting hypoglycemia in the mother.

  10. Influence of JuA in evoking communication changes between the small intestines and brain tissues of rats and the GABAA and GABAB receptor transcription levels of hippocampal neurons.

    PubMed

    Wang, Xi-Xi; Ma, Gu-Ijie; Xie, Jun-Bo; Pang, Guang-Chang

    2015-01-15

    Jujuboside A (JuA) is a main active ingredient of semen ziziphi spinosae, which can significantly reduce spontaneous activity in mammals, increase the speed of falling asleep, prolong the sleeping time as well as improve the sleeping efficiency. In this study, the mechanism and the pathway of the sedative and hypnotic effect of JuA were investigated. After being treated with JuA (in vitro), the rat׳s small intestine tissues cultures were used to stimulate the brain tissues. Then 27 cytokine levels were detected in the two kinds of tissue culture via liquid protein chip technology; In addition, the cultured hippocampal neurons of rat were treated with JuA, and γ-aminobutyric acid (GABA) receptor subunits (GABAAα1, GABAAα5, GABAAβ1 and GABABR1) mRNAs were evaluated by Real-time PCR. The levels of IL-1α, MIP-1α, IL-1β and IL-2 were reduced significantly after 3h of treating the small intestine tissues with JuA (200µl/ml), and the concentration change rates, in order, were -59.3%, -3.59%, -50.1% and -49.4%; these cytokines were transmitted to brain tissues 2h later, which could lead to significant levels of reduction of IL-1α, IFN-γ, IP-10 and TNF-α; the concentration change rates were -62.4%, -25.7%, -55.2% and -38.5%, respectively. Further, the intercellular communication network diagram was mapped out, which could suggest the mechanism and the pathway of the sedative and hypnotic effect of JuA. The results also indicated that JuA (50µl/ml) increased significantly GABAAα1 receptor mRNAs and reduced GABABR1, mRNAs in hippocampal neurons after 24h of stimulation; however, all the mRNA transcription levels of GABAAα1,GABAAα5, GABAAβ1 and GABABR1 receptors increased significantly after 48h. JuA performed its specific sedative and hypnotic effect through not only adjusting GABA receptors subunit mRNAs expression, but also down-regulating the secretion of relevant inflammation cytokines on the intestinal mucosal system to affect the intercellular cytokine network between nerve cells in the brain. This mechanism is similar to that of melatonin. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Regional muscle tissue saturation is an indicator of global inadequate circulation during cardiopulmonary bypass: a randomized porcine study using muscle, intestinal and brain tissue metabolomics.

    PubMed

    Thomassen, Sisse Anette; Kjærgaard, Benedict; Sørensen, Preben; Andreasen, Jan Jesper; Larsson, Anders; Rasmussen, Bodil Steen

    2017-04-01

    Muscle tissue saturation (StO 2 ) measured with near-infrared spectroscopy has generally been considered a measurement of the tissue microcirculatory condition. However, we hypothesized that StO 2 could be more regarded as a fast and reliable measure of global than of regional circulatory adequacy and tested this with muscle, intestinal and brain metabolomics at normal and two levels of low cardiopulmonary bypass blood flow rates in a porcine model. Twelve 80 kg pigs were connected to normothermic cardiopulmonary bypass with a blood flow of 60 mL/kg/min for one hour, reduced randomly to 47.5 mL/kg/min (Group I) or 35 mL/kg/min (Group II) for one hour followed by one hour of 60 mL/kg/min in both groups. Regional StO 2 was measured continuously above the musculus gracilis (non-cannulated leg). Metabolomics were obtained by brain tissue oxygen monitoring system (Licox) measurements of the brain and microdialysis perfusate from the muscle, intestinal mucosa and brain. A non-parametric statistical method was used. The systemic parameters showed profound systemic ischaemia during low CPB blood flow. StO 2 did not change markedly in Group I, but in Group II, StO 2 decreased immediately when blood flow was reduced and, furthermore, was not restored despite blood flow being normalized. Changes in the metabolomics from the muscle, colon and brain followed the changes in StO 2 . We found, in this experimental cardiopulmonary bypass model, that StO 2 reacted rapidly when the systemic circulation became inadequate and, furthermore, reliably indicate insufficient global tissue perfusion even when the systemic circulation was restored after a period of systemic hypoperfusion.

  12. [Distributions of H3K27me3 and its modification enzymes in different tissues of mice].

    PubMed

    Wang, Yuying; Wang, Xinli; Zhang, Ran; Zhang, Zhiyan; Wang, Yu; Yang, Bo; Wang, Guanjie; Zhang, Xin; Ma, Fuhao; Xu, Hongye; Wu, Xiaohui; Zhang, Feng; Li, Qing

    2017-11-01

    Objective To investigate the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3) and its modification enzymes Zeste gene enhancer homolog 2 (EZH2), lysine-specific demethylase 6B (Kdm6B/JMJD3) and lysine-specific demethylase 6A (Kdm6A/UTX) in tissues and organs of 7-day and 2-month postnatal mice. Methods Immunohistochemistry was used to detect the expressions of H3K27me3 and its modification enzymes EZH2, JMJD3 and UTX in the brain, salivary glands, back fat, thymus, lung, heart, stomach, intestines, liver, testes, and skin of 7-day and 2-month mice. Real-time quantitative PCR was used to confirm the results. The relationships between H3K27me3 and its modification enzymes were analyzed statistically. Results Immunohistochemistry showed H3K27me3 persistently present in all examined tissues of 7-day and 2-month mice. EZH2 was persistently expressed in the brain, heart, liver, and skin of 7-day and 2-month mice, but only expressed in the salivary glands, adipose tissues, thymus, lung, intestines, and testes of 2-month mice. JMJD3 was expressed in the brain, salivary glands, adipose tissues, lung, heart, stomach, intestines, testes, skin of 7-day mice, but was not expressed in the lung, adipose tissues and stomach of 2-month mice. UTX was expressed in the brain, salivary glands, adipose tissues, lung, heart, testes, skin of 7-day mice, but only expressed in the testes of 2-month mice. Most mRNA of H3K27 modification enzymes were moderately or highly expressed as their immunohistochemical results were positive. Conclusion There was H3K27me3 persistently present in the all examined tissues at different stages. EZH2 was mostly expressed in the brain, salivary glands, adipose tissues, thymus, lung, heart, intestines, liver, testes and skin of 2-month-old mice. JMJD3 and UTX were mostly expressed in the brain, salivary glands, adipose tissues, lung, heart, skin and testes of 7-day-old mice. No significant association was found between the distribution of H3K27me3 and the expression of EZH2. There was also no obvious inverse distribution relationship between H3K27me3 and JMJD3 or UTX. Moreover, there was no negative relationship between the distribution of EZH2, JMJD3 and UTX. These results suggest that EZH2, JMJD3 and UTX may play important roles in many tissues of mice after birth. The levels of H3K27me3 and its modified enzymes may be controlled by multiple factors in vivo to fulfill complex physiological functions.

  13. Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain.

    PubMed

    Jing, Y; Liu, P; Leitch, B

    2016-01-15

    During the normal aging process, the brain undergoes a range of biochemical and structural alterations, which may contribute to deterioration of sensory and cognitive functions. Age-related deficits are associated with altered efficacy of synaptic neurotransmission. Emerging evidence indicates that levels of agmatine, a putative neurotransmitter in the mammalian brain, are altered in a region-specific manner during the aging process. The gross tissue content of agmatine in the prefrontal cortex (PFC) of aged rat brains is decreased whereas levels in the temporal cortex (TE) are increased. However, it is not known whether these changes in gross tissue levels are also mirrored by changes in agmatine levels at synapses and thus could potentially contribute to altered synaptic function with age. In the present study, agmatine levels in presynaptic terminals in the PFC and TE regions (300 terminals/region) of young (3month; n=3) and aged (24month; n=3) brains of male Sprague-Dawley rats were compared using quantitative post-embedding immunogold electron-microscopy. Presynaptic levels of agmatine were significantly increased in the TE region (60%; p<0.001) of aged rats compared to young rats, however no significant differences were detected in synaptic levels in the PFC region. Double immunogold labeling indicated that agmatine and glutamate were co-localized in the same synaptic terminals, and quantitative analyses revealed significantly reduced glutamate levels in agmatine-immunopositive synaptic terminals in both regions in aged rats compared to young animals. This study, for the first time, demonstrates differential effects of aging on agmatine and glutamate in the presynaptic terminals of PFC and TE. Future research is required to understand the functional significance of these changes and the underlying mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Protective effects of some creatine derivatives in brain tissue anoxia.

    PubMed

    Perasso, Luisa; Lunardi, Gian Luigi; Risso, Federica; Pohvozcheva, Anna V; Leko, Maria V; Gandolfo, Carlo; Florio, Tullio; Cupello, Aroldo; Burov, Sergey V; Balestrino, Maurizio

    2008-05-01

    Some derivatives more lipophylic than creatine, thus theoretically being capable to better cross the blood-brain barrier, were studied for their protective effect in mouse hippocampal slices. We found that N-amidino-piperidine is harmful to brain tissue, and that phosphocreatine is ineffective. Creatine, creatine-Mg-complex (acetate) and phosphocreatine-Mg-complex (acetate) increased the latency to population spike disappearance during anoxia. Creatine and creatine-Mg-complex (acetate) also increased the latency of anoxic depolarization, while the delay induced by phosphocreatine-Mg-complex (acetate) was of borderline significance (P = 0.056). Phosphocreatine-Mg-complex (acetate) significantly reduced neuronal hyperexcitability during anoxia, an effect that no other compound (including creatine itself) showed. For all parameters except reduced hyperexcitability the effects statistically correlated with tissue levels of creatine or phosphocreatine. Summing up, exogenous phosphocreatine and N-amidino piperidine are not useful for brain protection, while chelates of both creatine and phosphocreatine do replicate some of the known protective effects of creatine. In addition, phosphocreatine-Mg-complex (acetate) also reduced neuronal hyperexcitability during anoxia.

  15. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  16. Exendin-4 inhibits high-altitude cerebral edema by protecting against neurobiological dysfunction

    PubMed Central

    Sun, Zhong-Lei; Jiang, Xian-Feng; Cheng, Yuan-Chi; Liu, Ying-Fu; Yang, Kai; Zhu, Shuang-Long; Kong, Xian-Bin; Tu, Yue; Bian, Ke-Feng; Liu, Zhen-Lin; Chen, Xu-Yi

    2018-01-01

    The anti-inflammatory and antioxidant effects of exendin-4 (Ex-4) have been reported previously. However, whether (Ex-4) has anti-inflammatory and antioxidant effects on high-altitude cerebral edema (HACE) remains poorly understood. In this study, two rat models of HACE were established by placing rats in a hypoxic environment with a simulated altitude of either 6000- or 7000-m above sea level (MASL) for 72 hours. An altitude of 7000 MASL with 72-hours of hypoxia was found to be the optimized experimental paradigm for establishing HACE models. Then, in rats where a model of HACE was established by introducing them to a 7000 MASL environment with 72-hours of hypoxia treatment, 2, 10 and, 100 μg of Ex-4 was intraperitoneally administrated. The open field test and tail suspension test were used to test animal behavior. Routine methods were used to detect change in inflammatory cells. Hematoxylin-eosin staining was performed to determine pathological changes to brain tissue. Wet/dry weight ratios were used to measure brain water content. Evans blue leakage was used to determine blood-brain barrier integrity. Enzyme-linked immunosorbent assay (ELISA) was performed to measure markers of inflammation and oxidative stress including superoxide dismutase, glutathione, and malonaldehyde values, as well as interleukin-6, tumor necrosis factor-alpha, cyclic adenosine monophosphate levels in the brain tissue. Western blot analysis was performed to determine the levels of occludin, ZO-1, SOCS-3, vascular endothelial growth factor, EPAC1, nuclear factor-kappa B, and aquaporin-4. Our results demonstrate that Ex-4 preconditioning decreased brain water content, inhibited inflammation and oxidative stress, alleviated brain tissue injury, maintain blood-brain barrier integrity, and effectively improved motor function in rat models of HACE. These findings suggest that Ex-4 exhibits therapeutic potential in the treatment of HACE. PMID:29722317

  17. Life in the unthinking depths: energetic constraints on encephalization in marine fishes.

    PubMed

    Iglesias, T L; Dornburg, A; Brandley, M C; Alfaro, M E; Warren, D L

    2015-05-01

    Several hypotheses have been proposed to explain the limitation of brain size in vertebrates. Here, we test three hypotheses of brain size evolution using marine teleost fishes: the direct metabolic constraints hypothesis (DMCH), the expensive tissue hypothesis and the temperature-dependent hypothesis. Our analyses indicate that there is a robust positive correlation between encephalization and basal metabolic rate (BMR) that spans the full range of depths occupied by teleosts from the epipelagic (< 200 m), mesopelagic (200-1000 m) and bathypelagic (> 4000 m). Our results disentangle the effects of temperature and metabolic rate on teleost brain size evolution, supporting the DMCH. Our results agree with previous findings that teleost brain size decreases with depth; however, we also recover a negative correlation between trophic level and encephalization within the mesopelagic zone, a result that runs counter to the expectations of the expensive tissue hypothesis. We hypothesize that mesopelagic fishes at lower trophic levels may be investing more in neural tissue related to the detection of small prey items in a low-light environment. We recommend that comparative encephalization studies control for BMR in addition to controlling for body size and phylogeny. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  18. Banking brain tissue for research.

    PubMed

    Klioueva, Natasja; Bovenberg, Jasper; Huitinga, Inge

    2017-01-01

    Well-characterized human brain tissue is crucial for scientific breakthroughs in research of the human brain and brain diseases. However, the collection, characterization, management, and accessibility of brain human tissue are rather complex. Well-characterized human brain tissue is often provided from private, sometimes small, brain tissue collections by (neuro)pathologic experts. However, to meet the increasing demand for human brain tissue from the scientific community, many professional brain-banking activities aiming at both neurologic and psychiatric diseases as well as healthy controls are currently being initiated worldwide. Professional biobanks are open-access and in many cases run donor programs. They are therefore costly and need effective business plans to guarantee long-term sustainability. Here we discuss the ethical, legal, managerial, and financial aspects of professional brain banks. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nuclear Physics in a biological context

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2012-02-01

    A solid tissue can be soft like fat or brain, stiff like striated muscle and heart, or rigid like bone -- and of course every cell has a nucleus that contributes in some way small or large to tissue mechanics. Indeed, nuclei generally exhibit rheology and plasticity that reflects both the chromatin and the nuclear envelope proteins called lamins, all of which change in differentiation. Profiling of tissue nuclei shows that the nuclear intermediate filament protein Lamin-A/C varies over 30-fold between adult tissues and scales strongly with micro-elasticity of tissue, while other nuclear envelope components such as Lamin-B exhibit small variations. Lamin-A/C has been implicated in aging syndromes that affect muscle and fat but not brain, and we find nuclei in brain-derived cells are indeed dominated by Lamin-B and are much softer than nuclei derived from muscle cells with predominantly Lamin-A/C. In vitro, matrix elasticity can affect expression of nuclear envelope components in adult stem cells, and major changes in Lamin-A/C are indeed shown to direct lineage with lower levels favoring soft tissue and higher levels promoting rigid tissue lineage. Further molecular studies provide evidence that the nucleus transduces physical stress. References: (1) J.D. Pajerowski, K.N. Dahl, F.L. Zhong, P.J. Sammak, and D.E. Discher. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104: 15619-15624 (2007). (2) A. Buxboim, I. Ivanova, and D.E. Discher. Matrix Elasticity, Cytoskeletal Forces, and Physics of the Nucleus: how deeply do cells `feel' outside and in? Journal of Cell Science 123: 297-308 (2010).

  20. Characteristics of yak platelet derived growth factors-alpha gene and expression in brain tissues.

    PubMed

    Huang, Zhenhua; Pan, Yangyang; Liu, Penggang; Yu, Sijiu; Cui, Yan

    2017-05-29

    Platelet derived growth factors (PDGFs) are key components of autocrine and paracrine signaling, both of which play important roles in mammalian developmental processes. PDGF expression levels also relate to oxygen levels. The characteristics of yak PDGFs, which are indigenous to hypoxic environments, have not been clearly described until the current study. We amplified the open reading frame encoding yak (Bos grunniens) platelet derived growth factor-a (PDGFA) from a yak skin tissue cDNA library by reverse transcriptase polymerase chain reaction (PCR) using specific primers and Sanger dideoxy sequencing. Expression of PDGFA mRNA in different portions of yak brain tissue (cerebrum, cerebellum, hippocampus, and spinal cord) was detected by quantitative real-time PCR (qRT-PCR). PDGFA protein expression levels and its location in different portions of the yak brain were evaluated by western blot and immunohistochemistry. We obtained a yak PDGFA 755 bp cDNA gene fragment containing a 636 bp open reading frame, encoding 211 amino acids (GenBank: KU851801). Phylogenetic analysis shows yak PDGFA to be well conserved, having 98.1% DNA sequence identity to homologous Bubalus bubalus and Bos taurus PDGFA genes. However, eight nucleotides in the yak DNA sequence and four amino acids in the yak protein sequence differ from the other two species. PDGFA is widely expressed in yak brain tissue, and furthermore, PDGFA expression in the cerebrum and cerebellum are higher than in the hippocampus and spinal cord (p > 0.05). PDGFA was observed by immunohistochemistry in glial cells of the cerebrum, cerebellum, and hippocampus, as well as in pyramidal cells of the cerebrum, and Purkinje cell bodies of the hippocampus, but not in glial cells of the spinal cord. The PDGFA gene is well conserved in the animal kingdom; however, the yak PDGFA gene has unique characteristics and brain expression patterns specific to this high elevation species.

  1. Post-sampling release of free fatty acids - effects of heat stabilization and methods of euthanasia.

    PubMed

    Jernerén, Fredrik; Söderquist, Marcus; Karlsson, Oskar

    2015-01-01

    The field of lipid research has made progress and it is now possible to study the lipidome of cells and organelles. A basic requirement of a successful lipid study is adequate pre-analytical sample handling, as some lipids can be unstable and postmortem changes can cause substantial accumulation of free fatty acids (FFAs). The aim of the present study was to investigate the effects of conductive heat stabilization and euthanasia methods on FFA levels in the rat brain and liver using liquid chromatography tandem mass spectrometry. The analysis of brain homogenates clearly demonstrated phospholipase activity and time-dependent post-sampling changes in the lipid pool of snap frozen non-stabilized tissue. There was a significant increase in FFAs already at 2min, which continued over time. Heat stabilization was shown to be an efficient method to reduce phospholipase activity and ex vivo lipolysis. Post-sampling effects due to tissue thawing and sample preparation induced a massive release of FFAs (up to 3700%) from non-stabilized liver and brain tissues compared to heat stabilized tissue. Furthermore, the choice of euthanasia method significantly influenced the levels of FFAs in the brain. The FFAs were decreased by 15-44% in the group of animals euthanized by pentobarbital injection compared with CO2 inhalation or decapitation. Our results highlight the importance of considering euthanasia methods and pre-analytical treatment in lipid analysis, factors which may otherwise interfere with the outcome of the experiments. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Neurotoxic responses in brain tissues of rainbow trout exposed to imidacloprid pesticide: Assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and acetylcholinesterase activity.

    PubMed

    Topal, Ahmet; Alak, Gonca; Ozkaraca, Mustafa; Yeltekin, Aslı Cilingir; Comaklı, Selim; Acıl, Gurdal; Kokturk, Mine; Atamanalp, Muhammed

    2017-05-01

    The extensive use of imidacloprid, a neonicotinoid insecticide, causes undesirable toxicity in non-targeted organisms including fish in aquatic environments. We investigated neurotoxic responses by observing 8-hydroxy-2-deoxyguanosine (8-OHdG) activity, oxidative stress and acetylcholinesterase (AChE) activity in rainbow trout brain tissue after 21 days of imidacloprid exposure at levels of (5 mg/L, 10 mg/L, 20 mg/L). The obtained results indicated that 8-OHdG activity did not change in fish exposed to 5 mg/L of imidacloprid, but 10 mg/L and 20 mg/L of imidacloprid significantly increased 8-OHdG activity compared to the control (p < 0.05). An immunopositiv reaction to 8-OHdG was detected in brain tissues. The brain tissues indicated a significant increase in antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)) compared to the control and there was a significant increase in malondialdehyde (MDA) levels (p < 0.05). High concentrations of imidacloprid caused a significant decrease in AChE enzyme activity (p < 0.05). These results suggested that imidacloprid can be neurotoxic to fish by promoting AChE inhibition, an increase in 8-OHdG activity and changes in oxidative stress parameters. Therefore, these data may reflect one of the molecular pathways that play a role in imidacloprid toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Distinct structure and activity of monoamine oxidase in the brain of zebrafish (Danio rerio).

    PubMed

    Anichtchik, Oleg; Sallinen, Ville; Peitsaro, Nina; Panula, Pertti

    2006-10-10

    Monoamine oxidase (MAO) is a mitochondrial flavoprotein involved in the metabolism of, e.g., aminergic neurotransmitters and the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). We have reported earlier MPTP-related alterations of brain catecholaminergic system in zebrafish (Danio rerio) brain. Here we describe the structural and functional properties of zebrafish MAO and the distribution of MAO mRNA and activity in zebrafish brain. The gene is located in chromosome 9 and consists of 15 exons. The amino acid composition of the active center resembles both human MAO-A and MAO-B. The enzyme displayed the highest substrate specificity for tyramine, followed by serotonin, phenylethylamine, MPTP, and dopamine; isoform-specific antagonists blocked the activity of the enzyme with equal potency. Zebrafish MAO mRNA, which was present in several tissues, and enzyme displayed differential distribution in the brain; dopaminergic cell clusters had low to moderate levels of MAO activity, whereas the highest levels of MAO activity were detected in noradrenergic and serotonergic cell groups and the habenulointerpeduncular pathway, including its caudal projection to the medial ventral rhombencephalon. The results of this study confirm the presence of functionally active MAO in zebrafish brain and other tissues and characterize the neural systems that express MAO and areas of intense activity in the brain. They also suggest that MPTP toxicity not related to MAO may affect the zebrafish brain.

  4. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression.

    PubMed

    Tsai, Shih-Jen

    2017-12-22

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.

  5. AMPK modulates tissue and organismal aging in a cell-non-autonomous manner

    PubMed Central

    Ulgherait, Matthew; Rana, Anil; Rera, Michael; Graniel, Jacqueline; Walker, David W.

    2014-01-01

    AMPK exerts pro-longevity effects in diverse species; however, the tissue-specific mechanisms involved are poorly understood. Here, we show that up-regulation of AMPK in the adult Drosophila nervous system induces autophagy both in the brain and also in the intestinal epithelium. Induction of autophagy is linked to improved intestinal homeostasis during aging and extended lifespan. Neuronal up-regulation of the autophagy-specific protein kinase Atg1 is both necessary and sufficient to induce these inter-tissue effects during aging and to prolong lifespan. Furthermore, up-regulation of AMPK in the adult intestine induces autophagy both cell autonomously and non-autonomously in the brain, slows systemic aging and prolongs lifespan. We show that the organism-wide response to tissue-specific AMPK/Atg1 activation is linked to reduced insulin-like peptide levels in the brain and a systemic increase in 4E-BP expression. Together, these results reveal that localized activation of AMPK and/or Atg1 in key tissues can slow aging in a cell-non-autonomous manner. PMID:25199830

  6. Deep Convolutional Neural Networks for Multi-Modality Isointense Infant Brain Image Segmentation

    PubMed Central

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-01-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6–8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multimodality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. PMID:25562829

  7. In-vivo imaging of the morphology and blood perfusion of brain tumours in rats with UHR-OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka; Tan, Bingyao; Fisher, Carl J.; Mason, Erik; Lilge, Lothar D.

    2017-02-01

    Brain tumors are characterized with morphological changes at cellular level such as enlarged, non-spherical nuclei, microcalcifications, cysts, etc., and are highly vascularized. In this study, two research-grade optical coherence tomography (OCT) systems operating at 800 nm and 1060 nm with axial resolution of 0.95 µm and 3.5 µm in biological tissue respectively, were used to image in vivo and ex vivo the structure of brain tumours in rats. Female Fischer 344 rats were used for this study, which has received ethics clearance by the Animal Research Ethics Committees of the University of Waterloo and the University Health Network, Toronto. Brain tumours were induced by injection of rat brain cancer cell line (RG2 glioma) through a small craniotomy. Presence of brain tumours was verified by MRI imaging on day 7 post tumour cells injection. The in vivo OCT imaging session was conducted on day 14 of the study with the 1060 nm OCT system and both morphological OCT, Doppler OCT and OMAG images were acquired from the brain tumour and the surrounding healthy brain tissue. After completion of the imaging procedure, the brains were harvested, fixed in formalin and reimaged after 2 weeks with the 800 nm OCT system. The in vivo and ex vivo OCT morphological images were correlated with H and E histology. Results from this study demonstrate that UHR-OCT can distinguish between healthy and cancerous brain tissue based on differences in structural and vascular pattern.

  8. Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.

    PubMed

    Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław

    2017-04-01

    The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.

  9. Prospective multi-centre Voxel Based Morphometry study employing scanner specific segmentations: Procedure development using CaliBrain structural MRI data

    PubMed Central

    2009-01-01

    Background Structural Magnetic Resonance Imaging (sMRI) of the brain is employed in the assessment of a wide range of neuropsychiatric disorders. In order to improve statistical power in such studies it is desirable to pool scanning resources from multiple centres. The CaliBrain project was designed to provide for an assessment of scanner differences at three centres in Scotland, and to assess the practicality of pooling scans from multiple-centres. Methods We scanned healthy subjects twice on each of the 3 scanners in the CaliBrain project with T1-weighted sequences. The tissue classifier supplied within the Statistical Parametric Mapping (SPM5) application was used to map the grey and white tissue for each scan. We were thus able to assess within scanner variability and between scanner differences. We have sought to correct for between scanner differences by adjusting the probability mappings of tissue occupancy (tissue priors) used in SPM5 for tissue classification. The adjustment procedure resulted in separate sets of tissue priors being developed for each scanner and we refer to these as scanner specific priors. Results Voxel Based Morphometry (VBM) analyses and metric tests indicated that the use of scanner specific priors reduced tissue classification differences between scanners. However, the metric results also demonstrated that the between scanner differences were not reduced to the level of within scanner variability, the ideal for scanner harmonisation. Conclusion Our results indicate the development of scanner specific priors for SPM can assist in pooling of scan resources from different research centres. This can facilitate improvements in the statistical power of quantitative brain imaging studies. PMID:19445668

  10. Naringenin attenuates behavioral derangements induced by social defeat stress in mice via inhibition of acetylcholinesterase activity, oxidative stress and release of pro-inflammatory cytokines.

    PubMed

    Umukoro, Solomon; Kalejaye, Hassanat Adeola; Ben-Azu, Benneth; Ajayi, Abayomi M

    2018-06-12

    The effects of naringenin; a dietary flavonoid, with potent anti-oxidant and anti-inflammatory activities on social defeat stress (SDS)-induced neurobehavioral and biochemical changes were evaluated in mice using resident-intruder paradigm. The intruder male mice were distributed into 6 groups (n = 6). Mice in group 1 (control) received vehicle (3% DMSO, i.p), group 2 (SDS-control) were also given vehicle, groups 3-5 received naringenin (10, 25 and 50 mg/kg, i.p.) while group 6 had ginseng (50 mg/kg, i.p) daily for 14 days. However, 30 min after treatment on day 7, mice in groups 2-6 were exposed to SDS for a period of 10 min confrontation with aggressive counterparts for 7 consecutive days. Neurobehavioral phenotypes: spontaneous motor activity (SMA), memory, anxiety and depression were then evaluated on day 14. Malondialdehyde (MDA), glutathione (GSH), catalase and superoxide dismutase (SOD) were then estimated in the brain tissues. Acetylcholinesterase (AChE) activity and the concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) were also determined. SDS-induced neurobehavioral deficits were significantly (p < 0.05) attenuated by naringenin. The increased brain level of MDA (13.00 ± 0.63 μmol/g tissue) relative to vehicle-control (6.50 ± 0.43 μmol/g tissue) was significantly (p < 0.05) reduced to 5.50 ± 0.22 μmol/g tissue by naringenin (50 mg/kg). Mice exposed to SDS had decreased brain GSH level (5.17 ± 0.40 μmol/g tissue) relative to control (11.67 ± 0.84 μmol/g tissue). However, naringenin (50 mg/kg) significantly (p < 0.05) elevated GSH content (13.33 ± 0.88 μmol/g tissue) in the brains of SDS-mice. Moreover, 50 mg/Kg of naringenin (38.13 ± 2.38 ρg/mL) attenuated (p < 0.05) increased TNF-α level when compared with SDS (49.69 ± 2.81 ρg/mL). SDS-induced increase in brain level of IL-1β (236.5 ± 6.92 ρg/mL) was significantly (p < 0.05) reduced by naringenin (219.90 ± 15.25 ρg/mL). Naringenin also elevated antioxidant enzymes and decreased AChE activity in the brains of mice exposed to SDS (p < 0.05). These findings suggest that naringenin attenuates SDS-induced neurobehavioral deficits through inhibition of acetylcholinesterase activity, oxidative stress and release of pro-inflammatory cytokines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Significance of Lead Residues in Mallard Tissues

    USGS Publications Warehouse

    Longcore, J.R.; Locke, L.N.; Bagley, George E.; Andrews, R.

    1974-01-01

    Tissues of adult, lead-dosed mallards that either died or were sacrificed were analyzed for lead. Lead levels in brains, tibiae, and breast muscle of ducks that died and in tibiae of ducks that were sacrificed increased significantly from dosage until death. Lead in the heart, lung, and blood from sacrificed ducks decreased significantly from dosage until death. Lead concentrations in tissues from ducks in the two groups were not significantly different except for the liver, kidney, and lung. Average lead levels in the livers and kidneys of ducks that died were significantly higher than those in ducks that were sacrificed. The mean concentration of lead in the lungs of the ducks sacrificed was significantly higher than the mean level in the lungs of ducks that died. Measurements of the lead concentrations in this study, when compared with lead levels reported in the literature for avian and non-avian species, showed that arbitrary diagnostic levels indicating lead poisoning could be set. In mallard ducks, lead levels exceeding 3 ppm in the brain, 6 to 20 ppm in the kidney or liver, or 10 ppm in clotted blood from the heart indicated acute exposure to lead.

  12. Effect of vitro preservation on mechanical properties of brain tissue

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Yi-fan; Liu, Li-fu; Niu, Ying; Ma, Jian-li; Wu, Cheng-wei

    2017-05-01

    To develop the protective devices for preventing traumatic brain injuries, it requires the accurate characterization of the mechanical properties of brain tissue. For this, it necessary to elucidate the effect of vitro preservation on the mechanical performance of brain tissue as usually the measurements are carried out in vitro. In this paper, the thermal behavior of brain tissue preserved for various period of time was first investigated and the mechanical properties were also measured. Both reveals the deterioration with prolonged preservation duration. The observations of brain tissue slices indicates the brain tissue experiences karyorrhexis and karyorrhexis in sequence, which accounts for the deterioration phenomena.

  13. Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues.

    PubMed

    Sun, Xiao; He, Ying; Guo, Ying; Li, Siwen; Zhao, Hongjing; Wang, Yu; Zhang, Jingyu; Xing, Mingwei

    2017-06-05

    The heavy metal arsenic is widely distributed in nature and posses a serious threat to organism's health. However, little is known about the arsenic-induced inflammatory response in the brain tissues of birds and the relationship and mechanism of the inflammatory response. The purpose of this study was to explore the effects of dietary arsenic on the expression of inflammatory cytokines in the brains of Gallus gallus. Seventy-two 1-day-old male Hy-line chickens were divided into a control group, a low arsenic trioxide (As 2 O 3 )-treated (7.5 mg/kg) group, a middle As 2 O 3 -treated (15 mg/kg) group, and a high As 2 O 3 -treated (30 mg/kg) group. Arsenic exposure caused obvious ultrastructural changes. The mRNA levels of the transcription factor nuclear factor-κB (NF-κB) and of pro-inflammatory cytokines, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E synthase (PTGEs), in chicken brain tissues (cerebrum, cerebellum, thalamus, brainstem and myelencephalon) on days 30, 60 and 90, respectively, were measured by real-time PCR. The protein expression of iNOS was detected by western blot. The results showed that after being treated with As 2 O 3, the levels of inflammatory-related factor NF-κB and pro-inflammatory cytokines in chicken brain tissues increased (P < 0.05). Arsenic exposure in the chickens triggered host defence and induced an inflammatory response by regulating the expression of inflammatory-related genes in the cerebrum, cerebellum, thalamus, brainstem and myelencephalon. These data form a foundation for further research on arsenic-induced neurotoxicity in Gallus gallus.

  14. The beneficial effects of l-cysteine on brain antioxidants of rats affected by sodium valproate.

    PubMed

    Hamza, R Z; El-Shenawy, N S

    2017-11-01

    Oxidative stress caused by sodium valproate (SV) is known to play a key role in the pathogenesis of brain tissue. The present study was designed to evaluate the protective effect of l-cysteine (LC) on the antioxidants of brain tissue of rats. The animals were divided into six groups: control group 1 was treated with saline as vehicle, groups 2 and 3 were treated with low and high doses of SV (100 and 500 mg/kg, respectively), group 4 was treated with LC (100 mg/kg), and groups 5 and 6 were treated with low-dose SV + LC and high-dose SV + LC, respectively. All the groups were treated orally by gastric tube for 30 successive days. Some antioxidant parameters were determined. Brain tissue (cerebral cortex) of SV-treated animals showed an increase in lipid peroxidation (LPO) and reduction in activity of enzymatic antioxidant and total antioxidant levels. Histopathological examination of cerebral cortex of SV rats showed astrocytic swelling, inflammation, and necrosis. After 4 weeks of the combination treatment of SV and LC daily, results showed significant improvement in the activity of cathepsin marker enzymes and restored the structure of the brain. LC was able to ameliorate oxidative stress deficits observed in SV rats. LC decreased LPO level and was also able to restore the activity of antioxidant enzymes as well as structural deficits observed in the brain of SV animals. The protective effect of LC in SV-treated rats is mediated through attenuation of oxidative stress, suggesting a therapeutic role for LC in individuals treated with SV.

  15. Consequences of the dynamic triple peak impact factor in Traumatic Brain Injury as Measured with Numerical Simulation.

    PubMed

    von Holst, Hans; Li, Xiaogai

    2013-01-01

    There is a lack of knowledge about the direct neuromechanical consequences in traumatic brain injury (TBI) at the scene of accident. In this study we use a finite element model of the human head to study the dynamic response of the brain during the first milliseconds after the impact with velocities of 10, 6, and 2 meters/second (m/s), respectively. The numerical simulation was focused on the external kinetic energy transfer, intracranial pressure (ICP), strain energy density and first principal strain level, and their respective impacts to the brain tissue. We show that the oblique impacts of 10 and 6 m/s resulted in substantial high peaks for the ICP, strain energy density, and first principal strain levels, however, with different patterns and time frames. Also, the 2 m/s impact showed almost no increase in the above mentioned investigated parameters. More importantly, we show that there clearly exists a dynamic triple peak impact factor to the brain tissue immediately after the impact regardless of injury severity associated with different impact velocities. The dynamic triple peak impacts occurred in a sequential manner first showing strain energy density and ICP and then followed by first principal strain. This should open up a new dimension to better understand the complex mechanisms underlying TBI. Thus, it is suggested that the combination of the dynamic triple peak impacts to the brain tissue may interfere with the cerebral metabolism relative to the impact severity thereby having the potential to differentiate between severe and moderate TBI from mild TBI.

  16. Mercury residues in tissues of dead and surviving birds fed methylmercury

    USGS Publications Warehouse

    Finley, M.T.; Stickel, W.H.; Christensen, R.E.

    1979-01-01

    Concentrations of mercury in passerine birds fed diets containing 40 ppm methylmercury were similar in tissues of birds that died from mercury poisoning and in those that were sacrificed after half the group had died. Residues were higher in tissues of birds that died, but the differences were not statistically significant. Residue levels were highest in livers, followed by kidneys and brains. Levels of mercury were similar in breast muscle, carcass, and whole body. Mercury levels were highest in redwinged blackbirds, lowest in grackles, and intermediate in starlings and cowbirds. Mercury concentrations exceeded 20 ppm in all tissues of all species and were similar to levels reported in wild birds known to have died of mercury poisoning.

  17. [Research of anti-aging mechanism of ginsenoside Rg1 on brain].

    PubMed

    Li, Cheng-peng; Zhang, Meng-si; Liu, Jun; Geng, Shan; Li, Jing; Zhu, Jia-hong; Zhang, Yan-yan; Jia, Yan-yan; Wang, Lu; Wang, Shun-he; Wang, Ya-ping

    2014-11-01

    Neurodegenerative disease is common and frequently occurs in elderly patients. Previous studies have shown that ginsenoside Rg1 was able to inhibit senescent of brain, but the mechanism on the brain during the treatment remains elucidated. To study the mechanism of ginsenoside Rg1 in the process of anti-aging of brain, forty male SD rats were randomly divided into normal group, Rg1 normal group, brain aging model group and Rg1 brain aging model group, each group with 10 rats (brain aging model group: subcutaneous injection of D-galactose (120 mg kg(-1)), qd for 42 consecutive days; Rg1 brain aging model group: while copying the same test as that of brain aging model group, begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Rg1 normal group: subcutaneous injection of the same amount of saline; begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Normal: injected with an equal volume of saline within the same time. Perform the related experiment on the second day after finishing copying the model or the completion of the first two days of drug injections). Learning and memory abilities were measured by Morris water maze. The number of senescent cells was detected by SA-beta-Gal staining while the level of IL-1 and IL-6 proinflammatory cytokines in hippocampus were detected by ELISA. The activities of SOD, contents of GSH in hippo- campus were quantified by chromatometry. The change of telomerase activities and telomerase length were performed by TRAP-PCR and southern blotting assay, respectively. It is pointed that, in brain aging model group, the spatial learning and memory capacities were weaken, SA-beta-Gal positive granules increased in section of brain tissue, the activity of antioxidant enzyme SOD and the contents of GSH decreased in hippocampus, the level of IL-1 and IL-6 increased in hippocampus, while the length of telomere and the activity of telomerase decreased in hippocampus. Rats of Rg1 brain aging group had their spatial learning and memory capacities enhanced, SA-beta-Gal positive granules in section of brain tissue decreased, the activity of antioxidant enzyme SOD and the contents of GSH increased in hippocampus, the level of IL-1 and IL-6 in hippocampus decreased, the length contraction of telomere suppressed while the change of telomerase activity increased in hippocampus. Compared with that of normal group, the spatial learning and memory capacities were enhanced in Rg1 normal group, SA-beta-Gal positive granules in section of brain tissue decreased in Rg1 normal group, the level of IL-1 and IL-6 in hippocampus decreased in Rg1 normal group. The results indicated that improvement of antioxidant ability, regulating the level of proinflammatory cytokines and regulation of telomerase system may be the underlying anti-aging mechanism of Ginsenoside Rg1.

  18. Effect of neonatal nociceptin or nocistatin imprinting on the brain concentration of biogenic amines and their metabolites.

    PubMed

    Tekes, Kornélia; Gyenge, Melinda; Sótonyi, Péter; Csaba, György

    2009-04-01

    Noradrenaline (NA), dopamine (DA), homovanillic acid (HA), serotonin (5HT) and 5-hydroxyindole acetic acid (5HIAA) content of five brain regions (hypothalamus, hippocampus, brainstem, striatum and frontal cortex) and the cerebrospinal fluid (CSF) was measured in adult (three months old) male and female rats treated neonatally with a single dose of 10 microg nociceptin (NC) or 10 microg nocistatin (NS) for hormonal imprinting. The biogenic amine and metabolite content of cerebrospinal fluid was also determined. In NC treated animals the serotonergic, dopaminergic as well as noradrenergic systems were influenced by the imprinting. The 5HT level increased in hypothalamus, the 5HIAA tissue levels were found increased in hypothalamus. Hippocampus and striatum and the HVA levels increased highly significantly in brainstem. Dopamine level decreased significantly in striatum, however in frontal cortex both noradrenalin and 5HIAA level decreased. Nevertheless, in NS-treated rats decreased NA tissue levels were found in hypothalamus, brainstem and frontal cortex. Decreased DA levels were found in the hypothalamus, brainstem and striatum. NS imprinting resulted in decreased HVA level, but increased one in the brainstem. The 5HT levels decreased in the hypothalamus, brainstem, striatum and frontal cortex, while 5HIAA content of CSF, and frontal cortex decreased, and that of hypothalamus, hippocampus and striatum increased. There was no significant difference between genders except in the 5HT tissue levels of NC treated rats. Data presented show that neonatal imprinting both by NC and NS have long-lasting and brain area specific effects. In earlier experiments endorphin imprinting also influenced the serotonergic system suggesting that during labour release of pain-related substances may durably affect the serotonergic (dopaminergic, adrenergic) system which can impress the animals' later behavior.

  19. Effects of an Agaricus blazei aqueous extract pretreatment on paracetamol-induced brain and liver injury in rats.

    PubMed

    Soares, Andréia A; de Oliveira, Andrea L; Sá-Nakanishi, Anacharis B; Comar, Jurandir F; Rampazzo, Ana P S; Vicentini, Fernando A; Natali, Maria R M; Gomes da Costa, Sandra M; Bracht, Adelar; Peralta, Rosane M

    2013-01-01

    The action of an Agaricus blazei aqueous extract pretreatment on paracetamol injury in rats was examined not only in terms of the classical indicators (e.g., levels of hepatic enzymes in the plasma) but also in terms of functional and metabolic parameters (e.g., gluconeogenesis). Considering solely the classical indicators for tissue damage, the results can be regarded as an indication that the A. blazei extract is able to provide a reasonable degree of protection against the paracetamol injury in both the hepatic and brain tissues. The A. blazei pretreatment largely prevented the increased levels of hepatic enzymes in the plasma (ASP, ALT, LDH, and ALP) and practically normalized the TBARS levels in both liver and brain tissues. With respect to the functional and metabolic parameters of the liver, however, the extract provided little or no protection. This includes morphological signs of inflammation and the especially important functional parameter gluconeogenesis, which was impaired by paracetamol. Considering these results and the long list of extracts and substances that are said to have hepatoprotective effects, it would be useful to incorporate evaluations of functional parameters into the experimental protocols of studies aiming to attribute or refute effective hepatoprotective actions to natural products.

  20. Effects of an Agaricus blazei Aqueous Extract Pretreatment on Paracetamol-Induced Brain and Liver Injury in Rats

    PubMed Central

    Soares, Andréia A.; de Oliveira, Andrea L.; Sá-Nakanishi, Anacharis B.; Comar, Jurandir F.; Rampazzo, Ana P. S.; Vicentini, Fernando A.; Natali, Maria R. M.; Gomes da Costa, Sandra M.; Peralta, Rosane M.

    2013-01-01

    The action of an Agaricus blazei aqueous extract pretreatment on paracetamol injury in rats was examined not only in terms of the classical indicators (e.g., levels of hepatic enzymes in the plasma) but also in terms of functional and metabolic parameters (e.g., gluconeogenesis). Considering solely the classical indicators for tissue damage, the results can be regarded as an indication that the A. blazei extract is able to provide a reasonable degree of protection against the paracetamol injury in both the hepatic and brain tissues. The A. blazei pretreatment largely prevented the increased levels of hepatic enzymes in the plasma (ASP, ALT, LDH, and ALP) and practically normalized the TBARS levels in both liver and brain tissues. With respect to the functional and metabolic parameters of the liver, however, the extract provided little or no protection. This includes morphological signs of inflammation and the especially important functional parameter gluconeogenesis, which was impaired by paracetamol. Considering these results and the long list of extracts and substances that are said to have hepatoprotective effects, it would be useful to incorporate evaluations of functional parameters into the experimental protocols of studies aiming to attribute or refute effective hepatoprotective actions to natural products. PMID:23984368

  1. Enantio-alteration of gene transcription associated with bioconcentration in adult zebrafish (Danio rerio) exposed to chiral PCB149

    NASA Astrophysics Data System (ADS)

    Chai, Tingting; Cui, Feng; Mu, Pengqian; Yang, Yang; Xu, Nana; Yin, Zhiqiang; Jia, Qi; Yang, Shuming; Qiu, Jing; Wang, Chengju

    2016-01-01

    Enantioselective enrichment of chiral PCB149 (2,2’,3,4’,5’,6-hexachlorobiphenyl) was analysed in adult zebrafish (Danio rerio) exposed to the racemate, (-)-PCB149, and (+)-PCB149. Greater enrichment of (-)-PCB149 compared to (+) PCB149 was observed following 0.5 ng/L exposure; however, as the exposure time and concentration increased, racemic enrichment was observed in adult fish exposed to the racemate. No biotransformation between the two isomers was observed in fish exposed to single enantiomers. When zebrafish were exposed to different forms of chiral PCB149, enantioselective expression of genes associated with polychlorinated biphenyls (PCBs) was observed in brain and liver tissues and enantioselective correlations between bioconcentration and target gene expression levels were observed in brain and liver tissues. The strong positive correlations between expression levels of target genes (alox5a and alox12) and PCB149 bioconcentration suggest that prolonged exposure to the racemate of chiral PCB149 may result in inflammation-associated diseases. Prolonged exposure to (-)-PCB149 may also affect metabolic pathways such as dehydrogenation and methylation in the brain tissues of adult zebrafish. Hepatic expression levels of genes related to the antioxidant system were significantly negatively correlated with bioconcentration following exposure to (+)-PCB149.

  2. Intrathecal enzyme replacement therapy reduces lysosomal storage in the brain and meninges of the canine model of MPS I.

    PubMed

    Kakkis, E; McEntee, M; Vogler, C; Le, S; Levy, B; Belichenko, P; Mobley, W; Dickson, P; Hanson, S; Passage, M

    2004-01-01

    Enzyme replacement therapy (ERT) has been developed for several lysosomal storage disorders, including mucopolysaccharidosis I (MPS I), and is effective at reducing lysosomal storage in many tissues and in ameliorating clinical disease. However, intravenous ERT does not adequately treat storage disease in the central nervous system (CNS), presumably due to effects of the blood-brain barrier on enzyme distribution. To circumvent this barrier, we studied whether intrathecal (IT) recombinant human alpha-L-iduronidase (rhIDU) could penetrate and treat the brain and meninges. An initial dose-response study showed that doses of 0.46-4.14 mg of IT rhIDU successfully penetrated the brain of normal dogs and reached tissue levels 5.6 to 18.9-fold normal overall and 2.7 to 5.9-fold normal in deep brain sections lacking CSF contact. To assess the efficacy and safety in treating lysosomal storage disease, four weekly doses of approximately 1 mg of IT rhIDU were administered to MPS I-affected dogs resulting in a mean 23- and 300-fold normal levels of iduronidase in total brain and meninges, respectively. Quantitative glycosaminoglycan (GAG) analysis showed that the IT treatment reduced mean total brain GAG to normal levels and achieved a 57% reduction in meningeal GAG levels accompanied by histologic improvement in lysosomal storage in all cell types. The dogs did develop a dose-dependent immune response against the recombinant human protein and a meningeal lymphocytic/plasmacytic infiltrate. The IT route of ERT administration may be an effective way to treat the CNS disease in MPS I and could be applicable to other lysosomal storage disorders.

  3. EMMPRIN expression positively correlates with WHO grades of astrocytomas and meningiomas.

    PubMed

    Tsai, Wen-Chiuan; Chen, Ying; Huang, Li-Chun; Lee, Herng-Sheng; Ma, Hsin-I; Huang, Shih-Ming; Sytwu, Huey-Kang; Hueng, Dueng-Yuan

    2013-09-01

    High-grade primary brain tumors possessed poor outcome due to invasiveness. Extracellular matrix metalloproteinase inducer (EMMPRIN) stimulates peri-tumoral fibroblasts to secrete matrix metalloproteinase and promote invasiveness. This study hypothesized that high-grade brain tumors overexpress EMMPRIN. Analyzing the public delinked database from the Gene Expression Omnibus profile, the results showed that the EMMPRIN mRNA level was higher in WHO grade IV (n = 81) than in grade III (n = 19, p < 0.0005) astrocytomas and non-tumor brain tissue controls (n = 23, p < 0.00001). The results of tissue microarray-based immunohistochemical (IHC) staining revealed that EMMPRIN levels positively correlated with WHO grades for astrocytomas (p = 0.008) and meningiomas (p = 0.048). EMMPRIN mRNA levels in conventional glioma cell lines (n = 36) was not less than those in glioma primary culture cells (n = 27) and glioblastoma stem-like cells (n = 12). The GBM8401, U87MG, and LN229 human glioma cell lines also overexpressed EMMPRIN. Hematoxylin and eosin, IHC, and immunofluorescence staining of xenografts confirmed that high-grade brain tumors overexpressed EMMPRIN. Lastly, Kaplan-Meier analysis revealed poorer survival in WHO grade IV (n = 56) than in grade III astrocytomas (n = 21, by log-rank test; p = 0.0001, 95 % CI: 1.842-3.053). However, in high-grade astrocytomas, there was no difference in survival between high and low EMMPRIN mRNA levels. Thus, this study identified that high-grade brain tumors overexpress EMMPRIN, which positively correlates with WHO grades in human astrocytomas and meningiomas, and suggests that EMMPRIN may be a therapeutic target of brain tumor.

  4. Impact of experimental hypothyroidism on monoamines level in discrete brain regions and other peripheral tissues of young and adult male rats.

    PubMed

    Hassan, Wafaa A; Aly, Mona S; Rahman, Taghride Abdel; Shahat, Asmaa S

    2013-06-01

    The levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats were measured following experimentally induced hypothyroidism. Hypothyroidism induced by daily oral administration of propylthiouracil (PTU, 5mg/kg body wt) caused a significant reduction in DA levels in most of the tissues examined of both young and adult rats after 21 and 28 days, in NE levels after all the time intervals studied in young rats, and after 21 and 28 days in adult rats. 5-HT exhibited a significant reduction in the selected brain regions and blood plasma after 21 and 28 days and in cardiac muscle after all the time intervals in the two age groups of animals. It may be suggested that the changes in monoamine levels induced by hypothyroidism may be due to disturbance in the synthesis and release of these amines through the neurons impairment or may be due to an alteration pattern of their synthesizing and/or degradative enzymes. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  5. Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study.

    PubMed

    Hertle, Daniel N; Santos, Edgar; Hagenston, Anna M; Jungk, Christine; Haux, Daniel; Unterberg, Andreas W; Sakowitz, Oliver W

    2015-07-01

    Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (<1 mmol/L) and noncritical (>1 mmol/L) extracellular brain glucose levels. We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (P<0.05). For critical brain glucose levels, extracellular brain glucose was unaffected by any type of sedative. These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.

  6. Protective effects of l-glutamine against toxicity of deltamethrin in the cerebral tissue

    PubMed Central

    Varol, Sefer; Özdemir, Hasan Hüseyin; Çevik, Mehmet Uğur; Altun, Yaşar; Ibiloğlu, Ibrahim; Ekinci, Aysun; Ibiloğlu, Aslıhan Okan; Balduz, Metin; Arslan, Demet; Tekin, Recep; Aktar, Fesih; Aluçlu, Mehmet Ufuk

    2016-01-01

    Background Deltamethrin (DLM) is a broad-spectrum synthetic dibromo-pyrethroid pesticide that is widely used for agricultural and veterinary purposes. However, human exposure to the pesticide leads to neurotoxicity. Glutamine is one of the principal, free intracellular amino acids and may also be an antioxidant. This study was undertaken in order to examine the neuroprotective and antioxidant potential of l-glutamine against DLM toxicity in female Wistar albino rats. Materials and methods The rats were divided into the following groups (n=10): Group I: control (distilled water; 10 mL/kg, po one dose), Group II: l-glutamine (1.5 g/kg, po one dose), Group III: DLM (35 mg/kg, po one dose), and Group IV: DLM (35 mg/kg, po one dose) and l-glutamine (1.5 g/kg, po one dose after 4 hours). Total oxidant status (TOS), total antioxidant status (TAS), tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels and apoptosis were evaluated in brain tissue. Results DLM-treated animals had a significant increase in brain biochemical parameters, as well as TOS and TAS. Furthermore, the histopathological examination showed neuronal cell degeneration in the cerebral tissue. l-Glutamine treatment decreased the elevated brain levels of TOS and neuronal cell degeneration. There was no difference in tumor necrosis factor-α, IL-1β, and IL-6 levels between the groups. Conclusion l-Glutamine may reduce the toxic effects of DLM in the cerebral tissue through antioxidant properties. PMID:27143900

  7. Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis.

    PubMed

    Yang, B; Ren, Q; Zhang, J-C; Chen, Q-X; Hashimoto, K

    2017-05-16

    Brain-derived neurotrophic factor (BDNF) has a role in the pathophysiology of psychiatric disorders. The precursor proBDNF is converted to mature BDNF and BDNF pro-peptide, the N-terminal fragment of proBDNF; however, the precise function of these proteins in psychiatric disorders is unknown. We sought to determine whether expression of these proteins is altered in the brain and peripheral tissues from patients with psychiatric disorders. We measured protein expression of proBDNF, mature BDNF and BDNF pro-peptide in the parietal cortex, cerebellum, liver and spleen from control, major depressive disorder (MDD), schizophrenia (SZ) and bipolar disorder (BD) groups. The levels of mature BDNF in the parietal cortex from MDD, SZ and BD groups were significantly lower than the control group, whereas the levels of BDNF pro-peptide in this area were significantly higher than controls. In contrast, the levels of proBDNF and BDNF pro-peptide in the cerebellum of MDD, SZ and BD groups were significantly lower than controls. Moreover, the levels of mature BDNF from the livers of MDD, SZ and BD groups were significantly higher than the control group. The levels of mature BDNF in the spleen did not differ among the four groups. Interestingly, there was a negative correlation between mature BDNF in the parietal cortex and mature BDNF in the liver in all the subjects. These findings suggest that abnormalities in the production of mature BDNF and BDNF pro-peptide in the brain and liver might have a role in the pathophysiology of psychiatric disorders, indicating a brain-liver axis in psychiatric disorders.

  8. Neuronal zinc-α2-glycoprotein is decreased in temporal lobe epilepsy in patients and rats.

    PubMed

    Liu, Ying; Wang, Teng; Liu, Xi; Wei, Xin; Xu, Tao; Yin, Maojia; Ding, Xueying; Mo, Lijuan; Chen, Lifen

    2017-08-15

    Zinc-α2-glycoprotein (ZAG) is a 42-kDa protein encoded by the AZGP1 gene that is known as a lipid mobilizing factor and is highly homologous to major histocompatibility complex class I family molecules. Recently, transcriptomic research has shown that AZGP1 expression is reduced in the brain tissue of epilepsy patients. However, the cellular distribution and biological role of ZAG in the brain and epilepsy are unclear. Patients with refractory temporal lobe epilepsy (TLE) and brain trauma were included in this study, and pentylenetetrazole (PTZ)-kindled rats were also used. The existence and level of ZAG in the brain were identified using immunohistochemistry, double-labeled immunofluorescence and western blot, and the expression level of AZGP1 mRNA was determined with quantitative real-time polymerase chain reaction (qrt-PCR). To explore the potential biological role of ZAG in the brain, co-immunoprecipitation (Co-IP) of phosphorylated ERK (p-ERK), TGF-β1 and ZAG was also performed. ZAG was found in the cytoplasm of neurons in brain tissue from both patients and rats. The levels of AZGP1 mRNA and ZAG were lower in refractory TLE patients and PTZ-kindled rats than in controls. In addition, the ZAG level decreased as PTZ kindling continued. Co-IP identified direct binding between p-ERK, TGF-β1 and ZAG. ZAG was found to be synthesized in neurons, and both the AZGP1 mRNA and ZAG protein levels were decreased in epilepsy patients and rat models. The reduction in ZAG may participate in the pathogenesis and pathophysiology of epilepsy by interacting with p-ERK and TGF-β1, promoting inflammation, regulating the metabolism of ketone bodies, or affecting other epilepsy-related molecules. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Neurodegenerative changes and apoptosis induced by intrauterine and extrauterine exposure of radiofrequency radiation.

    PubMed

    Güler, Göknur; Ozgur, Elcin; Keles, Hikmet; Tomruk, Arin; Vural, Sevil Atalay; Seyhan, Nesrin

    2016-09-01

    Adverse health effects of radiofrequency radiation (RFR) on the ongoing developmental stages of children from conception to childhood are scientifically anticipated subject. This study was performed to identify the effects of global system for mobile communications (GSM) modulated mobile phone like RFR in 1800MHz frequency on oxidative DNA damage and lipid peroxidation beside the apoptotic cell formation, using histopathological and immunohistochemical methods in the brain tissue of 1-month-old male and female New Zealand White rabbits that were exposed to these fields at their mother's womb and after the birth. Oxidative DNA damage and lipid peroxidation levels were investigated by measuring the 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) levels, respectively. Histopathological changes were observed using by hematoxylin and eosin (HE) staining. Apoptotic cells were detected in the examined organs by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. For both male and female infants; 8-OHdG levels increased in the group exposed to RFR in both intrauterine and extrauterine periods compared to the infants that were never exposed to RFR and the ones were exposed when they reached one month of age (p<0.05). MDA results were different for male and female rabbits. There was no difference between all female infant groups (p>0.05), while only intrauterine exposure significantly causes MDA level increase for the male infants. HE staining revealed mild lessions in neuronal necrobiosis in brain tissues of female rabbits that had only intaruterine exposure and male rabbits had only extrauterine exposure. Gliosis were mildly positive in brain tissues of rabbits that are exposed only intrauterine period, also the group exposed both intrauterine and extrauterine periods. However, there was no apoptotic change detected by TUNEL staining in the brain tissues of all groups. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Tissue distribution of manganese in iron-sufficient or iron-deficient rats after stainless steel welding-fume exposure.

    PubMed

    Park, Jung-Duck; Kim, Ki-Young; Kim, Dong-Won; Choi, Seong-Jin; Choi, Byung-Sun; Chung, Yong Hyun; Han, Jeong Hee; Sung, Jae Hyuck; Kwon, Il Hoon; Mun, Je-Hyeok; Yu, Il Je

    2007-05-01

    Welders can be exposed to high levels of manganese through welding fumes. Although it has already been suggested that excessive manganese exposure causes neurotoxicity, called manganism, the pathway of manganese transport to the brain with welding-fume exposure remains unclear. Iron is an essential metal that maintains a homeostasis in the body. The divalent metal transporter 1 (DMT1) transports iron and other divalent metals, such as manganese, and the depletion of iron is known to upregulate DMT1 expression. Accordingly, this study investigated the tissue distribution of manganese in iron-sufficient and iron-deficient rats after welding-fume exposure. The feeding of an iron-deficient diet for 4 wk produced a depletion of body iron, such as decreased iron levels in the serum and tissues, and upregulated the DMT1 expression in the rat duodenum. The iron-sufficient and iron-deficient rats were then exposed to welding fumes generated from manual metal arc stainless steel at a concentration of 63.5 +/- 2.3 mg/m3 for 2 h per day over a 30-day period. Animals were sacrificed on days 1, 15, and 30. The level of body iron in the iron-deficient rats was restored to the control level after the welding-fume exposure. However, the tissue distributions of manganese after the welding-fume exposure showed similar patterns in both the iron-sufficient and iron-deficient groups. The concentration of manganese increased in the lungs and liver on days 15 and 30, and increased in the olfactory bulb on day 30. Slight and heterogeneous increases of manganese were observed in different brain regions. Consequently, these findings suggest that the presence of Fe in the inhaled welding fumes may not have a significant effect on the uptake of Mn into the brain. Thus, the condition of iron deficiency did not seem to have any apparent effect on the transport of Mn into the brain after the inhalation of welding fumes.

  11. Mitochondrial proteomic profiling reveals increased carbonic anhydrase II in aging and neurodegeneration.

    PubMed

    Pollard, Amelia; Shephard, Freya; Freed, James; Liddell, Susan; Chakrabarti, Lisa

    2016-10-10

    Carbonic anhydrase inhibitors are used to treat glaucoma and cancers. Carbonic anhydrases perform a crucial role in the conversion of carbon dioxide and water into bicarbonate and protons. However, there is little information about carbonic anhydrase isoforms during the process of ageing. Mitochondrial dysfunction is implicit in ageing brain and muscle. We have interrogated isolated mitochondrial fractions from young adult and middle aged mouse brain and skeletal muscle. We find an increase of tissue specific carbonic anhydrases in mitochondria from middle-aged brain and skeletal muscle. Mitochondrial carbonic anhydrase II was measured in the Purkinje cell degeneration ( pcd 5J ) mouse model. In pcd 5J we find mitochondrial carbonic anhydrase II is also elevated in brain from young adults undergoing a process of neurodegeneration. We show C.elegans exposed to carbonic anhydrase II have a dose related shorter lifespan suggesting that high CAII levels are in themselves life limiting. We show for the first time that the mitochondrial content of brain and skeletal tissue are exposed to significantly higher levels of active carbonic anhydrases as early as in middle-age. Carbonic anhydrases associated with mitochondria could be targeted to specifically modulate age related impairments and disease.

  12. Parsing Glucose Entry into the Brain: Novel Findings Obtained with Enzyme-Based Glucose Biosensors

    PubMed Central

    2015-01-01

    Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between “active” and “passive” glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the “neuronal” hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism. PMID:25490002

  13. Hyperbaric oxygen therapy ameliorates acute brain injury after porcine intracerebral hemorrhage at high altitude.

    PubMed

    Zhu, Hai-tao; Bian, Chen; Yuan, Ji-chao; Liao, Xiao-jun; Liu, Wei; Zhu, Gang; Feng, Hua; Lin, Jiang-kai

    2015-06-15

    Intracerebral hemorrhage (ICH) at high altitude is not well understood to date. This study investigates the effects of high altitude on ICH, and examines the acute neuroprotection of hyperbaric oxygen (HBO) therapy against high-altitude ICH. Minipigs were placed in a hypobaric chamber for 72 h before the operation. ICH was induced by an infusion of autologous arterial blood (3 ml) into the right basal ganglia. Animals in the high-altitude ICH group received HBO therapy (2.5 ATA for 60 min) 30 min after ICH. Blood gas, blood glucose and brain tissue oxygen partial pressure (PbtO2) were monitored continuously for animals from all groups, as were microdialysis products including glucose, lactate, pyruvate and glutamate in perihematomal tissue from 3 to 12 h post-ICH. High-altitude ICH animals showed significantly lower PbtO2, higher lactate/pyruvate ratio (LPR) and glutamate levels than low-altitude ICH animals. More severe neurological deficits, brain edema and neuronal damage were also observed in high-altitude ICH. After HBO therapy, PbtO2 was significantly increased and LPR and glutamate levels were significantly decreased. Brain edema, neurological deficits and neuronal damage were also ameliorated. The data suggested a more serious disturbance of tissue oxygenation and cerebral metabolism in the acute stage after ICH at high altitude. Early HBO treatment reduced acute brain injury, perhaps through a mechanism involving the amelioration of the derangement of cerebral oxygenation and metabolism following high-altitude ICH.

  14. The distribution of lithium, sodium and magnesium in rat brain and plasma after various periods of administration of lithium in the diet.

    PubMed Central

    Bond, P A; Brooks, B A; Judd, A

    1975-01-01

    1 The tissue solubilizer Soluene-100 provides an efficient and easy means of preparing small amounts of rat tissue for cation analysis. 2 Administration of lithium ions to rats for two days to 42 days by the addition of lithium chloride to the diet at a concentration of 30 mmol/kg dry weight results in (a) the uniform distribution of lithium throughout the brain at a concentration comparable to that found in plasma; (b) decrease in the brain sodium concentration: (c) a decrease in brain magnesium concentration and an increase in plasma magnesium concentration; (d)no change in brain water content. 3 The inclusion of LiCl in the diet at a concentration of 30 mmol/kg dry food gives consistent and predictable plasma and brain levels of lithium in the rat without the occurrence of serious side effects over periods of up to 42 days. PMID:1148484

  15. Endoscopic Full-Field Swept-Source Optical Coherence Tomography Neuroimaging System

    NASA Astrophysics Data System (ADS)

    Felts Almog, Ilan

    Optical Coherence Tomography (OCT) has the capability to differentiate brain elements with intrinsic contrast and at a resolution an order-of-magnitude higher than other imaging modalities. This thesis investigates the feasibility of OCT for neuroimaging applied to neurosurgical guidance. We present, to our knowledge, the first Full-Field Swept-Source OCT system operating near a wavelength of 1310 nm, achieving a transverse imaging resolution of 6.5 mum, an axial resolution of 14 mum in tissue and a field of view of 270 mum x 180 mum x 400 mum. Imaging experiments were performed on rat brain tissues ex vivo, human cortical tissue ex vivo, and rats in vivo. A multi-level threshold metric applied on the intensity of the images led to a plausible correlation between the observed density and location in the brain. The proof-of-concept OCT system can be improved and miniaturized for clinical use.

  16. UV-laser microdissection and mRNA expression analysis of individual neurons from postmortem Parkinson's disease brains.

    PubMed

    Gründemann, Jan; Schlaudraff, Falk; Liss, Birgit

    2011-01-01

    Cell specificity of gene expression analysis is essential to avoid tissue sample related artifacts, in particular when the relative number of target cells present in the compared tissues varies dramatically, e.g., when comparing dopamine neurons in midbrain tissues from control subjects with those from Parkinson's disease (PD) cases. Here, we describe a detailed protocol that combines contact-free UV-laser microdissection and quantitative PCR of reverse-transcribed RNA of individual neurons from postmortem human midbrain tissue from PD patients and unaffected controls. Among expression changes in a variety of dopamine neuron marker, maintenance, and cell-metabolism genes, we found that α-synuclein mRNA levels were significantly elevated in individual neuromelanin-positive dopamine midbrain neurons from PD brains when compared to those from matched controls.

  17. Epsilon Aminocaproic Acid Pretreatment Provides Neuroprotection Following Surgically Induced Brain Injury in a Rat Model.

    PubMed

    Komanapalli, Esther S; Sherchan, Prativa; Rolland, William; Khatibi, Nikan; Martin, Robert D; Applegate, Richard L; Tang, Jiping; Zhang, John H

    2016-01-01

    Neurosurgical procedures can damage viable brain tissue unintentionally by a wide range of mechanisms. This surgically induced brain injury (SBI) can be a result of direct incision, electrocauterization, or tissue retraction. Plasmin, a serine protease that dissolves fibrin blood clots, has been shown to enhance cerebral edema and hemorrhage accumulation in the brain through disruption of the blood brain barrier. Epsilon aminocaproic acid (EAA), a recognized antifibrinolytic lysine analogue, can reduce the levels of active plasmin and, in doing so, potentially can preserve the neurovascular unit of the brain. We investigated the role of EAA as a pretreatment neuroprotective modality in a SBI rat model, hypothesizing that EAA therapy would protect brain tissue integrity, translating into preserved neurobehavioral function. Male Sprague-Dawley rats were randomly assigned to one of four groups: sham (n = 7), SBI (n = 7), SBI with low-dose EAA, 150 mg/kg (n = 7), and SBI with high-dose EAA, 450 mg/kg (n = 7). SBI was induced by partial right frontal lobe resection through a frontal craniotomy. Postoperative assessment at 24 h included neurobehavioral testing and measurement of brain water content. Results at 24 h showed both low- and high-dose EAA reduced brain water content and improved neurobehavioral function compared with the SBI groups. This suggests that EAA may be a useful pretherapeutic modality for SBI. Further studies are needed to clarify optimal therapeutic dosing and to identify mechanisms of neuroprotection in rat SBI models.

  18. Postmortem Brain and Blood Reference Concentrations of Alprazolam, Bromazepam, Chlordiazepoxide, Diazepam, and their Metabolites and a Review of the Literature.

    PubMed

    Skov, Louise; Holm, Karen Marie Dollerup; Johansen, Sys Stybe; Linnet, Kristian

    2016-09-01

    To interpret postmortem toxicology results, reference concentrations for non-toxic and toxic levels are needed. Usually, measurements are performed in blood, but because of postmortem redistribution phenomena this may not be optimal. Rather, measurement in the target organ of psychoactive drugs, the brain, might be considered. Here we present reference concentrations of femoral blood and brain tissue of selected benzodiazepines (BZDs). Using LC-MS/MS, we quantified alprazolam, bromazepam, chlordiazepoxide, diazepam, and the metabolites desmethyldiazepam, oxazepam and temazepam in postmortem femoral blood and brain tissue in 104 cases. BZDs were judged to be unrelated to the cause of death in 88 cases and contributing to death in 16 cases. No cases were found with cause of death solely attributed to BZD poisoning. All BZDs investigated tended to have higher concentrations in brain than in blood with median brain-blood ratios ranging from 1.1 to 2.3. A positive correlation between brain and blood concentrations was found with R(2) values from 0.51 to 0.95. Our reported femoral blood concentrations concur with literature values, but sparse information on brain concentration was available. Drug-metabolite ratios were similar in brain and blood for most compounds. Duplicate measurements of brain samples showed that the pre-analytical variation in brain (5.9%) was relatively low, supporting the notion that brain tissue is a suitable postmortem specimen. The reported concentrations in both brain and blood can be used as reference values when evaluating postmortem cases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain.

    PubMed

    Kuipers, Jeroen; Kalicharan, Ruby D; Wolters, Anouk H G; van Ham, Tjakko J; Giepmans, Ben N G

    2016-05-25

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae(1-7). Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture(1-5). Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)(8) on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner.

  20. Large-scale Scanning Transmission Electron Microscopy (Nanotomy) of Healthy and Injured Zebrafish Brain

    PubMed Central

    Kuipers, Jeroen; Kalicharan, Ruby D.; Wolters, Anouk H. G.

    2016-01-01

    Large-scale 2D electron microscopy (EM), or nanotomy, is the tissue-wide application of nanoscale resolution electron microscopy. Others and we previously applied large scale EM to human skin pancreatic islets, tissue culture and whole zebrafish larvae1-7. Here we describe a universally applicable method for tissue-scale scanning EM for unbiased detection of sub-cellular and molecular features. Nanotomy was applied to investigate the healthy and a neurodegenerative zebrafish brain. Our method is based on standardized EM sample preparation protocols: Fixation with glutaraldehyde and osmium, followed by epoxy-resin embedding, ultrathin sectioning and mounting of ultrathin-sections on one-hole grids, followed by post staining with uranyl and lead. Large-scale 2D EM mosaic images are acquired using a scanning EM connected to an external large area scan generator using scanning transmission EM (STEM). Large scale EM images are typically ~ 5 - 50 G pixels in size, and best viewed using zoomable HTML files, which can be opened in any web browser, similar to online geographical HTML maps. This method can be applied to (human) tissue, cross sections of whole animals as well as tissue culture1-5. Here, zebrafish brains were analyzed in a non-invasive neuronal ablation model. We visualize within a single dataset tissue, cellular and subcellular changes which can be quantified in various cell types including neurons and microglia, the brain's macrophages. In addition, nanotomy facilitates the correlation of EM with light microscopy (CLEM)8 on the same tissue, as large surface areas previously imaged using fluorescent microscopy, can subsequently be subjected to large area EM, resulting in the nano-anatomy (nanotomy) of tissues. In all, nanotomy allows unbiased detection of features at EM level in a tissue-wide quantifiable manner. PMID:27285162

  1. A New Antigen Retrieval Technique for Human Brain Tissue

    PubMed Central

    Byne, William; Haroutunian, Vahram; García-Villanueva, Mercedes; Rábano, Alberto; García-Amado, María; Prensa, Lucía; Giménez-Amaya, José Manuel

    2008-01-01

    Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times. PMID:18852880

  2. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    PubMed Central

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  3. Manganese uptake and distribution in the brain after methyl bromide-induced lesions in the olfactory epithelia.

    PubMed

    Thompson, Khristy J; Molina, Ramon M; Donaghey, Thomas; Savaliya, Sandeep; Schwob, James E; Brain, Joseph D

    2011-03-01

    Manganese (Mn) is an essential nutrient with potential neurotoxic effects. Mn deposited in the nose is apparently transported to the brain through anterograde axonal transport, bypassing the blood-brain barrier. However, the role of the olfactory epithelial cells in Mn transport from the nasal cavity to the blood and brain is not well understood. We utilized the methyl bromide (MeBr) lesion model wherein the olfactory epithelium fully regenerates in a time-dependent and cell type-specific manner over the course of 6-8 weeks postinjury. We instilled (54)MnCl(2) intranasally at different recovery periods to study the role of specific olfactory epithelial cell types in Mn transport. (54)MnCl(2) was instilled at 2, 4, 7, 21, and 56 days post-MeBr treatment. (54)Mn concentrations in the blood were measured over the first 4-h period and in the brain and other tissues at 7 days postinstillation. Age-matched control rats were similarly studied at 2 and 56 days. Blood and tissue (54)Mn levels were reduced initially but returned to control values by day 7 post-MeBr exposure, coinciding with the reestablishment of sustentacular cells. Brain (54)Mn levels also decreased but returned to control levels only by 21 days, the period near the completion of neuronal regeneration/bulbar reinnervation. Our data show that Mn transport to the blood and brain temporally correlated with olfactory epithelial regeneration post-MeBr injury. We conclude that (1) sustentacular cells are necessary for Mn transport to the blood and (2) intact axonal projections are required for Mn transport from the nasal cavity to the olfactory bulb and brain.

  4. Manganese Uptake and Distribution in the Brain after Methyl Bromide-Induced Lesions in the Olfactory Epithelia

    PubMed Central

    Thompson, Khristy J.; Molina, Ramon M.; Donaghey, Thomas; Savaliya, Sandeep; Schwob, James E.; Brain, Joseph D.

    2011-01-01

    Manganese (Mn) is an essential nutrient with potential neurotoxic effects. Mn deposited in the nose is apparently transported to the brain through anterograde axonal transport, bypassing the blood-brain barrier. However, the role of the olfactory epithelial cells in Mn transport from the nasal cavity to the blood and brain is not well understood. We utilized the methyl bromide (MeBr) lesion model wherein the olfactory epithelium fully regenerates in a time-dependent and cell type–specific manner over the course of 6–8 weeks postinjury. We instilled 54MnCl2 intranasally at different recovery periods to study the role of specific olfactory epithelial cell types in Mn transport. 54MnCl2 was instilled at 2, 4, 7, 21, and 56 days post-MeBr treatment. 54Mn concentrations in the blood were measured over the first 4-h period and in the brain and other tissues at 7 days postinstillation. Age-matched control rats were similarly studied at 2 and 56 days. Blood and tissue 54Mn levels were reduced initially but returned to control values by day 7 post-MeBr exposure, coinciding with the reestablishment of sustentacular cells. Brain 54Mn levels also decreased but returned to control levels only by 21 days, the period near the completion of neuronal regeneration/bulbar reinnervation. Our data show that Mn transport to the blood and brain temporally correlated with olfactory epithelial regeneration post-MeBr injury. We conclude that (1) sustentacular cells are necessary for Mn transport to the blood and (2) intact axonal projections are required for Mn transport from the nasal cavity to the olfactory bulb and brain. PMID:21177252

  5. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation

    PubMed Central

    Bola, R. Aaron; Kiyatkin, Eugene A.

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels. PMID:26913008

  6. Distribution of Non-Persistent Endocrine Disruptors in Two Different Regions of the Human Brain

    PubMed Central

    van der Meer, Thomas P.; Artacho-Cordón, Francisco; Swaab, Dick F.; Struik, Dicky; Makris, Konstantinos C.; Wolffenbuttel, Bruce H. R.; Frederiksen, Hanne; van Vliet-Ostaptchouk, Jana V.

    2017-01-01

    Non-persistent endocrine disrupting chemicals (npEDCs) can affect multiple organs and systems in the body. Whether npEDCs can accumulate in the human brain is largely unknown. The major aim of this pilot study was to examine the presence of environmental phenols and parabens in two distinct brain regions: the hypothalamus and white-matter tissue. In addition, a potential association between these npEDCs concentrations and obesity was investigated. Post-mortem brain material was obtained from 24 individuals, made up of 12 obese and 12 normal-weight subjects (defined as body mass index (BMI) > 30 and BMI < 25 kg/m2, respectively). Nine phenols and seven parabens were measured by isotope dilution TurboFlow-LC-MS/MS. In the hypothalamus, seven suspect npEDCs (bisphenol A, triclosan, triclocarban and methyl-, ethyl-, n-propyl-, and benzyl paraben) were detected, while five npEDCs (bisphenol A, benzophenone-3, triclocarban, methyl-, and n-propyl paraben) were found in the white-matter brain tissue. We observed higher levels of methylparaben (MeP) in the hypothalamic tissue of obese subjects as compared to controls (p = 0.008). Our findings indicate that some suspected npEDCs are able to cross the blood–brain barrier. Whether the presence of npEDCs can adversely affect brain function and to which extent the detected concentrations are physiologically relevant needs to be further investigated. PMID:28902174

  7. Effect of alternate energy substrates on mammalian brain metabolism during ischemic events.

    PubMed

    Koppaka, S S; Puchowicz; LaManna, J C; Gatica, J E

    2008-01-01

    Regulation of brain metabolism and cerebral blood flow involves complex control systems with several interacting variables at both cellular and organ levels. Quantitative understanding of the spatially and temporally heterogeneous brain control mechanisms during internal and external stimuli requires the development and validation of a computational (mathematical) model of metabolic processes in brain. This paper describes a computational model of cellular metabolism in blood-perfused brain tissue, which considers the astrocyte-neuron lactate-shuttle (ANLS) hypothesis. The model structure consists of neurons, astrocytes, extra-cellular space, and a surrounding capillary network. Each cell is further compartmentalized into cytosol and mitochondria. Inter-compartment interaction is accounted in the form of passive and carrier-mediated transport. Our model was validated against experimental data reported by Crumrine and LaManna, who studied the effect of ischemia and its recovery on various intra-cellular tissue substrates under standard diet conditions. The effect of ketone bodies on brain metabolism was also examined under ischemic conditions following cardiac resuscitation through our model simulations. The influence of ketone bodies on lactate dynamics on mammalian brain following ischemia is studied incorporating experimental data.

  8. Macro- and microelements in the rat liver, kidneys, and brain tissues; sex differences and effect of blood removal by perfusion in vivo.

    PubMed

    Orct, Tatjana; Jurasović, Jasna; Micek, Vedran; Karaica, Dean; Sabolić, Ivan

    2017-03-01

    Concentrations of macro- and microelements in animal organs indicate the animal health status and represent reference data for animal experiments. Their levels in blood and tissues could be different between sexes, and could be different with and without blood in tissues. To test these hypotheses, in adult female and male rats the concentrations of various elements were measured in whole blood, blood plasma, and tissues from blood-containing (nonperfused) and blood-free liver, kidneys, and brain (perfused in vivo with an elements-free buffer). In these samples, 6 macroelements (Na, Mg, P, S, K, Ca) and 14 microelements (Fe, Mn, Co, Cu, Zn, Se, I, As, Cd, Hg, Pb, Li, B, Sr) were determined by inductively coupled plasma mass spectrometry following nitric acid digestion. In blood and plasma, female- or male-dominant sex differences were observed for 6 and 5 elements, respectively. In nonperfused organs, sex differences were observed for 3 (liver, brain) or 9 (kidneys) elements, whereas in perfused organs, similar differences were detected for 9 elements in the liver, 5 in the kidneys, and none in the brain. In females, perfused organs had significantly lower concentrations of 4, 5, and 2, and higher concentrations of 10, 4, and 7 elements, respectively, in the liver, kidneys, and brain. In males, perfusion caused lower concentrations of 4, 7, and 2, and higher concentrations of 1, 1, and 7 elements, respectively, in the liver, kidneys, and brain. Therefore, the residual blood in organs can significantly influence tissue concentrations of various elements and their sex-dependency. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Biochemical changes related to hypoxia during cerebral aneurysm surgery: combined microdialysis and tissue oxygen monitoring: case report.

    PubMed

    Hutchinson, P J; Al-Rawi, P G; O'Connell, M T; Gupta, A K; Pickard, J D; Kirkpatrick, P J

    2000-01-01

    The objective of this study was to monitor brain metabolism on-line during aneurysm surgery, by combining the use of a multiparameter (brain tissue oxygen, brain carbon dioxide, pH, and temperature) sensor with microdialysis (extracellular glucose, lactate, pyruvate, and glutamate). The case illustrates the potential value of these techniques by demonstrating the effects of adverse physiological events on brain metabolism and the ability to assist in both intraoperative and postoperative decision-making. A 41-year-old woman presented with a World Federation of Neurological Surgeons Grade I subarachnoid hemorrhage. Angiography revealed a basilar artery aneurysm that was not amenable to coiling, so the aneurysm was clipped. Before the craniotomy was performed, a multiparameter sensor and a microdialysis catheter were inserted to monitor brain metabolism. During the operation, the brain oxygen level decreased, in relation to biochemical changes, including the reduction of extracellular glucose and pyruvate and the elevation of lactate and glutamate. These changes were reversible. However, when the craniotomy was closed, a second decrease in brain oxygen occurred in association with brain swelling, which immediately prompted a postoperative computed tomographic scan. The scan demonstrated acute hydrocephalus, requiring external ventricular drainage. The patient made a full recovery. The monitoring techniques influenced clinical decision-making in the treatment of this patient. On-line measurement of brain tissue gases and extracellular chemistry has the potential to assist in the perioperative and postoperative management of patients undergoing complex cerebrovascular surgery and to establish the effects of intervention on brain homeostasis.

  10. Enzyme markers of maternal malnutrition in fetal rat brain.

    PubMed

    Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R

    1987-01-01

    The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.

  11. Use of Synchrotron X-ray Fluorescence to Measure Trace Metal Distribution in the Brain

    NASA Astrophysics Data System (ADS)

    Linkous, D.; Flinn, J. M.; Lanzirotti, A.; Frederickson, C.; Jones, B. F.; Bertsch, P. M.

    2002-12-01

    X26A, National Synchrotron Light Source, was used to quantitatively evaluate the spatial distribution of trace metals, such as Zn and Cu, in brain tissue. X-ray microprobe techniques offer distinct advantages over other analytical methods by allowing analyses to be done in-situ with little or no chemical pretreatment and low detection limits (about 1 ppm). In the context of neuroscience, SXRF can provide non-destructive measurements of specific metal concentrations and distribution within nerve (brain) tissue. Neuronal tissue from organisms having undergone different normal or experimental conditions may be compared, with analytical capacities not limited by binding states of the metal (i.e., vesicular or enzymatic), as is the case with staining techniques.. Whole regions of tissue may be scanned for detectable trace metals at spatial resolutions of 10um or less using focused monochromatic x-ray beams. Here special attention has been given to zinc because it is the most common trace metal in the brain, and levels have been increasing in the environment. In this investigation, zinc concentrations present within the hilus of a rat hippocampus, and to a lesser extent in the cortex, have been shown to increase following long-term ingestion of zinc-enhanced drinking water that was associated with deficits in spatial memory. Concomitantly, copper concentrations in the internal capsule were comparatively lower. Other first order transition metals, Cr, V, Mn, and Co were not detected. In contrast, elevated levels of Zn, Cu, and Fe have been seen in amyloid plaques associated with Alzheimer's disease.

  12. Improved estimates of partial volume coefficients from noisy brain MRI using spatial context.

    PubMed

    Manjón, José V; Tohka, Jussi; Robles, Montserrat

    2010-11-01

    This paper addresses the problem of accurate voxel-level estimation of tissue proportions in the human brain magnetic resonance imaging (MRI). Due to the finite resolution of acquisition systems, MRI voxels can contain contributions from more than a single tissue type. The voxel-level estimation of this fractional content is known as partial volume coefficient estimation. In the present work, two new methods to calculate the partial volume coefficients under noisy conditions are introduced and compared with current similar methods. Concretely, a novel Markov Random Field model allowing sharp transitions between partial volume coefficients of neighbouring voxels and an advanced non-local means filtering technique are proposed to reduce the errors due to random noise in the partial volume coefficient estimation. In addition, a comparison was made to find out how the different methodologies affect the measurement of the brain tissue type volumes. Based on the obtained results, the main conclusions are that (1) both Markov Random Field modelling and non-local means filtering improved the partial volume coefficient estimation results, and (2) non-local means filtering was the better of the two strategies for partial volume coefficient estimation. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Natural variation in maternal care and cross-tissue patterns of oxytocin receptor gene methylation in rats.

    PubMed

    Beery, Annaliese K; McEwen, Lisa M; MacIsaac, Julia L; Francis, Darlene D; Kobor, Michael S

    2016-01-01

    This article is part of a Special Issue "Parental Care". Since the first report of maternal care effects on DNA methylation in rats, epigenetic modifications of the genome in response to life experience have become the subject of intense focus across many disciplines. Oxytocin receptor expression varies in response to early experience, and both oxytocin signaling and methylation status of the oxytocin receptor gene (Oxtr) in blood have been related to disordered social behavior. It is unknown whether Oxtr DNA methylation varies in response to early life experience, and whether currently employed peripheral measures of Oxtr methylation reflect variation in the brain. We examined the effects of early life rearing experience via natural variation in maternal licking and grooming during the first week of life on behavior, physiology, gene expression, and epigenetic regulation of Oxtr across blood and brain tissues (mononucleocytes, hippocampus, striatum, and hypothalamus). Rats reared by "high" licking-grooming (HL) and "low" licking-grooming (LL) rat dams exhibited differences across study outcomes: LL offspring were more active in behavioral arenas, exhibited lower body mass in adulthood, and showed reduced corticosterone responsivity to a stressor. Oxtr DNA methylation was significantly lower at multiple CpGs in the blood of LL versus HL males, but no differences were found in the brain. Across groups, Oxtr transcript levels in the hypothalamus were associated with reduced corticosterone secretion in response to stress, congruent with the role of oxytocin signaling in this region. Methylation of specific CpGs at a high or low level was consistent across tissues, especially within the brain. However, individual variation in DNA methylation relative to these global patterns was not consistent across tissues. These results suggest that blood Oxtr DNA methylation may reflect early experience of maternal care, and that Oxtr methylation across tissues is highly concordant for specific CpGs, but that inferences across tissues are not supported for individual variation in Oxtr methylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Natural variation in maternal care and cross-tissue patterns of oxytocin receptor gene methylation in rats

    PubMed Central

    Beery, Annaliese K.; McEwen, Lisa M.; MacIsaac, Julia L; Francis, Darlene D.; Kobor, Michael S.

    2015-01-01

    Since the first report of maternal care effects on DNA methylation in rats, epigenetic modifications of the genome in response to life experience have become the subject of intense focus across many disciplines. Oxytocin receptor expression varies in response to early experience, and both oxytocin signaling and methylation status of the oxytocin receptor gene (Oxtr) in blood have been related to disordered social behavior. It is unknown whether Oxtr methylation varies in response to early life experience, and whether currently employed peripheral measures of Oxtr methylation reflect variation in the brain. We examined the effects of early life rearing experience via natural variation in maternal licking and grooming during the first week of life on behavior, physiology, gene expression, and epigenetic regulation of Oxtr across blood and brain tissues (mononucleocytes, hippocampus, striatum, and hypothalamus). Rats reared by “high” licking-grooming (HL) and “low” licking-grooming (LL) rat dams exhibited differences across study outcomes: LL offspring were more active in behavioral arenas, exhibited lower body mass in adulthood, and showed reduced corticosterone responsivity to a stressor. Oxtr methylation was significantly lower at multiple CpGs in the blood of LL versus HL rats, but no differences were found in the brain. Across groups, Oxtr transcript levels in the hypothalamus were associated with reduced corticosterone secretion in response to stress, congruent with the role of oxytocin signaling in this region. Methylation of specific CpGs at a high or low level was consistent across tissues, especially within the brain. However, individual variation in methylation relative to these global patterns was not consistent across tissues. These results suggest that blood Oxtr methylation may reflect early experience of maternal care, and that Oxtr methylation across tissues is highly concordant for specific CpGs, but that inferences across tissues are not supported for individual variation in Oxtr methylation. PMID:26122287

  15. Transgenerational hormonal imprinting caused by vitamin A and vitamin D treatment of newborn rats. Alterations in the biogenic amine contents of the adult brain.

    PubMed

    Tekes, Kornélia; Gyenge, Melinda; Hantos, Mónika; Csaba, György

    2009-10-01

    Biogenic amines (norepinephrine, dopamine, homovanillic acid, serotonin and 5-hyroxyindole acetic acid) were measured by HPLC method in adult F1 generation rats' brain regions (brainstem, hypothalamus, hippocampus, striatum and frontal cortex), whose mothers (P generation) were treated with vitamin A or vitamin D neonatally (hormonal imprinting). Many significant differences were found, related to the maternally untreated controls. In the earlier studied P generation females, vitamin A consistently influenced the serotonerg system (5HIAA), while vitamin D the dopaminerg system (DA or HVA). Vitamin A imprinting always resulted in reduced, while that by vitamin D always in increased tissue levels. In the present case (directly untreated F1 generation) the transgenerational effect was not unidirectional, however biogenic amine tissue levels were strongly disturbed and brain-area dependent. The results call attention to the transgenerational effect of hormonal imprinting in the case of receptor level acting vitamins which are frequently used in the most imprinting-sensitive period (perinatally) of human life and suggests that caution is warranted.

  16. Vegetable and fruit juice enhances antioxidant capacity and regulates antioxidant gene expression in rat liver, brain and colon

    PubMed Central

    Yuan, Linhong; Liu, Jinmeng; Zhen, Jie; Xu, Yao; Chen, Shuying; Halm-Lutterodt, Nicholas Van; Xiao, Rong

    2017-01-01

    Abstract To explore the effect of fruit and vegetable (FV) juice on biomarkers of oxidative damage and antioxidant gene expression in rats, 36 adult male Wistar rats were randomly divided into control, low FV juice dosage or high FV juice dosage treatment groups. The rats were given freshly extracted FV juice or the same volume of saline water daily for five weeks. After intervention, serum and tissues specimens were collected for biomarker and gene expression measurement. FV juice intervention increased total antioxidant capacity, glutathione, vitamin C, β-carotene, total polyphenols, flavonoids levels andglutathione peroxidaseenzyme activity in rat serum or tissues (p < 0.05). FV juice intervention caused reduction of malondialdehyde levels in rat liver (p < 0.05) and significantly modulated transcript levels of glutamate cysteine ligase catalytic subunit (GCLC) and NAD(P)H:quinone oxidoreductase l (NQO1)in rat liver and brain (p < 0.05). The results underline the potential of FV juice to improve the antioxidant capacity and to prevent the oxidative damage in liver, brain and colon. PMID:28323302

  17. Dysbindin-1 and NRG-1 gene expression in immortalized lymphocytes from patients with schizophrenia.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Verrall, Louise; Yasuda, Yuka; Ohi, Kazutaka; Fukumoto, Motoyuki; Umeda-Yano, Satomi; Ito, Akira; Takeda, Masatoshi

    2011-07-01

    The dysbindin-1 and neuregulin-1 (NRG-1) genes are related to schizophrenia. Expression studies in postmortem brains have revealed lower expression of dysbindin-1 and higher expression of NRG-1 in brain tissue from subjects with schizophrenia. In addition to the difficulty of sampling, the use of postmortem brain tissues is not ideal because these tissues are heterogeneous with respect to biochemical parameters, lifetime history of medications and physiological status at the time of death. In contrast, medication and environmental influences that could mask the genetic basis of differences in RNA expression are removed in immortalized lymphocytes by culturing. Only a few microarray analysis studies using immortalized lymphocytes in schizophrenia have been reported, and whether immortalized lymphocytes are an appropriate alternative to neuronal tissue remains controversial. In this study, we measured the mRNA expression levels of dysbindin-1, NRG-1 and two other genes (NPY1R and GNAO1) in immortalized lymphocytes from 45 patients with schizophrenia and 45 controls using real-time quantitative reverse transcriptase-PCR. No difference was observed between patients and controls with respect to the expression of dysbindin-1, NRG-1, NPY1R or GNAO1 gene. Our findings suggest that the gene expression profile of immortalized lymphocyte from schizophrenic patients is different from that in postmortem brain tissue at least with respect to the dysbindin-1 and NRG-1 genes.

  18. Central insulin action in energy and glucose homeostasis.

    PubMed

    Plum, Leona; Belgardt, Bengt F; Brüning, Jens C

    2006-07-01

    Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.

  19. Organ distribution of 13N following intravenous injection of [13N]ammonia into portacaval-shunted rats

    PubMed Central

    Cruz, Nancy F.; Dienel, Gerald A.; Patrick, Tricia A.; Cooper, Arthur J. L.

    2016-01-01

    Ammonia is neurotoxic, and chronic hyperammonemia is thought to be a major contributing factor to hepatic encephalopathy in patients with liver disease. Portacaval shunting of rats is used as an animal model to study the detrimental metabolic effects of elevated ammonia levels on body tissues, particularly brain and testes that are deleteriously targeted by high blood ammonia. In normal adult rats, the initial uptake of label (expressed as relative concentration) in these organs was relatively low following a bolus intravenous injection of [13N]ammonia compared with lungs, kidneys, liver, and some other organs. The objective of the present study was to determine the distribution of label following intravenous administration of [13N]ammonia among 14 organs in portacaval-shunted rats at 12 weeks after shunt construction. At an early time point (12 sec) following administration of [13N]ammonia the relative concentration of label was highest in lung with lower, but still appreciable relative concentrations in kidney and heart. Clearance of 13N from blood and kidney tended to be slower in portacaval-shunted rats versus normal rats during the 2–10 min interval after the injection. At later times post injection, brain and testes tended to have higher-than-normal 13N levels, whereas many other tissues had similar levels in both groups. Thus, reduced removal of ammonia from circulating blood by the liver diverts more ammonia to extrahepatic tissues, including brain and testes, and alters the nitrogen homeostasis in these tissues. These results emphasize the importance of treatment paradigms designed to reduce blood ammonia levels in patients with liver disease. PMID:27822667

  20. Organ Distribution of 13N Following Intravenous Injection of [13N]Ammonia into Portacaval-Shunted Rats.

    PubMed

    Cruz, Nancy F; Dienel, Gerald A; Patrick, Patricia A; Cooper, Arthur J L

    2017-06-01

    Ammonia is neurotoxic, and chronic hyperammonemia is thought to be a major contributing factor to hepatic encephalopathy in patients with liver disease. Portacaval shunting of rats is used as an animal model to study the detrimental metabolic effects of elevated ammonia levels on body tissues, particularly brain and testes that are deleteriously targeted by high blood ammonia. In normal adult rats, the initial uptake of label (expressed as relative concentration) in these organs was relatively low following a bolus intravenous injection of [ 13 N]ammonia compared with lungs, kidneys, liver, and some other organs. The objective of the present study was to determine the distribution of label following intravenous administration of [ 13 N]ammonia among 14 organs in portacaval-shunted rats at 12 weeks after shunt construction. At an early time point (12 s) following administration of [ 13 N]ammonia the relative concentration of label was highest in lung with lower, but still appreciable relative concentrations in kidney and heart. Clearance of 13 N from blood and kidney tended to be slower in portacaval-shunted rats versus normal rats during the 2-10 min interval after the injection. At later times post injection, brain and testes tended to have higher-than-normal 13 N levels, whereas many other tissues had similar levels in both groups. Thus, reduced removal of ammonia from circulating blood by the liver diverts more ammonia to extrahepatic tissues, including brain and testes, and alters the nitrogen homeostasis in these tissues. These results emphasize the importance of treatment paradigms designed to reduce blood ammonia levels in patients with liver disease.

  1. Transcranial Red and Near Infrared Light Transmission in a Cadaveric Model

    PubMed Central

    Jagdeo, Jared R.; Adams, Lauren E.; Brody, Neil I.; Siegel, Daniel M.

    2012-01-01

    Background and Objective Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. Study Design/Materials and Methods To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. Results Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. Conclusion These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue. PMID:23077622

  2. Combined bio-engineering and neurophysiological in vivo technologies allow studying rat brain metabolism and neuronal activities in vivo in real time

    NASA Astrophysics Data System (ADS)

    Crespi, F.; Donini, M.; Bandera, A.; Congestri, F.; Heidbreder, C.; Rovati, L.

    2006-04-01

    Franz Joebsis first used near infrared spectroscopy (NIRS) as a tool for the in vivo monitoring of tissue oxygenation. Today, NIRS instruments are more and more used in clinical environments since these systems are now easy to use, sensitive, robust, give rapid analysis and have multiple measuring points. In the present work, optic fibre probes were used as optical head of a CW-NIR instrument adapted for in vivo NIRS measurements in the brain of rodents. This prototype was designed for non-invasive analysis of the two main forms of haemoglobin: oxy-haemoglobin (HbO II) and deoxy-haemoglobin (Hb), chromophores present in biological tissues. In the present experiments it was applied to measure non- invasively HbO II and Hb levels in the rat brain; that are markers of the degree of tissue oxygenation, thus providing an index of blood levels and therefore of brain metabolism. In addition, the same animals set for central NIRS studies, were also surgically prepared for electrophysiological monitoring of cell firing in discrete brain areas. These are raphe dorsalis nucleus, locus coeruleus, ventral tegmental area that are defined as main serotoninergic, noradrenergic and dopaminergic cell containing regions of the CNS and therefore involved in the major cerebral syndromes. Then, following a control recording period, exogenous oxygen (O2, 0.1bar, 2min) or carbon dioxide (CO2 0.1bar, 20min) was inflated orally. The data gathered indicate an original relationship between NIRS analysis of brain metabolism and electrical changes in three major nuclei of CNS involved in neurophysiologic and pathologic activities.

  3. Effect of Brain Tumor Presence During Radiation on Tissue Toxicity: Transcriptomic and Metabolic Changes.

    PubMed

    Zawaski, Janice A; Sabek, Omaima M; Voicu, Horatiu; Eastwood Leung, Hon-Chiu; Gaber, M Waleed

    2017-11-15

    Radiation therapy (RT) causes functional and transcriptomic changes in the brain; however, most studies have been carried out in normal rodent brains. Here, the long-term effect of irradiation and tumor presence during radiation was investigated. Male Wistar rats ∼7 weeks old were divided into 3 groups: sham implant, RT+sham implant, and RT+tumor implant (C6 glioma). Hypofractionated irradiation (8 or 6 Gy/day for 5 days) was localized to a 1-cm strip of cranium starting 5 days after implantation, resulting in complete tumor regression and prolonged survival. Biopsy of tissue was performed in the implant area 65 days after implantation. RNA was hybridized to GeneChip Rat Exon 1.0 ST array. Data were analyzed using significant analysis of microarrays and ingenuity pathway analysis. 1 H magnetic resonance spectroscopy ( 1 H-MRS) imaging was performed in the implantation site 65 to 70 days after implantation using a 9.4 T Biospec magnetic resonance imaging scanner with a quadrature rat brain array. Immunohistochemical staining for astrogliosis, HMG-CoA synthase 2, γ-aminobutyric acid (GABA) and taurine was performed at ∼65 days after implantation. Eighty-four genes had a false discovery rate <3.5%. We compared RT+tumor implant with RT+sham implant animals. The tumor presence affected networks associated with cancer/cell morphology/tissue morphology. 1 H-MRS showed significant reduction in taurine levels (P<.04) at the implantation site in both groups. However, the RT+tumor group also showed significant increase in levels of neurotransmitter GABA (P=.02). Hippocampal taurine levels were only significantly reduced in the RT+tumor group (P=.03). HMG-CoA synthase 2, GABA and taurine levels were confirmed using staining. Glial fibrillary acidic protein staining demonstrated a significant increase in inflammation that was heightened in the RT+tumor group. Our data indicate that tumor presence during radiation significantly affects long-term functional transcriptomics landscape and neurotransmitter levels at the tumor implantation site/normal tissue, accompanied by increased inflammation (astrogliosis). Copyright © 2017 Elsevier Inc. All rights reserved.

  4. "Ecstasy" toxicity to adolescent rats following an acute low binge dose.

    PubMed

    Teixeira-Gomes, Armanda; Costa, Vera Marisa; Feio-Azevedo, Rita; Duarte, José Alberto; Duarte-Araújo, Margarida; Fernandes, Eduarda; Bastos, Maria de Lourdes; Carvalho, Félix; Capela, João Paulo

    2016-06-28

    3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a worldwide drug of abuse commonly used by adolescents. Most reports focus on MDMA's neurotoxicity and use high doses in adult animals, meanwhile studies in adolescents are scarce. We aimed to assess in rats the acute MDMA toxicity to the brain and peripheral organs using a binge dose scheme that tries to simulate human adolescent abuse. Adolescent rats (postnatal day 40) received three 5 mg/kg doses of MDMA (estimated equivalent to two/three pills in a 50 kg adolescent), intraperitoneally, every 2 h, while controls received saline. After 24 h animal sacrifice took place and collection of brain areas (cerebellum, hippocampus, frontal cortex and striatum) and peripheral organs (liver, heart and kidneys) occurred. Significant hyperthermia was observed after the second and third MDMA doses, with mean increases of 1 °C as it occurs in the human scenario. MDMA promoted ATP levels fall in the frontal cortex. No brain oxidative stress-related changes were observed after MDMA. MDMA-treated rat organs revealed significant histological tissue alterations including vascular congestion, but no signs of apoptosis or necrosis were found, which was corroborated by the lack of changes in plasma biomarkers and tissue caspases. In peripheral organs, MDMA did not affect significantly protein carbonylation, glutathione, or ATP levels, but liver presented a higher vulnerability as MDMA promoted an increase in quinoprotein levels. Adolescent rats exposed to a moderate MDMA dose, presented hyperthermia and acute tissue damage to peripheral organs without signs of brain oxidative stress.

  5. The APOE ε4 Allele Is Associated with Lower Selenium Levels in the Brain: Implications for Alzheimer's Disease.

    PubMed

    R Cardoso, Bárbara; Hare, Dominic J; Lind, Monica; McLean, Catriona A; Volitakis, Irene; Laws, Simon M; Masters, Colin L; Bush, Ashley I; Roberts, Blaine R

    2017-07-19

    The antioxidant activity of selenium, which is mainly conferred by its incorporation into dedicated selenoproteins, has been suggested as a possible neuroprotective approach for mitigating neuronal loss in Alzheimer's disease. However, there is inconsistent information with respect to selenium levels in the Alzheimer's disease brain. We examined the concentration and cellular compartmentalization of selenium in the temporal cortex of Alzheimer's disease and control brain tissue. We found that Alzheimer's disease was associated with decreased selenium concentration in both soluble (i.e., cytosolic) and insoluble (i.e., plaques and tangles) fractions of brain homogenates. The presence of the APOE ε4 allele correlated with lower total selenium levels in the temporal cortex and a higher concentration of soluble selenium. Additionally, we found that age significantly contributed to lower selenium concentrations in the peripheral membrane-bound and vesicular fractions. Our findings suggest a relevant interaction between APOE ε4 and selenium delivery into brain, and show changes in cellular selenium distribution in the Alzheimer's disease brain.

  6. Influence of neonatal vitamin A or vitamin D treatment on the concentration of biogenic amines and their metabolites in the adult rat brain.

    PubMed

    Tekes, K; Gyenge, M; Folyovich, A; Csaba, G

    2009-04-01

    Newborn male rats were treated with a single dose of 3 mg vitamin A (retinol) or 0.05 mg vita-min D (cholecalciferol), and three months later five brain regions (frontopolar cortex, hypothalamus, hippocampus, striatum, and brainstem) were studied for tissue levels of dopamine (DA), serotonin (5HT), and metabolites such as homovanillic acid (HVA), as well as 5-hydroxyindole-3-acetic acid (5HIAA). Vitamin A treatment as hormonal imprinting significantly decreased 5HIAA levels in each brain region. Vitamin D imprinting significantly elevated DA only in the brainstem and HVA levels in striatum and hypothalamus. Present and earlier brain-imprinting results (with brain-produced substances), show that the profound and life-long effect of neonatal hormonal imprinting on neurotransmitter production of the adult brain seems to be well established. As prophylactic treatment with these vitamins is frequent in the perinatal period, the imprinting effect of vitamin A and vitamin D must be taken into consideration.

  7. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.

    PubMed

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François

    2015-10-01

    Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.

  8. Caveolin-1 mediates tissue plasminogen activator-induced MMP-9 up-regulation in cultured brain microvascular endothelial cells.

    PubMed

    Jin, Xinchun; Sun, Yanyun; Xu, Ji; Liu, Wenlan

    2015-03-01

    Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates blood-brain barrier injury and increases the risk of symptomatic cerebral hemorrhage. The mechanism through which tPA enhances MMP-9 activity is not well understood. Here we report an important role of caveolin-1 in mediating tPA-induced MMP-9 synthesis. Brain microvascular endothelial cell line bEnd3 cells were incubated with 5 or 20 μg/ml tPA for 24 hrs before analyzing MMP-9 levels in the conditioned media and cellular extracts by gelatin zymography. tPA at a dose of 20 μg/mL tPA, but not 5 μg/mL, significantly increased MMP-9 level in cultured media while decreasing it in cellular extracts. Concurrently, tPA treatment induced a 2.3-fold increase of caveolin-1 protein levels in endothelial cells. Interestingly, knockdown of Cav-1 with siRNA inhibited tPA-induced MMP-9 mRNA up-regulation and MMP-9 increase in the conditioned media, but did not affect MMP-9 decrease in cellular extracts. These results suggest that caveolin-1 critically contributes to tPA-mediated MMP-9 up-regulation, but may not facilitate MMP-9 secretion in endothelial cells. Thrombolysis with tissue plasminogen activator (tPA) increases matrix metalloproteinase-9 (MMP-9) activity in the ischemic brain, which exacerbates ischemic blood brain barrier (BBB) injury and increases the risk of symptomatic cerebral hemorrhage. Our results suggest a novel mechanism underlying this tPA-MMP 9 axis. In response to tPA treatment, caveolin-1 protein levels increased in endothelial cells, which mediate MMP-9 mRNA up-regulation and its secretion into extracellular space. Caveolin-1 may, however, not facilitate MMP-9 secretion in endothelial cells. Our data suggest caveolin-1 as a novel therapeutic target for protecting the BBB against ischemic damage. The schematic outlines tPA-induced MMP-9 upreguation. © 2015 International Society for Neurochemistry.

  9. Iron biomineralization of brain tissue and neurodegenerative disorders

    NASA Astrophysics Data System (ADS)

    Mikhaylova (Mikhailova), Albina

    The brain is an organ with a high concentration of iron in specific areas, particularly in the globus pallidus, the substantia nigra, and the red nucleus. In certain pathological states, such as iron overload disease and neurodegenerative disorders, a disturbed iron metabolism can lead to increased accumulation of iron not only in these areas, but also in the brain regions that are typically low in iron content. Recent studies of the physical and magnetic properties of metalloproteins, and in particular the discovery of biogenic magnetite in human brain tissue, have raised new questions about the role of biogenic iron formations in living organisms. Further investigations revealed the presence of magnetite-like crystalline structures in human ferritin, and indicated that released ferritin iron might act as promoter of oxidative damage to tissue, therefore contributing to pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. The purpose of this work was to examine the elemental composition and structure of iron deposits in normal brain tissue as well as tissue affected by neurodegenerative disorders. Employing the methods of X-ray microfocus fluorescence mapping, X-ray Absorption Near Edge Structure (XANES), X-ray Absorption Fine Structure spectroscopy (XAFS), and light and electron microscopic examinations allows one to obtain qualitative as well as quantitative data with respect to the cellular distribution and chemical state of iron at levels not detected previously. The described tissue preparation technique allows not only satisfactory XAS iron elemental imaging in situ but also multimodal examination with light and electron microscopes of the same samples. The developed protocol has assured consistent and reproducible results on relatively large sections of flat-embedded tissue. The resulting tissue samples were adequate for XAS examination as well as sufficiently well-preserved for future microscopy studies. The continued development of this technique should lead to major advances in mapping iron anomalies and the related chemical and structural information directly to cells and tissue structures in human brain tissue. At present this is done primarily by iron staining methods and any information on the relationship between iron distribution and cellular structures obtained this way is limited. Iron staining also offers no information on the specific compounds of iron that are present. This can be vitally important as the form of iron [including its oxidation state] in the human body can determine whether it plays a detrimental or beneficial role in neurophysiological processes.

  10. [The effect of prolonged treatment of hypertensive rats with antihypertensive drugs of various actions on the arterial tension and noradrenaline level in the myocardium, brain and aortal].

    PubMed

    Kiriakov, A; Khlebarova, M; Staneva-stoicheva, D; Panova, I

    1975-01-01

    The authors examined the changes in arterial blood pressure and the content of Noradrenaline in the myocardium, brain and aorta of rats with hypertension due to nephrectomy and treatment with desoxycorticosterone and NaCl, and after a chronic 6-month treatment of hypertension with various antihypertensive means. The most significant reduction of noradrenaline in the three of the examined tissues was found in rats, which received dic. sulfyram (100 mg/kg per os). Clondine (10 mkg/kg, per os) manifested the strongest hypotensive effect and lowered the level of noradrenaline in the myocardium, while it was raised in the aorta. Reserpine (10 mkg/kg, s. c) induced a clear reduction of Noradrenaline content in the brain, but an increase in the other two tissues. Insignificant hypotensive effect was observed in animals, treated with guanetidine (0.5 mg/kg, per os), which did not affect substantially noradrenaline in the examined organs. The increase of noradrenaline level was established in the three of the organs of animals, treated with alpha-methyl-DOFA (25 mg/kg, per os). Furosemide (1 mg/kg, s.c.) induced a statistically significant elevation of noradrenaline in the aorta, but was noneffective to noradrenaline in the myocardium and brain.

  11. Immunology of Prion Protein and Prions.

    PubMed

    Mabbott, Neil A

    2017-01-01

    Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered. © 2017 Elsevier Inc. All rights reserved.

  12. Psychiatric Brain Banking: Three Perspectives on Current Trends and Future Directions

    PubMed Central

    Deep-Soboslay, Amy; Benes, Francine M.; Haroutunian, Vahram; Ellis, Justin K.; Kleinman, Joel E.; Hyde, Thomas M.

    2011-01-01

    Introduction The study of postmortem human brain tissue is central to the advancement of the neurobiological studies of psychiatric illness, particularly for the study of brain-specific isoforms and molecules. Methods The state-of-the-art methods and recommendations for maintaining a successful brain bank for psychiatric disorders are discussed, using the convergence of viewpoints from three brain collections, the National Institute of Mental Health Brain Collection (NIMH), the Harvard Brain Tissue Resource Center (HBTRC), and the Mt. Sinai School of Medicine Brain Bank (MSSM-BB), with diverse research interests and divergent approaches to tissue acquisition. Results While the NIMH obtains donations from medical examiners for its collection, and places particular emphasis on clinical diagnosis, toxicology, and building lifespan control cohorts, the HBTRC is uniquely designed as a repository whose sole purpose is to collect large-volume, high quality brain tissue from community-based donors based on relationships across an expansive nationwide network, and places emphasis on the accessibility of its bank in disseminating tissue and related data to research groups worldwide. The MSSM-BB collection has shown that, with dedication, prospective recruitment is a successful approach to tissue donation, and places particular emphasis on rigorous clinical diagnosis through antemortem contact with donors. The MSSM-BB places great importance on stereological tissue sampling methods for neuroanatomical studies, and frozen tissue sampling approaches that enable multiple assessments (RNA, DNA, protein, enzyme activity, binding, etc.) of the same tissue block. Promising scientific approaches for elucidating the molecular and cellular pathways in brain that may contribute to schizophrenia and/or bipolar disorder, such as cell culture techniques and microarray-based gene expression and genotyping studies are briefly discussed. Conclusions Despite unique perspectives from three established brain collections, there is a consensus that (1) diverse strategies for tissue acquisition, (2) rigor in tissue and diagnostic characterization, (3) the importance of sample accessibility, and (4) continual application of innovative scientific approaches to the study of brain tissue are all integral to the success and future of psychiatric brain banking. The future of neuropsychiatric research depends upon in the availability of high quality brain specimens from large numbers of subjects, including non-psychiatric controls. PMID:20673875

  13. Molecular cloning, characterization, tissue distribution and mRNA expression changes during the hibernation and reproductive periods of estrogen receptor alpha (ESR1) in Chinese alligator, Alligator sinensis.

    PubMed

    Zhang, Ruidong; Hu, Yuehong; Wang, Huan; Yan, Peng; Zhou, Yongkang; Wu, Rong; Wu, Xiaobing

    2016-10-01

    Chinese alligator, Alligator sinensis, is a critically endangered reptile species unique to China. Little is known about the mechanism of growth- and reproduction-related hormones gene expression in Chinese alligator. Estrogens play important roles in regulating multiple reproduction- and non-reproduction-related functions by binding to their corresponding receptors. Here, the full-length cDNA of estrogen receptor alpha (ERα/ESR1) was cloned and sequenced from Chinese alligator for the first time, which comprises 1764bp nucleotides and encodes a predicted protein of 587 amino acids. Phylogenetic analysis of ESR1 showed that crocodilians and turtles were the sister-group of birds. The results of real-time quantitative PCR indicated that the ESR1 mRNA was widely expressed in the brain and peripheral tissues. In the brain and pituitary gland, ESR1 was most highly transcribed in the cerebellum. But in other peripheral tissues, ESR1 mRNA expression level was the highest in the ovary. Compared with hibernation period, ESR1 mRNA expression levels were increased significantly in the reproductive period (P<0.05) in cerebellum, pituitary gland, liver, spleen, lung, kidney and ovary, while no significant change in other examined tissues (P>0.05). The ESR1 mRNA expression levels changes during the two periods of different tissues suggested that ESR1 might play an important role in mediation of estrogenic multiple reproductive effects in Chinese alligator. Furthermore, it was the first time to quantify ESR1 mRNA level in the brain of crocodilians, and the distribution and expression of ESR1 mRNA in the midbrain, cerebellum and medulla oblongata was also reported for the first time in reptiles. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Impact of Lactobacillus fermentum and dairy lipids in the maternal diet on the fatty acid composition of pups' brain and peripheral tissues.

    PubMed

    Joffre, C; Dinel, A L; Aubert, A; Fressange-Mazda, C; Le Ruyet, P; Layé, S

    2016-12-01

    The aim of the study was to determine the effect of maternal diets administered since day 1 of gestation and containing dairy lipids or vegetable oils differing in the supply of n-3 polyunsaturated fatty acids (n-3 PUFAs) (equilibrated or deficient) and of Lactobacillus fermentum (L. fermentum) on the docosahexaenoic acid (DHA) accretion in the pups at postnatal day 14 in the prefrontal cortex (PFC) and hippocampus (HC) for brain structures and in the liver and adipose tissue for peripheral tissues. Maternal milk fatty acid composition was also assessed by analyzing the fatty acid composition of the gastric content of the pups. DHA was higher in mice supplemented with L. fermentum than in mice in the deficient group in HC and PFC and also in liver and adipose tissue. This increase could be linked to the slight but significant increase in C18:3n-3 in the maternal milk. This proportion was comparable in the dairy lipid group for which the brain DHA level was the highest. L. fermentum may have a key role in the protection of the brain during the perinatal period via the neuronal accretion of n-3 PUFAs, especially during n-3 PUFA deficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Methylmercury and selenium speciation in different tissues of beluga whales (Delphinapterus leucas) from the western Canadian Arctic.

    PubMed

    Lemes, Marcos; Wang, Feiyue; Stern, Gary A; Ostertag, Sonja K; Chan, Hing Man

    2011-12-01

    Monitoring data have shown that the total monomethylmercury (CH(3) Hg(+) and its complexes; collectively referred as MeHg hereafter) concentrations in Arctic marine mammals have remained very high in recent decades. Toward a better understanding of the metabolic and toxicological implications of these high levels of MeHg, we report here on the molecular forms of MeHg in the muscle, brain, liver, and kidneys of 10 beluga whales from the western Canadian Arctic. In all tissues analyzed, monomethylmercury was found to be dominated by methylmercuric cysteinate, a specific form of MeHg believed to be able to transport across the blood-brain barrier. Another MeHg-thiol complex, methylmercuric glutathionate, was also detected in the muscle and, to a much lesser extent, in the liver and brain tissues. Furthermore, a profound inorganic Hg peak was detected in the liver and brain tissues, which showed the same retention time as a selenium (Se) peak, suggesting the presence of an Hg-Se complex, most likely an inorganic Hg complex with a selenoamino acid. These results provide the first analytical support that the binding of MeHg with glutathione and Se may have protected beluga whales from the toxic effect of high concentrations of MeHg in their body. Copyright © 2011 SETAC.

  16. Carvedilol induces endogenous hydrogen sulfide tissue concentration changes in various mouse organs.

    PubMed

    Wiliński, Bogdan; Wiliński, Jerzy; Somogyi, Eugeniusz; Piotrowska, Joanna; Góralska, Marta; Macura, Barbara

    2011-01-01

    Carvedilol, a third generation non-selective adrenoreceptor blocker, is widely used in cardiology. Its action has been proven to reach beyond adrenergic antagonism and involves multiple biological mechanisms. The interaction between carvedilol and endogenous 'gasotransmitter' hydrogen sulfide (H2S) is unknown. The aim of the study is to assess the influence of carvedilol on the H2S tissue level in mouse brain, liver, heart and kidney. Twenty eight SJL strain female mice were administered intraperitoneal injections of 2.5 mg/kg b.w./d (group D1, n=7), 5 mg/kg b.w./d (group D2, n=7) or 10 mg/kg b.w./d of carvedilol (group D3, n=7). The control group (n=7) received physiological saline in portions of the same volume (0.2 ml). Measurements of the free tissue H2S concentrations were performed according to the modified method of Siegel. A progressive decline in H2S tissue concentration along with an increase in carvedilol dose was observed in the brain (12.5%, 13.7% and 19.6%, respectively). Only the highest carvedilol dose induced a change in H2S tissue level in the heart - an increase by 75.5%. In the liver medium and high doses of carvedilol increased the H2S level by 48.1% and 11.8%, respectively. In the kidney, group D2 showed a significant decrease of H2S tissue level (22.5%), while in the D3 group the H2S concentration increased by 12.9%. Our study has proven that carvedilol affects H2S tissue concentration in different mouse organs.

  17. The present and future of pharmacotherapy of Alzheimer's disease: A comprehensive review.

    PubMed

    Anand, Abhinav; Patience, Albert Anosi; Sharma, Neha; Khurana, Navneet

    2017-11-15

    Alzheimer's disease (AD) is a generalized term used for the loss in memory and other intellectual abilities on levels serious enough to interfere with daily life. It accounts for 60-80% of dementia cases. The characteristic features include aggregation of Amyloid-Beta (Aβ) plaques and Tau Protein Tangles in the nervous tissue of brain. Another important aspect associated with development of AD is the decrease in levels of Acetylcholine (ACh) in brain. The conventional pharmacotherapy of AD employs the use of compounds that inhibit the enzyme acetylcholinesterase (e.g. donepezil, rivastigmine) thereby elevating the levels of Acetylcholine in nervous tissue of brain. Lately, another drug has come into picture for treatment of AD i.e.memantine. It is a Glutamatergic antagonist that protects the nervous tissue against glutamate mediated excitotoxicity. However, both these classes of drugs provide only the symptomatic relief. There has been a desperate need arising since the past few decades for evolution of a drug that could treat the underlying causes of AD and thereby halt its development in susceptible individuals. There are several plants and derived products which have been employed for their benefits against the symptoms and complications of AD. Some novel drugs having the potential to moderate AD are under clinical trials. This review presents a comprehensive overview of the existing and the upcoming potential treatments for AD. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Isolation and characterization of a leech neuropeptide in rat brains: coupling to nitric oxide release in leech, rat and human tissues.

    PubMed

    Salzet, M; Salzet, B; Sáutière, P; Lésage, J; Beauvillain, J C; Bilfinger, T V; Rialas, C; Bjenning, C; Stefano, G B

    1998-03-30

    The osmoregulator peptide (leech osmoregulatory factor, LORF; IPEPYVWD) was first found in the leech central nervous system (CNS). Given the fact that certain peptides can be found in mammals and invertebrates, e.g., opioid, we examined rat brains to determine if LORF was present. This peptide was found and isolated by successive reversed-phase HPLC purification steps and characterized by electrospray mass spectrometry measurement. It was sequenced by Edman degradation and quantified in different tissues by ELISA. Our results demonstrate the presence of LORF in the hypothalamus, thalamus, and striatum (6 pmol/mg of protein extract) and in other brain areas at lower levels. This octapeptide is also present in the rat duodenum and liver (10 to 14 pmol/mg) and at lower levels in heart, lung, pancreas and caudal spinal cord (< 5 pmol/mg). The testes, adrenals and kidneys have the lowest levels of all the tissues examined (ca. 0.5 pmol/mg of protein). Furthermore, we also demonstrate that LORF is coupled to nitric oxide (NO) release in leech CNS, rat hypothalamus and human saphenous vein in a manner which is inhibited by a nitric oxide synthase inhibitor as well as an antibody directed toward LORF. The study demonstrates that LORF, and its function in relation to NO release, has been conserved over more than 400 million years of evolution.

  19. Histological change and heat shock protein 70 expression in different tissues of Japanese flounder Paralichthys olivaceus in response to elevated temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Ma, Daoyuan; Xiao, Zhizhong; Xu, Shihong; Wang, Yanfeng; Wang, Yufu; Xiao, Yongshuang; Song, Zongcheng; Teng, Zhaojun; Liu, Qinghua; Li, Jun

    2015-01-01

    High temperature influences the homeostasis of fish. We investigated the effects of elevated temperature on tissues of Japanese flounder ( Paralichthys olivaceus) by analyzing the histology and heat shock protein 70 ( hsp70) expression of fish reared in warm conditions. In this study, temperature was increased at 1±0.5°C/day starting at 24±0.5°C, and was kept at that temperature for 5 days before the next rise. After raising temperature at the rate up to 32±0.5°C, tissue samples from midgut, spleen, stomach, liver, muscle, gill, heart, trunk kidney and brain were collected for histological analysis and mRNA assay. Almost all the tissues showed changes in morphological structure and hsp70 level at 32±0.5°C. Histological assessment of the tissues indicated that the gill had the most serious damage, including highly severe epithelial lifting and edema, curved tips and hyperemia at the ending of the lamellars, desquamation and necrosis. The next most severe damage was found in liver and kidney. The hsp70 levels in all the tissues first increased and then decreased. The gut, stomach, muscle, heart, and brain had the highest expressions in 6 h, whereas the spleen, liver, gill and kidney had the highest expressions in 2 h. Therefore, tissues with the most significant lesions (especially gill and liver) responded much earlier (2 h) in hsp70 expression than other tissues, and these tissues demonstrated the most marked histological disruption and elevated mRNA levels, making them ideal candidates for further studies on the thermal physiology of this species.

  20. Localized delivery of low-density lipoprotein docosahexaenoic acid nanoparticles to the rat brain using focused ultrasound.

    PubMed

    Mulik, Rohit S; Bing, Chenchen; Ladouceur-Wodzak, Michelle; Munaweera, Imalka; Chopra, Rajiv; Corbin, Ian R

    2016-03-01

    Focused ultrasound exposures in the presence of microbubbles can achieve transient, non-invasive, and localized blood-brain barrier (BBB) opening, offering a method for targeted delivery of therapeutic agents into the brain. Low-density lipoprotein (LDL) nanoparticles reconstituted with docosahexaenoic acid (DHA) could have significant therapeutic value in the brain, since DHA is known to be neuroprotective. BBB opening was achieved using pulsed ultrasound exposures in a localized brain region in normal rats, after which LDL nanoparticles containing the fluorescent probe DiR (1,1'-Dioctadecyl-3,3,3',3'-Tetramethylindotricarbocyanine Iodide) or DHA were administered intravenously. Fluorescent imaging of brain tissue from rats administered LDL-DiR demonstrated strong localization of fluorescence signal in the exposed hemisphere. LDL-DHA administration produced 2 × more DHA in the exposed region of the brain, with a corresponding increase in Resolvin D1 levels, indicating DHA was incorporated into cells and metabolized. Histological evaluation did not indicate any evidence of increased tissue damage in exposed brain regions compared to normal brain. This work demonstrates that localized delivery of DHA to the brain is possible using systemically-administered LDL nanoparticles combined with pulsed focused ultrasound exposures in the brain. This technology could be used in regions of acute brain injury or as a means to target infiltrating tumor cells in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Localized Delivery of Low-Density Lipoprotein Docosahexaenoic Acid Nanoparticles to the Rat Brain using Focused Ultrasound

    PubMed Central

    Mulik, Rohit S.; Bing, Chenchen; Ladouceur-Wodzak, Michelle; Munaweera, Imalka; Chopra, Rajiv; Corbin, Ian R.

    2016-01-01

    Focused ultrasound exposures in the presence of microbubbles can achieve transient, non-invasive, and localized blood-brain barrier (BBB) opening, offering a method for targeted delivery of therapeutic agents into the brain. Low-density lipoprotein (LDL) nanoparticles reconstituted with docosahexaenoic acid (DHA) could have significant therapeutic value in the brain, since DHA is known to be neuroprotective. BBB opening was achieved using pulsed ultrasound exposures in a localized brain region in normal rats, after which LDL nanoparticles containing the fluorescent probe DiR (1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindotricarbocyanine Iodide) or DHA were administered intravenously. Fluorescent imaging of brain tissue from rats administered LDL-DiR demonstrated strong localization of fluorescence signal in the exposed hemisphere. LDL-DHA administration produced 2× more DHA in the exposed region of the brain, with a corresponding increase in Resolvin D1 levels, indicating DHA was incorporated into cells and metabolized. Histological evaluation did not indicate any evidence of increased tissue damage in exposed brain regions compared to normal brain. This work demonstrates that localized delivery of DHA to the brain is possible using systemically-administered LDL nanoparticles combined with pulsed focused ultrasound exposures in the brain. This technology could be used in regions of acute brain injury or as a means to target infiltrating tumor cells in the brain. PMID:26790145

  2. Common disease signatures from gene expression analysis in Huntington's disease human blood and brain.

    PubMed

    Mina, Eleni; van Roon-Mom, Willeke; Hettne, Kristina; van Zwet, Erik; Goeman, Jelle; Neri, Christian; A C 't Hoen, Peter; Mons, Barend; Roos, Marco

    2016-08-01

    Huntington's disease (HD) is a devastating brain disorder with no effective treatment or cure available. The scarcity of brain tissue makes it hard to study changes in the brain and impossible to perform longitudinal studies. However, peripheral pathology in HD suggests that it is possible to study the disease using peripheral tissue as a monitoring tool for disease progression and/or efficacy of novel therapies. In this study, we investigated if blood can be used to monitor disease severity and progression in brain. Since previous attempts using only gene expression proved unsuccessful, we compared blood and brain Huntington's disease signatures in a functional context. Microarray HD gene expression profiles from three brain regions were compared to the transcriptome of HD blood generated by next generation sequencing. The comparison was performed with a combination of weighted gene co-expression network analysis and literature based functional analysis (Concept Profile Analysis). Uniquely, our comparison of blood and brain datasets was not based on (the very limited) gene overlap but on the similarity between the gene annotations in four different semantic categories: "biological process", "cellular component", "molecular function" and "disease or syndrome". We identified signatures in HD blood reflecting a broad pathophysiological spectrum, including alterations in the immune response, sphingolipid biosynthetic processes, lipid transport, cell signaling, protein modification, spliceosome, RNA splicing, vesicle transport, cell signaling and synaptic transmission. Part of this spectrum was reminiscent of the brain pathology. The HD signatures in caudate nucleus and BA4 exhibited the highest similarity with blood, irrespective of the category of semantic annotations used. BA9 exhibited an intermediate similarity, while cerebellum had the least similarity. We present two signatures that were shared between blood and brain: immune response and spinocerebellar ataxias. Our results demonstrate that HD blood exhibits dysregulation that is similar to brain at a functional level, but not necessarily at the level of individual genes. We report two common signatures that can be used to monitor the pathology in brain of HD patients in a non-invasive manner. Our results are an exemplar of how signals in blood data can be used to represent brain disorders. Our methodology can be used to study disease specific signatures in diseases where heterogeneous tissues are involved in the pathology.

  3. [NRH2 induces cell apoptosis of cerebral tissues around hematomas after intracerebral hemorrhage through up-regulating proNGF, sortilin and p75NTR expressions].

    PubMed

    Zeng, Zhiqing; Liu, Hong; Jiang, Di

    2015-04-01

    To observe the expressions of neurotrophin receptor homolog 2 (NRH2), nerve growth factor precursor (proNGF), sortilin and neurotrophin receptor p75 (p75NTR) in cerebral tissues around hematomas in the different periods after intracerebral hemorrhage, and explore their relationships to cell apoptosis. The specimens of cerebral tissues around hematomas were collected from the patients undergoing hematoma removal operation after intracerebral hemorrhage. These specimens were divided into four groups, namely ≤ 6 hours, 6-24 hours(including 24 hours), 24-72 hours (including 72 hours) and over 72 hours according to the time from intracerebral hemorrhage to specimen collection. At the same time, 10 brain tissues distant to hemorrhage that dropped in the operative process were collected as a control group. Apoptosis index (AI) was examined in brain cells by terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end labeling (TUNEL). The expressions of NRH2, proNGF, sortilin and p75NTR mRNAs and proteins in brain tissues were detected through real-time quantitative PCR and Western blotting, respectively. Also, the expressions of Bcl-2 and Bax in brain tissues were analyzed using Western blotting. In vitro cultured astrocytes of rat cortex were transfected by NRH2 siRNA or scramble siRNA. The expressions of proNGF, sortilin and p75NTR proteins were detected using Western blotting. AI was higher in all groups of hemorrhage for 6 hours or longer than that in control and ≤ 6 hours groups, and AI in the group of 24-72 hours after intracerebral hemorrhage was the highest. However, there was no significant difference in AI between ≤ 6 hours group and control group. With the extension of intracerebral hemorrhage time, the expression levels of proNGF and p75NTR mRNAs and proteins were gradually elevated, reached the peak in 24-72 hours, and maintained a higher level after 72 hours, whereas there were no significant differences in the above indicators between ≤ 6 hours group and control group. In comparison with control group and ≤ 6 hours group, the expression levels of NRH2 and sortilin mRNAs and proteins and Bax expression started to increase in 6-24 hours, reached the peak in 24-72 hours, and then stayed a higher level after 72 hours, whereas there were no significant differences in the above indicators between ≤ 6 hours group and control group. There was no obvious change in Bcl-2 expression level between ≤ 6 hours group and control group. The level of Bcl-2 decreased in all groups of intracerebral hemorrhage for over 6 hours, and reached the nadir in 24-72 hours. Astrocytes transfected with NRH2 siRNA displayed a significant decrease in proNGF, sortilin and p75NTR protein levels as compared with scramble siRNA or blank control groups. The expression of NRH2 would increase in the cerebral tissues around hematomas after intracerebral hemorrhage. NRH2 might enhance the ratio of Bax/Bcl-2 by promoting the expressions of proNGF, sortilin and p75NTR, thereby inducing brain cell apoptosis.

  4. Radioimmunoassay measurement of creatine kinase bb in the serum of schizophrenic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, M.H.; Friedhoff, A.J.

    1980-03-03

    Brain type creatine kinase (BB) isoenzyme was measured using a highly sensitive and specific radioimmunoassay procedure in two schizophrenic populations. The data would indicate that in the schizophrenic populations examined there is insufficient tissue disruption to cause abnormal build-up of brain creatine kinase levels. However the possibility of a rapid removal of creatine kinase BB from the circulation exists. The elevated creatine kinase reported in acute schizophrenics is most likely not of brain origin.

  5. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor.

    PubMed

    Hu, Y; Wilson, G S

    1997-10-01

    A successfully developed enzyme-based lactate microsensor with rapid response time allows the direct and continuous in vivo measurement of lactic acid concentration with high temporal resolution in brain extracellular fluid. The fluctuations coupled to neuronal activity in extracellular lactate concentration were explored in the dentate gyrus of the hippocampus of the rat brain after electrical stimulation of the perforant pathway. Extracellular glucose and oxygen levels were also detected simultaneously by coimplantation of a fast-response glucose sensor and an oxygen electrode, to provide novel information of trafficking of energy substances in real time related to local neuronal activity. The results first give a comprehensive picture of complementary energy supply and use of lactate and glucose in the intact brain tissue. In response to acute neuronal activation, the brain tissue shifts immediately to significant energy supply by lactate. A local temporary fuel "reservoir" is established behind the blood-brain barrier, evidenced by increased extracellular lactate concentration. The pool can be depleted rapidly, up to 28% in 10-12 s, by massive, acute neuronal use after stimulation and can be replenished in approximately 20 s. Glutamate-stimulated astrocytic glycolysis and the increase of regional blood flow may regulate the lactate concentration of the pool in different time scales to maintain local energy homeostasis.

  6. High frequency oscillations in brain hemodynamic response

    NASA Astrophysics Data System (ADS)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  7. Levels of 2,3-diphosphoglycerate in Friend leukaemic cells.

    PubMed

    Yeoh, G C

    1980-05-08

    Most cells are thought to contain trace amounts of 2,3-diphosphoglycerate (DPG), as it acts as a cofactor in the interconversion of 2-phosphoglycerate and 3-phosphoglycerate by the glycolytic enzyme phosphoglyceromutase. DPG is synthesized from 1,3-diphosphoglycerate by the action of diphosphoglycerate mutase. Lowry et al. reported levels of 29 mumol DPG per kg wet weight brain tissue which is approximately 3 pmol per 10(8) cells, assuming that 1 g of brain tissue contains 10(9) cells. In contrast, erythroid cells contain 50-100 nmol DPG per 10(8) cells, depending on the species and the stage of development. This is of the order of a 1,000-fold more DPG compared with non-erythroid cells. In red cells DPG concentration modulates the binding of oxygen to haemoglobin. I show here that erythroid precurser cells also contain markedly raised levels of DPG.

  8. Differential and brain region-specific regulation of Rap-1 and Epac in depressed suicide victims.

    PubMed

    Dwivedi, Yogesh; Mondal, Amal C; Rizavi, Hooriyah S; Faludi, Gabor; Palkovits, Miklos; Sarosi, Andrea; Conley, Robert R; Pandey, Ghanshyam N

    2006-06-01

    Depression is a major public health problem. Despite many years of research, the molecular mechanisms associated with depression remain unclear. Rap-1, activated in response to many extracellular stimuli, is one of the major substrates of protein kinase A, which participates in myriad physiologic functions in the brain, including cell survival and synaptic plasticity. Rap-1 is also activated directly by cyclic adenosine monophosphate through Epac, and thus participates in mediating physiologic functions independent of protein kinase A. To examine whether the pathogenesis of depression is associated with altered activation and expression of Rap-1, as well as expression of Epac, in depressed suicide victims. Postmortem study. Tissues were obtained from the Lenhossek Human Brain Program, Semmelweis University, Budapest, Hungary, and the Brain Collection Program of the Maryland Psychiatric Research Center, Baltimore. Postmortem brains of 28 depressed suicide victims and 28 nonpsychiatric control subjects. Examination of brain tissues. Rap-1 activation as well as messenger RNA and protein levels of Rap-1 and Epac in prefrontal cortex, hippocampus, and cerebellum. Rap-1 activation was significantly reduced (P<.001) in prefrontal cortex and hippocampus in the suicide group. This was associated with significant reductions in Rap-1 messenger RNA and protein levels (P<.001). In contrast, protein level of only Epac-2 (P<.001) but not Epac-1 (P = .89) was significantly increased in prefrontal cortex and hippocampus of these subjects. These changes were present whether the 2 cohorts were analyzed together or separately. None of the measures showed any significant change in cerebellum in the suicide group. Given the importance of Rap-1 in neuroprotection and synaptic plasticity, our findings of differential regulation of Rap-1 and Epac between brain regions suggest the relevance of these molecules in the pathophysiology of depression.

  9. Neurodegenerative changes and neuroapoptosis induced by systemic lipopolysaccharide administration are reversed by dexmedetomidine treatment in mice.

    PubMed

    Ning, Qiaoqing; Liu, Zhaoguo; Wang, Xiuhua; Zhang, Ruyi; Zhang, Jing; Yang, Meizi; Sun, Hongliu; Han, Fang; Zhao, Wenxiang; Zhang, Xiuli

    2017-04-01

    Sepsis-associated encephalopathy (SAE) is a frequent and nasty complication of sepsis, associated with patients increased risk of death and long-term brain dysfunctions. This study aimed to explore the effect of dexmedetomidine (Dex), an anesthetic adjuvant, on the development of SAE. Lipopolysaccharide (LPS, 10 mg/kg) was intraperitoneally injected to male BALB/c mice to induce sepsis. Dex (25 μg/kg) was given intraperitoneally immediately after LPS injection. Levels of TNF-α, IL-1β, malondialdehyde (MDA) and reactive oxygen species (ROS) were detected in mice brains tissue eight hours later after drug administration. Hematoxylin and eosin (HE) staining was used to detect brain pathologic change. We also detected apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and Bcl-2, Bax, Caspase-3 expressions by western blot. Levels of TNF-α, IL-1β, MDA and ROS were increased in the brain tissue after LPS treatment, indicating that LPS injection resulted in increased brain inflammation and elevated oxidative stress. We further found a large quantity of degenerative neurons widespread in hippocampal CA1, CA3 regions and cerebral cortex according to HE staining. Dex could significantly decrease brain inflammation and oxidative stress by decreasing the levels of TNF-α, IL-1β, MDA and ROS, and ameliorate neurodegenerative changes. The associated results also demonstrated that Dex treatment ameliorated the LPS-induced neuronal apoptosis, probably by upregulating the Bcl-2 expression and downregulating the Bax expression. Our results indicated that Dex could reverse neurodegenerative changes and neuroapoptosis in mice brain of septic mice induced by LPS through anti-inflammatory and antiapoptotic effects.

  10. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats.

    PubMed

    Lv, Hongdi; Wang, Ling; Shen, Jinchang; Hao, Shaojun; Ming, Aimin; Wang, Xidong; Su, Feng; Zhang, Zhengchen

    2015-06-01

    Silent information regulator 1 (SIRT1), a histone deacetylase, has been suggested to be effective in ischemic brain diseases. Salvianolic acid B (SalB) is a polyphenolic and one of the active components of Salvia miltiorrhiza Bunge. Previous studies suggested that SalB is protective against ischemic stroke. However, the role of SIRT1 in the protective effect of SalB against cerebral ischemia has not been explored. In this study, the rat brain was subjected to middle cerebral artery occlusion (MCAO). Before this surgery, rats were intraperitoneally administrated SalB with or without EX527, a specific SIRT1 inhibitor. The infarct volume, neurological score and brain water content were assessed. In addition, levels of TNF-α and IL-1β in the brain tissues were detected by commercial ELISA kits. And the expression levels of SIRT, Ac-FOXO1, Bcl-2 and Bax were detected by Western blot. The results suggested that SalB exerted a cerebral-protective effect, as shown by reduced infarct volume, lowered brain edema and increased neurological scores. SalB also exerted anti-inflammatory effects as indicated by the decreased TNF-α and IL-1β levels in the brain tissue. Moreover, SalB upregulated the expression of SIRT1 and Bcl-2 and downregulated the expression of Ac-FOXO1 and Bax. These effects of SalB were abolished by EX527 treatment. In summary, our results demonstrate that SalB treatment attenuates brain injury induced by ischemic stoke via reducing apoptosis and inflammation through the activation of SIRT1 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Temporal/compartmental changes in viral RNA and neuronal injury in a primate model of NeuroAIDS.

    PubMed

    González, R Gilberto; Fell, Robert; He, Julian; Campbell, Jennifer; Burdo, Tricia H; Autissier, Patrick; Annamalai, Lakshmanan; Taheri, Faramarz; Parker, Termara; Lifson, Jeffrey D; Halpern, Elkan F; Vangel, Mark; Masliah, Eliezer; Westmoreland, Susan V; Williams, Kenneth C; Ratai, Eva-Maria

    2018-01-01

    Despite the advent of highly active anti-retroviral therapy HIV-associated neurocognitive disorders (HAND) continue to be a significant problem. Furthermore, the precise pathogenesis of this neurodegeneration is still unclear. The objective of this study was to examine the relationship between infection by the simian immunodeficiency virus (SIV) and neuronal injury in the rhesus macaque using in vivo and postmortem sampling techniques. The effect of SIV infection in 23 adult rhesus macaques was investigated using an accelerated NeuroAIDS model. Disease progression was modulated either with combination anti-retroviral therapy (cART, 4 animals) or minocycline (7 animals). Twelve animals remained untreated. Viral loads were monitored in the blood and cerebral spinal fluid, as were levels of activated monocytes in the blood. Neuronal injury was monitored in vivo using magnetic resonance spectroscopy. Viral RNA was quantified in brain tissue of each animal postmortem using reverse transcription polymerase chain reaction (RT-PCR), and neuronal injury was assessed by immunohistochemistry. Without treatment, viral RNA in plasma, cerebral spinal fluid, and brain tissue appears to reach a plateau. Neuronal injury was highly correlated both to plasma viral levels and a subset of infected/activated monocytes (CD14+CD16+), which are known to traffic the virus into the brain. Treatment with either cART or minocycline decreased brain viral levels and partially reversed alterations in in vivo and immunohistochemical markers for neuronal injury. These findings suggest there is significant turnover of replicating virus within the brain and the severity of neuronal injury is directly related to the brain viral load.

  12. Tissue Distribution Of Chloroaluminium Sulfonated Phthalocyanine In Dogs

    NASA Astrophysics Data System (ADS)

    M. M.; H. C.; Newman

    1989-06-01

    Chloroaluminum sulfonated phthalocyanine (A1PCS) was administered intravenously to clinically normal dogs, and A1PCS levels were determined in tissues using a sensitive assay. A1PCS accumulated to high levels in liver, spleen, bone marrow, kidney, and lung. These tissue levels confirm previous determinations in mice and rats. Only a small amount of dye was retained in skin and very small amounts in muscle and brain. A1PCS was cleared from the blood within 24 h, and excreted primarily by urine. Serum clearance was faster in males than in females. There were also significant tissue distribution differences between the genders, particularly during the first 12 h. The low levels of A1PCS in skin suggest that cutaneous photosensitivity and toxic skin reactions using this photosensitizer in photodynamic therapy of cancer may be eliminated. The difference in tissue distribution between genders is not only intriguing, but indicates that the optimal time window for treatment of various tissue sites may vary by gender.

  13. BDNF levels in adipose tissue and hypothalamus were reduced in mice with MSG-induced obesity.

    PubMed

    Jin, Yong Jun; Cao, Peng Juan; Bian, Wei Hua; Li, Ming E; Zhou, Rong; Zhang, Ling Yun; Yang, Mei Zi

    2015-01-01

    To observe the expression of brain-derived neurotrophic factor (BDNF) in hypothalamic and adipose tissue in mice with monosodium glutamate (MSG)-induced obesity. The effects of hypothalamic lesions, specifically arcuate nucleus (ARC) lesions, induced by MSG injection were studied in male ICR mice at the neonatal stage. The following parameters were compared: body weight, body length, Lee's index, food intake, body temperature, fat weight, and levels of total cholesterol (CHOL), triglyceride (TG), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and blood glucose (GLU). The BDNF expression levels in hypothalamic and adipose tissue were measured using western blotting. Results Compared with the control group, the model group body had significantly higher weight, Lee's index, food intake, fat weight, CHOL, TG, LDL, HDL, and GLU levels. BDNF expression levels in hypothalamic and adipose tissue were markedly down-regulated in the model group. BDNF may be closely associated with MSG-induced hypothalamic obesity.

  14. Gadolinium Deposition in Human Brain Tissues after Contrast-enhanced MR Imaging in Adult Patients without Intracranial Abnormalities.

    PubMed

    McDonald, Robert J; McDonald, Jennifer S; Kallmes, David F; Jentoft, Mark E; Paolini, Michael A; Murray, David L; Williamson, Eric E; Eckel, Laurence J

    2017-11-01

    Purpose To determine whether gadolinium deposits in neural tissues of patients with intracranial abnormalities following intravenous gadolinium-based contrast agent (GBCA) exposure might be related to blood-brain barrier integrity by studying adult patients with normal brain pathologic characteristics. Materials and Methods After obtaining antemortem consent and institutional review board approval, the authors compared postmortem neuronal tissue samples from five patients who had undergone four to 18 gadolinium-enhanced magnetic resonance (MR) examinations between 2005 and 2014 (contrast group) with samples from 10 gadolinium-naive patients who had undergone at least one MR examination during their lifetime (control group). All patients in the contrast group had received gadodiamide. Neuronal tissues from the dentate nuclei, pons, globus pallidus, and thalamus were harvested and analyzed with inductively coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy with energy-dispersive x-ray spectroscopy, and light microscopy to quantify, localize, and assess the effects of gadolinium deposition. Results Tissues from the four neuroanatomic regions of gadodiamide-exposed patients contained 0.1-19.4 μg of gadolinium per gram of tissue in a statistically significant dose-dependent relationship (globus pallidus: ρ = 0.90, P = .04). In contradistinction, patients in the control group had undetectable levels of gadolinium with ICP-MS. All patients had normal brain pathologic characteristics at autopsy. Three patients in the contrast group had borderline renal function (estimated glomerular filtration rate <45 mL/min/1.73 m 2 ) and hepatobiliary dysfunction at MR examination. Gadolinium deposition in the contrast group was localized to the capillary endothelium and neuronal interstitium and, in two cases, within the nucleus of the cell. Conclusion Gadolinium deposition in neural tissues after GBCA administration occurs in the absence of intracranial abnormalities that might affect the permeability of the blood-brain barrier. These findings challenge current understanding of the biodistribution of these contrast agents and their safety. © RSNA, 2017.

  15. Caffeine and Cannabis Effects on Vital Neurotransmitters and Enzymes in the Brain Tissue of Juvenile Experimental Rats

    PubMed Central

    Owolabi, J.O.; Olatunji, S.Y.; Olanrewaju, A.J.

    2017-01-01

    Background Caffeine and cannabis are globally consumed and abused psychoactive substances. While caffeine is legally used in various forms, including in tea and coffee as beverages, it is also consumed in soda and energy drinks as additives. Cannabis, on the other hand, is considered illegal in most countries; albeit, it is being consumed globally particularly by adolescents. Purpose The adolescent stage marks a critical stage of brain development and maturation. Influences of agents on the brain at this stage may affect neuronal structural and functional attributes. To this end, the current experiment considered the effects of cannabis and caffeine on selected key neurotransmitters and enzymes in the brain tissues after regimented caffeine and cannabis treatment for 21 days. Methods A total of 72 juvenile Wistar rats that were approximately 40 days old were divided into 6 groups A-F. The group A served as the control. Other groups were administered various dosages of caffeine or cannabis in distilled water, using oral gavages as follows: group B animals received 100 mg/kg body weight of caffeine, group C animals received 50 mg/kg body weight of caffeine, group D animals received 500 mg/kg body weight of cannabis, group E animals received 200 mg/kg body weight of cannabis, and group F received a low dose of cannabis (200 mg/kg body weight) plus a low dose of caffeine (50 mg/kg body weight). The animals were killed by cervical dislocation 24 h after the last administration. The brain tissues were excised and homogenized. The enzymes cytochrome C oxidase and glucose-6-phosphate dehydrogenase were assayed to observe tissue energy metabolism while the neurotransmitters gamma-amino butyric acid (GABA), glutamate, and dopamine were assayed to observe the effects of the psychoactive substances on their activities relative to mental activities. Results GABA, glutamate, and dopamine were generally higher in the treated groups of animals. The levels of G-6-PDH were higher in all treated animals’ brains. Caffeine produced quite more significant effects relative to cannabis and the combination of both increased the level of G-6-PDH significantly. Conclusion Results showed that caffeine and cannabis influenced the activities of the enzymes and neurotransmitters in the brain. Both stimulants altered brain chemistry relative to the tested enzymes and neurotransmitters. PMID:28588361

  16. Caffeine and Cannabis Effects on Vital Neurotransmitters and Enzymes in the Brain Tissue of Juvenile Experimental Rats.

    PubMed

    Owolabi, J O; Olatunji, S Y; Olanrewaju, A J

    2017-05-01

    Caffeine and cannabis are globally consumed and abused psychoactive substances. While caffeine is legally used in various forms, including in tea and coffee as beverages, it is also consumed in soda and energy drinks as additives. Cannabis, on the other hand, is considered illegal in most countries; albeit, it is being consumed globally particularly by adolescents. The adolescent stage marks a critical stage of brain development and maturation. Influences of agents on the brain at this stage may affect neuronal structural and functional attributes. To this end, the current experiment considered the effects of cannabis and caffeine on selected key neurotransmitters and enzymes in the brain tissues after regimented caffeine and cannabis treatment for 21 days. A total of 72 juvenile Wistar rats that were approximately 40 days old were divided into 6 groups A-F. The group A served as the control. Other groups were administered various dosages of caffeine or cannabis in distilled water, using oral gavages as follows: group B animals received 100 mg/kg body weight of caffeine, group C animals received 50 mg/kg body weight of caffeine, group D animals received 500 mg/kg body weight of cannabis, group E animals received 200 mg/kg body weight of cannabis, and group F received a low dose of cannabis (200 mg/kg body weight) plus a low dose of caffeine (50 mg/kg body weight). The animals were killed by cervical dislocation 24 h after the last administration. The brain tissues were excised and homogenized. The enzymes cytochrome C oxidase and glucose-6-phosphate dehydrogenase were assayed to observe tissue energy metabolism while the neurotransmitters gamma-amino butyric acid (GABA), glutamate, and dopamine were assayed to observe the effects of the psychoactive substances on their activities relative to mental activities. GABA, glutamate, and dopamine were generally higher in the treated groups of animals. The levels of G-6-PDH were higher in all treated animals' brains. Caffeine produced quite more significant effects relative to cannabis and the combination of both increased the level of G-6-PDH significantly. Results showed that caffeine and cannabis influenced the activities of the enzymes and neurotransmitters in the brain. Both stimulants altered brain chemistry relative to the tested enzymes and neurotransmitters.

  17. Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion.

    PubMed

    Quartu, Marina; Poddighe, Laura; Melis, Tiziana; Serra, Maria Pina; Boi, Marianna; Lisai, Sara; Carta, Gianfranca; Murru, Elisabetta; Muredda, Laura; Collu, Maria; Banni, Sebastiano

    2017-01-19

    The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge.

  18. Frequency of brain tissue donation for research after suicide.

    PubMed

    Longaray, Vanessa K; Padoan, Carolina S; Goi, Pedro D; da Fonseca, Rodrigo C; Vieira, Daniel C; Oliveira, Francine H de; Kapczinski, Flávio; Magalhães, Pedro V

    2017-01-01

    To describe the frequency of brain tissue donation for research purposes by families of individuals that committed suicide. All requests for brain tissue donation to a brain biorepository made to the families of individuals aged 18-60 years who had committed suicide between March 2014 and February 2016 were included. Cases presenting with brain damage due to acute trauma were excluded. Fifty-six cases of suicide were reported. Of these, 24 fulfilled the exclusion criteria, and 11 others were excluded because no next of kin was found to provide informed consent. Of the 21 remaining cases, brain tissue donation was authorized in nine (tissue fragments in seven and the entire organ in two). Donation of brain tissue from suicide cases for research purposes is feasible. The acceptance rate of 42.8% in our sample is in accordance with international data on such donations, and similar to rates reported for neurodegenerative diseases.

  19. Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes

    PubMed Central

    2014-01-01

    Background Lysophosphatidic acid (LPA) is a bioactive phospholipid with a potentially causative role in neurotrauma. Blocking LPA signaling with the LPA-directed monoclonal antibody B3/Lpathomab is neuroprotective in the mouse spinal cord following injury. Findings Here we investigated the use of this agent in treatment of secondary brain damage consequent to traumatic brain injury (TBI). LPA was elevated in cerebrospinal fluid (CSF) of patients with TBI compared to controls. LPA levels were also elevated in a mouse controlled cortical impact (CCI) model of TBI and B3 significantly reduced lesion volume by both histological and MRI assessments. Diminished tissue damage coincided with lower brain IL-6 levels and improvement in functional outcomes. Conclusions This study presents a novel therapeutic approach for the treatment of TBI by blocking extracellular LPA signaling to minimize secondary brain damage and neurological dysfunction. PMID:24576351

  20. Metastasis Infiltration: An Investigation of the Postoperative Brain-Tumor Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raore, Bethwel; Schniederjan, Matthew; Prabhu, Roshan

    Purpose: This study aims to evaluate brain infiltration of metastatic tumor cells past the main tumor resection margin to assess the biological basis for the use of stereotactic radiosurgery treatment of the tumor resection cavity and visualized resection edge or clinical target volume. Methods and Materials: Resection margin tissue was obtained after gross total resection of a small group of metastatic lesions from a variety of primary sources. The tissue at the border of the tumor and brain tissue was carefully oriented and processed to evaluate the presence of tumor cells within brain tissue and their distance from the resectionmore » margin. Results: Microscopic assessment of the radially oriented tissue samples showed no tumor cells infiltrating the surrounding brain tissue. Among the positive findings were reactive astrocytosis observed on the brain tissue immediately adjacent to the tumor resection bed margin. Conclusions: The lack of evidence of metastatic tumor cell infiltration into surrounding brain suggests the need to target only a narrow depth of the resection cavity margin to minimize normal tissue injury and prevent treatment size-dependent stereotactic radiosurgery complications.« less

  1. Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism.

    PubMed

    Wang, Li; Li, Gang; Adeli, Ehsan; Liu, Mingxia; Wu, Zhengwang; Meng, Yu; Lin, Weili; Shen, Dinggang

    2018-06-01

    Tissue segmentation of infant brain MRIs with risk of autism is critically important for characterizing early brain development and identifying biomarkers. However, it is challenging due to low tissue contrast caused by inherent ongoing myelination and maturation. In particular, at around 6 months of age, the voxel intensities in both gray matter and white matter are within similar ranges, thus leading to the lowest image contrast in the first postnatal year. Previous studies typically employed intensity images and tentatively estimated tissue probabilities to train a sequence of classifiers for tissue segmentation. However, the important prior knowledge of brain anatomy is largely ignored during the segmentation. Consequently, the segmentation accuracy is still limited and topological errors frequently exist, which will significantly degrade the performance of subsequent analyses. Although topological errors could be partially handled by retrospective topological correction methods, their results may still be anatomically incorrect. To address these challenges, in this article, we propose an anatomy-guided joint tissue segmentation and topological correction framework for isointense infant MRI. Particularly, we adopt a signed distance map with respect to the outer cortical surface as anatomical prior knowledge, and incorporate such prior information into the proposed framework to guide segmentation in ambiguous regions. Experimental results on the subjects acquired from National Database for Autism Research demonstrate the effectiveness to topological errors and also some levels of robustness to motion. Comparisons with the state-of-the-art methods further demonstrate the advantages of the proposed method in terms of both segmentation accuracy and topological correctness. © 2018 Wiley Periodicals, Inc.

  2. Aging effects on DNA methylation modules in human brain and blood tissue

    PubMed Central

    2012-01-01

    Background Several recent studies reported aging effects on DNA methylation levels of individual CpG dinucleotides. But it is not yet known whether aging-related consensus modules, in the form of clusters of correlated CpG markers, can be found that are present in multiple human tissues. Such a module could facilitate the understanding of aging effects on multiple tissues. Results We therefore employed weighted correlation network analysis of 2,442 Illumina DNA methylation arrays from brain and blood tissues, which enabled the identification of an age-related co-methylation module. Module preservation analysis confirmed that this module can also be found in diverse independent data sets. Biological evaluation showed that module membership is associated with Polycomb group target occupancy counts, CpG island status and autosomal chromosome location. Functional enrichment analysis revealed that the aging-related consensus module comprises genes that are involved in nervous system development, neuron differentiation and neurogenesis, and that it contains promoter CpGs of genes known to be down-regulated in early Alzheimer's disease. A comparison with a standard, non-module based meta-analysis revealed that selecting CpGs based on module membership leads to significantly increased gene ontology enrichment, thus demonstrating that studying aging effects via consensus network analysis enhances the biological insights gained. Conclusions Overall, our analysis revealed a robustly defined age-related co-methylation module that is present in multiple human tissues, including blood and brain. We conclude that blood is a promising surrogate for brain tissue when studying the effects of age on DNA methylation profiles. PMID:23034122

  3. Imaging Human Brain Perfusion with Inhaled Hyperpolarized 129Xe MR Imaging.

    PubMed

    Rao, Madhwesha R; Stewart, Neil J; Griffiths, Paul D; Norquay, Graham; Wild, Jim M

    2018-02-01

    Purpose To evaluate the feasibility of directly imaging perfusion of human brain tissue by using magnetic resonance (MR) imaging with inhaled hyperpolarized xenon 129 ( 129 Xe). Materials and Methods In vivo imaging with 129 Xe was performed in three healthy participants. The combination of a high-yield spin-exchange optical pumping 129 Xe polarizer, custom-built radiofrequency coils, and an optimized gradient-echo MR imaging protocol was used to achieve signal sensitivity sufficient to directly image hyperpolarized 129 Xe dissolved in the human brain. Conventional T1-weighted proton (hydrogen 1 [ 1 H]) images and perfusion images by using arterial spin labeling were obtained for comparison. Results Images of 129 Xe uptake were obtained with a signal-to-noise ratio of 31 ± 9 and demonstrated structural similarities to the gray matter distribution on conventional T1-weighted 1 H images and to perfusion images from arterial spin labeling. Conclusion Hyperpolarized 129 Xe MR imaging is an injection-free means of imaging the perfusion of cerebral tissue. The proposed method images the uptake of inhaled xenon gas to the extravascular brain tissue compartment across the intact blood-brain barrier. This level of sensitivity is not readily available with contemporary MR imaging methods. © RSNA, 2017.

  4. N-3 fatty acids reduced trans fatty acids retention and increased docosahexaenoic acid levels in the brain.

    PubMed

    Lavandera, Jimena Verónica; Saín, Juliana; Fariña, Ana Clara; Bernal, Claudio Adrián; González, Marcela Aída

    2017-09-01

    The levels of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are critical for the normal structure and function of the brain. Trans fatty acids (TFA) and the source of the dietary fatty acids (FA) interfere with long-chain polyunsaturated fatty acids (LC-PUFA) biosynthesis. The aim of this study was to investigate the effect of TFA supplementation in diets containing different proportions of n-9, n-6, and n-3 FA on the brain FA profile, including the retention of TFA, LC-PUFA levels, and n-6/n-3 PUFA ratios. These parameters were also investigated in the liver, considering that LC-PUFA are mainly bioconverted from their dietary precursors in this tissue and transported by serum to the brain. Also, stearoyl-CoA desaturase-1 (SCD1) and sterol regulatory element-binding protein-1c (SREBP-1c) gene expressions were evaluated. Male CF1 mice were fed (16 weeks) diets containing different oils (olive, corn, and rapeseed) with distinct proportions of n-9, n-6, and n-3 FA (55.2/17.2/0.7, 32.0/51.3/0.9, and 61.1/18.4/8.6), respectively, substituted or not with 0.75% of TFA. FA composition of the brain, liver, and serum was assessed by gas chromatography. TFA were incorporated into, and therefore retained in the brain, liver, and serum. However, the magnitude of retention was dependent on the tissue and type of isomer. In the brain, total TFA retention was lower than 1% in all diets. Dietary n-3 PUFA decreased TFA retention and increased DHA accretion in the brain. The results underscore the importance of the type of dietary FA on the retention of TFA in the brain and also on the changes of the FA profile.

  5. Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model.

    PubMed

    Toonen, Lodewijk J A; Overzier, Maurice; Evers, Melvin M; Leon, Leticia G; van der Zeeuw, Sander A J; Mei, Hailiang; Kielbasa, Szymon M; Goeman, Jelle J; Hettne, Kristina M; Magnusson, Olafur Th; Poirel, Marion; Seyer, Alexandre; 't Hoen, Peter A C; van Roon-Mom, Willeke M C

    2018-06-22

    Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by expansion of the polyglutamine repeat in the ataxin-3 protein. Expression of mutant ataxin-3 is known to result in transcriptional dysregulation, which can contribute to the cellular toxicity and neurodegeneration. Since the exact causative mechanisms underlying this process have not been fully elucidated, gene expression analyses in brains of transgenic SCA3 mouse models may provide useful insights. Here we characterised the MJD84.2 SCA3 mouse model expressing the mutant human ataxin-3 gene using a multi-omics approach on brain and blood. Gene expression changes in brainstem, cerebellum, striatum and cortex were used to study pathological changes in brain, while blood gene expression and metabolites/lipids levels were examined as potential biomarkers for disease. Despite normal motor performance at 17.5 months of age, transcriptional changes in brain tissue of the SCA3 mice were observed. Most transcriptional changes occurred in brainstem and striatum, whilst cerebellum and cortex were only modestly affected. The most significantly altered genes in SCA3 mouse brain were Tmc3, Zfp488, Car2, and Chdh. Based on the transcriptional changes, α-adrenergic and CREB pathways were most consistently altered for combined analysis of the four brain regions. When examining individual brain regions, axon guidance and synaptic transmission pathways were most strongly altered in striatum, whilst brainstem presented with strongest alterations in the pi-3 k cascade and cholesterol biosynthesis pathways. Similar to other neurodegenerative diseases, reduced levels of tryptophan and increased levels of ceramides, di- and triglycerides were observed in SCA3 mouse blood. The observed transcriptional changes in SCA3 mouse brain reveal parallels with previous reported neuropathology in patients, but also shows brain region specific effects as well as involvement of adrenergic signalling and CREB pathway changes in SCA3. Importantly, the transcriptional changes occur prior to onset of motor- and coordination deficits.

  6. Quantitative Susceptibility Mapping after Sports-Related Concussion.

    PubMed

    Koch, K M; Meier, T B; Karr, R; Nencka, A S; Muftuler, L T; McCrea, M

    2018-06-07

    Quantitative susceptibility mapping using MR imaging can assess changes in brain tissue structure and composition. This report presents preliminary results demonstrating changes in tissue magnetic susceptibility after sports-related concussion. Longitudinal quantitative susceptibility mapping metrics were produced from imaging data acquired from cohorts of concussed and control football athletes. One hundred thirty-six quantitative susceptibility mapping datasets were analyzed across 3 separate visits (24 hours after injury, 8 days postinjury, and 6 months postinjury). Longitudinal quantitative susceptibility mapping group analyses were performed on stability-thresholded brain tissue compartments and selected subregions. Clinical concussion metrics were also measured longitudinally in both cohorts and compared with the measured quantitative susceptibility mapping. Statistically significant increases in white matter susceptibility were identified in the concussed athlete group during the acute (24 hour) and subacute (day 8) period. These effects were most prominent at the 8-day visit but recovered and showed no significant difference from controls at the 6-month visit. The subcortical gray matter showed no statistically significant group differences. Observed susceptibility changes after concussion appeared to outlast self-reported clinical recovery metrics at a group level. At an individual subject level, susceptibility increases within the white matter showed statistically significant correlations with return-to-play durations. The results of this preliminary investigation suggest that sports-related concussion can induce physiologic changes to brain tissue that can be detected using MR imaging-based magnetic susceptibility estimates. In group analyses, the observed tissue changes appear to persist beyond those detected on clinical outcome assessments and were associated with return-to-play duration after sports-related concussion. © 2018 by American Journal of Neuroradiology.

  7. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer's pathology.

    PubMed

    Mittal, G; Carswell, H; Brett, R; Currie, S; Kumar, M N V Ravi

    2011-03-10

    The purpose of this study was to develop tween 80 (T-80) coated polylactide-co-glycolide (PLGA) nanoparticles that can deliver estradiol to the brain upon oral administration. Estradiol containing nanoparticles were made by a single emulsion technique and T-80 coating was achieved by incubating the re-constituted nanoparticles at different concentrations of T-80. The process of T-80 coating on the nanoparticles was optimized and the pharmacokinetics of estradiol nanoparticles was studied as a function of T-80 coating. The nanoparticles were then evaluated in an ovariectomized (OVX) rat model of Alzheimer's disease (AD) that mimics the postmenopausal conditions. The nanoparticles bound T-80 were found to proportionally increase from 9.72 ± 1.07 mg to 63.84 ± 3.59 mg with an increase in the initial concentration T-80 from 1% to 5% and were stable in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Orally administered T-80 coated nanoparticles resulted in significantly higher brain estradiol levels after 24h (1.969 ± 0.197 ng/g tissue) as compared to uncoated ones (1.105 ± 0.136 ng/g tissue) at a dose of 0.2mg/rat, suggesting a significant role of surface coating. Moreover, these brain estradiol levels were almost similar to those obtained after administration of the same dose of drug suspension via 100% bioavailable intramuscular route (2.123 ± 0.370 ng/g tissue), indicating the increased fraction of bioavailable drug reaching the brain when administered orally. Also, the nanoparticle treated group was successful in preventing the expression of amyloid beta-42 (Aβ42) immunoreactivity in the hippocampus region of brain. Together, the results indicate the potential of nanoparticles for oral delivery of estradiol to brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Association between polychlorinated biphenyls and Parkinson's disease neuropathology.

    PubMed

    Hatcher-Martin, Jaime M; Gearing, Marla; Steenland, Kyle; Levey, Allan I; Miller, Gary W; Pennell, Kurt D

    2012-10-01

    Polychlorinated biphenyls (PCBs) are synthetic chemicals primarily used as coolants and insulators in electrical equipment. Although banned for several decades, PCBs continue to exist in the environment because of their long half-life, continued presence in items produced before the ban, and poor disposal practices. Epidemiological and experimental studies have identified exposure to PCBs as a potential risk factor for Parkinson's disease, perhaps more so in females. The objective of this work was to examine the association between PCB levels in post-mortem human brain tissue and the diagnosis of Parkinson's disease, as well as the degree of nigral depigmentation. We also sought to determine if this association was more significant when patients were stratified by sex. Post-mortem brain samples from control patients and those diagnosed with Parkinson's disease were obtained from the Emory University Brain Bank and from the Nun Study. Concentrations of eight prevalent PCB congeners were extracted from post-mortem brain tissue and analyzed using gas chromatography-mass spectrometry. PCB congeners 153 and 180 were significantly elevated in the brains of Parkinson's disease patients. When stratified by sex, the female Parkinson's disease group demonstrated significantly elevated concentrations of total PCBs and specifically congeners 138, 153, and 180 compared to controls, whereas PCB concentrations in males were not significantly different between control and Parkinson's disease groups. In a separate population of women (Nun Study) who had no clinical signs or symptoms of PD, elevated concentrations total PCB and congeners 138, 153 and 180 were also observed in post-mortem brain tissue exhibiting moderate nigral depigmentation compared to subjects with mild or no depigmentation. These quantitative data demonstrate an association between brain PCB levels and Parkinson's disease-related pathology. Furthermore, these data support epidemiological and laboratory studies reporting a link between PCB exposure and an increased risk for Parkinson's disease, including greater susceptibility of females. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Association between polychlorinated biphenyls and Parkinson’s disease neuropathology

    PubMed Central

    Hatcher-Martin, Jaime M.; Gearing, Marla; Steenland, Kyle; Levey, Allan I.; Miller, Gary W.; Pennell, Kurt D.

    2012-01-01

    Polychlorinated biphenyls (PCBs) are synthetic chemicals primarily used as coolants and insulators in electrical equipment. Although banned for several decades, PCBs continue to exist in the environment because of their long half-life, continued presence in items produced before the ban, and poor disposal practices. Epidemiological and experimental studies have identified exposure to PCBs as a potential risk factor for Parkinson’s disease, perhaps more so in females. The objective of this work was to examine the association between PCB levels in post-mortem human brain tissue and the diagnosis of Parkinson’s disease, as well as the degree of nigral depigmentation. We also sought to determine if this association was more significant when patients were stratified by sex. Post-mortem brain samples from control patients and those diagnosed with Parkinson’s disease were obtained from the Emory University Brain Bank and from the Nun Study. Concentrations of eight prevalent PCB congeners were extracted from post-mortem brain tissue and analyzed using gas chromatography-mass spectrometry. PCB congeners 153 and 180 were significantly elevated in the brains of Parkinson’s disease patients. When stratified by sex, the female Parkinson’s disease group demonstrated significantly elevated concentrations of total PCBs and specifically congeners 138, 153, and 180 compared to controls, whereas PCB concentrations in males were not significantly different between control and Parkinson’s disease groups. In a separate population of women (Nun Study) who had no clinical signs or symptoms of PD, elevated concentrations total PCB and congeners 138, 153 and 180 were also observed in post-mortem brain tissue exhibiting moderate nigral depigmentation compared to subjects with mild or no depigmentation. These quantitative data demonstrate an association between brain PCB levels and Parkinson’s disease-related pathology. Furthermore, these data support epidemiological and laboratory studies reporting a link between PCB exposure and an increased risk for Parkinson’s disease, including greater susceptibility of females. PMID:22906799

  10. NMR imaging of cell phone radiation absorption in brain tissue

    PubMed Central

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  11. NMR imaging of cell phone radiation absorption in brain tissue.

    PubMed

    Gultekin, David H; Moeller, Lothar

    2013-01-02

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.

  12. Guanidinoacetic acid versus creatine for improved brain and muscle creatine levels: a superiority pilot trial in healthy men.

    PubMed

    Ostojic, Sergej M; Ostojic, Jelena; Drid, Patrik; Vranes, Milan

    2016-09-01

    In this randomized, double-blind, crossover trial, we evaluated whether 4-week supplementation with guanidinoacetic acid (GAA) is superior to creatine in facilitating creatine levels in healthy men (n = 5). GAA (3.0 g/day) resulted in a more powerful rise (up to 16.2%) in tissue creatine levels in vastus medialis muscle, middle-cerebellar peduncle, and paracentral grey matter, as compared with creatine (P < 0.05). These results indicate that GAA as a preferred alternative to creatine for improved bioenergetics in energy-demanding tissues.

  13. Biological Effects of Electromagnetic Fields

    DTIC Science & Technology

    2006-11-27

    cerebral activity reflected by high levels of c-Fos- positive neurons in certain brain areas (14). The brain tissue of seizure proneness can be...radiation triggers seizures and increases cerebral c-Fos positivity in rats pretreated with subconvulsive doses of...psychiatric, cardiovascular or neurological diseases); or have a cardiac or cerebral pacemaker. They have no history of head, eye or thorax injury involving

  14. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    PubMed

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  15. Tissue-specific induction of oxidative stress in goldfish by 2,4-dichlorophenoxyacetic acid: mild in brain and moderate in liver and kidney.

    PubMed

    Matviishyn, Tetiana M; Kubrak, Olga I; Husak, Viktor V; Storey, Kenneth B; Lushchak, Volodymyr I

    2014-03-01

    This study investigated the effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on free radical-related processes in tissues of goldfish given 96 h exposures to 1, 10 or 100 mg/L of 2,4-D as well as 96 h recovery from the 100 mg/L treatment. In liver, 2,4-D exposure increased levels of protein carbonyls and lipid peroxides by 36-53% and 24-43%, respectively, but both parameters reverted during recovery, whereas in brain glutathione status improved in response to 2,4-D. Lipid peroxide content in kidney was enhanced by 40-43% after exposure to 2,4-D with a decrease during recovery. Exposure to 2,4-D also reduced liver acetylcholinesterase activity by 31-41%. The treatment increased catalase activity in brain, but returned it to initial levels after recovery. In kidney, exposure to 100 mg/L of 2,4-D caused a 33% decrease of superoxide dismutase activity. Thus, goldfish exposure to 2,4-D induced moderate oxidative stress in liver and kidney and mild oxidative stress in brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Ontogeny of brain and blood serotonin levels in 5-HT receptor knockout mice: potential relevance to the neurobiology of autism.

    PubMed

    Janusonis, Skirmantas; Anderson, George M; Shifrovich, Ilya; Rakic, Pasko

    2006-11-01

    The most consistent neurochemical finding in autism has been elevated group mean levels of blood platelet 5-hydroxytryptamine (5-HT, serotonin). The origin and significance of this platelet hyperserotonemia remain poorly understood. The 5-HT(1A) receptor plays important roles in the developing brain and is also expressed in the gut, the main source of platelet 5-HT. Post-natal tissue levels of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan were examined in the brain, duodenum and blood of 5-HT(1A) receptor-knockout and wild-type mice. At 3 days after birth, the knockout mice had lower mean brain 5-HT levels and normal mean platelet 5-HT levels. Also, at 3 days after birth, the mean tryptophan levels in the brain, duodenum and blood of the knockout mice were around 30% lower than those of the wild-type mice. By 2 weeks after birth, the mean brain 5-HT levels of the knockout mice normalized, but their mean platelet 5-HT levels became 24% higher than normal. The possible causes of these dynamic shifts were explored by examining correlations between central and peripheral levels of 5-HT, 5-HIAA and tryptophan. The results are discussed in relation to the possible role of 5-HT in the ontogeny of autism.

  17. Genome-wide analysis of brain and gonad transcripts reveals changes of key sex reversal-related genes expression and signaling pathways in three stages of Monopterus albus.

    PubMed

    Chi, Wei; Gao, Yu; Hu, Qing; Guo, Wei; Li, Dapeng

    2017-01-01

    The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes' expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms.

  18. Stevia, cyclamate and saccharin - natural and artificial sweeteners - exert no effect on sulfane levels in tissues.

    PubMed

    Wilinski, Bogdan; Opoka, Wlodzimierz; Somogyi, Eugeniusz; Piotrowska, Joanna; Wilinski, Jerzy

    The interactions among natural and artificial sweeteners and endogenous sulfur metabolism have never been investigated. CBA strain mice were administered orally stevia, cyclamate or saccharin in doses of 5 mg/kg of body weight in water solutions each. The measurements of the free and acid-labile sulfane (H2S) tissue concentrations in brain, heart, liver and kidney were performed with Siegel spectrophotometric modified method. No differences in comparisons between hydrogen sulfide concentrations in the control group and each sweetener group within every tissue type were noted. In conclusion, stevia, cyclamate and saccharine do not change the endogenous sulfur metabolism to the extent of causing sulfane tissue levels alterations.

  19. High-coverage quantitative proteomics using amine-specific isotopic labeling.

    PubMed

    Melanson, Jeremy E; Avery, Steven L; Pinto, Devanand M

    2006-08-01

    Peptide dimethylation with isotopically coded formaldehydes was evaluated as a potential alternative to techniques such as the iTRAQ method for comparative proteomics. The isotopic labeling strategy and custom-designed protein quantitation software were tested using protein standards and then applied to measure proteins levels associated with Alzheimer's disease (AD). The method provided high accuracy (10% error), precision (14% RSD) and coverage (70%) when applied to the analysis of a standard solution of BSA by LC-MS/MS. The technique was then applied to measure protein abundance levels in brain tissue afflicted with AD relative to normal brain tissue. 2-D LC-MS analysis identified 548 unique proteins (p<0.05). Of these, 349 were quantified with two or more peptides that met the statistical criteria used in this study. Several classes of proteins exhibited significant changes in abundance. For example, elevated levels of antioxidant proteins and decreased levels of mitochondrial electron transport proteins were observed. The results demonstrate the utility of the labeling method for high-throughput quantitative analysis.

  20. A versatile new technique to clear mouse and human brain

    NASA Astrophysics Data System (ADS)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-07-01

    Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  1. The influence of chosen metals administration in drinking water on magnesium balance in rats.

    PubMed

    Kiełczykowska, Małgorzata; Pasternak, Kazimierz; Boguszewska, Anna; Musik, Irena

    2004-01-01

    The aim of our study was to estimate the influence of chromium, lead and aluminium on the magnesium level in serum and tissues of rats. Male Wistar rats received Cr, Pb and Al at the concentration of 500 mg of metal x dm(-3) in the form of drinking water for three or six weeks. After the period of administration the animals were sacrificed under ketamine narcosis and blood from the heart as well as the tissues of the liver, kidney, brain, spleen, femoral muscle and heart muscle were collected. Magnesium concentration was measured in serum and tissue homogenates. Chromium caused the increase of Mg level in some tissues after six weeks and no changes in serum. Lead influenced Mg level in serum and tissues mainly after six weeks but the changes were more diverse and depending on the tissue. After six weeks' administration aluminium caused the magnesium release from serum and its storage in tissues.

  2. Effects of different components of Mao Dongqing's total flavonoids and total saponins on transient ischemic attack (TIA) model of rats.

    PubMed

    Miao, Ming-San; Peng, Meng-Fan; Ma, Rui-Juan; Bai, Ming; Liu, Bao-Song

    2018-03-01

    Objective: To study the effects of the different components of the total flavonoids and total saponins from Mao Dongqing's active site on the rats of TIA model, determine the optimal reactive components ratio of Mao Dongqing on the rats of TIA. Methods: TIA rat model was induced by tail vein injection of tert butyl alcohol, the blank group was injected with the same amount of physiological saline, then behavioral score wasevaluated. Determination the level of glutamic acid in serum, the activity of Na+-K+-ATP enzyme, CA ++ -ATP enzyme and Mg ++ -ATP enzyme in Brain tissue, observe the changes of hippocampus in brain tissue, the comprehensive weight method was used to evaluate the efficacy of each component finally. Results: The contents of total flavonoids and total saponins in the active part of Mao Dongqing can significantly improve the pathological changes of brain tissue in rats, improve the activity of Na + -K + -ATP enzyme, Ca ++ -ATP enzyme and Mg ++ -ATP enzyme in the brain of rats, and reduce the level of glutamic acid in serum. The most significant of the contents was the ratio of 10:6. The different proportions of total flavonoids and total saponins in the active part of Mao Dongqing all has a better effect on the rats with TIA, and the ratio of 10:6 is the best active component for preventing and controlling TIA.

  3. Spirulina platensis attenuates the associated neurobehavioral and inflammatory response impairments in rats exposed to lead acetate.

    PubMed

    Khalil, Samah R; Khalifa, Hesham A; Abdel-Motal, Sabry M; Mohammed, Hesham H; Elewa, Yaser H A; Mahmoud, Hend Atta

    2018-08-15

    Heavy metals are well known as environmental pollutants with hazardous impacts on human and animal health because of their wide industrial usage. In the present study, the role of Spirulina platensis in reversing the oxidative stress-mediated brain injury elicited by lead acetate exposure was evaluated. In order to accomplish this aim, rats were orally administered with 300 mg/kg bw Spirulina for 15 d, before and simultaneously with an intraperitoneal injection of 50 mg/kg bw lead acetate [6 injections through the two weeks]. As a result, the co-administration of Spirulina with lead acetate reversed the most impaired open field behavioral indices; however, this did not happen for swimming performance, inclined plane, and grip strength tests. In addition, it was observed that Spirulina diminished the lead content that accumulated in both the blood and the brain tissue of the exposed rats, and reduced the elevated levels of oxidative damage indices, and brain proinflammatory markers. Also, because of the Spirulina administration, the levels of the depleted biomarkers of antioxidant status and interleukin-10 in the lead-exposed rats were improved. Moreover, Spirulina protected the brain tissue (cerebrum and cerebellum) against the changes elicited by lead exposure, and also decreased the reactivity of HSP70 and Caspase-3 in both cerebrum and cerebellum tissues. Collectively, our findings demonstrate that Spirulina has a potential use as a food supplement in the regions highly polluted with heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography.

    PubMed

    Guertler, Charlotte A; Okamoto, Ruth J; Schmidt, John L; Badachhape, Andrew A; Johnson, Curtis L; Bayly, Philip V

    2018-03-01

    The mechanical properties of brain tissue in vivo determine the response of the brain to rapid skull acceleration. These properties are thus of great interest to the developers of mathematical models of traumatic brain injury (TBI) or neurosurgical simulations. Animal models provide valuable insight that can improve TBI modeling. In this study we compare estimates of mechanical properties of the Yucatan mini-pig brain in vivo and ex vivo using magnetic resonance elastography (MRE) at multiple frequencies. MRE allows estimations of properties in soft tissue, either in vivo or ex vivo, by imaging harmonic shear wave propagation. Most direct measurements of brain mechanical properties have been performed using samples of brain tissue ex vivo. It has been observed that direct estimates of brain mechanical properties depend on the frequency and amplitude of loading, as well as the time post-mortem and condition of the sample. Using MRE in the same animals at overlapping frequencies, we observe that porcine brain tissue in vivo appears stiffer than porcine brain tissue samples ex vivo at frequencies of 100 Hz and 125 Hz, but measurements show closer agreement at lower frequencies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. In vitro 3D regeneration-like growth of human patient brain tissue.

    PubMed

    Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J

    2018-05-01

    In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Binding and release of brain calcium by low-level electromagnetic fields: A review

    NASA Astrophysics Data System (ADS)

    Adey, W. R.; Bawin, S. M.

    Evidence has accumulated that sensitivity of brain tissue to specific weak oscillating electromagnetic fields occurs in the absence of significant tissue heating (less than 0.1°C). This review focuses on the ‘windowed’ character of sensitivities of calcium binding and electrical activity in brain tissue to low-frequency modulation and intensity characteristics of impressed RF fields. ELF fields decrease calcium efflux from isolated chick and cat cerebral tissue by about 15% only in narrow amplitude and frequency ‘windows,’ between 6 and 20 Hz and between 10 and 100 V/m (approximate tissue gradient, 10-7 V/cm). VHF (147 MHz) and UHF (450 MHz) fields increase calcium efflux from isolated chick brain by about 15% when amplitude modulated between 6 and 20 Hz, but only for incident fields in the vicinity of 1.0 mW/cm2. We have now shown that this increased efflux in response to 16-Hz amplitude-modulated 450-MHz, 0.75-mW/cm2 field exposure is insensitive to variations in calcium concentration from 0 to 4.16 mM in the testing solution but is enhanced by addition of hydrogen ions (0.108 mM 0.1 N HCl) and inhibited in the absence of normal bicarbonate ion levels (2.4 mM). In the presence of lanthanum ions (2.0 mM), which block transmembrane movement of calcium, exposure to these EM fields decreases the 45Ca2 + efflux. Low-frequency gradients may be transduced in a specific class of extracellular binding sites, normally occupied by calcium ions and susceptible to competitive hydrogen ion binding. Transductive coupling may involve coherent charge states between anionic sites on membrane surface glycoproteins, with longrange cooperative interactions triggered by weak extracellular electric fields. Proton ‘tunneling’ may occur at boundaries between coherent and noncoherent charge zones.

  7. Annexin A7 Levels Increase in Rats With Traumatic Brain Injury and Promote Secondary Brain Injury.

    PubMed

    Gao, Fan; Li, Di; Rui, Qin; Ni, Haibo; Liu, Huixiang; Jiang, Feng; Tao, Li; Gao, Rong; Dang, Baoqi

    2018-01-01

    The incidence of traumatic brain injury (TBI) has been increasing annually. Annexin A7 is a calcium-dependent phospholipid binding protein. It can promote melting of the cell membrane. Recent studies have shown that it plays an important role in atherosclerosis, other cardiovascular diseases, and a variety of tumors. However, few studies of ANXA7 in TBI have been performed. We here observed how ANXA7 changes after TBI and discuss whether brain injury is associated with the use of ANXA7 antagonist intervention. Experimental Results: 1. After TBI, ANXA7 levels were higher than in the sham group, peaking 24 h after TBI. 2. The use of siA7 was found to reduce the expression of A7 in the injured brain tissue, and also brain edema, BBB damage, cell death, and apoptosis relative to the sham group. Conclusion: ANXA7 promotes the development of secondary brain injury (SBI) after TBI.

  8. Exploring the mechanical behavior of degrading swine neural tissue at low strain rates via the fractional Zener constitutive model.

    PubMed

    Bentil, Sarah A; Dupaix, Rebecca B

    2014-02-01

    The ability of the fractional Zener constitutive model to predict the behavior of postmortem swine brain tissue was examined in this work. Understanding tissue behavior attributed to degradation is invaluable in many fields such as the forensic sciences or cases where only cadaveric tissue is available. To understand how material properties change with postmortem age, the fractional Zener model was considered as it includes parameters to describe brain stiffness and also the parameter α, which quantifies the viscoelasticity of a material. The relationship between the viscoelasticity described by α and tissue degradation was examined by fitting the model to data collected in a previous study (Bentil, 2013). This previous study subjected swine neural tissue to in vitro unconfined compression tests using four postmortem age groups (<6h, 24h, 3 days, and 1 week). All samples were compressed to a strain level of 10% using two compressive rates: 1mm/min and 5mm/min. Statistical analysis was used as a tool to study the influence of the fractional Zener constants on factors such as tissue degradation and compressive rate. Application of the fractional Zener constitutive model to the experimental data showed that swine neural tissue becomes less stiff with increased postmortem age. The fractional Zener model was also able to capture the nonlinear viscoelastic features of the brain tissue at low strain rates. The results showed that the parameter α was better correlated with compressive rate than with postmortem age. © 2013 Published by Elsevier Ltd.

  9. Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human brain tissue.

    PubMed

    Brené, S; Lindefors, N; Ehrlich, M; Taubes, T; Horiuchi, A; Kopp, J; Hall, H; Sedvall, G; Greengard, P; Persson, H

    1994-03-01

    In this study we have isolated and sequenced human cDNAs for the phosphoproteins DARPP-32, ARPP-21, and ARPP-16/19, and have compared these sequences to previously characterized bovine and rat cDNAs. In situ hybridization and Northern blot analysis with the human cDNA probes were used to study the expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32 in human postmortem brain tissue. In situ hybridization was performed using horizontal whole hemisphere sections. Five representative levels of the brain ranging from 71 mm to 104 mm ventral to vertex were examined. All three probes showed distinct hybridization patterns in the caudate nucleus, putamen, nucleus accumbens, and the amygdaloid complex. For ARPP-16/19 mRNA, a hybridization signal comparable to the signal in caudate nucleus, putamen, and nucleus accumbens was also detected in the neocortex. ARPP-21 and DARPP-32 mRNA, on the other hand, were present in lower levels in neocortical regions. DARPP-32 mRNA was abundant in the cerebellar cortex at the level of the Purkinje cell layer. High levels of ARPP-16/19 and ARPP-21 mRNA were also found in the cerebellar cortex, where they were confined to deeper layers. The present result demonstrate that mRNAs for the three phosphoproteins are expressed in overlapping, but also distinct, areas of the human brain that in many cases coincide with previously described distribution of the dopamine D1 receptor.

  10. Influence of oxygen therapy on glucose-lactate metabolism after diffuse brain injury.

    PubMed

    Reinert, Michael; Schaller, Benoit; Widmer, Hans Rudolf; Seiler, Rolf; Bullock, Ross

    2004-08-01

    Severe traumatic brain injury (TBI) imposes a huge metabolic load on brain tissue, which can be summarized initially as a state of hypermetabolism and hyperglycolysis. In experiments O2 consumption has been shown to increase early after trauma, especially in the presence of high lactate levels and forced O2 availability. In recent clinical studies the effect of increasing O2 availability on brain metabolism has been analyzed. By their nature, however, clinical trauma models suffer from a heterogeneous injury distribution. The aim of this study was to analyze, in a standardized diffuse brain injury model, the effect of increasing the fraction of inspired O2 on brain glucose and lactate levels, and to compare this effect with the metabolism of the noninjured sham-operated brain. A diffuse severe TBI model developed by Foda and Maramarou, et al., in which a 420-g weight is dropped from a height of 2 m was used in this study. Forty-one male Wistar rats each weighing approximately 300 g were included. Anesthesized rats were monitored by placing a femoral arterial line for blood pressure and blood was drawn for a blood gas analysis. Two time periods were defined: Period A was defined as preinjury and Period B as postinjury. During Period B two levels of fraction of inspired oxygen (FiO2) were studied: air (FiO2 0.21) and oxygen (FiO2 1). Four groups were studied including sham-operated animals: air-air-sham (AAS); air-O2-sham (AOS); air-air-trauma (AAT); and air-O2-trauma (AOT). In six rats the effect of increasing the FiO2 on serum glucose and lactate was analyzed. During Period B lactate values in the brain determined using microdialysis were significantly lower (p < 0.05) in the AOT group than in the AAT group and glucose values in the brain determined using microdialysis were significantly higher (p < 0.04). No differences were demonstrated in the other groups. Increasing the FiO2 had no significant effect on the serum levels of glucose and lactate. Increasing the FiO2 influences dialysate glucose and lactate levels in injured brain tissue. Using an FiO2 of 1 influences brain metabolism in such a way that lactate is significantly reduced and glucose significantly increased. No changes in dialysate glucose and lactate values were found in the noninjured brain.

  11. Effects of electromagnetic radiation produced by 3G mobile phones on rat brains: magnetic resonance spectroscopy, biochemical, and histopathological evaluation.

    PubMed

    Dogan, M; Turtay, M G; Oguzturk, H; Samdanci, E; Turkoz, Y; Tasdemir, S; Alkan, A; Bakir, S

    2012-06-01

    The effects of electromagnetic radiation (EMR) produced by a third-generation (3G) mobile phone (MP) on rat brain tissues were investigated in terms of magnetic resonance spectroscopy (MRS), biochemistry, and histopathological evaluations. The rats were randomly assigned to two groups: Group 1 is composed of 3G-EMR-exposed rats (n = 9) and Group 2 is the control group (n = 9). The first group was subjected to EMR for 20 days. The control group was not exposed to EMR. Choline (Cho), creatinin (Cr), and N-acetylaspartate (NAA) levels were evaluated by MRS. Catalase (CAT) and glutathione peroxidase (GSH-Px) enzyme activities were measured by spectrophotometric method. Histopathological analyses were carried out to evaluate apoptosis in the brain tissues of both groups. In MRS, NAA/Cr, Cho/Cr, and NAA/Cho ratios were not significantly different between Groups 1 and 2. Neither the oxidative stress parameters, CAT and GSH-Px, nor the number of apoptotic cells were significantly different between Groups 1 and 2. Usage of short-term 3G MP does not seem to have a harmful effect on rat brain tissue.

  12. 3D printing of layered brain-like structures using peptide modified gellan gum substrates.

    PubMed

    Lozano, Rodrigo; Stevens, Leo; Thompson, Brianna C; Gilmore, Kerry J; Gorkin, Robert; Stewart, Elise M; in het Panhuis, Marc; Romero-Ortega, Mario; Wallace, Gordon G

    2015-10-01

    The brain is an enormously complex organ structured into various regions of layered tissue. Researchers have attempted to study the brain by modeling the architecture using two dimensional (2D) in vitro cell culturing methods. While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to our understanding of the functioning of the brain at the tissue or organ level. To address these obstacles, we demonstrate a new method to bioprint 3D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels. Brain-like structures were constructed using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. The neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix. The facile ability to form discrete cell-containing layers validates the application of this novel printing technique to form complex, layered and viable 3D cell structures. These brain-like structures offer the opportunity to reproduce more accurate 3D in vitro microstructures with applications ranging from cell behavior studies to improving our understanding of brain injuries and neurodegenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Photothermal effect of infrared lasers on ex vivo lamb brain tissues

    NASA Astrophysics Data System (ADS)

    Özgürün, Baturay; Gülsoy, Murat

    2018-02-01

    Here, the most suitable infrared laser for a neurosurgery operation is suggested, among 1940-nm thulium fiber, 1470-nm diode, 1070-nm ytterbium fiber and 980-nm diode lasers. Cortical and subcortical ex-vivo lamb brain tissues are exposed to the laser light with the combinations of some laser parameters such as output power, energy density, operation mode (continuous and pulsed-modulated) and operation time. In this way, the greatest ablation efficiency associated with the best neurosurgical laser type can be defined. The research can be divided into two parts; pre-dosimetry and dosimetry studies. The former is used to determine safe operation zones for the dosimetry study by defining coagulation and carbonization onset times for each of the brain tissues. The latter is the main part of this research, and both tissues are exposed to laser irradiation with various energy density levels associated with the output power and operation time. In addition, photo-thermal effects are compared for two laser operation modes, and then coagulation and ablation diameters to calculate the ablation efficiency are measured under a light microscope. Consequently, results are compared graphically and statistically, and it is found that thulium and 1470-nm diode lasers can be utilized as subcortical and cortical tissue ablator devices, respectively.

  14. Methylsulfonyl polychlorinated biphenyls in fish from an electronic waste-recycling site in South China: levels, congener profiles, and chiral signatures.

    PubMed

    Zhang, Ying; Wu, Jiang-Ping; Luo, Xiao-Jun; She, Ya-Zhe; Mo, Ling; Mai, Bi-Xian

    2012-11-01

    Great concerns have been raised about the fate and effects of polychlorinated biphenyls (PCBs) and other organic contaminants contained in electronic waste (e-waste) exported from industrialized countries at midlatitudes to subtropical and tropical regions. Information on the metabolites of these chemicals, for example, methylsulfonyl-PCBs (MeSO(2)-PCBs) in wildlife from the later regions is scarce. In the present study, 17 MeSO(2)-PCBs, including five chiral congeners, were detected in the muscle, liver, and brain tissues of two benthic fish species--northern snakehead and mud carp--from a small pond near an electronic waste recycling site in South China. The mean concentrations of the sum of the MeSO(2)-PCBs ranged from 80 to 340 ng/g lipid weight in the tissues, with relative higher levels in the liver than the muscle and brain tissues. These levels were one order of magnitude greater than the highest levels of MeSO(2)-PCBs previously reported in fish. The 3'-MeSO(2)-CB 87, 3'- and 4'-MeSO(2)-CB 101, 4-MeSO(2)-CB 110, and 4-MeSO(2)-CB 149 were dominant, collectively comprising more than 55% of the total MeSO(2)-PCBs. Except for 4-MeSO(2)-CB149, all of the investigated chiral MeSO(2)-PCBs displayed a clear, congener-specific enantiomeric enrichment in the tissues. No tissue-specific enantioselective retention of the enantiomers was observed in the investigated fish. This is the first report on chiral signatures of MeSO(2)-PCBs in fish tissues. Copyright © 2012 SETAC.

  15. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats

    PubMed Central

    Pong, Alice C.; Jugé, Lauriane; Bilston, Lynne E.; Cheng, Shaokoon

    2017-01-01

    Introduction Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Methods Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Results Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. Conclusions This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our previous findings in juvenile hydrocephalic rats which had significantly less brain compression (as the brain circumference was able to stretch with the cranium due to the open skull sutures) and had a significant increase in caudate putamen stiffness. These results suggest that change in brain mechanical properties in hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus. PMID:28837671

  16. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    PubMed

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our previous findings in juvenile hydrocephalic rats which had significantly less brain compression (as the brain circumference was able to stretch with the cranium due to the open skull sutures) and had a significant increase in caudate putamen stiffness. These results suggest that change in brain mechanical properties in hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  17. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    NASA Astrophysics Data System (ADS)

    Harris, J. P.; Struzyna, L. A.; Murphy, P. L.; Adewole, D. O.; Kuo, E.; Cullen, D. K.

    2016-02-01

    Objective. Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach. We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results. The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro-columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance. Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain. The micro-TENN approach may offer the ability to treat several disorders that disrupt the connectome, including Parkinson’s disease, traumatic brain injury, stroke, and brain tumor excision.

  18. Advanced biomaterial strategies to transplant preformed micro-tissue engineered neural networks into the brain

    PubMed Central

    Harris, J P; Struzyna, L A; Murphy, P L; Adewole, D O; Kuo, E; Cullen, D K

    2017-01-01

    Objective Connectome disruption is a hallmark of many neurological diseases and trauma with no current strategies to restore lost long-distance axonal pathways in the brain. We are creating transplantable micro-tissue engineered neural networks (micro-TENNs), which are preformed constructs consisting of embedded neurons and long axonal tracts to integrate with the nervous system to physically reconstitute lost axonal pathways. Approach We advanced micro-tissue engineering techniques to generate micro-TENNs consisting of discrete populations of mature primary cerebral cortical neurons spanned by long axonal fascicles encased in miniature hydrogel micro-columns. Further, we improved the biomaterial encasement scheme by adding a thin layer of low viscosity carboxymethylcellulose (CMC) to enable needle-less insertion and rapid softening for mechanical similarity with brain tissue. Main results The engineered architecture of cortical micro-TENNs facilitated robust neuronal viability and axonal cytoarchitecture to at least 22 days in vitro. Micro-TENNs displayed discrete neuronal populations spanned by long axonal fasciculation throughout the core, thus mimicking the general systems-level anatomy of gray matter—white matter in the brain. Additionally, micro columns with thin CMC-coating upon mild dehydration were able to withstand a force of 893 ± 457 mN before buckling, whereas a solid agarose cylinder of similar dimensions was predicted to withstand less than 150 μN of force. This thin CMC coating increased the stiffness by three orders of magnitude, enabling needle-less insertion into brain while significantly reducing the footprint of previous needle-based delivery methods to minimize insertion trauma. Significance Our novel micro-TENNs are the first strategy designed for minimally invasive implantation to facilitate nervous system repair by simultaneously providing neuronal replacement and physical reconstruction of long-distance axon pathways in the brain. The micro-TENN approach may offer the ability to treat several disorders that disrupt the connectome, including Parkinson’s disease, traumatic brain injury, stroke, and brain tumor excision PMID:26760138

  19. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain

    PubMed Central

    Andriani, Grasiella A.; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. PMID:27013377

  20. Optical pathology of human brain metastasis of lung cancer using combined resonance Raman and spatial frequency spectroscopies

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; Pu, Yang; Cheng, Gangge; Zhou, Lixin; Chen, Jun; Zhu, Ke; Alfano, Robert R.

    2016-03-01

    Raman spectroscopy has become widely used for diagnostic purpose of breast, lung and brain cancers. This report introduced a new approach based on spatial frequency spectra analysis of the underlying tissue structure at different stages of brain tumor. Combined spatial frequency spectroscopy (SFS), Resonance Raman (RR) spectroscopic method is used to discriminate human brain metastasis of lung cancer from normal tissues for the first time. A total number of thirty-one label-free micrographic images of normal and metastatic brain cancer tissues obtained from a confocal micro- Raman spectroscopic system synchronously with examined RR spectra of the corresponding samples were collected from the identical site of tissue. The difference of the randomness of tissue structures between the micrograph images of metastatic brain tumor tissues and normal tissues can be recognized by analyzing spatial frequency. By fitting the distribution of the spatial frequency spectra of human brain tissues as a Gaussian function, the standard deviation, σ, can be obtained, which was used to generate a criterion to differentiate human brain cancerous tissues from the normal ones using Support Vector Machine (SVM) classifier. This SFS-SVM analysis on micrograph images presents good results with sensitivity (85%), specificity (75%) in comparison with gold standard reports of pathology and immunology. The dual-modal advantages of SFS combined with RR spectroscopy method may open a new way in the neuropathology applications.

  1. Distribution, pharmacokinetics and primary metabolism model of tramadol in zebrafish.

    PubMed

    Zhuo, Huiqin; Jin, Hongwei; Peng, Huifang; Huang, Heqing

    2016-12-01

    The current study aimed to develop a rapid, robust and adequately sensitive method for simultaneous determination of the concentration of tramadol and its active metabolites in zebrafish. The pharmacokinetic and elimination pattern of tramadol and its major phase I metabolites following oral or intramuscular administration in zebrafish tissues was achieved using electrospray ionization‑quadrupole‑time of flight/mass spectrometry (ESI‑Q‑TOF/MS) and gas chromatography/mass spectrometry (GC‑MS). Following administration, the metabolisms were detected in the brain, eyes, muscle and gill tissues within 1 h. Two tramadol metabolites, O‑ and N‑desmethyltramadol, were detected in brain tissue, with N‑desmethyltramadol detected at a higher level. Following GC‑MS detection the curve indicated an initial rapid phase, corresponding to the detection of the tramadol within 1 min, and reached peak value in the brain at 5 min. Faster drug clearance was detected in low‑dose groups, and concentration had dropped around the to initial level (1.11 µg) at 20 min, but was detectable for up to 3 h. However, it took 80 min to fall back to the initial value (1.73 µg) in the high‑dose groups, and tramadol was detectable for up to 4 h. This study developed and validated a simple and high throughput analytical procedure to determine the distribution and pharmacokinetic profiles of tramadol, and its primary metabolites in tissues of zebrafish.

  2. Impact of Neurodegenerative Diseases on Drug Binding to Brain Tissues: From Animal Models to Human Samples.

    PubMed

    Ugarte, Ana; Corbacho, David; Aymerich, María S; García-Osta, Ana; Cuadrado-Tejedor, Mar; Oyarzabal, Julen

    2018-04-19

    Drug efficacy in the central nervous system (CNS) requires an additional step after crossing the blood-brain barrier. Therapeutic agents must reach their targets in the brain to modulate them; thus, the free drug concentration hypothesis is a key parameter for in vivo pharmacology. Here, we report the impact of neurodegeneration (Alzheimer's disease (AD) and Parkinson's disease (PD) compared with healthy controls) on the binding of 10 known drugs to postmortem brain tissues from animal models and humans. Unbound drug fractions, for some drugs, are significantly different between healthy and injured brain tissues (AD or PD). In addition, drugs binding to brain tissues from AD and PD animal models do not always recapitulate their binding to the corresponding human injured brain tissues. These results reveal potentially relevant implications for CNS drug discovery.

  3. Brain penetrant liver X receptor (LXR) modulators based on a 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole core.

    PubMed

    Tice, Colin M; Noto, Paul B; Fan, Kristi Yi; Zhao, Wei; Lotesta, Stephen D; Dong, Chengguo; Marcus, Andrew P; Zheng, Ya-Jun; Chen, Guozhou; Wu, Zhongren; Van Orden, Rebecca; Zhou, Jing; Bukhtiyarov, Yuri; Zhao, Yi; Lipinski, Kerri; Howard, Lamont; Guo, Joan; Kandpal, Geeta; Meng, Shi; Hardy, Andrew; Krosky, Paula; Gregg, Richard E; Leftheris, Katerina; McKeever, Brian M; Singh, Suresh B; Lala, Deepak; McGeehan, Gerard M; Zhuang, Linghang; Claremon, David A

    2016-10-15

    Liver X receptor (LXR) agonists have been reported to lower brain amyloid beta (Aβ) and thus to have potential for the treatment of Alzheimer's disease. Structure and property based design led to the discovery of a series of orally bioavailable, brain penetrant LXR agonists. Oral administration of compound 18 to rats resulted in significant upregulation of the expression of the LXR target gene ABCA1 in brain tissue, but no significant effect on Aβ levels was detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Low level light in combination with metabolic modulators for effective therapy

    NASA Astrophysics Data System (ADS)

    Dong, Tingting; Zhang, Qi; Hamblin, Michael R.; Wu, Mei X.

    2015-03-01

    Vascular damage occurs frequently at the injured brain causing hypoxia and is associated with poor outcomes in the clinics. We found high levels of glycolysis, reduced ATP generation, and increased formation of reactive oxygen species (ROS) and apoptosis in neurons under hypoxia. Strikingly, these adverse events were reversed significantly by noninvasive exposure of injured brain to low-level light (LLL). LLL illumination sustained the mitochondrial membrane potential, constrained cytochrome C leakage in hypoxic cells, and protected them from apoptosis, underscoring a unique property of LLL. The effect of LLL was further bolstered by combination with metabolic substrates such as pyruvate or lactate both in vivo and in vitro. The combinational treatment retained memory and learning activities of injured mice to a normal level, whereas those treated with LLL or pyruvate alone, or sham light displayed partial or severe deficiency in these cognitive functions. In accordance with well-protected learning and memory function, the hippocampal region primarily responsible for learning and memory was completely protected by a combination of LLL and pyruvate, in marked contrast to the severe loss of hippocampal tissue due to secondary damage in control mice. These data clearly suggest that energy metabolic modulators can additively or synergistically enhance the therapeutic effect of LLL in energy-producing insufficient tissues like injured brain. Keywords:

  5. Temperature-dependent elastic properties of brain tissues measured with the shear wave elastography method.

    PubMed

    Liu, Yan-Lin; Li, Guo-Yang; He, Ping; Mao, Ze-Qi; Cao, Yanping

    2017-01-01

    Determining the mechanical properties of brain tissues is essential in such cases as the surgery planning and surgical training using virtual reality based simulators, trauma research and the diagnosis of some diseases that alter the elastic properties of brain tissues. Here, we suggest a protocol to measure the temperature-dependent elastic properties of brain tissues in physiological saline using the shear wave elastography method. Experiments have been conducted on six porcine brains. Our results show that the shear moduli of brain tissues decrease approximately linearly with a slope of -0.041±0.006kPa/°C when the temperature T increases from room temperature (~23°C) to body temperature (~37°C). A case study has been further conducted which shows that the shear moduli are insensitive to the temperature variation when T is in the range of 37 to 43°C and will increase when T is higher than 43°C. With the present experimental setup, temperature-dependent elastic properties of brain tissues can be measured in a simulated physiological environment and a non-destructive manner. Thus the method suggested here offers a unique tool for the mechanical characterization of brain tissues with potential applications in brain biomechanics research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms

    PubMed Central

    Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392

  7. Tissue-specific uptake and bioconcentration of the oral contraceptive norethindrone in two freshwater fishes.

    PubMed

    Nallani, Gopinath C; Paulos, Peter M; Venables, Barney J; Edziyie, Regina E; Constantine, Lisa A; Huggett, Duane B

    2012-02-01

    The environmental presence of the oral contraceptive norethindrone (NET) has been reported and shown to have reproductive effects in fish at environmentally realistic exposure levels. The current study examined bioconcentration potential of NET in fathead minnow (Pimephales promelas) and channel catfish (Ictalurus punctatus). Fathead minnows were exposed to 50 μg/l NET for 28 days and allowed to depurate in clean water for 14 days. In a minimized 14-day test design, catfish were exposed to 100 μg/l NET for 7 days followed by 7-day depuration. In the fathead test, tissues (muscle, liver, and kidneys) were sampled during the uptake (days 1, 3, 7, 14, and 28) and depuration (days 35 and 42) phases. In the catfish test, muscle, liver, gill, brain, and plasma were collected during the uptake (days 1, 3, and 7) and depuration (day 14) stages. NET tissue levels were determined by gas chromatography-mass spectrometry (GC-MS). Accumulation of NET in tissues was greatest in liver followed by plasma, gill, brain, and muscle. Tissue-specific bioconcentration factors (BCFs) ranged from 2.6 to 40.8. Although NET has been reported to elicit reproductive effects in fish, the present study indicated a low potential to bioconcentrate in aquatic biota.

  8. Locomotor activity and tissue levels following acute ...

    EPA Pesticide Factsheets

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ

  9. Hemoglobin extravasation in the brain of rats exchange-transfused with hemoglobin-based oxygen carriers.

    PubMed

    Terraneo, Laura; Bianciardi, Paola; Malavalli, Ashok; Mkrtchyan, Gnel; Spann, Stephanie N; Lohman, Jeff; Samaja, Michele; Vandegriff, Kim D

    2017-06-01

    Haemoglobin (Hb)-based oxygen carriers are under consideration as oxygen therapeutics. Their effect on apoptosis is critical, because the onset of pro-apoptotic pathways may lead to tissue damage. MP4OX, a polyethylene glycol-conjugated human Hb preserves the baseline level of neuron apoptosis with respect to sham. Here we develop a method for measuring Hb extravasation in brain. We exchange transfused rats by haemorrhaging 50% of their blood with simultaneous, isovolemic replacement with Hextend (negative control), MP4OX, or αα-cross-linked Hb. Animals were sacrificed 2 h after transfusion, brain tissue was harvested and processed for double-staining immunofluorescence, whereby Hb ? chain and NeuN (a neuron protein) were stained and quantitated. Whereas Hextend did not induce Hb extravasation, in both MP4OX and ??Hb brains Hb molecules were detected outside neurons. The level of extravasated Hb chains was > 3-fold higher in Hb compared to MP4OX. Western blot analysis revealed that the expression levels of protein related to redox imbalance (e.g., Nrf2, iNOS and ERK phosphorylation) were higher in ααHb than MP4OX. In conclusions, higher Hb extravasation in ααHb than MP4OX induces redox imbalance, which causes higher anti-oxidant response. Whereas Nrf2 response may be considered protective, iNOS response appears damaging.

  10. Brief Report: The Role of National Brain and Tissue Banks in Research on Autism and Developmental Disorders.

    ERIC Educational Resources Information Center

    Zielke, H. Ronald; And Others

    1996-01-01

    This paper describes the establishment and work of two brain and tissue banks, which collect brain and other tissues from newly deceased individuals with autism and make these tissues available to researchers. Issues in tissue collection are identified, including the importance of advance planning, religious concerns of families, and the need for…

  11. The Beneficial Effect of Cape Gooseberry Juice on Carbon Tetrachloride- Induced Neuronal Damage.

    PubMed

    Al-Olayan, Ebtesam M; El-Khadragy, Manal F; Omer, Sawsan A; Shata, Mohamed T M; Kassab, Rami B; Abdel Moneim, Ahmed E

    2016-01-01

    Cape gooseberry (Physalis peruviana L.) belongs to the Solanaceae family. Physalis has many medicinal properties however, the beneficial effect of physalis in protecting against neurotoxins has not yet been evaluated. This experimental study investigated the protective effect of physalis juice against the oxidative damage induced by carbon tetrachloride (CCl4) in the rat brain. The degrees of protection by physalis in brain tissues were evaluated by determining the brain levels of lipid peroxidation, nitric oxide, glutathione content and antioxidant enzyme activities (superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase and glutathione reductase), after CCl4) induction in the presence or absence of physalis. Adult male albino Wistar rats were divided into 4 groups, Group I served as the control group, Group II was intraperitoneally treated with 2 ml CCl4)/kg bwt for 12 weeks, Group III was supplemented with physalis juice via the drinking water for 12 weeks, Group IV was supplemented with physalis juice and was intraperitoneally injected weekly with CCl4). Treatment with CCl4) was significantly associated with a disturbance in the oxidative status in the brain tissues; this was marked by a significant (p<0.05) elevation in the lipid peroxidation and nitric oxide levels with a concomitant reduction in glutathione content compared to the control, along with a remarkable reduction in antioxidant enzymes. The administration of physalis along with CCl4) juice significantly (p<0.05) alleviated the changes in enzymatic antioxidant activity when compared to the CCl4) treated group. Furthermore, physalis juice supplemention inhibited apoptosis, as indicated by the increase of Bcl-2 immunoreactivity in brain tissue. Our results suggest that physalis juice could be effective in preventing neurotoxicity and the neuroprotective effect of physalis might be mediated via antioxidant and anti-apoptosis activities.

  12. DNA methylation and hydroxymethylation analyses of the active LINE-1 subfamilies in mice.

    PubMed

    Murata, Yui; Bundo, Miki; Ueda, Junko; Kubota-Sakashita, Mie; Kasai, Kiyoto; Kato, Tadafumi; Iwamoto, Kazuya

    2017-10-19

    Retrotransposon long interspersed nuclear element-1 (LINE-1) occupies a large proportion of the mammalian genome, comprising approximately 100,000 genomic copies in mice. Epigenetic status of the 5' untranslated region (5'-UTR) of LINE-1 is critical for its promoter activity. DNA methylation levels in the 5'-UTR of human active LINE-1 subfamily can be measured by well-established methods, such as a pyrosequencing-based assay. However, because of the considerable sequence and structural diversity in LINE-1 among species, methods for such assays should be adapted for the species of interest. Here we developed pyrosequencing-based assays to examine methylcytosine (mC) and hydroxymethylcytosine (hmC) levels of the three active LINE-1 subfamilies in mice (TfI, A, and GfII). Using these assays, we quantified mC and hmC levels in four brain regions and four nonbrain tissues including tail, heart, testis, and ovary. We observed tissue- and subfamily-specific mC and hmC differences. We also found that mC levels were strongly correlated among different brain regions, but mC levels of the testis showed a poor correlation with those of other tissues. Interestingly, mC levels in the A and GfII subfamilies were highly correlated, possibly reflecting their close evolutionary relationship. Our assays will be useful for exploring the epigenetic regulation of the active LINE-1 subfamilies in mice.

  13. Prediction of brain deformations and risk of traumatic brain injury due to closed-head impact: quantitative analysis of the effects of boundary conditions and brain tissue constitutive model.

    PubMed

    Wang, Fang; Han, Yong; Wang, Bingyu; Peng, Qian; Huang, Xiaoqun; Miller, Karol; Wittek, Adam

    2018-05-12

    In this study, we investigate the effects of modelling choices for the brain-skull interface (layers of tissues between the brain and skull that determine boundary conditions for the brain) and the constitutive model of brain parenchyma on the brain responses under violent impact as predicted using computational biomechanics model. We used the head/brain model from Total HUman Model for Safety (THUMS)-extensively validated finite element model of the human body that has been applied in numerous injury biomechanics studies. The computations were conducted using a well-established nonlinear explicit dynamics finite element code LS-DYNA. We employed four approaches for modelling the brain-skull interface and four constitutive models for the brain tissue in the numerical simulations of the experiments on post-mortem human subjects exposed to violent impacts reported in the literature. The brain-skull interface models included direct representation of the brain meninges and cerebrospinal fluid, outer brain surface rigidly attached to the skull, frictionless sliding contact between the brain and skull, and a layer of spring-type cohesive elements between the brain and skull. We considered Ogden hyperviscoelastic, Mooney-Rivlin hyperviscoelastic, neo-Hookean hyperviscoelastic and linear viscoelastic constitutive models of the brain tissue. Our study indicates that the predicted deformations within the brain and related brain injury criteria are strongly affected by both the approach of modelling the brain-skull interface and the constitutive model of the brain parenchyma tissues. The results suggest that accurate prediction of deformations within the brain and risk of brain injury due to violent impact using computational biomechanics models may require representation of the meninges and subarachnoidal space with cerebrospinal fluid in the model and application of hyperviscoelastic (preferably Ogden-type) constitutive model for the brain tissue.

  14. Alkali metals levels in the human brain tissue: Anatomical region differences and age-related changes.

    PubMed

    Ramos, Patrícia; Santos, Agostinho; Pinto, Edgar; Pinto, Nair Rosas; Mendes, Ricardo; Magalhães, Teresa; Almeida, Agostinho

    2016-12-01

    The link between trace elements imbalances (both "toxic" and "essential") in the human brain and neurodegenerative disease has been subject of extensive research. More recently, some studies have highlighted the potential role of the homeostasis deregulation of alkali metals in specific brain regions as key factor in the pathogenesis of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Using flame atomic emission spectrometry and inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion of the samples, alkali metals (Na, K, Li, Rb and Cs) were determined in 14 different areas of the human brain (frontal cortex, superior and middle temporal gyri, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons, medulla and cerebellum) of adult individuals (n=42; 71±12, range: 50-101 years old) with no known history and evidence of neurodegenerative, neurological or psychiatric disorder. Potassium was found as the most abundant alkali metal, followed by Na, Rb, Cs and Li. Lithium, K and Cs distribution showed to be quite heterogeneous. On the contrary, Rb and Na appeared quite homogeneously distributed within the human brain tissue. The lowest levels of Na, K, Rb and Li were found in the brainstem (midbrain, medulla and pons) and cerebellum, while the lowest levels of Cs were found in the frontal cortex. The highest levels of K (mean±sd; range 15.5±2.5; 8.9-21.8mg/g) Rb (17.2±6.1; 3.9-32.4μg/g and Cs (83.4±48.6; 17.3-220.5ng/g) were found in putamen. The highest levels of Na and Li were found in the frontal cortex (11.6±2.4; 6.6-17.1mg/g) and caudate nucleus (7.6±4.6 2.2-21.3ng/g), respectively. Although K, Cs and Li levels appear to remain largely unchanged with age, some age-related changes were observed for Na and Rb levels in particular brain regions (namely in the hippocampus). Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. HIV-1 Phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues

    PubMed Central

    Lamers, Susanna L.; Gray, Rebecca R.; Salemi, Marco; Huysentruyt, Leanne C.; McGrath, Michael

    2010-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that 1) HIV-1 is clearly capable of migrating out of the brain, 2) the meninges are the most likely primary transport tissues, and 3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. PMID:21055482

  16. Combined Bisulfite Restriction Analysis for brain tissue identification.

    PubMed

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Measuring vascular reactivity with breath-holds after stroke: a method to aid interpretation of group-level BOLD signal changes in longitudinal fMRI studies.

    PubMed

    Geranmayeh, Fatemeh; Wise, Richard J S; Leech, Robert; Murphy, Kevin

    2015-05-01

    Blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) is a widely used technique to map brain function, and to monitor its recovery after stroke. Since stroke has a vascular etiology, the neurovascular coupling between cerebral blood flow and neural activity may be altered, resulting in uncertainties when interpreting longitudinal BOLD signal changes. The purpose of this study was to demonstrate the feasibility of using a recently validated breath-hold task in patients with stroke, both to assess group level changes in cerebrovascular reactivity (CVR) and to determine if alterations in regional CVR over time will adversely affect interpretation of task-related BOLD signal changes. Three methods of analyzing the breath-hold data were evaluated. The CVR measures were compared over healthy tissue, infarcted tissue and the peri-infarct tissue, both sub-acutely (∼2 weeks) and chronically (∼4 months). In this cohort, a lack of CVR differences in healthy tissue between the patients and controls indicates that any group level BOLD signal change observed in these regions over time is unlikely to be related to vascular alterations. CVR was reduced in the peri-infarct tissue but remained unchanged over time. Therefore, although a lack of activation in this region compared with the controls may be confounded by a reduced CVR, longitudinal group-level BOLD changes may be more confidently attributed to neural activity changes in this cohort. By including this breath-hold-based CVR assessment protocol in future studies of stroke recovery, researchers can be more assured that longitudinal changes in BOLD signal reflect true alterations in neural activity. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  18. Digitalis-like compounds in the toad Bufo viridis: tissue and plasma levels and significance in osmotic stress.

    PubMed

    Lichtstein, D; Gati, I; Haver, E; Katz, U

    1992-01-01

    Digitalis-like compounds (DLC), constituents of animal tissues, are possible regulators of the Na+, K(+)-ATPase implicated in water and salt homeostasis. The distribution of DLC in the toad (Bufo viridis) was determined following methanol extraction and partial purification. DLC highest levels were found in the skin but it was also detected in the plasma and many internal organs. Short term (hours) exposure of the toad to hypertonic shock (1.5% NaCl) induced an increase in plasma osmolarity due to an increase in Na+ and Cl- levels. This treatment induced a transient, three fold, increase of DLC levels in the brain and transient reduction of its levels in the ventral skin. Acclimation of the toads to burrowing conditions for six weeks resulted in an increase in plasma osmolarity due to a large increase in plasma urea with a small increase in ion concentrations. Under these conditions DLC levels in the dorsal skin increased by 100% without alteration of its levels in the plasma, brain and ventral skin. DLC levels in the toad brain of control animals, showed a significant dependence on season, being highest in the summer and lowest in the winter. DLC levels in the skin peaked in May while the levels in the plasma were season independent. The changes in DLC levels induced by the short- as well as long-term perturbations in the animal environmental salinity together with the seasonal differences suggest that DLC in the toad is involved in water and salt homeostasis of these animals, but may also participate in other unknown functions.

  19. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model.

    PubMed

    Son, Seung-Wan; Lee, Jin-Seok; Kim, Hyeong-Geug; Kim, Dong-Woon; Ahn, Yo-Chan; Son, Chang-Gue

    2016-01-01

    Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations in brain tissues, especially in the hippocampus. These findings are the first evidence that testosterone depletion makes the brain prone to oxidative injury. © 2015 International Society for Neurochemistry.

  20. Brain and gonadal aromatase activity and steroid hormone levels in female and polymorphic males of the peacock blenny Salaria pavo.

    PubMed

    Gonçalves, David; Teles, Magda; Alpedrinha, João; Oliveira, Rui F

    2008-11-01

    In the peacock blenny Salaria pavo large males with well-developed secondary sexual characters establish nests and attract females while small "sneaker" males mimic female sexual displays in order to approach the nests of larger males and parasitically fertilize eggs. These alternative reproductive tactics are sequential, as sneakers irreversibly switch into nesting males. This transition involves major morphologic and behavioral changes and is likely to be mediated by hormones. This study focuses on the role of aromatase, an enzyme that catalyses the conversion of androgens into estrogens, in the regulation of male sexual polymorphism in S. pavo. For this, sex steroid plasma levels and aromatase activity (AA) in gonads, whole brain and brain macroareas were determined in sneakers, transitional males (i.e. sneakers undergoing the transition into nesting males), nesting males and females collected in the field. AA was much higher in ovarian tissue than in testicular tissue and accordingly circulating estradiol levels were highest in females. This supports the view that elevated AA and estradiol levels are associated with the development of a functional ovary. Transitional males are in a non-reproductive phase and had underdeveloped testes when compared with sneakers and nesting males. Testicular AA was approximately 10 times higher in transitional males when compared with sneakers and nesting males, suggesting high AA has a suppressive effect on testicular development. Nesting males had significantly higher plasma levels of both testosterone (T) and 11-ketotestosterone when compared with the other male morphs and previous studies demonstrated that these androgens suppress female-like displays in sneakers. In the brain, AA was highest in macroareas presumably containing hypothalamic nuclei traditionally associated with the regulation of reproductive behaviors. Overall, females presented the highest levels of brain AA. In male morphs AA increased from sneakers, to transitional males, to nesting males in all brain macroareas. These results suggest that the transition into the nesting male tactic is accompanied both by an increase in testicular androgen production and by a higher conversion of androgens into estrogens in the brain. The increase in androgen production is likely to mediate the development of male secondary sexual characters while the increase in brain AA may be related to the behavioral changes associated with tactic transition.

  1. Arctigenin Treatment Protects against Brain Damage through an Anti-Inflammatory and Anti-Apoptotic Mechanism after Needle Insertion

    PubMed Central

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-feng; Kong, Liang; Yao, Ying-Jia; Jiao, Ya-Nan; Yan, Yu-Hui; Li, Shao-Heng; Tao, Zhen-Yu; Lian, Guan; Yang, Jing-Xian; Kang, Ting-Guo

    2016-01-01

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in a stab wound injury (SWI). Subsequent secondary injury involves the release of inflammatory and apoptotic cytokines, which have dramatic consequences on the integrity of damaged tissue, leading to the evolution of a pericontusional-damaged area minutes to days after in the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary brain injury and the determination of the underlying mechanism of action in a mouse model of SWI that mimics the process of CED. After CED, mice received a gavage of ARC from 30 min to 14 days. Neurological severity scores (NSS) and wound closure degree were assessed after the injury. Histological analysis and immunocytochemistry were used to evaluated the extent of brain damage and neuroinflammation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect universal apoptosis. Enzyme-linked immunosorbent assays (ELISA) was used to test the inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10) and lactate dehydrogenase (LDH) content. Gene levels of inflammation (TNF-α, IL-6, and IL-10) and apoptosis (Caspase-3, Bax and Bcl-2) were detected by reverse transcription-polymerase chain reaction (RT-PCR). Using these, we analyzed ARC’s efficacy and mechanism of action. Results: ARC treatment improved neurological function by reducing brain water content and hematoma and accelerating wound closure relative to untreated mice. ARC treatment reduced the levels of TNF-α and IL-6 and the number of allograft inflammatory factor (IBA)- and myeloperoxidase (MPO)-positive cells and increased the levels of IL-10. ARC-treated mice had fewer TUNEL+ apoptotic neurons and activated caspase-3-positive neurons surrounding the lesion than controls, indicating increased neuronal survival. Conclusions: ARC treatment confers neuroprotection of brain tissue through anti-inflammatory and anti-apoptotic effects in a mouse model of SWI. These results suggest a new strategy for promoting neuronal survival and function after CED to improve long-term patient outcome. PMID:27445818

  2. Changes of several brain receptor complexes in the cerebral cortex of patients with Alzheimer disease: probable new potential pharmaceutical targets.

    PubMed

    Falsafi, Soheil Keihan; Roßner, Steffen; Ghafari, Maryam; Groessl, Michael; Morawski, Markus; Gerner, Christopher; Lubec, Gert

    2014-01-01

    Although Alzheimer disease (AD) has been linked to defects in major brain receptors, studies thus far have been limited to the determination of receptor subunits or specific ligand binding studies. However, the availability of current technology enables the determination and quantification of brain receptor complexes. Thus, we examined levels of native receptor complexes in the brains of patients with AD. Cortical tissue was obtained from control subjects (n = 12 females and 12 males) and patients with AD (n = 12 females and 12 males) within a 3-h postmortem time period. The tissues were kept frozen until further biochemical analyses. Membrane proteins were extracted and subsequently enriched by ultracentrifugation using a sucrose gradient. Membrane proteins were then electrophoresed onto native gels and immunoblotted using antibodies against individual brain receptors. We found that the levels were comparable for complexes containing GluR2, GluR3 and GluR4 as well as 5-HT1A. Moreover, the levels of complexes containing muscarinic AChR M1, NR1 and GluR1 were significantly increased in male patients with AD. Nicotinic AChRs 4 and 7 as well as dopaminergic receptors D1 and D2 were also increased in males and females with AD. These findings reveal a pattern of altered receptor complex levels that may contribute to the deterioration of the concerted activity of these receptors and thus result in cognitive deficits observed in patients with AD. It should be emphasised that receptor complexes function as working units rather than individual subunits. Thus, the receptor deficits identified may be relevant for the design of experimental therapies. Therefore, specific pharmacological modulation of these receptors is within the pharmaceutical repertoire.

  3. The Effects of Stereotactic Cerebroventricular Administration of Albumin, Mannitol, Hypertonic Sodium Chloride, Glycerin and Dextran in Rats with Experimental Brain Edema.

    PubMed

    Ates, Tuncay; Gezercan, Yurdal; Menekse, Guner; Turkoz, Yusuf; Parlakpinar, Hakan; Okten, Ali Ihsan; Akyuva, Yener; Onal, Selami Cagatay

    2017-01-01

    To evaluate the effects of cerebroventricular administration of hyperoncotic/hyperosmotic agents on edematous brain tissue in rats with experimental head trauma. The study included 54 female Sprague-Dawley rats with weights ranging between 200 and 250 g. Six experimental groups were examined with each group containing 9 rats. All rats were exposed to head trauma, and treatment groups were administered 2 µl of one of the drugs (albumin, mannitol, hypertonic sodium chloride (NaCl), glycerin and dextran) 6, 12 and 24 hours after the trauma via the cerebroventricular route and using a stereotactic device. Rats were sacrificed 48 hours after the trauma, and brain tissues were extracted without damage. Biochemical analyses including reduced glutathione (GSH), nitric oxide (NO), malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) were performed on the injured left hemisphere. Compared with the control group, the albumin, mannitol, 3% NaCl and glycerin treatment groups revealed dramatic increases in GSH levels (p < 0.001). Levels of MDA, which is the end-product of brain edema and lipid peroxidation, failed to show a statistically significant decrease, but there was a decreasing trend observed in the inter-group comparisons. NO levels were also decreased in the 3% NaCl treatment group. An analysis of TNF-α and IL-1β, two proinflammatory cytokines associated with the trauma, revealed that IL-1β decreased significantly in all treatment groups (p=0.001), whereas no significant difference was detected in TNF-α levels. Cerebroventricular administration of hyperoncotic/hyperosmotic agents provides substantial effects on the treatment of brain edema.

  4. The protective effect of different airway humidification liquids to lung after tracheotomy in traumatic brain injury: The role of pulmonary surfactant protein-A (SP-A).

    PubMed

    Su, Xinyang; Li, Zefu; Wang, Meilin; Li, Zhenzhu; Wang, Qingbo; Lu, Wenxian; Li, Xiaoli; Zhou, Youfei; Xu, Hongmei

    2016-02-10

    The purpose of this study was to establish a rat model of a brain injury with tracheotomy and compared the wetting effects of different airway humidification liquids, afterward, the best airway humidification liquid was selected for the clinical trial, thus providing a theoretical basis for selecting a proper airway humidification liquid in a clinical setting. Rats were divided into a sham group, group A (0.9% NaCl), group B (0.45% NaCl), group C (0.9% NaCl+ambroxol) and group D (0.9% NaCl+Pulmicort). An established rat model of traumatic brain injury with tracheotomy was used. Brain tissue samples were taken to determine water content, while lung tissue samples were taken to determine wet/dry weight ratio (W/D), histological changes and expression levels of SP-A mRNA and SP-A protein. 30 patients with brain injury and tracheotomy were selected and divided into two groups based on the airway humidification liquid instilled in the trachea tube, 0.45% NaCl and 0.9% NaCl+ambroxol. Blood was then extracted from the patients to measure the levels of SP-A, interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α (TNF-α). The difference between group C and other groups in lung W/D and expression levels of SP-A mRNA and SP-A protein was significant (P<0.05). In comparison, the histological changes showed that the lung tissue damage was smallest in group C compared to the three other groups. Aspect of patients, 0.45% NaCl group and 0.9% NaCl+ambroxol group were significantly different in the levels of SP-A, IL-6, IL-8 and TNF-α (P<0.01). In the present study, 0.9% NaCl+ambroxol promote the synthesis and secretion of pulmonary surfactant, and has anti-inflammatory and antioxidant effects, which inhibit the release of inflammatory factors and cytokines, making it an ideal airway humidification liquid. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Expression of circadian gens in different rat tissues is sensitive marker of in vivo silver nanoparticles action

    NASA Astrophysics Data System (ADS)

    Minchenko, D. O.; Yavorovsky, O. P.; Zinchenko, T. O.; Komisarenko, S. V.; Minchenko, O. H.

    2012-09-01

    Circadian factors PER1, PER2, ARNTL and CLOCK are important molecular components of biological clock system and play a fundamental role in the metabolism at both the behavioral and molecular levels and potentially have great importance for understanding metabolic health and disease, because disturbance the circadian processes lead to developing of different pathology. The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronics, home products, and for water disinfection, but little is yet known about their toxicity. These nanoparticles induce blood-brain barrier destruction, astrocyte swelling, cause degeneration of neurons and impair neurodevelopment as well as embryonic development. We studied the expression of genes encoded the key molecular components of circadian clock system in different rat organs after intratracheally instilled silver nanoparticles which quite rapidly translocate from the lungs into the blood stream and accumulate in different tissues. We have shown that silver nanoparticles significantly affect the expression levels of PER1, PER2, ARNTL and CLOCK mRNA in different rat tissues in time-dependent and tissue-specific manner. High level of PER1, ARNTL and CLOCK mRNA expression was observed in the lung on the 1st 3rd and 14th day after treatment of rats with silver nanoparticles. At the same time, the expression level of PER1 mRNA in the brain and liver increases predominantly on the 1st and 14th day but decreases in the testis. Significant increase of the expression level of PER2 and ARNTL mRNA was detected only in the brain of treated by silver nanoparticles rats. Besides that, intratracheally instilled silver nanoparticles significantly reduced the expression levels of CLOCK mRNA in the brain, heart and kidney. No significant changes in the expression level of PER2 mRNA were found in the lung, liver, heart and testis, except kidney where this mRNA expression decreases on the 3rd and 14th day after treatment of rats with silver nanoparticles. It was also shown that expression level of PFKFB4, a key enzyme of glycolysis regulation, gradually reduces in the brain from 1st to 14th day being up to 4 fold less on 14th day after treatment of animals with silver nanoparticles. Thus, the intratracheally instilled silver nanoparticles significantly affect the expression of PER1, PER2, ARNTL, and CLOCK genes which are an important molecular component of circadian clock system. This is because a disruption of the circadian processes leads to a development of various pathologic processes. The results of this study clearly demonstrate that circadian genes could be a sensitive test for detection of silver nanoparticles toxic action and suggest that more caution is needed in biomedical applications of silver nanoparticles as well as higher level of safety in silver nanoparticles production industry.

  6. Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements.

    PubMed

    Demirkaya, K; Demirdöğen, B Can; Torun, Z Öncel; Erdem, O; Çırak, E; Tunca, Y M

    2017-10-01

    Mineral trioxide aggregate (MTA) is a calcium silicate dental cement used for various applications in dentistry. This study was undertaken to test whether the presence of three commercial brands of calcium silicate dental cements in the dental extraction socket of rats would affect the brain aluminium (Al) levels and oxidative stress parameters. Right upper incisor was extracted and polyethylene tubes filled with MTA Angelus, MTA Fillapex or Theracal LC, or left empty for the control group, were inserted into the extraction socket. Rats were killed 7, 30 or 60 days after operation. Brain tissues were obtained before killing. Al levels were measured by atomic absorption spectrometry. Thiobarbituric acid reactive substances (TBARS) levels, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities were determined using spectrophotometry. A transient peak was observed in brain Al level of MTA Angelus group on day 7, while MTA Fillapex and Theracal LC groups reached highest brain Al level on day 60. Brain TBARS level, CAT, SOD and GPx activities transiently increased on day 7 and then returned to almost normal levels. This in vivo study for the first time indicated that initial washout may have occurred in MTA Angelus, while element leaching after the setting is complete may have taken place for MTA Fillapex and Theracal LC. Moreover, oxidative stress was induced and antioxidant enzymes were transiently upregulated. Further studies to search for oxidative neuronal damage should be done to completely understand the possible toxic effects of calcium silicate cements on the brain.

  7. EFFECTS OF IRRADIATION ON BRAIN VASCULATURE USING AN IN SITU TUMOR MODEL

    PubMed Central

    Zawaski, Janice A.; Gaber, M. Waleed; Sabek, Omaima M.; Wilson, Christy M.; Duntsch, Christopher D.; Merchant, Thomas E.

    2013-01-01

    Purpose Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood–brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results The presence of tumor alone increases permeability but has little effect on leukocyte–endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation. PMID:22197233

  8. LC-MS/MS-based quantification of kynurenine metabolites, tryptophan, monoamines and neopterin in plasma, cerebrospinal fluid and brain.

    PubMed

    Fuertig, René; Ceci, Angelo; Camus, Sandrine M; Bezard, Erwan; Luippold, Andreas H; Hengerer, Bastian

    2016-09-01

    The kynurenine (KYN) pathway is implicated in diseases such as cancer, psychiatric, neurodegenerative and autoimmune disorders. Measurement of KYN metabolite levels will help elucidating the involvement of the KYN pathway in the disease pathology and inform drug development. Samples of plasma, cerebrospinal fluid or brain tissue were spiked with deuterated internal standards, processed and analyzed by LC-MS/MS; analytes were chromatographically separated by gradient elution on a C18 reversed phase analytical column without derivatization. We established an LC-MS/MS method to measure 11 molecules, namely tryptophan, KYN, 3-OH-KYN, 3-OH-anthranilic acid, quinolinic acid, picolinic acid, kynurenic acid, xanthurenic acid, serotonin, dopamine and neopterin within 5.5 min, with sufficient sensitivity to quantify these molecules in small sample volumes of plasma, cerebrospinal fluid and brain tissue.

  9. Characterization and expression of cyp19a gene in the Chinese giant salamander Andrias davidianus.

    PubMed

    Hu, Qiaomu; Xiao, Hanbing; Tian, HaiFeng; Meng, Yan

    2016-02-01

    We cloned the full length cyp19a of Chinese giant salamander Andrias davidianus, determined its distribution in tissues and developing gonads, and analyzed the CpG methylation pattern of the cyp19a promoter. The results revealed isoforms of 1706 bp (G arom) and 1698 bp (B arom) in length, differing in the 5' flanking region, both encoding 502 amino acids. The G arom gene was observed mainly in the ovary and kidney, with little in other investigated tissues, while B arom expression was high in the brain, ovary, testis, and pituitary, with low or undetected expression in other examined tissues. Total aromatase expression was high in the ovary; moderate in the kidney, brain, testis, and pituitary; and low in the remaining tissues. G arom expression was significantly higher in the ovary than in the testis and gradually decreased with maturation of the salamander. A single injection of methyltestosterone or letrozole resulted in ovarian G arom expression decreasing over a 12-96 h period. A 1366 bp sequence of the cyp19a promoter was cloned and shown to be conserved in selected species. CpG methylation level was negatively correlated with cyp19a expression in the examined tissues and developing ovaries. Five and three CpG methylation sites positively correlated with DNA methylation levels in tissues and developing ovary, suggesting that they play an important role in regulating cyp19a expression. The aromatase gene showed two isoforms with distinct expression patterns, and the promoter methylation level at specific CpG sites was associated with variation in expression profiles of tissues and developing ovaries. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Relationship Between Brain and Plasma Carbaryl Levels and Cholinesterase Inhibition

    EPA Science Inventory

    Carbaryl is a N-methylcarbamate pesticide and, like others in this class, is a reversible inhibitor of cholinesterase (ChE) enzymes. Although studied for many years, there is a surprising lack of information relating tissue levels of carbaryl with ChE activity in the same animals...

  11. Robotic multimodality stereotactic brain tissue identification: work in progress

    NASA Technical Reports Server (NTRS)

    Andrews, R.; Mah, R.; Galvagni, A.; Guerrero, M.; Papasin, R.; Wallace, M.; Winters, J.

    1997-01-01

    Real-time identification of tissue would improve procedures such as stereotactic brain biopsy (SBX), functional and implantation neurosurgery, and brain tumor excision. To standard SBX equipment has been added: (1) computer-controlled stepper motors to drive the biopsy needle/probe precisely; (2) multiple microprobes to track tissue density, detect blood vessels and changes in blood flow, and distinguish the various tissues being penetrated; (3) neural net learning programs to allow real-time comparisons of current data with a normative data bank; (4) three-dimensional graphic displays to follow the probe as it traverses brain tissue. The probe can differentiate substances such as pig brain, differing consistencies of the 'brain-like' foodstuff tofu, and gels made to simulate brain, as well as detect blood vessels imbedded in these substances. Multimodality probes should improve the safety, efficacy, and diagnostic accuracy of SBX and other neurosurgical procedures.

  12. Gangliosides and Ceramides Change in a Mouse Model of Blast Induced Traumatic Brain Injury

    PubMed Central

    2013-01-01

    Explosive detonations generate atmospheric pressure changes that produce nonpenetrating blast induced “mild” traumatic brain injury (bTBI). The structural basis for mild bTBI has been extremely controversial. The present study applies matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to track the distribution of gangliosides in mouse brain tissue that were exposed to very low level of explosive detonations (2.5–5.5 psi peak overpressure). We observed major increases of the ganglioside GM2 in the hippocampus, thalamus, and hypothalamus after a single blast exposure. Moreover, these changes were accompanied by depletion of ceramides. No neurological or brain structural signs of injury could be inferred using standard light microscopic techniques. The first source of variability is generated by the Latency between blast and tissue sampling (peak intensity of the blast wave). These findings suggest that subtle molecular changes in intracellular membranes and plasmalemma compartments may be biomarkers for biological responses to mild bTBI. This is also the first report of a GM2 increase in the brains of mature mice from a nongenetic etiology. PMID:23590251

  13. Comparison of several oximes on reactivation of soman-inhibited blood, brain and tissue cholinesterase activity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, T.M.

    1993-12-31

    The ability of three oximes, HI-6, MMB-4 and ICD-467, to reactivate cholinesterase (ChE) inhibited by the organophosphorus compound soman was compared in blood (plasma and erythrocytes), brain regions (including spinal cord) and peripheral tissues of rats. Animals were intoxicated with soman (100 ttg/kg. SC; equivalent to 0.9 x LDs0 dose) and treated 1 min later with one of these oximes (100 or 200 ttmo1/kg, IM). Toxic sign scores and total tissue ChE activities were determined 30 min later. Soman markedly inhibited ChE activity in blood (93 - 96%), brain regions (ranging from 78% to 95%), and all peripheral tissues (rangingmore » from 48.9% to 99.8%) except liver (11.9%). In blood, treatment with HI-6 or ICD-467 resulted in significant reactivation of soman-inhibited ChE. in contrast, MMB-4 was completely ineffective. HI-6 and ICD-467 were equally effective at the high dose. At the low dose ICD-467 treatment resulted in significantly higher plasma ChE than Hl-6 treatment, whereas HI-6 treatment resulted in higher erythrocyte ChE than ICD-467 treatment. However, none of these three oximesreactivated or protected soman-inhibited ChE in the brain. In all peripheral tissues (except liver) studied, MMB-4 was not effective. 111-6 reactivated soman-inhibited ChE in all tis- sues except lung, heart, and skeletal muscle. ICD-467 was highly effective in reactivating ChE in all tissues and afforded a complete recovery of ChE to control levels in Intercostal muscle and salivary gland. Oxime treatments did not modify the toxic scores produced by soman.« less

  14. A family of hyperelastic models for human brain tissue

    NASA Astrophysics Data System (ADS)

    Mihai, L. Angela; Budday, Silvia; Holzapfel, Gerhard A.; Kuhl, Ellen; Goriely, Alain

    2017-09-01

    Experiments on brain samples under multiaxial loading have shown that human brain tissue is both extremely soft when compared to other biological tissues and characterized by a peculiar elastic response under combined shear and compression/tension: there is a significant increase in shear stress with increasing axial compression compared to a moderate increase with increasing axial tension. Recent studies have revealed that many widely used constitutive models for soft biological tissues fail to capture this characteristic response. Here, guided by experiments of human brain tissue, we develop a family of modeling approaches that capture the elasticity of brain tissue under varying simple shear superposed on varying axial stretch by exploiting key observations about the behavior of the nonlinear shear modulus, which can be obtained directly from the experimental data.

  15. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Qingfeng; Shao Xiayan; Chen Jie

    Biodegradable polymer-based nanoparticles have been widely studied to deliver therapeutic agents to the brain after intranasal administration. However, knowledge as to the side effects of nanoparticle delivery system to the brain is limited. The aim of this study was to investigate the in vivo toxicity and immunogenicity of wheat germ agglutinin (WGA) conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles (WGA-NP) after intranasal instillation. Sprague-Dawley rats were intranasally given WGA-NP for 7 continuous days. Amino acid neurotransmitters, lactate dehydrogenase (LDH) activity, reduced glutathione (GSH), acetylcholine, acetylcholinesterase activity, tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-8 (IL-8) in rat olfactory bulb (OB) and brain weremore » measured to estimate the in vivo toxicity of WGA-NP. Balb/C mice were intranasally immunized by WGA-NP and then WGA-specific antibodies in serum and nasal wash were detected by indirect ELISA. WGA-NP showed slight toxicity to brain tissue, as evidenced by increased glutamate level in rat brain and enhanced LDH activity in rat OB. No significant changes in acetylcholine level, acetylcholinesterase activity, GSH level, TNF-{alpha} level and IL-8 level were observed in rat OB and brain for the WGA-NP group. WGA-specific antibodies in mice serum and nasal wash were not increased after two intranasal immunizations of WGA-NP. These results demonstrate that WGA-NP is a safe carrier system for intranasal delivery of therapeutic agents to the brain.« less

  17. NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats

    PubMed Central

    Wei, Hans H; Lu, Xi-Chun M; Shear, Deborah A; Waghray, Anu; Yao, Changping; Tortella, Frank C; Dave, Jitendra R

    2009-01-01

    Background Inflammatory cytokines play a crucial role in the pathophysiology of traumatic brain injury (TBI), exerting either deleterious effects on the progression of tissue damage or beneficial roles during recovery and repair. NNZ-2566, a synthetic analogue of the neuroprotective tripeptide Glypromate®, has been shown to be neuroprotective in animal models of brain injury. The goal of this study was to determine the effects of NNZ-2566 on inflammatory cytokine expression and neuroinflammation induced by penetrating ballistic-like brain injury (PBBI) in rats. Methods NNZ-2566 or vehicle (saline) was administered intravenously as a bolus injection (10 mg/kg) at 30 min post-injury, immediately followed by a continuous infusion of NNZ-2566 (3 mg/kg/h), or equal volume of vehicle, for various durations. Inflammatory cytokine gene expression from the brain tissue of rats exposed to PBBI was evaluated using microarray, quantitative real time PCR (QRT-PCR), and enzyme-linked immunosorbent assay (ELISA) array. Histopathology of the injured brains was examined using hematoxylin and eosin (H&E) and immunocytochemistry of inflammatory cytokine IL-1β. Results NNZ-2566 treatment significantly reduced injury-mediated up-regulation of IL-1β, TNF-α, E-selectin and IL-6 mRNA during the acute injury phase. ELISA cytokine array showed that NZ-2566 treatment significantly reduced levels of the pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ in the injured brain, but did not affect anti-inflammatory cytokine IL-6 levels. Conclusion Collectively, these results suggest that the neuroprotective effects of NNZ-2566 may, in part, be functionally attributed to the compound's ability to modulate expression of multiple neuroinflammatory mediators in the injured brain. PMID:19656406

  18. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    PubMed

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5.29 and 2.63-fold higher expression than control. Liver and brain tissues showed the highest gene expression at mRNA levels as compared to kidney, spleen and heart. HST individuals had higher levels of mRNA level expression than HSS individuals in all breeds. The Sirohi breed showed the highest (6.3-fold) mRNA expression levels as compared to the other three breeds, indicating the better heat stress regulation activity in the breed.

  19. BECon: a tool for interpreting DNA methylation findings from blood in the context of brain.

    PubMed

    Edgar, R D; Jones, M J; Meaney, M J; Turecki, G; Kobor, M S

    2017-08-01

    Tissue differences are one of the largest contributors to variability in the human DNA methylome. Despite the tissue-specific nature of DNA methylation, the inaccessibility of human brain samples necessitates the frequent use of surrogate tissues such as blood, in studies of associations between DNA methylation and brain function and health. Results from studies of surrogate tissues in humans are difficult to interpret in this context, as the connection between blood-brain DNA methylation is tenuous and not well-documented. Here, we aimed to provide a resource to the community to aid interpretation of blood-based DNA methylation results in the context of brain tissue. We used paired samples from 16 individuals from three brain regions and whole blood, run on the Illumina 450 K Human Methylation Array to quantify the concordance of DNA methylation between tissues. From these data, we have made available metrics on: the variability of cytosine-phosphate-guanine dinucleotides (CpGs) in our blood and brain samples, the concordance of CpGs between blood and brain, and estimations of how strongly a CpG is affected by cell composition in both blood and brain through the web application BECon (Blood-Brain Epigenetic Concordance; https://redgar598.shinyapps.io/BECon/). We anticipate that BECon will enable biological interpretation of blood-based human DNA methylation results, in the context of brain.

  20. Tomographic brain imaging with nucleolar detail and automatic cell counting

    NASA Astrophysics Data System (ADS)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-09-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.

  1. A versatile clearing agent for multi-modal brain imaging

    PubMed Central

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-01-01

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue. PMID:25950610

  2. Expression and activity of the 5'-adenosine monophosphate-activated protein kinase pathway in selected tissues during chicken embryonic development.

    PubMed

    Proszkowiec-Weglarz, M; Richards, M P

    2009-01-01

    The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a highly conserved serine-threonine protein kinase and a key part of a kinase-signaling cascade that senses cellular energy status (adenosine monophosphate:adenosine triphosphate ratio) and acts to maintain energy homeostasis by coordinately regulating energy-consuming and energy-generating metabolic pathways. The objective of this study was to investigate aspects of the AMPK pathway in the liver, brain, breast muscle, and heart from d 12 of incubation through hatch in chickens. We first determined mRNA and protein expression profiles for a major upstream AMPK kinase, LKB1, which is known to activate (phosphorylate) AMPK in response to increases in the adenosine monophosphate:adenosine triphosphate ratio. Expression of LKB1 protein was greatest in the brain, which demonstrated tissue-specific patterns for phosphorylation. Next, AMPK subunit mRNA and protein expression profiles were determined. Significant changes in AMPK subunit mRNA expression occurred in all tissues from d 12 of incubation to hatch. Differences in the levels of active (phosphorylated) AMPK as well as alpha and beta subunit proteins were observed in all 4 tissues during embryonic development. Finally, we determined the protein level and phosphorylation status of an important downstream target for AMPK, acetyl-coenzyme A carboxylase. The expression of acetyl-co-enzyme A carboxylase and phosphorylated acetyl-coenzyme A was greater in the brain than the liver, but was undetectable by Western blotting in the breast muscle and heart throughout the period of study. Together, our results are the first to demonstrate the expression and activity of the AMPK pathway in key tissues during the transition from embryonic to posthatch development in chickens.

  3. Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Angell-Petersen, Even; Spetalen, Signe; Mathews, Marlon; Madsen, Steen J.

    2007-02-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy, such as PDT, could be of benefit. PDT causes damage to both tumor cells as well as cerebral blood vessels leading to degradation of the blood brain barrier with subsequent increase of brain edema. The increase in brain edema following ALA-PDT was evaluated in terms of animal survival, histopatological changes in normal brain and tumor tissue and MRI scanning. The effect of steroid treatment, to reduce post-treatment PDT induced edema, was also examined. Methods:Tumors were established in the brains of inbred BD-IX and Fisher rats. At various times following tumor induction the animals were injected with ALA ip. and four hours later light treatment at escalating fluences and fluence rates were given. Nontumor bearing control animals were also exposed to ALA-PDT in a similar manner to evaluate damage to normal brain and degree of blood brain barrier (BBB) disruption. Results: Despite a very low level of PpIX production in normal brain, with a 200:1 tumor to normal tissue selectivity ratio measured at a distance of 2 mm from the tumor border, many animals succumbed shortly after treatment. A total radiant energy of 54 J to non-tumor bearing animals resulted in 50% mortality within 5 days of treatment. Treatment of tumor bearing animals with moderate fluence levels produced similar brain edema compared to higher fluence levels. ALA PDT in nontumor bearing animals produced edema that was light dose dependent. PDT appeared to open the BBB for a period of 24-48 hrs after which it was restored. The addition of post operative steroid treatment reduced the incident of post treatment morbidity and mortality. Conclusions: T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and non-evasive modality in following the development of the edema reaction and the degree and time course of BBB dysfunction thus allowing the use of fewer animals.

  4. Metabolism and possible health effects of aluminum.

    PubMed Central

    Ganrot, P O

    1986-01-01

    Literature regarding the biochemistry of aluminum and eight similar ions is reviewed. Close and hitherto unknown similarities were found. A hypothetical model is presented for the metabolism, based on documented direct observations of Al3+ and analogies from other ions. Main characteristics are low intestinal absorption, rapid urinary excretion, and slow tissue uptake, mostly in skeleton and reticuloendothelial cells. Intracellular Al3+ is probably first confined in the lysosomes but then slowly accumulates in the cell nucleus and chromatin. Large, long-lived cells, e.g., neurons, may be the most liable to this accumulation. In heterochromatin, Al3+ levels can be found comparable to those used in leather tannage. It is proposed that an accumulation may take place at a subcellular level without any significant increase in the corresponding tissue concentration. The possible effects of this accumulation are discussed. As Al3+ is neurotoxic, the brain metabolism is most interesting. The normal and the lethally toxic brain levels of Al3+ are well documented and differ only by a factor of 3-10. The normal brain uptake of Al3+ is estimated from data on intestinal uptake of Al3+ and brain uptake of radionuclides of similar ions administered intravenously. The uptake is very slow, 1 mg in 36 years, and is consistent with an assumption that Al3+ taken up by the brain cannot be eliminated and is therefore accumulated. The possibility that Al3+ may cause or contribute to some specific diseases, most of them related to aging, is discussed with the proposed metabolic picture in mind. PMID:2940082

  5. Physiological Fluctuations in Brain Temperature as a Factor Affecting Electrochemical Evaluations of Extracellular Glutamate and Glucose in Behavioral Experiments

    PubMed Central

    2013-01-01

    The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1–4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals. PMID:23448428

  6. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders

    PubMed Central

    Kundakovic, Marija; Jaric, Ivana

    2017-01-01

    Prenatal adverse environments, such as maternal stress, toxicological exposures, and viral infections, can disrupt normal brain development and contribute to neurodevelopmental disorders, including schizophrenia, depression, and autism. Increasing evidence shows that these short- and long-term effects of prenatal exposures on brain structure and function are mediated by epigenetic mechanisms. Animal studies demonstrate that prenatal exposure to stress, toxins, viral mimetics, and drugs induces lasting epigenetic changes in the brain, including genes encoding glucocorticoid receptor (Nr3c1) and brain-derived neurotrophic factor (Bdnf). These epigenetic changes have been linked to changes in brain gene expression, stress reactivity, and behavior, and often times, these effects are shown to be dependent on the gestational window of exposure, sex, and exposure level. Although evidence from human studies is more limited, gestational exposure to environmental risks in humans is associated with epigenetic changes in peripheral tissues, and future studies are required to understand whether we can use peripheral biomarkers to predict neurobehavioral outcomes. An extensive research effort combining well-designed human and animal studies, with comprehensive epigenomic analyses of peripheral and brain tissues over time, will be necessary to improve our understanding of the epigenetic basis of neurodevelopmental disorders. PMID:28335457

  7. CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain.

    PubMed Central

    Ceni, Claire; Pochon, Nathalie; Brun, Virginie; Muller-Steffner, Hélène; Andrieux, Annie; Grunwald, Didier; Schuber, Francis; De Waard, Michel; Lund, Frances; Villaz, Michel; Moutin, Marie-Jo

    2003-01-01

    CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue. PMID:12403647

  8. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS)

    PubMed Central

    Chandra, Subhash; Parker, Dylan J.; Barth, Rolf F.; Pannullo, Susan C.

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry (SIMS), a CAMECA IMS-3f ion microscope, for studying Mg distributions with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/Kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/Kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/Kg wet weight in infiltrating tumor cells (p<0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations demonstrate enhanced Mg-influx and increased binding of Mg in tumor cells and provide strong support for further investigation of GBMs for altered Mg homeostasis and activation of Mg-transporting channels as possible therapeutic targets. PMID:26703785

  9. Effect of shivering on brain tissue oxygenation during induced normothermia in patients with severe brain injury.

    PubMed

    Oddo, Mauro; Frangos, Suzanne; Maloney-Wilensky, Eileen; Andrew Kofke, W; Le Roux, Peter D; Levine, Joshua M

    2010-02-01

    We analyzed the impact of shivering on brain tissue oxygenation (PbtO(2)) during induced normothermia in patients with severe brain injury. We studied patients with severe brain injury who developed shivering during induced normothermia. Induced normothermia was applied to treat refractory fever (body temperature [BT] > or =38.3 degrees C, refractory to conventional treatment) using a surface cooling device with computerized adjustment of patient BT target to 37 +/- 0.5 degrees C. PbtO(2), intracranial pressure, mean arterial pressure, cerebral perfusion pressure, and BT were monitored continuously. Circulating water temperature of the device system was measured to assess the intensity of cooling. Fifteen patients (10 with severe traumatic brain injury, 5 with aneurysmal subarachnoid hemorrhage) were treated with induced normothermia for an average of 5 +/- 2 days. Shivering caused a significant decrease in PbtO(2) levels both in SAH and TBI patients. Compared to baseline, shivering was associated with an overall reduction of PbtO(2) from 34.1 +/- 7.3 to 24.4 +/- 5.5 mmHg (P < 0.001). A significant correlation was found between the magnitude of shivering-associated decrease of PbtO(2) (DeltaPbtO(2)) and circulating water temperature (R = 0.82, P < 0.001). In patients with severe brain injury treated with induced normothermia, shivering was associated with a significant decrease of PbtO(2), which correlated with the intensity of cooling. Monitoring of therapeutic cooling with computerized thermoregulatory systems may help prevent shivering and optimize the management of induced normothermia. The clinical significance of shivering-induced decrease in brain tissue oxygenation remains to be determined.

  10. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cakmak G.; Miller L.; Zorlu, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{submore » 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.« less

  11. Simultaneously multiparametric spectroscopic monitoring of tissue viability in the brain and small intestine

    NASA Astrophysics Data System (ADS)

    Tolmasov, Michael; Barbiro-Michaely, Efrat; Mayevsky, Avraham

    2007-02-01

    Under body O II imbalance, the Autonomic Nervous System is responsible for redistribution of blood flow with preference to the most vital organs (brain, heart), while the less vital organs (intestine, GI tract) are hypoperfused. The aim of this study was to develop and use an animal model for real time monitoring of tissue viability in the brain, and the small intestine, under various levels of oxygen and blood supply. Male Wistar rats were anesthetized, the brain cortex and intestinal serosa were exposed and connected by optical fibers to the Multi-Site Multi-Parametric (MSMP) monitoring system. Tissue blood flow (TBF) and mitochondrial NADH redox state were monitored simultaneously in the two organs. The rats were subjected to short anoxia, 20 minutes hypoxia or epinephrine (2& 8μg/kg I.V.). Under oxygen deficiency, cerebral blood flow (CBF) was elevated, whereas intestinal TBF was reduced. Mitochondrial NADH was significantly elevated in both organs. Systemic injection of Adrenaline showed a dose-depended increase in systemic blood pressure and CBF response whereas, intestinal TBF similarly decreased in both doses. In addition, NADH was elevated (reduced form) in the intestine whereas oxidation was observed in the brain. In conclusion, our preliminary results may imply the ability of using of the MSMP for monitoring non-vital organs in order to detect early changes in the balance between oxygen supply and demand in the body.

  12. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: an FTIR microspectroscopic imaging study.

    PubMed

    Cakmak, Gulgun; Miller, Lisa M; Zorlu, Faruk; Severcan, Feride

    2012-04-15

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH(2) groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH(3) groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. In vitro and in vivo studies of Allium sativum extract against deltamethrin-induced oxidative stress in rats brain and kidney.

    PubMed

    Ncir, Marwa; Saoudi, Mongi; Sellami, Hanen; Rahmouni, Fatma; Lahyani, Amina; Makni Ayadi, Fatma; El Feki, Abdelfattah; Allagui, Mohamed Salah

    2017-09-18

    The present study investigated the in vitro and the in vivo antioxidant capacities of Allium sativum (garlic) extract against deltamethrin-induced oxidative damage in rat's brain and kidney. The in vitro result showed that highest extraction yield was achieved with methanol (20.08%). Among the tested extracts, the methanol extract exhibited the highest total phenolic, flavonoids contents and antioxidant activity. The in vivo results showed that deltamethrin treatment caused an increase of the acetylcholinesterase level (AChE) in brain and plasma, the brain and kidney conjugated dienes and lipid peroxidation (LPO) levels as compared to control group. The antioxidant enzymes results showed that deltamethrin treatment induced a significantly decrease (p < 0.01) in brain and kidney antioxidant enzymes as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) to control group. The co-administration of garlic extract reduced the toxic effects in brain and kidney tissues induced by deltamethrin.

  14. Area, age and gender dependence of the nucleoside system in the brain: a review of current literature.

    PubMed

    Kovács, Zsolt; Juhász, Gábor; Palkovits, Miklós; Dobolyi, Arpád; Kékesi, Katalin A

    2011-01-01

    Nucleosides, such as uridine, inosine, guanosine and adenosine, may participate in the regulation of sleep, cognition, memory and nociception, the suppression of seizures, and have also been suggested to play a role in the pathophysiology of some neurodegenerative and neuropsychiatric diseases. Under pathological conditions, levels of nucleosides change extremely in the brain, indicating their participation in the pathophysiology of disorders like Alzheimer's disease, Parkinson's disease and schizophrenia. These findings have resulted in an increasing attention to the roles of nucleosides in the central nervous system. The specific effects of nucleosides depend on the expression of their receptors and transporters in neuronal and glial cells, as well as their extracellular concentrations in the brain. A complex interlinked metabolic network and transporters of nucleosides may balance nucleoside levels in the brain tissue under normal conditions and enable the fine modulation of neuronal and glial processes via nucleoside receptor signaling mechanisms. Brain levels of nucleosides were found to vary when measured in a variety of different brain regions. In addition, nucleoside levels also depend on age and gender. Furthermore, distributions of nucleoside transporters and receptors as well as nucleoside metabolic enzyme activities demonstrate the area, age and gender dependence of the nucleoside system, suggesting different roles of nucleosides in functionally different brain areas. The aim of this review article is to summarize our present knowledge of the area-, age- and gender-dependent distribution of nucleoside levels, nucleoside metabolic enzyme activity, nucleoside receptors and nucleoside transporters in the brain.

  15. Brain interstitial fluid TNF-α after subarachnoid hemorrhage

    PubMed Central

    Hanafy, Khalid A.; Grobelny, Bartosz; Fernandez, Luis; Kurtz, Pedro; Connolly, ES; Mayer, Stephan A.; Schindler, Christian; Badjatia, Neeraj

    2010-01-01

    Objective: TNF-α is an inflammatory cytokine that plays a central role in promoting the cascade of events leading to an inflammatory response. Recent studies have suggested that TNF-α may play a key role in the formation and rupture of cerebral aneurysms, and that the underlying cerebral inflammatory response is a major determinate of outcome following subrarachnoid hemorrhage (SAH). Methods: We studied 14 comatose SAH patients who underwent multimodality neuromonitoring with intracranial pressure (ICP) and cerebral microdialysis as part of their clinical care. Continuous physiological variables were time-locked every 8 hours and recorded at the same point that brain interstitial fluid TNF-α was measured in brain microdialysis samples. Significant associations were determined using generalized estimation equations. Results: Each patient had a mean of 9 brain tissue TNF-α measurements obtained over an average of 72 hours of monitoring. TNF-α levels rose progressively over time. Predictors of elevated brain interstitial TNF-α included higher brain interstitial fluid glucose levels (β=0.066, P<0.02), intraventricular hemorrhage (β=0.085, P<0.021), and aneurysm size >6 mm (β=0.14, p<0.001). There was no relationship between TNF-α levels and the burden of cisternal SAH; concurrent measurements of serum glucose, or lactate-pyruvate ratio. Interpretation: Brain interstitial TNF-α levels are elevated after SAH, and are associated with large aneurysm size, the burden of intraventricular blood, and elevation brain interstitial glucose levels. PMID:20110094

  16. Effects of oral administration of energy drinks on blood chemistry, tissue histology and brain acetylcholine in rabbits.

    PubMed

    Ebuehi, O A T; Ajayl, O E; Onyeulor, A L; Awelimobor, D

    2011-01-01

    Energy drinks are canned or bottled carbonated beverages that contain large amounts of caffeine and sugar with additional ingredients, such as B-Vitamins, amino acids and herbal stimulants. Previous reports have shown that consumption of large amounts of these energy drinks may result in adverse health consequences. The present study is to ascertain if oral administration of energy drinks, such as "power horse" and "red bull", may affect blood chemistry, tissue histology and acetyl choline levels in rabbits. Five ml of power horse and red bull energy drinks, caffeine and saline (control) were orally administered daily for 36 days to rabbits. Body weight, feed and water intake were measured every other day. The blood samples were taken by cardiac puncture for blood chemistry measurement and their liver, heart and brain tissues were used for histological assay. The plasma, liver, brain and heart acetylcholine levels were also determined. There were no significant differences in the body weight, feed intake and organ weights of rabbits administered energy drinks or caffeine as compared to the control. The blood chemistry results showed that the activities of the aspartate and alanine amino transferase, concentrations of plasma creatinine, uric acid and albumin were increased in the control as compared to the red bull and caffeine administered rabbits. The concentrations of total protein, total cholesterol, triglyceride, high density lipoprotein (HDL) and low density lipoprotein (LDL) and glucose concentrations were increased in power horse and red bull administered rabbits as compared to caffeine administered rabbits and control rabbits. The concentrations of plasma and brain acetylcholine of rabbits administered power horse and red bull were significantly higher than in the control, while it was lower in liver and heart acetyl choline levels. The histopathological findings of the brain and liver show that there were no obvious histopathological abnormalities in the brain, liver and heart of rabbits administered power horse or red bull and caffeine as compared to the control rabbits. Data of the present study indicate that oral administration of the energy drinks, specifically power horse and red bull, affected blood chemistry, liver enzymes activities, but do not significantly affect the histopathology of the brain, heart and liver of the rabbits. This findings suggest that energy drinks may alter cholinergic neurotransmission and neural functions mediated by acetylcholine.

  17. Correlation of tissue-plasma partition coefficients between normal tissues and subcutaneous xenografts of human tumor cell lines in mouse as a prediction tool of drug penetration in tumors.

    PubMed

    Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M

    2013-04-01

    Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically based pharmacokinetics (PBPK) modeling for chemotherapy in oncology studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1355-1369, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  18. Obesity And Laboratory Diets Affects Tissue Malondialdehyde (MDA) Levels In Obese Rats

    NASA Astrophysics Data System (ADS)

    Chowdhury, Parimal; Scott, Joseph; Holley, Andy; Hakkak, Reza

    2010-04-01

    This study was conducted to investigate the interaction of obesity and laboratory diets on tissue malondialdehyde levels in rats. Female Zucker obese and lean rats were maintained on either regular grain-based diet or purified casein diet for two weeks, orally gavaged at day 50 with 65 mg/kg DMBA and sacrificed 24 hrs later. Malondialdehyde (MDA) levels were measured in blood and harvested tissues. Data were recorded as mean ± SEM and analyzed statistically. Results show that the obese group on purified casein diet had reduction of MDA levels in the brain, duodenum, liver, lung and kidney tissues as compared to lean group, p <0.05. Obese group on grain-based diet showed significant increase in MDA levels only in the duodenum, p <0.05. We conclude that dietary intervention differentially affects the oxidative markers in obese rats. It appears that purified casein diets were more effective than grain-based diet in reduction of oxidative stress in obese rats.

  19. Ursolic acid in health and disease.

    PubMed

    Seo, Dae Yun; Lee, Sung Ryul; Heo, Jun-Won; No, Mi-Hyun; Rhee, Byoung Doo; Ko, Kyung Soo; Kwak, Hyo-Bum; Han, Jin

    2018-05-01

    Ursolic acid (UA) is a natural triterpene compound found in various fruits and vegetables. There is a growing interest in UA because of its beneficial effects, which include anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-carcinogenic effects. It exerts these effects in various tissues and organs: by suppressing nuclear factor-kappa B signaling in cancer cells, improving insulin signaling in adipose tissues, reducing the expression of markers of cardiac damage in the heart, decreasing inflammation and increasing the level of anti-oxidants in the brain, reducing apoptotic signaling and the level of oxidants in the liver, and reducing atrophy and increasing the expression levels of adenosine monophosphate-activated protein kinase and irisin in skeletal muscles. Moreover, UA can be used as an alternative medicine for the treatment and prevention of cancer, obesity/diabetes, cardiovascular disease, brain disease, liver disease, and muscle wasting (sarcopenia). In this review, we have summarized recent data on the beneficial effects and possible uses of UA in health and disease managements.

  20. Ursolic acid in health and disease

    PubMed Central

    Seo, Dae Yun; Lee, Sung Ryul; Heo, Jun-Won; No, Mi-Hyun; Rhee, Byoung Doo; Ko, Kyung Soo

    2018-01-01

    Ursolic acid (UA) is a natural triterpene compound found in various fruits and vegetables. There is a growing interest in UA because of its beneficial effects, which include anti-inflammatory, anti-oxidant, anti-apoptotic, and anti-carcinogenic effects. It exerts these effects in various tissues and organs: by suppressing nuclear factor-kappa B signaling in cancer cells, improving insulin signaling in adipose tissues, reducing the expression of markers of cardiac damage in the heart, decreasing inflammation and increasing the level of anti-oxidants in the brain, reducing apoptotic signaling and the level of oxidants in the liver, and reducing atrophy and increasing the expression levels of adenosine monophosphate-activated protein kinase and irisin in skeletal muscles. Moreover, UA can be used as an alternative medicine for the treatment and prevention of cancer, obesity/diabetes, cardiovascular disease, brain disease, liver disease, and muscle wasting (sarcopenia). In this review, we have summarized recent data on the beneficial effects and possible uses of UA in health and disease managements. PMID:29719446

  1. Automatic brain tissue segmentation based on graph filter.

    PubMed

    Kong, Youyong; Chen, Xiaopeng; Wu, Jiasong; Zhang, Pinzheng; Chen, Yang; Shu, Huazhong

    2018-05-09

    Accurate segmentation of brain tissues from magnetic resonance imaging (MRI) is of significant importance in clinical applications and neuroscience research. Accurate segmentation is challenging due to the tissue heterogeneity, which is caused by noise, bias filed and partial volume effects. To overcome this limitation, this paper presents a novel algorithm for brain tissue segmentation based on supervoxel and graph filter. Firstly, an effective supervoxel method is employed to generate effective supervoxels for the 3D MRI image. Secondly, the supervoxels are classified into different types of tissues based on filtering of graph signals. The performance is evaluated on the BrainWeb 18 dataset and the Internet Brain Segmentation Repository (IBSR) 18 dataset. The proposed method achieves mean dice similarity coefficient (DSC) of 0.94, 0.92 and 0.90 for the segmentation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) for BrainWeb 18 dataset, and mean DSC of 0.85, 0.87 and 0.57 for the segmentation of WM, GM and CSF for IBSR18 dataset. The proposed approach can well discriminate different types of brain tissues from the brain MRI image, which has high potential to be applied for clinical applications.

  2. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion.

    PubMed

    Dassanayake, Rohana P; Orrú, Christina D; Hughson, Andrew G; Caughey, Byron; Graça, Telmo; Zhuang, Dongyue; Madsen-Bouterse, Sally A; Knowles, Donald P; Schneider, David A

    2016-03-01

    Real-time quaking-induced conversion (RT-QuIC) is a rapid, specific and highly sensitive prion seeding activity detection assay that uses recombinant prion protein (rPrPSen) to detect subinfectious levels of the abnormal isoforms of the prion protein (PrPSc). Although RT-QuIC has been successfully used to detect PrPSc in various tissues from humans and animals, including sheep, tissues from goats infected with classical scrapie have not yet been tested. Therefore, the aims of the present study were to (1) evaluate whether prion seeding activity could be detected in the brain tissues of goats with scrapie using RT-QuIC, (2) optimize reaction conditions to improve scrapie detection in goats, and (3) compare the performance of RT-QuIC for the detection of PrPSc with the more commonly used ELISA and Western blot assays. We further optimized RT-QuIC conditions for sensitive and specific detection of goat scrapie seeding activity in brain tissue from clinical animals. When used with 200  mM sodium chloride, both full-length sheep rPrPSen substrates (PrP genotypes A136R154Q171 and V136R154Q171) provided good discrimination between scrapie-infected and normal goat brain samples at 10(- )3 dilution within 15  h. Our findings indicate that RT-QuIC was at least 10,000-fold more sensitive than ELISA and Western blot assays for the detection of scrapie seeding activity in goat brain samples. In addition to PRNP WT samples, positive RT-QuIC reactions were also observed with three PRNP polymorphic goat brain samples (G/S127, I/M142 and H/R143) tested. Taken together, these findings demonstrate that RT-QuIC sensitively detects prion seeding activity in classical scrapie-infected goat brain samples.

  3. Sensitive and specific detection of classical scrapie prions in the brains of goats by real-time quaking-induced conversion

    PubMed Central

    Dassanayake, Rohana P.; Orrú, Christina D.; Hughson, Andrew G.; Caughey, Byron; Graça, Telmo; Zhuang, Dongyue; Madsen-Bouterse, Sally A.; Knowles, Donald P.; Schneider, David A.

    2016-01-01

    Real-time quaking-induced conversion (RT-QuIC) is a rapid, specific and highly sensitive prion seeding activity detection assay that uses recombinant prion protein (rPrPSen) to detect subinfectious levels of the abnormal isoforms of the prion protein (PrPSc). Although RT-QuIC has been successfully used to detect PrPSc in various tissues from humans and animals, including sheep, tissues from goats infected with classical scrapie have not yet been tested. Therefore, the aims of the present study were to (1) evaluate whether prion seeding activity could be detected in the brain tissues of goats with scrapie using RT-QuIC, (2) optimize reaction conditions to improve scrapie detection in goats, and (3) compare the performance of RT-QuIC for the detection of PrPSc with the more commonly used ELISA and Western blot assays. We further optimized RT-QuIC conditions for sensitive and specific detection of goat scrapie seeding activity in brain tissue from clinical animals. When used with 200 mM sodium chloride, both full-length sheep rPrPSen substrates (PrP genotypes A136R154Q171 and V136R154Q171) provided good discrimination between scrapie-infected and normal goat brain samples at 10− 3 dilution within 15 h. Our findings indicate that RT-QuIC was at least 10 000-fold more sensitive than ELISA and Western blot assays for the detection of scrapie seeding activity in goat brain samples. In addition to PRNP WT samples, positive RT-QuIC reactions were also observed with three PRNP polymorphic goat brain samples (G/S127, I/M142 and H/R143) tested. Taken together, these findings demonstrate that RT-QuIC sensitively detects prion seeding activity in classical scrapie-infected goat brain samples. PMID:26653410

  4. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    NASA Astrophysics Data System (ADS)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  5. Long-Term Implanted cOFM Probe Causes Minimal Tissue Reaction in the Brain

    PubMed Central

    Hochmeister, Sonja; Asslaber, Martin; Kroath, Thomas; Pieber, Thomas R.; Sinner, Frank

    2014-01-01

    This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe. PMID:24621608

  6. HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues.

    PubMed

    Lamers, Susanna L; Gray, Rebecca R; Salemi, Marco; Huysentruyt, Leanne C; McGrath, Michael S

    2011-01-01

    Brain infection by the human immunodeficiency virus type 1 (HIV-1) has been investigated in many reports with a variety of conclusions concerning the time of entry and degree of viral compartmentalization. To address these diverse findings, we sequenced HIV-1 gp120 clones from a wide range of brain, peripheral and meningeal tissues from five patients who died from several HIV-1 associated disease pathologies. High-resolution phylogenetic analysis confirmed previous studies that showed a significant degree of compartmentalization in brain and peripheral tissue subpopulations. Some intermixing between the HIV-1 subpopulations was evident, especially in patients that died from pathologies other than HIV-associated dementia. Interestingly, the major tissue harboring virus from both the brain and peripheral tissues was the meninges. These results show that (1) HIV-1 is clearly capable of migrating out of the brain, (2) the meninges are the most likely primary transport tissues, and (3) infected brain macrophages comprise an important HIV reservoir during highly active antiretroviral therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Comparative studies on the distribution of rhodanese in different tissues of domestic animals.

    PubMed

    Aminlari, M; Gilanpour, H

    1991-01-01

    1. The activity of rhodanese in different tissues of some domestic animals was measured. 2. Rhodanese was present in all tissues studied. 3. The activity of rhodanese in most tissues of sheep was higher than other animals studied. 4. In sheep and cattle the epithelium of rumen, omasum and reticulum were the richest sources of rhodanese. Significant activity of rhodanese was also present in liver and kidney. 5. In camel the liver contained the highest level of rhodanese followed by lung and rumen epithelium. Camel liver contained a third of the activity of sheep liver. 6. Equine liver had a third of the activity of sheep liver. Other tissues showed low levels of rhodanese activity. 7. Dog liver contained only 4% of the activity of sheep liver. In this animal, brain was the richest source of rhodanese. 8. The results are discussed in terms of efficacy of different tissues of animals in cyanide detoxification.

  8. First multiphoton tomography of brain in man

    NASA Astrophysics Data System (ADS)

    König, Karsten; Kantelhardt, Sven R.; Kalasauskas, Darius; Kim, Ella; Giese, Alf

    2016-03-01

    We report on the first two-photon in vivo brain tissue imaging study in man. High resolution in vivo histology by multiphoton tomography (MPT) including two-photon FLIM was performed in the operation theatre during neurosurgery to evaluate the feasibility to detect label-free tumor borders with subcellular resolution. This feasibility study demonstrates, that MPT has the potential to identify tumor borders on a cellular level in nearly real-time.

  9. Sub-Chronic Oral Exposure to Iridium (III) Chloride Hydrate in Female Wistar Rats: Distribution and Excretion of the Metal

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Bergamaschi, Antonio; Conti, Marcelo Enrique; Pino, Anna; Mattei, Daniela; Bocca, Beatrice; Alimonti, Alessandro

    2012-01-01

    Iridium tissue distribution and excretion in female Wistar rats following oral exposure to iridium (III) chloride hydrate in drinking water (from 1 to 1000 ng/ml) in a sub-chronic oral study were determined. Samples of urine, feces, blood and organs (kidneys, liver, lung, spleen and brain) were collected at the end of exposure. The most prominent fractions of iridium were retained in kidney and spleen; smaller amounts were found in lungs, liver and brain. Iridium brain levels were lower than those observed in other tissues but this finding can support the hypothesis of iridium capability to cross the blood brain barrier. The iridium kidney levels rose significantly with the administered dose. At the highest dose, important amounts of the metal were found in serum, urine and feces. Iridium was predominantly excreted via feces with a significant linear correlation with the ingested dose, which is likely due to low intestinal absorption of the metal. However, at the higher doses iridium was also eliminated through urine. These findings may be useful to help in the understanding of the adverse health effects, particularly on the immune system, of iridium dispersed in the environment as well as in identifying appropriate biological indices of iridium exposure. PMID:22942873

  10. Nuclear microscopy in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Watt, F.; Lee, T.; Thong, P. S. P.; Tang, S. M.

    1995-09-01

    Rats have been subjected to unilateral lesioning with the selective neurotoxin 6-OHDA in order to induce Parkinsonism. Analysis using the NUS Nuclear Microscope facility have shown that iron levels are raised by an average of 26% in the lesioned subtantia nigra region of the brain compared with the non-lesioned side. In addition the background tissue level of iron is also elevated by 31% in the lesioned side, indicating that there is a general increase in iron levels as a result of the lesioning. This result is consistent with the other observations that other diseases of the brain are frequently associated with altered iron levels (eg. progressive nuclear palsy, multiple system atrophy, Alzheimers disease, multiple sclerosis).

  11. Pixe analysis of trace elements in tissues of rats treated with anticonvulsants

    NASA Astrophysics Data System (ADS)

    Hurd, R. W.; Van Rinsvelt, H. A.; Kinyua, A. M.; O'Neill, M. P.; Wilder, B. J.; Houdayer, A.; Hinrichsen, P. F.

    1987-04-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex.

  12. Glycoblotting method allows for rapid and efficient glycome profiling of human Alzheimer's disease brain, serum and cerebrospinal fluid towards potential biomarker discovery.

    PubMed

    Gizaw, Solomon T; Ohashi, Tetsu; Tanaka, Masakazu; Hinou, Hiroshi; Nishimura, Shin-Ichiro

    2016-08-01

    Understanding of the significance of posttranslational glycosylation in Alzheimer's disease (AD) is of growing importance for the investigation of the pathogenesis of AD as well as discovery research of the disease-specific serum biomarkers. We designed a standard protocol for the glycoblotting combined with MALDI-TOFMS to perform rapid and quantitative profiling of the glycan parts of glycoproteins (N-glycans) and glycosphingolipids (GSLs) using human AD's post-mortem samples such as brain tissues (dissected cerebral cortices such as frontal, parietal, occipital, and temporal domains), serum and cerebrospinal fluid (CSF). The structural profiles of the major N-glycans released from glycoproteins and the total expression levels of the glycans were found to be mostly similar between the brain tissues of the AD patients and those of the normal control group. In contrast, the expression levels of the serum and CSF protein N-glycans such as bisect-type and multiply branched glycoforms were increased significantly in AD patient group. In addition, the levels of some gangliosides such as GM1, GM2 and GM3 appeared to alter in the AD patient brain and serum samples when compared with the normal control groups. Alteration of the expression levels of major N- and GSL-glycans in human brain tissues, serum and CSF of AD patients can be monitored quantitatively by means of the glycoblotting-based standard protocols. The changes in the expression levels of the glycans derived from the human post-mortem samples uncovered by the standardized glycoblotting method provides potential serum biomarkers in central nervous system disorders and can contribute to the insight into the molecular mechanisms in the pathogenesis of neurodegenerative diseases and future drug discovery. Most importantly, the present preliminary trials using human post-mortem samples of AD patients suggest that large-scale serum glycomics cohort by means of various-types of human AD patients as well as the normal control sera can facilitate the discovery research of highly sensitive and reliable serum biomarkers for an early diagnosis of AD. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Identification of the boundary between normal brain tissue and ischemia region using two-photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Du, Huiping; Wang, Shu; Wang, Xingfu; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2016-10-01

    Ischemic stroke is one of the common neurological diseases, and it is becoming the leading causes of death and permanent disability around the world. Early and accurate identification of the potentially salvageable boundary region of ischemia brain tissues may enable selection of the most appropriate candidates for early stroke therapies. In this work, TPEF microscopy was used to image the microstructures of normal brain tissues, ischemia regions and the boundary region between normal and ischemia brain tissues. The ischemia brain tissues from Sprague-Dawley (SD) rats were subjected to 6 hours of middle cerebral artery occlusion (MCAO). Our study demonstrates that TPEF microscopy has the ability to not only reveal the morphological changes of the neurons but also identify the boundary between normal brain tissue and ischemia region, which correspond well to the hematoxylin and eosin (H and E) stained images. With the development of miniaturized TPEF microscope imaging devices, TPEF microscopy can be developed into an effectively diagnostic and monitoring tool for cerebral ischemia.

  14. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma.

    PubMed

    Tang, Jiaze; Huang, Ning; Zhang, Xiang; Zhou, Tao; Tan, Ying; Pi, Jiangli; Pi, Li; Cheng, Si; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood-brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma. Therefore, these achievements facilitate the use of tumor-targeted fluorescence imaging in the diagnosis, surgical resection, and postoperative examination of glioma.

  15. Far-red to near infrared emission and scattering spectroscopy for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zhang, Gang

    2001-06-01

    The thesis investigates the far-red and near infrared (NIR) spectral region from biomedical tissue samples for monitoring the state of tissues. The NIR emission wing intensity is weak in comparison to the emission in the visible spectral region. The wing emission from biomedical samples has revealed meaningful information about the state of the tissues. A model is presented to explain the shape of the spectral wing based on a continuum of energy levels. The wing can be used to classify different kinds of tissues; especially it can be used to differentiate cancer part from normal human breast tissues. The research work of the far-red emission from thermal damaged tissue samples shows that the emission intensity in this spectral region is proportional to the extent of the thermal damage of the tissue. Near infrared spectral absorption method is used to investigate blood hemodynamics (perfusion and oxygenation) in brain during sleep-wake transition. The result of the research demonstrates that the continuous wave (CW) type near infrared spectroscopy (NIRS) device can be used to investigate brain blood perfusion and oxygenation with a similar precision with frequency domain (FD) type device. The human subject sleep and wake transition, has been monitored by CW type NIRS instrument with traditional electroencephalograph (EEG) method. Parallel change in oxy-Hb and deoxy-Hb is a discrete event that occurs in the transition from both sleep to wakefulness and wakefulness to sleep. These hemodynamic switches are generally about few seconds delayed from the human decided transition point between sleep and wake on the polygraph EEG recording paper. The combination of NIRS and EEG methods monitor the brain activity, gives more information about the brain activity. The sleep apnea investigation was associated with recurrent apneas, insufficient nasal continuous positive airway pressure (CPAP) and the different response of the peripheral and central compartments to breathing events. The different results with finger pulse oximetry and NIRS suggest that optical monitoring of the brain may have advantages that may help clarify the morbidity of obstructive sleep apnea (OSA) Syndrome.

  16. Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma

    PubMed Central

    Tang, Jiaze; Huang, Ning; Zhang, Xiang; Zhou, Tao; Tan, Ying; Pi, Jiangli; Pi, Li; Cheng, Si; Zheng, Huzhi; Cheng, Yuan

    2017-01-01

    The extent of resection is a significant prognostic factor in glioma patients. However, the maximum safe resection level is difficult to determine due to the inherent infiltrative character of tumors. Recently, fluorescence-guided surgery has emerged as a new technique that allows safe resection of glioma. In this study, we constructed a new kind of quantum dot (QD)-labeled aptamer (QD-Apt) nanoprobe by conjugating aptamer 32 (A32) to the QDs surface, which can specially bind to the tumors. A32 is a single-stranded DNA capable of binding to the epidermal growth factor receptor variant III (EGFRvIII) specially distributed on the surface of glioma cells. To detect the expression of EGFRvIII in human brain tissues, 120 specimens, including 110 glioma tissues and 10 normal brain tissues, were examined by immunohistochemistry, and the results showed that the rate of positive expression of EGFRvIII in the glioma tissues was 41.82%, and 0.00% in normal brain tissues. Besides, the physiochemical properties of QD-Apt nanoparticles (NPs) were thoroughly characterized. Biocompatibility of the NPs was evaluated, and the results suggested that the QD-Apt was nontoxic in vivo and vitro. Furthermore, the use of the QD-Apt in labeling glioma cell lines and human brain glioma tissues, and target gliomas in situ was also investigated. We found that not only could QD-Apt specially bind to the U87-EGFRvIII glioma cells but also bind to human glioma tissues in vitro. Fluorescence imaging in vivo with orthotopic glioma model mice bearing U87-EGFRvIII showed that QD-Apt could penetrate the blood–brain barrier and then selectively accumulate in the tumors through binding to EGFRvIII, and consequently, generate a strong fluorescence, which contributed to the margins of gliomas that were visualized clearly, and thus, help the surgeons realize the maximum safe resection of glioma. In addition, QD-Apt can also be applied in preoperative diagnosis and postoperative examination of glioma. Therefore, these achievements facilitate the use of tumor-targeted fluorescence imaging in the diagnosis, surgical resection, and postoperative examination of glioma. PMID:28579776

  17. Levels of detail analysis of microwave scattering from human head models for brain stroke detection

    PubMed Central

    2017-01-01

    In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model. After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement. It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems. PMID:29177115

  18. Ameliorative effects of rutin on hepatic encephalopathy-induced by thioacetamide or gamma irradiation.

    PubMed

    Mansour, Somaya Z; El-Marakby, Seham M; Moawed, Fatma S M

    2017-07-01

    Hepatic encephalopathy (HE) is a syndrome resulting from acute or chronic liver failure. This study was designed to evaluate the effect of rutin on thioacetamide (TAA) or γ-radiation-induced HE model. Animals were received with TAA (200mg/kg, i.p.) twice weekly for four weeks or exposed to 6Gy of γ-radiation to induce HE then groups orally treated with rutin (50mg/kg b.wt.) for four weeks. At the end of experiment, blood, liver and brain samples were collected to assess biochemical and biophysical markers as well histopathological investigations. TAA or γ-radiation exposed rats experienced increases in serum activities of ALT, AST, ALP and ammonia level. Also an alteration in relative permeability and conductivity of erythrocytes was observed. Furthermore, cytokines levels and AChE activity were induced whereas the activities of HO-1 and neurotransmitters contents were depleted. TAA or γ-radiation caused distortion of hepatic and brain architecture as shown by histopathological examination. Treatment with rutin resulted in improvement in liver function by the decline in serum AST and ALT activities and reduction in serum ammonia level. In addition, the administration of rutin significantly modulated the alteration in cytokines levels and neurotransmitters content. Histopathological examinations of liver and brain tissues showed that administration of rutin has attenuate TAA or radiation-induced damage and improve tissue architecture. Consequently, rutin has been a powerful hepatoprotective effect to combat hepatic encephalopathy associated hyperammonemia and its consequential damage in liver and brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Schistosoma mansoni infection causes oxidative stress and alters receptor for advanced glycation endproduct (RAGE) and tau levels in multiple organs in mice.

    PubMed

    de Oliveira, Ramatis Birnfeld; Senger, Mario Roberto; Vasques, Laura Milan; Gasparotto, Juciano; dos Santos, João Paulo Almeida; Pasquali, Matheus Augusto de Bittencourt; Moreira, José Claudio Fonseca; Silva, Floriano Paes; Gelain, Daniel Pens

    2013-04-01

    Schistosomiasis is a parasitic disease caused by trematode worms from the Schistosoma genus and is characterized by high rates of morbidity. The main organs affected in this pathology, such as liver, kidneys and spleen, are shifted to a pro-oxidant state in the course of the infection. Here, we compared oxidative stress parameters of liver, kidney and spleen with other organs affected by schistosomiasis - heart, brain cortex and lungs. The results demonstrated that mice infected with Schistosoma mansoni had altered non-enzymatic antioxidant status in lungs and brain, increased carbonyl levels in lungs, and a moderate level of oxidative stress in heart. A severe redox imbalance in liver and kidneys and decreased non-enzymatic antioxidant capacity in spleen were also observed. Superoxide dismutase and catalase activities were differently modulated in liver, kidney and heart, and we found that differences in Superoxide dismutase 2 and catalase protein content may be responsible for these differences. Lungs had decreased receptor for advanced glycation endproduct expression and the brain cortex presented altered tau expression and phosphorylation levels, suggesting important molecular changes in these tissues, as homeostasis of these proteins is widely associated with the normal function of their respective organs. We believe that these results demonstrate for the first time that changes in the redox profile and expression of tissue-specific proteins of organs such as heart, lungs and brain are observed in early stages of S. mansoni infection. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  20. Brain Tissue Oxygen: In Vivo Monitoring with Carbon Paste Electrodes

    PubMed Central

    Bolger, Fiachra B.; Lowry, John P.

    2005-01-01

    In this communication we review selected experiments involving the use of carbon paste electrodes (CPEs) to monitor and measure brain tissue O2 levels in awake freely-moving animals. Simultaneous measurements of rCBF were performed using the H2 clearance technique. Voltammetric techniques used include both differential pulse (O2) and constant potential amperometry (rCBF). Mild hypoxia and hyperoxia produced rapid changes (decrease and increase respectively) in the in vivo O2 signal. Neuronal activation (tail pinch and stimulated grooming) produced similar increases in both O2and rCBF indicating that CPE O2currents provide an index of increases in rCBF when such increases exceed O2 utilization. Saline injection produced a transient increase in the O2 signal while chloral hydrate produced slower more long-lasting changes that accompanied the behavioral changes associated with anaesthesia. Acetazolamide increased O2 levels through an increase in rCBF.

  1. Nicotine affects hydrogen sulfide concentrations in mouse kidney and heart but not in brain and liver tissues.

    PubMed

    Wiliński, Jerzy; Wiliński, Bogdan; Somogyi, Eugeniusz; Piotrowska, Joanna; Kameczura, Tomasz; Zygmunt, Małgorzata

    2017-01-01

    Nicotine, a potent parasympathomimetic alkaloid with stimulant effects, is contributing to addictive properties of tobacco smoking and is though used in the smoking cessation therapy. Hydrogen sulfide (H2S) is involved in physiology and pathophysiology of various systems in mammals. The interactions between nicotine and H2S are not fully recognized. The aim of the study is to assess the influence of nicotine on the H2S tissue concentrations in different mouse organs. Adult CBA male mice were administered intraperitoneally 1.5 mg/kg b.w. per day of nicotine (group D1, n = 10) or 3 mg/ kg b.w. per day of nicotine (group D2, n = 10). The control group (n = 10) received physiological saline. The measurements of the free and acid-labile H2S tissue concentrations were performed with the Siegel spectrophotometric modi ed method. ere was a significant increase in H2S concentrations in both nicotine doses groups in the kidney (D1 by 54.2%, D2 by 40.0%). In the heart the higher nicotine dose caused a marked decrease in H2S tissue level (by 65.4%), while the lower dose did not affect H2S content. Nicotine administration had no effect on H2S concentrations in the brain and liver. In conclusion, nicotine affects H2S tissue concentrations in kidney and heart but not in the liver and brain tissues.

  2. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing.

    PubMed

    Murakami, Tatsuya C; Mano, Tomoyuki; Saikawa, Shu; Horiguchi, Shuhei A; Shigeta, Daichi; Baba, Kousuke; Sekiya, Hiroshi; Shimizu, Yoshihiro; Tanaka, Kenji F; Kiyonari, Hiroshi; Iino, Masamitsu; Mochizuki, Hideki; Tainaka, Kazuki; Ueda, Hiroki R

    2018-04-01

    A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.

  3. A novel approach for mechanical tissue characterization indicates decreased elastic strength in brain areas affected by experimental thromboembolic stroke.

    PubMed

    Michalski, Dominik; Härtig, Wolfgang; Krueger, Martin; Hobohm, Carsten; Käs, Josef A; Fuhs, Thomas

    2015-07-08

    As treatment of ischemic stroke remains a challenge with respect to the failure of numerous neuroprotective attempts, there is an ongoing need for better understanding of pathophysiological mechanisms causing tissue damage. Although ischemic outcomes have been studied extensively at the cellular and molecular level using histological and biochemical methods, properties of ischemia-affected brain tissue with respect to mechanical integrity have not been addressed so far. As a novel approach, this study used fluorescence-based detection of regions affected by experimental thromboembolic stroke in combination with scanning force microscopy to examine mechanical alterations in selected rat brain areas. Twenty-five hours after onset of ischemia, a decreased elastic strength in the striatum as the region primarily affected by ischemia was found compared with the contralateral nonaffected hemisphere. Additional intrahemispheric analyses showed decreased elastic strength in the ischemic border zone compared with the more severely affected striatum. In conclusion, these data strongly indicate a critical alteration in mechanical tissue integrity caused by focal cerebral ischemia. Further, on the basis of data that have been obtained in relation to the ischemic border zone, a shell-like pattern of mechanical tissue damage was found in good accordance with the penumbra concept. These findings might enable the development of specific therapeutic interventions to protect affected areas from critical loss of mechanical integrity.

  4. Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies

    PubMed Central

    2015-01-01

    Implantable biosensors are valuable scientific tools for basic neuroscience research and clinical applications. Neurotechnologies provide direct readouts of neurological signal and neurochemical processes. These tools are generally most valuable when performance capacities extend over months and years to facilitate the study of memory, plasticity, and behavior or to monitor patients’ conditions. These needs have generated a variety of device designs from microelectrodes for fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis probes for sampling and detecting various neurochemicals. Regardless of the technology used, the breaching of the blood–brain barrier (BBB) to insert devices triggers a cascade of biochemical pathways resulting in complex molecular and cellular responses to implanted devices. Molecular and cellular changes in the microenvironment surrounding an implant include the introduction of mechanical strain, activation of glial cells, loss of perfusion, secondary metabolic injury, and neuronal degeneration. Changes to the tissue microenvironment surrounding the device can dramatically impact electrochemical and electrophysiological signal sensitivity and stability over time. This review summarizes the magnitude, variability, and time course of the dynamic molecular and cellular level neural tissue responses induced by state-of-the-art implantable devices. Studies show that insertion injuries and foreign body response can impact signal quality across all implanted central nervous system (CNS) sensors to varying degrees over both acute (seconds to minutes) and chronic periods (weeks to months). Understanding the underlying biological processes behind the brain tissue response to the devices at the cellular and molecular level leads to a variety of intervention strategies for improving signal sensitivity and longevity. PMID:25546652

  5. Postmortem changes in the neuroanatomical characteristics of the primate brain: the hippocampal formation

    PubMed Central

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L.; Amaral, David G.

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused, or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger, as compared to perfusion-fixed tissue. Non-phosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well-stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences. PMID:18972553

  6. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation.

    PubMed

    Lavenex, Pierre; Lavenex, Pamela Banta; Bennett, Jeffrey L; Amaral, David G

    2009-01-01

    Comparative studies of the structural organization of the brain are fundamental to our understanding of human brain function. However, whereas brains of experimental animals are fixed by perfusion of a fixative through the vasculature, human or ape brains are fixed by immersion after varying postmortem intervals. Although differential treatments might affect the fundamental characteristics of the tissue, this question has not been evaluated empirically in primate brains. Monkey brains were either perfused or acquired after varying postmortem intervals before immersion-fixation in 4% paraformaldehyde. We found that the fixation method affected the neuroanatomical characteristics of the monkey hippocampal formation. Soma size was smaller in Nissl-stained, immersion-fixed tissue, although overall brain volume was larger as compared to perfusion-fixed tissue. Nonphosphorylated high-molecular-weight neurofilament immunoreactivity was lower in CA3 pyramidal neurons, dentate mossy cells, and the entorhinal cortex, whereas it was higher in the mossy fiber pathway in immersion-fixed tissue. Serotonin-immunoreactive fibers were well stained in perfused tissue but were undetectable in immersion-fixed tissue. Although regional immunoreactivity patterns for calcium-binding proteins were not affected, intracellular staining degraded with increasing postmortem intervals. Somatostatin-immunoreactive clusters of large axonal varicosities, previously reported only in humans, were observed in immersion-fixed monkey tissue. In addition, calretinin-immunoreactive multipolar neurons, previously observed only in rodents, were found in the rostral dentate gyrus in both perfused and immersion-fixed brains. In conclusion, comparative studies of the brain must evaluate the effects of fixation on the staining pattern of each marker in every structure of interest before drawing conclusions about species differences.

  7. Effects of the Variation in Brain Tissue Mechanical Properties on the Intracranial Response of a 6-Year-Old Child.

    PubMed

    Cui, Shihai; Li, Haiyan; Li, Xiangnan; Ruan, Jesse

    2015-01-01

    Brain tissue mechanical properties are of importance to investigate child head injury using finite element (FE) method. However, these properties used in child head FE model normally vary in a large range in published literatures because of the insufficient child cadaver experiments. In this work, a head FE model with detailed anatomical structures is developed from the computed tomography (CT) data of a 6-year-old healthy child head. The effects of brain tissue mechanical properties on traumatic brain response are also analyzed by reconstruction of a head impact on engine hood according to Euro-NCAP testing regulation using FE method. The result showed that the variations of brain tissue mechanical parameters in linear viscoelastic constitutive model had different influences on the intracranial response. Furthermore, the opposite trend was obtained in the predicted shear stress and shear strain of brain tissues caused by the variations of mentioned parameters.

  8. Evolution of Nova-Dependent Splicing Regulation in the Brain

    PubMed Central

    Živin, Marko; Darnell, Robert B

    2007-01-01

    A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs. PMID:17937501

  9. Quantification of Neural Ethanol and Acetaldehyde Using Headspace GC-MS

    PubMed Central

    Heit, Claire; Eriksson, Peter; Thompson, David C; Fritz, Kristofer S; Vasiliou, Vasilis

    2016-01-01

    BACKGROUND There is controversy regarding the active agent responsible for alcohol addiction. The theory that ethanol itself was the agent in alcohol drinking behavior was widely accepted until acetaldehyde was found in the brain. The importance of acetaldehyde formation in the brain role is still subject to speculation due to the lack of a method to accurately assay the acetaldehyde levels directly. A highly sensitive GC-MS method to reliably determine acetaldehyde concentration with certainty is needed to address whether neural acetaldehyde is indeed responsible for increased alcohol consumption. METHODS A headspace gas chromatograph coupled to selected ion monitoring mass spectrometry was utilized to develop a quantitative assay for acetaldehyde and ethanol. Our GC-MS approach was carried out using a Bruker Scion 436-GC SQ MS. RESULTS Our approach yields limits of detection of acetaldehyde in the nanomolar range and limits of quantification in the low micromolar range. Our linear calibration includes 5 concentrations with a least square regression greater than 0.99 for both acetaldehyde and ethanol. Tissue analyses using this method revealed the capacity to quantify ethanol and acetaldehyde in blood, brain, and liver tissue from mice. CONCLUSIONS By allowing quantification of very low concentrations, this method may be used to examine the formation of ethanol metabolites, specifically acetaldehyde, in murine brain tissue in alcohol research. PMID:27501276

  10. Microwave & Magnetic (M2) Proteomics Reveals CNS-Specific Protein Expression Waves that Precede Clinical Symptoms of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.

    2014-09-01

    Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.

  11. Allometric scaling of fatty acyl chains in fowl liver, lung and kidney, but not in brain phospholipids.

    PubMed

    Szabó, András; Mézes, Miklós; Romvári, Róbert; Fébel, Hedvig

    2010-03-01

    The phospholipid (PL) fatty acyl chain (FA) composition (mol%) was determined in the kidney, liver, lung and brain of 8 avian species ranging in body mass from 150g (Japanese quail, Coturnix coturnix japonica) to 19kg (turkey, Meleagris gallopavo). In all organs except the brain, docosahexaenoic acid (C22:6 n3, DHA) was found to show a negative allometric scaling (allometric exponent: B=-0.18; -0.20 and -0.24, for kidney, liver and lung, respectively). With minor inter-organ differences, smaller birds had more n3 FAs and longer FA chains in the renal, hepatic and pulmonary PLs. Comparing our results with literature data on avian skeletal muscle, liver mitochondria and kidney microsomes and divergent mammalian tissues, the present findings in the kidney, liver and lung PLs seem to be a part of a general relationship termed "membranes as metabolic pacemakers". Marked negative allometric scaling was found furthermore for the tissue malondialdehyde concentrations in all organs except the brain (B=-0.17; -0.13 and -0.05, respectively). In the liver and kidney a strong correlation was found between the tissue MDA and DHA levels, expressing the role of DHA in shaping the allometric properties of membrane lipids. 2009 Elsevier Inc. All rights reserved.

  12. Hemorrhagic shock shifts the serum cytokine profile from pro- to anti-inflammatory after experimental traumatic brain injury in mice.

    PubMed

    Shein, Steven L; Shellington, David K; Exo, Jennifer L; Jackson, Travis C; Wisniewski, Stephen R; Jackson, Edwin K; Vagni, Vincent A; Bayır, Hülya; Clark, Robert S B; Dixon, C Edward; Janesko-Feldman, Keri L; Kochanek, Patrick M

    2014-08-15

    Secondary insults, such as hemorrhagic shock (HS), worsen outcome from traumatic brain injury (TBI). Both TBI and HS modulate levels of inflammatory mediators. We evaluated the addition of HS on the inflammatory response to TBI. Adult male C57BL6J mice were randomized into five groups (n=4 [naïve] or 8/group): naïve; sham; TBI (through mild-to-moderate controlled cortical impact [CCI] at 5 m/sec, 1-mm depth), HS; and CCI+HS. All non-naïve mice underwent identical monitoring and anesthesia. HS and CCI+HS underwent a 35-min period of pressure-controlled hemorrhage (target mean arterial pressure, 25-27 mm Hg) and a 90-min resuscitation with lactated Ringer's injection and autologous blood transfusion. Mice were sacrificed at 2 or 24 h after injury. Levels of 13 cytokines, six chemokines, and three growth factors were measured in serum and in five brain tissue regions. Serum levels of several proinflammatory mediators (eotaxin, interferon-inducible protein 10 [IP-10], keratinocyte chemoattractant [KC], monocyte chemoattractant protein 1 [MCP-1], macrophage inflammatory protein 1alpha [MIP-1α], interleukin [IL]-5, IL-6, tumor necrosis factor alpha, and granulocyte colony-stimulating factor [G-CSF]) were increased after CCI alone. Serum levels of fewer proinflammatory mediators (IL-5, IL-6, regulated upon activation, normal T-cell expressed, and secreted, and G-CSF) were increased after CCI+HS. Serum level of anti-inflammatory IL-10 was significantly increased after CCI+HS versus CCI alone. Brain tissue levels of eotaxin, IP-10, KC, MCP-1, MIP-1α, IL-6, and G-CSF were increased after both CCI and CCI+HS. There were no significant differences between levels after CCI alone and CCI+HS in any mediator. Addition of HS to experimental TBI led to a shift toward an anti-inflammatory serum profile--specifically, a marked increase in IL-10 levels. The brain cytokine and chemokine profile after TBI was minimally affected by the addition of HS.

  13. Low Level Primary Blast Injury in Rodent Brain

    PubMed Central

    Pun, Pamela B. L.; Kan, Enci Mary; Salim, Agus; Li, Zhaohui; Ng, Kian Chye; Moochhala, Shabbir M.; Ling, Eng-Ang; Tan, Mui Hong; Lu, Jia

    2011-01-01

    The incidence of blast attacks and resulting traumatic brain injuries has been on the rise in recent years. Primary blast is one of the mechanisms in which the blast wave can cause injury to the brain. The aim of this study was to investigate the effects of a single sub-lethal blast over pressure (BOP) exposure of either 48.9 kPa (7.1 psi) or 77.3 kPa (11.3 psi) to rodents in an open-field setting. Brain tissue from these rats was harvested for microarray and histopathological analyses. Gross histopathology of the brains showed that cortical neurons were “darkened” and shrunken with narrowed vasculature in the cerebral cortex day 1 after blast with signs of recovery at day 4 and day 7 after blast. TUNEL-positive cells were predominant in the white matter of the brain at day 1 after blast and double-labeling of brain tissue showed that these DNA-damaged cells were both oligodendrocytes and astrocytes but were mainly not apoptotic due to the low caspase-3 immunopositivity. There was also an increase in amyloid precursor protein immunoreactive cells in the white matter which suggests acute axonal damage. In contrast, Iba-1 staining for macrophages or microglia was not different from control post-blast. Blast exposure altered the expression of over 5786 genes in the brain which occurred mostly at day 1 and day 4 post-blast. These genes were narrowed down to 10 overlapping genes after time-course evaluation and functional analyses. These genes pointed toward signs of repair at day 4 and day 7 post-blast. Our findings suggest that the BOP levels in the study resulted in mild cellular injury to the brain as evidenced by acute neuronal, cerebrovascular, and white matter perturbations that showed signs of resolution. It is unclear whether these perturbations exist at a milder level or normalize completely and will need more investigation. Specific changes in gene expression may be further evaluated to understand the mechanism of blast-induced neurotrauma. PMID:21541261

  14. Differential expression of multiple glutamine synthetase genes in air-breathing magur catfish, Clarias magur and their induction under hyper-ammonia stress.

    PubMed

    Banerjee, Bodhisattwa; Koner, Debaprasad; Bhuyan, Gitalee; Saha, Nirmalendu

    2018-06-01

    The present study demonstrates the unique presence of three different gs genes (cmgs01, cmgs02, and cmgs03) in air-breathing ureogenic magur catfish (Clarias magur), which is otherwise reported to be encoded by a single gene in higher vertebrates. Of these three genes, two (cmgs01and cmgs03) were identified as 'liver' form, predominantly expressed in liver cells, and the third one as 'brain' form (cmgs02), expressed chiefly in brain cells. Molecular characterization studies have revealed conservation of homologous active site residues in all the three gs genes. In silico analysis, accompanied by GS enzyme assay and Western blot analysis of different GS isoforms in different subcellular fractions indicated the mitochondrial localization of cmGS01 and cmGS03 in liver and kidney cells and cytosolic localization of cmGS02 in brain cells. Further, exposure of magur catfish to high external ammonia (HEA; 25 mM NH 4 Cl) led to a significant induction of multiple gs genes as evidenced by higher expression of different gs mRNAs at variable levels in different tissues. The cmgs01 and cmgs03 mRNA levels elevated significantly in liver, kidney, muscle, and gills, whereas the cmgs02 mRNA level increased considerably in the brain after 14 days of exposure to HEA. These increases in mRNA levels were associated with a significant rise in cmGS01 and cmGS03 proteins in liver, kidney, muscle, and gills, and the cmGS02 protein in the brain after 14 days of exposure to HEA. Therefore, it can be concluded that the unique differential expression of three gs genes and their induction under high ammonia level probably helps in detoxification of ammonia to glutamine and further to urea via the ornithine-urea cycle in ureogenic as well as non-ureogenic tissues of these magur catfish. Copyright © 2017. Published by Elsevier B.V.

  15. A diet enriched with Mugil cephalus processed roes modulates the tissue lipid profile in healthy rats: a biochemical and chemometric assessment.

    PubMed

    Rosa, A; Atzeri, A; Putzu, D; Scano, P

    2016-01-01

    The effect of a diet enriched with mullet bottarga on the lipid profile (total lipids, total cholesterol, unsaturated fatty acids, α-tocopherol, and hydroperoxides) of plasma, liver, kidney, brain, and perirenal adipose tissues of healthy rats was investigated. Rats fed a 10% bottarga enriched-diet for 5 days showed body weights and tissue total lipid and cholesterol levels similar to those of animals fed control diet. Univariate and multivariate results showed that bottarga enriched-diet modified the fatty acid profile in all tissues, except brain. Significant increases of n-3 PUFA, particularly EPA, were observed together with a 20:4 n-6 decrease in plasma, liver, and kidney. Perirenal adipose tissue showed a fat accumulation that reflected the diet composition. The overall data suggest that mullet bottarga may be considered as a natural bioavailable source of n-3 PUFA and qualify it as a traditional food product with functional properties and a potential functional ingredient for preparation of n-3 PUFA enriched foods.

  16. Differential tissue distribution of tryptophan hydroxylase isoforms 1 and 2 as revealed with monospecific antibodies.

    PubMed

    Sakowski, Stacey A; Geddes, Timothy J; Thomas, David M; Levi, Edi; Hatfield, James S; Kuhn, Donald M

    2006-04-26

    Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis of the neurotransmitter serotonin. Once thought to be a single-gene product, TPH is now known to exist in two isoforms-TPH1 is found in the pineal and gut, and TPH2 is selectively expressed in brain. Heretofore, probes used for localization of TPH protein or mRNA could not distinguish between the TPH isoforms because of extensive homology shared by them at the nucleotide and amino acid level. We have produced monospecific polyclonal antibodies against TPH1 and TPH2 using peptide antigens from nonoverlapping sequences in the respective proteins. These antibodies allow the differentiation of TPH1 and TPH2 upon immunoblotting, immunoprecipitation, and immunocytochemical staining of tissue sections from brain and gut. TPH1 and TPH2 antibodies do not cross-react with either tyrosine hydroxylase or phenylalanine hydroxylase. Analysis of mouse tissues confirms that TPH1 is the predominant form expressed in pineal gland and in P815 mastocytoma cells with a molecular weight of 51 kDa. TPH2 is the predominant enzyme form expressed in brain extracts from mesencephalic tegmentum, striatum, and hippocampus with a molecular weight of 56 kDa. Antibody specificity against TPH1 and TPH2 is retained across mouse, rat, rabbit, primate, and human tissues. Antibodies that distinguish between the isoforms of TPH will allow studies of the differential regulation of their expression in brain and periphery.

  17. Multimodality Instrument for Tissue Characterization

    NASA Technical Reports Server (NTRS)

    Mah, Robert W. (Inventor); Andrews, Russell J. (Inventor)

    2000-01-01

    A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.

  18. Alterations in monoamines level in discrete brain regions and other peripheral tissues in young and adult male rats during experimental hyperthyroidism.

    PubMed

    Hassan, Wafaa A; Rahman, Taghride Abdel; Aly, Mona S; Shahat, Asmaa S

    2013-08-01

    The present study was conducted to investigate the effect of experimentally-induced hyperthyroidism on dopamine (DA), norepinephrine (NE) and serotonin (5-HT) levels in different brain regions as well as in blood plasma, cardiac muscle and adrenal gland of young and adult male albino rats (60 rats of each age). Hyperthyroidism was induced by daily s.c. injection of L-thyroxine (L-T4, 500 μg/kg body wt.) for 21 consecutive days. Induction of hyperthyroidism caused a significant elevation in DA and 5-HT levels in most of the tissues studied of both young and adult animals after 7, 14, and 21 days. NE content significantly decreased after 21 days in most of the brain regions examined and after 14 and 21 days in blood plasma of young rats following hyperthyroidism. In adult rats, NE content decreased after 14 and 21 days in cardiac muscle and after 21 days only in adrenal gland. It may be suggested that the changes in monoamines level induced by hyperthyroidism may be due to disturbance in the synthesis, turnover and release of these amines through the neurons impairment or may attributed to an alteration pattern of their synthesis and/or degradative enzymes or changes in the sensitivity of their receptors. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  19. The Importance of Brain Banks for Molecular Neuropathological Research: The New South Wales Tissue Resource Centre Experience

    PubMed Central

    Dedova, Irina; Harding, Antony; Sheedy, Donna; Garrick, Therese; Sundqvist, Nina; Hunt, Clare; Gillies, Juliette; Harper, Clive G.

    2009-01-01

    New developments in molecular neuropathology have evoked increased demands for postmortem human brain tissue. The New South Wales Tissue Resource Centre (TRC) at The University of Sydney has grown from a small tissue collection into one of the leading international brain banking facilities, which operates with best practice and quality control protocols. The focus of this tissue collection is on schizophrenia and allied disorders, alcohol use disorders and controls. This review highlights changes in TRC operational procedures dictated by modern neuroscience, and provides examples of applications of modern molecular techniques to study the neuropathogenesis of many different brain disorders. PMID:19333451

  20. Different modes of herpes simplex virus type 1 spread in brain and skin tissues.

    PubMed

    Tsalenchuck, Yael; Tzur, Tomer; Steiner, Israel; Panet, Amos

    2014-02-01

    Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.

  1. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain.

    PubMed

    Andriani, Grasiella A; Vijg, Jan; Montagna, Cristina

    2017-01-01

    Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS. Copyright © 2016. Published by Elsevier B.V.

  2. A novel approach to segmentation and measurement of medical image using level set methods.

    PubMed

    Chen, Yao-Tien

    2017-06-01

    The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    NASA Astrophysics Data System (ADS)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  4. Paraoxonase 2 (PON2) in the mouse central nervous system: A neuroprotective role?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Gennaro; Cole, Toby B.; Dept. of Medicine

    2011-11-15

    The aims of this study were to characterize the expression of paraoxonase 2 (PON2) in mouse brain and to assess its antioxidant properties. PON2 levels were highest in the lung, intestine, heart and liver, and lower in the brain; in all tissues, PON2 expression was higher in female than in male mice. PON2 knockout [PON2{sup -/-}] mice did not express any PON2, as expected. In the brain, the highest levels of PON2 were found in the substantia nigra, the nucleus accumbens and the striatum, with lower levels in the cerebral cortex, hippocampus, cerebellum and brainstem. A similar regional distribution ofmore » PON2 activity (measured by dihydrocoumarin hydrolysis) was also found. PON3 was not detected in any brain area, while PON1 was expressed at very low levels, and did not show any regional difference. PON2 levels were higher in astrocytes than in neurons isolated from all brain regions, and were highest in cells from the striatum. PON2 activity and mRNA levels followed a similar pattern. Brain PON2 levels were highest around birth, and gradually declined. Subcellular distribution experiments indicated that PON2 is primarily expressed in microsomes and in mitochondria. The toxicity in neurons and astrocytes of agents known to cause oxidative stress (DMNQ and H{sub 2}O{sub 2}) was higher in cells from PON2{sup -/-} mice than in the same cells from wild-type mice, despite similar glutathione levels. These results indicate that PON2 is expressed in the brain, and that higher levels are found in dopaminergic regions such as the striatum, suggesting that this enzyme may provide protection against oxidative stress-mediated neurotoxicity.« less

  5. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases.

    PubMed

    Seidel, K; Vinet, J; Dunnen, W F A den; Brunt, E R; Meister, M; Boncoraglio, A; Zijlstra, M P; Boddeke, H W G M; Rüb, U; Kampinga, H H; Carra, S

    2012-02-01

    HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis. © 2011 The Authors. Neuropathology and Applied Neurobiology © 2011 British Neuropathological Society.

  6. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues.

    PubMed

    Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia

    2013-01-01

    DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.

  7. Characterizing Genes with Distinct Methylation Patterns in the Context of Protein-Protein Interaction Network: Application to Human Brain Tissues

    PubMed Central

    Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia

    2013-01-01

    Background DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. Results In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. Conclusions We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms. PMID:23776563

  8. Prolonged dry apnoea: effects on brain activity and physiological functions in breath-hold divers and non-divers.

    PubMed

    Ratmanova, Patricia; Semenyuk, Roxana; Popov, Daniil; Kuznetsov, Sergey; Zelenkova, Irina; Napalkov, Dmitry; Vinogradova, Olga

    2016-07-01

    The aim of the study was to investigate the effects of voluntary breath-holding on brain activity and physiological functions. We hypothesised that prolonged apnoea would trigger cerebral hypoxia, resulting in a decrease of brain performance; and the apnoea's effects would be more pronounced in breath-hold divers. Trained breath-hold divers and non-divers performed maximal dry breath-holdings. Lung volume, alveolar partial pressures of O2 and CO2, attention and anxiety levels were estimated. Heart rate, blood pressure, arterial blood oxygenation, brain tissue oxygenation, EEG, and DC potential were monitored continuously during breath-holding. There were a few significant changes in electrical brain activity caused by prolonged apnoea. Brain tissue oxygenation index and DC potential were relatively stable up to the end of the apnoea in breath-hold divers and non-divers. We also did not observe any decrease of attention level or speed of processing immediately after breath-holding. Interestingly, trained breath-hold divers had some peculiarities in EEG activity at resting state (before any breath-holding): non-spindled, sharpened alpha rhythm; slowed-down alpha with the frequency nearer to the theta band; and untypical spatial pattern of alpha activity. Our findings contradicted the primary hypothesis. Apnoea up to 5 min does not lead to notable cerebral hypoxia or a decrease of brain performance in either breath-hold divers or non-divers. It seems to be the result of the compensatory mechanisms similar to the diving response aimed at centralising blood circulation and reducing peripheral O2 uptake. Adaptive changes during apnoea are much more prominent in trained breath-hold divers.

  9. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration.

    PubMed

    Singh, Sandeep; Singh, Abhishek Kumar; Garg, Geetika; Rizvi, Syed Ibrahim

    2018-01-15

    In the present study, attempts have been made to evaluate the potential role of fisetin, a caloric restriction mimetic (CRM), for neuroprotection in D-galactose (D-gal) induced accelerated and natural aging models of rat. Fisetin was supplemented (15mg/kg b.w., orally) to young, D-gal induced aged (D-gal 500mg/kg b.w subcutaneously) and naturally aged rats for 6weeks. Standard protocols were employed to measure pro-oxidants, antioxidants and mitochondrial membrane potential in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuronal, aging as well as inflammatory marker genes. We have also evaluated apoptotic cell death and synaptosomal membrane-bound ion transporter activities in brain tissues. Our data demonstrated that fisetin significantly decreased the level of pro-oxidants and increased the level of antioxidants. Furthermore, fisetin also ameliorated mitochondrial membrane depolarization, apoptotic cell death and impairments in the activities of synaptosomal membrane-bound ion transporters in aging rat brain. RT-PCR data revealed that fisetin up-regulated the expression of autophagy genes (Atg-3 and Beclin-1), sirtuin-1 and neuronal markers (NSE and Ngb), and down-regulated the expression of inflammatory (IL-1β and TNF-α) and Sirt-2 genes respectively in aging brain. The present study suggests that fisetin supplementation may provide neuroprotection against aging-induced oxidative stress, apoptotic cell death, neuro-inflammation, and neurodegeneration in rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Male sexual behavior and catecholamine levels in the medial preoptic area and arcuate nucleus in middle-aged rats.

    PubMed

    Chen, Joyce C; Tsai, Houng-Wei; Yeh, Kuei-Ying; Tai, Mei-Yun; Tsai, Yuan-Feen

    2007-12-12

    The correlation between male sexual behavior and catecholamine levels in the medial preoptic area (MPOA) and arcuate nucleus (ARN) was studied in middle-aged rats. Male rats (18-19 months) were assigned to three groups: (1) Group MIE, consisting of rats showing mounts, intromissions, and ejaculations; (2) Group MI, consisting of rats showing mounts and intromissions, but no ejaculation; and (3) Group NC, consisting of non-copulators showing no sexual behavior. Young adult rats (4-5 months) displaying complete copulatory behavior were used as the control group. Dopamine (DA) and norepinephrine (NE) tissue levels in the MPOA and ARN were measured by high pressure liquid chromatography with electrochemical detection. There were no differences between MIE rats and young controls in DA or NE tissue levels in these two brain areas. Furthermore, no differences were found between the MI and NC groups in DA or NE tissue levels in either the MPOA or ARN. DA tissue levels in the MPOA and ARN in the MI and NC groups were significantly lower than those in the MIE group. NE tissue levels in the MPOA of the NC group were significantly lower than those in the MIE group, but no differences in NE tissue levels in the ARN were seen between the four groups. These results suggest that, in male rats, complete male sexual performance is related to tissue levels of DA, but not of NE, in the MPOA and/or ARN. Furthermore, ejaculatory behavior might be associated with critical DA tissue levels in the MPOA and/or ARN in middle-aged rats.

  11. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body–brain interaction

    PubMed Central

    Bergersen, Linda Hildegard

    2015-01-01

    Lactate acts as a ‘buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a ‘volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. Immediately after brain activation, the rate of glycolysis exceeds oxidation, leading to net production of lactate. At physical rest, there is a net efflux of lactate from the brain into the blood stream. But when blood lactate levels rise, such as in physical exercise, there is net influx of lactate from blood to brain, where the lactate is used for energy production and myelin formation. Lactate binds to the lactate receptor GPR81 aka hydroxycarboxylic acid receptor (HCAR1) on brain cells and cerebral blood vessels, and regulates the levels of cAMP. The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise. PMID:25425080

  12. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction.

    PubMed

    Bergersen, Linda Hildegard

    2015-02-01

    Lactate acts as a 'buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a 'volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. Immediately after brain activation, the rate of glycolysis exceeds oxidation, leading to net production of lactate. At physical rest, there is a net efflux of lactate from the brain into the blood stream. But when blood lactate levels rise, such as in physical exercise, there is net influx of lactate from blood to brain, where the lactate is used for energy production and myelin formation. Lactate binds to the lactate receptor GPR81 aka hydroxycarboxylic acid receptor (HCAR1) on brain cells and cerebral blood vessels, and regulates the levels of cAMP. The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise.

  13. Comparison of the brain development trajectory between Chinese and U.S. children and adolescents

    PubMed Central

    Xie, Wanze; Richards, John E.; Lei, Du; Lee, Kang; Gong, Qiyong

    2015-01-01

    This current study investigated brain development of Chinese and American children and adolescents from 8 to 16 years of age using structural magnetic resonance imaging (MRI) techniques. Analyses comparing Chinese and U.S. children brain/head MR images were performed to explore similarities and differences in the trajectory of brain development between these two groups. Our results revealed regional and age differences in both brain/head morphological and tissue level development between Chinese and U.S. children. Chinese children's brains and heads were shorter, wider, and taller than those of U.S. children. There were significant differences in the gray matter (GM) and white matter (WM) intensity between the two nationalities. Development trajectories for cerebral volume, GM, and several key brain structures were also distinct between these two populations. PMID:25698941

  14. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  15. Sex-specific effects of cytotoxic chemotherapy agents cyclophospha-mide and mitomycin C on gene expression, oxidative DNA damage, and epigenetic alterations in the prefrontal cortex and hippocampus – an aging connection

    PubMed Central

    Kovalchuk, Anna; Rodriguez-Juarez, Rocio; Ilnytskyy, Yaroslav; Byeon, Boseon; Shpyleva, Svitlana; Melnyk, Stepan; Pogribny, Igor; Kolb, Bryan; Kovalchuk, Olga

    2016-01-01

    Recent research shows that chemotherapy agents can be more toxic to healthy brain cells than to the target cancer cells. They cause a range of side effects, including memory loss and cognitive dysfunction that can persist long after the completion of treatment. This condition is known as chemo brain. The molecular and cellular mechanisms of chemo brain remain obscure. Here, we analyzed the effects of two cytotoxic chemotherapy drugs—cyclophosphamide (CPP) and mitomycin C (MMC) - on transcriptomic and epigenetic changes in the murine prefrontal cortex (PFC) and hippocampal regions. We for the first time showed that CPP and MMC treatments led to profound sex- and brain region-specific alterations in gene expression profiles. Gene expression changes were most prominent in the PFC tissues of female mice 3 weeks after MMC treatment, and the gene expression response was much greater for MCC than CPP exposure. MMC exposure resulted in oxidative DNA damage, evidenced by accumulation of 8-oxo-2′-deoxyguanosine (8-oxodG) and a decrease in the level of 8-oxodG repair protein OGG1 in the PFC of female animals 3 weeks after treatment. MMC treatment decreased global DNA methylation and increased DNA hydroxymethylation in the PFC tissues of female mice. The majority of the changes induced by chemotherapy in the PFC tissues of female mice resembled those that occur during the brain's aging processes. Therefore, our study suggests a link between chemotherapy-induced chemo brain and brain aging, and provides an important roadmap for future analysis. PMID:27032448

  16. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  17. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies

    PubMed Central

    Badachhape, Andrew A.; Okamoto, Ruth J.; Durham, Ramona S.; Efron, Brent D.; Nadell, Sam J.; Johnson, Curtis L.; Bayly, Philip V.

    2017-01-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull–brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin “phantom,” displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull–brain interface will be valuable in the parameterization and validation of computer models of TBI. PMID:28267188

  18. The Relationship of Three-Dimensional Human Skull Motion to Brain Tissue Deformation in Magnetic Resonance Elastography Studies.

    PubMed

    Badachhape, Andrew A; Okamoto, Ruth J; Durham, Ramona S; Efron, Brent D; Nadell, Sam J; Johnson, Curtis L; Bayly, Philip V

    2017-05-01

    In traumatic brain injury (TBI), membranes such as the dura mater, arachnoid mater, and pia mater play a vital role in transmitting motion from the skull to brain tissue. Magnetic resonance elastography (MRE) is an imaging technique developed for noninvasive estimation of soft tissue material parameters. In MRE, dynamic deformation of brain tissue is induced by skull vibrations during magnetic resonance imaging (MRI); however, skull motion and its mode of transmission to the brain remain largely uncharacterized. In this study, displacements of points in the skull, reconstructed using data from an array of MRI-safe accelerometers, were compared to displacements of neighboring material points in brain tissue, estimated from MRE measurements. Comparison of the relative amplitudes, directions, and temporal phases of harmonic motion in the skulls and brains of six human subjects shows that the skull-brain interface significantly attenuates and delays transmission of motion from skull to brain. In contrast, in a cylindrical gelatin "phantom," displacements of the rigid case (reconstructed from accelerometer data) were transmitted to the gelatin inside (estimated from MRE data) with little attenuation or phase lag. This quantitative characterization of the skull-brain interface will be valuable in the parameterization and validation of computer models of TBI.

  19. Automatic CT Brain Image Segmentation Using Two Level Multiresolution Mixture Model of EM

    NASA Astrophysics Data System (ADS)

    Jiji, G. Wiselin; Dehmeshki, Jamshid

    2014-04-01

    Tissue classification in computed tomography (CT) brain images is an important issue in the analysis of several brain dementias. A combination of different approaches for the segmentation of brain images is presented in this paper. A multi resolution algorithm is proposed along with scaled versions using Gaussian filter and wavelet analysis that extends expectation maximization (EM) algorithm. It is found that it is less sensitive to noise and got more accurate image segmentation than traditional EM. Moreover the algorithm has been applied on 20 sets of CT of the human brain and compared with other works. The segmentation results show the advantages of the proposed work have achieved more promising results and the results have been tested with Doctors.

  20. High-sensitivity terahertz imaging of traumatic brain injury in a rat model

    NASA Astrophysics Data System (ADS)

    Zhao, Hengli; Wang, Yuye; Chen, Linyu; Shi, Jia; Ma, Kang; Tang, Longhuang; Xu, Degang; Yao, Jianquan; Feng, Hua; Chen, Tunan

    2018-03-01

    We demonstrated that different degrees of experimental traumatic brain injury (TBI) can be differentiated clearly in fresh slices of rat brain tissues using transmission-type terahertz (THz) imaging system. The high absorption region in THz images corresponded well with the injured area in visible images and magnetic resonance imaging results. The THz image and absorption characteristics of dehydrated paraffin-embedded brain slices and the hematoxylin and eosin (H&E)-stained microscopic images were investigated to account for the intrinsic differences in the THz images for the brain tissues suffered from different degrees of TBI and normal tissue aside from water. The THz absorption coefficients of rat brain tissues showed an increase in the aggravation of brain damage, particularly in the high-frequency range, whereas the cell density decreased as the order of mild, moderate, and severe TBI tissues compared with the normal tissue. Our results indicated that the different degrees of TBI were distinguishable owing to the different water contents and probable hematoma components distribution rather than intrinsic cell intensity. These promising results suggest that THz imaging has great potential as an alternative method for the fast diagnosis of TBI.

  1. Substance P receptors: localization by light microscopic autoradiography in rat brain using [3H]SP as the radioligand.

    PubMed

    Mantyh, P W; Hunt, S P; Maggio, J E

    1984-07-30

    Substance P (SP) is a putative neurotransmitter in both the peripheral and central nervous systems. In the present report we have used a modification of the Young and Kuhar technique to investigate some of the SP receptors binding properties and the distribution of SP receptors in rat brain. Tritiated SP [( 3H]SP) absorbed extensively to glass but this adsorbtion was greatly reduced by preincubating the slide-mounted tissue sections in a solution containing the cationic polymer polyethylenimine. [3H]SP was found to bind to rat tissue in a saturable fashion with a Bmax of 14.7 fmol/mg tissue wet weight and a Kd of 1.1 nM. The rank order of potencies for displacing [3H]SP binding from rat tissue sections was SP greater than SP sulphoxide greater than DiMeC7 greater than Eledoisin greater than SP(5-11) greater than SP(COOH) greater than SP(1-9) amide. Using autoradiography coupled with LKB tritium-sensitive Ultrofilm or the dry emulsion-coated coverslip technique the distribution of [3H]SP binding sites was found to be very dense within olfactory bulb, amygdalo-hippocampal area and the nucleus of the solitary tract. Heavy concentrations of receptors were observed in the septum, diagonal band of Broca, striatum subiculum, hypothalamus, locus coeruleus, parabrachial nucleus and lobule 9 and 10 of the cerebellum. Moderate to low concentrations of receptors were observed in the cerebral cortex, globus pallidus, raphe nuclei and the trigeminal nucleus. Very low densities were observed in most aspects of the dorsal thalamus, substantia nigra and cerebellum (other than lobule 9 and 10). Comparisons of the present data with SP peptide levels indicate that in some areas of the brain there is a rough correlation between peptide and receptor levels. However, in other brain areas (olfactory bulb, globus pallidus and substantia nigra) there is little obvious correlation between the two.

  2. Perinatal lead (Pb) exposure results in sex and tissue-dependent adult DNA methylation alterations in murine IAP transposons.

    PubMed

    Montrose, L; Faulk, C; Francis, J; Dolinoy, D C

    2017-10-01

    Epidemiological and animal data suggest that adult chronic disease is influenced by early-life exposure-induced changes to the epigenome. Previously, we observed that perinatal lead (Pb) exposure results in persistent murine metabolic- and activity-related effects. Using phylogenetic and DNA methylation analysis, we have also identified novel intracisternal A particle (IAP) retrotransposons exhibiting regions of variable methylation as candidate loci for environmental effects on the epigenome. Here, we now evaluate brain and kidney DNA methylation profiles of four representative IAPs in adult mice exposed to human physiologically relevant levels of Pb two weeks prior to mating through lactation. When IAPs across the genome were evaluated globally, average (sd) methylation levels were 92.84% (3.74) differing by tissue (P < 0.001), but not sex or dose. By contrast, the four individual IAPs displayed tissue-specific Pb and sex effects. Medium Pb-exposed mice had 3.86% less brain methylation at IAP 110 (P < 0.01), while high Pb-exposed mice had 2.83% less brain methylation at IAP 236 (P = 0.01) and 1.77% less at IAP 506 (P = 0.05). Individual IAP DNA methylation differed by sex for IAP 110 in the brain and kidney, IAP 236 in the kidney, and IAP 1259 in the kidney. Using Tomtom, we identified three binding motifs that matched to each of our novel IAPs impacted by Pb, one of which (HMGA2) has been linked to metabolic-related conditions in both mice and humans. Thus, these recently identified IAPs display tissue-specific environmental lability as well as sex-specific differences supporting an epigenetic link between early exposure to Pb and later-in-life health outcomes. Environ. Mol. Mutagen. 58:540-550, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Post-treatment Vascular Leakage and Inflammatory Responses around Brain Cysts in Porcine Neurocysticercosis

    PubMed Central

    Mahanty, Siddhartha; Orrego, Miguel Angel; Mayta, Holger; Marzal, Miguel; Cangalaya, Carla; Paredes, Adriana; Gonzales-Gustavson, Eloy; Arroyo, Gianfranco; Gonzalez, Armando E.; Guerra-Giraldez, Cristina; García, Hector H.; Nash, Theodore E.

    2015-01-01

    Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB) dysfunction, as determined by Evans blue (EB) extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue) and non stained (clear) cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα) were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3) was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model can be used to investigate mechanisms involved in host damaging inflammatory responses and agents or modalities that may control damaging post treatment inflammation. PMID:25774662

  4. Intermittent fasting attenuates inflammasome activity in ischemic stroke.

    PubMed

    Fann, David Yang-Wei; Santro, Tomislav; Manzanero, Silvia; Widiapradja, Alexander; Cheng, Yi-Lin; Lee, Seung-Yoon; Chunduri, Prasad; Jo, Dong-Gyu; Stranahan, Alexis M; Mattson, Mark P; Arumugam, Thiruma V

    2014-07-01

    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16h of food deprivation daily) for 4months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Effects of high-pressure oxygen therapy on brain tissue water content and AQP4 expression in rabbits with cerebral hemorrhage.

    PubMed

    Wu, Jing; Chen, Jiong; Guo, Hua; Peng, Fang

    2014-12-01

    To investigate the effects of different atmosphere absolutes (ATA) of high-pressure oxygen (HPO) on brain tissue water content and Aquaporin-4 (AQP4) expression in rabbits with cerebral hemorrhage. 180 New Zealand white rabbits were selected and randomly divided into normal group (n = 30), control group (n = 30) and cerebral hemorrhage group (n = 120), and cerebral hemorrhage group was divided into group A, B, C and D with 30 rabbits in each group. The groups received 1.0, 1.8, 2.0 and 2.2 ATA of HPO treatments, respectively. Ten rabbits in each group were killed at first, third and fifth day to detect the brain tissue water content and change of AQP4 expression. In cerebral hemorrhage group, brain tissue water content and AQP4 expression after model establishment were first increased, then decreased and reached the maximum on third day (p < 0.05). Brain tissue water content and AQP4 expression in control group and cerebral hemorrhage group were significantly higher than normal group at different time points (p < 0.05). In contrast, brain tissue water content and AQP4 expression in group C were significantly lower than in group A, group B, group D and control group (p < 0.05). In control group, AQP4-positive cells significantly increased after model establishment, which reached maximum on third day, and positive cells in group C were significantly less than in group A, group B and group D. We also found that AQP4 expression were positively correlated with brain tissue water content (r = 0.719, p < 0.05) demonstrated by significantly increased AQP4 expression along with increased brain tissue water content. In conclusion, HPO can decrease AQP4 expression in brain tissue of rabbits with cerebral hemorrhage to suppress the progression of brain edema and promote repairing of injured tissue. 2.0 ATA HPO exerts best effects, which provides an experimental basis for ATA selection of HPO in treating cerebral hemorrhage.

  6. [Changes of prostaglandin D2,carboxypeptidase A3 and platelet activating factor in guinea pig in anaphylactic shock].

    PubMed

    Yang, Kai; Guo, Xiang-jie; Yan, Xue-bin; Gao, Cai-rong

    2012-06-01

    To detect the changes of leukotriene E4(LTE4), prostaglandin D2(PGD2), carboxypeptidase A3(CPA3) and platelet activating factor (PAF) in guinea pigs died from anaphylactic shock. Guinea pigs were used for establishing anaphylactic shock models. The levels of LTE4, PGD2 and CPA3, and PAF were detected in urine, plasma, and brain tissues with ELISA kit, respectively. The significant biomarkers were selected comparing with control group. The changes of PGD2, CPA3 and PAF in the guinea pigs at time zero, 12 and 24 hours after death were observed and compared respectively. The effect of platelet activating factor acetylhydrolase (PAF-AH) to PAF in guinea pig brain was examined and compared. There were no statistically differences of LTE4 levels in urine observed between experimental group and control group. The levels of CPA3, PGD2 and PAF in the experimental group were significantly higher than that in the control group at 0 h. The levels of PAF at 12 and 24 hours after anaphylactic shock were significantly higher than that in the control group. The levels of PAF decreased significantly after pretreatment with PAF-AH. LTE4 in urine cannot be selected as a biomarker to determine the anaphylactic shock. PGD2 and CPA3 in plasma, and PAF in brain tissue may be used as biomarkers to determine the anaphylactic shock. PAF-AH may be potentially useful for clinical treatment of anaphylactic shock.

  7. Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala.

    PubMed

    Ihara, Fumiaki; Nishimura, Maki; Muroi, Yoshikage; Mahmoud, Motamed Elsayed; Yokoyama, Naoaki; Nagamune, Kisaburo; Nishikawa, Yoshifumi

    2016-10-01

    Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats.

    PubMed

    Anbarasi, K; Vani, G; Balakrishna, K; Devi, C S Shyamala

    2006-02-16

    Free radicals mediated oxidative stress has been implicated in the pathogenesis of smoking-related diseases and antioxidant nutrients are reported to prevent the oxidative damage induced by smoking. Therefore, the present study was conducted to evaluate the antioxidant role of bacoside A (triterpenoid saponin isolated from Bacopa monniera) against chronic cigarette smoking induced oxidative damage in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with bacoside A (10 mg/kg b.w./day, p.o.). Antioxidant status of the brain was assessed from the levels of reduced glutathione, vitamin C, vitamin E, and vitamin A and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. The levels of copper, iron, zinc and selenium in brain and serum ceruloplasmin activity were also measured. Oxidative stress was evident from the diminished levels of both enzymatic and non-enzymatic antioxidants. Alterations in the levels of trace elements with accumulation of copper and iron, and depletion of zinc and selenium were also observed. Bacoside A administration improved the antioxidant status and maintained the levels of trace elements. These results suggest that chronic cigarette smoke exposure enhances oxidative stress, thereby disturbing the tissue defense system and bacoside A protects the brain from the oxidative damage through its antioxidant potential.

  9. Long-term exposure of mice to nucleoside analogues disrupts mitochondrial DNA maintenance in cortical neurons.

    PubMed

    Zhang, Yulin; Song, Fengli; Gao, Ziyun; Ding, Wei; Qiao, Luxin; Yang, Sufang; Chen, Xi; Jin, Ronghua; Chen, Dexi

    2014-01-01

    Nucleoside analogue reverse transcriptase inhibitor (NRTI), an integral component of highly active antiretroviral therapy (HAART), was widely used to inhibit HIV replication. Long-term exposure to NRTIs can result in mitochondrial toxicity which manifests as lipoatrophy, lactic acidosis, cardiomyopathy and myopathy, as well as polyneuropathy. But the cerebral neurotoxicity of NRTIs is still not well known partly due to the restriction of blood-brain barrier (BBB) and the complex microenvironment of the central nervous system (CNS). In this study, the Balb/c mice were administered 50 mg/kg stavudine (D4T), 100 mg/kg zidovudine (AZT), 50 mg/kg lamivudine (3TC) or 50 mg/kg didanosine (DDI) per day by intraperitoneal injection, five days per week for one or four months, and primary cortical neurons were cultured and exposed to 25 µM D4T, 50 µM AZT, 25 µM 3TC or 25 µM DDI for seven days. Then, single neuron was captured from mouse cerebral cortical tissues by laser capture microdissection. Mitochondrial DNA (mtDNA) levels of the primary cultured cortical neurons, and captured neurons or glial cells, and the tissues of brains and livers and muscles were analyzed by relative quantitative real-time PCR. The data showed that mtDNA did not lose in both NRTIs exposed cultured neurons and one month NRTIs treated mouse brains. In four months NRTIs treated mice, brain mtDNA levels remained unchanged even if the mtDNA levels of liver (except for 3TC) and muscle significantly decreased. However, mtDNA deletion was significantly higher in the captured neurons from mtDNA unchanged brains. These results suggest that long-term exposure to NRTIs can result in mtDNA deletion in mouse cortical neurons.

  10. Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan.

    PubMed

    Prianti, Antonio Carlos Guimarães; Silva, José Antonio; Dos Santos, Regiane Feliciano; Rosseti, Isabela Bueno; Costa, Maricilia Silva

    2014-07-01

    In the classical model of edema formation and hyperalgesia induced by carrageenan administration in rat paw, the increase in prostaglandin E2 (PGE2) production in the central nervous system (CNS) contributes to the severity of the inflammatory and pain responses. Prostaglandins are generated by the cyclooxygenase (COX). There are two distinct COX isoforms, COX-1 and COX-2. In inflammatory tissues, COX-2 is greatly expressed producing proinflammatory prostaglandins (PGs). Low-level laser therapy (LLLT) has been used in the treatment of inflammatory pathologies, reducing both pain and acute inflammatory process. Herein we studied the effect of LLLT on both COX-2 and COX-1 messenger RNA (mRNA) expression in either subplantar or brain tissues taken from rats treated with carrageenan. The experiment was designed as follows: A1 (saline), A2 (carrageenan-0.5 mg/paw), A3 (carrageenan-0.5 mg/paw + LLLT), A4 (carrageenan-1.0 mg/paw), and A5 (carrageenan-1.0 mg/paw + LLLT). Animals from the A3 and A5 groups were irradiated at 1 h after carrageenan administration, using a diode laser with an output power of 30 mW and a wavelength of 660 nm. The laser beam covered an area of 0.785 cm(2), resulting in an energy dosage of 7.5 J/cm(2). Both COX-2 and COX-1 mRNAs were measured by RT-PCR. Six hours after carrageenan administration, COX-2 mRNA expression was significantly increased both in the subplantar (2.2-4.1-fold) and total brain (8.65-13.79-fold) tissues. COX-1 mRNA expression was not changed. LLLT (7.5 J/cm(2)) reduced significantly the COX-2 mRNA expression both in the subplantar (~2.5-fold) and brain (4.84-9.67-fold) tissues. The results show that LLLT is able to reduce COX-2 mRNA expression. It is possible that the mechanism of LLLT decreasing hyperalgesia is also related to its effect in reducing the COX-2 expression in the CNS.

  11. Monitoring brain temperature by time-resolved near-infrared spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Bakhsheshi, Mohammad Fazel; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2014-05-01

    Mild hypothermia (HT) is an effective neuroprotective strategy for a variety of acute brain injuries. However, the wide clinical adaptation of HT has been hampered by the lack of a reliable noninvasive method for measuring brain temperature, since core measurements have been shown to not always reflect brain temperature. The goal of this work was to develop a noninvasive optical technique for measuring brain temperature that exploits both the temperature dependency of water absorption and the high concentration of water in brain (80%-90%). Specifically, we demonstrate the potential of time-resolved near-infrared spectroscopy (TR-NIRS) to measure temperature in tissue-mimicking phantoms (in vitro) and deep brain tissue (in vivo) during heating and cooling, respectively. For deep brain tissue temperature monitoring, experiments were conducted on newborn piglets wherein hypothermia was induced by gradual whole body cooling. Brain temperature was concomitantly measured by TR-NIRS and a thermocouple probe implanted in the brain. Our proposed TR-NIRS method was able to measure the temperature of tissue-mimicking phantoms and brain tissues with a correlation of 0.82 and 0.66 to temperature measured with a thermometer, respectively. The mean difference between the TR-NIRS and thermometer measurements was 0.15°C±1.1°C for the in vitro experiments and 0.5°C±1.6°C for the in vivo measurements.

  12. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain.

    PubMed

    Taoka, Toshiaki; Naganawa, Shinji

    2018-04-10

    After Kanda's first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the 'glymphatic system', which is a coined word that combines 'gl' for glia cell and 'lymphatic' system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue.

  13. Gadolinium-based Contrast Media, Cerebrospinal Fluid and the Glymphatic System: Possible Mechanisms for the Deposition of Gadolinium in the Brain

    PubMed Central

    Taoka, Toshiaki; Naganawa, Shinji

    2018-01-01

    After Kanda’s first report in 2014 on gadolinium (Gd) deposition in brain tissue, a considerable number of studies have investigated the explanation for the observation. Gd deposition in brain tissue after repeated administration of gadolinium-based contrast medium (GBCM) has been histologically proven, and chelate stability has been shown to affect the deposition. However, the mechanism for this deposition has not been fully elucidated. Recently, a hypothesis was introduced that involves the ‘glymphatic system’, which is a coined word that combines ‘gl’ for glia cell and ‘lymphatic’ system. According to this hypothesis, the perivascular space functions as a conduit for cerebrospinal fluid to flow into the brain parenchyma. The perivascular space around the arteries allows cerebrospinal fluid to enter the interstitial space of the brain tissue through water channels controlled by aquaporin 4. The cerebrospinal fluid entering the interstitial space clears waste proteins from the tissue. It then flows into the perivascular space around the vein and is discharged outside the brain. In addition to the hypothesis regarding the glymphatic system, some reports have described that after GBCM administration, some of the GBCM distributes through systemic blood circulation and remains in other compartments including the cerebrospinal fluid. It is thought that the GBCM distributed into the cerebrospinal fluid cavity via the glymphatic system may remain in brain tissue for a longer duration compared to the GBCM in systemic circulation. Glymphatic system may of course act as a clearance system for GBCM from brain tissue. Based on these findings, the mechanism for Gd deposition in the brain will be discussed in this review. The authors speculate that the glymphatic system may be the major contributory factor to the deposition and clearance of gadolinium in brain tissue. PMID:29367513

  14. Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: Occurrence and fate in water and sediment and selective uptake in fish neural tissue

    USGS Publications Warehouse

    Schultz, M.M.; Furlong, E.T.; Kolpin, D.W.; Werner, S.L.; Schoenfuss, H.L.; Barber, L.B.; Blazer, V.S.; Norris, D.O.; Vajda, A.M.

    2010-01-01

    Antidepressant pharmaceuticals are widely prescribed in the United States; release of municipal wastewater effluent is a primary route introducing them to aquatic environments, where little is known about their distribution and fate. Water, bed sediment, and brain tissue from native white suckers (Catostomus commersoni)were collected upstream and atpoints progressively downstream from outfalls discharging to two effluentimpacted streams, Boulder Creek (Colorado) and Fourmile Creek (Iowa). A liquid chromatography/tandem mass spectrometry method was used to quantify antidepressants, including fluoxetine, norfluoxetine (degradate), sertraline, norsertraline (degradate), paroxetine, Citalopram, fluvoxamine, duloxetine, venlafaxine, and bupropion in all three sample matrices. Antidepressants were not present above the limit of quantitation in water samples upstream from the effluent outfalls but were present at points downstream at ng/L concentrations, even at the farthest downstream sampling site 8.4 km downstream from the outfall. The antidepressants with the highest measured concentrations in both streams were venlafaxine, bupropion, and Citalopram and typically were observed at concentrations of at least an order of magnitude greater than the more commonly investigated antidepressants fluoxetine and sertraline. Concentrations of antidepressants in bed sediment were measured at ng/g levels; venlafaxine and fluoxetine were the predominant chemicals observed. Fluoxetine, sertraline, and their degradates were the principal antidepressants observed in fish brain tissue, typically at low ng/g concentrations. Aqualitatively different antidepressant profile was observed in brain tissue compared to streamwater samples. This study documents that wastewater effluent can be a point source of antidepressants to stream ecosystems and that the qualitative composition of antidepressants in brain tissue from exposed fish differs substantially from the compositions observed in streamwater and sediment, suggesting selective uptake. ?? 2010 American Chemical Society.

  15. Mathematical modelling of blood-brain barrier failure and edema

    NASA Astrophysics Data System (ADS)

    Waters, Sarah; Lang, Georgina; Vella, Dominic; Goriely, Alain

    2015-11-01

    Injuries such as traumatic brain injury and stroke can result in increased blood-brain barrier permeability. This increase may lead to water accumulation in the brain tissue resulting in vasogenic edema. Although the initial injury may be localised, the resulting edema causes mechanical damage and compression of the vasculature beyond the original injury site. We employ a biphasic mixture model to investigate the consequences of blood-brain barrier permeability changes within a region of brain tissue and the onset of vasogenic edema. We find that such localised changes can indeed result in brain tissue swelling and that the type of damage that results (stress damage or strain damage) depends on the ability of the brain to clear edema fluid.

  16. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer

    PubMed Central

    Davenport, Kristen A.; Hoover, Clare E.; Bian, Jifeng; Telling, Glenn C.; Mathiason, Candace K.; Hoover, Edward A.

    2017-01-01

    The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs. PMID:28880938

  17. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats.

    PubMed

    Amin, Mohamed M; Arbid, Mahmoud S

    2017-02-01

    Even though ellagic acid has previously been valued in many models of cancer, so far its full mechanistic effect as a natural antiapoptotic agent in the prevention of type 2 diabetes complications has not been completely elucidated, which was the goal of this study. We fed albino rats a high-fat fructose diet (HFFD) for 2 months to induce insulin resistance/type 2 diabetes and then treated the rats with ellagic acid (10 mg/kg body weight, orally) and/or repaglinide (0.5 mg/kg body weight, orally) for 2 weeks. At the serum level, ellagic acid challenged the consequences of HFFD, significantly improving the glucose/insulin balance, liver enzymes, lipid profile, inflammatory cytokines, redox level, adipokines, ammonia, and manganese. At the tissue level (liver, pancreas, adipose tissue, and brain), ellagic acid significantly enhanced insulin signaling, autophosphorylation, adiponectin receptors, glucose transporters, inflammatory mediators, and apoptotic markers. Remarkably, combined treatment with both ellagic acid and repaglinide had a more pronounced effect than treatment with either alone. These outcomes give new insight into the promising molecular mechanisms by which ellagic acid modulates numerous factors induced in the progression of diabetes.

  18. Streptozotocin produces oxidative stress, inflammation and decreases BDNF concentrations to induce apoptosis of RIN5F cells and type 2 diabetes mellitus in Wistar rats.

    PubMed

    Bathina, Siresha; Srinivas, Nanduri; Das, Undurti N

    2017-04-29

    Neurodegenerative disorders, such as deficits in learning, memory and cognition and Alzheimer's disease are associated with diabetes mellitus. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor and is known to possess anti-obesity, anti-diabetic actions and is believed to have a role in memory and Alzheimer's disease. To investigate whether STZ can reduce BDNF production by rat insulinoma (RIN5F) cells in vitro and decrease BDNF levels in the pancreas, liver and brain in vivo. Streptozotocin (STZ)-induced cytotoxicity to RIN5F cells in vitro and type 2 DM in Wistar rats was employed in the present study. Cell viability, activities of various anti-oxidants and secretion of BDNF by RIN5F cells in vitro were measured using MTT assay, biochemical methods and ELISA respectively. In STZ-induced type 2 DM rats: plasma glucose, interleukin-6 and tumor necrosis factor-α levels and BDNF protein expression in the pancreas, liver and brain tissues were measured. In addition, neuronal count and morphology in the hippocampus and hypothalamus areas was assessed. STZ-induced suppression of RIN5F cell viability was abrogated by BDNF. STZ suppressed BDNF secretion by RIN5F cells in vitro. STZ-induced type 2 DM rats showed hyperglycemia, enhanced plasma IL-6 and TNF-αlevels and reduced plasma and pancreas, liver and brain tissues (P < 0.001) and increased oxidative stress compared to untreated control. Hypothalamic and hippocampal neuron in STZ-treated animals showed a decrease in the number of neurons and morphological changes suggesting of STZ cytotoxicity. The results of the present study suggest that STZ is not only cytotoxic to pancreatic beta cells but also to hypothalamic and hippocampal neurons by inducing oxidative stress. STZ ability to suppress BDNF production by pancreas, liver and brain tissues suggests that impaired memory, learning, and cognitive dysfunction seen in diabetes mellitus could be due to BDNF deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Regionally Impaired Redox Homeostasis in the Brain of Rats Subjected to Global Perinatal Asphyxia: Sustained Effect up to 14 Postnatal Days.

    PubMed

    Lespay-Rebolledo, Carolyne; Perez-Lobos, Ronald; Tapia-Bustos, Andrea; Vio, Valentina; Morales, Paola; Herrera-Marschitz, Mario

    2018-06-29

    The present report evaluates the effect of global perinatal asphyxia on several parameters of oxidative stress and cell viability in rat brain tissue sampled at an extended neonatal period up to 14 days, a period characterised by intensive neuritogenesis, synaptogenesis, synaptic consolidation, pruning and delayed cell death. Perinatal asphyxia was induced by immersing foetus-containing uterine horns removed by a caesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling caesarean-delivered foetuses were manually resucitated and nurtured by surrogate dams for 1 to 14 postnatal (P) days. Brain samples (mesencephalon, telencephalon and hippocampus) were assayed for glutathione (reduced and oxidated levels; spectrophotometry), tissue reducing capacity (potassium ferricyanide reducing assay, FRAP), catalase (the key enzyme protecting against oxidative stress and reactive oxygen species, Western blots and ELISA) and cleaved caspase-3 (the key executioner of apoptosis, Western blots) levels. It was found that global PA produced a regionally specific and sustained increase in GSSG/GSH ratio, a regionally specific decrease in tissue reducing capacity and a regionally and time specific decrease of catalase activity and increase of cleaved caspase-3 levels. The present study provides evidence for regionally impaired redox homeostasis in the brain of rats subjected to global PA, an effect observed up to P14, mainly affecting mesencephalon and hippocampus, suggesting a sustained oxidative stress after the posthypoxia period. The oxidative stress observed postnatally can in part be associated to a respiratory apneic-like deficit, since there was a statistically significant decrease in respiration frequency in AS compared to CS neonates, also up to P14, together with the signs of a decreased peripheral blood perfusion (pink-blue skin colour in AS, compared to the pink colour observed in all CS neonates). It is proposed that PA implies a long-term metabolic insult, triggered by the length of hypoxia, the resuscitation/reoxigenation manoevres, but also by the developmental stage of the affected brain regions, and the integrity of cardiovascular and respiratory physiological functions, which are fundamental for warrantying a proper development.

  20. Hypoglycemia-Induced Changes in the Electroencephalogram

    PubMed Central

    Blaabjerg, Lykke; Juhl, Claus B.

    2016-01-01

    Hypoglycemia is defined by an abnormally low blood glucose level. The condition develops when rates of glucose entry into the systematic circulation are reduced relative to the glucose uptake by the tissues. A cardinal manifestation of hypoglycemia arises from inadequate supply of glucose to the brain, where glucose is the primary metabolic fuel. The brain is one of the first organs to be affected by hypoglycemia. Shortage of glucose in the brain, or neuroglycopenia, results in a gradual loss of cognitive functions causing slower reaction time, blurred speech, loss of consciousness, seizures, and ultimately death, as the hypoglycemia progresses. The electrical activity in the brain represents the metabolic state of the brain cells and can be measured by electroencephalography (EEG). An association between hypoglycemia and changes in the EEG has been demonstrated, although blood glucose levels alone do not seem to predict neuroglycopenia. This review provides an overview of the current literature regarding changes in the EEG during episodes of low blood glucose. PMID:27464753

Top