Science.gov

Sample records for brain tumor stem-like

  1. Chemo-Predictive Assay for Targeting Cancer Stem-Like Cells in Patients Affected by Brain Tumors

    PubMed Central

    Nande, Rounak; Neto, Walter; Lawrence, Logan; McCallister, Danielle R.; Denvir, James; Kimmey, Gerrit A.; Mogul, Mark; Oakley, Gerard; Denning, Krista L.; Dougherty, Thomas; Valluri, Jagan V.; Claudio, Pier Paolo

    2014-01-01

    Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs) resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID), which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1) and a 5-month female (patient 2), affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC) greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity of CSLCs as

  2. Chemo-predictive assay for targeting cancer stem-like cells in patients affected by brain tumors.

    PubMed

    Mathis, Sarah E; Alberico, Anthony; Nande, Rounak; Neto, Walter; Lawrence, Logan; McCallister, Danielle R; Denvir, James; Kimmey, Gerrit A; Mogul, Mark; Oakley, Gerard; Denning, Krista L; Dougherty, Thomas; Valluri, Jagan V; Claudio, Pier Paolo

    2014-01-01

    Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs) resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID), which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1) and a 5-month female (patient 2), affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC) greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity of CSLCs as

  3. Global expression profile of tumor stem-like cells isolated from MMQ rat prolactinoma cell.

    PubMed

    Su, Zhipeng; Cai, Lin; Lu, Jianglong; Li, Chuzhong; Gui, Songbai; Liu, Chunhui; Wang, Chengde; Li, Qun; Zhuge, Qichuan; Zhang, Yazhuo

    2017-01-01

    Cancer stem cells (CSCs), which have been isolated from various malignancies, were closely correlated with the occurrence, progression, metastasis and recurrence of the malignant cancer. Little is known about the tumor stem-like cells (TSLCs) isolated from benign tumors. Here we want to explore the global expression profile of RNA of tumor stem-like cells isolated from MMQ rat prolactinoma cells. In this study, total RNA was extracted from MMQ cells and MMQ tumor stem-like cells. RNA expression profiles were determined by Agilent Rat 8 × 60 K Microarray. Then we used the qRT-PCR to test the result of Microarray, and found VEGFA had a distinct pattern of expression in MMQ tumor stem-like cells. Then WB and ELISA were used to confirm the VEGFA protein level of tumor sphere cultured from both MMQ cell and human prolactinoma cell. Finally, CCK-8 was used to evaluate the reaction of MMQ tumor stem-like cells to small interfering RNAs intervention and bevacizumab treatment. The results of Microarray showed that 566 known RNA were over-expressed and 532 known RNA were low-expressed in the MMQ tumor stem-like cells. These genes were mainly involved in 15 different signaling pathways. In pathway in cancer and cell cycle, Bcl2, VEGFA, PTEN, Jun, Fos, APC2 were up-regulated and Ccna2, Cdc25a, Mcm3, Mcm6, Ccnb2, Mcm5, Cdk1, Gadd45a, Myc were down-regulated in the MMQ tumor stem-like cells. The expression of VEGFA were high in tumor spheres cultured from both MMQ cell and human prolactinomas. Down-regulation of VEGFA by small interfering RNAs partially decreased cell viability of MMQ tumor stem-like cells in vitro. Bevacizumab partially suppressed the proliferation of MMQ tumor stem-like cells. Our findings characterize the pattern of RNA expression of tumor stem-like cells isolated from MMQ cells. VEGFA may act as a potential therapeutic target for tumor stem-like cells of prolactinomas.

  4. The Impact of the Tumor Microenvironment on the Properties of Glioma Stem-Like Cells.

    PubMed

    Audia, Alessandra; Conroy, Siobhan; Glass, Rainer; Bhat, Krishna P L

    2017-01-01

    Glioblastoma is the most common and highly malignant primary brain tumor, and patients affected with this disease exhibit a uniformly dismal prognosis. Glioma stem-like cells (GSCs) are a subset of cells within the bulk tumor that possess self-renewal and multi-lineage differentiation properties similar to somatic stem cells. These cells also are at the apex of the cellular hierarchy and cause tumor initiation and expansion after chemo-radiation. These traits make them an attractive target for therapeutic development. Because GSCs are dependent on the brain microenvironment for their growth, and because non-tumorigenic cell types in the microenvironment can influence GSC phenotypes and treatment response, a better understanding of these cell types is needed. In this review, we provide a focused overview of the contributions from the microenvironment to GSC homing, maintenance, phenotypic plasticity, and tumor initiation. The interaction of GSCs with the vascular compartment, mesenchymal stem cells, immune system, and normal brain cell types are discussed. Studies that provide mechanistic insight into each of these GSC-microenvironment interactions are warranted in the future.

  5. Molecular Imaging in Tracking Tumor Stem-Like Cells

    PubMed Central

    Xia, Tian; Jiang, Han; Li, Chenrui; Tian, Mei; Zhang, Hong

    2012-01-01

    Cancer remains a major public health problem in many countries. It was found to contain a subset of cancer stem cells (CSCs) that are capable of proliferation and self-renewal, and differentiation into various types of cancer cells. CSCs often display characteristics of chemotherapy resistance and radiotherapy resistance. Numerous putative biomarkers of CSCs are currently identified including CD133, CD44, CD24, ALDH (aldehyde dehydrogenase), and ABCG2. Interestingly, no single marker is exclusively expressed by CSCs. Thus, the various combinations of different biomarkers will be possible to identify CSCs, and considerable work is being done to recognize new ones. In order to demonstrate the mechanisms of resistance and response to therapy and predict the outcome as well as prognosis, the ways to track and identify CSCs will be extremely important. The technologies of molecular imaging will reveal mechanisms of cancer progression and provide visual targets for novel therapeutics. Limited studies were investigated on the detection of various types of CSCs by molecular imaging. Although the tracking of circulating CSCs is still hampered by technological challenges, personalized diagnosis and therapies of cancers are expected to be established based on increased understanding of molecular imaging of cancer stem-like cells biomarkers. PMID:22570529

  6. Growth factors from tumor microenvironment possibly promote the proliferation of glioblastoma-derived stem-like cells in vitro.

    PubMed

    Guo, JingJing; Niu, Rui; Huang, Wenhui; Zhou, Mengliang; Shi, Jixing; Zhang, Luyong; Liao, Hong

    2012-10-01

    Glioblastoma multiform is a lethal brain glial tumor characterized by low survival and high recurrence, partially attributed to the glioblastoma stem cells according to recent researches. Microenvironment or niche in tumor tissue is believed to provide essential support for the aberrant growth of tumor stem cells. In order to explore the effect of growth factors in tumor microenvironment on glioblastoma stem cells behavior, glioblastoma-derived stem-like cells (GDSCs) were isolated from adult human glioblastoma specimen with antibody against surface marker CD133 and were co-cultured with various tumor cells including U87MG cells, unsorted glioblastoma tumor cells, CD133(-) cells and normal rat primary astrocytes. Results suggested that tumor cells could promote GDSCs proliferation while non-tumor cells could not, and several growth factors were exclusively detected in the co-culture system with tumor cells. It was concluded that growth factors derived from tumor microenvironment possibly contributed to the uncontrolled proliferation of GDSCs.

  7. Transcriptional profiling of adult neural stem-like cells from the human brain.

    PubMed

    Sandberg, Cecilie Jonsgar; Vik-Mo, Einar O; Behnan, Jinan; Helseth, Eirik; Langmoen, Iver A

    2014-01-01

    There is a great potential for the development of new cell replacement strategies based on adult human neural stem-like cells. However, little is known about the hierarchy of cells and the unique molecular properties of stem- and progenitor cells of the nervous system. Stem cells from the adult human brain can be propagated and expanded in vitro as free floating neurospheres that are capable of self-renewal and differentiation into all three cell types of the central nervous system. Here we report the first global gene expression study of adult human neural stem-like cells originating from five human subventricular zone biopsies (mean age 42, range 33-60). Compared to adult human brain tissue, we identified 1,189 genes that were significantly up- and down-regulated in adult human neural stem-like cells (1% false discovery rate). We found that adult human neural stem-like cells express stem cell markers and have reduced levels of markers that are typical of the mature cells in the nervous system. We report that the genes being highly expressed in adult human neural stem-like cells are associated with developmental processes and the extracellular region of the cell. The calcium signaling pathway and neuroactive ligand-receptor interactions are enriched among the most differentially regulated genes between adult human neural stem-like cells and adult human brain tissue. We confirmed the expression of 10 of the most up-regulated genes in adult human neural stem-like cells in an additional sample set that included adult human neural stem-like cells (n = 6), foetal human neural stem cells (n = 1) and human brain tissues (n = 12). The NGFR, SLITRK6 and KCNS3 receptors were further investigated by immunofluorescence and shown to be heterogeneously expressed in spheres. These receptors could potentially serve as new markers for the identification and characterisation of neural stem- and progenitor cells or as targets for manipulation of cellular fate.

  8. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells

    PubMed Central

    Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A.; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication. PMID:26270679

  9. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells.

    PubMed

    Zeniou, Maria; Fève, Marie; Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.

  10. Stem-like plasticity and heterogeneity of circulating tumor cells: current status and prospect challenges in liver cancer

    PubMed Central

    Correnti, Margherita; Raggi, Chiara

    2017-01-01

    Poor prognosis and high recurrence remain leading causes of primary liver cancerassociated mortality. The spread of circulating tumor cells (CTCs) in the blood plays a major role in the initiation of metastasis and tumor recurrence after surgery. Nevertheless, only a subset of CTCs can survive, migrate to distant sites and establish secondary tumors. Consistent with cancer stem cell (CSC) hypothesis, stem-like CTCs might represent a potential source for cancer relapse and distant metastasis. Thus, identification of stem-like metastasis-initiating CTC-subset may provide useful clinically prognostic information. This review will emphasize the most relevant findings of CTCs in the context of stem-like biology associated to liver carcinogenesis. In this view, the emerging field of stem-like CTCs may deliver substantial contribution in liver cancer field in order to move to personalized approaches for diagnosis, prognosis and therapy. PMID:27738343

  11. Oncolytic herpes simplex virus kills stem-like tumor-initiating colon cancer cells

    PubMed Central

    Warner, Susanne G; Haddad, Dana; Au, Joyce; Carson, Joshua S; O’Leary, Michael P; Lewis, Christina; Monette, Sebastien; Fong, Yuman

    2016-01-01

    Stem-like tumor-initiating cells (TICs) are implicated in cancer progression and recurrence, and can be identified by sphere-formation and tumorigenicity assays. Oncolytic viruses infect, replicate in, and kill a variety of cancer cells. In this study, we seek proof of principle that TICs are susceptible to viral infection. HCT8 human colon cancer cells were subjected to serum-free culture to generate TIC tumorspheres. Parent cells and TICs were infected with HSV-1 subtype NV1066. Cytotoxicity, viral replication, and Akt1 expression were assessed. TIC tumorigenicity was confirmed and NV1066 efficacy was assessed in vivo. NV1066 infection was highly cytotoxic to both parent HCT8 cells and TICs. In both populations, cell-kill of >80% was achieved within 3 days of infection at a multiplicity of infection (MOI) of 1.0. However, the parent cells required 2-log greater viral replication to achieve the same cytotoxicity. TICs overexpressed Akt1 in vitro and formed flank tumors from as little as 100 cells, growing earlier, faster, larger, and with greater histologic atypia than tumors from parent cells. Treatment of TIC-induced tumors with NV1066 yielded tumor regression and slowed tumor growth. We conclude that colon TICs are selected for by serum-free culture, overexpress Akt1, and are susceptible to oncolytic viral infection. PMID:27347556

  12. Histological Characterization of the Tumorigenic “Peri-Necrotic Niche” Harboring Quiescent Stem-Like Tumor Cells in Glioblastoma

    PubMed Central

    Ishii, Aya; Kimura, Tokuhiro; Sadahiro, Hirokazu; Kawano, Hiroo; Takubo, Keiyo; Suzuki, Michiyasu; Ikeda, Eiji

    2016-01-01

    Background Characterization of the niches for stem-like tumor cells is important to understand and control the behavior of glioblastomas. Cell-cycle quiescence might be a common mechanism underlying the long-term maintenance of stem-cell function in normal and neoplastic stem cells, and our previous study demonstrated that quiescence induced by hypoxia-inducible factor (HIF)-1α is associated with a high long-term repopulation capacity of hematopoietic stem cells. Based on this, we examined human astrocytoma tissues for HIF-1α-regulated quiescent stem-like tumor cells as a candidate for long-term tumorigenic cells and characterized their niche histologically. Methods Multi-color immunohistochemistry was used to visualize HIF-1α-expressing (HIF-1α+) quiescent stem-like tumor cells and their niche in astrocytoma (WHO grade II–IV) tissues. This niche was modeled using spheroids of cultured glioblastoma cells and its contribution to tumorigenicity was evaluated by sphere formation assay. Results A small subpopulation of HIF-1α+ quiescent stem-like tumor cells was found in glioblastomas but not in lower-grade astrocytomas. These cells were concentrated in the zone between large ischemic necroses and blood vessels and were closer to the necrotic tissues than to the blood vessels, which suggested that a moderately hypoxic microenvironment is their niche. We successfully modeled this niche containing cells of HIF-1α+ quiescent stem-like phenotype by incubating glioblastoma cell spheroids under an appropriately hypoxic condition, and the emergence of HIF-1α+ quiescent stem-like cells was shown to be associated with an enhanced sphere-forming activity. Conclusions These data suggest that the “peri-necrotic niche” harboring HIF-1α+ quiescent stem-like cells confers a higher tumorigenic potential on glioblastoma cells and therefore may be a therapeutic target to control the behavior of glioblastomas. PMID:26799577

  13. Sphere-forming tumor cells possess stem-like properties in human fibrosarcoma primary tumors and cell lines

    PubMed Central

    LIU, WEI-DONG; ZHANG, TAO; WANG, CHUN-LEI; MENG, HONG-MEI; SONG, YU-WEN; ZHAO, ZHE; LI, ZHENG-MIN; LIU, JIANG-KUN; PAN, SHANG-HA; WANG, WEN-BO

    2012-01-01

    Fibrosarcoma is a malignant soft tissue tumor of mesenchymal origin. Despite advances in medical and surgical treatment, patient survival rates have remained poor. According to the cancer stem cell hypothesis, tumors are comprised of heterogeneous cell populations that have different roles in tumor formation and growth. Cancer stem cells are a small cell subpopulation that exhibits stem-like properties to gain aggressiveness and recurrence. These cells have been identified in a variety of cancerous tumors, but not in human fibrosarcoma. In this study, we observed that HT1080 cells and primary fibrosarcoma cells formed spheres and showed higher self-renewal capacity, invasiveness and drug resistance compared with their adherent counterparts. Moreover, we demonstrated that the cells showed higher expression of the embryonic stem cell-related genes Nanog, Oct3/4, Sox2, Sox10 and their encoding proteins, as well as greater tumorigenic capacity in nude mice. In conclusion, our data suggest the presence of a stem-like cell population in human fibrosarcoma tumors, which provides more evidence for the cancer stem cell hypothesis and assistance in designing new therapeutic strategies against human fibrosarcoma. PMID:23205129

  14. Reconstructing and reprogramming the tumor propagating potential of glioblastoma stem-like cells

    PubMed Central

    Suvà, Mario L.; Rheinbay, Esther; Gillespie, Shawn M.; Patel, Anoop P.; Wakimoto, Hiroaki; Rabkin, Samuel D.; Riggi, Nicolo; Chi, Andrew S.; Cahill, Daniel P.; Nahed, Brian V.; Curry, William T.; Martuza, Robert L.; Rivera, Miguel N.; Rossetti, Nikki; Kasif, Simon; Beik, Samantha; Kadri, Sabah; Tirosh, Itay; Wortman, Ivo; Shalek, Alex; Rozenblatt-Rosen, Orit; Regev, Aviv; Louis, David N.; Bernstein, Bradley E.

    2014-01-01

    Summary Developmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance, yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements, and are sufficient to fully reprogram differentiated GBM cells to ‘induced’ TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies novel therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies. PMID:24726434

  15. Sunitinib reduces tumor hypoxia and angiogenesis, and radiosensitizes prostate cancer stem-like cells.

    PubMed

    Diaz, Roque; Nguewa, Paul A; Redrado, Miriam; Manrique, Irene; Calvo, Alfonso

    2015-08-01

    The need for new treatments for advanced prostate cancer has fostered the experimental use of targeted therapies. Sunitinib is a multi-tyrosine kinase inhibitor that mainly targets membrane-bound receptors of cells within the tumor microenvironment, such as endothelial cells and pericytes. However, recent studies suggest a direct effect on tumor cells. In the present study, we have evaluated both direct and indirect effects of Sunitinib in prostate cancer and how this drug regulates hypoxia, using in vitro and in vivo models. We have used both in vitro (PC-3, DU145, and LNCaP cells) and in vivo (PC-3 xenografts) models to study the effect of Sunitinib in prostate cancer. Analysis of hypoxia based on HIF-1α expression and FMISO uptake was conducted. ALDH activity was used to analyze cancer stem cells (CSC). Sunitinib strongly reduced proliferation of PC-3 and DU-145 cells in a dose dependent manner, and decreased levels of p-Akt, p-Erk1/2, and Id-1, compared to untreated cells. A 3-fold reduction in tumor growth was also observed (P < 0.001 with respect to controls). Depletion of Hif-1α levels in vitro and a decrease in FMISO uptake in vivo showed that Sunitinib inhibits tumor hypoxia. When combined with radiotherapy, this drug enhanced cell death in vitro and in vivo, and significantly decreased CD-31, PDGFRβ, Hif-1α, Id1, and PCNA protein levels (whereas apoptosis was increased) in tumors as compared to controls or single-therapy treated mice. Moreover, Sunitinib reduced the number of ALDH + cancer stem-like cells and sensitized these cells to radiation-mediated loss of clonogenicity. Our results support the use of Sunitinib in prostate cancer and shows that both hypoxia and cancer stem cells are involved in the effect elicited by this drug. Combination of Sunitinib with radiotherapy warrants further consideration to reduce prostate cancer burden. © 2015 Wiley Periodicals, Inc.

  16. H460 non-small cell lung cancer stem-like holoclones yield tumors with increased vascularity

    PubMed Central

    Manley, Eugene; Waxman, David J.

    2014-01-01

    Cancer stem-like cells were isolated from several human tumor cell lines by limiting dilution assays and holoclone morphology, followed by assessment of self-renewal capacity, tumor growth, vascularity, and blood perfusion. H460 holoclone-derived tumors grew slower than parental H460 tumors, but displayed significantly increased microvessel density and tumor blood perfusion. Microarray analysis identified 177 differentially regulated genes in the holoclone-derived tumors, of which 47 were associated with angiogenesis. The dysregulated genes include several small leucine-rich proteoglycans that may modulate angiogenesis and serve as novel therapeutic targets for inhibiting cancer stem cell-driven angiogenesis. PMID:24334139

  17. H460 non-small cell lung cancer stem-like holoclones yield tumors with increased vascularity.

    PubMed

    Manley, Eugene; Waxman, David J

    2014-04-28

    Cancer stem-like cells were isolated from several human tumor cell lines by limiting dilution assays and holoclone morphology, followed by assessment of self-renewal capacity, tumor growth, vascularity, and blood perfusion. H460 holoclone-derived tumors grew slower than parental H460 tumors, but displayed significantly increased microvessel density and tumor blood perfusion. Microarray analysis identified 177 differentially regulated genes in the holoclone-derived tumors, of which 47 were associated with angiogenesis. The dysregulated genes include several small leucine-rich proteoglycans that may modulate angiogenesis and serve as novel therapeutic targets for inhibiting cancer stem cell-driven angiogenesis.

  18. Combination therapy targeting both cancer stem-like cells and bulk tumor cells for improved efficacy of breast cancer treatment.

    PubMed

    Wang, Tao; Narayanaswamy, Radhika; Ren, Huilan; Torchilin, Vladimir P

    2016-06-02

    Many types of tumors are organized in a hierarchy of heterogeneous cell populations. The cancer stem-like cells (CSCs) hypothesis suggests that tumor development and metastasis are driven by a minority population of cells, which are responsible for tumor initiation, growth and recurrences. The inability to efficiently eliminate CSCs during chemotherapy, together with CSCs being highly tumorigenic and invasive, may result in treatment failure due to cancer relapse and metastases. CSCs are emerging as a promising target for the development of translational cancer therapies. Ideal panacea for cancer would kill all malignant cells, including CSCs and bulk tumor cells. Since both chemotherapy and CSCs-specific therapy are insufficient to cure cancer, we propose combination therapy with CSCs-targeted agents and chemotherapeutics for improved breast cancer treatment. We generated in vitro mammosphere of 2 breast cancer cell lines, and demonstrated ability of mammospheres to grow and enrich cancer cells with stem-like properties, including self-renewal, multilineage differentiation and enrichment of cells expressing breast cancer stem-like cell biomarkers CD44(+)/CD24(-/low). The formation of mammospheres was significantly inhibited by salinomycin, validating its pharmacological role against the cancer stem-like cells. In contrast, paclitaxel showed a minimal effect on the proliferation and growth of breast cancer stem-like cells. While combination therapies of salinomycin with conventional chemotherapy (paclitaxel or lipodox) showed a potential to improve tumor cell killing, different subtypes of breast cancer cells showed different patterns in response to the combination therapies. While optimization of combination therapy is warranted, the design of combination therapy should consider phenotypic attributes of breast cancer types.

  19. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4

    PubMed Central

    Okuda, Hiroshi; Xing, Fei; Pandey, Puspa R; Sharma, Sambad; Watabe, Misako; Pai, Sudha K.; Mo, Yin-Yuan; Iiizumi-Gairani, Megumi; Hirota, Shigeru; Liu, Yin; Wu, Kerui; Pochampally, Radhika; Watabe, Kounosuke

    2012-01-01

    Despite significant improvement in survival rates of breast cancer patients, prognosis of metastatic disease is still dismal. Cancer stem-like cells (CSCs) are considered to play a role in metastatic progression of breast cancer; however, the exact pathological role of CSCs is yet to be elucidated. In this report, we found that CSCs (CD24−/CD44+/ESA+) isolated from metastatic breast cell lines are significantly more metastatic than non-CSC populations in an organ specific manner. The results of our microRNA profile analysis for these cells revealed that CSCs that are highly metastatic to bone and brain expressed significantly lower level of miR-7 and that this microRNA was capable of modulating one of the essential genes for induced pluripotent stem cell, KLF4. Interestingly, high expression of KLF4 was significantly and inversely correlated to brain- but not bone-metastasis free survival of breast cancer patients, and we indeed found that the expression of miR-7 significantly suppressed the ability of CSCs to metastasize to brain but not to bone in our animal model. We also examined the expression of miR-7 and KLF4 in brain-metastatic lesions and found that these genes were significantly down- or up-regulated, respectively, in the tumor cells in brain. Furthermore, the results of our in vitro experiments indicate that miR-7 attenuates the abilities of invasion and self-renewal of CSCs by modulating KLF4 expression. These results suggest that miR-7 and KLF4 may serve as biomarkers or therapeutic targets for brain metastasis of breast cancer. PMID:23384942

  20. Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells.

    PubMed

    Rao, Wei; Wang, Hai; Han, Jianfeng; Zhao, Shuting; Dumbleton, Jenna; Agarwal, Pranay; Zhang, Wujie; Zhao, Gang; Yu, Jianhua; Zynger, Debra L; Lu, Xiongbin; He, Xiaoming

    2015-06-23

    Tumor reinitiating cancer stem-like cells are responsible for cancer recurrence associated with conventional chemotherapy. We developed a doxorubicin-encapsulated polymeric nanoparticle surface-decorated with chitosan that can specifically target the CD44 receptors of these cells. This nanoparticle system was engineered to release the doxorubicin in acidic environments, which occurs when the nanoparticles are localized in the acidic tumor microenvironment and when they are internalized and localized in the cellular endosomes/lysosomes. This nanoparticle design strategy increases the cytotoxicity of the doxorubicin by six times in comparison to the use of free doxorubicin for eliminating CD44(+) cancer stem-like cells residing in 3D mammary tumor spheroids (i.e., mammospheres). We further show these nanoparticles reduced the size of tumors in an orthotopic xenograft tumor model with no evident systemic toxicity. The development of nanoparticle system to target cancer stem-like cells with low systemic toxicity provides a new treatment arsenal for improving the survival of cancer patients.

  1. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth

    PubMed Central

    Saha, Nayanendu; Eissman, Moritz F.; Xu, Kai; Llerena, Carmen; Kusebauch, Ulrike; Ding, Bi-Sen; Cao, Zhongwei; Rafii, Shahin; Ernst, Matthias; Scott, Andrew M.; Nikolov, Dimitar B.; Lackmann, Martin

    2016-01-01

    The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance. PMID:27503072

  2. Canine mammary tumors contain cancer stem-like cells and form spheroids with an embryonic stem cell signature.

    PubMed

    Ferletta, Maria; Grawé, Jan; Hellmén, Eva

    2011-01-01

    We have investigated the presence of tentative stem-like cells in the canine mammary tumor cell line CMT-U229. This cell line is established from an atypical benign mixed mammary tumor, which has the property of forming duct-like structures in collagen gels. Stem cells in mammary glands are located in the epithelium; therefore we thought that the CMT-U229 cell line would be suitable for detection of tentative cancer stem-like cells. Side population (SP) analyses by flow cytometry were performed with cells that formed spheroids and with cells that did not. Flow cytometric, single sorted cells were expanded and re-cultured as spheroids. The spheroids were paraffin embedded and characterized by immunohistochemistry. SP analyses showed that spheroid forming cells (retenate) as well as single cells (filtrate) contained SP cells. Sca1 positive cells were single cell sorted and thereafter the SP population increased with repeated SP analyses. The SP cells were positively labeled with the cell surface-markers CD44 and CD49f (integrin alpha6); however the expression of CD24 was low or negative. The spheroids expressed the transcription factor and stem cell marker Sox2, as well as Oct4. Interestingly, only peripheral cells of the spheroids and single cells were positive for Oct4 expression. SP cells are suggested to correspond to stem cells and in this study, we have enriched for tentative tumor stem-like cells derived from a canine mammary tumor. All the used markers indicate that the studied CMT-U229 cell line contains SP cells, which in particular have cancer stem-like cell characteristics.

  3. Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer.

    PubMed

    Yu, Yau-Hua; Chiou, Guang-Yuh; Huang, Pin-I; Lo, Wen-Liang; Wang, Chien-Ying; Lu, Kai-Hsi; Yu, Cheng-Chia; Alterovitz, Gil; Huang, Wen-Chien; Lo, Jeng-Fan; Hsu, Han-Shui; Chiou, Shih-Hwa

    2012-01-01

    Mounting evidence links cancers possessing stem-like properties with worse prognosis. Network biology with signal processing mechanics was explored here using expression profiles of a panel of tumor stem-like cells (TSLCs). The profiles were compared to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), for the identification of gene chromobox homolog 5, CBX5, as a potential target for lung cancer. CBX5 was found to regulate the stem-like properties of lung TSLCs and was predictive of lung cancer prognosis. The investigation was facilitated by finding target genes based on modeling epistatic signaling mechanics via a predictive and scalable network-based survival model. Topologically-weighted measurements of CBX5 were synchronized with those of BIRC5, DNMT1, E2F1, ESR1, MLH1, MSH2, RB1, SMAD1 and TAF5. We validated our findings in another Taiwanese lung cancer cohort, as well as in knockdown experiments using sh-CBX5 RNAi both in vitro and in vivo.

  4. Cancer stem-like cells derived from chemoresistant tumors have a unique capacity to prime tumorigenic myeloid cells.

    PubMed

    Yamashina, Tsunaki; Baghdadi, Muhammad; Yoneda, Akihiro; Kinoshita, Ichiro; Suzu, Shinya; Dosaka-Akita, Hirotoshi; Jinushi, Masahisa

    2014-05-15

    Resistance to anticancer therapeutics greatly affects the phenotypic and functional properties of tumor cells, but how chemoresistance contributes to the tumorigenic activities of cancer stem-like cells remains unclear. In this study, we found that a characteristic of cancer stem-like cells from chemoresistant tumors (CSC-R) is the ability to produce a variety of proinflammatory cytokines and to generate M2-like immunoregulatory myeloid cells from CD14(+) monocytes. Furthermore, we identified the IFN-regulated transcription factor IRF5 as a CSC-R-specific factor critical for promoting M-CSF production and generating tumorigenic myeloid cells. Importantly, myeloid cells primed with IRF5(+) CSC-R facilitate the tumorigenic and stem cell activities of bulk tumors. Importantly, the activation of IRF5/M-CSF pathways in tumor cells were correlated with the number of tumor-associated CSF1 receptor(+) M2 macrophages in patients with non-small lung cancer. Collectively, our findings show how chemoresistance affects the properties of CSCs in their niche microenvironments.

  5. Tumor-associated mesenchymal stem-like cells provide extracellular signaling cue for invasiveness of glioblastoma cells

    PubMed Central

    Yoo, Ki-Chun; Lee, Ji-Hyun; Kim, In-Gyu; Kim, Min-Jung; Chang, Jong Hee; Kang, Seok-Gu; Lee, Su-Jae

    2017-01-01

    Hyaluronic acid (HA) is abundant in tumor microenvironment and closely associated with invasiveness of glioblastoma (GBM) cells. However, the cellular mechanism underlying HA-rich microenvironment in GBM remains unexplored. Here, we show that tumor-associated mesenchymal stem-like cells (tMSLCs) contribute to abundance of hyaluronic acid (HA) in tumor microenvironment through HA synthase-2 (HAS2) induction, and thereby enhances invasiveness of GBM cells. In an autocrine manner, C5a secreted by tMSLCs activated ERK MAPK for HAS2 induction in tMSLCs. Importantly, HA acted as a signaling ligand of its cognate receptor RHAMM for intracellular signaling activation underlying invasiveness of GBM cells. Taken together, our study suggests that tMSLCs contribute to HA-rich proinvasive ECM microenvironment in GBM. PMID:27903965

  6. Brain tumor - primary - adults

    MedlinePlus

    ... Vestibular schwannoma (acoustic neuroma) - adults; Meningioma - adults; Cancer - brain tumor (adults) ... Primary brain tumors include any tumor that starts in the brain. Primary brain tumors can start from brain cells, ...

  7. A novel model for evaluating therapies targeting human tumor vasculature and human cancer stem-like cells

    PubMed Central

    Burgos-Ojeda, Daniela; McLean, Karen; Bai, Shoumei; Pulaski, Heather; Gong, Yusong; Silva, Ines; Skorecki, Karl; Tzukerman, Maty; Buckanovich, Ronald J.

    2013-01-01

    Human tumor vessels express tumor vascular markers (TVMs), proteins that are not expressed in normal blood vessels. Antibodies targeting TVMs could act as potent therapeutics. Unfortunately, preclinical in vivo studies testing anti-human TVM therapies have been difficult to perform due to a lack of in vivo models with confirmed expression of human TVMs. We therefore evaluated TVM expression in a human embryonic stem cell derived teratoma (hESCT) tumor model previously shown to have human vessels. We now report that, in the presence of tumor cells, hESCT tumor vessels express human TVMs. The addition of mouse embryonic fibroblasts and human tumor endothelial cells significantly increases the number of human tumor vessels. TVM induction is mostly tumor type specific with ovarian cancer cells inducing primarily ovarian TVMs while breast cancer cells induce breast cancer specific TVMs. We demonstrate the utility of this model to test an anti-human specific TVM immunotherapeutics; anti-human Thy-1 TVM immunotherapy results in central tumor necrosis and a three-fold reduction in human tumor vascular density. Finally, we tested the ability of the hESCT model, with human tumor vascular niche, to enhance the engraftment rate of primary human ovarian cancer stem-like cells (CSC). ALDH+ CSC from patients (n=6) engrafted in hESCT within 4–12 weeks whereas none engrafted in the flank. ALDH- ovarian cancer cells showed no engraftment in the hESCT or flank (n=3). Thus this model represents a useful tool to test anti-human TVM therapy and evaluate in vivo human CSC tumor biology. PMID:23576551

  8. Understanding Brain Tumors

    MedlinePlus

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  9. Brain Tumor Diagnosis

    MedlinePlus

    ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ...

  10. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment.

    PubMed

    Würth, Roberto; Bajetto, Adriana; Harrison, Jeffrey K; Barbieri, Federica; Florio, Tullio

    2014-01-01

    Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem-like cells (CSCs) is believed to be the main responsible for tumor cell dissemination to the brain. GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g., CXCL12) causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4. This review covers recent developments on the role of CXCL12/CXCR4-CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include chemokine

  11. Meta-Analysis of Tumor Stem-Like Breast Cancer Cells Using Gene Set and Network Analysis.

    PubMed

    Lee, Won Jun; Kim, Sang Cheol; Yoon, Jung-Ho; Yoon, Sang Jun; Lim, Johan; Kim, You-Sun; Kwon, Sung Won; Park, Jeong Hill

    2016-01-01

    Generally, cancer stem cells have epithelial-to-mesenchymal-transition characteristics and other aggressive properties that cause metastasis. However, there have been no confident markers for the identification of cancer stem cells and comparative methods examining adherent and sphere cells are widely used to investigate mechanism underlying cancer stem cells, because sphere cells have been known to maintain cancer stem cell characteristics. In this study, we conducted a meta-analysis that combined gene expression profiles from several studies that utilized tumorsphere technology to investigate tumor stem-like breast cancer cells. We used our own gene expression profiles along with the three different gene expression profiles from the Gene Expression Omnibus, which we combined using the ComBat method, and obtained significant gene sets using the gene set analysis of our datasets and the combined dataset. This experiment focused on four gene sets such as cytokine-cytokine receptor interaction that demonstrated significance in both datasets. Our observations demonstrated that among the genes of four significant gene sets, six genes were consistently up-regulated and satisfied the p-value of < 0.05, and our network analysis showed high connectivity in five genes. From these results, we established CXCR4, CXCL1 and HMGCS1, the intersecting genes of the datasets with high connectivity and p-value of < 0.05, as significant genes in the identification of cancer stem cells. Additional experiment using quantitative reverse transcription-polymerase chain reaction showed significant up-regulation in MCF-7 derived sphere cells and confirmed the importance of these three genes. Taken together, using meta-analysis that combines gene set and network analysis, we suggested CXCR4, CXCL1 and HMGCS1 as candidates involved in tumor stem-like breast cancer cells. Distinct from other meta-analysis, by using gene set analysis, we selected possible markers which can explain the biological

  12. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo.

    PubMed

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-12

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β₁-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in Ras(G12V)-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  13. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  14. Characterization of Stem-Like Cells in Mucoepidermoid Tracheal Paediatric Tumor

    PubMed Central

    Lim, Mei Ling; Ooi, Brandon Nick Sern; Jungebluth, Philipp; Sjöqvist, Sebastian; Hultman, Isabell; Lemon, Greg; Gustafsson, Ylva; Asmundsson, Jurate; Baiguera, Silvia; Douagi, Iyadh; Gilevich, Irina; Popova, Alina; Haag, Johannes Cornelius; Rodríguez, Antonio Beltrán; Lim, Jianri; Liedén, Agne; Nordenskjöld, Magnus; Alici, Evren; Baker, Duncan; Unger, Christian; Luedde, Tom; Vassiliev, Ivan; Inzunza, Jose; Ährlund-Richter, Lars; Macchiarini, Paolo

    2014-01-01

    Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6 year-old patient contained a subpopulation of cells with morphology, clonogenicity and surface markers that overlapped with bone marrow mesenchymal stromal cells (BM-MSCs). These cells, designated as MEi (mesenchymal stem cell-like mucoepidermoid tumor) cells, could be differentiated towards mesenchymal lineages both with and without induction, and formed spheroids in vitro. The MEi cells shared several multipotent characteristics with BM-MSCs. However, they displayed differences to BM-MSCs in growth kinectics and gene expression profiles relating to cancer pathways and tube development. Despite this, the MEi cells did not possess in vivo tumor-initiating capacity, as proven by the absence of growth in situ after localized injection in immunocompromised mice. Our results provide an initial characterization of benign tracheal cancer-derived niche cells. We believe that this report could be of importance to further understand tracheal cancer initiation and progression as well as therapeutic development. PMID:25229469

  15. Characterization of stem-like cells in mucoepidermoid tracheal paediatric tumor.

    PubMed

    Lim, Mei Ling; Ooi, Brandon Nick Sern; Jungebluth, Philipp; Sjöqvist, Sebastian; Hultman, Isabell; Lemon, Greg; Gustafsson, Ylva; Asmundsson, Jurate; Baiguera, Silvia; Douagi, Iyadh; Gilevich, Irina; Popova, Alina; Haag, Johannes Cornelius; Rodríguez, Antonio Beltrán; Lim, Jianri; Liedén, Agne; Nordenskjöld, Magnus; Alici, Evren; Baker, Duncan; Unger, Christian; Luedde, Tom; Vassiliev, Ivan; Inzunza, Jose; Ahrlund-Richter, Lars; Macchiarini, Paolo

    2014-01-01

    Stem cells contribute to regeneration of tissues and organs. Cells with stem cell-like properties have been identified in tumors from a variety of origins, but to our knowledge there are yet no reports on tumor-related stem cells in the human upper respiratory tract. In the present study, we show that a tracheal mucoepidermoid tumor biopsy obtained from a 6 year-old patient contained a subpopulation of cells with morphology, clonogenicity and surface markers that overlapped with bone marrow mesenchymal stromal cells (BM-MSCs). These cells, designated as MEi (mesenchymal stem cell-like mucoepidermoid tumor) cells, could be differentiated towards mesenchymal lineages both with and without induction, and formed spheroids in vitro. The MEi cells shared several multipotent characteristics with BM-MSCs. However, they displayed differences to BM-MSCs in growth kinectics and gene expression profiles relating to cancer pathways and tube development. Despite this, the MEi cells did not possess in vivo tumor-initiating capacity, as proven by the absence of growth in situ after localized injection in immunocompromised mice. Our results provide an initial characterization of benign tracheal cancer-derived niche cells. We believe that this report could be of importance to further understand tracheal cancer initiation and progression as well as therapeutic development.

  16. Metastatic brain tumor

    MedlinePlus

    Brain tumor - metastatic (secondary); Cancer - brain tumor (metastatic) ... For many people with metastatic brain tumors, the cancer is not curable. It will eventually spread to other areas of the body. Prognosis depends on the type of tumor and ...

  17. Brain Tumors (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors A A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  18. Brain Tumors (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  19. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain.

    PubMed

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-03-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then 'activated' surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease.

  20. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain

    PubMed Central

    Xing, Fei; Kobayashi, Aya; Okuda, Hiroshi; Watabe, Misako; Pai, Sudha K; Pandey, Puspa R; Hirota, Shigeru; Wilber, Andrew; Mo, Yin-Yuan; Moore, Brian E; Liu, Wen; Fukuda, Koji; Iiizumi, Megumi; Sharma, Sambad; Liu, Yin; Wu, Kerui; Peralta, Elizabeth; Watabe, Kounosuke

    2013-01-01

    Brain metastasis of breast cancer profoundly affects the cognitive and sensory functions as well as morbidity of patients, and the 1 year survival rate among these patients remains less than 20%. However, the pathological mechanism of brain metastasis is as yet poorly understood. In this report, we found that metastatic breast tumour cells in the brain highly expressed IL-1β which then ‘activated’ surrounding astrocytes. This activation significantly augmented the expression of JAG1 in the astrocytes, and the direct interaction of the reactivated astrocytes and cancer stem-like cells (CSCs) significantly stimulated Notch signalling in CSCs. We also found that the activated Notch signalling in CSCs up-regulated HES5 followed by promoting self-renewal of CSCs. Furthermore, we have shown that the blood-brain barrier permeable Notch inhibitor, Compound E, can significantly suppress the brain metastasis in vivo. These results represent a novel paradigm for the understanding of how metastatic breast CSCs re-establish their niche for their self-renewal in a totally different microenvironment, which opens a new avenue to identify a novel and specific target for the brain metastatic disease. PMID:23495140

  1. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles

    PubMed Central

    Kaluzova, Milota; Bouras, Alexandros; Machaidze, Revaz; Hadjipanayis, Costas G.

    2015-01-01

    Malignant gliomas remain aggressive and lethal primary brain tumors in adults. The epidermal growth factor receptor (EGFR) is frequently overexpressed in the most common malignant glioma, glioblastoma (GBM), and represents an important therapeutic target. GBM stem-like cells (GSCs) present in tumors are felt to be highly tumorigenic and responsible for tumor recurrence. Multifunctional magnetic iron-oxide nanoparticles (IONPs) can be directly imaged by magnetic resonance imaging (MRI) and designed to therapeutically target cancer cells. The targeting effects of IONPs conjugated to the EGFR inhibitor, cetuximab (cetuximab-IONPs), were determined with EGFR- and EGFRvIII-expressing human GBM neurospheres and GSCs. Transmission electron microscopy revealed cetuximab-IONP GBM cell binding and internalization. Fluorescence microscopy and Prussian blue staining showed increased uptake of cetuximab-IONPs by EGFR- as well as EGFRvIII-expressing GSCs and neurospheres in comparison to cetuximab or free IONPs. Treatment with cetuximab-IONPs resulted in a significant antitumor effect that was greater than with cetuximab alone due to more efficient, CD133-independent cellular targeting and uptake, EGFR signaling alterations, EGFR internalization, and apoptosis induction in EGFR-expressing GSCs and neurospheres. A significant increase in survival was found after cetuximab-IONP convection-enhanced delivery treatment of 3 intracranial rodent GBM models employing human EGFR-expressing GBM xenografts. PMID:25871395

  2. Ovarian cancer stem-like cells differentiate into endothelial cells and participate in tumor angiogenesis through autocrine CCL5 signaling.

    PubMed

    Tang, Shu; Xiang, Tong; Huang, Shuo; Zhou, Jie; Wang, Zhongyu; Xie, Rongkai; Long, Haixia; Zhu, Bo

    2016-06-28

    Cancer stem cells (CSCs) are well known for their self-regeneration and tumorigenesis potential. In addition, the multi-differentiation potential of CSCs has become a popular issue and continues to attract increased research attention. Recent studies demonstrated that CSCs are able to differentiate into functional endothelial cells and participate in tumor angiogenesis. In this study, we found that ovarian cancer stem-like cells (CSLCs) activate the NF-κB and STAT3 signal pathways through autocrine CCL5 signaling and mediate their own differentiation into endothelial cells (ECs). Our data demonstrate that CSLCs differentiate into ECs morphologically and functionally. Anti-CCL5 antibodies and CCL5-shRNA lead to markedly inhibit EC differentiation and the tube formation of CSLCs, both in vitro and in vivo. Recombinant human-CCL5 significantly promotes ovarian CSLCs that differentiate into ECs and form microtube network. The CCL5-mediated EC differentiation of CSLCs depends on binding to receptors, such as CCR1, CCR3, and CCR5. The results demonstrated that CCL5-CCR1/CCR3/CCR5 activates the NF-κB and STAT3 signal pathways, subsequently mediating the differentiation of CSLCs into ECs. Therefore, this study was conducted based on the theory that CSCs improve tumor angiogenesis and provides a novel strategy for anti-angiogenesis in ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Pediatric Brain Tumor Foundation

    MedlinePlus

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Pediatric Brain Tumor Foundation Board Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  4. Autocrine VEGF–VEGFR2–Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth

    PubMed Central

    Hamerlik, Petra; Lathia, Justin D.; Rasmussen, Rikke; Wu, Qiulian; Bartkova, Jirina; Lee, MyungHee; Moudry, Pavel; Bartek, Jiri; Fischer, Walter; Lukas, Jiri

    2012-01-01

    Although vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) is traditionally regarded as an endothelial cell protein, evidence suggests that VEGFRs may be expressed by cancer cells. Glioblastoma multiforme (GBM) is a lethal cancer characterized by florid vascularization and aberrantly elevated VEGF. Antiangiogenic therapy with the humanized VEGF antibody bevacizumab reduces GBM tumor growth; however, the clinical benefits are transient and invariably followed by tumor recurrence. In this study, we show that VEGFR2 is preferentially expressed on the cell surface of the CD133+ human glioma stem-like cells (GSCs), whose viability, self-renewal, and tumorigenicity rely, at least in part, on signaling through the VEGF-VEGFR2–Neuropilin-1 (NRP1) axis. We find that the limited impact of bevacizumab-mediated VEGF blockage may reflect ongoing autocrine signaling through VEGF–VEGFR2–NRP1, which is associated with VEGFR2–NRP1 recycling and a pool of active VEGFR2 within a cytosolic compartment of a subset of human GBM cells. Whereas bevacizumab failed to inhibit prosurvival effects of VEGFR2-mediated signaling, GSC viability under unperturbed or radiation-evoked stress conditions was attenuated by direct inhibition of VEGFR2 tyrosine kinase activity and/or shRNA-mediated knockdown of VEGFR2 or NRP1. We propose that direct inhibition of VEGFR2 kinase may block the highly dynamic VEGF–VEGFR2–NRP1 pathway and inspire a GBM treatment strategy to complement the currently prevalent ligand neutralization approach. PMID:22393126

  5. Biomechanical profile of cancer stem-like/tumor-initiating cells derived from a progressive ovarian cancer model.

    PubMed

    Babahosseini, Hesam; Ketene, Alperen N; Schmelz, Eva M; Roberts, Paul C; Agah, Masoud

    2014-07-01

    We herein report, for the first time, the mechanical properties of ovarian cancer stem-like/tumor-initiating cells (CSC/TICs). The represented model is a spontaneously transformed murine ovarian surface epithelial (MOSE) cell line that mimics the progression of ovarian cancer from early/non-tumorigenic to late/highly aggressive cancer stages. Elastic modulus measurements via atomic force microscopy (AFM) illustrate that the enriched CSC/TICs population (0.32±0.12kPa) are 46%, 61%, and 72% softer (P<0.0001) than their aggressive late-stage, intermediate, and non-malignant early-stage cancer cells, respectively. Exposure to sphingosine, an anti-cancer agent, induced an increase in the elastic moduli of CSC/TICs by more than 46% (0.47±0.14kPa, P<0.0001). Altogether, our data demonstrate that the elastic modulus profile of CSC/TICs is unique and responsive to anti-cancer treatment strategies that impact the cytoskeleton architecture of cells. These findings increase the chance for obtaining distinctive cell biomechanical profiles with the intent of providing a means for effective cancer detection and treatment control. This novel study utilized atomic force microscopy to demonstrate that the elastic modulus profile of cancer stem cell-like tumor initiating cells is unique and responsive to anti-cancer treatment strategies that impact the cytoskeleton of these cells. These findings pave the way to the development of unique means for effective cancer detection and treatment control. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Childhood Brain Tumors

    MedlinePlus

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  7. American Brain Tumor Association

    MedlinePlus

    ... Molecule Read More ABTA News April 6, 2017 Chicago-Based American Brain Tumor Association’s Breakthrough for Brain ... Association 8550 W. Bryn Mawr Ave. Ste 550 Chicago, IL 60631 © 2014 American Brain Tumor Association Phone: ...

  8. Epidemiology of Brain Tumors.

    PubMed

    McNeill, Katharine A

    2016-11-01

    Brain tumors are the commonest solid tumor in children, leading to significant cancer-related mortality. Several hereditary syndromes associated with brain tumors are nonfamilial. Ionizing radiation is a well-recognized risk factor for brain tumors. Several industrial exposures have been evaluated for a causal association with brain tumor formation but the results are inconclusive. A casual association between the common mutagens of tobacco, alcohol, or dietary factors has not yet been established. There is no clear evidence that the incidence of brain tumors has changed over time. This article presents the descriptive epidemiology of the commonest brain tumors of children and adults.

  9. ATG4A promotes tumor metastasis by inducing the epithelial-mesenchymal transition and stem-like properties in gastric cells

    PubMed Central

    Yang, Shi-Wei; Ping, Yi-Fang; Jiang, Yu-Xing; Luo, Xiao; Zhang, Xia; Bian, Xiu-Wu; Yu, Pei-Wu

    2016-01-01

    The metastasis of tumor cells to distant organs is an ominous feature of gastric cancer. However, the molecular mechanisms underlying the invasion and metastasis of gastric cancer cells remain elusive. In this study, we found that the expression of ATG4A, an autophagy-regulating molecule, was significantly increased in gastric cancer tissues and was significantlycorrelated with the gastric cancer differentiation degree, tumor invasion and lymph node metastasis. ATG4A over-expression significantly promoted gastric cancer cell migration and invasion in vitro and metastasis in vivo, as well as promoted gastric cancer cell stem-like properties and the epithelial-mesenchymal transition (EMT) phenotype. By contrast, ATG4A knockdown inhibited the migration, invasion and metastasis of cancer cells, as well as the stem-like properties and EMT phenotype. Mechanistically, ATG4A promotes gastric cancer cell stem-like properties and the EMT phenotype through the activation of Notch signaling not via autophagy, and using the Notch signaling inhibitor DAPT attenuated the effects of ATG4A on gastric cancer cells. Taken together, these findings demonstrated that ATG4A promotes the metastasis of gastric cancer cells via the Notch signaling pathway, which is an autophagy-independent mechanism. PMID:27276686

  10. Brain Tumor Surgery

    MedlinePlus

    ... Proton Therapy Alternative & Integrative Medicine Clinical Trials GBM AGILE TTFields – Optune™ Brain Tumor Treatment Locations Treatment Side ... Proton Therapy Alternative & Integrative Medicine Clinical Trials GBM AGILE TTFields – Optune™ Brain Tumor Treatment Locations Treatment Side ...

  11. Children's Brain Tumor Foundation

    MedlinePlus

    ... CBTF Justin's Hope Fund Grant Recipients Grants Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  12. Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells.

    PubMed

    Lamb, Rebecca; Ozsvari, Bela; Bonuccelli, Gloria; Smith, Duncan L; Pestell, Richard G; Martinez-Outschoorn, Ubaldo E; Clarke, Robert B; Sotgia, Federica; Lisanti, Michael P

    2015-09-08

    Tumor cell metabolic heterogeneity is thought to contribute to tumor recurrence, distant metastasis and chemo-resistance in cancer patients, driving poor clinical outcome. To better understand tumor metabolic heterogeneity, here we used the MCF7 breast cancer line as a model system to metabolically fractionate a cancer cell population. First, MCF7 cells were stably transfected with an hTERT-promoter construct driving GFP expression, as a surrogate marker of telomerase transcriptional activity. To enrich for immortal stem-like cancer cells, MCF7 cells expressing the highest levels of GFP (top 5%) were then isolated by FACS analysis. Notably, hTERT-GFP(+) MCF7 cells were significantly more efficient at forming mammospheres (i.e., stem cell activity) and showed increased mitochondrial mass and mitochondrial functional activity, all relative to hTERT-GFP(-) cells. Unbiased proteomics analysis of hTERT-GFP(+) MCF7 cells directly demonstrated the over-expression of 33 key mitochondrial proteins, 17 glycolytic enzymes, 34 ribosome-related proteins and 17 EMT markers, consistent with an anabolic cancer stem-like phenotype. Interestingly, MT-CO2 (cytochrome c oxidase subunit 2; Complex IV) expression was increased by >20-fold. As MT-CO2 is encoded by mt-DNA, this finding is indicative of increased mitochondrial biogenesis in hTERT-GFP(+) MCF7 cells. Importantly, most of these candidate biomarkers were transcriptionally over-expressed in human breast cancer epithelial cells in vivo. Similar results were obtained using cell size (forward/side scatter) to fractionate MCF7 cells. Larger stem-like cells also showed increased hTERT-GFP levels, as well as increased mitochondrial mass and function. Thus, this simple and rapid approach for the enrichment of immortal anabolic stem-like cancer cells will allow us and others to develop new prognostic biomarkers and novel anti-cancer therapies, by specifically and selectively targeting this metabolic sub-population of aggressive cancer

  13. Surgery-induced wound response promotes stem-like and tumor-initiating features of breast cancer cells, via STAT3 signaling.

    PubMed

    Segatto, Ilenia; Berton, Stefania; Sonego, Maura; Massarut, Samuele; Perin, Tiziana; Piccoli, Erica; Colombatti, Alfonso; Vecchione, Andrea; Baldassarre, Gustavo; Belletti, Barbara

    2014-08-15

    Inflammation is clinically linked to cancer but the mechanisms are not fully understood. Surgery itself elicits a range of inflammatory responses, suggesting that it could represent a perturbing factor in the process of local recurrence and/or metastasis. Post-surgery wound fluids (WF), drained from breast cancer patients, are rich in cytokines and growth factors, stimulate the in vitro growth of breast cancer cells and are potent activators of the STAT transcription factors. We wondered whether STAT signaling was functionally involved in the response of breast cancer cells to post-surgical inflammation. We discovered that WF induced the enrichment of breast cancer cells with stem-like phenotypes, via activation of STAT3. In vitro, WF highly stimulated mammosphere formation and self-renewal of breast cancer cells. In vivo, STAT3 signaling was critical for breast cancer cell tumorigenicity and for the formation of local relapse after surgery. Overall, we demonstrate here that surgery-induced inflammation promotes stem-like phenotypes and tumor-initiating abilities of breast cancer cells. Interfering with STAT3 signaling with a peri-surgical treatment was sufficient to strongly suppress this process. The understanding of the crosstalk between breast tumor-initiating cells and their microenvironment may open the way to successful targeting of these cells in their initial stages of growth and be eventually curative.

  14. Surgery-induced wound response promotes stem-like and tumor-initiating features of breast cancer cells, via STAT3 signaling

    PubMed Central

    Segatto, Ilenia; Berton, Stefania; Sonego, Maura; Massarut, Samuele; Perin, Tiziana; Piccoli, Erica; Colombatti, Alfonso; Vecchione, Andrea; Baldassarre, Gustavo; Belletti, Barbara

    2014-01-01

    Inflammation is clinically linked to cancer but the mechanisms are not fully understood. Surgery itself elicits a range of inflammatory responses, suggesting that it could represent a perturbing factor in the process of local recurrence and/or metastasis formation. Post-surgery wound fluids (WF), drained from breast cancer patients, are rich in cytokines and growth factors, stimulate the in vitro growth of breast cancer cells and are potent activators of the STAT transcription factors. We wondered whether STAT signaling was functionally involved in the response of breast cancer cells to post-surgical inflammation. We discovered that WF induced the enrichment of breast cancer cells with stem-like phenotypes, via activation of STAT3. In vitro, WF highly stimulated mammosphere formation and self-renewal of breast cancer cells. In vivo, STAT3 signaling was critical for breast cancer cell tumorigenicity and for the formation of local relapse after surgery. Overall, we demonstrate here that surgery-induced inflammation promotes stem-like phenotypes and tumor-initiating abilities of breast cancer cells. Interfering with STAT3 signaling with a peri-surgical treatment is sufficient to strongly suppress this process. The understanding of the crosstalk between breast tumor-initiating cells and their microenvironment may open the way to successful targeting of these cells in their initial stages of growth and be eventually curative. PMID:25026286

  15. Epilepsy and brain tumors.

    PubMed

    Rudà, Roberta; Trevisan, Elisa; Soffietti, Riccardo

    2010-11-01

    To present an overview of the recent findings in pathophysiology and management of epileptic seizures in patients with brain tumors. Low-grade gliomas are the most epileptogenic brain tumors. Regarding pathophysiology, the role of peritumoral changes [hypoxia and acidosis, blood-brain barrier (BBB) disruption, increase or decrease of neurotransmitters and receptors] are of increasing importance. Tumor-associated epilepsy and tumor growth could have some common molecular pathways. Total/subtotal surgical resection (with or without epilepsy surgery) allows a seizure control in a high percentage of patients. Radiotherapy and chemotherapy as well have a role. New antiepileptic drugs are promising, both in terms of efficacy and tolerability. The resistance to antiepileptic drugs is still a major problem: new insights into pathogenesis are needed to develop strategies to manipulate the pharmakoresistance. Epileptic seizures in brain tumors have been definitely recognized as one of the major problems in patients with brain tumors, and need specific and multidisciplinary approaches.

  16. Co-culture of hepatoma cells with hepatocytic precursor (stem-like) cells inhibits tumor cell growth and invasion by downregulating Akt/NF-κB expression

    PubMed Central

    Sui, Cheng-Jun; Xu, Miao; Li, Wei-Qing; Yang, Jia-Mei; Yan, Hong-Zhu; Liu, Hui-Min; Xia, Chun-Yan; Yu, Hong-Yu

    2016-01-01

    Hepatocytic stem cells (HSCs) have inhibitory effects on hepatocarcinoma cells. The present study investigated the effects of HSC activity in hepatocarcinoma cells in vitro. A Transwell co-culture system of hepatocytic precursor (stem-like) WB-F344 cells and hepatoma CBRH-7919 cells was used to assess HSC activity in metastasized hepatoma cells in vitro. Nude mouse xenografts were used to assess HSC activity in vivo. Co-culture of hepatoma CBRH-7919 cells with WB-F344 cells suppressed the growth and colony formation, tumor cell migration and invasion capacity of CBRH-7919 cells. The nude mouse xenograft assay demonstrated that the xenograft size of CBRH-7919 cells following co-culture with WB-F344 cells was significantly smaller compared with that of control cells. Furthermore, the expression levels of the epithelial markers E-cadherin and β-catenin were downregulated, while the mesenchymal markers α-SMA and vimentin were upregulated. Co-culture of CBRH-7919 cells with WB-F344 cells downregulated NF-κB and phospho-Akt expression. In conclusion, hepatocytic precursor (stem-like) WB-F344 cells inhibited the growth, colony formation and invasion capacity of metastasized hepatoma CBRH-7919 cells in vitro and in vivo by downregulating Akt/NF-κB signaling. PMID:27895771

  17. Brain and Spinal Tumors

    MedlinePlus

    ... National Brain Tumor Society 55Chapel Street Suite 200 Newton MA Newton, MA 02458 questions@braintumor.org http://www.braintumor. ... National Brain Tumor Society 55Chapel Street Suite 200 Newton MA Newton, MA 02458 questions@braintumor.org http:// ...

  18. Radioresistance of Brain Tumors

    PubMed Central

    Kelley, Kevin; Knisely, Jonathan; Symons, Marc; Ruggieri, Rosamaria

    2016-01-01

    Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation. PMID:27043632

  19. Immunology of brain tumors.

    PubMed

    Roth, Patrick; Eisele, Günter; Weller, Michael

    2012-01-01

    Brain tumors of different origin, but notably malignant gliomas, are characterized by their immunosuppressive properties which allow them to escape the host's immune surveillance. The activating immune cell ligands that are expressed by tumor cells, together with potentially immunogenic antigens, are overridden by numerous immune inhibitory signals, with TGF-3 as the master immunosuppressive molecule (Figure 4.1).The ongoing investigation of mechanisms of tumor-derived immunosuppression allows for an increasing understanding of brain tumor immunology. Targeting different mechanisms of tumor-derived immunosuppression, such as inhibition of TGF-[, may represent a promising strategy for future immunotherapeutic approaches.

  20. Linking of mPGES-1 and iNOS activates stem-like phenotype in EGFR-driven epithelial tumor cells.

    PubMed

    Terzuoli, Erika; Finetti, Federica; Costanza, Filomena; Giachetti, Antonio; Ziche, Marina; Donnini, Sandra

    2017-03-01

    Inflammatory prostaglandin E-2 (PGE-2) favors cancer progression in epithelial tumors characterized by persistent oncogene input. However, its effects on tumor cell stemness are poorly understood at molecular level. Here we describe two epithelial tumor cells A431 and A459, originating from human lung and skin tumors, in which epithelial growth factor (EGF) induces sequential up-regulation of mPGES-1 and iNOS enzymes, producing an inflammatory intracellular milieu. We demonstrated that concerted action of EGF, mPGES-1 and iNOS causes sharp changes in cell phenotype demonstrated by acquisition of stem-cell features and activation of the epithelial-mesenchymal transition (EMT). When primed with EGF, epithelial tumor cells transfected with mPGES-1 or iNOS to ensure steady enzyme levels display major stem-like and EMT markers, such as reduction in E-cadherin with a concomitant rise in vimentin, ALDH-1, CD133 and ALDH activity. Tumorsphere studies with these cells show increased sphere number and size, enhanced migratory and clonogenic capacity and sharp changes in EMT markers, indicating activation of this process. The concerted action of the enzymes forms a well-orchestrated cascade where expression of iNOS depends on overexpression of mPGES-1. Indeed, we show that through its downstream effectors (PGE-2, PKA, PI3K/Akt), mPGES-1 recruits non-canonical transcription factors, thus facilitating iNOS production. In conclusion, we propose that the initial event leading to tumor stem-cell activation may be a leveraged intrinsic mechanism in which all players are either inherent constituents (EGF) or highly inducible proteins (mPGES-1, iNOS) of tumor cells. We suggest that incipient tumor aggressiveness may be moderated by reducing pivotal input of mPGES-1.

  1. Isolation and characterization of squamous cell carcinoma-derived stem-like cells: role in tumor formation.

    PubMed

    Dallaglio, Katiuscia; Petrachi, Tiziana; Marconi, Alessandra; Truzzi, Francesca; Lotti, Roberta; Saltari, Annalisa; Morandi, Paolo; Puviani, Mario; Maiorana, Antonino; Roop, Dennis R; Pincelli, Carlo

    2013-09-26

    In human epidermis, keratinocyte stem cells (KSC) are characterized by high levels of β1-integrin, resulting in the rapid adhesion to type IV collagen. Since epithelial tumors originate from KSC, we evaluated the features of rapidly adhering (RAD) keratinocytes derived from primary human squamous cell carcinoma of the skin (cSCC). RAD cells expressed higher levels of survivin, a KSC marker, as compared to non-rapidly adhering (NRAD) cells. Moreover, RAD cells proliferated to a greater extent and were more efficient in forming colonies than NRAD cells. RAD cells also migrated significantly better than NRAD cells. When seeded in a silicone chamber and grafted onto the back skin of NOD SCID mice, RAD cells formed tumors 2-4 fold bigger than those derived from NRAD cells. In tumors derived from RAD cells, the mitotic index was significantly higher than in those derived from NRAD cells, while Ki-67 and survivin expression were more pronounced in RAD tumors. This study suggests that SCC RAD stem cells play a critical role in the formation and development of epithelial tumors.

  2. Isolation and Characterization of Squamous Cell Carcinoma-Derived Stem-like Cells: Role in Tumor Formation

    PubMed Central

    Dallaglio, Katiuscia; Petrachi, Tiziana; Marconi, Alessandra; Truzzi, Francesca; Lotti, Roberta; Saltari, Annalisa; Morandi, Paolo; Puviani, Mario; Maiorana, Antonino; Roop, Dennis R.; Pincelli, Carlo

    2013-01-01

    In human epidermis, keratinocyte stem cells (KSC) are characterized by high levels of β1-integrin, resulting in the rapid adhesion to type IV collagen. Since epithelial tumors originate from KSC, we evaluated the features of rapidly adhering (RAD) keratinocytes derived from primary human squamous cell carcinoma of the skin (cSCC). RAD cells expressed higher levels of survivin, a KSC marker, as compared to non-rapidly adhering (NRAD) cells. Moreover, RAD cells proliferated to a greater extent and were more efficient in forming colonies than NRAD cells. RAD cells also migrated significantly better than NRAD cells. When seeded in a silicone chamber and grafted onto the back skin of NOD SCID mice, RAD cells formed tumors 2–4 fold bigger than those derived from NRAD cells. In tumors derived from RAD cells, the mitotic index was significantly higher than in those derived from NRAD cells, while Ki-67 and survivin expression were more pronounced in RAD tumors. This study suggests that SCC RAD stem cells play a critical role in the formation and development of epithelial tumors. PMID:24077125

  3. Neonatal Brain Tumors: A Review

    PubMed Central

    Bodeliwala, Shaam; Kumar, Vikas; Singh, Daljit

    2017-01-01

    Brain tumors in neonatal age group is uncommon comparing with older children and adults. In older children brain tumors are commonly infratentorial, where as in neonates, they are supratentorial. Though extracranial tumors are commoner in neonates, brain tumors cause 5-20% deaths approximately. We are presenting a review on brain tumors in neonates. PMID:28770127

  4. Familiality in brain tumors

    PubMed Central

    Blumenthal, Deborah T.; Cannon-Albright, Lisa A.

    2008-01-01

    Background: Familiality in brain tumors is not definitively substantiated. Methods: We used the Utah Population Data Base (UPDB), a genealogy representing the Utah pioneers and their descendants, record-linked to statewide cancer records, to describe the familial nature of primary brain cancer. We examined the familial clustering of primary brain tumors, including subgroups defined by histologic type and age at diagnosis. The UPDB includes 1,401 primary brain tumor cases defined as astrocytoma or glioblastoma, all with at least three generations of genealogy data. We tested the hypothesis of excess relatedness of brain tumor cases using the Genealogical Index of Familiality method. We estimated relative risks for brain tumors in relatives using rates of brain tumors estimated internally. Results: Significant excess relatedness was observed for astrocytomas and glioblastomas considered as a group (n = 1,401), for astrocytomas considered separately (n = 744), but not for glioblastomas considered separately (n = 658). Significantly increased risks to first- and second-degree relatives for astrocytomas were identified for relatives of astrocytomas considered separately. Significantly increased risks to first-degree relatives, but not second degree, were observed for astrocytoma and glioblastoma cases considered together, and for glioblastoma cases considered separately. Conclusions: This study provides strong evidence for a familial contribution to primary brain cancer risk. There is evidence that this familial aspect includes not only shared environment, but also a heritable component. Extended high-risk brain tumor pedigrees identified in the UPDB may provide the opportunity to identify predisposition genes responsible for familial brain tumors. GLOSSARY GBM = glioblastoma; GIF = Genealogical Index of Familiality; HGG = high-grade gliomas; ICD-O = International Classification of Disease–Oncology; LGG = low-grade gliomas; RR = relative risks; SEER = Surveillance

  5. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway

    SciTech Connect

    An, Hyunsook; Kim, Ji Young; Lee, Nahyun; Cho, Youngkwan; Oh, Eunhye; Seo, Jae Hong

    2015-10-30

    Cancer stem cells (CSCs) play important roles in the formation, growth and recurrence of tumors, particularly following therapeutic intervention. Salinomycin has received recent attention for its ability to target breast cancer stem cells (BCSCs), but the mechanisms of action involved are not fully understood. In the present study, we sought to investigate the mechanisms responsible for salinomycin's selective targeting of BCSCs and its anti-tumor activity. Salinomycin suppressed cell viability, concomitant with the downregulation of cyclin D1 and increased p27{sup kip1} nuclear accumulation. Mammosphere formation assays revealed that salinomycin suppresses self-renewal of ALDH1-positive BCSCs and downregulates the transcription factors Nanog, Oct4 and Sox2. TUNEL analysis of MDA-MB-231-derived xenografts revealed that salinomycin administration elicited a significant reduction in tumor growth with a marked downregulation of ALDH1 and CD44 levels, but seemingly without the induction of apoptosis. Our findings shed further light on the mechanisms responsible for salinomycin's effects on BCSCs. - Highlights: • Salinomycin suppresses mammosphere formation. • Salinomycin reduces ALDH1 activity and downregulates Nanog, Oct4 and Sox2. • Salinomycin targets BCSCs via an apoptosis-independent pathway.

  6. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway.

    PubMed

    An, Hyunsook; Kim, Ji Young; Lee, Nahyun; Cho, Youngkwan; Oh, Eunhye; Seo, Jae Hong

    2015-10-30

    Cancer stem cells (CSCs) play important roles in the formation, growth and recurrence of tumors, particularly following therapeutic intervention. Salinomycin has received recent attention for its ability to target breast cancer stem cells (BCSCs), but the mechanisms of action involved are not fully understood. In the present study, we sought to investigate the mechanisms responsible for salinomycin's selective targeting of BCSCs and its anti-tumor activity. Salinomycin suppressed cell viability, concomitant with the downregulation of cyclin D1 and increased p27(kip1) nuclear accumulation. Mammosphere formation assays revealed that salinomycin suppresses self-renewal of ALDH1-positive BCSCs and downregulates the transcription factors Nanog, Oct4 and Sox2. TUNEL analysis of MDA-MB-231-derived xenografts revealed that salinomycin administration elicited a significant reduction in tumor growth with a marked downregulation of ALDH1 and CD44 levels, but seemingly without the induction of apoptosis. Our findings shed further light on the mechanisms responsible for salinomycin's effects on BCSCs.

  7. Brain Tumor Statistics

    MedlinePlus

    ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Press Releases Headlines Newsletter ... About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information ...

  8. Epilepsy and brain tumors

    PubMed Central

    ENGLOT, DARIO J.; CHANG, EDWARD F.; VECHT, CHARLES J.

    2016-01-01

    Seizures are common in patients with brain tumors, and epilepsy can significantly impact patient quality of life. Therefore, a thorough understanding of rates and predictors of seizures, and the likelihood of seizure freedom after resection, is critical in the treatment of brain tumors. Among all tumor types, seizures are most common with glioneuronal tumors (70–80%), particularly in patients with frontotemporal or insular lesions. Seizures are also common in individuals with glioma, with the highest rates of epilepsy (60–75%) observed in patients with low-grade gliomas located in superficial cortical or insular regions. Approximately 20–50% of patients with meningioma and 20–35% of those with brain metastases also suffer from seizures. After tumor resection, approximately 60–90% are rendered seizure-free, with most favorable seizure outcomes seen in individuals with glioneuronal tumors. Gross total resection, earlier surgical therapy, and a lack of generalized seizures are common predictors of a favorable seizure outcome. With regard to anticonvulsant medication selection, evidence-based guidelines for the treatment of focal epilepsy should be followed, and individual patient factors should also be considered, including patient age, sex, organ dysfunction, comorbidity, or cotherapy. As concomitant chemotherapy commonly forms an essential part of glioma treatment, enzyme-inducing anticonvulsants should be avoided when possible. Seizure freedom is the ultimate goal in the treatment of brain tumor patients with epilepsy, given the adverse effects of seizures on quality of life. PMID:26948360

  9. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-07

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced

  10. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells

    PubMed Central

    Okuda, Hiroshi; Kobayashi, Aya; Xia, Bo; Watabe, Misako; Pai, Sudha K; Hirota, Shigeru; Xing, Fei; Liu, Wen; Pandey, Puspa R; Fukuda, Koji; Modur, Vishnu; Ghosh, Arnab; Wilber, Andrew; Watabe, Kounosuke

    2012-01-01

    The molecular mechanisms that operate within the organ microenvironment to support metastatic progression remain unclear. Here we report that upregulation of the hyaluronan synthase HAS2 occurs in highly metastatic breast stem-like cancer cells (CSCs) defined by CD44+/CD24−/ESA+ phenotype, where it plays a critical role in the generation of a pro-metastatic microenvironment in breast cancer. HAS2 was critical for interaction of CSCs with tumor associated macrophages (TAMs), leading to enhanced secretion of PDGF-BB from TAMs which then activated stromal cells and enhanced CSC self-renewal. Loss of HAS2 in CSCs or treatment with 4-methylumbelliferone (4-MU), an inhibitor of hyaluronan synthases which blocks hyaluronan production, drastically reduced the incidence and growth of metastatic lesions in vitro or in vivo, respectively. Taken together, our findings demonstrate a critical role for HAS2 in the development of a pro-metastatic microenvironment and suggest that HAS2 inhibitors can act as anti-metastatic agents that disrupt a paracrine growth factor loop within this microenvironment. PMID:22113945

  11. Imaging of brain tumors.

    PubMed

    Chourmouzi, Danai; Papadopoulou, Elissabet; Marias, Kostantinos; Drevelegas, Antonios

    2014-10-01

    Neuroimaging plays a crucial role in diagnosis of brain tumors and in the decision-making process for therapy. Functional imaging techniques can reflect cellular density (diffusion imaging), capillary density (perfusion techniques), and tissue biochemistry (magnetic resonance [MR] spectroscopy). In addition, cortical activation imaging (functional MR imaging) can identify various loci of eloquent cerebral cortical function. Combining these new tools can increase diagnostic specificity and confidence. Familiarity with conventional and advanced imaging findings facilitates accurate diagnosis, differentiation from other processes, and optimal patient treatment. This article is a practical synopsis of pathologic, clinical, and imaging spectra of most common brain tumors. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Pediatric brain tumor cell lines.

    PubMed

    Xu, Jingying; Margol, Ashley; Asgharzadeh, Shahab; Erdreich-Epstein, Anat

    2015-02-01

    Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.

  13. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  14. Drugs Approved for Brain Tumors

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Brain Tumors This page lists cancer drugs approved by ... that are not listed here. Drugs Approved for Brain Tumors Afinitor (Everolimus) Afinitor Disperz (Everolimus) Avastin (Bevacizumab) ...

  15. Brain tumors in infants

    PubMed Central

    Ghodsi, Seyyed Mohammad; Habibi, Zohreh; Hanaei, Sara; Moradi, Ehsan; Nejat, Farideh

    2015-01-01

    Background: Brain tumors in infants have different clinical presentations, anatomical distribution, histopathological diagnosis, and clinical prognosis compared with older children. Materials and Methods: A retrospective analysis was done in patients <12 months old who were operated on for primary brain tumor in Children's Hospital Medical Center since 2008 to 2014. Results: Thirty-one infants, 20 males and 11 females, with the mean age of 7.13 months (0.5–12) were enrolled. There were 16 supratentorial and 15 infratentorial tumors. The presenting symptoms included increased head circumference (16); bulge fontanel (15); vomiting (15); developmental regression (11); sunset eye (7); seizure (4); loss of consciousness (4); irritability (3); nystagmus (2); visual loss (2); hemiparesis (2); torticollis (2); VI palsy (3); VII, IX, X nerve palsy (each 2); and ptosis (1). Gross total and subtotal resection were performed in 19 and 11 cases, respectively. Fourteen patients needed external ventricular drainage in the perioperative period, from whom four infants required a ventriculoperitoneal shunt. One patient underwent ventriculoperitoneal shunting without tumor resection. The most common histological diagnoses were primitive neuroectodermal tumor (7), followed by anaplastic ependymoma (6) and grade II ependymoma. The rate of 30-day mortality was 19.3%. Eighteen patients are now well-controlled with or without adjuvant therapy (overall survival; 58%), from whom 13 cases are tumor free (disease free survival; 41.9%), 3 cases have residual masses with fixed or decreased size (progression-free survival; 9.6%), and 2 cases are still on chemotherapy. Conclusion: Brain tumors in infants should be treated with surgical resection, followed by chemotherapy when necessary. PMID:26962338

  16. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3.

    PubMed

    Sengupta, S; Nagalingam, A; Muniraj, N; Bonner, M Y; Mistriotis, P; Afthinos, A; Kuppusamy, P; Lanoue, D; Cho, S; Korangath, P; Shriver, M; Begum, A; Merino, V F; Huang, C-Y; Arbiser, J L; Matsui, W; Győrffy, B; Konstantopoulos, K; Sukumar, S; Marignani, P A; Saxena, N K; Sharma, D

    2017-06-05

    Tumor suppressor and upstream master kinase Liver kinase B1 (LKB1) plays a significant role in suppressing cancer growth and metastatic progression. We show that low-LKB1 expression significantly correlates with poor survival outcome in breast cancer. In line with this observation, loss-of-LKB1 rendered breast cancer cells highly migratory and invasive, attaining cancer stem cell-like phenotype. Accordingly, LKB1-null breast cancer cells exhibited an increased ability to form mammospheres and elevated expression of pluripotency-factors (Oct4, Nanog and Sox2), properties also observed in spontaneous tumors in Lkb1(-/-) mice. Conversely, LKB1-overexpression in LKB1-null cells abrogated invasion, migration and mammosphere-formation. Honokiol (HNK), a bioactive molecule from Magnolia grandiflora increased LKB1 expression, inhibited individual cell-motility and abrogated the stem-like phenotype of breast cancer cells by reducing the formation of mammosphere, expression of pluripotency-factors and aldehyde dehydrogenase activity. LKB1, and its substrate, AMP-dependent protein kinase (AMPK) are important for HNK-mediated inhibition of pluripotency factors since LKB1-silencing and AMPK-inhibition abrogated, while LKB1-overexpression and AMPK-activation potentiated HNK's effects. Mechanistic studies showed that HNK inhibited Stat3-phosphorylation/activation in an LKB1-dependent manner, preventing its recruitment to canonical binding-sites in the promoters of Nanog, Oct4 and Sox2. Thus, inhibition of the coactivation-function of Stat3 resulted in suppression of expression of pluripotency factors. Further, we showed that HNK inhibited breast tumorigenesis in mice in an LKB1-dependent manner. Molecular analyses of HNK-treated xenografts corroborated our in vitro mechanistic findings. Collectively, these results present the first in vitro and in vivo evidence to support crosstalk between LKB1, Stat3 and pluripotency factors in breast cancer and effective anticancer modulation

  17. CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment

    PubMed Central

    Würth, Roberto; Bajetto, Adriana; Harrison, Jeffrey K.; Barbieri, Federica; Florio, Tullio

    2014-01-01

    Chemokines are crucial autocrine and paracrine players in tumor development. In particular, CXCL12, through its receptors CXCR4 and CXCR7, affects tumor progression by controlling cancer cell survival, proliferation and migration, and, indirectly, via angiogenesis or recruiting immune cells. Glioblastoma (GBM) is the most prevalent primary malignant brain tumor in adults and despite current multimodal therapies it remains almost incurable. The aggressive and recurrent phenotype of GBM is ascribed to high growth rate, invasiveness to normal brain, marked angiogenesis, ability to escape the immune system and resistance to standard of care therapies. Tumor molecular and cellular heterogeneity severely hinders GBM therapeutic improvement. In particular, a subpopulation of chemo- and radio-therapy resistant tumorigenic cancer stem–like cells (CSCs) is believed to be the main responsible for tumor cell dissemination to the brain. GBM cells display heterogeneous expression levels of CXCR4 and CXCR7 that are overexpressed in CSCs, representing a molecular correlate for the invasive potential of GBM. The microenvironment contribution in GBM development is increasingly emphasized. An interplay exists between CSCs, differentiated GBM cells, and the microenvironment, mainly through secreted chemokines (e.g., CXCL12) causing recruitment of fibroblasts, endothelial, mesenchymal and inflammatory cells to the tumor, via specific receptors such as CXCR4. This review covers recent developments on the role of CXCL12/CXCR4–CXCR7 networks in GBM progression and the potential translational impact of their targeting. The biological and molecular understanding of the heterogeneous GBM cell behavior, phenotype and signaling is still limited. Progress in the identification of chemokine-dependent mechanisms that affect GBM cell survival, trafficking and chemo-attractive functions, opens new perspectives for development of more specific therapeutic approaches that include chemokine

  18. EGFR Amplification and Glioblastoma Stem-Like Cells

    PubMed Central

    Liffers, Katrin; Lamszus, Katrin

    2015-01-01

    Glioblastoma (GBM), the most common malignant brain tumor in adults, contains a subpopulation of cells with a stem-like phenotype (GS-cells). GS-cells can be maintained in vitro using serum-free medium supplemented with epidermal growth factor, basic fibroblast growth factor-2, and heparin. However, this method does not conserve amplification of the Epidermal Growth Factor Receptor (EGFR) gene, which is present in over 50% of all newly diagnosed GBM cases. GS-cells with retained EGFR amplification could overcome the limitations of current in vitro model systems and contribute significantly to preclinical research on EGFR-targeted therapy. This review recapitulates recent methodological approaches to expand stem-like cells from GBM with different EGFR status in order to maintain EGFR-dependent intratumoral heterogeneity in vitro. Further, it will summarize the current knowledge about the impact of EGFR amplification and overexpression on the stem-like phenotype of GBM-derived GS-cells and different approaches to target the EGFR-dependent GS-cell compartment of GBM. PMID:26136784

  19. Augmented IFN-γ and TNF-α Induced by Probiotic Bacteria in NK Cells Mediate Differentiation of Stem-Like Tumors Leading to Inhibition of Tumor Growth and Reduction in Inflammatory Cytokine Release; Regulation by IL-10

    PubMed Central

    Bui, Vickie T.; Tseng, Han-Ching; Kozlowska, Anna; Maung, Phyu Ou; Kaur, Kawaljit; Topchyan, Paytsar; Jewett, Anahid

    2015-01-01

    Our previous reports demonstrated that the magnitude of natural killer (NK) cell-mediated cytotoxicity correlate directly with the stage and level of differentiation of tumor cells. In addition, we have shown previously that activated NK cells inhibit growth of cancer cells through induction of differentiation, resulting in the resistance of tumor cells to NK cell-mediated cytotoxicity through secreted cytokines, as well as direct NK-tumor cell contact. In this report, we show that in comparison to IL-2 + anti-CD16mAb-treated NK cells, activation of NK cells by probiotic bacteria (sAJ2) in combination with IL-2 and anti-CD16mAb substantially decreases tumor growth and induces maturation, differentiation, and resistance of oral squamous cancer stem cells, MIA PaCa-2 stem-like/poorly differentiated pancreatic tumors, and healthy stem cells of apical papillae through increased secretion of IFN-γ and TNF-α, as well as direct NK-tumor cell contact. Tumor resistance to NK cell-mediated killing induced by IL-2 + anti-CD16mAb + sAJ2-treated NK cells is induced by combination of IFN-γ and TNF-α since antibodies to both, and not each cytokine alone, were able to restore tumor sensitivity to NK cells. Increased surface expression of CD54, B7H1, and MHC-I on NK-differentiated tumors was mediated by IFN-γ since the addition of anti-IFN-γ abolished their increase and restored the ability of NK cells to trigger cytokine and chemokine release; whereas differentiated tumors inhibited cytokine release by the NK cells. Monocytes synergize with NK cells in the presence of probiotic bacteria to induce regulated differentiation of stem cells through secretion of IL-10 resulting in resistance to NK cell-mediated cytotoxicity and inhibition of cytokine release. Therefore, probiotic bacteria condition activated NK cells to provide augmented differentiation of cancer stem cells resulting in inhibition of tumor growth, and decreased inflammatory cytokine release. PMID

  20. Brain Tumor Epidemiology Consortium (BTEC)

    Cancer.gov

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  1. Origins of Brain Tumor Macrophages.

    PubMed

    De Palma, Michele

    2016-12-12

    The ontogeny of brain-tumor-associated macrophages is poorly understood. New findings indicate that both resident microglia and blood-derived monocytes generate the pool of macrophages that infiltrate brain tumors of either primary or metastatic origin. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Childhood Brain Tumor Epidemiology: A Brain Tumor Epidemiology Consortium Review

    PubMed Central

    Johnson, Kimberly J.; Cullen, Jennifer; Barnholtz-Sloan, Jill S.; Ostrom, Quinn T.; Langer, Chelsea E.; Turner, Michelle C.; McKean-Cowdin, Roberta; Fisher, James L.; Lupo, Philip J.; Partap, Sonia; Schwartzbaum, Judith A.; Scheurer, Michael E.

    2014-01-01

    Childhood brain tumors are the most common pediatric solid tumor and include several histological subtypes. Although progress has been made in improving survival rates for some subtypes, understanding of risk factors for childhood brain tumors remains limited to a few genetic syndromes and ionizing radiation to the head and neck. In this report, we review descriptive and analytical epidemiology childhood brain tumor studies from the past decade and highlight priority areas for future epidemiology investigations and methodological work that is needed to advance our understanding of childhood brain tumor causes. Specifically, we summarize the results of a review of studies published since 2004 that have analyzed incidence and survival in different international regions and that have examined potential genetic, immune system, developmental and birth characteristics, and environmental risk factors. PMID:25192704

  3. NOR1 Suppresses Cancer Stem-Like Cells Properties of Tumor Cells via the Inhibition of the AKT-GSK-3β-Wnt/β-catenin-ALDH1A1 Signal Circuit.

    PubMed

    Wang, Wei; Yi, Mei; Chen, Shengnan; Li, Junjun; Zhang, Haijing; Xiong, Wei; Li, Guiyuan; Li, Xiaoling; Xiang, Bo

    2017-10-01

    Cancer stem cells (CSCs) play a key role in tumor radiotherapy and chemotherapy resistance, relapse, and metastasis, and are primarily maintained in a resting state in vivo. The failure of conventional therapies to target CSCs is the main cause of treatment failure. The discovery of CSCs in nasopharyngeal carcinoma (NPC) tumors is becoming more prevalent; however, the understanding of the mechanisms underlying the maintenance of tumor stemness is still limited. We previously cloned NOR1, a tumor suppressor gene downregulated in NPC cell lines and tissues. In this study, we demonstrate that Wnt/β-catenin and ALDH1A1 form a signal circuit and that NOR1 antagonizes the tumor stem cell-like phenotype in NPC cell lines: the ectopic overexpression of NOR1 reduced β-catenin and ALDH1A1 expression; β-catenin/TCF4 targeted the regulation of ALDH1A1 transcription in NPC cells; silencing ALDH1A1 reduced AKT (total and phosphorylated) and GSK-3β (phosphorylated) expression; and eventually feedback decreased β-catenin expression levels. We also found that NOR1 expression decreased cancer stem-like cell properties of NPC cells, reduced their ability to form tumor spheroids in vitro, reduced tumorigenicity in nude mice in vivo, and increased sensitivity to chemotherapy agents. Taken together, our findings illustrated a new function of NOR1 that suppresses cancer stem-like cell properties in tumor cells by inhibiting the AKT-GSK-3β-Wnt/β-catenin-ALDH1A1 signal circuit. The study suggests that NOR1 deletion expression in NPC cells may be a potential molecular target for cancer stem cell therapy. J. Cell. Physiol. 232: 2829-2840, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Mechanism of brain tumor headache.

    PubMed

    Taylor, Lynne P

    2014-04-01

    Headaches occur commonly in all patients, including those who have brain tumors. Using the search terms "headache and brain tumors," "intracranial neoplasms and headache," "facial pain and brain tumors," "brain neoplasms/pathology," and "headache/etiology," we reviewed the literature from the past 78 years on the proposed mechanisms of brain tumor headache, beginning with the work of Penfield. Most of what we know about the mechanisms of brain tumor associated headache come from neurosurgical observations from intra-operative dural and blood vessel stimulation as well as intra-operative observations and anecdotal information about resolution of headache symptoms with various tumor-directed therapies. There is an increasing overlap between the primary and secondary headaches and they may actually share a similar biological mechanism. While there can be some criticism that the experimental work with dural and arterial stimulation produced head pain and not actual headache, when considered with the clinical observations about headache type, coupled with improvement after treatment of the primary tumor, we believe that traction on these structures, coupled with increased intracranial pressure, is clearly part of the genesis of brain tumor headache and may also involve peripheral sensitization with neurogenic inflammation as well as a component of central sensitization through trigeminovascular afferents on the meninges and cranial vessels. © 2014 American Headache Society.

  5. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells.

    PubMed

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0-AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres.

  6. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells

    PubMed Central

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0–AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres. PMID:26279619

  7. Precision radiotherapy for brain tumors

    PubMed Central

    Yan, Ying; Guo, Zhanwen; Zhang, Haibo; Wang, Ning; Xu, Ying

    2012-01-01

    OBJECTIVE: Precision radiotherapy plays an important role in the management of brain tumors. This study aimed to identify global research trends in precision radiotherapy for brain tumors using a bibliometric analysis of the Web of Science. DATA RETRIEVAL: We performed a bibliometric analysis of data retrievals for precision radiotherapy for brain tumors containing the key words cerebral tumor, brain tumor, intensity-modulated radiotherapy, stereotactic body radiation therapy, stereotactic ablative radiotherapy, imaging-guided radiotherapy, dose-guided radiotherapy, stereotactic brachytherapy, and stereotactic radiotherapy using the Web of Science. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed articles on precision radiotherapy for brain tumors which were published and indexed in the Web of Science; (b) type of articles: original research articles and reviews; (c) year of publication: 2002-2011. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) Corrected papers or book chapters. MAIN OUTCOME MEASURES: (1) Annual publication output; (2) distribution according to country; (3) distribution according to institution; (4) top cited publications; (5) distribution according to journals; and (6) comparison of study results on precision radiotherapy for brain tumors. RESULTS: The stereotactic radiotherapy, intensity-modulated radiotherapy, and imaging-guided radiotherapy are three major methods of precision radiotherapy for brain tumors. There were 260 research articles addressing precision radiotherapy for brain tumors found within the Web of Science. The USA published the most papers on precision radiotherapy for brain tumors, followed by Germany and France. European Synchrotron Radiation Facility, German Cancer Research Center and Heidelberg University were the most prolific research institutes for publications on precision radiotherapy for brain tumors. Among the top 13 research institutes publishing in this field, seven

  8. Glioblastoma Stem-Like Cells: Characteristics, Microenvironment, and Therapy

    PubMed Central

    Yi, Yang; Hsieh, I-Yun; Huang, Xiaojia; Li, Jie; Zhao, Wei

    2016-01-01

    Glioblastoma multiforme (GBM), grade IV astrocytoma, is the most fatal malignant primary brain tumor. GBM contains functional subsets of cells called glioblastoma stem-like cells (GSCs), which are radioresistant and chemoresistant and eventually lead to tumor recurrence. Recent studies showed that GSCs reside in particular tumor niches that are necessary to support their behavior. To successfully eradicate GBM growth and recurrence, new strategies selectively targeting GSCs and/or their microenvironmental niche should be designed. In this regard, here we focus on elucidating the molecular mechanisms that govern these GSC properties and on understanding the mechanism of the microenvironmental signals within the tumor mass. Moreover, to overcome the blood–brain barrier, which represents a critical limitation of GBM treatments, a new drug delivery system should be developed. Nanoparticles can be easily modified by different methods to facilitate delivery efficiency of chemotherapeutics, to enhance the accumulation within the tumors, and to promote the capacity for targeting the GSCs. Therefore, nanotechnology has become the most promising approach to GSC-targeting therapy. Additionally, we discussed the future of nanotechnology-based targeted therapy and point out the disadvantages that should be overcome. PMID:28003805

  9. Adolescent and Pediatric Brain Tumors

    MedlinePlus

    ... Children Pediatric Brain Tumor Diagnosis Family Impact Late Effects After Treatment Returning to School Pediatric Caregiver Resource Center About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials ...

  10. Brain tumor survivors speak out.

    PubMed

    Carlson-Green, Bonnie

    2009-01-01

    Although progress has been made in the treatment of childhood brain tumors,work remains to understand the complexities of disease, treatment, and contextual factors that underlie individual differences in outcome. A combination of both an idiographic approach (incorporating observations made by adult survivors of childhood brain tumors) and a nomothetic approach (reviewing the literature for brain tumor survivors as well as childhood cancer survivors) is presented. Six areas of concern are reviewed from both an idiographic and nomothetic perspective, including social/emotional adjustment, insurance, neurocognitive late effects, sexuality and relationships, employment, and where survivors accessed information about their disease and treatment and possible late effects. Guidelines to assist health care professionals working with childhood brain tumor survivors are offered with the goal of improving psychosocial and neurocognitive outcomes in this population.

  11. Curcumin blocks brain tumor formation.

    PubMed

    Purkayastha, Sudarshana; Berliner, Alexandra; Fernando, Suraj Shawn; Ranasinghe, Buddima; Ray, Indrani; Tariq, Hussnain; Banerjee, Probal

    2009-04-17

    Turmeric, an essential ingredient of culinary preparations of Southeast Asia, contains a major polyphenolic compound, named curcumin or diferuloylmethane, which eliminates cancer cells derived from a variety of peripheral tissues. Although in vitro experiments have addressed its anti-tumor property, no in vivo studies have explored its anti-cancer activity in the brain. Oral delivery of this food component has been less effective because of its low solubility in water.We show that a soluble formulation of curcumin crosses the blood–brain barrier but does not suppress normal brain cell viability. Furthermore, tail vein injection, or more effectively, intracerebral injection through a cannula, blocks brain tumor formation in mice that had already received an intracerebral bolus of mouse melanoma cells (B16F10).While exploring the mechanism of its action in vitro we observed that the solubilized curcumin causes activation of proapoptotic enzymes caspase 3/7 in human oligodendroglioma (HOG) and lung carcinoma (A549) cells, and mouse tumor cells N18(neuroblastoma), GL261 (glioma), and B16F10. A simultaneous decrease in cell viability is also revealed by MTT [3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide]assays. Further examination of the B16F10 cells showed that curcumin effectively suppresses Cyclin D1, P-NF-kB, BclXL, P-Akt, and VEGF, which explains its efficacy in blocking proliferation, survival, and invasion of the B16F10 cells in the brain. Taken together,solubilized curcumin effectively blocks brain tumor formation and also eliminates brain tumor cells. Therefore, judicious application of such injectable formulations of curcumin could be developed into a safe therapeutic strategy for treating brain tumors.

  12. Spectroscopic-guided brain tumor resection

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Toms, Steven A.; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2000-05-01

    A pilot in vivo study was conducted to investigate the feasibility of using optical spectroscopy for brain tumor margin detection. Fluorescence and diffuse reflectance spectra were acquired using a portable clinical spectroscopic system from normal brain tissues, tumors, and tumor margins in 21 brain tumor patients undergoing craniotomy. Results form this study show the potential of optical spectroscopy in detecting infiltrating tumor margins of primary brain tumors.

  13. [Brain tumor and headache.].

    PubMed

    Kiss, I; Franz, M; Kilian, M

    1994-09-01

    The possible association of brain tumour with headache was investigated in 100 patients seen for brain surgery. Preoperatively, 43 patients suffered from headache. These patients were thoroughly questioned about the nature of their pain. Investigation included the McGill Pain Questionnaire. In only 11 of the patients was headache the primary symptom of a brain tumour. Pain intensity was found to be lower in patients with brain tumour then in those with extracranial tumours or headache of other origins. Female subjects, patients under 50 years of age and those with elevated intracranial pressure experienced more intensive pain. Diurnal variation in pain intensity was observed in 60% of patients with headache. There was no evidence, however, of an association with elevated intracranial pressure. Our investigations yielded new information concerning the epidemology of headache accompanying brain tumours. Headache is not an early cardinal symptom of brain tumours, as was generally believed earlier. With the help of the McGill Pain Questionnaire a fine quantitative and qualitative characterization of headache of different origins could be made. The connection between tumour localization and pain lateralization, as well as the possible mechanisms of intracranial pain projection was extensively analysed. The interpretations of the results are at best hypotheses and they do not help determine why more than half of the patients with brain tumour did not experience headache.

  14. Brain Tumor Symptoms

    MedlinePlus

    ... be associated with the type, size, and/or location of the tumor, as well as the treatments used to manage it. Surgery, radiation, chemotherapy, and other treatments all have the potential to ... American ...

  15. T Cells Enhance Stem-Like Properties and Conditional Malignancy in Gliomas

    PubMed Central

    Irvin, Dwain K.; Jouanneau, Emmanuel; Duvall, Gretchen; Zhang, Xiao-xue; Zhai, Yuying; Sarayba, Danielle; Seksenyan, Akop; Panwar, Akanksha; Black, Keith L.; Wheeler, Christopher J.

    2010-01-01

    Background Small populations of highly tumorigenic stem-like cells (cancer stem cells; CSCs) can exist within, and uniquely regenerate cancers including malignant brain tumors (gliomas). Many aspects of glioma CSCs (GSCs), however, have been characterized in non-physiological settings. Methods We found gene expression similarity superiorly defined glioma “stemness”, and revealed that GSC similarity increased with lower tumor grade. Using this method, we examined stemness in human grade IV gliomas (GBM) before and after dendritic cell (DC) vaccine therapy. This was followed by gene expression, phenotypic and functional analysis of murine GL26 tumors recovered from nude, wild-type, or DC-vaccinated host brains. Results GSC similarity was specifically increased in post-vaccine GBMs, and correlated best to vaccine-altered gene expression and endogenous anti-tumor T cell activity. GL26 analysis confirmed immune alterations, specific acquisition of stem cell markers, specifically enhanced sensitivity to anti-stem drug (cyclopamine), and enhanced tumorigenicity in wild-type hosts, in tumors in proportion to anti-tumor T cell activity. Nevertheless, vaccine-exposed GL26 cells were no more tumorigenic than parental GL26 in T cell-deficient hosts, though they otherwise appeared similar to GSCs enriched by chemotherapy. Finally, vaccine-exposed GBM and GL26 exhibited relatively homogeneous expression of genes expressed in progenitor cells and/or differentiation. Conclusions T cell activity represents an inducible physiological process capable of proportionally enriching GSCs in human and mouse gliomas. Stem-like gliomas enriched by strong T cell activity, however, may differ from other GSCs in that their stem-like properties may be disassociated from increased tumor malignancy and heterogeneity under specific host immune conditions. PMID:20539758

  16. Small G protein Rac GTPases regulate the maintenance of glioblastoma stem-like cells in vitro and in vivo.

    PubMed

    Lai, Yun-Ju; Tsai, Jui-Cheng; Tseng, Ying-Ting; Wu, Meng-Shih; Liu, Wen-Shan; Lam, Hoi-Ian; Yu, Jei-Hwa; Nozell, Susan E; Benveniste, Etty N

    2017-03-14

    Glioblastoma is the most common and aggressive malignant brain tumor in adults. The existence of glioblastoma stem cells (GSCs) or stem-like cells (stemloids) may account for its invasiveness and high recurrence. Rac proteins belong to the Rho small GTPase subfamily which regulates cell movement, proliferation, and survival. To investigate whether Rac proteins can serve as therapeutic targets for glioblastoma, especially for GSCs or stemloids, we examined the potential roles of Rac1, Rac2 and Rac3 on the properties of tumorspheres derived from glioblastoma cell lines. Tumorspheres are thought to be glioblastoma stem-like cells. We showed that Rac proteins promote the STAT3 and ERK activation and enhance cell proliferation and colony formation of glioblastoma stem-like cells. Knockdown of Rac proteins reduces the expression of GSC markers, such as CD133 and Sox2. The in vivo effects of Rac proteins in glioblastoma were further studied in zebrafish and in the mouse xenotransplantation model. Knocking-down Rac proteins abolished the angiogenesis effect induced by the injected tumorspheres in zebrafish model. In the CD133+-U373-tumorsphere xenotransplanted mouse model, suppression of Rac proteins decreased the incidence of tumor formation and inhibited the tumor growth. Moreover, knockdown of Rac proteins reduced the sphere forming efficiency of cells derived from these tumors. In conclusion, not only Rac1 but also Rac2 and 3 are important for glioblastoma tumorigenesis and can serve as the potential therapeutic targets against glioblastoma and its stem-like cells.

  17. Brain Tumor Imaging.

    PubMed

    Brindle, Kevin M; Izquierdo-García, José L; Lewis, David Y; Mair, Richard J; Wright, Alan J

    2017-07-20

    Modern imaging techniques, particularly functional imaging techniques that interrogate some specific aspect of underlying tumor biology, have enormous potential in neuro-oncology for disease detection, grading, and tumor delineation to guide biopsy and resection; monitoring treatment response; and targeting radiotherapy. This brief review considers the role of magnetic resonance imaging and spectroscopy, and positron emission tomography in these areas and discusses the factors that limit translation of new techniques to the clinic, in particular, the cost and difficulties associated with validation in multicenter clinical trials.

  18. Cytogenetics of human brain tumors

    SciTech Connect

    Finkernagel, S.W.; Kletz, T.; Day-Salvatore, D.L.

    1994-09-01

    Chromosome studies of 55 brain tumors, including meningiomas, gliomas, astrocyomas and pituatary adenomas, were performed. Primary and first passage cultures were successfully obtained in 75% of these samples with an average of 18 G-banded metaphases analyzed per tumor. 44% of all the brain tumors showed numerical and or structural abnormalities. 46% of the primary and 38% of the first passage cultures showed similar numerical gains/losses and complex karyotypic changes. The most frequent numerical abnormalities (n {ge} 5) included loss of chromosomes 10, 22, and Y. The structural abnormalities most often seen involved 1p, 2, 5, 7, 17q and 19. This is an ongoing study which will attempt to correlate tumor type with specific karyotypic changes and to see if any of the observed chromosomal abnormalities provide prognostic indicators.

  19. [Brain tumors in nursing infants].

    PubMed

    Trujillo-Maldonado, A; Dávila-Gutiérrez, G; Escanero-Salazar, A; Paredes-Díaz, E; Alcalá-Negrete, H

    1991-11-01

    The purpose of this study was to determine the anatomical-pathological distribution of brain tumors in children under two years of age and their clinical characteristics (age, sex, time span from the start of symptoms or signs to the time the tumor was diagnosed, main clinical manifestations, evolution and prognosis). From 1981 to 1989, 16 children with brain tumors, under two years of age, were studied. The tumors arose in 13 patients during first year of life and during the second, in the remaining three. In 50% of the patients, the tumors were supratentorial. The histological diagnosis was made in all cases, finding the ependymoma the most frequent tumor, followed by the astrocytoma and other tumors: teratoma, choroid plexi papilloma. The increase in size was within the cephalic perimeter, with a risen fontanelle, irritability, vomiting and convulsive episodes, as main clinical manifestations. In 15 of the patients a partial or total resection of the tumor was performed, 6 were given radiotherapy and 2 chemotherapy. The prognosis correlated with the greatest surgical risk, the anatomical-pathological characteristics and the lateness in its diagnosis. We emphasize the greater morbi-mortality rate with respect to other pediatric ages.

  20. Brain tumors in irradiated monkeys.

    NASA Technical Reports Server (NTRS)

    Haymaker, W.; Miquel, J.; Rubinstein, L. J.

    1972-01-01

    A study was made of 32 monkeys which survived one to seven years after total body exposure to protons or to high-energy X rays. Among these 32 monkeys there were 21 which survived two years or longer after exposure to 200 to 800 rad. Glioblastoma multiforme developed in 3 of the 10 monkeys surviving three to five years after receiving 600 or 800 rad 55-MeV protons. Thus, the incidence of tumor development in the present series was far higher than the incidence of spontaneously developing brain tumors in monkeys cited in the literature. This suggests that the tumors in the present series may have been radiation-induced.

  1. Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma.

    PubMed

    Yan, Ming; Yang, Xihu; Wang, Lizhen; Clark, David; Zuo, Hui; Ye, Dongxia; Chen, Wantao; Zhang, Ping

    2013-11-01

    Patients with advanced head and neck squamous cell carcinoma (HNSCC) have a poor prognosis with the currently available therapy, and tumor recurrence is frequently observed. The discovery of specific membrane-associated cancer stem cell (CSC) markers is crucial for the development of novel therapeutic strategies to target these CSCs. To address this issue, we established sphere cultures to enrich CSCs and used them for plasma membrane proteomics to identify specific membrane signatures of the HNSCC spheres. Of a dataset that included a total of 376 identified proteins, 200 were bona fide membrane proteins. Among them, 123 proteins were at least 1.5-fold up- or down-regulated in the spheres relative to the adherent cultures. These proteins included cell adhesion molecules, receptors, and transporter proteins. Some of them play key roles in wnt, integrin, and TGFβ signaling pathways. When we compared our dataset with two published hESC membrane protein signatures, we found 18 proteins common to all three of the databases. CD166 and CD44 were two such proteins. Interestingly, the expression of CD166, rather than that of the well-established HNSCC CSC marker CD44, was significantly related to the malignant behavior of HNSCC. Relative to CD166(low) HNSCC cells, CD166(high) HNSCC cells had a greater sphere-formation ability in vitro and tumor formation ability in vivo. Patients whose tumors expressed high levels of CD166 had a significantly poorer clinical outcome than those whose tumors expressed low levels of CD166 (cohort 1: 96 cases, p = 0.040), whereas the level of CD44 expression had only a marginal influence on the clinical outcome of patients with HNSCC (p = 0.078). The level of CD166 expression in HNSCC tumors was also associated with the tumor recurrence rate (cohort 2: 104 cases, p = 0.016). This study demonstrates that CD166 is a valuable cell surface marker for the enrichment of HNSCC stem cells and that plasma membrane proteomics is a promising biological

  2. Neuropilin-1 is expressed by breast cancer stem-like cells and is linked to NF-κB activation and tumor sphere formation.

    PubMed

    Glinka, Yelena; Mohammed, Nada; Subramaniam, Venkateswaran; Jothy, Serge; Prud'homme, Gérald J

    2012-09-07

    Cancer stem cells (CSCs) initiate tumors and have a high resistance to conventional cancer therapy. Tranilast is an orally active drug of low toxicity that exerts inhibitory effects on breast CSCs. This appears to depend on its aryl hydrocarbon receptor (AHR) agonistic activity, but this receptor has diverse functions and it is unclear how CSCs are inhibited. CSCs generate tumor spheres in low-adherence cultures, and we employed the mammosphere-forming assay as a functional test for breast CSCs. Because NF-κB has a key role in mammosphere formation and CSC-mediated tumor initiation, we examined that pathway. We also examined the role of neuropilin-1 (Nrp1), which is a growth factor coreceptor linked to the tumorigenicity of some CSCs. We found that tranilast concurrently suppressed mammosphere formation, Nrp1 expression and constitutive NF-κB activation. Flow cytometric analysis revealed that a subpopulation of breast cancer cells bearing breast CSC markers also expressed Nrp1. A blocking anti-Nrp1 antibody suppressed mammosphere formation. We examined whether there was a link between Nrp1 and NF-κB activation. The siRNA knockdown of Nrp1 severely suppressed NF-κB activation and mammosphere formation. The phosphorylation of Akt and ERK1/2 was also reduced, but to a lesser extent. We conclude that Nrp1 plays a key role in mammosphere formation and this activity is linked to NF-κB activation. Thus, Nrp1 might be a target for therapy against breast CSCs, and the anticancer drug tranilast suppresses its expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Inhibition of heat-shock protein 90 sensitizes liver cancer stem-like cells to magnetic hyperthermia and enhances anti-tumor effect on hepatocellular carcinoma-burdened nude mice

    PubMed Central

    Yang, Rui; Tang, Qiusha; Miao, Fengqin; An, Yanli; Li, Mengfei; Han, Yong; Wang, Xihui; Wang, Juan; Liu, Peidang; Chen, Rong

    2015-01-01

    Purpose To explore the thermoresistance and expression of heat-shock protein 90 (HSP90) in magnetic hyperthermia-treated human liver cancer stem-like cells (LCSCs) and the effects of a heat-shock protein HSP90 inhibitor 17-allylamino-17-demethoxgeldanamycin (17-AAG) on hepatocellular carcinoma-burdened nude mice. Methods CD90+ LCSCs were isolated by magnetic-activated cell sorting from BEL-7404. Spheroid formation, proliferation, differentiation, drug resistance, and tumor formation assays were performed to identify stem cell characteristics. CD90-targeted thermosensitive magnetoliposomes (TMs)-encapsulated 17-AAG (CD90@17-AAG/TMs) was prepared by reverse-phase evaporation and its characteristics were studied. Heat tolerance in CD90+ LCSCs and the effect of CD90@17-AAG/TMs-mediated heat sensitivity were examined in vitro and in vivo. Results CD90+ LCSCs showed significant stem cell-like properties. The 17-AAG/TMs were successfully prepared and were spherical in shape with an average size of 128.9±7.7 nm. When exposed to magnetic hyperthermia, HSP90 was up-regulated in CD90+ LCSCs. CD90@17-AAG/TMs inhibited the activity of HSP90 and increased the sensitivity of CD90+ LCSCs to magnetic hyperthermia. Conclusion The inhibition of HSP90 could sensitize CD90+ LCSCs to magnetic hyperthermia and enhance its anti-tumor effects in vitro and in vivo. PMID:26677324

  4. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... Search Search En Español Category Cancer A-Z Brain and Spinal Cord Tumors in Adults If you have a brain or spinal cord tumor or are close to ... cope. Here you can find out all about brain and spinal cord tumors in adults, including risk ...

  5. More Complete Removal of Malignant Brain Tumors by Fluorescence-Guided Surgery

    ClinicalTrials.gov

    2016-05-13

    Benign Neoplasms, Brain; Brain Cancer; Brain Neoplasms, Benign; Brain Neoplasms, Malignant; Brain Tumor, Primary; Brain Tumor, Recurrent; Brain Tumors; Intracranial Neoplasms; Neoplasms, Brain; Neoplasms, Intracranial; Primary Brain Neoplasms; Primary Malignant Brain Neoplasms; Primary Malignant Brain Tumors; Gliomas; Glioblastoma

  6. Deregulated proliferation and differentiation in brain tumors

    PubMed Central

    Swartling, Fredrik J; Čančer, Matko; Frantz, Aaron; Weishaupt, Holger; Persson, Anders I

    2014-01-01

    Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment-resistance, suppress tumor growth, and prevent recurrence in patients. PMID:25416506

  7. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells.

    PubMed

    Colwell, Nicole; Larion, Mioara; Giles, Amber J; Seldomridge, Ashlee N; Sizdahkhani, Saman; Gilbert, Mark R; Park, Deric M

    2017-07-01

    Glioblastoma is the most common and aggressive malignant primary brain tumor. Cellular heterogeneity is a characteristic feature of the disease and contributes to the difficulty in formulating effective therapies. Glioma stem-like cells (GSCs) have been identified as a subpopulation of tumor cells that are thought to be largely responsible for resistance to treatment. Intratumoral hypoxia contributes to maintenance of the GSCs by supporting the critical stem cell traits of multipotency, self-renewal, and tumorigenicity. This review highlights the interaction of GSCs with the hypoxic tumor microenvironment, exploring the mechanisms underlying the contribution of GSCs to tumor vessel dynamics, immune modulation, and metabolic alteration. Published by Oxford University Press on behalf of the Society for Neuro-Oncology 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Target irradiation induced bystander effects between stem-like and non stem-like cancer cells.

    PubMed

    Liu, Yu; Kobayashi, Alisa; Maeda, Takeshi; Fu, Qibin; Oikawa, Masakazu; Yang, Gen; Konishi, Teruaki; Uchihori, Yukio; Hei, Tom K; Wang, Yugang

    2015-03-01

    Tumors are heterogeneous in nature and consist of multiple cell types. Among them, cancer stem-like cells (CSCs) are suggested to be the principal cause of tumor metastasis, resistance and recurrence. Therefore, understanding the behavior of CSCs in direct and indirect irradiations is crucial for clinical radiotherapy. Here, the CSCs and their counterpart non stem-like cancer cells (NSCCs) in human HT1080 fibrosarcoma cell line were sorted and labeled, then the two cell subtypes were mixed together and chosen separately to be irradiated via a proton microbeam. The radiation-induced bystander effect (RIBE) between the CSCs and NSCCs was measured by imaging 53BP1 foci, a widely used indicator for DNA double strand break (DSB). CSCs were found to be less active than NSCCs in both the generation and the response of bystander signals. Moreover, the nitric oxide (NO) scavenger c-PTIO can effectively alleviate the bystander effect in bystander NSCCs but not in bystander CSCs, indicating a difference of the two cell subtypes in NO signal response. To our knowledge, this is the first report shedding light on the RIBE between CSCs and NSCCs, which might contribute to a further understanding of the out-of-field effect in cancer radiotherapy.

  9. What You Need to Know about Brain Tumors

    MedlinePlus

    ... in the brain. These tumors are called primary brain tumors. Cancer that spreads to the brain from another part ... covers: How brain tumors are diagnosed Treatments for brain tumors, including taking part in cancer treatment research studies Problems that brain tumors might ...

  10. Survival Rates for Selected Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Diagnosis, and Staging Survival Rates for Selected Childhood Brain and Spinal Cord Tumors Survival rates are often ... Childhood Brain and Spinal Cord Tumors More In Brain and Spinal Cord Tumors in Children About Brain ...

  11. Stereotaxic interstitial irradiation of malignant brain tumors

    SciTech Connect

    Gutin, P.H.; Leibel, S.A.

    1985-11-01

    The authors discuss the feasibility of treatment of malignant tumors with brachytherapy. The history of brain tumor brachytherapy, its present day use, and future directions are detailed. 24 references.

  12. Brain Tumor-Related Epilepsy

    PubMed Central

    Maschio, Marta

    2012-01-01

    In patients with brain tumor (BT), seizures are the onset symptom in 20-40% of patients, while a further 20-45% of patients will present them during the course of the disease. These patients present a complex therapeutic profile and require a unique and multidisciplinary approach. The choice of antiepileptic drugs is challenging for this particular patient population because brain tumor-related epilepsy (BTRE) is often drug-resistant, has a strong impact on the quality of life and weighs heavily on public health expenditures. In BT patients, the presence of epilepsy is considered the most important risk factor for long-term disability. For this reason, the problem of the proper administration of medications and their potential side effects is of great importance, because good seizure control can significantly improve the patient’s psychological and relational sphere. In these patients, new generation drugs such as gabapentin, lacosamide, levetiracetam, oxcarbazepine, pregabalin, topiramate, zonisamide are preferred because they have fewer drug interactions and cause fewer side effects. Among the recently marketed drugs, lacosamide has demonstrated promising results and should be considered a possible treatment option. Therefore, it is necessary to develop a customized treatment plan for each individual patient with BTRE. This requires a vision of patient management concerned not only with medical therapies (pharmacological, surgical, radiological, etc.) but also with emotional and psychological support for the individual as well as his or her family throughout all stages of the illness. PMID:23204982

  13. Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells.

    PubMed

    Kathagen, Annegret; Schulte, Alexander; Balcke, Gerd; Phillips, Heidi S; Martens, Tobias; Matschke, Jakob; Günther, Hauke S; Soriano, Robert; Modrusan, Zora; Sandmann, Thomas; Kuhl, Carsten; Tissier, Alain; Holz, Mareike; Krawinkel, Lutz A; Glatzel, Markus; Westphal, Manfred; Lamszus, Katrin

    2013-11-01

    Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the "go or grow" potential of the cells. Our findings extend Warburg's observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.

  14. Drug delivery systems for brain tumor therapy.

    PubMed

    Rautioa, Jarkko; Chikhale, Prashant J

    2004-01-01

    Brain tumors are one of the most lethal forms of cancer. They are extremely difficult to treat. Although, the rate of brain tumor incidence is relatively low, the field clearly lacks therapeutic strategies capable of overcoming barriers for effective delivery of drugs to brain tumors. Clinical failure of many potentially effective therapeutics for the treatment of brain tumors is usually not due to a lack of drug potency, but rather can be attributed to shortcomings in the methods by which a drug is delivered to the brain and into brain tumors. In response to the lack of efficacy of conventional drug delivery methods, extensive efforts have been made to develop novel strategies to overcome the obstacles for brain tumor drug delivery. The challenge is to design therapeutic strategies that deliver drugs to brain tumors in a safe and effective manner. This review provides some insight into several potential techniques that have been developed to improve drug delivery to brain tumors, and it should be helpful to clinicians and research scientists as well.

  15. Long Non-Coding RNA HOTAIR Regulates the Proliferation, Self-Renewal Capacity, Tumor Formation and Migration of the Cancer Stem-Like Cell (CSC) Subpopulation Enriched from Breast Cancer Cells

    PubMed Central

    Jiang, Rong; An, Ning; Wang, Xiaoshan; Liu, Bin

    2017-01-01

    Purpose Long non-coding RNAs (lncRNAs) play important roles in the malignant behavior of cancer. HOTAIR, a well-studied lncRNA, contributes to breast cancer development, and overexpression of HOTAIR predicts a poor prognosis. However, the regulatory role of HOTAIR in the cancer stem-like cell (CSC) subpopulation remains largely unknown. Our goal was to determine the regulatory functions of HOTAIR in the processes of self-renewal capacity, tumor formation and proliferation of CSCs derived from breast cancer. Methods We first enriched and incubated the CSC population derived from breast cancer cell line MCF7 (CSC-MCF7) or MDA-MB-231 (MB231, CSC-MB231). Self-renewal capacity and tumor formation were assessed in vitro and in vivo to determine the stemness of CSCs. We assessed the impact on ectopically upregulated or downregulated expression of HOTAIR in CSCs by soft agar, self-renewal capacity and CCK-8 assays. The functional domain of HOTAIR was determined by truncation. RT-qPCR and semiquantitative Western blotting were performed to detect the expression levels of genes of interest. Chromatin IP (ChIP) was employed to detect the transcriptional regulatory activity of p53 on its target gene. Results After the identification of CSC properties, RT-qPCR analysis revealed that HOTAIR, but not other cancer-associated lncRNAs, is highly upregulated in both CSC-MCF7 and CSC-MB231 populations compared with MCF7 and MB231 populations. By modulating the level of HOTAIR expression, we showed that HOTAIR tightly regulates the proliferation, colony formation, migration and self-renewal capacity of CSCs. Moreover, full-length HOTAIR transcriptionally inhibits miR-34a specifically, leading to upregulation of Sox2, which is targeted by miR-34a. Ectopic introduction of miR-34a mimics reverses the effects of HOTAIR on the physiological processes of CSCs, indicating that HOTAIR affects these processes, including self-renewal capacity; these effects are dependent on the regulation of Sox

  16. Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

    SciTech Connect

    Hyun, Kyung-Hwan; Yoon, Chang-Hwan; Kim, Rae-Kwon; Lim, Eun-Jung; An, Sungkwan; Park, Myung-Jin; Hyun, Jin-Won; Suh, Yongjoon; Kim, Min-Jung; Lee, Su-Jae

    2011-07-01

    A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133{sup +} cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.

  17. Harnessing the apoptotic programs in cancer stem-like cells.

    PubMed

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. © 2015 The Authors.

  18. Harnessing the apoptotic programs in cancer stem-like cells

    PubMed Central

    Wang, Ying-Hua; Scadden, David T

    2015-01-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. PMID:26253117

  19. Engineering challenges for brain tumor immunotherapy.

    PubMed

    Lyon, Johnathan G; Mokarram, Nassir; Saxena, Tarun; Carroll, Sheridan L; Bellamkonda, Ravi V

    2017-05-15

    Malignant brain tumors represent one of the most devastating forms of cancer with abject survival rates that have not changed in the past 60years. This is partly because the brain is a critical organ, and poses unique anatomical, physiological, and immunological barriers. The unique interplay of these barriers also provides an opportunity for creative engineering solutions. Cancer immunotherapy, a means of harnessing the host immune system for anti-tumor efficacy, is becoming a standard approach for treating many cancers. However, its use in brain tumors is not widespread. This review discusses the current approaches, and hurdles to these approaches in treating brain tumors, with a focus on immunotherapies. We identify critical barriers to immunoengineering brain tumor therapies and discuss possible solutions to these challenges. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. Dynamic perfusion CT in brain tumors.

    PubMed

    Yeung, Timothy Pok Chi; Bauman, Glenn; Yartsev, Slav; Fainardi, Enrico; Macdonald, David; Lee, Ting-Yim

    2015-12-01

    Dynamic perfusion CT (PCT) is an imaging technique for assessing the vascular supply and hemodynamics of brain tumors by measuring blood flow, blood volume, and permeability-surface area product. These PCT parameters provide information complementary to histopathologic assessments and have been used for grading brain tumors, distinguishing high-grade gliomas from other brain lesions, differentiating true progression from post-treatment effects, and predicting prognosis after treatments. In this review, the basic principles of PCT are described, and applications of PCT of brain tumors are discussed. The advantages and current challenges, along with possible solutions, of PCT are presented. Copyright © 2015. Published by Elsevier Ireland Ltd.

  1. [Brain tumors in patients primarly treated psychiatrically].

    PubMed

    Ristić, Dragana Ignjatović; Vesna, Pusicić; Sanja, Pejović; Dejanović, Slavica Djukić; Milovanović, Dragan R; Ravanić, Dragan B; Vladimir, Janjić

    2011-09-01

    Psychiatric symptoms are not rare manifestations of brain tumors. Brain tumors presented by symptoms of raised intracranial pressure, focal neurological signs, or convulsions are usually first seen by the neurologist or less frequently by the neurosurgeon in routine diagnostic procedures. On the other hand, when psychiatric symptoms are the first manifestation in "neurologically silent" brain tumors, the patients are sent to the psychiatrist for the treatment of psychiatric symptoms and brain tumors are left misdiagnosed for a long period of time. We presented three patients with the diagnosed brain tumor where psychiatrist had been the first specialist to be consulted. In all three cases neurological examination was generally unremarkable with no focal signs or features of raised intracranial pressure. CT scan demonstrated right insular tumor in a female patient with obsessive-compulsive disorder (OCD); right parietal temporal tumor in a patient with delusions and depression and left frontal tumor in a patient with history of alcohol dependency. Psychiatric symptoms/disorders in patients with brain tumors are not specific enough and can have the same clinical presentation as the genuine psychiatric disorder. Therefore, we emphasize the consideration of neuroimaging in patients with abrupt beginning of psychiatric symptoms, in those with a change in mental status, or when headaches suddenly appear or in cases of treatment resistant psychiatric disorders regardless the lack of neurological symptoms.

  2. [Features of brain stem tumors in children].

    PubMed

    Ciobanu, Antonela; Miron, Ingrith; Tansanu, I

    2012-01-01

    Brain stem tumors account for about 10-20% of childhood brain tumors. Peak incidence for these tumors occurs around age 6 to 7 years. Despite their severity and poor prognosis, brain stem tumors remain an area of intense research with regard to their diagnosis and management. In the interval 2003-2010, 8 children (4 girls and 4 boys) aged 2-13 years (mean age 6.82), diagnosed with brain stem tumors were followed up. Disease history, onset symptoms, complete physical, laboratory and imaging investigations, and individualized therapeutic approach have been reviewed. Family history was considered to be of particular clinical importance. Monitoring the disease progression was possible until the time of death (when it occurred in hospital) or by information provided by the family and family physician in cases where death occurred at patient's home. Clinical signs and symptoms depend on tumor location, its aggressiveness, and patient's age. Progressive neurological deficits, signs and symptoms caused by increased intracranial pressure, visual disturbances, behavioral disorders, seizures, endocrine disruption, failure to thrive may occur in various combinations. In only 50% of our cases the tumor could be removed. Imaging proved highly suggestive for a brain stem tumor. Histopathological examination diagnosed one pilocytic astrocytoma (grade I), one fibrillary astrocytoma (grade II), one anaplastic astrocytoma (grade III), and one glioblastoma multiforme (grade IV). In the remaining 4 cases imaging was suggestive for glial tumors. Multimodal therapy was used in 2 patients, 7 received adjuvant chemotherapy, and in 1 case no therapy was administered because the tumor rapidly progressed to death. Seven of our patients died on an average of 6.28 months after the diagnosis (range 2 to 9 months). A family history of brain tumors in 2 of our cases supports the hypothesis of genetic factors involvement. Brain stem tumors are still difficult to investigate, and the results on

  3. Notching on Cancer’s Door: Notch Signaling in Brain Tumors

    PubMed Central

    Teodorczyk, Marcin; Schmidt, Mirko H. H.

    2015-01-01

    Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1–4), which are activated by three Delta-like (Dll1/3/4) and two Serrate-like (Jagged1/2) ligands. Further, non-canonical Notch ligands such as epidermal growth factor like protein 7 (EGFL7) have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion, and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ-secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy. PMID:25601901

  4. The Microenvironmental Landscape of Brain Tumors.

    PubMed

    Quail, Daniela F; Joyce, Johanna A

    2017-03-13

    The brain tumor microenvironment (TME) is emerging as a critical regulator of cancer progression in primary and metastatic brain malignancies. The unique properties of this organ require a specific framework for designing TME-targeted interventions. Here, we discuss a number of these distinct features, including brain-resident cell types, the blood-brain barrier, and various aspects of the immune-suppressive environment. We also highlight recent advances in therapeutically targeting the brain TME in cancer. By developing a comprehensive understanding of the complex and interconnected microenvironmental landscape of brain malignancies we will greatly expand the range of therapeutic strategies available to target these deadly diseases.

  5. Overexpression of Large-Conductance Calcium-Activated Potassium Channels in Human Glioblastoma Stem-Like Cells and Their Role in Cell Migration.

    PubMed

    Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi

    2017-09-01

    Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway.

    PubMed

    Jijiwa, Mayumi; Demir, Habibe; Gupta, Snehalata; Leung, Crystal; Joshi, Kaushal; Orozco, Nicholas; Huang, Tiffany; Yildiz, Vedat O; Shibahara, Ichiyo; de Jesus, Jason A; Yong, William H; Mischel, Paul S; Fernandez, Soledad; Kornblum, Harley I; Nakano, Ichiro

    2011-01-01

    Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44(high) GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44(high) GBM but not from CD44(low) GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44(high) GBM, but not in CD44(low) GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKT pathway.

  7. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    SciTech Connect

    Kang, Khong Bee; Zhu Congju; Wong Yinling; Gao Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  8. Brain tumor immunotherapy: an immunologist's perspective.

    PubMed

    Lampson, Lois A

    2003-01-01

    Key concepts in brain tumor immunotherapy are reviewed. "Immunotherapy" can refer to a fully-developed, tumor-specific immune response, or to its individual cellular or molecular mediators. The immune response is initiated most efficiently in organized lymphoid tissue. After initiation, antigen-specific T lymphocytes (T cells) survey the tissues--including the brain. If the T cells re-encounter their antigen at a tumor site, they can be triggered to carry out their effector functions. T cells can attack tumor in many ways, directly and indirectly, through cell-cell contact, secreted factors, and attraction and activation of other cells, endogenous or blood-borne. Recent work expands the list of candidate tumor antigens: they are not limited to cell surface proteins and need not be absolutely tumor-specific. Once identified, tumor antigens can be targeted immunologically, or in novel ways. The immune response is under complex regulatory control. Most current work aims to enhance initiation of the response (for example, with tumor vaccines), rather than enhancing the effector phase at the tumor site. The effector phase includes a rich, interactive set of cells and mediators; some that are not usually stressed are of particular interest against tumor in the brain. Within the brain, immune regulation varies from site to site, and local neurochemicals (such as substance P or glutamate) can contribute to local control. Given the complexity of a tumor, the brain, and the immune response, animal models are essential, but more emphasis should be given to their limitations and to step-by-step analysis, rather than animal "cures".

  9. Bisacodyl and its cytotoxic activity on human glioblastoma stem-like cells. Implication of inositol 1,4,5-triphosphate receptor dependent calcium signaling.

    PubMed

    Dong, Jihu; Aulestia, Francisco J; Assad Kahn, Suzana; Zeniou, Maria; Dubois, Luiz Gustavo; El-Habr, Elias A; Daubeuf, François; Tounsi, Nassera; Cheshier, Samuel H; Frossard, Nelly; Junier, Marie-Pierre; Chneiweiss, Hervé; Néant, Isabelle; Moreau, Marc; Leclerc, Catherine; Haiech, Jacques; Kilhoffer, Marie-Claude

    2017-06-01

    Glioblastoma is the most common malignant brain tumor. The heterogeneity at the cellular level, metabolic specificities and plasticity of the cancer cells are a challenge for glioblastoma treatment. Identification of cancer cells endowed with stem properties and able to propagate the tumor in animal xenografts has opened a new paradigm in cancer therapy. Thus, to increase efficacy and avoid tumor recurrence, therapies need to target not only the differentiated cells of the tumor mass, but also the cancer stem-like cells. These therapies need to be effective on cells present in the hypoxic, slightly acidic microenvironment found within tumors. Such a microenvironment is known to favor more aggressive undifferentiated phenotypes and a slow-growing "quiescent state" that preserves the cells from chemotherapeutic agents, which mostly target proliferating cells. Based on these considerations, we performed a differential screening of the Prestwick Chemical Library of approved drugs on both proliferating and quiescent glioblastoma stem-like cells and identified bisacodyl as a cytotoxic agent with selectivity for quiescent glioblastoma stem-like cells. In the present study we further characterize bisacodyl activity and show its efficacy in vitro on clonal macro-tumorospheres, as well as in vivo in glioblastoma mouse models. Our work further suggests that bisacodyl acts through inhibition of Ca(2+) release from the InsP3 receptors. Copyright © 2017. Published by Elsevier B.V.

  10. Embryonal brain tumors and developmental control genes

    SciTech Connect

    Aguzzi, A.

    1995-12-31

    Cell proliferation in embryogenesis and neoplastic transformation is thought to be controlled by similar sets of regulatory genes. This is certainly true for tumors of embryonic origin, such as Ewing sarcoma, Wilms` tumor and retinoblastoma, in which developmental control genes are either activated as oncogenes to promote proliferation, or are inactivated to eliminate their growth suppressing function. However, to date little is known about the genetic events underlying the pathogenesis of medulloblastoma, the most common brain tumor in children, which still carries an unfavourable prognosis. None of the common genetic alterations identified in other neuroectodermal tumors, such as mutation of the p53 gene or amplification of tyrosine kinase receptor genes, could be uncovered as key events in the formation of medulloblastoma. The identification of regulatory genes which are expressed in this pediatric brain tumor may provide an alternative approach to gain insight into the molecular aspects of tumor formation.

  11. The proteomics of pediatric brain tumors.

    PubMed

    Anagnostopoulos, Athanasios K; Tsangaris, George T

    2014-10-01

    Pediatric tumors of the CNS are the leading cause of cancer-related mortality in children. In pediatric pathology, brain tumors constitute the most frequent solid malignancy. An unparalleled outburst of information in pediatric neuro-oncology research has been witnessed over the last few years, largely due to increased use of high-throughput technologies such as genomics, proteomics and meta-analysis tools. Input from these technologies gives scientists the advantage of early prognosis assessment, more accurate diagnosis and prospective curative intent in the pediatric brain tumor clinical setting. The present review aims to summarize current knowledge on research applying proteomics techniques or proteomics-based approaches performed on pediatric brain tumors. Proteins that can be used as potential disease markers or molecular targets, and their biological significance, are herein listed and discussed. Furthermore, future perspectives that proteomics technologies may offer regarding this devastating disorder are presented.

  12. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    MedlinePlus

    ... Children Early Detection, Diagnosis, and Staging How Are Brain and Spinal Cord Tumors Diagnosed in Children? Brain ... resonance angiography (MRA) or computerized tomographic angiography (CTA). Brain or spinal cord tumor biopsy Imaging tests such ...

  13. Validation techniques for quantitative brain tumors measurements.

    PubMed

    Salman, Y; Assal, M; Badawi, A; Alian, S; -M El-Bayome, M

    2005-01-01

    Quantitative measurements of tumor volume becomes more realistic with the use of imaging- particularly specially when the tumor have non-ellipsoidal morphology, which remains subtle, irregular and difficult to assess by visual metric and clinical examination. The quantitative measurements depend strongly on the accuracy of the segmentation technique. The validity of brain tumor segmentation methods is an important issue in medical imaging because it has a direct impact on many applications such as surgical planning and quantitative measurements of tumor volume. Our goal was to examine two popular segmentation techniques seeded region growing and active contour "snakes" to be compared against experts' manual segmentations as the gold standard. We illustrated these methods on brain tumor volume cases using MR imaging modality.

  14. Work productivity in brain tumor survivors.

    PubMed

    Feuerstein, Michael; Hansen, Jennifer A; Calvio, Lisseth C; Johnson, Leigh; Ronquillo, Jonne G

    2007-07-01

    To determine the association of symptom burden to work limitation among working survivors of malignant brain tumors. Working adults with malignant brain tumors (n = 95) and a non-cancer comparison (n = 131) group completed a web-based questionnaire. Measures of demographics, tumor type and treatment, fatigue, emotional distress, cognitive limitations, and factors that can positively impact work, including health behaviors and problem solving, were obtained. Survivors of malignant brain tumors reported higher levels of work limitations and time off from work than the non-cancer group. Higher levels of symptom burden, lower levels of health behaviors, and more negative problem solving orientation were characteristic of the brain tumor survivor group. These variables were not differentially associated with work limitations among brain cancer survivors or the comparison group. Depressive symptoms, fatigue, cognitive limitations, sleep, and negative problem solving orientation were independently associated with work limitations, accounting for 65% of the variance in work limitations. Despite higher levels of burden, poorer health behaviors, and negative problem solving coping style, modifiable factors account for most of the variance in work limitations for both groups. Efforts to modify these variables should be evaluated.

  15. Expression and Prognostic Value of Oct-4 in Astrocytic Brain Tumors

    PubMed Central

    Dahl Sørensen, Mia; Winther Kristensen, Bjarne

    2016-01-01

    Background Glioblastomas are the most frequent type of malignant primary brain tumor with a median overall survival less than 15 months. Therapy resistance of glioblastomas has been attributed to the presence of tumor initiating stem-like cells (TSCs). TSC-related markers have therefore been suggested to have promising potentials as prognostic markers in gliomas. Methodology/Principal Findings The aim of the present study was to investigate the expression and prognostic impact of the TSC-related marker Oct-4 in astrocytic brain tumors of increasing grade. In total 114 grade II, III and IV astrocytic brain tumors were immunohistochemically stained for Oct-4, and the fraction and intensity of Oct-4 positive cells were determined by morphometric analysis of full tumor sections. Oct-4 was expressed in all tumors, and the Oct-4 positive cell fraction increased with tumor grade (p = 0.045). There was no association between survival and Oct-4 positive cell fraction, neither when combining all tumor grades nor in analysis of individual grades. Oct-4 intensity was not associated with grade, but taking IDH1 status into account we found a tendency for high Oct-4 intensity to be associated with poor prognosis in anaplastic astrocytomas. Double immunofluorescence stainings showed co-localization in the perivascular niches of Oct-4 and two other TSC markers CD133 and nestin in glioblastomas. In some areas Oct-4 was expressed independently of CD133 and nestin. Conclusions In conclusion, high Oct-4 fraction was associated with tumor malignancy, but seemed to be without independent prognostic influence in glioblastomas. Identification of a potential prognostic value in anaplastic astrocytomas requires additional studies using larger patient cohorts. PMID:28030635

  16. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  17. Psychiatric aspects of brain tumors: A review.

    PubMed

    Madhusoodanan, Subramoniam; Ting, Mark Bryan; Farah, Tara; Ugur, Umran

    2015-09-22

    Infrequently, psychiatric symptoms may be the only manifestation of brain tumors. They may present with mood symptoms, psychosis, memory problems, personality changes, anxiety, or anorexia. Symptoms may be misleading, complicating the clinical picture. A comprehensive review of the literature was conducted regarding reports of brain tumors and psychiatric symptoms from 1956-2014. Search engines used include PubMed, Ovid, Psych Info, MEDLINE, and MedScape. Search terms included psychiatric manifestations/symptoms, brain tumors/neoplasms. Our literature search yielded case reports, case studies, and case series. There are no double blind studies except for post-diagnosis/-surgery studies. Early diagnosis is critical for improved quality of life. Symptoms that suggest work-up with neuroimaging include: new-onset psychosis, mood/memory symptoms, occurrence of new or atypical symptoms, personality changes, and anorexia without body dysmorphic symptoms. This article reviews the existing literature regarding the diagnosis and management of this clinically complex condition.

  18. Psychiatric aspects of brain tumors: A review

    PubMed Central

    Madhusoodanan, Subramoniam; Ting, Mark Bryan; Farah, Tara; Ugur, Umran

    2015-01-01

    Infrequently, psychiatric symptoms may be the only manifestation of brain tumors. They may present with mood symptoms, psychosis, memory problems, personality changes, anxiety, or anorexia. Symptoms may be misleading, complicating the clinical picture. A comprehensive review of the literature was conducted regarding reports of brain tumors and psychiatric symptoms from 1956-2014. Search engines used include PubMed, Ovid, Psych Info, MEDLINE, and MedScape. Search terms included psychiatric manifestations/symptoms, brain tumors/neoplasms. Our literature search yielded case reports, case studies, and case series. There are no double blind studies except for post-diagnosis/-surgery studies. Early diagnosis is critical for improved quality of life. Symptoms that suggest work-up with neuroimaging include: new-onset psychosis, mood/memory symptoms, occurrence of new or atypical symptoms, personality changes, and anorexia without body dysmorphic symptoms. This article reviews the existing literature regarding the diagnosis and management of this clinically complex condition. PMID:26425442

  19. Confronting pediatric brain tumors: parent stories.

    PubMed

    McMillan, Gigi

    2014-01-01

    This narrative symposium brings to light the extreme difficulties faced by parents of children diagnosed with brain tumors. NIB editorial staff and narrative symposium editors, Gigi McMillan and Christy A. Rentmeester, developed a call for stories that was distributed on several list serves and posted on Narrative Inquiry in Bioethics' website. The call asks parents to share their personal experience of diagnosis, treatment, long-term effects of treatment, social issues and the doctor-patient-parent dynamic that develops during this process. Thirteen stories are found in the print version of the journal and an additional six supplemental stories are published online only through Project MUSE. One change readers may notice is that the story authors are not listed in alphabetical order. The symposium editors had a vision for this issue that included leading readers through the timeline of this topic: diagnosis-treatment-acute recovery-recurrence-treatment (again)-acute recovery (again)-long-term quality of life-(possibly) end of life. Stories are arranged to help lead the reader through this timeline.Gigi McMillan is a patient and research subject advocate, co-founder of We Can, Pediatric Brain Tumor Network, as well as, the mother of a child who suffered from a pediatric brain tumor. She also authored the introduction for this symposium. Christy Rentmeester is an Associate Professor of Health Policy and Ethics in the Creighton University School of Medicine. She served as a commentator for this issue. Other commentators for this issue are Michael Barraza, a clinical psychologist and board member of We Can, Pediatric Brain Tumor Network; Lisa Stern, a pediatrician who has diagnosed six children with brain tumors in her 20 years of practice; and Katie Rose, a pediatric brain tumor patient who shares her special insights about this world.

  20. Monitoring therapeutic monoclonal antibodies in brain tumor

    PubMed Central

    Ait-Belkacem, Rima; Berenguer, Caroline; Villard, Claude; Ouafik, L’Houcine; Figarella-Branger, Dominique; Beck, Alain; Chinot, Olivier; Lafitte, Daniel

    2014-01-01

    Bevacizumab induces normalization of abnormal blood vessels, making them less leaky. By binding to vascular endothelial growth factor, it indirectly attacks the vascular tumor mass. The optimal delivery of targeted therapies including monoclonal antibodies or anti-angiogenesis drugs to the target tissue highly depends on the blood-brain barrier permeability. It is therefore critical to investigate how drugs effectively reach the tumor. In situ investigation of drug distribution could provide a better understanding of pharmacological agent action and optimize chemotherapies for solid tumors. We developed an imaging method coupled to protein identification using matrix-assisted laser desorption/ionization mass spectrometry. This approach monitored bevacizumab distribution within the brain structures, and especially within the tumor, without any labeling. PMID:25484065

  1. Neurologic sequelae of brain tumors in children.

    PubMed

    Ullrich, Nicole J

    2009-11-01

    Neurologic signs and symptoms are often the initial presenting features of a primary brain tumor and may also emerge during the course of therapy or as late effects of the tumor and its treatment. Variables that influence the development of such neurologic complications include the type, size, and location of the tumor, the patient's age at diagnosis, and the treatment modalities used. Heightened surveillance and improved neuroimaging modalities have been instrumental in detecting and addressing such complications, which are often not appreciated until many years after completion of therapy. As current brain tumor therapies are continually refined and newer targeted therapies are developed, it will be important for future cooperative group studies to include systematic assessments to determine the incidence of neurologic complications and to provide a framework for the development of novel strategies for prevention and intervention.

  2. Targeting JNK for therapeutic depletion of stem-like glioblastoma cells

    PubMed Central

    Matsuda, Ken-ichiro; Sato, Atsushi; Okada, Masashi; Shibuya, Keita; Seino, Shizuka; Suzuki, Kaori; Watanabe, Eriko; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi

    2012-01-01

    Control of the stem-like tumour cell population is considered key to realizing the long-term survival of patients with glioblastoma, one of the most devastating human malignancies. To date, possible therapeutic targets and targeting methods have been described, but none has yet proven to target stem-like glioblastoma cells in the brain to the extent necessary to provide a survival benefit. Here we show that targeting JNK in vivo, the activity of which is required for the maintenance of stem-like glioblastoma cells, via transient, systemic administration of a small-molecule JNK inhibitor depletes the self-renewing and tumour-initiating populations within established tumours, inhibits tumour formation by stem-like glioblastoma cells in the brain, and provide substantial survival benefit without evidence of adverse events. Our findings not only implicate JNK in the maintenance of stem-like glioblastoma cells but also demonstrate that JNK is a viable, clinically relevant therapeutic target in the control of stem-like glioblastoma cells. PMID:22816039

  3. miR-367 promotes proliferation and stem-like traits in medulloblastoma cells

    PubMed Central

    Kaid, Carolini; Silva, Patrícia B G; Cortez, Beatriz A; Rodini, Carolina O; Semedo-Kuriki, Patricia; Okamoto, Oswaldo K

    2015-01-01

    In medulloblastoma, abnormal expression of pluripotency factors such as LIN28 and OCT4 has been correlated with poor patient survival. The miR-302/367 cluster has also been shown to control self-renewal and pluripotency in human embryonic stem cells and induced pluripotent stem cells, but there is limited, mostly correlational, information about these pluripotency-related miRNA in cancer. We evaluated whether aberrant expression of such miRNA could affect tumor cell behavior and stem-like traits, thereby contributing to the aggressiveness of medulloblastoma cells. Basal expression of primary and mature forms of miR-367 were detected in four human medulloblastoma cell lines and expression of the latter was found to be upregulated upon enforced expression of OCT4A. Transient overexpression of miR-367 significantly enhanced tumor features typically correlated with poor prognosis; namely, cell proliferation, 3-D tumor spheroid cell invasion and the ability to generate neurosphere-like structures enriched in CD133 expressing cells. A concurrent downregulation of the miR-367 cancer-related targets RYR3, ITGAV and RAB23, was also detected in miR-367-overexpressing cells. Overall, these findings support the pro-oncogenic activity of miR-367 in medulloblastoma and reveal a possible mechanism contributing to tumor aggressiveness, which could be further explored to improve patient stratification and treatment of this important type of pediatric brain cancer. PMID:26250335

  4. Morphological Characteristics of Brain Tumors Causing Seizures

    PubMed Central

    Lee, Jong Woo; Wen, Patrick Y.; Hurwitz, Shelley; Black, Peter; Kesari, Santosh; Drappatz, Jan; Golby, Alexandra J.; Wells, William M.; Warfield, Simon K.; Kikinis, Ron; Bromfield, Edward B.

    2010-01-01

    Objective To quantify size and localization differences between tumors presenting with seizures vs nonseizure neurological symptoms. Design Retrospective imaging survey. We performed magnetic resonance imaging–based morphometric analysis and nonparametric mapping in patients with brain tumors. Setting University-affiliated teaching hospital. Patients or Other Participants One hundred twenty-four patients with newly diagnosed supratentorial glial tumors. Main Outcome Measures Volumetric and mapping methods were used to evaluate differences in size and location of the tumors in patients who presented with seizures as compared with patients who presented with other symptoms. Results In high-grade gliomas, tumors presenting with seizures were smaller than tumors presenting with other neurological symptoms, whereas in low-grade gliomas, tumors presenting with seizures were larger. Tumor location maps revealed that in high-grade gliomas, deep-seated tumors in the pericallosal regions were more likely to present with nonseizure neurological symptoms. In low-grade gliomas, tumors of the temporal lobe as well as the insular region were more likely to present with seizures. Conclusions The influence of size and location of the tumors on their propensity to cause seizures varies with the grade of the tumor. In high-grade gliomas, rapidly growing tumors, particularly those situated in deeper structures, present with non–seizure-related symptoms. In low-grade gliomas, lesions in the temporal lobe or the insula grow large without other symptoms and eventually cause seizures. Quantitative image analysis allows for the mapping of regions in each group that are more or less susceptible to seizures. PMID:20212231

  5. Metabolism of steroids by human brain tumors.

    PubMed

    Weidenfeld, J; Schiller, H

    1984-01-01

    Hormonal steroids or their precursors can be metabolized in the CNS to products with altered hormonal activity. The importance of the intracerebral transformation of steroids has been demonstrated, particularly with regard to neuroendocrine regulation and sexual behavior. These studies were carried out on normal brain tissues, but the ability of neoplastic tissues of CNS origin to metabolize steroids is unknown. We investigated the in vitro metabolism of tritiated pregnenolone, testosterone, and estradiol-17 beta by homogenates of four brain tumors defined as astrocytomas. In three tumors of cortical origin, removed from adult patients, the only enzymic activity found was the conversion of estradiol to estrone. In one tumor of cerebellar origin removed from an 11-year-old boy, the following conversions were found: pregnenolone to progesterone, testosterone to either androstenedione or estradiol, and estradiol to estrone. These results demonstrate that human astrocytomas can transform steroids to compounds with modified hormonal activity. These compounds formed by the tumorous tissue can affect brain function, which may be of clinical significance. Furthermore, these results may add important parameters for biochemical characterization of neoplastic brain tissues.

  6. Ion transporters in brain tumors

    PubMed Central

    Cong, Damin; Zhu, Wen; Kuo, John S.; Hu, Shaoshan; Sun, Dandan

    2015-01-01

    Ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions. They have recently emerged as important players in cancer progression. In this review, we discussed two important ion transporter proteins, sodium-potassium-chloride cotransporter isoform 1 (NKCC-1) and sodium-hydrogen exchanger isoform 1 (NHE-1) in Glioblastoma multiforme (GBM) and other malignant tumors. NKCC-1 is a Na+-dependent Cl− transporter that mediates the movement of Na+, K+, and Cl− ions across the plasma membrane and maintains cell volume and intracellular K+ and Cl− homeostasis. NHE-1 is a ubiquitously expressed cell membrane protein which regulates intracellular pH (pHi) and extracellular microdomain pH (pHe) homeostasis and cell volume. Here, we summarized recent pre-clinical experimental studies on NKCC-1 and NHE-1 in GBM and other malignant tumors, such as breast cancer, hepatocellular carcinoma, and lung cancer. These studies illustrated that pharmacological inhibition or down-regulation of these ion transporter proteins reduces proliferation, increases apoptosis, and suppresses migration and invasion of cancer cells. These new findings reveal the potentials of these ion transporters as new targets for cancer diagnosis and/or treatment. PMID:25620102

  7. No role of IFITM3 in brain tumor formation in vivo

    PubMed Central

    Kim, Ella L.; Bros, Matthias; Giese, Alf

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the most lethal solid tumors in adults. Despite aggressive treatment approaches for patients, GBM recurrence is inevitable, in part due to the existence of stem-like brain tumor-propagating cells (BTPCs), which produce factors rendering them resistant to radio- and chemotherapy. Comparative transcriptome analysis of irradiated, patient-derived BTPCs revealed a significant upregulation of the interferon-inducible transmembrane protein 3 (IFITM3), suggesting the protein as a factor mediating radio resistance. Previously, IFITM3 has been described to affect glioma cells; therefore, the role of IFITM3 in the formation and progression of brain tumors has been investigated in vivo. Intracranial implantation studies using radio-selected BTPCs alongside non-irradiated parental BTPCs in immunodeficient mice displayed no influence of irradiation on animal survival. Furthermore, gain and loss of function studies using BTPCs ectopically expressing IFITM3 or having IFITM3 down-modulated by a shRNA approach, did affect neither tumor growth nor animal survival. Additionally, a syngeneic model based on the mouse glioma cell line GL261 was applied in order to consider the possibility that IFITM3 relies on an intact immune system to unfold its tumorigenic potential. GL261 cells ectopically expressing IFITM3 were implanted into the striatum of immunocompetent mice without influencing the survival of glioma-bearing animals. Lastly, the vasculature and the extent of microglia/macrophage invasion into the tumor were studied in BTPC and GL261 tumors but neither parameter was altered by IFITM3. This report presents for the first time that IFITM3 is upregulated in patient-derived BTPCs upon irradiation but does not affect brain tumor formation or progression in vivo. PMID:27835870

  8. Neurocutaneous Syndromes and Brain Tumors.

    PubMed

    Ullrich, Nicole J

    2016-10-01

    The etiology of most childhood cancer remains largely unknown, but is likely attributable to random or induced genetic aberrations in somatic tissue. However, a subset of children develops cancer in the setting of an underlying inheritable condition involving a germline genetic mutation or chromosomal aberration. The term "neurocutaneous syndrome" encompasses a group of multisystem, hereditary disorders that are associated with skin manifestations as well as central and/or peripheral nervous system lesions of variable severity. This review outlines the central nervous system tumors associated with underlying neurocutaneous disorders, including neurofibromatosis type 1, neurofibromatosis type 2, schwannomatosis, tuberous sclerosis complex, Von Hippel Lindau, and nevoid basal cell carcinoma syndrome. Recognizing the presence of an underlying syndrome is critically important to both optimizing clinical care and treatment as well as genetic counseling and monitoring of these affected patients and their families.

  9. Improved brain tumor segmentation by utilizing tumor growth model in longitudinal brain MRI

    NASA Astrophysics Data System (ADS)

    Pei, Linmin; Reza, Syed M. S.; Li, Wei; Davatzikos, Christos; Iftekharuddin, Khan M.

    2017-03-01

    In this work, we propose a novel method to improve texture based tumor segmentation by fusing cell density patterns that are generated from tumor growth modeling. To model tumor growth, we solve the reaction-diffusion equation by using Lattice-Boltzmann method (LBM). Computational tumor growth modeling obtains the cell density distribution that potentially indicates the predicted tissue locations in the brain over time. The density patterns is then considered as novel features along with other texture (such as fractal, and multifractal Brownian motion (mBm)), and intensity features in MRI for improved brain tumor segmentation. We evaluate the proposed method with about one hundred longitudinal MRI scans from five patients obtained from public BRATS 2015 data set, validated by the ground truth. The result shows significant improvement of complete tumor segmentation using ANOVA analysis for five patients in longitudinal MR images.

  10. Targeted toxins in brain tumor therapy.

    PubMed

    Li, Yan Michael; Hall, Walter A

    2010-11-01

    Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.

  11. Valproic acid promotes radiosensitization in meningioma stem-like cells.

    PubMed

    Chiou, Hsin-Ying Clair; Lai, Wen-Kuo; Huang, Li-Chun; Huang, Shih-Ming; Chueh, Sheau-Huei; Ma, Hsin-I; Hueng, Dueng-Yuan

    2015-04-30

    Although meningioma stem-like cells have been isolated and characterized, their therapeutic targeting remains a challenge. Meningioma sphere cells (MgSCs) with cancer stem cells properties show chemo- and radioresistance in comparison with meningioma adherent cells (MgACs). We tested the effect of valproic acid (VPA), a commonly used anti-epileptic drug, which passes the blood brain barrier, on cultured MgSCs. VPA reduced the viability of MgSCs and MgACs. In MgSCs, treatment with VPA increased radio-sensitivity, expression of p-cdc2, p-H2AX and cleaved caspase-3 and PARP. Anchorage-independent growth (AIG) was reduced by VPA. AIG was further reduced by combined treatment with irradiation. Expression of a stem cell marker, Oct4, was reduced by VPA. Oct4 was further decreased by combined treatment with irradiation. These results suggest that VPA may be a potential treatment for meningioma through targeting meningioma stem-like cells.

  12. Wnt5a Drives an Invasive Phenotype in Human Glioblastoma Stem-like Cells.

    PubMed

    Binda, Elena; Visioli, Alberto; Giani, Fabrizio; Trivieri, Nadia; Palumbo, Orazio; Restelli, Silvia; Dezi, Fabio; Mazza, Tommaso; Fusilli, Caterina; Legnani, Federico; Carella, Massimo; Di Meco, Francesco; Duggal, Rohit; Vescovi, Angelo L

    2017-02-15

    Brain invasion by glioblastoma determines prognosis, recurrence, and lethality in patients, but no master factor coordinating the invasive properties of glioblastoma has been identified. Here we report evidence favoring such a role for the noncanonical WNT family member Wnt5a. We found the most invasive gliomas to be characterized by Wnt5a overexpression, which correlated with poor prognosis and also discriminated infiltrating mesenchymal glioblastoma from poorly motile proneural and classical glioblastoma. Indeed, Wnt5a overexpression associated with tumor-promoting stem-like characteristics (TPC) in defining the character of highly infiltrating mesenchymal glioblastoma cells (Wnt5a(High)). Inhibiting Wnt5a in mesenchymal glioblastoma TPC suppressed their infiltrating capability. Conversely, enforcing high levels of Wnt5a activated an infiltrative, mesenchymal-like program in classical glioblastoma TPC and Wnt5a(Low) mesenchymal TPC. In intracranial mouse xenograft models of glioblastoma, inhibiting Wnt5a activity blocked brain invasion and increased host survival. Overall, our results highlight Wnt5a as a master regulator of brain invasion, specifically TPC, and they provide a therapeutic rationale to target it in patients with glioblastoma. Cancer Res; 77(4); 996-1007. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Brain Tumor Epidemiology: Consensus from the Brain Tumor Epidemiology Consortium (BTEC)

    PubMed Central

    Bondy, Melissa L.; Scheurer, Michael E.; Malmer, Beatrice; Barnholtz-Sloan, Jill S.; Davis, Faith G.; Il’yasova, Dora; Kruchko, Carol; McCarthy, Bridget J.; Rajaraman, Preetha; Schwartzbaum, Judith A.; Sadetzki, Siegal; Schlehofer, Brigitte; Tihan, Tarik; Wiemels, Joseph L.; Wrensch, Margaret; Buffler, Patricia A.

    2010-01-01

    Epidemiologists in the Brain Tumor Epidemiology Consortium (BTEC) have prioritized areas for further research. Although many risk factors have been examined over the past several decades, there are few consistent findings possibly due to small sample sizes in individual studies and differences between studies in subjects, tumor types, and methods of classification. Individual studies have generally lacked sufficient sample size to examine interactions. A major priority based on available evidence and technologies includes expanding research in genetics and molecular epidemiology of brain tumors. BTEC has taken an active role in promoting understudied groups such as pediatric brain tumors, the etiology of rare glioma subtypes, such as oligodendroglioma, and meningioma, which not uncommon, has only recently been systematically registered in the US. There is also a pressing need to bring more researchers, especially junior investigators, to study brain tumor epidemiology. However, relatively poor funding for brain tumor research has made it difficult to encourage careers in this area. We review the group’s consensus on the current state of scientific findings and present a consensus on research priorities to identify the important areas the science should move to address. PMID:18798534

  14. Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors

    PubMed Central

    Sampson, John H.; Crotty, Laura E.; Lee, Samson; Archer, Gary E.; Ashley, David M.; Wikstrand, Carol J.; Hale, Laura P.; Small, Clayton; Dranoff, Glenn; Friedman, Allan H.; Friedman, Henry S.; Bigner, Darell D.

    2000-01-01

    The epidermal growth factor receptor (EGFR) is often amplified and rearranged structurally in tumors of the brain, breast, lung, and ovary. The most common mutation, EGFRvIII, is characterized by an in-frame deletion of 801 base pairs, resulting in the generation of a novel tumor-specific epitope at the fusion junction. A murine homologue of the human EGFRvIII mutation was created, and an IgG2a murine mAb, Y10, was generated that recognizes the human and murine equivalents of this tumor-specific antigen. In vitro, Y10 was found to inhibit DNA synthesis and cellular proliferation and to induce autonomous, complement-mediated, and antibodydependent cell-mediated cytotoxicity. Systemic treatment with i.p. Y10 of s.c. B16 melanomas transfected to express stably the murine EGFRvIII led to long-term survival in all mice treated (n = 20; P < 0.001). Similar therapy with i.p. Y10 failed to increase median survival of mice with EGFRvIII-expressing B16 melanomas in the brain; however, treatment with a single intratumoral injection of Y10 increased median survival by an average 286%, with 26% long-term survivors (n = 117; P < 0.001). The mechanism of action of Y10 in vivo was shown to be independent of complement, granulocytes, natural killer cells, and T lymphocytes through in vivo complement and cell subset depletions. Treatment with Y10 in Fc receptor knockout mice demonstrated the mechanism of Y10 to be Fc receptor-dependent. These data indicate that an unarmed, tumor-specific mAb may be an effective immunotherapy against human tumors and potentially other pathologic processes in the “immunologically privileged” central nervous system. PMID:10852962

  15. Brain Tumors - Multiple Languages: MedlinePlus

    MedlinePlus

    ... List of All Topics All Brain Tumors - Multiple Languages To use the sharing features on this page, please enable JavaScript. French (français) Japanese (日本語) Korean (한국어) Russian (Русский) Somali (af Soomaali) Spanish (español) Ukrainian (Українська) ...

  16. Perspectives on Dual Targeting Delivery Systems for Brain Tumors.

    PubMed

    Gao, Huile

    2017-03-01

    Brain tumor remains one of the most serious threats to human beings. Different from peripheral tumors, drug delivery to brain tumor is largely restricted by the blood brain barrier (BBB). To fully conquer this barrier and specifically deliver drugs to brain tumor, dual targeting delivery systems were explored, which are functionalized with two active targeting ligands: one to the BBB and the other to the brain tumor. The development of dual targeting delivery system is still in its early stage, and attentions need to be paid to issues and concerns that remain unresolved in future studies.

  17. [Chemotherapy of brain tumors in aduts].

    PubMed

    Roth, P; Weller, M

    2015-04-01

    The treatment of patients with brain tumors has long been the domain of neurosurgery and radiotherapy but chemotherapy is now well established as an additional treatment option for many tumor entities in neuro-oncology. This is particularly true for patients with newly diagnosed and relapsing glioblastoma and anaplastic glioma as well as the treatment of medulloblastoma and primary lymphoma of the central nervous system (CNS). In addition to purely histopathological features, treatment decisions including those for chemotherapy are now based increasingly more on molecular tumor profiling. Within the group of gliomas these markers include the methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter and the 1p/19q status, which reflects the loss of genetic material on chromosome arms 1p and 19q. The presence of a 1p/19q codeletion is associated with a better prognosis and increased sensitivity to alkylating chemotherapy in patients with anaplastic gliomas.

  18. Targeting Malignant Brain Tumors with Antibodies.

    PubMed

    Razpotnik, Rok; Novak, Neža; Čurin Šerbec, Vladka; Rajcevic, Uros

    2017-01-01

    Antibodies have been shown to be a potent therapeutic tool. However, their use for targeting brain diseases, including neurodegenerative diseases and brain cancers, has been limited, particularly because the blood-brain barrier (BBB) makes brain tissue hard to access by conventional antibody-targeting strategies. In this review, we summarize new antibody therapeutic approaches to target brain tumors, especially malignant gliomas, as well as their potential drawbacks. Many different brain delivery platforms for antibodies have been studied such as liposomes, nanoparticle-based systems, cell-penetrating peptides (CPPs), and cell-based approaches. We have already shown the successful delivery of single-chain fragment variable (scFv) with CPP as a linker between two variable domains in the brain. Antibodies normally face poor penetration through the BBB, with some variants sufficiently passing the barrier on their own. A "Trojan horse" method allows passage of biomolecules, such as antibodies, through the BBB by receptor-mediated transcytosis (RMT). Such examples of therapeutic antibodies are the bispecific antibodies where one binding specificity recognizes and binds a BBB receptor, enabling RMT and where a second binding specificity recognizes an antigen as a therapeutic target. On the other hand, cell-based systems such as stem cells (SCs) are a promising delivery system because of their tumor tropism and ability to cross the BBB. Genetically engineered SCs can be used in gene therapy, where they express anti-tumor drugs, including antibodies. Different types and sources of SCs have been studied for the delivery of therapeutics to the brain; both mesenchymal stem cells (MSCs) and neural stem cells (NSCs) show great potential. Following the success in treatment of leukemias and lymphomas, the adoptive T-cell therapies, especially the chimeric antigen receptor-T cells (CAR-Ts), are making their way into glioma treatment as another type of cell-based therapy using the

  19. Neurological outcome of childhood brain tumor survivors.

    PubMed

    Pietilä, Sari; Korpela, Raija; Lenko, Hanna L; Haapasalo, Hannu; Alalantela, Riitta; Nieminen, Pirkko; Koivisto, Anna-Maija; Mäkipernaa, Anne

    2012-05-01

    We assessed neurological and neurocognitive outcome in childhood brain tumor survivors. Altogether, 75 out of 80 brain tumor survivors diagnosed below 17 years between 1983 and 1997; and treated in Tampere University Hospital, Finland, were invited to participate in this population-based cross-sectional study. Fifty-two (69%) participated [mean age 14.2 (3.8-28.7) years, mean follow-up 7.5 (1.5-15.1) years]. Neurological status was abnormal in 69% cases. All were ambulatory, but only 50% showed normal motor function. Twenty-nine percent showed clumsiness/mild asymmetry and 21% hemiparesis. One suffered from intractable epilepsy. According to structured interview, 87% coped normally in daily living. Median full-scale IQ was 85 (39-110) in 21 6-16 year olds (70%); in 29% IQ was <70. Thirty of the 44 school-aged subjects attended school with normal syllabus and 32% needed special education. Six of the 16 patients over 18 years of age were working. Regarding quality of life, 38% were active without disability, 33% active with mild disability, 21% were partially disabled, but capable of self-care, and 8% had severe disability, being incapable of self-care. Supratentorial/hemispheric tumor location, tumor reoperations, shunt revisions and chemotherapy were associated with neurological, cognitive and social disabilities. In conclusion, of the 52 survivors, neurological status was abnormal in 69%; 71% lived an active life with minor disabilities, 29% had major neurological, cognitive and social disabilities, and 8% of them were incapable of self-care. Predictors of these disabilities included supratentorial/hemispheric tumor location, tumor reoperations, shunt revisions and chemotherapy. Survivors need life-long, tailor-made multiprofessional support and follow-up.

  20. Subacute brain atrophy after radiation therapy for malignant brain tumor

    SciTech Connect

    Asai, A.; Matsutani, M.; Kohno, T.; Nakamura, O.; Tanaka, H.; Fujimaki, T.; Funada, N.; Matsuda, T.; Nagata, K.; Takakura, K.

    1989-05-15

    Brain atrophy with mental and neurologic deterioration developing a few months after radiation therapy in patients without residual or recurrent brain tumors has been recognized. Two illustrative case reports of this pathologic entity are presented. Six autopsy cases with this entity including the two cases were reviewed neurologically, radiographically, and histopathologically. All patients presented progressive disturbances of mental status and consciousness, akinesia, and tremor-like involuntary movement. Computerized tomography (CT) demonstrated marked enlargement of the ventricles, moderate widening of the cortical sulci, and a moderately attenuated CT number for the white matter in all six patients. Four of the six patients had CSF drainage (ventriculoperitoneal shunt or continuous lumbar drainage), however, none of them improved. Histologic examination demonstrated swelling and loss of the myelin sheath in the white matter in all patients, and reactive astrocytosis in three of the six patients. Neither prominent neuronal loss in the cerebral cortex or basal ganglia, nor axonal loss in the white matter was generally identified. The blood vessels of the cerebral cortex and white matter were normal. Ependymal layer and the surrounding brain tissue were normal in all patients. These findings suggested that this pathologic condition results from demyelination secondary to direct neurotoxic effect of irradiation. The authors' previous report was reviewed and the differential diagnoses, the risk factors for this pathologic entity, and the indication for radiation therapy in aged patients with a malignant brain tumor are discussed.

  1. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    PubMed

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org.

  2. Hyperthermia Sensitizes Glioma Stem-like Cells to Radiation By Inhibiting AKT Signaling

    PubMed Central

    Man, Jianghong; Shoemake, Jocelyn D.; Ma, Tuopu; Rizzo, Anthony E.; Godley, Andrew R.; Wu, Qiulian; Mohammadi, Alireza M.; Bao, Shideng; Rich, Jeremy N.; Yu, Jennifer S.

    2015-01-01

    Glioma stem-like cells (GSCs) are a subpopulation of cells in tumors that are believed to mediate self-renewal and relapse in glioblastoma (GBM), the most deadly form of primary brain cancer. In radiation oncology, hyperthermia is known to radiosensitize cells and it is re-emerging as a treatment option for patients with GBM. In this study, we investigated the mechanisms of hyperthermic radiosensitization in GSCs by a phosphokinase array that revealed the survival kinase AKT as a critical sensitization determinant. GSCs treated with radiation alone exhibited increased AKT activation, but the addition of hyperthermia before radiotherapy reduced AKT activation and impaired GSC proliferation. Introduction of constitutively active AKT in GSCs compromised hyperthermic radiosensitization. Pharmacologic inhibition of PI3K further enhanced the radiosensitizing effects of hyperthermia. In a preclinical orthotopic transplant model of human GBM, thermoradiotherapy reduced pS6 levels, delayed tumor growth and extended animal survival. Together, our results offer a preclinical proof-of-concept for further evaluation of combined hyperthermia and radiation for GBM treatment. PMID:25712125

  3. Deep learning for brain tumor classification

    NASA Astrophysics Data System (ADS)

    Paul, Justin S.; Plassard, Andrew J.; Landman, Bennett A.; Fabbri, Daniel

    2017-03-01

    Recent research has shown that deep learning methods have performed well on supervised machine learning, image classification tasks. The purpose of this study is to apply deep learning methods to classify brain images with different tumor types: meningioma, glioma, and pituitary. A dataset was publicly released containing 3,064 T1-weighted contrast enhanced MRI (CE-MRI) brain images from 233 patients with either meningioma, glioma, or pituitary tumors split across axial, coronal, or sagittal planes. This research focuses on the 989 axial images from 191 patients in order to avoid confusing the neural networks with three different planes containing the same diagnosis. Two types of neural networks were used in classification: fully connected and convolutional neural networks. Within these two categories, further tests were computed via the augmentation of the original 512×512 axial images. Training neural networks over the axial data has proven to be accurate in its classifications with an average five-fold cross validation of 91.43% on the best trained neural network. This result demonstrates that a more general method (i.e. deep learning) can outperform specialized methods that require image dilation and ring-forming subregions on tumors.

  4. Targeting Nanomedicine to Brain Tumors: Latest Progress and Achievements.

    PubMed

    Van't Root, Moniek; Lowik, Clemens; Mezzanotte, Laura

    2017-01-01

    Targeting nanomedicine to brain tumors is hampered by the heterogeneity of brain tumors and the blood brain barrier. These represent the main reasons of unsuccessful treatments. Nanomedicine based approaches hold promise for improved brain tissue distribution of drugs and delivery of combination therapies. In this review, we describe the recent advancements and latest achievements in the use of nanocarriers, virus and cell-derived nanoparticles for targeted therapy of brain tumors. We provide successful examples of nanomedicine based approaches for direct targeting of receptors expressed in brain tumor cells or modulation of pathways involved in cell survival as well as approaches for indirect targeting of cells in the tumor stroma and immunotherapies. Although the field is at its infancy, clinical trials involving nanomedicine based approaches for brain tumors are ongoing and many others will start in the near future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Stereotactic Radiosurgery in Treating Patients With Brain Tumors

    ClinicalTrials.gov

    2012-03-21

    Adult Central Nervous System Germ Cell Tumor; Adult Malignant Meningioma; Adult Medulloblastoma; Adult Noninfiltrating Astrocytoma; Adult Oligodendroglioma; Adult Craniopharyngioma; Adult Meningioma; Brain Metastases; Adult Ependymoma; Adult Pineal Parenchymal Tumor; Adult Brain Stem Glioma; Adult Infiltrating Astrocytoma; Mixed Gliomas; Stage IV Peripheral Primitive Neuroectodermal Tumor

  6. Maternal high fat diet promotion of mammary tumor risk in adult progeny is associated with early expansion of mammary cancer stem-like cells and increased maternal oxidative environment

    USDA-ARS?s Scientific Manuscript database

    Many adult chronic diseases might be programmed during early life by maternal nutritional history. Here, we evaluated effects of maternal high fat diet on mammary gland development and tumor formation in adult progeny. Female Wnt-1 transgenic mice exposed to high fat (HFD, 45% kcal fat) or control C...

  7. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest

    PubMed Central

    Long, Patrick M.; Tighe, Scott W.; Driscoll, Heather E.; Fortner, Karen A.; Viapiano, Mariano S.; Jaworski, Diane M.

    2015-01-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-L-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth. PMID:25573156

  8. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest.

    PubMed

    Long, Patrick M; Tighe, Scott W; Driscoll, Heather E; Fortner, Karen A; Viapiano, Mariano S; Jaworski, Diane M

    2015-08-01

    Glioblastoma (GBM), the most common primary adult malignant brain tumor, is associated with a poor prognosis due, in part, to tumor recurrence mediated by chemotherapy and radiation resistant glioma stem-like cells (GSCs). The metabolic and epigenetic state of GSCs differs from their non-GSC counterparts, with GSCs exhibiting greater glycolytic metabolism and global hypoacetylation. However, little attention has been focused on the potential use of acetate supplementation as a therapeutic approach. N-acetyl-l-aspartate (NAA), the primary storage form of brain acetate, and aspartoacylase (ASPA), the enzyme responsible for NAA catalysis, are significantly reduced in GBM tumors. We recently demonstrated that NAA supplementation is not an appropriate therapeutic approach since it increases GSC proliferation and pursued an alternative acetate source. The FDA approved food additive Triacetin (glyceryl triacetate, GTA) has been safely used for acetate supplementation therapy in Canavan disease, a leukodystrophy due to ASPA mutation. This study characterized the effects of GTA on the proliferation and differentiation of six primary GBM-derived GSCs relative to established U87 and U251 GBM cell lines, normal human cerebral cortical astrocytes, and murine neural stem cells. GTA reduced proliferation of GSCs greater than established GBM lines. Moreover, GTA reduced growth of the more aggressive mesenchymal GSCs greater than proneural GSCs. Although sodium acetate induced a dose-dependent reduction of GSC growth, it also reduced cell viability. GTA-mediated growth inhibition was not associated with differentiation, but increased protein acetylation. These data suggest that GTA-mediated acetate supplementation is a novel therapeutic strategy to inhibit GSC growth.

  9. Photodynamic Therapy for Malignant Brain Tumors.

    PubMed

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  10. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  11. Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma.

    PubMed

    Li, Rong; Huang, Jinsu; Ma, Meili; Lou, Yuqing; Zhang, Yanwei; Wu, Lixia; Chang, David W; Zhao, Picheng; Dong, Qianggang; Wu, Xifeng; Han, Baohui

    2016-10-18

    Stem-like cells in solid tumors are purported to contribute to cancer development and poor treatment outcome. The abilities to self-renew, differentiate, and resist anticancer therapies are hallmarks of these rare cells, and steering them into lineage commitment may be one strategy to curb cancer development or progression. Vitamin D is a prohormone that can alter cell growth and differentiation and may induce the differentiation cancer stem-like cells. In this study, octamer-binding transcription factor 4 (OCT4)-positive/Nanog homeobox (Nanog)- positive lung adenocarcinoma stem-like cells (LACSCs) were enriched from spheroid cultured SPC-A1 cells and differentiated by a two-stage induction (TSI) method, which involved knockdown of hypoxia-inducible factor 1-alpha (HIF1α) expression (first stage) followed by sequential induction with 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3) and suberoylanilide hydroxamic acid (SAHA) treatment (second stage). The results showed the HIF1α-knockdowned cells displayed diminished cell invasion and clonogenic activities. Moreover, the TSI cells highly expressed tumor suppressor protein p63 (P63) and forkhead box J1 (FOXJ1) and lost stem cell characteristics, including absent expression of OCT4 and Nanog. These cells regained sensitivity to cisplatin in vitro while losing tumorigenic capacity and decreased tumor cell proliferation in vivo. Our results suggest that induced transdifferentiation of LACSCs by vitamin D and SAHA may become novel therapeutic avenue to alter tumor cell phenotypes and improve patient outcome.The development and progression of lung cancer may involve rare population of stem-like cells that have the ability to grow, differentiate, and resist drug treatment. However, current therapeutic strategies have mostly focused on tumor characteristics and neglected the potential source of cells that may contribute to poor clinical outcome. We generated lung adenocarcinoma stem-like cells from spheroid culture and

  12. Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma

    PubMed Central

    Ma, Meili; Lou, Yuqing; Zhang, Yanwei; Wu, Lixia; Chang, David W.; Zhao, Picheng; Dong, Qianggang; Wu, Xifeng; Han, Baohui

    2016-01-01

    Stem-like cells in solid tumors are purported to contribute to cancer development and poor treatment outcome. The abilities to self-renew, differentiate, and resist anticancer therapies are hallmarks of these rare cells, and steering them into lineage commitment may be one strategy to curb cancer development or progression. Vitamin D is a prohormone that can alter cell growth and differentiation and may induce the differentiation cancer stem-like cells. In this study, octamer-binding transcription factor 4 (OCT4)-positive/Nanog homeobox (Nanog)- positive lung adenocarcinoma stem-like cells (LACSCs) were enriched from spheroid cultured SPC-A1 cells and differentiated by a two-stage induction (TSI) method, which involved knockdown of hypoxia-inducible factor 1-alpha (HIF1α) expression (first stage) followed by sequential induction with 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3) and suberoylanilide hydroxamic acid (SAHA) treatment (second stage). The results showed the HIF1α-knockdowned cells displayed diminished cell invasion and clonogenic activities. Moreover, the TSI cells highly expressed tumor suppressor protein p63 (P63) and forkhead box J1 (FOXJ1) and lost stem cell characteristics, including absent expression of OCT4 and Nanog. These cells regained sensitivity to cisplatin in vitro while losing tumorigenic capacity and decreased tumor cell proliferation in vivo. Our results suggest that induced transdifferentiation of LACSCs by vitamin D and SAHA may become novel therapeutic avenue to alter tumor cell phenotypes and improve patient outcome. SIGNIFICANCE STATEMENT The development and progression of lung cancer may involve rare population of stem-like cells that have the ability to grow, differentiate, and resist drug treatment. However, current therapeutic strategies have mostly focused on tumor characteristics and neglected the potential source of cells that may contribute to poor clinical outcome. We generated lung adenocarcinoma stem-like cells from

  13. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    PubMed Central

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  14. Brain tumor imaging: imaging brain metastasis using a brain-metastasizing breast adenocarcinoma.

    PubMed

    Madden, Kelley S; Zettel, Martha L; Majewska, Ania K; Brown, Edward B

    2013-03-01

    Brain metastases from primary or secondary breast tumors are difficult to model in the mouse. When metastatic breast cancer cell lines are injected directly into the arterial circulation, only a small fraction of cells enter the brain to form metastatic foci. To study the molecular and cellular mechanisms of brain metastasis, we have transfected MB-231BR, a brain-homing derivative of a human breast adenocarcinoma line MDA-MB-231, with the yellow fluorescent protein (YFP) variant Venus. MB-231BR selectively enters the brain after intracardiac injection into the arterial circulation, resulting in accumulation of fluorescent foci of cells in the brain that can be viewed by standard fluorescence imaging procedures. We describe how to perform the intracardiac injection and the parameters used to quantify brain metastasis in brain sections by standard one-photon fluorescence imaging. The disadvantage of this model is that the kinetics of growth over time cannot be determined in the same animal. In addition, the injection technique does not permit precise placement of tumor cells within the brain. This model is useful for determining the molecular determinants of brain tumor metastasis.

  15. Identification and characterization of cancer stem-like cells from primary carcinoma of the cervix uteri.

    PubMed

    Feng, Dingqing; Peng, Cheng; Li, Cairong; Zhou, Ying; Li, Min; Ling, Bin; Wei, Haiming; Tian, Zhigang

    2009-11-01

    Like many other solid tumors, cervical cancer contains a heterogeneous population of cancer cells. Several investigators have identified putative stem cells from solid tumors and cancer cell lines via the capacity to self renew and drive tumor formation. The aim of this study was to identify and characterize a cancer stem-like cell population from primary carcinoma of the cervix uteri. Cervical carcinoma from 19 patients staged I-II following International Federation of Gynecology and Obstetrics (FIGO) criteria were disaggregated and subjected to growth conditions selective for stem cells. Eight of nineteen tumor-derived cultures encompassed stem-like cells capable of self-renewal, extensive proliferation as clonal non-adherent spherical clusters. Cell markers of spheroid were identified as CD44+CK17+. Cell survival assays showed the sphere-forming cells were only 48% inhibited by doxorubicin whereas 78% inhibited by paclitaxel. Chemo-resistance may partly attribute to the exclusive expression of ABC transporter. To investigate the tumorigenicity of these stem-like cells, xenoengraftment of 10(5) dissociated spheroid cells allowed full recapitulation of the original tumor, whereas the same amount of tumor cells without non-adherent spheroid selection remained non-tumorigenic. Stemness properties of these spheroid cells were further established by reverse transcription-PCR and Western blotting, demonstrating the expression of embryonic and adult stemness-related genes (Oct-4, Piwil2, C-myc, Stat3 and Sox2). Based on these findings, we assert that cervical cancer contain a subpopulation of tumor initiating cells with stem-like properties, thus facilitating the approach to therapeutic strategies aimed at eradicating the tumorigenic subpopulation within cervical cancer.

  16. What Are Brain and Spinal Cord Tumors in Children?

    MedlinePlus

    ... cells in the brain. They transmit chemical and electric signals that determine thought, memory, emotion, speech, muscle ... brain and spinal cord. This helps neurons send electric signals through the axons. Tumors starting in these ...

  17. Pineal calcification is associated with pediatric primary brain tumor.

    PubMed

    Tuntapakul, Supinya; Kitkhuandee, Amnat; Kanpittaya, Jaturat; Johns, Jeffrey; Johns, Nutjaree Pratheepawanit

    2016-12-01

    Melatonin has been associated with various tumors, including brain tumor, and shown to inhibit growth of neuroblastoma cells and gliomas in animal models. Likewise, patients with glioblastoma receiving melatonin reported better survival than controls. Pineal calcification may lead to a decreased production of melatonin by calcified glands. This study assessed association between pineal calcification and primary brain tumor in pediatric/adolescent patients. Medical chart review was conducted in 181 patients <15 years old who had undergone brain computed tomography (CT) during 2008-2012. Pineal calcification was identified using brain CT scan by an experienced neurosurgeon. Primary brain tumor was confirmed by CT scan and histology, and association with pineal calcification was estimated using multiple logistic regression, adjusted for age and gender. Primary brain tumor was detected in 51 patients (mean age 9.0, standard deviation 4.0 years), with medulloblastoma being the most common (11 patients). Pineal calcification was detected in 12 patients (23.5%) with primary brain tumor, while only 11 patients (8.5%) without tumor had pineal calcification. Adjusted for patients' ages and genders, pineal calcification was associated with an increase in primary brain tumor of 2.82-fold (odds ratio 2.82; 95% confidence interval 1.12-7.08, P = 0.027). Pineal calcification appears to be associated with primary brain tumor. Further studies to explore this link are discussed and warranted. © 2016 John Wiley & Sons Australia, Ltd.

  18. Cortical dysplasia: a possible substrate for brain tumors

    PubMed Central

    Liu, Shiyong; Zhang, Chunqing; Shu, Haifeng; Wion, Didier; Yang, Hui

    2012-01-01

    The similarities between brain tumor stem cells and neural stem cells suggest a possible stem cell origin of tumorigenesis. Recently, cells with features of stem cells have been observed in lesions of adult and pediatric cortical dysplasia (CD). Given the evidence for a close relationship between CD and certain brain tumors, together with the finding that CD neural stem cells/progenitors are abnormally developed, we propose that CD is a possible substrate for brain tumors. The neural stem cells/progenitors in CD have accumulating abnormalities, and these abnormal stem/progenitor cells may be the initiating, transformed cells of brain tumors, when subsequently exposed to a carcinogen. PMID:22409462

  19. Brain tumor segmentation with Deep Neural Networks.

    PubMed

    Havaei, Mohammad; Davy, Axel; Warde-Farley, David; Biard, Antoine; Courville, Aaron; Bengio, Yoshua; Pal, Chris; Jodoin, Pierre-Marc; Larochelle, Hugo

    2017-01-01

    In this paper, we present a fully automatic brain tumor segmentation method based on Deep Neural Networks (DNNs). The proposed networks are tailored to glioblastomas (both low and high grade) pictured in MR images. By their very nature, these tumors can appear anywhere in the brain and have almost any kind of shape, size, and contrast. These reasons motivate our exploration of a machine learning solution that exploits a flexible, high capacity DNN while being extremely efficient. Here, we give a description of different model choices that we've found to be necessary for obtaining competitive performance. We explore in particular different architectures based on Convolutional Neural Networks (CNN), i.e. DNNs specifically adapted to image data. We present a novel CNN architecture which differs from those traditionally used in computer vision. Our CNN exploits both local features as well as more global contextual features simultaneously. Also, different from most traditional uses of CNNs, our networks use a final layer that is a convolutional implementation of a fully connected layer which allows a 40 fold speed up. We also describe a 2-phase training procedure that allows us to tackle difficulties related to the imbalance of tumor labels. Finally, we explore a cascade architecture in which the output of a basic CNN is treated as an additional source of information for a subsequent CNN. Results reported on the 2013 BRATS test data-set reveal that our architecture improves over the currently published state-of-the-art while being over 30 times faster. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Characterization of glioma stem-like cells from human glioblastomas

    PubMed Central

    YAMAMURO, SHUN; OKAMOTO, YUTAKA; SANO, EMIKO; OCHIAI, YUSHI; OGINO, AKIYOSHI; OHTA, TAKASHI; HARA, HIROYUKI; UEDA, TAKUYA; NAKAYAMA, TOMOHIRO; YOSHINO, ATSUO; KATAYAMA, YOICHI

    2015-01-01

    Glioma stem-like cells (GSCs) could have potential for tumorigenesis, treatment resistance, and tumor recurrence (GSC hypothesis). However, the mechanisms underlying such potential has remained elusive and few ultrastructural features of the cells have been reported in detail. We therefore undertook observations of the antigenic characteristics and ultrastructural features of GSCs isolated from human glioblastomas. Tumor spheres formed by variable numbers of cells, exhibiting a variable appearance in both their size and shape, were frequently seen in GSCs expressing the stem cell surface markers CD133 and CD15. Increased cell nucleus atypia, mitochondria, rough endoplasmic reticulum, coated vesicles, and microvilli, were noted in the GSCs. Furthermore, cells at division phases and different phases of the apoptotic process were occasionally observed. These findings could imply that GSCs have certain relations with human neural stem cells (NSCs) but are primitively different from undifferentiated NSCs. The data may provide support for the GSC hypothesis, and also facilitate the establishment of future glioblastoma treatments targeting GSCs. PMID:25955568

  1. Photodynamic therapy for implanted VX2 tumor in rabbit brains

    NASA Astrophysics Data System (ADS)

    Li, Fei; Feng, Hua; Lin, Jiangkai; Zhu, Gang; Chen, Zhi; Li, Cong-yan

    2005-07-01

    To evaluate the therapeutic effect and the safety of single photodynamic therapy (PDT) with hematoporphyrin derivative produced in China, 60 New Zealand adult rabbits with VX2 tumor implanted into the brain were divided randomly into non-PDT-group and PDT-group. 36 rabbits of the PDT-group were performed photodynamic therapy. The survival time, neurological deteriorations, intracranial pressure (ICP), histology, pathology, tumor volume and brain water content were measured. Other 12 rabbits were received hematoporphyrin derivative and light irradiation of the normal brain. The ICP, histology, pathology, and brain water content were measured. The result indicated that Simple PDT may elongate the average survival time of the rabbits with VX2 tumors significantly; kill tumor cells; cause transient brain edema and increase ICP, but it is safe to be used in treating brain tumor.

  2. Brain tumors in man and animals: report of a workshop.

    PubMed Central

    1986-01-01

    This report summarizes the results of a workshop on brain tumors in man and animals. Animals, especially rodents are often used as surrogates for man to detect chemicals that have the potential to induce brain tumors in man. Therefore, the workshop was focused mainly on brain tumors in the F344 rat and B6C3F1 mouse because of the frequent use of these strains in long-term carcinogenesis studies. Over 100 brain tumors in F344 rats and more than 50 brain tumors in B6C3F1 mice were reviewed and compared to tumors found in man and domestic or companion animals. In the F344 rat, spontaneous brain tumors are uncommon, most are of glial origin, and the highly undifferentiated glioblastoma multiforme, a frequent tumor of man was not found. In the B6C3F1 mouse, brain tumors are exceedingly rare. Lipomas of the choroid plexus and meningiomas together account for more than 50% of the tumors found. Both rodent strains examined have low background rates and very little variability between control groups. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. PMID:3536473

  3. Cathepsin D and its prognostic value in neuroepithelial brain tumors.

    PubMed

    Pigac, Biserka; Dmitrović, Branko; Marić, Svjetlana; Masić, Silvija

    2012-03-01

    Expression of Cathepsin D (Cath D) in some primary neuroepithelial brain tumors and its prognostic value were studied. The research included 65 samples of human primary neuroepithelial brain tumors. There were 50 glial tumors (10 diffuse astrocytomas (DA), 15 anaplastic astrocytomas (AA), 25 glioblastomas (GB), 15 embryonic tumors (15 medulloblastomas (MB) as well as 5 samples of normal brain tissue. Immunohistochemical method was applied to monitor diffuse positive reaction in the cytoplasm of brain tumor cells, endothelial cells and tumor stromal cells and showed diffuse positive reaction for Cath D in the cytoplasm of brain tumor cells, endothelial cells and stromal cells in all analyzed samples of DA, AA, GB and MB as well as in microglial cells, neurons and in endothelial cells in all analyzed samples of normal brain tissue. Qualitative analysis of Cath D expression in the cytoplasm of brain tumor cells and endothelial cells as well as the percentage of brain tumor cells, endothelial cells and stromal cells immunopositive for Cath D showed that there was difference between analyzed brain tumor groups, but according to statistical tests the difference was not statistically significant. Survival correlated with the percentage of stromal cells immunopositive for Cath D. Survival prognosis was influenced by the percentage of stromal cells immunopositive for Cath D and tumor grade. The obtained results singled out the percentage of stromal cells immunopositive for Cath D as an independent parameter. The results of this research on the prognostic value of Cath D in some primary brain tumors of neuroepithelial origin indicate that there is real possibility to use Cath D as an independent prognostic factor in human glioma progression and thus open up possibilities for further scientific research.

  4. Vascular Transdifferentiation in the CNS: A Focus on Neural and Glioblastoma Stem-Like Cells

    PubMed Central

    Bauchet, Luc; Rothhut, Bernard; Hugnot, Jean-Philippe

    2016-01-01

    Glioblastomas are devastating and extensively vascularized brain tumors from which glioblastoma stem-like cells (GSCs) have been isolated by many groups. These cells have a high tumorigenic potential and the capacity to generate heterogeneous phenotypes. There is growing evidence to support the possibility that these cells are derived from the accumulation of mutations in adult neural stem cells (NSCs) as well as in oligodendrocyte progenitors. It was recently reported that GSCs could transdifferentiate into endothelial-like and pericyte-like cells both in vitro and in vivo, notably under the influence of Notch and TGFβ signaling pathways. Vascular cells derived from GBM cells were also observed directly in patient samples. These results could lead to new directions for designing original therapeutic approaches against GBM neovascularization but this specific reprogramming requires further molecular investigations. Transdifferentiation of nontumoral neural stem cells into vascular cells has also been described and conversely vascular cells may generate neural stem cells. In this review, we present and discuss these recent data. As some of them appear controversial, further validation will be needed using new technical approaches such as high throughput profiling and functional analyses to avoid experimental pitfalls and misinterpretations. PMID:27738435

  5. Vibrational Profiling of Brain Tumors and Cells.

    PubMed

    Nelson, Sultan L; Proctor, Dustin T; Ghasemloonia, Ahmad; Lama, Sanju; Zareinia, Kourosh; Ahn, Younghee; Al-Saiedy, Mustafa R; Green, Francis Hy; Amrein, Matthias W; Sutherland, Garnette R

    2017-01-01

    This study reports vibration profiles of neuronal cells and tissues as well as brain tumor and neocortical specimens. A contact-free method and analysis protocol was designed to convert an atomic force microscope into an ultra-sensitive microphone with capacity to record and listen to live biological samples. A frequency of 3.4 Hz was observed for both cultured rat hippocampal neurons and tissues and vibration could be modulated pharmacologically. Malignant astrocytoma tissue samples obtained from operating room, transported in artificial cerebrospinal fluid, and tested within an hour, vibrated with a much different frequency profile and amplitude, compared to meningioma or lateral temporal cortex providing a quantifiable measurement to accurately distinguish the three tissues in real-time. Vibration signals were converted to audible sound waves by frequency modulation, thus demonstrating, acoustic patterns unique to meningioma, malignant astrocytoma and neocortex.

  6. Brain tumor resection guided by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Leblond, Frederic; Fontaine, Kathryn M.; Valdes, Pablo; Ji, Songbai; Pogue, Brian W.; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2009-02-01

    We present the methods that are being used in the scope of an on-going clinical trial designed to assess the usefulness of ALA-PpIX fluorescence imaging when used in conjunction with pre-operative MRI. The overall objective is to develop imaging-based neuronavigation approaches to aid in maximizing the completeness of brain tumor resection, thereby improving patient survival rate. In this paper we present the imaging methods that are used, emphasizing technical aspects relating to the fluorescence optical microscope, including initial validation approaches based on phantom and small-animal experiments. The surgical workflow is then described in detail based on a high-grade glioma resection we performed.

  7. Fractal analysis of tumoral lesions in brain.

    PubMed

    Martín-Landrove, Miguel; Pereira, Demian; Caldeira, María E; Itriago, Salvador; Juliac, María

    2007-01-01

    In this work, it is proposed a method for supervised characterization and classification of tumoral lesions in brain, based on the analysis of irregularities at the lesion contour on T2-weighted MR images. After the choice of a specific image, a segmentation procedure with a threshold selected from the histogram of intensity levels is applied to isolate the lesion, the contour is detected through the application of a gradient operator followed by a conversion to a "time series" using a chain code procedure. The correlation dimension is calculated and analyzed to discriminate between normal or malignant structures. The results found showed that it is possible to detect a differentiation between benign (cysts) and malignant (gliomas) lesions suggesting the potential of this method as a diagnostic tool.

  8. Vibrational Profiling of Brain Tumors and Cells

    PubMed Central

    Nelson, Sultan L; Proctor, Dustin T; Ghasemloonia, Ahmad; Lama, Sanju; Zareinia, Kourosh; Ahn, Younghee; Al-Saiedy, Mustafa R; Green, Francis HY; Amrein, Matthias W; Sutherland, Garnette R

    2017-01-01

    This study reports vibration profiles of neuronal cells and tissues as well as brain tumor and neocortical specimens. A contact-free method and analysis protocol was designed to convert an atomic force microscope into an ultra-sensitive microphone with capacity to record and listen to live biological samples. A frequency of 3.4 Hz was observed for both cultured rat hippocampal neurons and tissues and vibration could be modulated pharmacologically. Malignant astrocytoma tissue samples obtained from operating room, transported in artificial cerebrospinal fluid, and tested within an hour, vibrated with a much different frequency profile and amplitude, compared to meningioma or lateral temporal cortex providing a quantifiable measurement to accurately distinguish the three tissues in real-time. Vibration signals were converted to audible sound waves by frequency modulation, thus demonstrating, acoustic patterns unique to meningioma, malignant astrocytoma and neocortex. PMID:28744324

  9. Neural stem cell-based gene therapy for brain tumors.

    PubMed

    Kim, Seung U

    2011-03-01

    Advances in gene-based medicine since 1990s have ushered in new therapeutic strategy of gene therapy for inborn error genetic diseases and cancer. Malignant brain tumors such as glioblastoma multiforme and medulloblastoma remain virtually untreatable and lethal. Currently available treatment for brain tumors including radical surgical resection followed by radiation and chemotherapy, have substantially improved the survival rate in patients suffering from these brain tumors; however, it remains incurable in large proportion of patients. Therefore, there is substantial need for effective, low-toxicity therapies for patients with malignant brain tumors, and gene therapy targeting brain tumors should fulfill this requirement. Gene therapy for brain tumors includes many therapeutic strategies and these strategies can be grouped in two major categories: molecular and immunologic. The widely used molecular gene therapy approach is suicide gene therapy based on the conversion of non-toxic prodrugs into active anticancer agents via introduction of enzymes and genetic immunotherapy involves the gene transfer of immune-stimulating cytokines including IL-4, IL-12 and TRAIL. For both molecular and immune gene therapy, neural stem cells (NSCs) can be used as delivery vehicle of therapeutic genes. NSCs possess an inherent tumor tropism that supports their use as a reliable delivery vehicle to target therapeutic gene products to primary brain tumors and metastatic cancers throughout the brain. Significance of the NSC-based gene therapy for brain tumor is that it is possible to exploit the tumor-tropic property of NSCs to mediate effective, tumor-selective therapy for primary and metastatic cancers in the brain and outside, for which no tolerated curative treatments are currently available.

  10. Brain Tumor Trials Collaborative | Center for Cancer Research

    Cancer.gov

    Brain Tumor Trials Collaborative In Pursuit of a Cure The mission of the BTTC is to develop and perform state-of-the-art clinical trials in a collaborative and collegial environment, advancing treatments for patients with brain tumors, merging good scientific method with concern for patient well-being and outcome.

  11. Thermal imaging of brain tumors in a rat glioma model

    NASA Astrophysics Data System (ADS)

    Papaioannou, Thanassis; Thompson, Reid C.; Kateb, Babak; Sorokoumov, Oleg; Grundfest, Warren S.; Black, Keith L.

    2002-05-01

    We have explored the capability of thermal imaging for the detection of brain tumors in a rat glioma mode. Fourteen Wistar rats were injected stereotactically with 100,000 C6 glioma cells. Approximately one and two weeks post implantation, the rats underwent bilateral craniotomy and the exposed brain surface was imaged with a short wave thermal camera. Thermal images were obtained at both low (approximately 28.7 degree(s)C) and high (approximately 38 degree(s)C) core temperatures. Temperature gradients between the tumor site and the contralateral normal brain were calculated. Overall, the tumors appeared cooler than normal brain, for both high and low core temperatures. Average temperature difference between tumor and normal brain were maximal in more advanced tumors (two weeks) and at higher core temperatures. At one week (N equals 6), the average temperature gradient between tumor and normal sites was 0.1 degree(s)C and 0.2 degree(s)C at low and high core temperatures respectively (P(greater than)0.05). At two weeks (N equals 8), the average temperature gradient was 0.3 degree(s)C and 0.7 degree(s)C at low and high core temperatures respectively (P<0.05). We conclude that thermal imaging can detect temperature differences between tumor and normal brain tissue in this model, particularly in more advanced tumors. Thermal imaging may provide a novel means to identify brain tumors intraoperatively.

  12. Parallel optimization of tumor model parameters for fast registration of brain tumor images

    NASA Astrophysics Data System (ADS)

    Zacharaki, Evangelia I.; Hogea, Cosmina S.; Shen, Dinggang; Biros, George; Davatzikos, Christos

    2008-03-01

    The motivation of this work is to register MR brain tumor images with a brain atlas. Such a registration method can make possible the pooling of data from different brain tumor patients into a common stereotaxic space, thereby enabling the construction of statistical brain tumor atlases. Moreover, it allows the mapping of neuroanatomical brain atlases into the patient's space, for segmenting brains and thus facilitating surgical or radiotherapy treatment planning. However, the methods developed for registration of normal brain images are not directly applicable to the registration of a normal atlas with a tumor-bearing image, due to substantial dissimilarity and lack of equivalent image content between the two images, as well as severe deformation or shift of anatomical structures around the tumor. Accordingly, a model that can simulate brain tissue death and deformation induced by the tumor is considered to facilitate the registration. Such tumor growth simulation models are usually initialized by placing a small seed in the normal atlas. The shape, size and location of the initial seed are critical for achieving topological equivalence between the atlas and patient's images. In this study, we focus on the automatic estimation of these parameters, pertaining to tumor simulation. In particular, we propose an objective function reflecting feature-based similarity and elastic stretching energy and optimize it with APPSPACK (Asynchronous Parallel Pattern Search), for achieving significant reduction of the computational cost. The results indicate that the registration accuracy is high in areas around the tumor, as well as in the healthy portion of the brain.

  13. Brain necrosis after radiotherapy for primary intracerebral tumor.

    PubMed

    Hohwieler, M L; Lo, T C; Silverman, M L; Freidberg, S R

    1986-01-01

    Radiotherapy is a standard postoperative treatment for cerebral glioma. We have observed the onset of symptoms related to brain necrosis, as opposed to recurrent tumor, in surviving patients. This has been manifest as dementia with a computed tomographic pattern of low density in the frontal lobe uninvolved with tumor, but within the field of radiotherapy. Two patients presented with mass lesions also unrelated to recurrent tumor. We question the necessity of full brain irradiation and suggest that radiotherapy techniques be altered to target the tumor and not encompass the entire brain.

  14. Remodeling the blood-brain barrier microenvironment by natural products for brain tumor therapy.

    PubMed

    Zhao, Xiao; Chen, Rujing; Liu, Mei; Feng, Jianfang; Chen, Jun; Hu, Kaili

    2017-09-01

    Brain tumor incidence shows an upward trend in recent years; brain tumors account for 5% of adult tumors, while in children, this figure has increased to 70%. Moreover, 20%-30% of malignant tumors will eventually metastasize into the brain. Both benign and malignant tumors can cause an increase in intracranial pressure and brain tissue compression, leading to central nervous system (CNS) damage which endangers the patients' lives. Despite the many approaches to treating brain tumors and the progress that has been made, only modest gains in survival time of brain tumor patients have been achieved. At present, chemotherapy is the treatment of choice for many cancers, but the special structure of the blood-brain barrier (BBB) limits most chemotherapeutic agents from passing through the BBB and penetrating into tumors in the brain. The BBB microenvironment contains numerous cell types, including endothelial cells, astrocytes, peripheral cells and microglia, and extracellular matrix (ECM). Many chemical components of natural products are reported to regulate the BBB microenvironment near brain tumors and assist in their treatment. This review focuses on the composition and function of the BBB microenvironment under both physiological and pathological conditions, and the current research progress in regulating the BBB microenvironment by natural products to promote the treatment of brain tumors.

  15. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    PubMed

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.

  16. New treatment modalities for brain tumors in dogs and cats.

    PubMed

    Rossmeisl, John H

    2014-11-01

    Despite advancements in standard therapies, intracranial tumors remain a significant source of morbidity and mortality in veterinary and human medicine. Several newer approaches are gaining more widespread acceptance or are currently being prepared for translation from experimental to routine therapeutic use. Clinical trials in dogs with spontaneous brain tumors have contributed to the development and human translation of several novel therapeutic brain tumor approaches. Published by Elsevier Inc.

  17. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    ClinicalTrials.gov

    2017-01-17

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  18. CARS and non-linear microscopy imaging of brain tumors

    NASA Astrophysics Data System (ADS)

    Galli, Roberta; Uckermann, Ortrud; Tamosaityte, Sandra; Geiger, Kathrin; Schackert, Gabriele; Steiner, Gerald; Koch, Edmund; Kirsch, Matthias

    2013-06-01

    Nonlinear optical microscopy offers a series of techniques that have the potential to be applied in vivo, for intraoperative identification of tumor border and in situ pathology. By addressing the different content of lipids that characterize the tumors with respect to the normal brain tissue, CARS microscopy enables to discern primary and secondary brain tumors from healthy tissue. A study performed in mouse models shows that the reduction of the CARS signal is a reliable quantity to identify brain tumors, irrespective from the tumor type. Moreover it enables to identify tumor borders and infiltrations at a cellular resolution. Integration of CARS with autogenous TPEF and SHG adds morphological and compositional details about the tissue. Examples of multimodal CARS imaging of different human tumor biopsies demonstrate the ability of the technique to retrieve information useful for histopathological diagnosis.

  19. Brain tumors in children with neurofibromatosis: additional neuropsychological morbidity?

    PubMed Central

    De Winter, A. E.; Moore, B. D.; Slopis, J. M.; Ater, J. L.; Copeland, D. R.

    1999-01-01

    Neurofibromatosis type 1 is a common autosomal dominant genetic disorder associated with numerous physical anomalies and an increased incidence of neuropsychological impairment. Tumors of the CNS occur in approximately 15% of children with neurofibromatosis, presenting additional risk for cognitive impairment. This study examines the impact of an additional diagnosis of brain tumor on the cognitive profile of children with neurofibromatosis. A comprehensive battery of neuropsychological tests was administered to 149 children with neurofibromatosis. Thirty-six of these children had a codiagnosis of brain tumor. A subset of 36 children with neurofibromatosis alone was matched with the group of children diagnosed with neurofibromatosis and brain tumor. Although mean scores of the neurofibromatosis plus brain tumor group were, in general, lower than those of the neurofibromatosis alone group, these differences were not statistically significant. Children in the neurofibromatosis plus brain tumor group who received cranial irradiation (n = 9) demonstrated weaker academic abilities than did children with brain tumor who had not received that treatment. These results suggest that neurofibromatosis is associated with impairments in cognitive functioning, but the severity of the problems is not significantly exacerbated by the codiagnosis of a brain tumor unless treatment includes cranial irradiation. PMID:11550319

  20. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    PubMed

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting.

  1. Lassa-vesicular stomatitis chimeric virus safely destroys brain tumors.

    PubMed

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N; Cepko, Connie; van den Pol, Anthony N

    2015-07-01

    High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We tested a series of

  2. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We

  3. What's New in Research and Treatment for Brain Tumors in Children?

    MedlinePlus

    ... Children What’s New in Research and Treatment for Brain and Spinal Cord Tumors in Children? There is ... and Spinal Cord Tumors in Children? More In Brain and Spinal Cord Tumors in Children About Brain ...

  4. Gamma Knife Surgery for Metastatic Brain Tumors from Gynecologic Cancer.

    PubMed

    Matsunaga, Shigeo; Shuto, Takashi; Sato, Mitsuru

    2016-05-01

    The incidences of metastatic brain tumors from gynecologic cancer have increased. The results of Gamma Knife surgery (GKS) for the treatment of patients with brain metastases from gynecologic cancer (ovarian, endometrial, and uterine cervical cancers) were retrospectively analyzed to identify the efficacy and prognostic factors for local tumor control and survival. The medical records were retrospectively reviewed of 70 patients with 306 tumors who underwent GKS for brain metastases from gynecologic cancer between January 1995 and December 2013 in our institution. The primary cancers were ovarian in 33 patients with 147 tumors and uterine in 37 patients with 159 tumors. Median tumor volume was 0.3 cm(3). Median marginal prescription dose was 20 Gy. The local tumor control rates were 96.4% at 6 months and 89.9% at 1 year. There was no statistically significant difference between ovarian and uterine cancers. Higher prescription dose and smaller tumor volume were significantly correlated with local tumor control. Median overall survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and solitary brain metastasis were significantly correlated with satisfactory overall survival. Median activities of daily living (ADL) preservation survival time was 8 months. Primary ovarian cancer, controlled extracranial metastases, and higher Karnofsky Performance Status score were significantly correlated with better ADL preservation. GKS is effective for control of tumor progression in patients with brain metastases from gynecologic cancer, and may provide neurologic benefits and preservation of the quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    SciTech Connect

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  6. Hypofractionation Regimens for Stereotactic Radiotherapy for Large Brain Tumors

    SciTech Connect

    Yuan Jiankui; Wang, Jian Z. Lo, Simon; Grecula, John C.; Ammirati, Mario; Montebello, Joseph F.; Zhang Hualin; Gupta, Nilendu; Yuh, William T.C.; Mayr, Nina A.

    2008-10-01

    Purpose: To investigate equivalent regimens for hypofractionated stereotactic radiotherapy (HSRT) for brain tumor treatment and to provide dose-escalation guidance to maximize the tumor control within the normal brain tolerance. Methods and Materials: The linear-quadratic model, including the effect of nonuniform dose distributions, was used to evaluate the HSRT regimens. The {alpha}/{beta} ratio was estimated using the Gammaknife stereotactic radiosurgery (GKSRS) and whole-brain radiotherapy experience for large brain tumors. The HSRT regimens were derived using two methods: (1) an equivalent tumor control approach, which matches the whole-brain radiotherapy experience for many fractions and merges it with the GKSRS data for few fractions; and (2) a normal-tissue tolerance approach, which takes advantages of the dose conformity and fractionation of HSRT to approach the maximal dose tolerance of the normal brain. Results: A plausible {alpha}/{beta} ratio of 12 Gy for brain tumor and a volume parameter n of 0.23 for normal brain were derived from the GKSRS and whole-brain radiotherapy data. The HSRT prescription regimens for the isoeffect of tumor irradiation were calculated. The normal-brain equivalent uniform dose decreased as the number of fractions increased, because of the advantage of fractionation. The regimens for potential dose escalation of HSRT within the limits of normal-brain tolerance were derived. Conclusions: The designed hypofractionated regimens could be used as a preliminary guide for HSRT dose prescription for large brain tumors to mimic the GKSRS experience and for dose escalation trials. Clinical studies are necessary to further tune the model parameters and validate these regimens.

  7. Hypofractionation regimens for stereotactic radiotherapy for large brain tumors.

    PubMed

    Yuan, Jiankui; Wang, Jian Z; Lo, Simon; Grecula, John C; Ammirati, Mario; Montebello, Joseph F; Zhang, Hualin; Gupta, Nilendu; Yuh, William T C; Mayr, Nina A

    2008-10-01

    To investigate equivalent regimens for hypofractionated stereotactic radiotherapy (HSRT) for brain tumor treatment and to provide dose-escalation guidance to maximize the tumor control within the normal brain tolerance. The linear-quadratic model, including the effect of nonuniform dose distributions, was used to evaluate the HSRT regimens. The alpha/beta ratio was estimated using the Gammaknife stereotactic radiosurgery (GKSRS) and whole-brain radiotherapy experience for large brain tumors. The HSRT regimens were derived using two methods: (1) an equivalent tumor control approach, which matches the whole-brain radiotherapy experience for many fractions and merges it with the GKSRS data for few fractions; and (2) a normal-tissue tolerance approach, which takes advantages of the dose conformity and fractionation of HSRT to approach the maximal dose tolerance of the normal brain. A plausible alpha/beta ratio of 12 Gy for brain tumor and a volume parameter n of 0.23 for normal brain were derived from the GKSRS and whole-brain radiotherapy data. The HSRT prescription regimens for the isoeffect of tumor irradiation were calculated. The normal-brain equivalent uniform dose decreased as the number of fractions increased, because of the advantage of fractionation. The regimens for potential dose escalation of HSRT within the limits of normal-brain tolerance were derived. The designed hypofractionated regimens could be used as a preliminary guide for HSRT dose prescription for large brain tumors to mimic the GKSRS experience and for dose escalation trials. Clinical studies are necessary to further tune the model parameters and validate these regimens.

  8. High Toxoplasma gondii Seropositivity among Brain Tumor Patients in Korea.

    PubMed

    Jung, Bong-Kwang; Song, Hyemi; Kim, Min-Jae; Cho, Jaeeun; Shin, Eun-Hee; Chai, Jong-Yil

    2016-04-01

    Toxoplasma gondii is an intracellular protozoan that can modulate the environment of the infected host. An unfavorable environment modulated by T. gondii in the brain includes tumor microenvironment. Literature has suggested that T. gondii infection is associated with development of brain tumors. However, in Korea, epidemiological data regarding this correlation have been scarce. In this study, in order to investigate the relationship between T. gondii infection and brain tumor development, we investigated the seroprevalence of T. gondii among 93 confirmed brain tumor patients (various histological types, including meningioma and astrocytoma) in Korea using ELISA. The results revealed that T. gondii seropositivity among brain tumor patients (18.3%) was significantly (P<0.05) higher compared with that of healthy controls (8.6%). The seropositivity of brain tumor patients showed a significant age-tendency, i.e., higher in younger age group, compared with age-matched healthy controls (P<0.05). In conclusion, this study supports the close relationship between T. gondii infection and incidence of brain tumors.

  9. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    PubMed

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  10. NGAL immunohistochemical expression in brain primary and metastatic tumors.

    PubMed

    Barresi, V; Tuccari, G; Barresi, G

    2010-01-01

    A significant association has been recently shown between the expression of neutrophil gelatinase-associated lipocalin (NGAL) in tumors and its urinary levels. Thus NGAL urinary detection has been proposed as a method for the early diagnosis of brain tumors. In view of this, the objective of this study was to investigate whether NGAL expression differs according to brain tumor type or in primary vs. metastatic brain neolasias. 42 surgically resected formalin fixed and paraffin embedded neoplasias, including 15 cases of brain metastasis and 27 cases of primary central nervous system (CNS) tumors (11 meningiomas; 1 pilocytic astrocytoma, 2 diffuse astrocytomas, 2 oligoastrocytomas, 2 oligodendrogliomas, 1 anaplastic oligoastrocytoma, 7 glioblastomas, 1 ependymoma) were submitted to the immunohistochemical procedure. Sections were incubated overnight with the primary antibody against NGAL. NGAL staining was found in all the analyzed glioblastomas and in the anaplastic oligoastrocytoma. No NGAL immuno-expression was evidenced in all the other cases. A statistically significant correlation was demonstrated between NGAL presence and high proliferation index in the primary tumors. In conclusion, our findings suggest that NGAL expression is restricted to high grade gliomas among primary brain tumors, and that brain metastases do not express this protein. Considering the correlation between NGAL expression in tumors and its urinary levels, if our observations will be further validated, NGAL urinary detection might be used as an additional tool in the pre-surgical definition of brain lesions involving difficult differential diagnosis.

  11. High Toxoplasma gondii Seropositivity among Brain Tumor Patients in Korea

    PubMed Central

    Jung, Bong-Kwang; Song, Hyemi; Kim, Min-Jae; Cho, Jaeeun; Shin, Eun-Hee; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii is an intracellular protozoan that can modulate the environment of the infected host. An unfavorable environment modulated by T. gondii in the brain includes tumor microenvironment. Literature has suggested that T. gondii infection is associated with development of brain tumors. However, in Korea, epidemiological data regarding this correlation have been scarce. In this study, in order to investigate the relationship between T. gondii infection and brain tumor development, we investigated the seroprevalence of T. gondii among 93 confirmed brain tumor patients (various histological types, including meningioma and astrocytoma) in Korea using ELISA. The results revealed that T. gondii seropositivity among brain tumor patients (18.3%) was significantly (P<0.05) higher compared with that of healthy controls (8.6%). The seropositivity of brain tumor patients showed a significant age-tendency, i.e., higher in younger age group, compared with age-matched healthy controls (P<0.05). In conclusion, this study supports the close relationship between T. gondii infection and incidence of brain tumors. PMID:27180580

  12. Novel treatment strategies for brain tumors and metastases

    PubMed Central

    El-Habashy, Salma E.; Nazief, Alaa M.; Adkins, Chris E.; Wen, Ming Ming; El-Kamel, Amal H.; Hamdan, Ahmed M.; Hanafy, Amira S.; Terrell, Tori O.; Mohammad, Afroz S.; Lockman, Paul R.; Nounou, Mohamed Ismail

    2015-01-01

    This review summarizes patent applications in the past 5 years for the management of brain tumors and metastases. Most of the recent patents discuss one of the following strategies: the development of new drug entities that specifically target the brain cells, the blood–brain barrier and the tumor cells, tailor-designing a novel carrier system that is able to perform multitasks and multifunction as a drug carrier, targeting vehicle and even as a diagnostic tool, direct conjugation of a US FDA approved drug with a targeting moiety, diagnostic moiety or PK modifying moiety, or the use of innovative nontraditional approaches such as genetic engineering, stem cells and vaccinations. Until now, there has been no optimal strategy to deliver therapeutic agents to the CNS for the treatment of brain tumors and metastases. Intensive research efforts are actively ongoing to take brain tumor targeting, and novel and targeted CNS delivery systems to potential clinical application. PMID:24998288

  13. Novel treatment strategies for brain tumors and metastases.

    PubMed

    El-Habashy, Salma E; Nazief, Alaa M; Adkins, Chris E; Wen, Ming Ming; El-Kamel, Amal H; Hamdan, Ahmed M; Hanafy, Amira S; Terrell, Tori O; Mohammad, Afroz S; Lockman, Paul R; Nounou, Mohamed Ismail

    2014-05-01

    This review summarizes patent applications in the past 5 years for the management of brain tumors and metastases. Most of the recent patents discuss one of the following strategies: the development of new drug entities that specifically target the brain cells, the blood-brain barrier and the tumor cells, tailor-designing a novel carrier system that is able to perform multitasks and multifunction as a drug carrier, targeting vehicle and even as a diagnostic tool, direct conjugation of a US FDA approved drug with a targeting moiety, diagnostic moiety or PK modifying moiety, or the use of innovative nontraditional approaches such as genetic engineering, stem cells and vaccinations. Until now, there has been no optimal strategy to deliver therapeutic agents to the CNS for the treatment of brain tumors and metastases. Intensive research efforts are actively ongoing to take brain tumor targeting, and novel and targeted CNS delivery systems to potential clinical application.

  14. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    PubMed Central

    Kiebish, Michael A; Seyfried, Thomas N

    2005-01-01

    Background Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL) and the Arg tRNA. Methods In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. Results Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. Conclusion None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors. PMID:16105171

  15. Brain tumor classification of microscopy images using deep residual learning

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yota; Washiya, Kiyotada; Aoki, Kota; Nagahashi, Hiroshi

    2016-12-01

    The crisis rate of brain tumor is about one point four in ten thousands. In general, cytotechnologists take charge of cytologic diagnosis. However, the number of cytotechnologists who can diagnose brain tumors is not sufficient, because of the necessity of highly specialized skill. Computer-Aided Diagnosis by computational image analysis may dissolve the shortage of experts and support objective pathological examinations. Our purpose is to support a diagnosis from a microscopy image of brain cortex and to identify brain tumor by medical image processing. In this study, we analyze Astrocytes that is a type of glia cell of central nerve system. It is not easy for an expert to discriminate brain tumor correctly since the difference between astrocytes and low grade astrocytoma (tumors formed from Astrocyte) is very slight. In this study, we present a novel method to segment cell regions robustly using BING objectness estimation and to classify brain tumors using deep convolutional neural networks (CNNs) constructed by deep residual learning. BING is a fast object detection method and we use pretrained BING model to detect brain cells. After that, we apply a sequence of post-processing like Voronoi diagram, binarization, watershed transform to obtain fine segmentation. For classification using CNNs, a usual way of data argumentation is applied to brain cells database. Experimental results showed 98.5% accuracy of classification and 98.2% accuracy of segmentation.

  16. Efficacy of cabazitaxel in mouse models of pediatric brain tumors

    PubMed Central

    Girard, Emily; Ditzler, Sally; Lee, Donghoon; Richards, Andrew; Yagle, Kevin; Park, Joshua; Eslamy, Hedieh; Bobilev, Dmitri; Vrignaud, Patricia; Olson, James

    2015-01-01

    Background There is an unmet need in the treatment of pediatric brain tumors for chemotherapy that is efficacious, avoids damage to the developing brain, and crosses the blood-brain barrier. These experiments evaluated the efficacy of cabazitaxel in mouse models of pediatric brain tumors. Methods The antitumor activity of cabazitaxel and docetaxel were compared in flank and orthotopic xenograft models of patient-derived atypical teratoid rhabdoid tumor (ATRT), medulloblastoma, and central nervous system primitive neuroectodermal tumor (CNS-PNET). Efficacy of cabazitaxel and docetaxel were also assessed in the Smo/Smo spontaneous mouse medulloblastoma tumor model. Results This study observed significant tumor growth inhibition in pediatric patient-derived flank xenograft tumor models of ATRT, medulloblastoma, and CNS-PNET after treatment with either cabazitaxel or docetaxel. Cabazitaxel, but not docetaxel, treatment resulted in sustained tumor growth inhibition in the ATRT and medulloblastoma flank xenograft models. Patient-derived orthotopic xenograft models of ATRT, medulloblastoma, and CNS-PNET showed significantly improved survival with treatment of cabazitaxel. Conclusion These data support further testing of cabazitaxel as a therapy for treating human pediatric brain tumors. PMID:25140037

  17. [Functional imaging for brain tumors (perfusion, DTI and MR spectroscopy)].

    PubMed

    Essig, M; Giesel, F; Stieltjes, B; Weber, M A

    2007-06-01

    This contribution considers the possibilities involved with using functional methods in magnetic resonance imaging (MRI) diagnostics for brain tumors. Of the functional methods available, we discuss perfusion MRI (PWI), diffusion MRI (DWI and DTI) and MR spectroscopy (H-MRS). In cases of brain tumor, PWI aids in grading and better differentiation in diagnostics as well as for pre-therapeutic planning. In addition, the course of treatment, both after chemo- as well as radiotherapy in combination with surgical treatment, can be optimized. PWI allows better estimates of biological activity and aggressiveness in low grade brain tumors, and in the case of WHO grade II astrocytoma showing anaplasically transformed tumor areas, allows more rapid visu-alization and a better prediction of the course of the disease than conventional MRI diagnostics. Diffusion MRI, due to the directional dependence of the diffusion, can illustrate the course and direction of the nerve fibers, as well as reconstructing the nerve tracts in the cerebrum, pons and cerebellum 3-dimensionally. Diffusion imaging can be used for describing brain tumors, for evaluating contralateral involvement and the course of the nerve fibers near the tumor. Due to its operator dependence, DTI based fiber tracking for defining risk structures is controversial. DWI can also not differentiate accurately between cystic and necrotic brain tumors, or between metastases and brain abscesses. H-MRS provides information on cell membrane metabolism, neuronal integrity and the function of neuronal structures, energy metabolism and the formation of tumors and brain tissue necroses. Diagnostic problems such as the differentiation between neoplastic and non-neoplastic lesions, grading cerebral glioma and distinguishing between primary brain tumors and metastases can be resolved. An additional contribution will discuss the control of the course of glial tumors after radiotherapy.

  18. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  19. Cytogenetics and molecular genetics of childhood brain tumors.

    PubMed Central

    Biegel, J. A.

    1999-01-01

    Considerable progress has been made toward improving survival for children with brain tumors, and yet there is still relatively little known regarding the molecular genetic events that contribute to tumor initiation or progression. Nonrandom patterns of chromosomal deletions in several types of childhood brain tumors suggest that the loss or inactivation of tumor suppressor genes are critical events in tumorigenesis. Deletions of chromosomal regions 10q, 11 and 17p, and example, are frequent events in medulloblastoma, whereas loss of a region within 22q11.2, which contains the INI1 gene, is involved in the development of atypical teratoid and rhabdoid tumors. A review of the cytogenetic and molecular genetic changes identified to date in childhood brain tumors will be presented. PMID:11550309

  20. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    ClinicalTrials.gov

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  1. Labeled Putrescine as a Probe in Brain Tumors

    NASA Astrophysics Data System (ADS)

    Volkow, Nora; Goldman, Stephen S.; Flamm, Eugene S.; Cravioto, Humberto; Wolf, Alfred P.; Brodie, Jonathan D.

    1983-08-01

    The polyamine metabolism of transplanted N-nitrosomethylurea-derived rat glioma was determined with radiolabeled putrescine used as a marker for malignancy. The uptake of putrescine in vivo was complete within 5 minutes and was specific for tumor tissue. The conversion of putrescine to spermine and other metabolites by the tumor was rapid, in contrast to the case for adjacent normal brain. These results suggest that putrescine labeled with carbon-11 may be used as a positron-emission tomographic tracer for the selective metabolic imaging of brain tumor and may be used in an appropriate model as a marker for tumor growth rate.

  2. Applications of nanotechnology to imaging and therapy of brain tumors.

    PubMed

    Mohs, Aaron M; Provenzale, James M

    2010-08-01

    In the past decade, numerous advances in the understanding of brain tumor physiology, tumor imaging, and tumor therapy have been attained. In some cases, these advances have resulted from refinements of pre-existing technologies (eg, improvements of contrast-enhanced magnetic resonance imaging). In other instances, advances have resulted from development of novel technologies. The development of nanomedicine (ie, applications of nanotechnology to the field of medicine) is an example of the latter. In this review, the authors explain the principles that underlay nanoparticle design and function as well as the means by which nanoparticles can be used for imaging and therapy of brain tumors.

  3. Spectral and lifetime domain measurements of rat brain tumors.

    PubMed

    Haidar, D Abi; Leh, B; Zanello, M; Siebert, R

    2015-04-01

    During glioblastoma surgery, delineation of the brain tumor margins is difficult because the infiltrated and normal tissues have the same visual appearance. We use a fiber-optical fluorescence probe for spectroscopic and time domain measurements to assist surgeon in differentiating the healthy and the infiltrated tissues. First study was performed on rats that were previously injected with tumorous cells. Measurements of endogenous tissue fluorescence were performed on fresh and fixed rat tumor brain slices. Spectral characteristics, fluorescence redox ratios and fluorescence lifetime measurements were analyzed. The study aimed at defining an optical index that can act as an indicator for discriminating healthy from tumorous tissue.

  4. Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells.

    PubMed

    Hiroshima, Yukihiko; Zhao, Ming; Zhang, Yong; Maawy, Ali; Hassanein, Mohamed K; Uehara, Fuminari; Miwa, Shinji; Yano, Shuya; Momiyama, Masashi; Suetsugu, Atsushi; Chishima, Takashi; Tanaka, Kuniya; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2013-09-01

    The XPA1 human pancreatic cancer cell line is dimorphic, with spindle stem-like cells and round non-stem cells. We report here the in vitro IC 50 values of stem-like and non-stem XPA1 human pancreatic cells cells for: (1) 5-fluorouracil (5-FU), (2) cisplatinum (CDDP), (3) gemcitabine (GEM), and (4) tumor-targeting Salmonella typhimurium A1-R (A1-R). IC 50 values of stem-like XPA1 cells were significantly higher than those of non-stem XPA1 cells for 5-FU (P = 0.007) and CDDP (P = 0.012). In contrast, there was no difference between the efficacy of A1-R on stem-like and non-stem XPA1 cells. In vivo, 5-FU and A1-R significantly reduced the tumor weight of non-stem XPA1 cells (5-FU; P = 0.028; A1-R; P = 0.011). In contrast, only A1-R significantly reduced tumor weight of stem-like XPA1 cells (P = 0.012). The combination A1-R with 5-FU improved the antitumor efficacy compared with 5-FU monotherapy on the stem-like cells (P = 0.004). The results of the present report indicate A1-R is a promising therapy for chemo-resistant pancreatic cancer stem-like cells.

  5. Fractal analysis of microvascular networks in malignant brain tumors.

    PubMed

    Di Ieva, Antonio

    2012-01-01

    Brain tumors are characterized by a microvascular network which differs from normal brain vascularity. Different tumors show individual angiogenic patterns. Microvascular heterogeneity can also be observed within a neoplastic histotype. It has been shown that quantification of neoplastic microvascular patterns could be used in combination with the histological grade for tumor characterization and to refine clinical prognoses, even if no objective parameters have yet been validated. To overcome the limits of the Euclidean approach, we employ fractal geometry to analyze the geometric complexity underlying the microangioarchitectural networks in brain tumors. We have developed a computer-aided fractal-based analysis for the quantification of the microvascular patterns in histological specimens and ultra-high-field (7-Tesla) magnetic resonance images. We demonstrate that the fractal parameters are valid estimators of microvascular geometrical complexity. Furthermore, our analysis allows us to demonstrate the high geometrical variability underlying the angioarchitecture of glioblastoma multiforme and to differentiate low-grade from malignant tumors in histological specimens and radiological images. Based on the results of this study, we speculate the existence of a gradient in the geometrical complexity of microvascular networks from those in the normal brain to those in malignant brain tumors. Here, we summarize a new methodology for the application of fractal analysis to the study of the microangioarchitecture of brain tumors; we further suggest this approach as a tool for quantifying and categorizing different neoplastic microvascular patterns and as a potential morphometric biomarker for use in clinical practice.

  6. State of the art survey on MRI brain tumor segmentation.

    PubMed

    Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar

    2013-10-01

    Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Clinical applications of choline PET/CT in brain tumors.

    PubMed

    Giovannini, Elisabetta; Lazzeri, Patrizia; Milano, Amalia; Gaeta, Maria Chiara; Ciarmiello, Andrea

    2015-01-01

    Malignant gliomas and metastatic tumors are the most common forms of brain tumors. From a clinical perspective, neuroimaging plays a significant role, in diagnosis, treatment planning, and follow-up. To date MRI is considered the current clinical gold standard for imaging, however, despite providing superior structural detail it features poor specificity in identifying viable tumors in brain treated with surgery, radiation, or chemotherapy. In the last years functional neuroimaging has become largely widespread thanks to the use of molecular tracers employed in cellular metabolism which has significantly improved the management of patients with brain tumors, especially in the post-treatment phase. Despite the considerable progress of molecular imaging in oncology its use in the diagnosis of brain tumors is still limited by a few wellknown technical problems. Because 18F-FDG, the most common radiotracer used in oncology, is avidly accumulated by normal cortex, the low tumor/background signal ratio makes it difficult to distinguish the tumor from normal surrounding tissues. By contrast, radiotracers with higher specificity for the tumor are labeled with a short half-life isotopes which restricts their use to those centers equipped with a cyclotron and radiopharmacy facility. 11C-choline has been reported as a suitable tracer for neuroimaging application. The recent availability of choline labeled with a long half-life radioisotope as 18F increases the possibility of studying this tracer's potential role in the staging of brain tumors. The present review focuses on the possible clinical applications of PET/CT with choline tracers in malignant brain tumors and brain metastases, with a special focus on malignant gliomas.

  8. Nonconvulsive status epilepticus in patients with brain tumors.

    PubMed

    Marcuse, Lara V; Lancman, Guido; Demopoulos, Alexis; Fields, Madeline

    2014-08-01

    The prevalence of nonconvulsive status epilepticus (NCSE) in brain tumor patients is unknown. Since NCSE has been associated with significant mortality and morbidity, early identification is essential. This study describes the clinical and EEG characteristics, treatment, and outcome in brain tumor patients with NCSE. All patients admitted to Mount Sinai Hospital from 2009 to 2012 with an ICD-9 brain tumor code were cross-referenced with the epilepsy department's database. EEGs from matching patients were reviewed for NCSE. Relevant information from the medical records of the patients with NCSE was extracted. 1101 brain tumor patients were identified, of which 259 (24%) had an EEG and 24 (2%) had NCSE. The vast majority of seizures captured were subclinical with 13 patients (54%) having only subclinical seizures. Treatment resolved the NCSE in 22 patients (92%) with accompanying clinical improvement in 18 (75%) of those patients. Tumor recurrence or progression on MRI was associated with decreased 2-month survival (75% mortality, p=0.035) compared to stable tumors (20% mortality). Patients with metastatic disease had median survival from tumor diagnosis of 1.2 months. NCSE in brain tumor patients may be under diagnosed due to the frequent lack of outward manifestations and highly treatable with improvement in the majority of patients. NCSE patients with progressing brain lesions, tumor recurrence, or metastatic disease are at serious risk of mortality within 2 months. Continuous EEG monitoring in brain tumor patients with recent clinical seizures and/or a depressed level of consciousness may be critical in providing appropriate care. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  9. Culture and isolation of brain tumor initiating cells.

    PubMed

    Lenkiewicz, Monika; Li, Na; Singh, Sheila K

    2009-10-01

    This unit describes protocols for the culture and isolation of brain tumor initiating cells (BTIC). The cancer stem cell (CSC) hypothesis suggests that tumors are maintained exclusively by a rare fraction of cells that have stem cell properties. We applied culture conditions and assays originally used for normal neural stem cells (NSCs) in vitro to a variety of brain tumors. The BTIC were isolated by fluorescence activated cell sorting for the neural precursor cell surface marker CD133. Only the CD133(+) brain tumor fraction contains cells capable of sphere formation and sustained self-renewal in vitro, and tumor initiation in NOD-SCID mouse brains. Therefore, CD133(+) BTICs satisfy the definition of cancer stem cells in that they are able to generate a replica of the patient's tumor and they exhibit self-renewal ability through serial retransplantation. This established that only a rare subset of brain tumor cells with stem cell properties are tumor-initiating, and, in this unit, we describe their culture and isolation.

  10. Sex steroids in human brain tumors and breast cancer.

    PubMed

    von Schoultz, E; Bixo, M; Bäckström, T; Silfvenius, H; Wilking, N; Henriksson, R

    1990-02-15

    The concentrations of three sex steroids, estradiol, progesterone and testosterone, were analyzed by radioimmunoassay after celite chromatography in brain tumor and breast cancer tissues. The concentrations in malignant gliomas and breast cancers showed interindividual variations, especially evident with regard to estradiol. High estradiol concentrations were recorded in two patients with malignant astrocytoma. The concentrations of 1.00 pg/mg and 3.32 pg/mg were 10 to 30 times as high as in normal female brain. In five of ten astrocytomas the estradiol concentration was higher than the lowest breast cancer value. The distribution of progesterone seemed more even, and the level was significantly lower in brain tumors and breast cancers as compared with female brain, perhaps indicating an increased metabolism. Testosterone levels were somewhat higher in brain tumors, as compared with breast cancers, but not different from values in brain tissue. There were no significant age or sex correlation or differences in the concentrations of steroids in the brain tumors. The results suggest that manipulation of sex steroid metabolism in malignant brain tumors can be of beneficial therapeutic value as has been shown for breast cancer and prostatic carcinoma.

  11. Dynamics of leukemia stem-like cell extinction in acute promyelocytic leukemia

    PubMed Central

    Werner, Benjamin; Gallagher, Robert E.; Paietta, Elisabeth M.; Litzow, Mark R.; Tallman, Martin S.; Wiernik, Peter H.; Slack, James L.; Willman, Cheryl L.; Sun, Zhuoxin; Traulsen, Arne; Dingli, David

    2014-01-01

    Many tumors are believed to be maintained by a small number of cancer stem-like cells where cure is thought to require eradication of this cell population. In this study, we investigated the dynamics of acute promyelocytic leukemia (APL) before and during therapy with regard to disease initiation, progression and therapeutic response. This investigation employed a mathematical model of hematopoiesis and a dataset derived from the North American Intergroup Study INT0129. The known phenotypic constraints of APL could be explained by a combination of differentiation blockade of PML-RARα positive cells and suppression of normal hematopoiesis. ATRA neutralizes the differentiation block and decreases the proliferation rate of leukemic stem cells in vivo. Prolonged ATRA treatment after chemotherapy can cure APL patients by eliminating the stem-like cell population over the course of approximately one year. To our knowledge, this study offers the first estimate of the average duration of therapy that is required to eliminate stem-like cancer cells from a human tumor, with the potential for the refinement of treatment strategies to better manage human malignancy. PMID:25082816

  12. Glial brain tumor detection by using symmetry analysis

    NASA Astrophysics Data System (ADS)

    Pedoia, Valentina; Binaghi, Elisabetta; Balbi, Sergio; De Benedictis, Alessandro; Monti, Emanuele; Minotto, Renzo

    2012-02-01

    In this work a fully automatic algorithm to detect brain tumors by using symmetry analysis is proposed. In recent years a great effort of the research in field of medical imaging was focused on brain tumors segmentation. The quantitative analysis of MRI brain tumor allows to obtain useful key indicators of disease progression. The complex problem of segmenting tumor in MRI can be successfully addressed by considering modular and multi-step approaches mimicking the human visual inspection process. The tumor detection is often an essential preliminary phase to solvethe segmentation problem successfully. In visual analysis of the MRI, the first step of the experts cognitive process, is the detection of an anomaly respect the normal tissue, whatever its nature. An healthy brain has a strong sagittal symmetry, that is weakened by the presence of tumor. The comparison between the healthy and ill hemisphere, considering that tumors are generally not symmetrically placed in both hemispheres, was used to detect the anomaly. A clustering method based on energy minimization through Graph-Cut is applied on the volume computed as a difference between the left hemisphere and the right hemisphere mirrored across the symmetry plane. Differential analysis involves the loss the knowledge of the tumor side. Through an histogram analysis the ill hemisphere is recognized. Many experiments are performed to assess the performance of the detection strategy on MRI volumes in presence of tumors varied in terms of shapes positions and intensity levels. The experiments showed good results also in complex situations.

  13. Current state of our knowledge on brain tumor epidemiology.

    PubMed

    Ostrom, Quinn T; Barnholtz-Sloan, Jill S

    2011-06-01

    The overall incidence of brain tumors for benign and malignant tumors combined is 18.71 per 100,000 person-years; 11.52 per 100,000 person-years for benign tumors and 7.19 per 100,000 person-years for malignant tumors. Incidence, response to treatment, and survival after diagnosis vary greatly by age at diagnosis, histologic type of tumor, and degree of neurologic compromise. The only established environmental risk factor for brain tumors is ionizing radiation exposure. Exposure to radiofrequency electromagnetic fields via cell phone use has gained a lot of attention as a potential risk factor for brain tumor development. However, studies have been inconsistent and inconclusive due to systematic differences in study designs and difficulty of accurately measuring cell phone use. Recently studies of genetic risk factors for brain tumors have expanded to genome-wide association studies. In addition, genome-wide studies of somatic genetic changes in tumors show correlation with clinical outcomes.

  14. Local specific absorption rate in brain tumors at 7 tesla.

    PubMed

    Restivo, Matthew C; van den Berg, Cornelis A T; van Lier, Astrid L H M W; Polders, Daniël L; Raaijmakers, Alexander J E; Luijten, Peter R; Hoogduin, Hans

    2016-01-01

    MR safety at 7 Tesla relies on accurate numerical simulations of transmit electromagnetic fields to fully assess local specific absorption rate (SAR) safety. Numerical simulations for SAR safety are currently performed using models of healthy patients. These simulations might not be useful for estimating SAR in patients who have large lesions with potentially abnormal dielectric properties, e.g., brain tumors. In this study, brain tumor patient models are constructed based on scans of four patients with high grade brain tumors. Dielectric properties for the modeled tumors are assigned based on electrical properties tomography data for the same patients. Simulations were performed to determine SAR. Local SAR increases in the tumors by as much as 30%. However, the location of the maximum 10-gram averaged SAR typically occurs outside of the tumor, and thus does not increase. In the worst case, if the tumor model is moved to the location of maximum electric field intensity, then we do observe an increase in the estimated peak 10-gram SAR directly related to the tumor. Peak local SAR estimation made on the results of a healthy patient model simulation may underestimate the true peak local SAR in a brain tumor patient. © 2015 Wiley Periodicals, Inc.

  15. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    PubMed Central

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  16. Uranyl phthalocyanines show promise in the treatment of brain tumors

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.

    1967-01-01

    Processes synthesize sulfonated and nonsulfonated uranyl phthalocyanines for application in neutron therapy of brain tumors. Tests indicate that the compounds are advantageous over the previously used boron and lithium compounds.

  17. Chemo Drug May Combat Serious Brain Tumor After All

    MedlinePlus

    ... Chemo Drug May Combat Serious Brain Tumor After All Certain glioblastomas respond to anti-angiogenic compounds, study ... Dec. 22, 2016 HealthDay Copyright (c) 2016 HealthDay . All rights reserved. News stories are written and provided ...

  18. The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells.

    PubMed

    Boyle, S T; Ingman, W V; Poltavets, V; Faulkner, J W; Whitfield, R J; McColl, S R; Kochetkova, M

    2016-01-07

    The chemokine receptor CCR7 is widely implicated in breast cancer pathobiology. Although recent reports correlated high CCR7 levels with more advanced tumor grade and poor prognosis, limited in vivo data are available regarding its specific function in mammary gland neoplasia and the underlying mechanisms involved. To address these questions we generated a bigenic mouse model of breast cancer combined with CCR7 deletion, which revealed that CCR7 ablation results in a considerable delay in tumor onset as well as significantly reduced tumor burden. Importantly, CCR7 was found to exert its function by regulating mammary cancer stem-like cells in both murine and human tumors. In vivo experiments showed that loss of CCR7 activity either through deletion or pharmacological antagonism significantly decreased functional pools of stem-like cells in mouse primary mammary tumors, providing a mechanistic explanation for the tumor-promoting role of this chemokine receptor. These data characterize the oncogenic properties of CCR7 in mammary epithelial neoplasia and point to a new route for therapeutic intervention to target evasive cancer stem cells.

  19. Modeling and Targeting MYC Genes in Childhood Brain Tumors.

    PubMed

    Hutter, Sonja; Bolin, Sara; Weishaupt, Holger; Swartling, Fredrik J

    2017-03-23

    Brain tumors are the second most common group of childhood cancers, accounting for about 20%-25% of all pediatric tumors. Deregulated expression of the MYC family of transcription factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic approaches for pharmacological inhibition of MYC activity in these tumors.

  20. Modeling and Targeting MYC Genes in Childhood Brain Tumors

    PubMed Central

    Hutter, Sonja; Bolin, Sara; Weishaupt, Holger; Swartling, Fredrik J.

    2017-01-01

    Brain tumors are the second most common group of childhood cancers, accounting for about 20%–25% of all pediatric tumors. Deregulated expression of the MYC family of transcription factors, particularly c-MYC and MYCN genes, has been found in many of these neoplasms, and their expression levels are often correlated with poor prognosis. Elevated c-MYC/MYCN initiates and drives tumorigenesis in many in vivo model systems of pediatric brain tumors. Therefore, inhibition of their oncogenic function is an attractive therapeutic target. In this review, we explore the roles of MYC oncoproteins and their molecular targets during the formation, maintenance, and recurrence of childhood brain tumors. We also briefly summarize recent progress in the development of therapeutic approaches for pharmacological inhibition of MYC activity in these tumors. PMID:28333115

  1. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    PubMed Central

    2012-01-01

    Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors. PMID:22891953

  2. FDTD analysis of a noninvasive hyperthermia system for brain tumors.

    PubMed

    Yacoob, Sulafa M; Hassan, Noha S

    2012-08-14

    Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40-45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  3. Challenges for the functional diffusion map in pediatric brain tumors

    PubMed Central

    Grech-Sollars, Matthew; Saunders, Dawn E.; Phipps, Kim P.; Kaur, Ramneek; Paine, Simon M.L.; Jacques, Thomas S.; Clayden, Jonathan D.; Clark, Chris A.

    2014-01-01

    Background The functional diffusion map (fDM) has been suggested as a tool for early detection of tumor treatment efficacy. We aim to study 3 factors that could act as potential confounders in the fDM: areas of necrosis, tumor grade, and change in tumor size. Methods Thirty-four pediatric patients with brain tumors were enrolled in a retrospective study, approved by the local ethics committee, to examine the fDM. Tumors were selected to encompass a range of types and grades. A qualitative analysis was carried out to compare how fDM findings may be affected by each of the 3 confounders by comparing fDM findings to clinical image reports. Results Results show that the fDM in areas of necrosis do not discriminate between treatment response and tumor progression. Furthermore, tumor grade alters the behavior of the fDM: a decrease in apparent diffusion coefficient (ADC) is a sign of tumor progression in high-grade tumors and treatment response in low-grade tumors. Our results also suggest using only tumor area overlap between the 2 time points analyzed for the fDM in tumors of varying size. Conclusions Interpretation of fDM results needs to take into account the underlying biology of both tumor and healthy tissue. Careful interpretation of the results is required with due consideration to areas of necrosis, tumor grade, and change in tumor size. PMID:24305721

  4. Challenges for the functional diffusion map in pediatric brain tumors.

    PubMed

    Grech-Sollars, Matthew; Saunders, Dawn E; Phipps, Kim P; Kaur, Ramneek; Paine, Simon M L; Jacques, Thomas S; Clayden, Jonathan D; Clark, Chris A

    2014-03-01

    The functional diffusion map (fDM) has been suggested as a tool for early detection of tumor treatment efficacy. We aim to study 3 factors that could act as potential confounders in the fDM: areas of necrosis, tumor grade, and change in tumor size. Thirty-four pediatric patients with brain tumors were enrolled in a retrospective study, approved by the local ethics committee, to examine the fDM. Tumors were selected to encompass a range of types and grades. A qualitative analysis was carried out to compare how fDM findings may be affected by each of the 3 confounders by comparing fDM findings to clinical image reports. Results show that the fDM in areas of necrosis do not discriminate between treatment response and tumor progression. Furthermore, tumor grade alters the behavior of the fDM: a decrease in apparent diffusion coefficient (ADC) is a sign of tumor progression in high-grade tumors and treatment response in low-grade tumors. Our results also suggest using only tumor area overlap between the 2 time points analyzed for the fDM in tumors of varying size. Interpretation of fDM results needs to take into account the underlying biology of both tumor and healthy tissue. Careful interpretation of the results is required with due consideration to areas of necrosis, tumor grade, and change in tumor size.

  5. Emerging Insights into Barriers to Effective Brain Tumor Therapeutics

    PubMed Central

    Woodworth, Graeme F.; Dunn, Gavin P.; Nance, Elizabeth A.; Hanes, Justin; Brem, Henry

    2014-01-01

    There is great promise that ongoing advances in the delivery of therapeutics to the central nervous system (CNS) combined with rapidly expanding knowledge of brain tumor patho-biology will provide new, more effective therapies. Brain tumors that form from brain cells, as opposed to those that come from other parts of the body, rarely metastasize outside of the CNS. Instead, the tumor cells invade deep into the brain itself, causing disruption in brain circuits, blood vessel and blood flow changes, and tissue swelling. Patients with the most common and deadly form, glioblastoma (GBM) rarely live more than 2 years even with the most aggressive treatments and often with devastating neurological consequences. Current treatments include maximal safe surgical removal or biopsy followed by radiation and chemotherapy to address the residual tumor mass and invading tumor cells. However, delivering effective and sustained treatments to these invading cells without damaging healthy brain tissue is a major challenge and focus of the emerging fields of nanomedicine and viral and cell-based therapies. New treatment strategies, particularly those directed against the invasive component of this devastating CNS disease, are sorely needed. In this review, we (1) discuss the history and evolution of treatments for GBM, (2) define and explore three critical barriers to improving therapeutic delivery to invasive brain tumors, specifically, the neuro-vascular unit as it relates to the blood brain barrier, the extra-cellular space in regard to the brain penetration barrier, and the tumor genetic heterogeneity and instability in association with the treatment efficacy barrier, and (3) identify promising new therapeutic delivery approaches that have the potential to address these barriers and create sustained, meaningful efficacy against GBM. PMID:25101239

  6. Characterization of distinct immunophenotypes across pediatric brain tumor types.

    PubMed

    Griesinger, Andrea M; Birks, Diane K; Donson, Andrew M; Amani, Vladimir; Hoffman, Lindsey M; Waziri, Allen; Wang, Michael; Handler, Michael H; Foreman, Nicholas K

    2013-11-01

    Despite increasing evidence that antitumor immune control exists in the pediatric brain, these findings have yet to be exploited successfully in the clinic. A barrier to development of immunotherapeutic strategies in pediatric brain tumors is that the immunophenotype of these tumors' microenvironment has not been defined. To address this, the current study used multicolor FACS of disaggregated tumor to systematically characterize the frequency and phenotype of infiltrating immune cells in the most common pediatric brain tumor types. The initial study cohort consisted of 7 pilocytic astrocytoma (PA), 19 ependymoma (EPN), 5 glioblastoma (GBM), 6 medulloblastoma (MED), and 5 nontumor brain (NT) control samples obtained from epilepsy surgery. Immune cell types analyzed included both myeloid and T cell lineages and respective markers of activated or suppressed functional phenotypes. Immune parameters that distinguished each of the tumor types were identified. PA and EPN demonstrated significantly higher infiltrating myeloid and lymphoid cells compared with GBM, MED, or NT. Additionally, PA and EPN conveyed a comparatively activated/classically activated myeloid cell-skewed functional phenotype denoted in particular by HLA-DR and CD64 expression. In contrast, GBM and MED contained progressively fewer infiltrating leukocytes and more muted functional phenotypes similar to that of NT. These findings were recapitulated using whole tumor expression of corresponding immune marker genes in a large gene expression microarray cohort of pediatric brain tumors. The results of this cross-tumor comparative analysis demonstrate that different pediatric brain tumor types exhibit distinct immunophenotypes, implying that specific immunotherapeutic approaches may be most effective for each tumor type.

  7. Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth

    PubMed Central

    Zacharaki, Evangelia I.; Hogea, Cosmina S.; Shen, Dinggang; Biros, George; Davatzikos, Christos

    2009-01-01

    Although a variety of diffeomorphic deformable registration methods exist in the literature, application of these methods in the presence of space-occupying lesions is not straightforward. The motivation of this work is spatial normalization of MR images from patients with brain tumors in a common stereotaxic space, aiming to pool data from different patients into a common space in order to perform group analyses. Additionally, transfer of structural and functional information from neuroanatomical brain atlases into the individual patient's space can be achieved via the inverse mapping, for the purpose of segmenting brains and facilitating surgical or radiotherapy treatment planning. A method that estimates the brain tissue loss and replacement by tumor is applied for achieving equivalent image content between an atlas and a patient's scan, based on a biomechanical model of tumor growth. Automated estimation of the parameters modeling brain tissue loss and displacement is performed via optimization of an objective function reflecting feature-based similarity and elastic stretching energy, which is optimized in parallel via APPSPACK (Asynchronous Parallel Pattern Search). The results of the method, applied to 21 brain tumor patients, indicate that the registration accuracy is relatively high in areas around the tumor, as well as in the healthy portion of the brain. Also, the calculated deformation in the vicinity of the tumor is shown to correlate highly with expert-defined visual scores indicating the tumor mass effect, thereby potentially leading to an objective approach to quantification of mass effect, which is commonly used in diagnosis. PMID:19408350

  8. Brain tumor locating in 3D MR volume using symmetry

    NASA Astrophysics Data System (ADS)

    Dvorak, Pavel; Bartusek, Karel

    2014-03-01

    This work deals with the automatic determination of a brain tumor location in 3D magnetic resonance volumes. The aim of this work is not the precise segmentation of the tumor and its parts but only the detection of its location. This work is the first step in the tumor segmentation process, an important topic in neuro-image processing. The algorithm expects 3D magnetic resonance volumes of brain containing a tumor. The detection is based on locating the area that breaks the left-right symmetry of the brain. This is done by multi-resolution comparing of corresponding regions in left and right hemisphere. The output of the computation is the probabilistic map of the tumor location. The created algorithm was tested on 80 volumes from publicly available BRATS databases containing 3D brain volumes afflicted by a brain tumor. These pathological structures had various sizes and shapes and were located in various parts of the brain. The locating performance of the algorithm was 85% for T1-weighted volumes, 91% for T1-weighted contrast enhanced volumes, 96% for FLAIR and T2-wieghted volumes and 95% for their combinations.

  9. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  10. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    PubMed Central

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-01-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue. PMID:27456312

  11. Brain tumors in children--current therapies and newer directions.

    PubMed

    Khatua, Soumen; Sadighi, Zsila Sousan; Pearlman, Michael L; Bochare, Sunil; Vats, Tribhawan S

    2012-07-01

    Brain tumors are the second most common malignancy and the major cause of cancer related mortality in children. Though significant advances in neuroimaging, neurosurgery, radiation therapy and chemotherapy have evolved over the years, overall survival rate remains less than 75%. Malignant gliomas, high risk medulloblastoma with recurrence and infant brain tumors continue to be a major cause of therapeutic frustration. Even today diffuse pontine gliomas are universally fatal. Though tumors like low grade glioma have an overall excellent survival, recurrences and progression in eloquent areas pose therapeutic challenges. As research continues to unravel the biology including key molecules and signaling pathways responsible for the oncogenesis of different childhood brain tumors, novel targeted therapies are profiled. Identification of major targets like the Epidermal Growth factor Receptor (EGFR), Platelet Derived Growth Factor Receptor (PDGFR), Vascular Endothelial Growth factor (VEGF) and key signaling pathways like the MAPK and PI3K/Akt/mTOR has enabled us over the recent years to better understand tumor behavior and design tailored therapy. These efforts have improved overall survival of children with brain tumors. This review article discusses the current status of common brain tumors in children and the newer therapeutic approaches.

  12. Sports and childhood brain tumors: Can I play?

    PubMed Central

    Perreault, Sébastien; Lober, Robert M.; Davis, Carissa; Stave, Christopher; Partap, Sonia; Fisher, Paul G.

    2014-01-01

    Background It is unknown whether children with brain tumors have a higher risk of complications while participating in sports. We sought to estimate the prevalence of such events by conducting a systematic review of the literature, and we surveyed providers involved with pediatric central nervous system (CNS) tumor patients. Methods A systematic review of the literature in the PubMed, Scopus, and Cochrane databases was conducted for original articles addressing sport-related complications in the brain-tumor population. An online questionnaire was created to survey providers involved with pediatric CNS tumor patients about their current recommendations and experience regarding sports and brain tumors. Results We retrieved 32 subjects, including 19 pediatric cases from the literature. Most lesions associated with sport complications were arachnoid cysts (n = 21), followed by glioma (n = 5). The sports in which symptom onset most commonly occurred were soccer (n = 7), football (n = 5), and running (n = 5). We surveyed 111 pediatric neuro-oncology providers. Sport restriction varied greatly from none to 14 sports. Time to return to play in sports with contact also varied considerably between providers. Rationales for limiting sports activities were partly related to subspecialty. Responders reported 9 sport-related adverse events in patients with brain tumor. Conclusions Sport-related complications are uncommon in children with brain tumors. Patients might not be at a significantly higher risk and should not need to be excluded from most sports activities. PMID:26034627

  13. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    2008-04-01

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silicobrain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  14. Current status of gene therapy for brain tumors.

    PubMed

    Murphy, Andrea M; Rabkin, Samuel D

    2013-04-01

    Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.

  15. Molecular imaging of brain tumors with radiolabeled choline PET.

    PubMed

    Calabria, Ferdinando Franco; Barbarisi, Manlio; Gangemi, Vincenzo; Grillea, Giovanni; Cascini, Giuseppe Lucio

    2016-05-26

    Several positron emission tomography (PET) radiopharmaceuticals have been emerged in the last decade as feasible in the management of brain lesions, due to the low performance in this field of the 18F-fluoro-deoxyglucose (18F-FDG), for its high physiological gradient of distribution in the brain. Beyond its usefulness in prostate cancer imaging, the radiolabeled choline is becoming a promising tool in diagnosing benign and malignant lesions of the brain, due to a very low rate of distribution in normal white and grey matters. The aim of our review was to assess the real impact of the radiolabeled choline PET/CT in the management of brain benign lesions, brain tumors, and metastases. Furthermore, emphasis was given to the comparison between the radiolabeled choline and the other radiopharmaceuticals in this field. A literature review was performed. The radiolabeled choline is useful in the management of patients with suspected brain tumor relapse, especially in association with magnetic resonance imaging (MRI), with caution regarding its intrinsic characteristic of non-tumor-specific tracer. For the same reason, it is not useful in the early evaluation of brain lesions. Similar results are reported for other radiopharmaceuticals. The inclusion of the head in the whole-body scans for somatic tumors is necessary to ensure metastases in the brain or choline-avid benign lesions.

  16. An epigenetic gateway to brain tumor cell identity.

    PubMed

    Mack, Stephen C; Hubert, Christopher G; Miller, Tyler E; Taylor, Michael D; Rich, Jeremy N

    2016-01-01

    Precise targeting of genetic lesions alone has been insufficient to extend brain tumor patient survival. Brain cancer cells are diverse in their genetic, metabolic and microenvironmental compositions, accounting for their phenotypic heterogeneity and disparate responses to therapy. These factors converge at the level of the epigenome, representing a unified node that can be disrupted by pharmacologic inhibition. Aberrant epigenomes define many childhood and adult brain cancers, as demonstrated by widespread changes to DNA methylation patterns, redistribution of histone marks and disruption of chromatin structure. In this Review, we describe the convergence of genetic, metabolic and microenvironmental factors on mechanisms of epigenetic deregulation in brain cancer. We discuss how aberrant epigenetic pathways identified in brain tumors affect cell identity, cell state and neoplastic transformation, as well as addressing the potential to exploit these alterations as new therapeutic strategies for the treatment of brain cancer.

  17. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    PubMed

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.

  18. Irinotecan and Whole-Brain Radiation Therapy in Treating Patients With Brain Metastases From Solid Tumors

    ClinicalTrials.gov

    2010-03-15

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Adults; Long-term Effects Secondary to Cancer Therapy in Children; Poor Performance Status; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  19. Metabolic analysis of radioresistant medulloblastoma stem-like clones and potential therapeutic targets.

    PubMed

    Sun, Lue; Moritake, Takashi; Ito, Kazuya; Matsumoto, Yoshitaka; Yasui, Hironobu; Nakagawa, Hidehiko; Hirayama, Aki; Inanami, Osamu; Tsuboi, Koji

    2017-01-01

    Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treatment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential target of cancer therapy because it is often different between cancer cells and normal cells. However, the metabolic properties of medulloblastoma stem cells, and whether specific metabolic pathways are essential for sustaining their stem cell-like phenotype and radioresistance, remain unclear. We have established radioresistant medulloblastoma stem-like clones (rMSLCs) by irradiation of the human medulloblastoma cell line ONS-76. Here, we assessed reactive oxygen species (ROS) production, mitochondria function, oxygen consumption rate (OCR), energy state, and metabolites of glycolysis and tricarboxylic acid cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria mass, low endogenous ROS production, and existed in a low-energy state. Treatment with the metabolic modifier dichloroacetate (DCA) resulted in mitochondria dysfunction, glycolysis inhibition, elongated mitochondria morphology, and increased ROS production. DCA also increased radiosensitivity by suppression of the DNA repair capacity through nuclear oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP. Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133 positivity and sphere-forming ability) in rMSLCs. Together, our findings provide insights into the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be exploited for therapeutic benefit in medulloblastoma.

  20. Identification of a cancer stem cell in human brain tumors.

    PubMed

    Singh, Sheila K; Clarke, Ian D; Terasaki, Mizuhiko; Bonn, Victoria E; Hawkins, Cynthia; Squire, Jeremy; Dirks, Peter B

    2003-09-15

    Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, there is overwhelming evidence in some malignancies that the tumor clone is heterogeneous with respect to proliferation and differentiation. In human leukemia, the tumor clone is organized as a hierarchy that originates from rare leukemic stem cells that possess extensive proliferative and self-renewal potential, and are responsible for maintaining the tumor clone. We report here the identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation. The increased self-renewal capacity of the brain tumor stem cell (BTSC) was highest from the most aggressive clinical samples of medulloblastoma compared with low-grade gliomas. The BTSC was exclusively isolated with the cell fraction expressing the neural stem cell surface marker CD133. These CD133+ cells could differentiate in culture into tumor cells that phenotypically resembled the tumor from the patient. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC.

  1. Toward real-time tumor margin identification in image-guided robotic brain tumor resection

    NASA Astrophysics Data System (ADS)

    Hu, Danying; Jiang, Yang; Belykh, Evgenii; Gong, Yuanzheng; Preul, Mark C.; Hannaford, Blake; Seibel, Eric J.

    2017-03-01

    For patients with malignant brain tumors (glioblastomas), a safe maximal resection of tumor is critical for an increased survival rate. However, complete resection of the cancer is hard to achieve due to the invasive nature of these tumors, where the margins of the tumors become blurred from frank tumor to more normal brain tissue, but in which single cells or clusters of malignant cells may have invaded. Recent developments in fluorescence imaging techniques have shown great potential for improved surgical outcomes by providing surgeons intraoperative contrast-enhanced visual information of tumor in neurosurgery. The current near-infrared (NIR) fluorophores, such as indocyanine green (ICG), cyanine5.5 (Cy5.5), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), are showing clinical potential to be useful in targeting and guiding resections of such tumors. Real-time tumor margin identification in NIR imaging could be helpful to both surgeons and patients by reducing the operation time and space required by other imaging modalities such as intraoperative MRI, and has the potential to integrate with robotically assisted surgery. In this paper, a segmentation method based on the Chan-Vese model was developed for identifying the tumor boundaries in an ex-vivo mouse brain from relatively noisy fluorescence images acquired by a multimodal scanning fiber endoscope (mmSFE). Tumor contours were achieved iteratively by minimizing an energy function formed by a level set function and the segmentation model. Quantitative segmentation metrics based on tumor-to-background (T/B) ratio were evaluated. Results demonstrated feasibility in detecting the brain tumor margins at quasi-real-time and has the potential to yield improved precision brain tumor resection techniques or even robotic interventions in the future.

  2. Doublecortin is preferentially expressed in invasive human brain tumors.

    PubMed

    Daou, Marie-Claire; Smith, Thomas W; Litofsky, N Scott; Hsieh, Chung C; Ross, Alonzo H

    2005-11-01

    Doublecortin (DCX) is required for neuroblastic migration during the development of the cerebral cortex. DCX is a microtubule-associated protein that plays a role in cellular motility. These facts led us to hypothesize that DCX is increased in invasive brain tumors. DCX expression was assessed in 69 paraffin-embedded brain tumors of neuroepithelial origin. In addition, mouse brain sections of the subventricular zone and dentate gyrus were used as positive controls for immunostaining, and specificity of antibody staining was demonstrated by peptide neutralization. DCX was highly expressed in both high-grade invasive tumors (glioblastoma, n=11; anaplastic astrocytoma/oligoastrocytoma, n=7; and medulloblastoma/PNET, n=6) and low-grade invasive tumors (oligodendroglioma, n=3; and astrocytoma/oligoastrocytoma, n=5). However, DCX was less intensely expressed in the circumscribed group of tumors (pilocytic astrocytoma, n=6; ependymoma/subependymoma, n=7; dysembryoplastic neuroepithelial tumor, n=4; ganglioglioma, n=2; meningioma, n=9; and schwannoma, n=9). By the Cochran-Mantel-Haenszel statistical test, the circumscribed group was significantly different from both the high-grade invasive group (P<0.0001) and the low-grade invasive group (P<0.0001). We conclude that DCX is preferentially expressed in invasive brain tumors. In addition, DCX immunostaining was stronger at the margin of the tumor than at the center. For a subset of these tumors, we also detected DCX mRNA and protein by Northern and Western blotting. DCX mRNA and protein was detected in glioma cell lines by Northern blotting, immunofluorescence microscopy and Western blotting. Collectively, the immunohistochemistry, Western blots and Northern blots conclusively demonstrate expression of DCX by human brain tumors.

  3. The roles of viruses in brain tumor initiation and oncomodulation

    PubMed Central

    Kofman, Alexander; Marcinkiewicz, Lucasz; Dupart, Evan; Lyshchev, Anton; Martynov, Boris; Ryndin, Anatolii; Kotelevskaya, Elena; Brown, Jay; Schiff, David

    2012-01-01

    While some avian retroviruses have been shown to induce gliomas in animal models, human herpesviruses, specifically, the most extensively studied cytomegalovirus, and the much less studied roseolovirus HHV-6, and Herpes simplex viruses 1 and 2, currently attract more and more attention as possible contributing or initiating factors in the development of human brain tumors. The aim of this review is to summarize and highlight the most provoking findings indicating a potential causative link between brain tumors, specifically malignant gliomas, and viruses in the context of the concepts of viral oncomodulation and the tumor stem cell origin. PMID:21720806

  4. Gene therapeutics: the future of brain tumor therapy?

    PubMed

    Cutter, Jennifer L; Kurozumi, Kazuhiko; Chiocca, E Antonio; Kaur, Balveen

    2006-07-01

    Primary glioblastoma multiforme is an aggressive brain tumor that has no cure. Current treatments include gross resection of the tumor, radiation and chemotherapy. Despite valiant efforts, prognosis remains dismal. A promising new technique involves the use of oncolytic viruses that can specifically replicate and lyse in cancers, without spreading to normal tissues. Currently, these are being tested in relevant preclinical models and clinical trials as a therapeutic modality for many types of cancer. Results from recent clinical trials with oncolytic viruses have revealed the safety of this approach, although evidence for efficacy remains elusive. Oncolytic viral strategies are summarized in this review, with a focus on therapies used in brain tumors.

  5. Medical management of brain tumors and the sequelae of treatment

    PubMed Central

    Schiff, David; Lee, Eudocia Q.; Nayak, Lakshmi; Norden, Andrew D.; Reardon, David A.; Wen, Patrick Y.

    2015-01-01

    Patients with malignant brain tumors are prone to complications that negatively impact their quality of life and sometimes their overall survival as well. Tumors may directly provoke seizures, hypercoagulable states with resultant venous thromboembolism, and mood and cognitive disorders. Antitumor treatments and supportive therapies also produce side effects. In this review, we discuss major aspects of supportive care for patients with malignant brain tumors, with particular attention to management of seizures, venous thromboembolism, corticosteroids and their complications, chemotherapy including bevacizumab, and fatigue, mood, and cognitive dysfunction. PMID:25358508

  6. Tight regulation between cell survival and programmed cell death in GBM stem-like cells by EGFR/GSK3b/PP2A signaling.

    PubMed

    Gürsel, Demirkan B; Banu, Matei A; Berry, Nicholas; Marongiu, Roberta; Burkhardt, Jan-Karl; Kobylarz, Keith; Kaplitt, Michael G; Rafii, Shahin; Boockvar, John A

    2015-01-01

    Malignant gliomas represent one of the most aggressive forms of cancer, displaying high mortality rates and limited treatment options. Specific subpopulations of cells residing in the tumor niche with stem-like characteristics have been postulated to initiate and maintain neoplasticity while resisting conventional therapies. The study presented here aims to define the role of glycogen synthase kinase 3 beta (GSK3b) in patient-derived glioblastoma (GBM) stem-like cell (GSC) proliferation, apoptosis and invasion. To evaluate the potential role of GSK3b in GBM, protein profiles from 68 GBM patients and 20 normal brain samples were analyzed for EGFR-mediated PI3kinase/Akt and GSK3b signaling molecules including protein phosphatase 2A (PP2A). To better understand the function of GSK3b in GBM, GSCs were isolated from GBM patient samples. Blocking GSK3b phosphorylation at Serine 9 attenuated cell proliferation while concomitantly stimulating apoptosis through activation of Caspase-3 in patient-derived GSCs. Increasing GSK3b protein content resulted in the inhibition of cell proliferation, colony formation and stimulated programmed cell death. Depleting GSK3b in GSCs down regulated PP2A. Furthermore, knocking down PP2A or blocking its activity by okadaic acid inactivated GSK3b by increasing GSK3b phosphorylation at Serine 9. Our data suggests that GSK3b may function as a regulator of apoptosis and tumorigenesis in GSCs. Therapeutic approaches targeting GSK3b in glioblastoma stem-like cells may be a useful addition to our current therapeutic armamentarium.

  7. An evaluative tool for preoperative planning of brain tumor resection

    NASA Astrophysics Data System (ADS)

    Coffey, Aaron M.; Garg, Ishita; Miga, Michael I.; Thompson, Reid C.

    2010-02-01

    A patient specific finite element biphasic brain model has been utilized to codify a surgeon's experience by establishing quantifiable biomechanical measures to score orientations for optimal planning of brain tumor resection. When faced with evaluating several potential approaches to tumor removal during preoperative planning, the goal of this work is to facilitate the surgeon's selection of a patient head orientation such that tumor presentation and resection is assisted via favorable brain shift conditions rather than trying to allay confounding ones. Displacement-based measures consisting of area classification of the brain surface shifting in the craniotomy region and lateral displacement of the tumor center relative to an approach vector defined by the surgeon were calculated over a range of orientations and used to form an objective function. The objective function was used in conjunction with Levenberg-Marquardt optimization to find the ideal patient orientation. For a frontal lobe tumor presentation the model predicts an ideal orientation that indicates the patient should be placed in a lateral decubitus position on the side contralateral to the tumor in order to minimize unfavorable brain shift.

  8. [Surgery of metastatic brain tumors with new surgical instruments].

    PubMed

    Nomura, K; Shibui, S; Matsuoka, K; Watanabe, T; Nakamura, O

    1987-05-01

    The risk of damages of neurological function by the operation of metastatic brain tumors was reduced considerably after introduction of neurosurgical apparatuses, such as ultrasonograph, ultrasonic surgical aspirator and laser scalpel. Of these, ultrasonograph is useful to indicate the exact location of brain tumor at real time during the operation. Ultrasonic surgical aspirator reduced the risk of damage on important brain structures due to the selectivity of fragmentation and the safety of the dissection in the vicinity of important vessels and nerve tissues. Laser scalpel is also useful to extirpate the hemorrhagic tumor with hard consistency. Cases introduced in this paper were: case 1, brain metastasis from lung cancer located just under the left motor area in brain; case 2, metastasis with abundant neovascularization from renal cancer to orbital cavity which showed invasion to orbital roof and frontal bone; case 3, radiation induced sarcoma after the treatment of retinoblastoma; case 4, a large cerebellar metastatic tumor; case 5, neurogenic sarcoma which were successfully removed by using one of or combination of ultrasonograph, ultrasonic aspirator and laser scalpel. Advantage of these new instruments for the surgery on metastatic brain tumor was mentioned here. However, it is necessarily to get a custom before we use these apparatuses at operation efficiently.

  9. Radiation therapy for older patients with brain tumors.

    PubMed

    Minniti, Giuseppe; Filippi, Andrea Riccardo; Osti, Mattia Falchetto; Ricardi, Umberto

    2017-06-19

    The incidence of brain tumors in the elderly population has increased over the last few decades. Current treatment includes surgery, radiotherapy and chemotherapy, but the optimal management of older patients with brain tumors remains a matter of debate, since aggressive radiation treatments in this population may be associated with high risks of neurological toxicity and deterioration of quality of life. For such patients, a careful clinical status assessment is mandatory both for clinical decision making and for designing randomized trials to adequately evaluate the optimal combination of radiotherapy and chemotherapy.Several randomized studies have demonstrated the efficacy and safety of chemotherapy for patients with glioblastoma or lymphoma; however, the use of radiotherapy given in association with chemotherapy or as salvage therapy remains an effective treatment option associated with survival benefit. Stereotactic techniques are increasingly used for the treatment of patients with brain metastases and benign tumors, including pituitary adenomas, meningiomas and acoustic neuromas. Although no randomized trials have proven the superiority of SRS over other radiation techniques in older patients with brain metastases or benign brain tumors, data extracted from recent randomized studies and large retrospective series suggest that SRS is an effective approach in such patients associated with survival advantages and toxicity profile similar to those observed in young adults. Future trials need to investigate the optimal radiation techniques and dose/fractionation schedules in older patients with brain tumors with regard to clinical outcomes, neurocognitive function, and quality of life.

  10. Factors affecting intellectual outcome in pediatric brain tumor patients

    SciTech Connect

    Ellenberg, L.; McComb, J.G.; Siegel, S.E.; Stowe, S.

    1987-11-01

    A prospective study utilizing repeated intellectual testing was undertaken in 73 children with brain tumors consecutively admitted to Childrens Hospital of Los Angeles over a 3-year period to determine the effect of tumor location, extent of surgical resection, hydrocephalus, age of the child, radiation therapy, and chemotherapy on cognitive outcome. Forty-three patients were followed for at least two sequential intellectual assessments and provide the data for this study. Children with hemispheric tumors had the most general cognitive impairment. The degree of tumor resection, adequately treated hydrocephalus, and chemotherapy had no bearing on intellectual outcome. Age of the child affected outcome mainly as it related to radiation. Whole brain radiation therapy was associated with cognitive decline. This was especially true in children below 7 years of age, who experienced a very significant loss of function after whole brain radiation therapy.

  11. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  12. Critical Care Management of Cerebral Edema in Brain Tumors.

    PubMed

    Esquenazi, Yoshua; Lo, Victor P; Lee, Kiwon

    2017-01-01

    Cerebral edema associated with brain tumors is extremely common and can occur in both primary and metastatic tumors. The edema surrounding brain tumors results from leakage of plasma across the vessel wall into the parenchyma secondary to disruption of the blood-brain barrier. The clinical signs of brain tumor edema depend on the location of the tumor as well as the extent of the edema, which often exceeds the mass effect induced by the tumor itself. Uncontrolled cerebral edema may result in increased intracranial pressure and acute herniation syndromes that can result in permanent neurological dysfunction and potentially fatal herniation. Treatment strategies for elevated intracranial pressure consist of general measures, medical interventions, and surgery. Alhough the definitive treatment for the edema may ultimately be surgical resection of the tumor, the impact of the critical care management cannot be underestimated and thus patients must be vigilantly monitored in the intensive care unit. In this review, we discuss the pathology, pathophysiology, and clinical features of patients presenting with cerebral edema. Imaging findings and treatment modalities used in the intensive care unit are also discussed.

  13. Neuromorphometry of primary brain tumors by magnetic resonance imaging

    PubMed Central

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I.; Lamothe-Molina, Paul J.; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A.

    2015-01-01

    Abstract. Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of 973±14, whereas oligodendrogliomas exhibit a mean of 942±21. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of 919±43, and the necrotic region presented a mean of 869±66. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. PMID:26158107

  14. CT of irradiated solid tumor metastases to the brain.

    PubMed

    Brown, S B; Brant-Zawadzki, M; Eifel, P; Coleman, C N; Enzmann, D R

    1982-01-01

    Twenty patients with solid tumor metastases to the brain, demonstrated by CT scanning, had follow-up scans after radiation therapy of the metastatic focus. Nine patients (45%) showed no evidence of the metastasis on the initial follow-up scans. Another 10 patients (50%) showed some improvement in the size, enhancement, or surrounding edema of the lesion. Only one patient showed progression in spite of therapy. The CT scan identified those patients who achieved longer survival and/or longer time intervals before brain relapse. However, CT scans must be interpreted with caution in patients still on corticosteroid treatment. Additionally, other non-tumoral conditions may mimic tumor recurrence. Radiation therapy offered palliation in patients with brain metastases, and in some instances, sterilized patients of their metastatic brain involvement.

  15. The social trajectory of brain tumor: a qualitative metasynthesis.

    PubMed

    Cubis, Lee; Ownsworth, Tamara; Pinkham, Mark B; Chambers, Suzanne

    2017-04-19

    Research indicates that strong social ties can buffer the adverse effects of chronic illness on psychological well-being. Brain tumor typically leads to serious functional impairments that affect relationships and reduce social participation. This metasynthesis aimed to identify, appraise and integrate the findings of qualitative studies that reveal the impact of brain tumor on social networks. Four major databases (PubMed, CINAHL, Cochrane Library and PsycINFO) were systematically searched from inception to September 2016 for qualitative studies that reported findings on the impact of primary brain tumor on social networks during adulthood. Twenty-one eligible studies were identified and appraised according to the Consolidated Criteria for Reporting Qualitative Research. Key findings of these studies were integrated to form superordinate themes. The metasynthesis revealed the core themes of: 1) Life disrupted; 2) Navigating the new reality of life; and 3) Social survivorship versus separation. Multiple changes typically occur across the social trajectory of brain tumor, including a loss of pre-illness networks and the emergence of new ones. Understanding the barriers and facilitators for maintaining social connection may guide interventions for strengthening social networks and enhancing well-being in the context of brain tumor. Implications for rehabilitation Social networks and roles are disrupted throughout the entire trajectory of living with brain tumor Physical, cognitive and psychological factors represent barriers to social integration Barriers to social integration may be addressed by supportive care interventions Compensatory strategies, adjusting goals and expectations, educating friends and family and accepting support from others facilitate social reintegration throughout the trajectory of living with brain tumor.

  16. Orthotopic models of pediatric brain tumors in zebrafish

    PubMed Central

    Eden, Christopher J.; Ju, Bensheng; Murugesan, Mohankumar; Phoenix, Timothy; Nimmervoll, Birgit; Tong, Yiai; Ellison, David W.; Finkelstein, David; Wright, Karen; Boulos, Nidal; Dapper, Jason; Thiruvenkatam, Radhika; Lessman, Charles; Taylor, Michael R.; Gilbertson, Richard J.

    2014-01-01

    High-throughput screens (HTS) of compound toxicity against cancer cells can identify thousands of potential new drug-leads. But only limited numbers of these compounds can progress to expensive and labor intensive efficacy studies in mice, creating a ‘bottle-neck’ in the drug development pipeline. Approaches that triage drug-leads for further study are greatly needed. Here, we provide an intermediary platform between HTS and mice by adapting mouse models of pediatric brain tumors to grow as orthotopic xenografts in the brains of zebrafish. Freshly isolated mouse ependymoma, glioma and choroid plexus carcinoma cells expressing red fluorescence protein (RFP) were conditioned to grow at 34°C. Conditioned tumor cells were then transplanted orthotopically into the brains of zebrafish acclimatized to ambient temperatures of 34°C. Live in vivo fluorescence imaging identified robust, quantifiable and reproducible brain tumor growth as well as spinal metastasis in zebrafish. All tumor xenografts in zebrafish retained the histological characteristics of the corresponding parent mouse tumor and efficiently recruited fish endothelial cells to form a tumor vasculature. Finally, by treating zebrafish harboring ERBB2-driven gliomas with an appropriate cytotoxic chemotherapy (5-fluorouracil) or tyrosine kinase inhibitor (Erlotinib), we show that these models can effectively assess drug efficacy. Our data demonstrate, for the first time, that mouse brain tumors can grow orthtopically in fish and serve as a platform to study drug efficacy. Since large cohorts of brain tumor bearing zebrafish can be generated rapidly and inexpensively, these models may serve as a powerful tool to triage drug-leads from HTS for formal efficacy testing in mice. PMID:24747973

  17. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    SciTech Connect

    Kim, Rae-Kwon; Uddin, Nizam; Hyun, Jin-Won; Kim, Changil; Suh, Yongjoon; Lee, Su-Jae

    2015-08-01

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.

  18. Research of the multimodal brain-tumor segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  19. The therapy of infantile malignant brain tumors: current status?

    PubMed

    Kalifa, Chantal; Grill, Jacques

    2005-12-01

    Malignant brain tumors are not uncommon in infants as their occurrence before the age of three represents 20-25% of all malignant brain tumors in childhood [1]. Genetic predisposition to infantile malignant brain tumors are known in Gorlin syndrome for example who present with desmoplastic medulloblastoma in about 5% of the affected patients. In addition, sequelae from tumor and its treatment are more severe at this age [2]. Thus, malignant brain tumors represent a true therapeutic challenge in neuro-oncology. Before the era of modern imaging and modern neurosurgery these malignant brain tumors were misdiagnosed or could not benefit of the surgical procedures as well as older children because of increased risks in this age group. Since the end of the 80s, noninvasive imaging procedures produce accurate diagnosis of brain tumors and improvement in neurosurgery, neuroanesthesia and perioperative intensive care permit safe tumor resections or at least biopsies. Consequently, the pediatric oncologists are more often confronted with very young children who need a complementary treatment. Before the development of specific approaches for this age group, these children received the same kind of treatment than the older children did, but their survival and quality of life were significantly worse. The reasons of these poor results were probably due in part to the fear of late effects induced by radiation therapy, leading to decrease the necessary doses of irradiation which increased treatment failures without avoiding treatment related complications [3]. At the end of the 80s, pilot studies were performed using postoperative chemotherapy in young medulloblastoma patients. Van Eys treated 12 selected children with medulloblastoma with MOPP regimen and without irradiation; 8 of them were reported to be long term survivors [4]. Subsequently, the pediatric oncology cooperative groups studies have designed therapeutic trials for very young children with malignant brain tumors

  20. Human glioblastoma stem-like cells accumulate protoporphyrin IX when subjected to exogenous 5-aminolaevulinic acid, rendering them sensitive to photodynamic treatment.

    PubMed

    Schimanski, Adrian; Ebbert, Lara; Sabel, Michael C; Finocchiaro, Gaetano; Lamszus, Katrin; Ewelt, Christian; Etminan, Nima; Fischer, Johannes C; Sorg, Rüdiger V

    2016-10-01

    Glioblastoma (GBM) is the most frequent and lethal primary brain tumor in adults. Despite multimodal therapy combining resection, radio- and alkylating chemotherapy, disease recurrence is universal and prognosis of patients is poor. Glioblastoma stem-like cells (GSC), which can be grown as neurospheres from primary tumors in vitro, appear to be resistant to the established therapies and are suspected to be the driving force for disease recurrence. Thus, efficacy of emerging therapies may depend on targeting GSC. 5-aminolaevulinic acid-mediated photodynamic therapy (5-ALA/PDT) is a promising therapeutic approach in GBM. It utilizes the selective accumulation of the photosensitizer protoporphyrin IX (PPIX) in GBM cells after application of 5-ALA. When exposed to laser light of 635nm wavelength, PPIX initiates a photochemical reaction resulting in the generation of reactive oxygen species, which kill the tumor cells. Whether GSC accumulate PPIX and are sensitive to 5-ALA/PDT is currently unknown. Therefore, human GSC were derived from primary tumors and grown as neurospheres under serum free conditions. When subjected to exogenous 5-ALA, a dose- and time-dependent accumulation of PPIX in GSC was observed by flow cytometry, which varied between individual GSC preparations. Subsequent exposure to laser light of 635nm wavelength substantially killed GSC, whereas treatment with 5-ALA or exposure to laser light only had no effect. LD50 values differed between GSC preparations, but were negatively correlated with PPIX accumulation in GSC. In summary, we report for the first time that glioblastoma stem-like cells accumulate PPIX when subjected to 5-aminolaevulinic acid and are sensitive to 5-aminolaevulinc acid based photodynamic therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Epigallocatechin-3-Gallate Inhibits Stem-Like Inflammatory Breast Cancer Cells

    PubMed Central

    Mineva, Nora D.; Paulson, K. Eric; Naber, Stephen P.; Yee, Amy S.; Sonenshein, Gail E.

    2013-01-01

    Inflammatory Breast Cancer (IBC) is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG) were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival. Consistently, growth, invasive properties, and survival of IBC cells were reduced by EGCG treatment. EGCG also reduced lymphangiogenesis-promoting genes, in particular VEGF-D. Conditioned media from EGCG-treated IBC cells displayed decreased VEGF-D secretion and reduced ability to promote lymphangiogenesis in vitro as measured by hTERT-HDLEC lymphatic endothelial cell migration and tube formation. Tumorsphere formation by SUM-149 cells was robustly inhibited by EGCG, suggesting effects on self-renewal ability. Stem-like SUM-149 cells with high aldehyde dehydrogenase (ALDH) activity, previously implicated in poor patient prognosis, were isolated. EGCG treatment reduced growth and induced apoptosis of the stem-like SUM-149 cells in culture. In an orthotopic mouse model, EGCG decreased growth of pre-existing tumors derived from ALDH-positive stem-like SUM-149 cells and their expression of VEGF-D, which correlated with a significant decrease in peritumoral lymphatic vessel density. Thus, EGCG inhibits the overall aggressive IBC phenotype. Reduction of the stem-like cell compartment by EGCG may explain the decreased risk of breast cancer recurrence among green tea drinkers. Recent clinical trials demonstrate the efficacy of green tea polyphenol extracts in treatment of prostate cancer and lymphocytic leukemia with low toxicity. Given the poor prognosis of IBC patients, our findings suggest further exploration of EGCG or green

  2. Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells.

    PubMed

    Mineva, Nora D; Paulson, K Eric; Naber, Stephen P; Yee, Amy S; Sonenshein, Gail E

    2013-01-01

    Inflammatory Breast Cancer (IBC) is a highly aggressive form of cancer characterized by high rates of proliferation, lymphangiogenesis and metastasis, and an overall poor survival. As regular green tea consumption has been associated with improved prognosis of breast cancer patients, including decreased risk of recurrence, here the effects of the green tea polyphenol epigallocatechin-3-gallate (EGCG) were tested on two IBC lines: SUM-149 and SUM-190. EGCG decreased expression of genes that promote proliferation, migration, invasion, and survival. Consistently, growth, invasive properties, and survival of IBC cells were reduced by EGCG treatment. EGCG also reduced lymphangiogenesis-promoting genes, in particular VEGF-D. Conditioned media from EGCG-treated IBC cells displayed decreased VEGF-D secretion and reduced ability to promote lymphangiogenesis in vitro as measured by hTERT-HDLEC lymphatic endothelial cell migration and tube formation. Tumorsphere formation by SUM-149 cells was robustly inhibited by EGCG, suggesting effects on self-renewal ability. Stem-like SUM-149 cells with high aldehyde dehydrogenase (ALDH) activity, previously implicated in poor patient prognosis, were isolated. EGCG treatment reduced growth and induced apoptosis of the stem-like SUM-149 cells in culture. In an orthotopic mouse model, EGCG decreased growth of pre-existing tumors derived from ALDH-positive stem-like SUM-149 cells and their expression of VEGF-D, which correlated with a significant decrease in peritumoral lymphatic vessel density. Thus, EGCG inhibits the overall aggressive IBC phenotype. Reduction of the stem-like cell compartment by EGCG may explain the decreased risk of breast cancer recurrence among green tea drinkers. Recent clinical trials demonstrate the efficacy of green tea polyphenol extracts in treatment of prostate cancer and lymphocytic leukemia with low toxicity. Given the poor prognosis of IBC patients, our findings suggest further exploration of EGCG or green

  3. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    PubMed

    Connolly, Nina P; Stokum, Jesse A; Schneider, Craig S; Ozawa, Tatsuya; Xu, Su; Galisteo, Rebeca; Castellani, Rudolph J; Kim, Anthony J; Simard, J Marc; Winkles, Jeffrey A; Holland, Eric C; Woodworth, Graeme F

    2017-01-01

    -associated microglia- and bone marrow-derived macrophages, and the formation of stem-like cell niches within the tumor. This transgenic rat model may enable detailed interspecies comparisons of fundamental cancer pathways and clinically relevant experimental imaging procedures and interventions that are limited by the smaller size of the mouse brain.

  4. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer

    PubMed Central

    Stokum, Jesse A.; Schneider, Craig S.; Ozawa, Tatsuya; Xu, Su; Galisteo, Rebeca; Castellani, Rudolph J.; Kim, Anthony J.; Simard, J. Marc; Winkles, Jeffrey A.; Holland, Eric C.; Woodworth, Graeme F.

    2017-01-01

    -associated microglia- and bone marrow-derived macrophages, and the formation of stem-like cell niches within the tumor. This transgenic rat model may enable detailed interspecies comparisons of fundamental cancer pathways and clinically relevant experimental imaging procedures and interventions that are limited by the smaller size of the mouse brain. PMID:28358926

  5. Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors.

    PubMed

    Mastorakos, Panagiotis; Zhang, Clark; Song, Eric; Kim, Young Eun; Park, Hee Won; Berry, Sneha; Choi, Won Kyu; Hanes, Justin; Suk, Jung Soo

    2017-09-28

    The discovery of powerful genetic targets has spurred clinical development of gene therapy approaches to treat patients with malignant brain tumors. However, lack of success in the clinic has been attributed to the inability of conventional gene vectors to achieve gene transfer throughout highly disseminated primary brain tumors. Here, we demonstrate ex vivo that small nanocomplexes composed of DNA condensed by a blend of biodegradable polymer, poly(β-amino ester) (PBAE), with PBAE conjugated with 5kDa polyethylene glycol (PEG) molecules (PBAE-PEG) rapidly penetrate healthy brain parenchyma and orthotopic brain tumor tissues in rats. Rapid diffusion of these DNA-loaded nanocomplexes observed in fresh tissues ex vivo demonstrated that they avoided adhesive trapping in the brain owing to their dense PEG coating, which was critical to achieving widespread transgene expression throughout orthotopic rat brain tumors in vivo following administration by convection enhanced delivery. Transgene expression with the PBAE/PBAE-PEG blended nanocomplexes (DNA-loaded brain-penetrating nanocomplexes, or DNA-BPN) was uniform throughout the tumor core compared to nanocomplexes composed of DNA with PBAE only (DNA-loaded conventional nanocomplexes, or DNA-CN), and transgene expression reached beyond the tumor edge, where infiltrative cancer cells are found, only for the DNA-BPN formulation. Finally, DNA-BPN loaded with anti-cancer plasmid DNA provided significantly enhanced survival compared to the same plasmid DNA loaded in DNA-CN in two aggressive orthotopic brain tumor models in rats. These findings underscore the importance of achieving widespread delivery of therapeutic nucleic acids within brain tumors and provide a promising new delivery platform for localized gene therapy in the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Brain and Spinal Tumors: Hope through Research

    MedlinePlus

    ... traits of CNS tumors. [1] Carcinogenicity of radiofrequency electromagnetic fields. World Health Organization/International Agency for Research ... Information Page Todd's Paralysis Information Page NINDS Autism Spectrum Disorder ... Page Transmissible Spongiform Encephalopathies Information Page ...

  7. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    PubMed Central

    Bhowmik, Arijit; Ghosh, Mrinal Kanti

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier. PMID:25866775

  8. Brain mapping in tumors: intraoperative or extraoperative?

    PubMed

    Duffau, Hugues

    2013-12-01

    In nontumoral epilepsy surgery, the main goal for all preoperative investigation is to first determine the epileptogenic zone, and then to analyze its relation to eloquent cortex, in order to control seizures while avoiding adverse postoperative neurologic outcome. To this end, in addition to neuropsychological assessment, functional neuroimaging and scalp electroencephalography, extraoperative recording, and electrical mapping, especially using subdural strip- or grid-electrodes, has been reported extensively. Nonetheless, in tumoral epilepsy surgery, the rationale is different. Indeed, the first aim is rather to maximize the extent of tumor resection while minimizing postsurgical morbidity, in order to increase the median survival as well as to preserve quality of life. As a consequence, as frequently seen in infiltrating tumors such as gliomas, where these lesions not only grow but also migrate along white matter tracts, the resection should be performed according to functional boundaries both at cortical and subcortical levels. With this in mind, extraoperative mapping by strips/grids is often not sufficient in tumoral surgery, since in essence, it allows study of the cortex but cannot map subcortical pathways. Therefore, intraoperative electrostimulation mapping, especially in awake patients, is more appropriate in tumor surgery, because this technique allows real-time detection of areas crucial for cerebral functions--eloquent cortex and fibers--throughout the resection. In summary, rather than choosing one or the other of different mapping techniques, methodology should be adapted to each pathology, that is, extraoperative mapping in nontumoral epilepsy surgery and intraoperative mapping in tumoral surgery.

  9. Groupwise registration of MR brain images with tumors

    NASA Astrophysics Data System (ADS)

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-09-01

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of ‘image registration paths’ to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10-9).

  10. Groupwise registration of MR brain images with tumors.

    PubMed

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-08-04

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of 'image registration paths' to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10(-9)).

  11. Telomerase activity in human brain tumors: astrocytoma and meningioma.

    PubMed

    Kheirollahi, Majid; Mehrazin, Masoud; Kamalian, Naser; Mohammadi-asl, Javad; Mehdipour, Parvin

    2013-05-01

    Somatic cells do not have telomerase activity but immortalized cell lines and more than 85 % of the cancer cells show telomerase activation to prevent the telomere from progressive shortening. The activation of this enzyme has been found in a variety of human tumors and tumor-derived cell lines, but only few studies on telomerase activity in human brain tumors have been reported. Here, we evaluated telomerase activity in different grades of human astrocytoma and meningioma brain tumors. In this study, assay for telomerase activity performed on 50 eligible cases consisted of 26 meningioma, 24 astrocytoma according to the standard protocols. In the brain tissues, telomerase activity was positive in 39 (65 %) of 50 patients. One sample t test showed that the telomerase activity in meningioma and astrocytoma tumors was significantly positive entirely (P < 0.001). Also, grade I of meningioma and low grades of astrocytoma (grades I and II) significantly showed telomerase activity. According to our results, we suggest that activation of telomerase is an event that starts mostly at low grades of brain including meningioma and astrocytoma tumors.

  12. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis

    NASA Astrophysics Data System (ADS)

    Meyer, Tobias; Bergner, Norbert; Bielecki, Christiane; Krafft, Christoph; Akimov, Denis; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Dietzek, Benjamin; Popp, Jürgen

    2011-02-01

    Contemporary brain tumor research focuses on two challenges: First, tumor typing and grading by analyzing excised tissue is of utmost importance for choosing a therapy. Second, for prognostication the tumor has to be removed as completely as possible. Nowadays, histopathology of excised tissue using haematoxylin-eosine staining is the gold standard for the definitive diagnosis of surgical pathology specimens. However, it is neither applicable in vivo, nor does it allow for precise tumor typing in those cases when only nonrepresentative specimens are procured. Infrared and Raman spectroscopy allow for very precise cancer analysis due to their molecular specificity, while nonlinear microscopy is a suitable tool for rapid imaging of large tissue sections. Here, unstained samples from the brain of a domestic pig have been investigated by a multimodal nonlinear imaging approach combining coherent anti-Stokes Raman scattering, second harmonic generation, and two photon excited fluorescence microscopy. Furthermore, a brain tumor specimen was additionally analyzed by linear Raman and Fourier transform infrared imaging for a detailed assessment of the tissue types that is required for classification and to validate the multimodal imaging approach. Hence label-free vibrational microspectroscopic imaging is a promising tool for fast and precise in vivo diagnostics of brain tumors.

  13. Exosomes as Tools to Suppress Primary Brain Tumor.

    PubMed

    Katakowski, Mark; Chopp, Michael

    2016-04-01

    Exosomes are small microvesicles released by cells that efficiently transfer their molecular cargo to other cells, including tumor. Exosomes may pass the blood-brain barrier and have been demonstrated to deliver RNAs contained within to brain. As they are non-viable, the risk profile of exosomes is thought to be less than that of cellular therapies. Exosomes can be manufactured at scale in culture, and exosomes can be engineered to incorporate therapeutic miRNAs, siRNAs, or chemotherapeutic molecules. As natural biological delivery vehicles, interest in the use of exosomes as therapeutic delivery agents is growing. We previously demonstrated a novel treatment whereby mesenchymal stromal cells were employed to package tumor-suppressing miR-146b into exosomes, which were then used to reduce malignant glioma growth in rat. The use of exosomes to raise the immune system against tumor is also drawing interest. Exosomes from dendritic cells which are antigen-presenting, and have been used for treatment of brain tumor may be divided into three categories: (1) exosomes for immunomodulation-based therapy, (2) exosomes as delivery vehicles for anti-tumor nucleotides, and (3) exosomes as drug delivery vehicles. Here, we will provide an overview of these three applications of exosomes to treat brain tumor, and examine their prospects on the long road to clinical use.

  14. Factors affecting the cerebral network in brain tumor patients.

    PubMed

    Heimans, Jan J; Reijneveld, Jaap C

    2012-06-01

    Brain functions, including cognitive functions, are frequently disturbed in brain tumor patients. These disturbances may result from the tumor itself, but also from the treatment directed against the tumor. Surgery, radiotherapy and chemotherapy all may affect cerebral functioning, both in a positive as well as in a negative way. Apart from the anti-tumor treatment, glioma patients often receive glucocorticoids and anti-epileptic drugs, which both also have influence on brain functioning. The effect of a brain tumor on cerebral functioning is often more global than should be expected on the basis of the local character of the disease, and this is thought to be a consequence of disturbance of the cerebral network as a whole. Any network, whether it be a neural, a social or an electronic network, can be described in parameters assessing the topological characteristics of that particular network. Repeated assessment of neural network characteristics in brain tumor patients during their disease course enables study of the dynamics of neural networks and provides more insight into the plasticity of the diseased brain. Functional MRI, electroencephalography and especially magnetoencephalography are used to measure brain function and the signals that are being registered with these techniques can be analyzed with respect to network characteristics such as "synchronization" and "clustering". Evidence accumulates that loss of optimal neural network architecture negatively impacts complex cerebral functioning and also decreases the threshold to develop epileptic seizures. Future research should be focused on both plasticity of neural networks and the factors that have impact on that plasticity as well as the possible role of assessment of neural network characteristics in the determination of cerebral function during the disease course.

  15. Application of SLT contact laser in resection of brain tumors

    NASA Astrophysics Data System (ADS)

    Li, Han-Jie; Li, Zhi-Qiang; Li, Chan-Yuan

    1998-11-01

    28 cases of brain tumors were operated by SLT contact Nd:YAG laser from October 1995 to May 1997 in our hospital. Among these, 14 are menin-giomas, 5 are astrocytomas. Others are tumors such as acoustic neuromas, craniopharyngiomas, etc 21 cases underwent common craniotomy, 3, laser endoscopy operation; and 4, laser therapy under microscopy. Method of tumor resection: firstly, cutting and separating the tumor from brain tissues with GRP by 5-15w; secondly, vaporizing parenchyma of tumor with MTRL and sucking it, again, cutting and separating and so on, lastly removing the tumor entirely. The power of vaporization for glioma or tumors in ventricles is about 20-30w, but for meningiomas, 30-60w. MT was used on power of 15-20w to coagulate and homeostate the left cavity of tumor. According to our experience, laser operation can make bleeding reduced markedly, tumor resection become more thorough, and postoperative response and complications decrease obviously.

  16. Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate.

    PubMed

    Ram, Z; Samid, D; Walbridge, S; Oshiro, E M; Viola, J J; Tao-Cheng, J H; Shack, S; Thibault, A; Myers, C E; Oldfield, E H

    1994-06-01

    Phenylacetate is a naturally occurring plasma component that suppresses the growth of tumor cells and induces differentiation in vitro. To evaluate the in vivo potential and preventive and therapeutic antitumor efficacy of sodium phenylacetate against malignant brain tumors, Fischer 344 rats (n = 50) bearing cerebral 9L gliosarcomas received phenylacetate by continuous s.c. release starting on the day of tumor inoculation (n = 10) using s.c. osmotic minipumps (550 mg/kg/day for 28 days). Rats with established brain tumors (n = 12) received continuous s.c. phenylacetate supplemented with additional daily i.p. dose (300 mg/kg). Control rats (n = 25) were treated in a similar way with saline. Rats were sacrificed during treatment for electron microscopic studies of their tumors, in vivo proliferation assays, and measurement of phenylacetate levels in the serum and cerebrospinal fluid. Treatment with phenylacetate extended survival when started on the day of tumor inoculation (P < 0.01) or 7 days after inoculation (P < 0.03) without any associated adverse effects. In the latter group, phenylacetate levels in pooled serum and cerebrospinal fluid samples after 7 days of treatment were in the therapeutic range as determined in vitro (2.45 mM in serum and 3.1 mM in cerebrospinal fluid). Electron microscopy of treated tumors demonstrated marked hypertrophy and organization of the rough endoplasmic reticulum, indicating cell differentiation, in contrast to the scant and randomly distributed endoplasmic reticulum in tumors from untreated animals. In addition, in vitro studies demonstrated dose-dependent inhibition of the rate of tumor proliferation and restoration of anchorage dependency, a marker of phenotypic reversion. Phenylacetate, used at clinically achievable concentrations, prolongs survival of rats with malignant brain tumors through induction of tumor differentiation. Its role in the treatment of brain tumors and other cancers should be explored further.

  17. Culture and Isolation of Brain Tumor Initiating Cells.

    PubMed

    Vora, Parvez; Venugopal, Chitra; McFarlane, Nicole; Singh, Sheila K

    2015-08-03

    Brain tumors are typically composed of heterogeneous cells that exhibit distinct phenotypic characteristics and proliferative potentials. Only a relatively small fraction of cells in the tumor with stem cell properties, termed brain tumor initiating cells (BTICs), possess an ability to differentiate along multiple lineages, self-renew, and initiate tumors in vivo. This unit describes protocols for the culture and isolation BTICs. We applied culture conditions and assays originally used for normal neural stem cells (NSCs) in vitro to a variety of brain tumors. Using fluorescence-activated cell sorting for the neural precursor cell surface marker CD133/CD15, BTICs can be isolated and studied prospectively. Isolation of BTICs from GBM bulk tumor will enable examination of dissimilar morphologies, self-renewal capacities, tumorigenicity, and therapeutic sensitivities. As cancer is also considered a disease of unregulated self-renewal and differentiation, an understanding of BTICs is fundamental to understanding tumor growth. Ultimately, it will lead to novel drug discovery approaches that strategically target the functionally relevant BTIC population. Copyright © 2015 John Wiley & Sons, Inc.

  18. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells.

    PubMed

    Wang, Yu-Chi; Chao, Tai-Kuang; Chang, Cheng-Chang; Yo, Yi-Te; Yu, Mu-Hsien; Lai, Hung-Cheng

    2013-01-01

    The primary cause of death from breast cancer is the progressive growth of tumors and resistance to conventional therapies. It is currently believed that recurrent cancer is repopulated according to a recently proposed cancer stem cell hypothesis. New therapeutic strategies that specifically target cancer stem-like cells may represent a new avenue of cancer therapy. We aimed to discover novel compounds that target breast cancer stem-like cells. We used a dye-exclusion method to isolate side population (SP) cancer cells and, subsequently, subjected these SP cells to a sphere formation assay to generate SP spheres (SPS) from breast cancer cell lines. Surface markers, stemness genes, and tumorigenicity were used to test stem properties. We performed a high-throughput drug screening using these SPS. The effects of candidate compounds were assessed in vitro and in vivo. We successfully generated breast cancer SPS with stem-like properties. These SPS were enriched for CD44(high) (2.8-fold) and CD24(low) (4-fold) cells. OCT4 and ABCG2 were overexpressed in SPS. Moreover, SPS grew tumors at a density of 10(3), whereas an equivalent number of parental cells did not initiate tumor formation. A clinically approved drug, niclosamide, was identified from the LOPAC chemical library of 1,258 compounds. Niclosamide downregulated stem pathways, inhibited the formation of spheroids, and induced apoptosis in breast cancer SPS. Animal studies also confirmed this therapeutic effect. The results of this proof-of-principle study may facilitate the development of new breast cancer therapies in the near future. The extension of niclosamide clinical trials is warranted.

  19. The heterogeneity of cancer stem-like cells at the invasive front.

    PubMed

    Yoshida, Go J

    2017-01-01

    Cancer stem-like cells exhibit the multi-functional roles to survive and persist for a long period in the minimal residual disease after the conventional anti-cancer treatments. Cancer stem-like cells of solid malignant tumors which highly express CD44v8-10, the variant isoform of CD44 generated by alternative splicing, has a resistance to redox stress by the robust production of glutathione mediated by ESRP1-CD44v-xCT (cystine/glutamate antiporter) axis. It has been reported that CD44v and c-Myc tend to show the inversed expression pattern at the invasive front of the aggressive tumors. Given that the accumulation of reactive oxygen species triggers the activation of Wnt/β-catenin signal pathway, it is hypothesized that CD44v causes the negative feedback machinery in the regulation of c-Myc expression via the attenuated ROS-induced Wnt signal pathway. To address the fundamental question whether and how both proliferative and quiescent cancer stem-like cells heterogeneously exist at the invasive/metastatic edge, researchers need to investigate into the E3-ubiquitin ligase activity essential for c-Myc degradation. CSCs heterogeneity at the invasive/metastatic front is expected to demonstrate the dynamic tumor evolution with the selective pressure of anti-cancer treatments. Furthermore, the novel molecular targeting therapeutic strategies would be established to disrupt the finely-regulated c-Myc expression in the heterogeneous CSC population in combination with the typical drug-repositioning with xCT inhibitor.

  20. Establishment of a tumor sphere cell line from a metastatic brain neuroendocrine tumor.

    PubMed

    Iwata, Ryoichi; Maruyama, Masato; Ito, Tomoki; Nakano, Yosuke; Kanemura, Yonehiro; Koike, Taro; Oe, Souichi; Yoshimura, Kunikazu; Nonaka, Masahiro; Nomura, Shosaku; Sugimoto, Tetsuo; Yamada, Hisao; Asai, Akio

    2017-05-17

    Neuroendocrine tumors are rare, and little is known about the existence of cancer stem cells in this disease. Identification of the tumorigenic population will contribute to the development of effective therapies targeting neuroendocrine tumors. Surgically resected brain metastases from a primary neuroendocrine tumor of unknown origin were dissociated and cultured in serum-free neurosphere medium. Stem cell properties, including self-renewal, differentiation potential, and stem cell marker expression, were examined. Tumor formation was evaluated using intracranial xenograft models. The effect of temozolomide was measured in vitro by cell viability assays. We established the neuroendocrine tumor sphere cell line ANI-27S, which displayed stable exponential growth, virtually unlimited expansion in vitro, and expression of stem-cell markers such as CD133, nestin, Sox2, and aldehyde dehydrogenase. FBS-induced differentiation decreased Sox2 and nestin expression. On the basis of real-time PCR, ANI-27S cells expressed the neuroendocrine markers synaptophysin and chromogranin A. Intracranial xenotransplanted brain tumors recapitulated the original patient tumor and temozolomide exhibited cytotoxic effects on tumor sphere cells. For the first time, we demonstrated the presence of a sphere-forming, stem cell-like population in brain metastases from a primary neuroendocrine tumor. We also demonstrated the potential therapeutic effects of temozolomide for this disease.

  1. Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets.

    PubMed

    Fève, Marie; Saliou, Jean-Michel; Zeniou, Maria; Lennon, Sarah; Carapito, Christine; Dong, Jihu; Van Dorsselaer, Alain; Junier, Marie-Pierre; Chneiweiss, Hervé; Cianférani, Sarah; Haiech, Jacques; Kilhoffer, Marie-Claude

    2014-01-01

    Glioblastomas (GBMs) are highly aggressive, invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these, cells endowed with stem properties, tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells, termed cancer stem-like cells, have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs), a family of membrane receptors, play a prominent role in cell signaling, cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here, we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs), U-87 MG cells, human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated, 138 were retained for comparative studies between the different cell types. At the transcriptomic level, eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.

  2. Delayed Contrast Extravasation MRI for Depicting Tumor and Non-Tumoral Tissues in Primary and Metastatic Brain Tumors

    PubMed Central

    Zach, Leor; Guez, David; Last, David; Daniels, Dianne; Grober, Yuval; Nissim, Ouzi; Hoffmann, Chen; Nass, Dvora; Talianski, Alisa; Spiegelmann, Roberto; Cohen, Zvi R.; Mardor, Yael

    2012-01-01

    The current standard of care for newly diagnosed glioblastoma multiforme (GBM) is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that our high resolution

  3. Recent technological advances in pediatric brain tumor surgery.

    PubMed

    Zebian, Bassel; Vergani, Francesco; Lavrador, José Pedro; Mukherjee, Soumya; Kitchen, William John; Stagno, Vita; Chamilos, Christos; Pettorini, Benedetta; Mallucci, Conor

    2017-01-01

    X-rays and ventriculograms were the first imaging modalities used to localize intracranial lesions including brain tumors as far back as the 1880s. Subsequent advances in preoperative radiological localization included computed tomography (CT; 1971) and MRI (1977). Since then, other imaging modalities have been developed for clinical application although none as pivotal as CT and MRI. Intraoperative technological advances include the microscope, which has allowed precise surgery under magnification and improved lighting, and the endoscope, which has improved the treatment of hydrocephalus and allowed biopsy and complete resection of intraventricular, pituitary and pineal region tumors through a minimally invasive approach. Neuronavigation, intraoperative MRI, CT and ultrasound have increased the ability of the neurosurgeon to perform safe and maximal tumor resection. This may be facilitated by the use of fluorescing agents, which help define the tumor margin, and intraoperative neurophysiological monitoring, which helps identify and protect eloquent brain.

  4. Thallium-201 SPECT imaging of brain tumors: Methods and results

    SciTech Connect

    Kim, K.T.; Black, K.L.; Marciano, D.; Mazziotta, J.C.; Guze, B.H.; Grafton, S.; Hawkins, R.A.; Becker, D.P. )

    1990-06-01

    Recent studies suggest that thallium-201 ({sup 201}Tl) planar scans of brain tumors more accurately reflect viable tumor burden than CT, MRI, or radionuclide studies with other single-photon emitting compounds. We have previously reported the utility of {sup 201}Tl SPECT index in distinguishing low- from high-grade gliomas elsewhere. Here we describe the technical considerations of deriving a simple {sup 201}Tl index, based on uptake in the tumor normalized to homologous contralateral tissue, from SPECT images of brain tumors. We evaluated the importance of consistently correcting for tissue attenuation, as it may achieve better lesion discrimination on qualitative inspection, and the methodologic limitations imposed by partial volume effects at the limits of resolution.

  5. Circulating biomarker panels for targeted therapy in brain tumors.

    PubMed

    Tanase, Cristiana; Albulescu, Radu; Codrici, Elena; Popescu, Ionela Daniela; Mihai, Simona; Enciu, Ana Maria; Cruceru, Maria Linda; Popa, Adrian Claudiu; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Neagu, Monica

    2015-01-01

    An important goal of oncology is the development of cancer risk-identifier biomarkers that aid early detection and target therapy. High-throughput profiling represents a major concern for cancer research, including brain tumors. A promising approach for efficacious monitoring of disease progression and therapy could be circulating biomarker panels using molecular proteomic patterns. Tailoring treatment by targeting specific protein-protein interactions and signaling networks, microRNA and cancer stem cell signaling in accordance with tumor phenotype or patient clustering based on biomarker panels represents the future of personalized medicine for brain tumors. Gathering current data regarding biomarker candidates, we address the major challenges surrounding the biomarker field of this devastating tumor type, exploring potential perspectives for the development of more effective predictive biomarker panels.

  6. Characterization of stem-like cells in a new astroblastoma cell line.

    PubMed

    Coban, Esra Aydemir; Kasikci, Ezgi; Karatas, Omer Faruk; Suakar, Oznur; Kuskucu, Aysegul; Altunbek, Mine; Türe, Uğur; Sahin, Fikrettin; Bayrak, Omer Faruk

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Remote Postoperative Epidural Hematoma after Brain Tumor Surgery

    PubMed Central

    Chung, Ho-Jung; Park, Jae-Sung; Jeun, Sin-Soo

    2015-01-01

    A postoperative epidural hematoma (EDH) is a serious and embarrassing complication, which usually occurs at the site of operation after intracranial surgery. However, remote EDH is relatively rare. We report three cases of remote EDH after brain tumor surgery. All three cases seemed to have different causes of remote postoperative EDH; however, all patients were managed promptly and showed excellent outcomes. Although the exact mechanism of remote postoperative EDH is unknown, surgeons should be cautious of the speed of lowering intracranial pressure and implement basic procedures to prevent this hazardous complication of brain tumor surgery. PMID:26605271

  8. Diffusion in the extracellular space in brain and tumors

    NASA Astrophysics Data System (ADS)

    Verkman, A. S.

    2013-08-01

    Diffusion of solutes and macromolecules in the extracellular space (ECS) in brain is important for non-synaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. Diffusion in tumor ECS is important for delivery of anti-tumor drugs. The ECS in brain comprises ˜20% of brain parenchymal volume and contains cell-cell gaps down to ˜50 nm. We have developed fluorescence methods to quantify solute diffusion in the ECS, allowing measurements deep in solid tissues using microfiberoptics with micron tip size. Diffusion through the tortuous ECS in brain is generally slowed by ˜3-5-fold compared with that in water, with approximately half of the slowing due to tortuous ECS geometry and half due to the mildly viscous extracellular matrix (ECM). Mathematical modeling of slowed diffusion in an ECS with reasonable anatomical accuracy is in good agreement with experiment. In tumor tissue, diffusion of small macromolecules is only mildly slowed (<3-fold slower than in water) in superficial tumor, but is greatly slowed (>10-fold) at a depth of few millimeters as the tumor tissue becomes more compact. Slowing by ECM components such as collagen contribute to the slowed diffusion. Therefore, as found within cells, cellular crowding and highly tortuous transport can produce only minor slowing of diffusion in the ECS.

  9. Training stem cells for treatment of malignant brain tumors.

    PubMed

    Li, Shengwen Calvin; Kabeer, Mustafa H; Vu, Long T; Keschrumrus, Vic; Yin, Hong Zhen; Dethlefs, Brent A; Zhong, Jiang F; Weiss, John H; Loudon, William G

    2014-09-26

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  10. Interpreting WAIS-III performance after primary brain tumor surgery.

    PubMed

    Gonçalves, Marta de A; Simões, Mário R; Castro-Caldas, Alexandre

    2017-01-01

    The literature lacks information on the performance of patients with brain tumors on the Wechsler Intelligence Scales. This study aimed to explore the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) performance profile of 23 consecutive patients with brain tumors and 23 matched controls selected from the Portuguese WAIS-III standardization sample, using the technical manual steps recommended for score interpretation. The control group was demographically matched to the tumor group regarding gender, age, education, profession, and geographic region. The technical manual steps recommended for score interpretation were applied. Patients with brain tumors had significantly lower performances on the Performance IQ, Full-Scale IQ, Perceptual Organization Index, Working Memory Index, Processing Speed Index, Arithmetic, Object Assembly, and Picture Arrangement, though all scaled scores were within the normal range according to the manual tables. Only Vocabulary and Comprehension scatter scores were statistically different between groups. No strengths or weaknesses were found for either group. The mean discrepancy scores do not appear to have clinical value for this population. In conclusion, the study results did not reveal a specific profile for patients with brain tumors on the WAIS-III.

  11. FDOPA PET-CT of Nonenhancing Brain Tumors.

    PubMed

    Bund, Caroline; Heimburger, Céline; Imperiale, Alessio; Lhermitte, Benoît; Chenard, Marie-Pierre; Lefebvre, François; Kremer, Stéphane; Proust, François; Namer, Izzie-Jacques

    2017-04-01

    Primary brain tumor grading is crucial to rapidly determine the therapeutic impact and prognosis of a brain tumor as well as the tumors' aggressiveness profile. On magnetic resonance imaging, high-grade tumors are usually responsible for blood -brain barrier breakdowns, which result in tumor enhancement. However, this is not always the case. The main objective of this study was to evaluate the diagnostic value of FDOPA PET in the assessment of primary brain tumor aggressiveness with no contrast enhancement on MRI. Fifty-three patients were prospectively included: 35 low-grade and 18 high-grade histologically proven gliomas, with no contrast enhancement. Each patient underwent static PET acquisitions at 30 minutes. All patients had MRSI with measurements of different metabolites ratio. FDOPA was useful in the subgroup of low-grade gliomas, discriminating between dysembryoplastic neuroepithelial tumor and grade II oligodendroglioma (P < 0.01). An optimal threshold of the maximum standardized uptake value at 30 minutes (SUVmax (T/N)30) = 2.16 to discriminated low- from high-grade gliomas with a sensitivity of 60%, specificity of 100%, PPV of 100%, and NPV of 83.33% (P < 0.01). The nCho/Cr and nCho/NAA ratios were significantly higher in high- than in low-grade gliomas (P < 0.03 and P < 0.04, respectively). A significant positive correlation between MRSI ratios and SUVmax was found. Including data from amino acid metabolism used alone or in association with MRSI allows us to discriminate between dysembryoplastic neuroepithelial tumor and grade II oligodendroglioma and between low- and high-grade gliomas with no contrast enhancement on MRI.

  12. Hallmarks in colorectal cancer: angiogenesis and cancer stem-like cells.

    PubMed

    Mathonnet, Muriel; Perraud, Aurelie; Christou, Niki; Akil, Hussein; Melin, Carole; Battu, Serge; Jauberteau, Marie-Odile; Denizot, Yves

    2014-04-21

    Carcinogenesis is a multistep process that requires the accumulation of various genetic and epigenetic aberrations to drive the progressive malignant transformation of normal human cells. Two major hallmarks of carcinogenesis that have been described are angiogenesis and the stem cell characteristic of limitless replicative potential. These properties have been targeted over the past decade in the development of therapeutic treatments for colorectal cancer (CRC), one of the most commonly diagnosed and lethal cancers worldwide. The treatment of solid tumor cancers such as CRC has been challenging due to the heterogeneity of the tumor itself and the chemoresistance of the malignant cells. Furthermore, the same microenvironment that maintains the pool of intestinal stem cells that contribute to the continuous renewal of the intestinal epithelia also provides the necessary conditions for proliferative growth of cancer stem-like cells. These cancer stem-like cells are responsible for the resistance to therapy and cancer recurrence, though they represent less than 2.5% of the tumor mass. The stromal environment surrounding the tumor cells, referred to as the tumor niche, also supports angiogenesis, which supplies the oxygen and nutrients needed for tumor development. Anti-angiogenic therapy, such as with bevacizumab, a monoclonal antibody against vascular-endothelial growth factor, significantly prolongs the survival of metastatic CRC patients. However, such treatments are not completely curative, and a large proportion of patient tumors retain chemoresistance or show recurrence. This article reviews the current knowledge regarding the molecular phenotype of CRC cancer cells, as well as discusses the mechanisms contributing to their maintenance. Future personalized therapeutic approaches that are based on the interaction of the carcinogenic hallmarks, namely angiogenic and proliferative attributes, could improve survival and decrease adverse effects induced by

  13. Agnosias: recognition disorders in patients with brain tumors.

    PubMed

    Gainotti, Guido

    2012-06-01

    Two main varieties of recognition disorders are distinguished in neuropsychology: agnosias and semantic disorders. The term agnosias is generally used to denote recognition defects limited to a single perceptual modality (which is itself apparently intact), whereas the term semantic disorders is used to denote recognition defects involving all the sensory modalities in a roughly similar manner. Brain tumors can be one of the aetiologies underlying agnosias and semantic disorders. However, due to the heterogeneity and the rarity of recognition disorders, their investigation can be useful only to suggest or exclude the oncological nature of a brain lesion, but not to systematically monitor the clinical outcome in tumor patients. Furthermore, the relevance of recognition disorders as a hint toward a diagnosis of brain tumor varies according to the type of agnosia and of semantic disorder and the localization of the underlying brain pathology. The hypothesis that a variety of agnosia (or of semantic disorder) may be due to a neoplastic lesion can, therefore, be advanced if it is consistent with our knowledge about the usual localization and the growing patterns of different types of brain tumors.

  14. Brain tumor surgery with 3-dimensional surface navigation.

    PubMed

    Mert, Ayguel; Buehler, Katja; Sutherland, Garnette R; Tomanek, Boguslaw; Widhalm, Georg; Kasprian, Gregor; Knosp, Engelbert; Wolfsberger, Stefan

    2012-12-01

    Precise lesion localization is necessary for neurosurgical procedures not only during the operative approach, but also during the preoperative planning phase. To evaluate the advantages of 3-dimensional (3-D) brain surface visualization over conventional 2-dimensional (2-D) magnetic resonance images for surgical planning and intraoperative guidance in brain tumor surgery. Preoperative 3-D brain surface visualization was performed with neurosurgical planning software in 77 cases (58 gliomas, 7 cavernomas, 6 meningiomas, and 6 metastasis). Direct intraoperative navigation on the 3-D brain surface was additionally performed in the last 20 cases with a neurosurgical navigation system. For brain surface reconstruction, patient-specific anatomy was obtained from MR imaging and brain volume was extracted with skull stripping or watershed algorithms, respectively. Three-dimensional visualization was performed by direct volume rendering in both systems. To assess the value of 3-D brain surface visualization for topographic lesion localization, a multiple-choice test was developed. To assess accuracy and reliability of 3-D brain surface visualization for intraoperative orientation, we topographically correlated superficial vessels and gyral anatomy on 3-D brain models with intraoperative images. The rate of correct lesion localization with 3-D was significantly higher (P = .001, χ), while being significantly less time consuming (P < .001, χ) compared with 2-D images. Intraoperatively, visual correlation was found between the 3-D images, superficial vessels, and gyral anatomy. The proposed method of 3-D brain surface visualization is fast, clinically reliable for preoperative anatomic lesion localization and patient-specific planning, and, together with navigation, improves intraoperative orientation in brain tumor surgery and is relatively independent of brain shift.

  15. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling.

    PubMed

    Schroeder, Anne; Herrmann, Andreas; Cherryholmes, Gregory; Kowolik, Claudia; Buettner, Ralf; Pal, Sumanta; Yu, Hua; Müller-Newen, Gerhard; Jove, Richard

    2014-02-15

    Androgen receptor (AR) signaling is important for prostate cancer progression. However, androgen-deprivation and/or AR targeting-based therapies often lead to resistance. Here, we demonstrate that loss of AR expression results in STAT3 activation in prostate cancer cells. AR downregulation further leads to development of prostate cancer stem-like cells (CSC), which requires STAT3. In human prostate tumor tissues, elevated cancer stem-like cell markers coincide with those cells exhibiting high STAT3 activity and low AR expression. AR downregulation-induced STAT3 activation is mediated through increased interleukin (IL)-6 expression. Treating mice with soluble IL-6 receptor fusion protein or silencing STAT3 in tumor cells significantly reduced prostate tumor growth and CSCs. Together, these findings indicate an opposing role of AR and STAT3 in prostate CSC development.

  16. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition

    PubMed Central

    Cheng, Jun; Huang, Wei; Cao, Shuangliang; Yang, Ru; Yang, Wei; Yun, Zhaoqiang; Wang, Zhijian; Feng, Qianjin

    2015-01-01

    Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI. PMID:26447861

  17. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition.

    PubMed

    Cheng, Jun; Huang, Wei; Cao, Shuangliang; Yang, Ru; Yang, Wei; Yun, Zhaoqiang; Wang, Zhijian; Feng, Qianjin

    2015-01-01

    Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI.

  18. Brain tumors and epilepsy: pathophysiology of peritumoral changes.

    PubMed

    Shamji, Mohammed F; Fric-Shamji, Elana C; Benoit, Brien G

    2009-07-01

    Epilepsy commonly develops among patients with brain tumors, frequently even as the presenting symptom, and such patients consequently experience substantial morbidity from both the seizures and the underlying disease. At clinical presentation, these seizures are most commonly focal with secondary generalization and conventional medical management is often met with less efficacy. The molecular pathophysiology of these seizures is being elucidated with findings that both the tumoral and peritumoral microenvironments may exhibit epileptogenic phenotypes owing to disordered neuronal connectivity and regulation, impaired glial cell function, and the presence of altered vascular supply and permeability. Neoplastic tissue can itself be the initiation site of seizure activity, particularly for tumors arising from neuronal cell lines, such as gangliogliomas or dysembryoblastic neuroepithelial tumors. Conversely, a growing intracranial lesion can both structurally and functionally alter the surrounding brain tissue with edema, vascular insufficiency, inflammation, and release of metabolically active molecules, hence also promoting seizure activity. The involved mechanisms are certain to be multifactorial and depend on specific tumor histology, integrity of the blood brain barrier, and characteristics of the peritumoral environment. Understanding these changes that underlie tumor-related epilepsy may have roles in both optimal medical management for the seizure symptom and optimal surgical objective and management of the underlying disease.

  19. Development and characterization of a brain tumor mimicking fluorescence phantom

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Kistler, Benjamin; Wârdell, Karin

    2014-03-01

    Fluorescence guidance using 5-aminolevulinic acid (5-ALA) for brain tumor resection is a recent technique applied to the highly malignant brain tumors. Five-ALA accumulates as protoporphyrin IX fluorophore in the tumor cells in different concentrations depending on the tumor environment and cell properties. Our group has developed a fluorescence spectroscopy system used with a hand-held probe intra-operatively. The system has shown improvement of fluorescence detection and allows quantification that preliminarily correlates with tumor malignancy grade during surgery. However, quantification of fluorescence is affected by several factors including the initial fluorophore concentration, photobleaching due to operating lamps and attenuation from the blood. Accordingly, an optical phantom was developed to enable controlled fluorescence measurements and evaluation of the system outside of the surgical procedure. The phantom mimicked the optical properties of glioma at the specific fluorescence excitation wavelength when different concentrations of the fluorophore were included in the phantom. To allow evaluation of photobleaching, kinetics of fluorophore molecules in the phantom was restricted by solidifying the phantoms. Moreover, a model for tissue autofluorescence was added. The fluorescence intensity's correlation with fluorophore concentration in addition to the photobleaching properties were investigated in the phantoms and were compared to the clinical data measured on the brain tumor.

  20. The effect of salinomycin on ovarian cancer stem-like cells

    PubMed Central

    Chung, Hyewon; Kim, Yu-Hwan; Kwon, Myoung; Shin, So-Jin; Kwon, Sang-Hoon; Cha, Soon-Do

    2016-01-01

    Objective The identification of cancer stem-like cells is a recent development in ovarian cancer. Compared to other cancer cells, cancer stem-like cells present more chemo-resistance and more aggressive characteristics. They play an important role in the recurrence and drug resistance of cancer. Therefore, the target therapy of cancer stem-like cell may become a promising and effective approach for ovarian cancer treatment. It may also help to provide novel diagnostic and therapeutic strategies. Methods The OVCAR3 cell line was cultured under serum-free conditions to produce floating spheres. The CD44+CD117+ cell line was isolated from the human ovarian cancer cell line OVCAR3 by using immune magnetic-activated cell sorting system. The expression of stemness genes such as OCT3/4, NANOG and SOX2 mRNA were determined by reverse transcription polymerase chain reaction. OVCAR3 parental and OVCAR3 CD44+CD117+ cells were grown in different doses of paclitaxel and salinomycin to evaluate the effect of salinomycin. And growth inhibition of OVCAR3 CD44+CD117+ cells by paclitaxel combined with salinomycin was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Results Tumor spheroids generated from the OVCAR3 cell line are shown to have highly enriched CD44 and CD117 expression. Treatment with a combination of paclitaxel and salinomycin demonstrated growth inhibition of OVCAR3 CD44+CD117+ cells. Conclusion The present study is a detailed investigation on the expression of CD44 and CD117 in cancer stem cells and evaluates their specific tumorigenic characteristics in ovarian cancer. This study also demonstrates significant growth inhibition of cancer stem-like cells by paclitaxel combined with salinomycin. Identification of these cancer stem-like cell markers and growth inhibition effect of salinomycin may be the next step to the development of novel target therapy in ovarian cancer. PMID:27462592

  1. Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting.

    PubMed

    Lu, Bing; Huang, Xiaojia; Mo, Jingxin; Zhao, Wei

    2016-01-01

    The theory of cancer stem-like cell (or cancer stem cell, CSC) has been established to explain how tumor heterogeneity arises and contributes to tumor progression in diverse cancer types. CSCs are believed to drive tumor growth and elicit resistance to conventional therapeutics. Therefore, CSCs are becoming novel target in both medical researches and clinical studies. Emerging evidences showed that nanoparticles effectively inhibit many types of CSCs by targeting various specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133) and signaling pathways (Notch, Hedgehog, and TGF-β), which are critically involved in CSC function and maintenance. In this review, we briefly summarize the current status of CSC research and review a number of state-of-the-art nanomedicine approaches targeting CSC. In addition, we discuss emerging therapeutic strategies using epigenetic drugs to eliminate CSCs and inhibit cancer cell reprogramming.

  2. Biology and immunology of cancer stem(-like) cells in head and neck cancer.

    PubMed

    Qian, Xu; Ma, Chenming; Nie, Xiaobo; Lu, Jianxin; Lenarz, Minoo; Kaufmann, Andreas M; Albers, Andreas E

    2015-09-01

    Immunological approaches against tumors including head and neck squamous cell carcinoma (HNSCC) have been investigated for about 50 years. Such immunotherapeutic treatments are still not sufficiently effective for therapy of HNSCC. Despite the existence of immunosurveillance tumor cells may escape from the host immune system by a variety of mechanisms. Recent findings have indicated that cancer stem(-like) cells (CSCs) in HNSCC have the ability to reconstitute the heterogeneity of the bulk tumor and contribute to immunosuppression and resistance to current therapies. With regard to the CSC model, future immunotherapy possibly in combination with other modes of treatment should target this subpopulation specifically to reduce local recurrence and metastasis. In this review, we will summarize recent research findings on immunological features of CSCs and the potential of immune targeting of CSCs.

  3. Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting

    PubMed Central

    Lu, Bing; Huang, Xiaojia; Mo, Jingxin; Zhao, Wei

    2016-01-01

    The theory of cancer stem-like cell (or cancer stem cell, CSC) has been established to explain how tumor heterogeneity arises and contributes to tumor progression in diverse cancer types. CSCs are believed to drive tumor growth and elicit resistance to conventional therapeutics. Therefore, CSCs are becoming novel target in both medical researches and clinical studies. Emerging evidences showed that nanoparticles effectively inhibit many types of CSCs by targeting various specific markers (aldehyde dehydrogenases, CD44, CD90, and CD133) and signaling pathways (Notch, Hedgehog, and TGF-β), which are critically involved in CSC function and maintenance. In this review, we briefly summarize the current status of CSC research and review a number of state-of-the-art nanomedicine approaches targeting CSC. In addition, we discuss emerging therapeutic strategies using epigenetic drugs to eliminate CSCs and inhibit cancer cell reprogramming. PMID:27148051

  4. A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies

    PubMed Central

    Chadwick, Emily J.; Yang, David P.; Filbin, Mariella G.; Mazzola, Emanuele; Sun, Yu; Behar, Oded; Pazyra-Murphy, Maria F.; Goumnerova, Liliana; Ligon, Keith L.; Stiles, Charles D.; Segal, Rosalind A.

    2015-01-01

    Brain tumors are a major cause of cancer-related morbidity and mortality. Developing new therapeutics for these cancers is difficult, as many of these tumors are not easily grown in standard culture conditions. Neurosphere cultures under serum-free conditions and orthotopic xenografts have expanded the range of tumors that can be maintained. However, many types of brain tumors remain difficult to propagate or study. This is particularly true for pediatric brain tumors such as pilocytic astrocytomas and medulloblastomas. This protocol describes a system that allows primary human brain tumors to be grown in culture. This quantitative assay can be used to investigate the effect of microenvironment on tumor growth, and to test new drug therapies. This protocol describes a system where fluorescently labeled brain tumor cells are grown on an organotypic brain slice from a juvenile mouse. The response of tumor cells to drug treatments can be studied in this assay, by analyzing changes in the number of cells on the slice over time. In addition, this system can address the nature of the microenvironment that normally fosters growth of brain tumors. This brain tumor organotypic slice co-culture assay provides a propitious system for testing new drugs on human tumor cells within a brain microenvironment. PMID:26575352

  5. A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies.

    PubMed

    Chadwick, Emily J; Yang, David P; Filbin, Mariella G; Mazzola, Emanuele; Sun, Yu; Behar, Oded; Pazyra-Murphy, Maria F; Goumnerova, Liliana; Ligon, Keith L; Stiles, Charles D; Segal, Rosalind A

    2015-11-07

    Brain tumors are a major cause of cancer-related morbidity and mortality. Developing new therapeutics for these cancers is difficult, as many of these tumors are not easily grown in standard culture conditions. Neurosphere cultures under serum-free conditions and orthotopic xenografts have expanded the range of tumors that can be maintained. However, many types of brain tumors remain difficult to propagate or study. This is particularly true for pediatric brain tumors such as pilocytic astrocytomas and medulloblastomas. This protocol describes a system that allows primary human brain tumors to be grown in culture. This quantitative assay can be used to investigate the effect of microenvironment on tumor growth, and to test new drug therapies. This protocol describes a system where fluorescently labeled brain tumor cells are grown on an organotypic brain slice from a juvenile mouse. The response of tumor cells to drug treatments can be studied in this assay, by analyzing changes in the number of cells on the slice over time. In addition, this system can address the nature of the microenvironment that normally fosters growth of brain tumors. This brain tumor organotypic slice co-culture assay provides a propitious system for testing new drugs on human tumor cells within a brain microenvironment.

  6. Intracranial foreign body granuloma simulating brain tumor: a case report

    PubMed Central

    Saeidiborojeni, Hamid Reza; Fakheri, Taravat; Iizadi, Babak

    2011-01-01

    Intracranial foreign body granulomas are rarely reported. Clinical symptoms caused by foreign body granulomas can be noticed from months to many years after surgical procedure. The most common reported etiology is suture material. A 45-year-old woman was presented with grand mal epilepsy. She was operated for brain tumor 19 years ago. In CT scan, a round radio-dense mass resembling a tumor at anterior fossa was seen. She underwent craniotomy and resected a granuloma with cotton fibers surrounded by yellow capsule without residual or recurrent tumor. Granuloma can mimic intracranial meningioma and special attention should be paid not to leave cotton pledgets during operations. PMID:22091258

  7. Development of multifunctional nanoparticles for brain tumor diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Veiseh, Omid

    Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents developed for magnetic resonance (MR) imaging and drug delivery. MNPs have traditionally been developed for disease imaging via passive targeting, but recent advances in nanotechnology have enabled cellular-specific targeting, drug delivery and multi-modal imaging using these nanoparticles. Opportunities now exist to engineer MNP with designated features (e.g., size, coatings, and molecular functionalizations) for specific biomedical applications. The goal of this interdisciplinary research project is to develop targeting multifunctional nanoparticles, serving as both contrast agents and drug carriers that can effectively pass biological barriers, for diagnosis, staging and treatment of brain tumors. The developed nanoparticle system consists of a superparamagnetic iron oxide nanoparticle core (NP) and a shell comprised of biodegradable polymers such as polyethylene glycol (PEG) and chitosan. Additionally, near-infrared fluorescing (NIRF) molecules were integrated onto the NP shell to enable optical detection. Tumor targeting was achieved by the addition of chlorotoxin, a peptide with that has high affinity to 74 out of the 79 classifications of primary brain tumors and ability to illicit a therapeutic effect. This novel NP system was tested both in vitro and in vivo and was shown to specifically target gliomas in tissue culture and medulloblastomas in transgenic mice with an intact blood brain barriers (BBB), and delineate tumor boundaries in both MR and optical imaging. Additionally, the therapeutic potential of this NP system was explored in vitro, which revealed a unique nanoparticle-enabled pathway that enhances the therapeutic potential of bound peptides by promoting the internalization of membrane bound cell surface receptors. This NP system was further modified with siRNA and evaluated as a carrier for brain tumor targeted gene therapy. Most significantly, the evaluation of

  8. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells.

    PubMed

    Bassoy, Esen Yonca; Kasahara, Atsuko; Chiusolo, Valentina; Jacquemin, Guillaume; Boydell, Emma; Zamorano, Sebastian; Riccadonna, Cristina; Pellegatta, Serena; Hulo, Nicolas; Dutoit, Valérie; Derouazi, Madiha; Dietrich, Pierre Yves; Walker, Paul R; Martinvalet, Denis

    2017-03-10

    Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.

  9. Targeting atypical protein kinase C iota reduces viability in glioblastoma stem-like cells via a notch signaling mechanism.

    PubMed

    Phillips, Emma; Lang, Verena; Bohlen, Jonathan; Bethke, Frederic; Puccio, Laura; Tichy, Diana; Herold-Mende, Christel; Hielscher, Thomas; Lichter, Peter; Goidts, Violaine

    2016-10-15

    In a previous study, Protein Kinase C iota (PRKCI) emerged as an important candidate gene for glioblastoma (GBM) stem-like cell (GSC) survival. Here, we show that PKCι is overexpressed and activated in patient derived GSCs compared with normal neural stem cells and normal brain lysate, and that silencing of PRKCI in GSCs causes apoptosis, along with loss of clonogenicity and reduced proliferation. Notably, PRKCI silencing reduces tumor growth in vivo in a xenograft mouse model. PKCι has been intensively studied as a therapeutic target in non-small cell lung cancer, resulting in the identification of an inhibitor, aurothiomalate (ATM), which disrupts the PKCι/ERK signaling axis. However, we show that, although sensitive to pharmacological inhibition via a pseudosubstrate peptide inhibitor, GSCs are much less sensitive to ATM, suggesting that PKCι acts along a different signaling axis in GSCs. Gene expression profiling of PRKCI-silenced GSCs revealed a novel role of the Notch signaling pathway in PKCι mediated GSC survival. A proximity ligation assay showed that Notch1 and PKCι are in close proximity in GSCs. Targeting PKCι in the context of Notch signaling could be an effective way of attacking the GSC population in GBM.

  10. Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis

    PubMed Central

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc−; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage. PMID:24714627

  11. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    PubMed

    Fan, Zheng; Sehm, Tina; Rauh, Manfred; Buchfelder, Michael; Eyupoglu, Ilker Y; Savaskan, Nicolai E

    2014-01-01

    Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA), a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11) and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G) resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  12. American brain tumor patients treated with BNCT in Japan

    SciTech Connect

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  13. Affective Symptoms and White Matter Changes in Brain Tumor Patients.

    PubMed

    Richter, Andre; Woernle, Cristoph M; Krayenbühl, Niklaus; Kollias, Spyridon; Bellut, David

    2015-10-01

    Affective symptoms are frequent in patients with brain tumors. The origin of such symptoms is unknown; either focal brain injury or reactive emotional distress may be responsible. This cross-sectional pilot study linked depressive symptoms and anxiety to white matter integrity. The objective was to test the hypothesis of a relationship between tissue damage and brain function in patients with brain tumors and to provide a basis for further studies in this field. Diffusion tensor imaging was performed in 39 patients with newly diagnosed supratentorial primary brain tumor. Patients completed the Beck Depression Inventory, and examiners rated them on the Hamilton Depression Rating Scale (HDRS). State and trait anxiety were measured using the State-Trait Anxiety Inventory. Correlations between fractional anisotropy (FA) and psychological measures were assessed on the basis of regions of interest; the defined regions of interest corresponded to clearly specified white matter tracts. Statistical analysis revealed correlations between FA in the left internal capsule and scores on the HDRS, Beck Depression Inventory, and State-Trait Anxiety Inventory (P < 0.05). HDRS scores were also correlated with FA in the right medial uncinate fasciculus, and state anxiety scores were significantly correlated with FA in the left lateral and medial uncinate fasciculus (P < 0.05). Our results suggest that neurobiologic mechanisms related to the integrity of tissue in specific white matter tracts may influence affective symptoms in patients with brain tumors, and these mechanisms can be investigated with diffusion tensor imaging. However, prospective observational studies are needed to investigate further the links between brain structures and the severity of affective symptoms in this patient population. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates: nanoclinic in the brain.

    PubMed

    Patil, Rameshwar; Ljubimov, Alexander V; Gangalum, Pallavi R; Ding, Hui; Portilla-Arias, Jose; Wagner, Shawn; Inoue, Satoshi; Konda, Bindu; Rekechenetskiy, Arthur; Chesnokova, Alexandra; Markman, Janet L; Ljubimov, Vladimir A; Li, Debiao; Prasad, Ravi S; Black, Keith L; Holler, Eggehard; Ljubimova, Julia Y

    2015-05-26

    Differential diagnosis of brain magnetic resonance imaging (MRI) enhancement(s) remains a significant problem, which may be difficult to resolve without biopsy, which can be often dangerous or even impossible. Such MRI enhancement(s) can result from metastasis of primary tumors such as lung or breast, radiation necrosis, infections, or a new primary brain tumor (glioma, meningioma). Neurological symptoms are often the same on initial presentation. To develop a more precise noninvasive MRI diagnostic method, we have engineered a new class of poly(β-l-malic acid) polymeric nanoimaging agents (NIAs). The NIAs carrying attached MRI tracer are able to pass through the blood-brain barrier (BBB) and specifically target cancer cells for efficient imaging. A qualitative/quantitative "MRI virtual biopsy" method is based on a nanoconjugate carrying MRI contrast agent gadolinium-DOTA and antibodies recognizing tumor-specific markers and extravasating through the BBB. In newly developed double tumor xenogeneic mouse models of brain metastasis this noninvasive method allowed differential diagnosis of HER2- and EGFR-expressing brain tumors. After MRI diagnosis, breast and lung cancer brain metastases were successfully treated with similar tumor-targeted nanoconjugates carrying molecular inhibitors of EGFR or HER2 instead of imaging contrast agent. The treatment resulted in a significant increase in animal survival and markedly reduced immunostaining for several cancer stem cell markers. Novel NIAs could be useful for brain diagnostic MRI in the clinic without currently performed brain biopsies. This technology shows promise for differential MRI diagnosis and treatment of brain metastases and other pathologies when biopsies are difficult to perform.

  15. Learning Profiles of Survivors of Pediatric Brain Tumors

    ERIC Educational Resources Information Center

    Barkon, Beverly

    2009-01-01

    By 2010 it is predicted that one in 900 adults will be survivors of some form of pediatric cancer. The numbers are somewhat lower for survivors of brain tumors, though their numbers are increasing. Schools mistakenly believe that these children easily fit pre-existing categories of disability. Though these students share some of the…

  16. Life satisfaction in adult survivors of childhood brain tumors.

    PubMed

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population.

  17. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  18. Life Satisfaction in Adult Survivors of Childhood Brain Tumors

    PubMed Central

    Crom, Deborah B.; Li, Zhenghong; Brinkman, Tara M.; Hudson, Melissa M.; Armstrong, Gregory T.; Neglia, Joseph; Ness, Kirsten K.

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, life-long deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors’ physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggests some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population–based matched controls. Chi-square tests, t-tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors’ general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population. PMID:25027187

  19. Antiangiogenic (metronomic) chemotherapy for brain tumors: current and future perspectives.

    PubMed

    Samuel, David P; Wen, Patrick Y; Kieran, Mark W

    2009-07-01

    Significant advances in the diagnosis and treatment of brain tumors have been made through better imaging, surgical techniques and advances in radiation therapy. However, the cure rate for most adult and pediatric brain tumor patients has not mirrored this success. Angiogenesis, the development of neovascularization, provides the required nutrients and oxygen to an expanding tumor and is controlled by a complex balance of proangiogenic cytokines and antiangiogenic factors. A series of new inhibitors of angiogenesis are now in clinical trials. Most of these rely on inhibiting tumor cell-mediated cytokines or blocking the activation of their cognate receptors. Cytotoxic chemotherapy, by contrast, targets dividing cells but can be modulated to attack dividing endothelial cells. This review will focus on the use of low-dose antiangiogenic (also called metronomic) chemotherapy to inhibit endothelial cell function and resultant neovascularization in the treatment of adult and pediatric brain tumors. By examining the biology and preclinical findings that led to the development of antiangiogenic/metronomic chemotherapy, clinical studies have been undertaken that support the role of this approach in the clinic, and have led to the introduction of a number of markers being used to better predict active combinations and appropriate patient populations.

  20. Gene Therapy for Brain Tumors: Basic Developments and Clinical Implementation

    PubMed Central

    Assi, Hikmat; Candolfi, Marianela; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro R; Castro, Maria G

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM. PMID:22906921

  1. Gene therapy for brain tumors: basic developments and clinical implementation.

    PubMed

    Assi, Hikmat; Candolfi, Marianela; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro R; Castro, Maria G

    2012-10-11

    Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM.

  2. Applications of Ultrasound in the Resection of Brain Tumors.

    PubMed

    Sastry, Rahul; Bi, Wenya Linda; Pieper, Steve; Frisken, Sarah; Kapur, Tina; Wells, William; Golby, Alexandra J

    2017-01-01

    Neurosurgery makes use of preoperative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of preoperative imaging for neuronavigation, however, is diminished by the well-characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography, has dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies. Copyright © 2016 by the American Society of Neuroimaging.

  3. Unsupervised measurement of brain tumor volume on MR images.

    PubMed

    Velthuizen, R P; Clarke, L P; Phuphanich, S; Hall, L O; Bensaid, A M; Arrington, J A; Greenberg, H M; Silbiger, M L

    1995-01-01

    We examined unsupervised methods of segmentation of MR images of the brain for measuring tumor volume in response to treatment. Two clustering methods were used: fuzzy c-means and a nonfuzzy clustering algorithm. Results were compared with volume segmentations by two supervised methods, k-nearest neighbors and region growing, and all results were compared with manual labelings. Results of individual segmentations are presented as well as comparisons on the application of the different methods with 10 data sets of patients with brain tumors. Unsupervised segmentation is preferred for measuring tumor volumes in response to treatment, as it eliminates operator dependency and may be adequate for delineation of the target volume in radiation therapy. Some obstacles need to be overcome, in particular regarding the detection of anatomically relevant tissue classes. This study shows that these improvements are possible.

  4. Alterations of telomere length in human brain tumors.

    PubMed

    Kheirollahi, Majid; Mehrazin, Masoud; Kamalian, Naser; Mehdipour, Parvin

    2011-09-01

    Telomeres at the ends of human chromosomes consist of tandem hexametric (TTAGGG)n repeats, which protect them from degradation. At each cycle of cell division, most normal somatic cells lose approximately 50-100 bp of the terminal telomeric repeat DNA. Precise prediction of growth and estimation of the malignant potential of brain tumors require additional markers. DNA extraction was performed from the 51 frozen tissues, and a non-radioactive chemiluminescent assay was used for Southern blotting. One sample t-test shows highly significant difference in telomere length in meningioma and astrocytoma with normal range. According to our results, higher grades of meningioma and astrocytoma tumors show more heterogeneity in telomere length, and also it seems shortening process of telomeres is an early event in brain tumors.

  5. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  6. 5-fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits.

    PubMed

    Denise, Corti; Paoli, Paolo; Calvani, Maura; Taddei, Maria Letizia; Giannoni, Elisa; Kopetz, Scott; Kazmi, Syed Mohammad Ali; Pia, Morelli Maria; Pettazzoni, Piergiorgio; Sacco, Elena; Caselli, Anna; Vanoni, Marco; Landriscina, Matteo; Cirri, Paolo; Chiarugi, Paola

    2015-12-08

    Despite marked tumor shrinkage after 5-FU treatment, the frequency of colon cancer relapse indicates that a fraction of tumor cells survives treatment causing tumor recurrence. The majority of cancer cells divert metabolites into anabolic pathways through Warburg behavior giving an advantage in terms of tumor growth. Here, we report that treatment of colon cancer cell with 5-FU selects for cells with mesenchymal stem-like properties that undergo a metabolic reprogramming resulting in addiction to OXPHOS to meet energy demands. 5-FU treatment-resistant cells show a de novo expression of pyruvate kinase M1 (PKM1) and repression of PKM2, correlating with repression of the pentose phosphate pathway, decrease in NADPH level and in antioxidant defenses, promoting PKM2 oxidation and acquisition of stem-like phenotype. Response to 5-FU in a xenotransplantation model of human colon cancer confirms activation of mitochondrial function. Combined treatment with 5-FU and a pharmacological inhibitor of OXPHOS abolished the spherogenic potential of colon cancer cells and diminished the expression of stem-like markers. These findings suggest that inhibition of OXPHOS in combination with 5-FU is a rational combination strategy to achieve durable treatment response in colon cancer.

  7. 5-Fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits

    PubMed Central

    Calvani, Maura; Taddei, Maria Letizia; Giannoni, Elisa; Kopetz, Scott; Kazmi, Syed Mohammad Ali; Pia, Morelli Maria; Pettazzoni, Piergiorgio; Sacco, Elena; Caselli, Anna; Vanoni, Marco; Landriscina, Matteo; Cirri, Paolo; Chiarugi, Paola

    2015-01-01

    Despite marked tumor shrinkage after 5-FU treatment, the frequency of colon cancer relapse indicates that a fraction of tumor cells survives treatment causing tumor recurrence. The majority of cancer cells divert metabolites into anabolic pathways through Warburg behavior giving an advantage in terms of tumor growth. Here, we report that treatment of colon cancer cell with 5-FU selects for cells with mesenchymal stem-like properties that undergo a metabolic reprogramming resulting in addiction to OXPHOS to meet energy demands. 5-FU treatment-resistant cells show a de novo expression of pyruvate kinase M1 (PKM1) and repression of PKM2, correlating with repression of the pentose phosphate pathway, decrease in NADPH level and in antioxidant defenses, promoting PKM2 oxidation and acquisition of stem-like phenotype. Response to 5-FU in a xenotransplantation model of human colon cancer confirms activation of mitochondrial function. Combined treatment with 5-FU and a pharmacological inhibitor of OXPHOS abolished the spherogenic potential of colon cancer cells and diminished the expression of stem-like markers. These findings suggest that inhibition of OXPHOS in combination with 5-FU is a rational combination strategy to achieve durable treatment response in colon cancer. PMID:26527315

  8. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    PubMed Central

    Klinger, Neil V.

    2016-01-01

    Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors. PMID:27807473

  9. Simulation of brain tumor resection in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Fontaine, Kathryn; Hartov, Alex; Roberts, David; Paulsen, Keith

    2011-03-01

    Preoperative magnetic resonance images are typically used for neuronavigation in image-guided neurosurgery. However, intraoperative brain deformation (e.g., as a result of gravitation, loss of cerebrospinal fluid, retraction, resection, etc.) significantly degrades the accuracy in image guidance, and must be compensated for in order to maintain sufficient accuracy for navigation. Biomechanical finite element models are effective techniques that assimilate intraoperative data and compute whole-brain deformation from which to generate model-updated MR images (uMR) to improve accuracy in intraoperative guidance. To date, most studies have focused on early surgical stages (i.e., after craniotomy and durotomy), whereas simulation of more complex events at later surgical stages has remained to be a challenge using biomechanical models. We have developed a method to simulate partial or complete tumor resection that incorporates intraoperative volumetric ultrasound (US) and stereovision (SV), and the resulting whole-brain deformation was used to generate uMR. The 3D ultrasound and stereovision systems are complimentary to each other because they capture features deeper in the brain beneath the craniotomy and at the exposed cortical surface, respectively. In this paper, we illustrate the application of the proposed method to simulate brain tumor resection at three temporally distinct surgical stages throughout a clinical surgery case using sparse displacement data obtained from both the US and SV systems. We demonstrate that our technique is feasible to produce uMR that agrees well with intraoperative US and SV images after dural opening, after partial tumor resection, and after complete tumor resection. Currently, the computational cost to simulate tumor resection can be up to 30 min because of the need for re-meshing and the trial-and-error approach to refine the amount of tissue resection. However, this approach introduces minimal interruption to the surgical workflow

  10. The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches.

    PubMed

    Mineo, Marco; Ricklefs, Franz; Rooj, Arun K; Lyons, Shawn M; Ivanov, Pavel; Ansari, Khairul I; Nakano, Ichiro; Chiocca, E Antonio; Godlewski, Jakub; Bronisz, Agnieszka

    2016-06-14

    Long non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia-inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia-inducible lncRNA, upregulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal, and hypoxia-dependent molecular reprogramming. Among the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Downregulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs' speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome and targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. The long non-coding RNA – HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches

    PubMed Central

    Mineo, Marco; Ricklefs, Franz; Rooj, Arun K.; Lyons, Shawn M.; Ivanov, Pavel; Ansari, Khairul I.; Nakano, Ichiro; Chiocca, E. Antonio; Godlewski, Jakub; Bronisz, Agnieszka

    2016-01-01

    Long-non-coding RNAs (lncRNAs) have an undefined role in the pathobiology of glioblastoma multiforme (GBM). These tumors are genetically and phenotypically heterogeneous with transcriptome subtype-specific GBM stem-like cells (GSCs) that adapt to the brain tumor microenvironment, including hypoxic niches. We identified hypoxia inducible factor 1 alpha-antisense RNA 2 (HIF1A-AS2) as a subtype-specific hypoxia inducible lncRNA, up-regulated in mesenchymal GSCs. Its deregulation affects GSC growth, self-renewal and hypoxia-dependent molecular reprogramming. Amongst the HIF1A-AS2 interactome, IGF2BP2 and DHX9 were identified as direct partners. This association was needed for maintenance of expression of their target gene, HMGA1. Down-regulation of HIF1A-AS2 led to delayed growth of mesenchymal GSC tumors, survival benefits, and impaired expression of HMGA1 in vivo. Our data demonstrate that HIF1A-AS2 contributes to GSCs’ speciation and adaptation to hypoxia within the tumor microenvironment, acting directly through its interactome/targets and indirectly by modulating responses to hypoxic stress depending on the subtype-specific genetic context. PMID:27264189

  12. Expression of Cancer-Testis Genes in Brain Tumors

    PubMed Central

    Lee, Myoung-Hee; Kim, Ealmaan; Kim, In-Soo; Yim, Man-Bin; Kim, Sang-Pyo

    2008-01-01

    Objective Cancer-testis (CT) genes are considered promising candidates for immunotherapeutic approaches. The aim of this study was to investigate which CT genes should be targeted in immunotherapy for brain tumors. Methods We investigated the expression of 6 CT genes (MAGE-E1, SOX-6, SCP-1, SSX-2, SSX-4, and HOM-TES-85) using reverse-transcription polymerase chain reaction in 26 meningiomas and 32 other various brain tumor specimens, obtained from the patients during tumor surgery from 2000 to 2005. Results The most frequently expressed CT genes of meningiomas were MAGE-E1, which were found in 22/26 (85%) meningioma samples, followed by SOX-6 (9/26 or 35%). Glioblastomas were most frequently expressed SOX-6 (6/7 or 86%), MAGE-E1 (5/7 or 71%), followed by SSX-2 (2/7 or 29%) and SCP-1 (1/7 or 14%). However, 4 astrocytomas, 3 anaplastic astrocytomas, and 3 oligodendroglial tumors only expressed MAGE-E1 and SOX-6. Schwannomas also expressed SOX-6 (5/6 or 83%), MAGE-E1 (4/6 or 67%), and SCP-1 (2/6 or 33%). Conclusion The data presented here suggest that MAGE-E1 and SOX-6 genes are expressed in a high percentage of human central nervous system tumors, which implies the CT genes could be the potential targets of immunotherapy for human central nervous system tumors. PMID:19096642

  13. Banking Brain Tumor Specimens Using a University Core Facility.

    PubMed

    Bregy, Amade; Papadimitriou, Kyriakos; Faber, David A; Shah, Ashish H; Gomez, Carmen R; Komotar, Ricardo J; Egea, Sophie C

    2015-08-01

    Within the past three decades, the significance of banking human cancer tissue for the advancement of cancer research has grown exponentially. The purpose of this article is to detail our experience in collecting brain tumor specimens in collaboration with the University of Miami/Sylvester Tissue Bank Core Facility (UM-TBCF), to ensure the availability of high-quality samples of central nervous system tumor tissue for research. Successful tissue collection begins with obtaining informed consent from patients following institutional IRB and federal HIPAA guidelines, and it needs a well-trained professional staff and continued maintenance of high ethical standards and record keeping. Since starting in 2011, we have successfully banked 225 brain tumor specimens for research. Thus far, the most common tumor histology identified among those specimens has been glioblastoma (22.1%), followed by meningioma (18.1%). The majority of patients were White, non-Hispanics accounting for 45.1% of the patient population; Hispanic/Latinos accounted for 23%, and Black/African Americans accounted for 14%, which represent the particular population of the State of Florida according to the 2010 census data. The most common tumors found in each subgroup were as follows: Black/African American, glioblastoma and meningioma; Hispanic, metastasis and glioblastoma; White, glioblastoma and meningioma. The UM-TBCF is a valuable repository, offering high-quality tumor samples from a unique patient population.

  14. Mitochondrial control by DRP1 in brain tumor initiating cells.

    PubMed

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.

  15. Advanced MRI for Pediatric Brain Tumors with Emphasis on Clinical Benefits.

    PubMed

    Goo, Hyun Woo; Ra, Young-Shin

    2017-01-01

    Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors.

  16. Advanced MRI for Pediatric Brain Tumors with Emphasis on Clinical Benefits

    PubMed Central

    Ra, Young-Shin

    2017-01-01

    Conventional anatomic brain MRI is often limited in evaluating pediatric brain tumors, the most common solid tumors and a leading cause of death in children. Advanced brain MRI techniques have great potential to improve diagnostic performance in children with brain tumors and overcome diagnostic pitfalls resulting from diverse tumor pathologies as well as nonspecific or overlapped imaging findings. Advanced MRI techniques used for evaluating pediatric brain tumors include diffusion-weighted imaging, diffusion tensor imaging, functional MRI, perfusion imaging, spectroscopy, susceptibility-weighted imaging, and chemical exchange saturation transfer imaging. Because pediatric brain tumors differ from adult counterparts in various aspects, MRI protocols should be designed to achieve maximal clinical benefits in pediatric brain tumors. In this study, we review advanced MRI techniques and interpretation algorithms for pediatric brain tumors. PMID:28096729

  17. What Are the Risk Factors for Brain and Spinal Cord Tumors in Children?

    MedlinePlus

    ... and Prevention What Are the Risk Factors for Brain and Spinal Cord Tumors in Children? A risk ... Factors with uncertain, controversial, or unproven effects on brain tumor risk Cell phone use Cell phones give ...

  18. Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine

    SciTech Connect

    Tjuvajev, J.G.; Macapinlac, H.A.; Daghighian, F.

    1994-09-01

    Iodine-131-iododeoxyuridine (IUdR) uptake and retention was imaged with SPECT at 2 and 24 hr after administering a 10-mCi dose to six patients with primary brain tumors. The SPECT images were directly compared to gadolinium contrast-enhanced MR images as well as to ({sup 18}F) fluorodeoxyglucose (FDG) PET scans and {sup 201}Tl SPECT scans. Localized uptake and retention of IUdR-derived radioactivity was observed in five of six patients. The plasma half-life of ({sup 131}I) IUdR was short (1.5 min) in comparison to the half-life of total plasma radioactivity (6.4 hr). The pattern of ({sup 131}I)IUdR-derived radioactivity was markedly different in the 2-hr compared to 24-hr images. Radioactivity was localized along the periphery of the tumor and extended beyond the margin of tumor identified by contrast enhancement on MRI. The estimated levels of tumor radioactivity at 24 hr, based on semiquantitative phantom studies, ranged between <0.1 and 0.2 {mu}Ci/cc (<0.001% and 0.002% dose/cc); brain levels were not measurable. Iodine-131-IUdR SPECT imaging of brain tumor proliferation has low (marginal) sensitivity due to low count rates and can detect only the most active regions of tumor growth. Imaging at 24 hr represents a washout strategy to reduce {sup 131}I-labeled metabolites contributing to background activity in the tumors, and is more likely to show the pattern of ({sup 131}I)IUdR-DNA incorporation and thereby increase image specificity. Iodine-123-IUdR SPECT imaging at 12 hr and the use of ({sup 124}I)IUdR and PET will improve count acquisitions and image quality. 74 refs., 6 figs., 2 tabs.

  19. Radiation treatment of brain tumors: Concepts and strategies

    SciTech Connect

    Marks, J.E. )

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references.

  20. Emerging techniques and technologies in brain tumor imaging

    PubMed Central

    Ellingson, Benjamin M.; Bendszus, Martin; Sorensen, A. Gregory; Pope, Whitney B.

    2014-01-01

    The purpose of this report is to describe the state of imaging techniques and technologies for detecting response of brain tumors to treatment in the setting of multicenter clinical trials. Within currently used technologies, implementation of standardized image acquisition and the use of volumetric estimates and subtraction maps are likely to help to improve tumor visualization, delineation, and quantification. Upon further development, refinement, and standardization, imaging technologies such as diffusion and perfusion MRI and amino acid PET may contribute to the detection of tumor response to treatment, particularly in specific treatment settings. Over the next few years, new technologies such as 23Na MRI and CEST imaging technologies will be explored for their use in expanding the ability to quantitatively image tumor response to therapies in a clinical trial setting. PMID:25313234

  1. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    SciTech Connect

    Adam, Jean-Francois

    2005-04-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size <50x50 {mu}m{sup 2}) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal

  2. Postictal Magnetic Resonance Imaging Changes Masquerading as Brain Tumor Progression: A Case Series

    PubMed Central

    Dunn-Pirio, Anastasie M.; Billakota, Santoshi; Peters, Katherine B.

    2016-01-01

    Seizures are common among patients with brain tumors. Transient, postictal magnetic resonance imaging abnormalities are a long recognized phenomenon. However, these radiographic changes are not as well studied in the brain tumor population. Moreover, reversible neuroimaging abnormalities following seizure activity may be misinterpreted for tumor progression and could consequently result in unnecessary tumor-directed treatment. Here, we describe two cases of patients with brain tumors who developed peri-ictal pseudoprogression and review the relevant literature. PMID:27462237

  3. Auraptene Attenuates Malignant Properties of Esophageal Stem-Like Cancer Cells.

    PubMed

    Saboor-Maleki, Saffiyeh; Rassouli, Fatemeh B; Matin, Maryam M; Iranshahi, Mehrdad

    2017-08-01

    The high incidence of esophageal squamous cell carcinoma has been reported in selected ethnic populations including North of Iran. Low survival rate of esophageal carcinoma is partially due to the presence of stem-like cancer cells with chemotherapy resistance. In the current study, we aimed to determine the effects of auraptene, an interesting dietary coumarin with various biological activities, on malignant properties of stem-like esophageal squamous cell carcinoma, in terms of sensitivity to anticancer drugs and expression of specific markers. To do so, the half maximal inhibitory concentration values of auraptene, cisplatin, paclitaxel, and 5-fluorouracil were determined on esophageal carcinoma cells (KYSE30 cell line). After administrating combinatorial treatments, including nontoxic concentrations of auraptene + cisplatin, paclitaxel, or 5-fluorouracil, sensitivity of cells to chemical drugs and also induced apoptosis were assessed. In addition, quantitative real-time polymerase chain reaction was used to study changes in the expression of tumor suppressor proteins 53 and 21 ( P53 and P21), cluster of differentiation 44 ( CD44), and B cell-specific Moloney murine leukemia virus integration site 1 ( BMI-1) upon treatments. Results of thiazolyl blue assay revealed that auraptene significantly ( P < .05) increased toxicity of cisplatin, paclitaxel, and 5-fluorouracil in KYSE30 cells, specifically 72 hours after treatment. Conducting an apoptosis assay using flow cytometry also confirmed the synergic effects of auraptene. Results of quantitative real-time polymerase chain reaction revealed significant ( P < .05) upregulation of P53 and P21 upon combinatorial treatments and also downregulation of CD44 and BMI-1 after auraptene administration. Current study provided evidence, for the first time, that auraptene attenuates the properties of esophageal stem-like cancer cells through enhancing sensitivity to chemical agents and reducing the expression of CD44 and BMI-1

  4. History and evolution of brain tumor imaging: insights through radiology.

    PubMed

    Castillo, Mauricio

    2014-11-01

    This review recounts the history of brain tumor diagnosis from antiquity to the present and, indirectly, the history of neuroradiology. Imaging of the brain has from the beginning held an enormous interest because of the inherent difficulty of this endeavor due to the presence of the skull. Because of this, most techniques when newly developed have always been used in neuroradiology and, although some have proved to be inappropriate for this purpose, many were easily incorporated into the specialty. The first major advance in modern neuroimaging was contrast agent-enhanced computed tomography, which permitted accurate anatomic localization of brain tumors and, by virtue of contrast enhancement, malignant ones. The most important advances in neuroimaging occurred with the development of magnetic resonance imaging and diffusion-weighted sequences that allowed an indirect estimation of tumor cellularity; this was further refined by the development of perfusion and permeability mapping. From its beginnings with indirect and purely anatomic imaging techniques, neuroradiology now uses a combination of anatomic and physiologic techniques that will play a critical role in biologic tumor imaging and radiologic genomics.

  5. Optical spectroscopy for stereotactic biopsy of brain tumors

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; von Berg, Anna; Fiedler, Sebastian; Goetz, Marcus; Haj-Hosseini, Neda; Polzer, Christoph; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2015-07-01

    Stereotactic biopsy procedure is performed to obtain a tissue sample for diagnosis purposes. Currently, a fiber-based mechano-optical device for stereotactic biopsies of brain tumors is developed. Two different fluorophores are employed to improve the safety and reliability of this procedure: The fluorescence of intravenously applied indocyanine green (ICG) facilitates the recognition of blood vessels and thus helps minimize the risk of cerebral hemorrhages. 5- aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence is used to localize vital tumor tissue. ICG fluorescence detection using a 2-fiber probe turned out to be an applicable method to recognize blood vessels about 1.5 mm ahead of the fiber tip during a brain tumor biopsy. Moreover, the suitability of two different PpIX excitation wavelengths regarding practical aspects was investigated: While PpIX excitation in the violet region (at 405 nm) allows for higher sensitivity, red excitation (at 633 nm) is noticeably superior with regard to blood layers obscuring the fluorescence signal. Contact measurements on brain simulating agar phantoms demonstrated that a typical blood coverage of the tumor reduces the PpIX signal to about 75% and nearly 0% for 633 nm and 405 nm excitation, respectively. As a result, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy.

  6. Pros and cons of current brain tumor imaging

    PubMed Central

    Ellingson, Benjamin M.; Wen, Patrick Y.; van den Bent, Martin J.; Cloughesy, Timothy F.

    2014-01-01

    Over the past 20 years, very few agents have been approved for the treatment of brain tumors. Recent studies have highlighted some of the challenges in assessing activity in novel agents for the treatment of brain tumors. This paper reviews some of the key challenges related to assessment of tumor response to therapy in adult high-grade gliomas and discusses the strengths and limitations of imaging-based endpoints. Although overall survival is considered the “gold standard” endpoint in the field of oncology, progression-free survival and response rate are endpoints that hold great value in neuro-oncology. Particular focus is given to advancements made since the January 2006 Brain Tumor Endpoints Workshop, including the development of Response Assessment in Neuro-Oncology criteria, the value of T2/fluid-attenuated inversion recovery, use of objective response rates and progression-free survival in clinical trials, and the evaluation of pseudoprogression, pseudoresponse, and inflammatory response in radiographic images. PMID:25313235

  7. Sleep-wake disturbance in patients with brain tumors.

    PubMed

    Armstrong, Terri S; Shade, Marcia Y; Breton, Ghislain; Gilbert, Mark R; Mahajan, Anita; Scheurer, Michael E; Vera, Elizabeth; Berger, Ann M

    2017-03-01

    Sleep-wake disturbances are defined as perceived or actual alterations in sleep that result in impaired daytime functioning. Unlike other cancers, there is limited information about sleep-wake disturbances in adults with primary brain tumors throughout the illness trajectory. Sleep-wake disturbance is among the most severe and common symptoms reported by primary brain-tumor patients, particularly those undergoing radiation therapy. As with other cancers and neurologic illness, sleep-wake disturbance may also be clustered or related to other symptoms such as fatigue, depression, and cognitive impairment. There is increasing evidence for a genetic basis of normal sleep and sleep regulation in healthy adults. Specific mutations and single nucleotide variants have been reported to be associated with both fatigue and sleep-wake disorders, and both inflammation and alterations in circadian rhythms have been postulated to have a potential role. Guidelines for assessment and interventions have been developed, with cognitive behavioral therapy, exercise, and sleep hygiene demonstrating benefit in patients with other solid tumors. Further research is needed to identify risk and appropriate treatment in the brain-tumor patient population. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-05-01

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

  9. Brain Tumor Segmentation using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-03-04

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic Resonance Imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 33 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0:88, 0:83, 0:77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0:78, 0:65, and 0:75 for the complete, core, and enhancing regions, respectively.

  10. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis

    PubMed Central

    Husain, Kazim; Centeno, Barbara A; Coppola, Domenico; Trevino, Jose; Sebti, Said M; Malafa, Mokenge P

    2017-01-01

    The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases. PMID:28404939

  11. Histogram analysis of ADC in brain tumor patients

    NASA Astrophysics Data System (ADS)

    Banerjee, Debrup; Wang, Jihong; Li, Jiang

    2011-03-01

    At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, post-contrast T1) were registered to the corresponding DTI scan at patient's first visit. Conventionally, hyper-intensity regions on T1-post contrast images are believed to represent the core tumor region while regions highlighted by FLAIR may overestimate tumor size. Thus we annotated tumor regions on the T1-post contrast scans and ADC intensity values for pixels were extracted inside tumor regions as defined on T1-post scans. We fit a mixture Gaussian (MG) model for the extracted pixels using the Expectation-Maximization (EM) algorithm, which produced a set of parameters (mean, various and mixture coefficients) for the MG model. This procedure was performed for each visits resulting in a series of GM parameters. We studied the parameters fitted for ADC and see if they can be used as indicators for tumor progression. Additionally, we studied the ADC characteristics in the peri-tumoral region as identified by hyper-intensity on FLAIR scans. The results show that ADC histogram analysis of the tumor region supports the two compartment model that suggests the low ADC value subregion corresponding to densely packed cancer cell while the higher ADC value region corresponding to a mixture of viable and necrotic cells with superimposed edema. Careful studies of the composition and relative volume of the two compartments in tumor

  12. Permanent and removable implants for the brachytherapy of brain tumors

    SciTech Connect

    Gutin, P.H.; Phillips, T.L.; Hosobuchi, Y.

    1981-10-01

    Thirty-seven patients harboring primary or metastatic brain tumors were treated with 40 implantations of radioactive sources (/sup 192/Ir, /sup 198/Au, or /sup 125/I) using stereotactic neurosurgical techniques. Most tumors had recurred after surgery, whole brain irradiation, and treatment with all feasible chemotherapeutic agents. Sixteen of the 40 implants were pregnant; 24 were mounted in plastic catheters for removal after the desired dose had been delivered. One or more sources were placed in each tumor to deliver 3500-7350 rad to the tumor's periphery for /sup 198/Au, 4,000-12,000 rad for /sup 192/Ir, and 3,000-20,000 rad for /sup 125/I. Three of the six patients treated with /sup 192/Ir had objective responses for 2, 4, and 12 months, and two stabilized for 8 and 11 months. Seven of the 11 patients treated with /sup 198/Au were evaluable: three responded for 3, 5, and 37 + months, one deteriorating patient with a recurrent tumor stabilized for 6 months, and two deteriorated despite treatment. One patient received an interstitial ''boost'' dose with /sup 198/Au after whole brain irradiation and stabilized for 15 months before developing spinal metastases. Six patients received permanent implants with low activity /sup 125/I. Three of these patients had blioblastomas or anaplastic astrocytomas; all continued to deteriorate despite the interstitial irradiation, presumably because the dose rat was too low. One patient with a low-grade astrocytoma (optic chiasm) responded dramatically to permanent, low activity /sup 125/I implants (11 + months). Another (hypothalamic glioma) had a permanent /sup 125/I implant, responded, as was stable at 9 months when external irradiation was administered. One patient with a suprasellar ''teratoid'' tumor stabilized for 10 months.

  13. Neurodegeneration in the Brain Tumor Microenvironment: Glutamate in the Limelight

    PubMed Central

    Savaskan, Nicolai E.; Fan, Zheng; Broggini, Thomas; Buchfelder, Michael; Eyüpoglu, Ilker Y.

    2015-01-01

    Malignant brain tumors are characterized by destructive growth and neuronal cell death making them one of the most devastating diseases. Neurodegenerative actions of malignant gliomas resemble mechanisms also found in many neurodegenerative diseases such as Alzheimer's and Parkinson's diseases and amyotrophic lateral sclerosis. Recent data demonstrate that gliomas seize neuronal glutamate signaling for their own growth advantage. Excessive glutamate release via the glutamate/cystine antiporter xCT (system xc-, SLC7a11) renders cancer cells resistant to chemotherapeutics and create the tumor microenvironment toxic for neurons. In particular the glutamate/cystine antiporter xCT takes center stage in neurodegenerative processes and sets this transporter a potential prime target for cancer therapy. Noteworthy is the finding, that reactive oxygen species (ROS) activate transient receptor potential (TRP) channels and thereby TRP channels can potentiate glutamate release. Yet another important biological feature of the xCT/glutamate system is its modulatory effect on the tumor microenvironment with impact on host cells and the cancer stem cell niche. The EMA and FDA-approved drug sulfasalazine (SAS) presents a lead compound for xCT inhibition, although so far clinical trials on glioblastomas with SAS were ambiguous. Here, we critically analyze the mechanisms of action of xCT antiporter on malignant gliomas and in the tumor microenvironment. Deciphering the impact of xCT and glutamate and its relation to TRP channels in brain tumors pave the way for developing important cancer microenvironmental modulators and drugable lead targets. PMID:26411769

  14. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    PubMed

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment.

  15. [Intraoperative photo-dynamic diagnosis of brain tumors].

    PubMed

    Miyatake, Shin-Ichi; Kajimoto, Yoshinaga; Kuroiwa, Toshihiko

    2009-07-01

    Conventionary, we use 5-aminolevulinic acid (5-ALA) for photo-dynamic diagnosis in the removal of malignant gliomas. 5-ALA is converted to protoporphyrin IX (PpIX) in the body and emits red fluorescence, with the excitation of blue-violet light. As PpIX preferentially accumulates in the tumor tissue in comparison with normal tissue, this red fluorescence becomes a good hallmark for discrimination between normal and tumor tissues, especially in malignant gliomas, which have infiltrative characteristics. Approximately 80% to 90% of the malignant gliomas show this red fluorescence in surgery as mentioned above, while only a limited number of metastatic brain tumor cases do. In the surgery for metastatic brain tumor and lesionectomy for radiation necrosis and neurodegenerative disease, white matter around the lesion showed vague fluorescence, which also provided us with a hallmark in the surgery. Additionally, in meningioma, some tumors showed the red fluorescence, which is especially helpful in the removal of the infiltrative portion in the bone and normal parenchyma. In this paper, we also discuss high quality international reserch on 5-ALA-guided surgery for malignant gliomas. The most important point in 5-ALA-guided microsurgery is the use of good equipment that can provide sufficient operative fields even under fluorescence mode.

  16. Cellular phones and risk of brain tumors.

    PubMed

    Frumkin, H; Jacobson, A; Gansler, T; Thun, M J

    2001-01-01

    As cellular telephones are a relatively new technology, we do not yet have long-term follow-up on their possible biological effects. However, the lack of ionizing radiation and the low energy level emitted from cell phones and absorbed by human tissues make it unlikely that these devices cause cancer. Moreover, several well-designed epidemiologic studies find no consistent association between cell phone use and brain cancer. It is impossible to prove that any product or exposure is absolutely safe, especially in the absence of very long-term follow-up. Accordingly, the following summary from the Food and Drug Administration Center for Devices and Radiological Health offers advice to people concerned about their risk: If there is a risk from these products--and at this point we do not know that there is--it is probably very small. But if people are concerned about avoiding even potential risks, there are simple steps they can take to do so. People who must conduct extended conversations in their cars every day could switch to a type of mobile phone that places more distance between their bodies and the source of the RF, since the exposure level drops off dramatically with distance. For example, they could switch to: a mobile phone in which the antenna is located outside the vehicle, a hand-held phone with a built-in antenna connected to a different antenna mounted on the outside of the car or built into a separate package, or a headset with a remote antenna to a mobile phone carried at the waist. Again the scientific data do not demonstrate that mobile phones are harmful. But if people are concerned about the radiofrequency energy from these products, taking the simple precautions outlined above can reduce any possible risk. In addition, people who are concerned might choose digital rather than analog telephones, since the former use lower RF levels.

  17. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    ClinicalTrials.gov

    2016-11-21

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  18. Advanced MR Imaging in Pediatric Brain Tumors, Clinical Applications.

    PubMed

    Lequin, Maarten; Hendrikse, Jeroen

    2017-02-01

    Advanced MR imaging techniques, such as spectroscopy, perfusion, diffusion, and functional imaging, have improved the diagnosis of brain tumors in children and also play an important role in defining surgical as well as therapeutic responses in these patients. In addition to the anatomic or structural information gained with conventional MR imaging sequences, advanced MR imaging techniques also provide physiologic information about tumor morphology, metabolism, and hemodynamics. This article reviews the physiology, techniques, and clinical applications of diffusion-weighted and diffusion tensor imaging, MR spectroscopy, perfusion MR imaging, susceptibility-weighted imaging, and functional MR imaging in the setting of neuro-oncology.

  19. Numerical simulations of MREIT conductivity imaging for brain tumor detection.

    PubMed

    Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged.

  20. Late sequelae in children treated for brain tumors and leukemia.

    PubMed

    Jereb, B; Korenjak, R; Krzisnik, C; Petric-Grabnar, G; Zadravec-Zaletel, L; Anzic, J; Stare, J

    1994-01-01

    Forty-two survivors treated at an age of 2-16 years for brain tumors or leukemia were, 4-21 years after treatment, subjected to an extensive follow-up investigation, including physical examination and interview; 35 of them also had endocrinological and 33 psychological evaluation. Hormonal deficiencies were found in about two-thirds of patients and were most common in those treated for brain tumors. The great majority had verbal intelligence quotient (VIQ) within normal range. Also, the performance intelligence quotients (PIQ) were normal in most patients. However, the results suggested that the primary intellectual capacity in children treated for cancer was not being fully utilized, their PIQ being on the average higher than their VIQ; this tendency was especially pronounced in the leukemia patients.

  1. Efficient multilevel brain tumor segmentation with integrated bayesian model classification.

    PubMed

    Corso, J J; Sharon, E; Dube, S; El-Saden, S; Sinha, U; Yuille, A

    2008-05-01

    We present a new method for automatic segmentation of heterogeneous image data that takes a step toward bridging the gap between bottom-up affinity-based segmentation methods and top-down generative model based approaches. The main contribution of the paper is a Bayesian formulation for incorporating soft model assignments into the calculation of affinities, which are conventionally model free. We integrate the resulting model-aware affinities into the multilevel segmentation by weighted aggregation algorithm, and apply the technique to the task of detecting and segmenting brain tumor and edema in multichannel magnetic resonance (MR) volumes. The computationally efficient method runs orders of magnitude faster than current state-of-the-art techniques giving comparable or improved results. Our quantitative results indicate the benefit of incorporating model-aware affinities into the segmentation process for the difficult case of glioblastoma multiforme brain tumor.

  2. A new 2-pyrone derivative, 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one, suppresses stemness in glioma stem-like cells.

    PubMed

    Kim, Rae-Kwon; Kim, Min-Jung; Yoon, Chang-Hwan; Lim, Eun-Jung; Yoo, Ki-Chun; Lee, Ga-Haeng; Kim, Young-Heon; Kim, Hyeonmi; Jin, Yeung Bae; Lee, Yoon-Jin; Cho, Cheon-Gyu; Oh, Yeong Seok; Gye, Myung Chan; Suh, Yongjoon; Lee, Su-Jae

    2012-09-01

    Glioma cells with stem cell properties, termed glioma stem-like cells (GSCs), have been linked to tumor formation, maintenance, and progression and are responsible for the failure of chemotherapy and radiotherapy. Because conventional glioma treatments often fail to eliminate GSCs completely, residual surviving GSCs are able to repopulate the tumor. Compounds that target GSCs might be helpful in overcoming resistance to anticancer treatments in human brain tumors. In this study, we showed that 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one (BHP), a new 2-pyrone derivative, suppressed the maintenance of the GSC population in both a glioma cell line and patient-derived glioma cells. Treatment of GSCs with BHP effectively inhibited sphere formation and suppressed the CD133(+) cell population. Treatment with BHP also suppressed expression of the stemness-regulating transcription factors Sox2, Notch2, and β-catenin in sphere-cultured glioma cells. Treatment of GSCs with BHP significantly suppressed two fundamental characteristics of cancer stem cells: self-renewal and tumorigenicity. BHP treatment dramatically inhibited clone-forming ability at the single-cell level and suppressed in vivo tumor formation. BHP markedly inhibited both phosphoinositide 3-kinase/Akt and Ras/Raf-1/extracellular signal-regulated kinase signaling, which suggests that one or both of these pathways are involved in BHP-induced suppression of GSCs. In addition, treatment with BHP effectively sensitized GSCs to chemotherapy and radiotherapy. Taken together, these results indicate that BHP targets GSCs and enhances their sensitivity to anticancer treatments and suggest that BHP treatment may be useful for treating brain tumors by eliminating GSCs.

  3. Sdhd ablation promotes thyroid tumorigenesis by inducing a stem-like phenotype.

    PubMed

    Ashtekar, Amruta; Huk, Danielle; Magner, Alexa; La Perle, Krista; Zhang, Xiaoli; Piruat, Jose; Lopez-Barneo, Jose; Jhiang, Sissy; Kirschner, Lawrence

    2017-09-19

    Mutations in genes encoding enzymes in the tricarboxylic acid cycle (TCA, also known as the Krebs cycle) have been implicated as causative genetic lesions in a number of human cancers, including renal cell cancers, glioblastomas, and pheochromocytomas. In recent studies, missense mutations in the Succinate dehydrogenase (SDH) complex have also been proposed to cause differentiated thyroid cancer. In order to gain mechanistic insight into this process, we generated mice lacking the SDH subunit D (SDHD) in the thyroid. We report that these mice develop enlarged thyroid glands with follicle hypercellularity and increased proliferation. In vitro, human thyroid cell lines with knockdown of SDHD exhibit an enhanced migratory capability, despite no change in proliferative capacity. Interestingly, these cells acquire stem-like features which are also observed in the mouse tumors. The stem-like characteristics are reversed by α-ketoglutarate, suggesting that SDH-associated tumorigenesis results from dedifferentiation driven by an imbalance in cellular metabolites of the TCA cycle. The results of this study reveal a metabolic vulnerability for potential future treatment of SDH-associated neoplasia.

  4. Automatic brain tumor detection in MRI: methodology and statistical validation

    NASA Astrophysics Data System (ADS)

    Iftekharuddin, Khan M.; Islam, Mohammad A.; Shaik, Jahangheer; Parra, Carlos; Ogg, Robert

    2005-04-01

    Automated brain tumor segmentation and detection are immensely important in medical diagnostics because it provides information associated to anatomical structures as well as potential abnormal tissue necessary to delineate appropriate surgical planning. In this work, we propose a novel automated brain tumor segmentation technique based on multiresolution texture information that combines fractal Brownian motion (fBm) and wavelet multiresolution analysis. Our wavelet-fractal technique combines the excellent multiresolution localization property of wavelets to texture extraction of fractal. We prove the efficacy of our technique by successfully segmenting pediatric brain MR images (MRIs) from St. Jude Children"s Research Hospital. We use self-organizing map (SOM) as our clustering tool wherein we exploit both pixel intensity and multiresolution texture features to obtain segmented tumor. Our test results show that our technique successfully segments abnormal brain tissues in a set of T1 images. In the next step, we design a classifier using Feed-Forward (FF) neural network to statistically validate the presence of tumor in MRI using both the multiresolution texture and the pixel intensity features. We estimate the corresponding receiver operating curve (ROC) based on the findings of true positive fractions and false positive fractions estimated from our classifier at different threshold values. An ROC, which can be considered as a gold standard to prove the competence of a classifier, is obtained to ascertain the sensitivity and specificity of our classifier. We observe that at threshold 0.4 we achieve true positive value of 1.0 (100%) sacrificing only 0.16 (16%) false positive value for the set of 50 T1 MRI analyzed in this experiment.

  5. Handling of solid brain tumor tissue for protein analysis.

    PubMed

    Ericsson, Christer; Nistér, Monica

    2011-01-01

    Optimal protein analysis requires unfixed tissue samples. We suggest handling the brain tumor tissue sterilely and coldly (on ice) for as short time as possible prior to processing, but for no more than 8 h. This simple protocol results in apparently intact morphology, immunoreactivity, protein integrity, and protein phosphorylation with the criteria we apply. Sample handling for Pathological Anatomical Diagnosis (PAD) and for protein analysis can be one and the same.

  6. Management of children with brain tumors in Paraguay

    PubMed Central

    Baskin, Jacquelyn L.; Lezcano, Eva; Kim, Bo Sung; Figueredo, Diego; Lassaletta, Alvaro; Perez-Martinez, Antonio; Madero, Luis; Caniza, Miguela A.; Howard, Scott C.; Samudio, Angelica; Finlay, Jonathan L.

    2013-01-01

    Background Cure rates among children with brain tumors differ between low-income and high-income countries. To evaluate causes of these differences, we analyzed aspects of care provided to pediatric neuro-oncology patients in a low middle-income South American country. Methods Three methods were used to evaluate treatment of children with brain tumors in Paraguay: (1) a quantitative needs assessment questionnaire for local treating physicians, (2) site visits to assess 3 tertiary care centers in Asunción and a satellite clinic in an underdeveloped area, and (3) interviews with health care workers from relevant disciplines to determine their perceptions of available resources. Treatment failure was defined as abandonment of therapy, relapse, or death. Results All 3 tertiary care facilities have access to chemotherapy and pediatric oncologists but lack training and tools for neuropathology and optimal neurosurgery. The 2 public hospitals also lack access to appropriate radiological tests and timely radiotherapy. These results demonstrate disparities in Paraguay, with rates of treatment failure ranging from 37% to 83% among the 3 facilities. Conclusions National and center-specific deficiencies in resources to manage pediatric brain tumors contribute to poor outcomes in Paraguay and suggest that both national and center-specific interventions are warranted to improve care. Disparities in Paraguay reflect different levels of governmental and philanthropic support, program development, and socio-economic status of patients and families, which must be considered when developing targeted strategies to improve management. Effective targeted interventions can serve as a model to develop pediatric brain tumor programs in other low- and middle-income countries. PMID:23197688

  7. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells.

    PubMed

    Zhu, Thant S; Costello, Mark A; Talsma, Caroline E; Flack, Callie G; Crowley, Jessica G; Hamm, Lisa L; He, Xiaobing; Hervey-Jumper, Shawn L; Heth, Jason A; Muraszko, Karin M; DiMeco, Francesco; Vescovi, Angelo L; Fan, Xing

    2011-09-15

    One important function of endothelial cells in glioblastoma multiforme (GBM) is to create a niche that helps promote self-renewal of cancer stem-like cells (CSLC). However, the underlying molecular mechanism for this endothelial function is not known. Since activation of NOTCH signaling has been found to be required for propagation of GBM CSLCs, we hypothesized that the GBM endothelium may provide the source of NOTCH ligands. Here, we report a corroboration of this concept with a demonstration that NOTCH ligands are expressed in endothelial cells adjacent to NESTIN and NOTCH receptor-positive cancer cells in primary GBMs. Coculturing human brain microvascular endothelial cells (hBMEC) or NOTCH ligand with GBM neurospheres promoted GBM cell growth and increased CSLC self-renewal. Notably, RNAi-mediated knockdown of NOTCH ligands in hBMECs abrogated their ability to induce CSLC self-renewal and GBM tumor growth, both in vitro and in vivo. Thus, our findings establish that NOTCH activation in GBM CSLCs is driven by juxtacrine signaling between tumor cells and their surrounding endothelial cells in the tumor microenvironment, suggesting that targeting both CSLCs and their niche may provide a novel strategy to deplete CSLCs and improve GBM treatment.

  8. Liposomally formulated phospholipid-conjugated indocyanine green for intra-operative brain tumor detection and resection.

    PubMed

    Suganami, Akiko; Iwadate, Yasuo; Shibata, Sayaka; Yamashita, Masamichi; Tanaka, Tsutomu; Shinozaki, Natsuki; Aoki, Ichio; Saeki, Naokatsu; Shirasawa, Hiroshi; Okamoto, Yoshiharu; Tamura, Yutaka

    2015-12-30

    Some tumor-specific near-infrared (NIR) fluorescent dyes such as indocyanine green (ICG), IDRye800CW, and 5-aminolevulinic acid have been used clinically for detecting tumor margins or micro-cancer lesions. In this study, we evaluated the physicochemical properties of liposomally formulated phospholipid-conjugated ICG, denoted by LP-iDOPE, as a clinically translatable NIR imaging nanoparticle for brain tumors. We also confirmed its brain-tumor-specific biodistribution and its characteristics as the intra-operative NIR imaging nanoparticles for brain tumor surgery. These properties of LP-iDOPE may enable neurosurgeons to achieve more accurate identification and more complete resection of brain tumor.

  9. Heavy Metals and Epigenetic Alterations in Brain Tumors

    PubMed Central

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-01-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  10. APOE polymorphisms and cognitive functions in patients with brain tumors.

    PubMed

    Correa, Denise D; Satagopan, Jaya; Baser, Raymond E; Cheung, Kenneth; Richards, Elizabeth; Lin, Michael; Karimi, Sasan; Lyo, John; DeAngelis, Lisa M; Orlow, Irene

    2014-07-22

    The goal of this study was to assess whether the APOE ε4 allele and other APOE single nucleotide polymorphisms (SNPs) influence neuropsychological and neuroimaging outcomes in patients with brain tumors. Two hundred eleven patients with brain tumors participated in the study. All patients completed standardized neuropsychological tests and provided a blood sample for APOE genotyping. Ratings of white matter abnormalities were performed on MRI scans. Patients were classified into 2 groups based on the presence (n = 50) or absence (n = 161) of at least one APOE ε4 allele. Additional APOE SNPs were genotyped in a subset of 150 patients. Patients with at least one APOE ε4 allele had significantly lower scores in verbal learning and delayed recall, and marginally significant lower scores in executive function, in comparison to noncarriers of an ε4 allele. Patients with at least one ε4 allele and history of cigarette smoking had significantly higher scores in working memory and verbal learning than ε4 carriers who never smoked. Nine additional APOE SNPs were significantly associated with attention and executive and memory abilities. There were no significant differences between ε4 carriers and noncarriers on the extent of white matter abnormalities on MRI. The findings suggest that patients with brain tumors who are carriers of the APOE ε4 allele may have increased vulnerability to developing memory and executive dysfunction, and that additional SNPs in the APOE gene may be associated with cognitive outcome. © 2014 American Academy of Neurology.

  11. Sigma and opioid receptors in human brain tumors

    SciTech Connect

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. )

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  12. Gene markers in brain tumors: what the epileptologist should know.

    PubMed

    Ostrom, Quinn; Cohen, Mark L; Ondracek, Annie; Sloan, Andrew; Barnholtz-Sloan, Jill

    2013-12-01

    Gene markers or biomarkers can be used for diagnostic or prognostic purposes for all different types of complex disease, including brain tumors. Prognostic markers can be useful to explain differences not only in overall survival but also in response to treatment and for development of targeted therapies. Multiple genes with specific types of alterations have now been identified that are associated with improved response to chemotherapy and radiotherapy, such as O(6)-methylguanine methyltranferase (MGMT) or loss of chromosomes 1p and/or 19q. Other alterations have been identified that are associated with improved overall survival, such as mutations in isocitrate dehydrogenase 1 (IDH1) and/or isocitrate dehydrogenase 2 (IDH2) or having the glioma CpG island DNA methylator phenotype (G-CIMP). There are many biomarkers that may have relevance in brain tumor-associated epilepsy that do not respond to treatment. Given the rapidly changing landscape of high throughput "omics" technologies, there is significant potential for gaining further knowledge via integration of multiple different types of high genome-wide data. This knowledge can be translated into improved therapies and clinical outcomes for patients with brain tumors.

  13. The p53 gene and protein in human brain tumors

    SciTech Connect

    Louis, D.N. )

    1994-01-01

    Because p53 gene alterations are commonplace in human tumors and because p53 protein is involved in a number of important cellular pathways, p53 has become a topic of intensive investigation, both by basic scientists and clinicians. p53 was initially identified by two independent laboratories in 1979 as a 53 kilodalton (kD) protein that complexes with the large T antigen of SV40 virus. Shortly thereafter, it was shown that the E1B oncoprotein of adenovirus also binds p53. The binding of two different oncogenic viral tumor proteins to the same cellular protein suggested that p53 might be integral to tumorigenesis. The human p53 cDNA and gene were subsequently cloned in the mid-1980s, and analysis of p53 gene alterations in human tumors followed a few year later. During these 10 years, researchers grappling with the vagaries of p53 first characterized the gene as an oncogene, then as a tumor suppressor gene, and most recently as both a tumor suppressor gene and a so-called [open quotes]dominant negative[close quotes] oncogene. The last few years have seen an explosion in work on this single gene and its protein product. A review of a computerized medical database revealed approximately 650 articles on p53 in 1992 alone. p53 has assumed importance in neuro-oncology because p53 mutations and protein alterations are frequent in the common diffuse, fibrillary astrocytic tumors of adults. p53 mutations in astrocytomas were first described in 1989 and were followed by more extensive analyses of gene mutations and protein alterations in adult astrocytomas. The gene has also been studied in less common brain tumors. Elucidating the role of p53 in brain tumorigenesis will not only enhance understanding of brain tumor biology but may also contribute to improved diagnosis and therapy. This discussion reviews key aspects of the p53 gene and protein, and describe their emerging roles in central nervous system neoplasia. 102 refs., 6 figs., 1 tab.

  14. Natural killer cell-based adoptive immunotherapy eradicates and drives differentiation of chemoresistant bladder cancer stem-like cells.

    PubMed

    Ferreira-Teixeira, Margarida; Paiva-Oliveira, Daniela; Parada, Belmiro; Alves, Vera; Sousa, Vitor; Chijioke, Obinna; Münz, Christian; Reis, Flávio; Rodrigues-Santos, Paulo; Gomes, Célia

    2016-10-21

    High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete

  15. Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors

    PubMed Central

    Sarin, Hemant

    2009-01-01

    Systemic chemotherapy has been relatively ineffective in the treatment of malignant brain tumors even though systemic chemotherapy drugs are small molecules that can readily extravasate across the porous blood-brain tumor barrier of malignant brain tumor microvasculature. Small molecule systemic chemotherapy drugs maintain peak blood concentrations for only minutes, and therefore, do not accumulate to therapeutic concentrations within individual brain tumor cells. The physiologic upper limit of pore size in the blood-brain tumor barrier of malignant brain tumor microvasculature is approximately 12 nanometers. Spherical nanoparticles ranging between 7 nm and 10 nm in diameter maintain peak blood concentrations for several hours and are sufficiently smaller than the 12 nm physiologic upper limit of pore size in the blood-brain tumor barrier to accumulate to therapeutic concentrations within individual brain tumor cells. Therefore, nanoparticles bearing chemotherapy that are within the 7 to 10 nm size range can be used to deliver therapeutic concentrations of small molecule chemotherapy drugs across the blood-brain tumor barrier into individual brain tumor cells. The initial therapeutic efficacy of the Gd-G5-doxorubicin dendrimer, an imageable nanoparticle bearing chemotherapy within the 7 to 10 nm size range, has been demonstrated in the orthotopic RG-2 rodent malignant glioma model. Herein I discuss this novel strategy to improve the effectiveness of systemic chemotherapy for the treatment of malignant brain tumors and the therapeutic implications thereof. PMID:19723323

  16. Boswellic acid activity against glioblastoma stem-like cells

    PubMed Central

    SCHNEIDER, HANNAH; WELLER, MICHAEL

    2016-01-01

    Boswellic acids (BAs) have long been considered as useful adjunct pharmacological agents for the treatment of patients with malignant brain tumors, notably glioblastoma. Two principal modes of action associated with BAs have been postulated: i) Anti-inflammatory properties, which are useful for containing edema formation, and ii) intrinsic antitumor cell properties, with a hitherto ill-defined mode of action. The present study assessed the effects of various BA derivatives on the viability and clonogenicity of a panel of nine long-term glioma cell lines and five glioma-initiating cell lines, studied cell cycle progression and the mode of cell death induction, and explored potential synergy with temozolomide (TMZ) or irradiation. BA induced the concentration-dependent loss of viability and clonogenicity that was independent of tumor protein 53 status and O6-methylguanine DNA methyltransferase expression. The treatment of glioma cells with BA resulted in cell death induction, prior to or upon S phase entry, and exhibited features of apoptotic cell death. Synergy with irradiation or TMZ was detected at certain concentrations; however, the inhibitory effects were mostly additive, and never antagonistic. While the intrinsic cytotoxic properties of BA at low micromolecular concentrations were confirmed and the potential synergy with irradiation and TMZ was identified, the proximate pharmacodynamic target of BA remains to be identified. PMID:27313764

  17. Monitoring brain tumor response to therapy using MRI segmentation.

    PubMed

    Vaidyanathan, M; Clarke, L P; Hall, L O; Heidtman, C; Velthuizen, R; Gosche, K; Phuphanich, S; Wagner, H; Greenberg, H; Silbiger, M L

    1997-01-01

    The performance evaluation of a semi-supervised fuzzy c-means (SFCM) clustering method for monitoring brain tumor volume changes during the course of routine clinical radiation-therapeutic and chemo-therapeutic regimens is presented. The tumor volume determined using the SFCM method was compared with the volume estimates obtained using three other methods: (a) a k nearest neighbor (kNN) classifier, b) a grey level thresholding and seed growing (ISG-SG) method and c) a manual pixel labeling (GT) method for ground truth estimation. The SFCM and kNN methods are applied to the multispectral, contrast enhanced T1, proton density, and T2 weighted, magnetic resonance images (MRI) whereas the ISG-SG and GT methods are applied only to the contrast enhanced T1 weighted image. Estimations of tumor volume were made on eight patient cases with follow-up MRI scans performed over a 32 week interval during treatment. The tumor cases studied include one meningioma, two brain metastases and five gliomas. Comparisons with manually labeled ground truth estimations showed that there is a limited agreement between the segmentation methods for absolute tumor volume measurements when using images of patients after treatment. The average intraobserver reproducibility for the SFCM, kNN and ISG-SG methods was found to be 5.8%, 6.6% and 8.9%, respectively. The average of the interobserver reproducibility of these methods was found to be 5.5%, 6.5% and 11.4%, respectively. For the measurement of relative change of tumor volume as required for the response assessment, the multi-spectral methods kNN and SFCM are therefore preferred over the seedgrowing method.

  18. Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway

    PubMed Central

    Chang, Chan; Zhu, Fang; Xiao, Yin; Li, Qiuhui; Zhang, Tao; Zhang, Liling

    2015-01-01

    Disulfiram (DSF), an anti-alcoholism drug, has been reported as an inhibitor of NF-κB. NF-κB is involved in epithelial-mesenchymal transition (EMT) and self-renewal of breast cancer stem cells (CSCs). In this study, we treated MCF-7 and MDA-MB-231 breast cancer cells with TGF-β to induce EMT and cancer stem-like features and studied whether DSF can reverse this process. We found that DSF inhibited TGF-β induced EMT in breast cancer cells in a dose-dependent manner. Also, DSF inhibited EMT-associated stem-like features, migration and invasion of tumor cells as well as tumor growth in xenograft model. The activation of NF-κB was linked with EMT and stem-like cells. We conclude that DSF can suppress NF-κB activity and downregulate ERK/NF-κB/Snail pathway, leading to reverse EMT and stem-like features. Our data suggest that DSF inhibits EMT and stem-like properties in breast cancer cells associated with inhibition of the ERK/NF-κB/Snail pathway. PMID:26517513

  19. Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway.

    PubMed

    Han, Dan; Wu, Gang; Chang, Chan; Zhu, Fang; Xiao, Yin; Li, Qiuhui; Zhang, Tao; Zhang, Liling

    2015-12-01

    Disulfiram (DSF), an anti-alcoholism drug, has been reported as an inhibitor of NF-κB. NF-κB is involved in epithelial-mesenchymal transition (EMT) and self-renewal of breast cancer stem cells (CSCs). In this study, we treated MCF-7 and MDA-MB-231 breast cancer cells with TGF-β to induce EMT and cancer stem-like features and studied whether DSF can reverse this process. We found that DSF inhibited TGF-β induced EMT in breast cancer cells in a dose-dependent manner. Also, DSF inhibited EMT-associated stem-like features, migration and invasion of tumor cells as well as tumor growth in xenograft model. The activation of NF-κB was linked with EMT and stem-like cells. We conclude that DSF can suppress NF-κB activity and downregulate ERK/NF-κB/Snail pathway, leading to reverse EMT and stem-like features. Our data suggest that DSF inhibits EMT and stem-like properties in breast cancer cells associated with inhibition of the ERK/NF-κB/Snail pathway.

  20. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy

    PubMed Central

    Woolf, Eric C.; Syed, Nelofer; Scheck, Adrienne C.

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma. PMID:27899882

  1. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy.

    PubMed

    Woolf, Eric C; Syed, Nelofer; Scheck, Adrienne C

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  2. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells.

    PubMed

    Zhang, S; Mercado-Uribe, I; Xing, Z; Sun, B; Kuang, J; Liu, J

    2014-01-02

    Polyploid giant cancer cells (PGCCs) have been observed by pathologists for over a century. PGCCs contribute to solid tumor heterogeneity, but their functions are largely undefined. Little attention has been given to these cells, largely because PGCCs have been generally thought to originate from repeated failure of mitosis/cytokinesis and have no capacity for long-term survival or proliferation. Here we report our successful purification and culture of PGCCs from human ovarian cancer cell lines and primary ovarian cancer. These cells are highly resistant to oxygen deprivation and could form through endoreduplication or cell fusion, generating regular-sized cancer cells quickly through budding or bursting similar to simple organisms like fungi. They express normal and cancer stem cell markers, they divide asymmetrically and they cycle slowly. They can differentiate into adipose, cartilage and bone. A single PGCC formed cancer spheroids in vitro and generated tumors in immunodeficient mice. These PGCC-derived tumors gained a mesenchymal phenotype with increased expression of cancer stem cell markers CD44 and CD133 and become more resistant to treatment with cisplatin. Taken together, our results reveal that PGCCs represent a resistant form of human cancer using an ancient, evolutionarily conserved mechanism in response to hypoxia stress; they can contribute to the generation of cancer stem-like cells, and also play a fundamental role in regulating tumor heterogeneity, tumor growth and chemoresistance in human cancer.

  3. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers

    PubMed Central

    Lee, Yi-Jen; Wu, Chang-Cheng; Li, Jhy-Wei; Ou, Chien-Chih; Hsu, Shih-Chung; Tseng, Hsiu-Hsueh; Kao, Ming-Ching; Liu, Jah-Yao

    2016-01-01

    The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy. PMID:27655682

  4. Organotypic brain explant culture as a drug evaluation system for malignant brain tumors.

    PubMed

    Minami, Noriaki; Maeda, Yusuke; Shibao, Shunsuke; Arima, Yoshimi; Ohka, Fumiharu; Kondo, Yutaka; Maruyama, Koji; Kusuhara, Masatoshi; Sasayama, Takashi; Kohmura, Eiji; Saya, Hideyuki; Sampetrean, Oltea

    2017-10-04

    Therapeutic options for malignant brain tumors are limited, with new drugs being continuously evaluated. Organotypic brain slice culture has been adopted for neuroscience studies as a system that preserves brain architecture, cellular function, and the vascular network. However, the suitability of brain explants for anticancer drug evaluation has been unclear. We here adopted a mouse model of malignant glioma based on expression of H-Ras(V12) in Ink4a/Arf(-/-) neural stem/progenitor cells to establish tumor-bearing brain explants from adult mice. We treated the slices with cisplatin, temozolomide, paclitaxel, or tranilast and investigated the minimal assays required to assess drug effects. Serial fluorescence-based tumor imaging was sufficient for evaluation of cisplatin, a drug with a pronounced cytotoxic action, whereas immunostaining of cleaved caspase 3 (a marker of apoptosis) and of Ki67 (a marker of cell proliferation) was necessary for the assessment of temozolomide action and immunostaining for phosphorylated histone H3 (a marker of mitosis) allowed visualization of paclitaxel-specific effects. Staining for cleaved caspase 3 was also informative in the assessment of drug toxicity for normal brain tissue. Incubation of explants with fluorescently labeled antibodies to CD31 allowed real-time imaging of the microvascular network and complemented time-lapse imaging of tumor cell invasion into surrounding tissue. Our results suggest that a combination of fluorescence imaging and immunohistological staining allows a unified assessment of the effects of various classes of drug on the survival, proliferation, and invasion of glioma cells, and that organotypic brain slice culture is therefore a useful tool for evaluation of antiglioma drugs. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  5. Adoptive transfer of osteoclast-expanded natural killer cells for immunotherapy targeting cancer stem-like cells in humanized mice.

    PubMed

    Kozlowska, Anna K; Kaur, Kawaljit; Topchyan, Paytsar; Jewett, Anahid

    2016-07-01

    Based on data obtained from oral, pancreatic and lung cancers, glioblastoma, and melanoma, we have established that natural killer (NK) cells target cancer stem-like cells (CSCs). CSCs displaying low MHC class I, CD54, and PD-L1 are killed by cytotoxic NK cells and are differentiated by split anergized NK cells through both membrane bound and secreted forms of TNF-α and IFN-γ. NK cells select and differentiate both healthy and transformed stem-like cells, resulting in target cell maturation and shaping of their microenvironment. In our recent studies, we have observed that oral, pancreatic, and melanoma CSCs were capable of forming large tumors in humanized bone marrow, liver, thymus (hu-BLT) mice with fully reconstituted human immune system. In addition, major human immune subsets including NK cells, T cells, B cells, and monocytes were present in the spleen, bone marrow, peripheral blood, and tumor microenvironment. Similar to our previously published in vitro data, CSCs differentiated with split anergized NK cells prior to implantation in mice formed smaller tumors. Intravenous injection of functionally potent osteoclast-expanded NK cells inhibited tumor growth through differentiation of CSCs in humanized mice. In this review, we present current approaches, advances, and existing limitations in studying interactions of the immune system with the tumor, in particular NK cells with CSCs, using in vivo preclinical hu-BLT mouse model. In addition, we discuss the use of osteoclast-expanded NK cells in targeting cancer stem-like tumors in humanized mice-a strategy that provides a much-needed platform to develop effective cancer immunotherapies.

  6. Hidden reality: sexual sphere in brain tumor patients.

    PubMed

    Finocchiaro, Claudia Yvonne; Petruzzi, Alessandra; Fedeli, Giulia; Vistalli, Maria Giulia; Innocenti, Alessandro; Silvani, Antonio; Lamperti, Elena

    2017-03-01

    Most reports emphasize that tumors and their treatments affect sexual function. To date, no studies have focused on sexual functioning in patients with brain tumors. Our study's objective is to describe the sexual sphere of patients with brain tumors and examine the possible differences between patients who reported sexual dysfunctions and those who did not with respect to their psychological and functional status. We tested 46 patients with brain tumors. We used an ad hoc questionnaire to assess patients' subjective perception of their own sexual sphere. To assess patients' psychological status, we used the following questionnaires: Hospital Anxiety and Depression Scale; Psychological Distress Inventory; EORTC QLQ-C30; EORTC QLQ-BN20. Fifty-eight percent of patients reported sexual disturbance. Our data showed that a lack of or decrease in sexual desire is the most common sexual problem reported by our patients (56%). Patients with sexual problems reported higher levels of anxiety and depression and a worse self-reported quality of life (QoL) than did those who did not perceive adverse changes in their sexual sphere. In addition, we found that patients with a better performance status (KPS) reported more changes in sexual behaviors than did those who had performance difficulties. Of the patients, 15.2% received information regarding possible changes in the sexual sphere by physicians. Additionally, 10.8 of 15.2% of the patients reported having explicitly requested information from physicians. The study demonstrated a relation between QoL and sexual function. Therefore, it would be important to encourage clinicians to ask questions regarding patients' sexual issues, thus providing them with an opportunity to expose their difficulties and receive adequate support.

  7. Radioguided surgery in brain tumors with thallium-201.

    PubMed

    Serrano, Justo; Rayo, Juan I; Infante, Jose R; Domínguez, Luz; García-Bernardo, Lucía; Durán, Carmen; Fernández Portales, Ignacio; Cabezudo, José M

    2008-12-01

    Malignant astrocytomas show thallium uptake with a high target-to-background ratio, allowing the use of radioguided surgery. We report on 6 patients (3 men) diagnosed with malignant astrocytoma. All patients signed informed consent documents. Previous thallium-201 SPECT was performed, showing uptake in tumors. In the operating room we injected 37 MBq (1 mCi) of thallium-201 at the same time the craniotomy was performed. With the gamma probe we confirmed the tumor uptake, and a biopsy sample was taken. After conventional tumor resection, we scanned the surgical bed with the gamma probe. All areas of abnormal uptake were evaluated by the surgeon and, if possible, removed. In all patients the biopsy confirmed a high-grade astrocytoma. In all cases we found residual uptake in the surgical bed that was confirmed as residual tumor by pathologic examination. In 3 cases it was not possible to remove all the sites of pathologic uptake because critical areas were involved. In the other 3 patients, only background activity was found after the procedure. Radioguided surgery in brain tumors with thallium-201 is a complex technique and expertise in radioguided surgery and neuroimaging is needed, but we think that it is promising.

  8. Simulating ‘structure-function’ patterns of malignant brain tumors

    NASA Astrophysics Data System (ADS)

    Mansury, Yuri; Deisboeck, Thomas S.

    2004-01-01

    Rapid growth and extensive tissue infiltration are characteristics of highly malignant neuroepithelial brain tumors. Very little is known, however, about the existence of structure-function relationships in these types of neoplasm. Therefore, using a previously developed two-dimensional agent-based model, we have investigated the emergent patterns of multiple tumor cells that proliferate and migrate on an adaptive grid lattice, driven by a local-search mechanism and guided by the presence of distinct environmental conditions. Numerical results indicate a strong correlation between the fractal dimensions of the tumor surface and the average velocity of the tumor's spatial expansion. In particular, when the so called ‘beaten-path advantage’ intensifies, i.e., rising ‘mechanical rewards’ for cells to follow each other along preformed pathways, it results in an increase of the tumor system's fractal dimensions leading to a concomitant acceleration of its spatial expansion. Whereas cell migration is the dominant phenotype responsible for the more extensive branching patterns exhibiting higher fractal dimensions, cell proliferation appears to become more active primarily at lower fracticality associated with stronger mechanical confinements. Implications of these results for experimental and clinical cancer research are discussed.

  9. Radiomics in Brain Tumors: An Emerging Technique for Characterization of Tumor Environment.

    PubMed

    Kotrotsou, Aikaterini; Zinn, Pascal O; Colen, Rivka R

    2016-11-01

    The role of radiomics in the diagnosis, monitoring, and therapy planning of brain tumors is becoming increasingly clear. Incorporation of quantitative approaches in radiology, in combination with increased computer power, offers unique insights into macroscopic tumor characteristics and their direct association with the underlying pathophysiology. This article presents the most recent findings in radiomics and radiogenomics with respect to identifying potential imaging biomarkers with prognostic value that can lead to individualized therapy. In addition, a brief introduction to the concept of big data and its significance in medicine is presented.

  10. Consensus Conference on Cancer Registration of Brain and Central Nervous System Tumors1

    PubMed Central

    McCarthy, Bridget J.; Kruchko, Carol

    2005-01-01

    The passage of Public Law 107–260, the Benign Brain Tumor Cancer Registries Amendment Act, in October 2002 has made the collection of all primary brain tumors a reality. However, at the first Consensus Conference on Brain Tumor Definition for Registration in 2002, and during the development of training materials for benign brain tumor collection, several issues were identified that were tabled for future discussion. These and other issues were addressed at the subsequent 2003 Consensus Conference on Cancer Registration of Brain and Central Nervous System Tumors, at which the Central Brain Tumor Registry of the United States facilitated a discussion among epidemiologists, neurosurgeons, and neuro-pathologists. Multidisciplinary consensus was reached on four points, for which the following recommendations were made: (1) amend the histology coding scheme for cysts and tumor-like lesions that currently have a code in the third edition of the International Classification of Disease for Oncology (ICDO), (2) collect data on all instances of specific cysts and tumor-like lesions that are located in brain and other CNS sites but currently lack ICDO codes, (3) establish a new ICDO topography site for skull base tumors for the brain and CNS, and (4) collect data on genetic syndromes in patients diagnosed with brain or CNS tumors. We view this conference as part of a continuing process. Because classification of primary intracranial and other CNS tumors is dynamic, and the registration and coding of these tumors will need to be periodically reviewed. PMID:15831238

  11. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    NASA Astrophysics Data System (ADS)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  12. Cancer stem-like cell: a novel target for nasopharyngeal carcinoma therapy

    PubMed Central

    2014-01-01

    Nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx, and is extremely common in southern regions of China. Although the standard combination of radiotherapy and chemotherapy has improved the efficiency in patients with NPC, relapse and early metastasis are still the common causes of mortality. Cancer stem-like cells (CSCs) or tumor initial cells are hypothesized to be involved in cancer metastasis and recurrence. Over the past decade, increasing numbers of studies have been carried out to identify CSCs from human NPC cells and tissues. The present paper will summarize the investigations on nasopharyngeal CSCs, including isolation, characteristics, and therapeutic approaches. Although there are still numerous challenges to translate basic research into clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent the recurrence and metastasis of NPC. PMID:25158069

  13. Image updating for brain deformation compensation in tumor resection

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Olson, Jonathan D.; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2016-03-01

    Preoperative magnetic resonance images (pMR) are typically used for intraoperative guidance in image-guided neurosurgery, the accuracy of which can be significantly compromised by brain deformation. Biomechanical finite element models (FEM) have been developed to estimate whole-brain deformation and produce model-updated MR (uMR) that compensates for brain deformation at different surgical stages. Early stages of surgery, such as after craniotomy and after dural opening, have been well studied, whereas later stages after tumor resection begins remain challenging. In this paper, we present a method to simulate tumor resection by incorporating data from intraoperative stereovision (iSV). The amount of tissue resection was estimated from iSV using a "trial-and-error" approach, and the cortical shift was measured from iSV through a surface registration method using projected images and an optical flow (OF) motion tracking algorithm. The measured displacements were employed to drive the biomechanical brain deformation model, and the estimated whole-brain deformation was subsequently used to deform pMR and produce uMR. We illustrate the method using one patient example. The results show that the uMR aligned well with iSV and the overall misfit between model estimates and measured displacements was 1.46 mm. The overall computational time was ~5 min, including iSV image acquisition after resection, surface registration, modeling, and image warping, with minimal interruption to the surgical flow. Furthermore, we compare uMR against intraoperative MR (iMR) that was acquired following iSV acquisition.

  14. Cell-surface Vimentin: A mislocalized protein for isolating csVimentin(+) CD133(-) novel stem-like hepatocellular carcinoma cells expressing EMT markers.

    PubMed

    Mitra, Abhisek; Satelli, Arun; Xia, Xueqing; Cutrera, Jeffrey; Mishra, Lopa; Li, Shulin

    2015-07-15

    Recent advances in cancer stem cell biology have shown that cancer stem-like cells with epithelial-mesenchymal transition (EMT) phenotypes are more aggressive and cause relapse; however, absence of a specific marker to isolate these EMT stem-like cells hampers research in this direction. Cell surface markers have been identified for isolating cancer stem-like cells, but none has been identified for isolating cancer stem-like cells with EMT phenotype. Recently, we discovered that Vimentin, an intracellular EMT tumor cell marker, is present on the surface of colon metastatic tumor nodules in the liver. In our study, we examined the potential of targeting cell surface Vimentin (CSV) to isolate stem-like cancer cells with EMT phenotype, by using a specific CSV-binding antibody, 84-1. Using this antibody, we purified the CSV-positive, CD133-negative (csVim(+) CD133(-) ) cell population from primary liver tumor cell suspensions and characterized for stem cell properties. The results of sphere assays and staining for the stem cell markers Sox2 and Oct4A demonstrated that csVim(+) CD133(-) cells have stem-like properties similar to csVim(-) CD133(+) population. Our investigation further revealed that the csVim(+) CD133(-) cells had EMT phenotypes, as evidenced by the presence of Twist and Slug in the nucleus, the absence of EpCAM on the cell surface and basal level of expression of epithelial marker E-cadherin. The csVimentin-negative CD133-positive stem cells do not have any EMT phenotypes. csVim(+) CD133(-) cells exhibited more aggressively metastatic in livers than csVim(-) CD133(+) cells. Our findings indicate that csVim(+) CD133(-) cells are promising targets for treatment and prevention of metastatic hepatocellular carcinoma.

  15. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  16. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  17. Mitochondrial Control by DRP1 in Brain Tumor Initiating Cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M.; Flavahan, William A.; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M.; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N.; Kashatus, David F.; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Brain tumor initiating cells (BTICs) coopt the neuronal high affinity GLUT3 glucose transporter to withstand metabolic stress. Here, we investigated another mechanism critical to brain metabolism, mitochondrial morphology. BTICs displayed mitochondrial fragmentation relative to non-BTICs, suggesting that BTICs have increased mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), was activated in BTICs and inhibited in non-BTICs. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and AMPK targeting rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca2+–calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTICs, suggesting tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlates with poor prognosis in glioblastoma, suggesting mitochondrial dynamics may represent a therapeutic target for BTICs. PMID:25730670

  18. Radiopotentiation of human brain tumor cells by sodium phenylacetate.

    PubMed

    Ozawa, T; Lu, R M; Hu, L J; Lamborn, K R; Prados, M D; Deen, D F

    1999-08-03

    Phenylacetate (PA) inhibits the growth of tumor cells in vitro and in vivo and shows promise as a relatively nontoxic agent for cancer treatment. A recent report shows that prolonged exposure of cells to low concentrations of PA can enhance the radiation response of brain tumor cells in vitro, opening up the possibility of using this drug to improve the radiation therapy of brain tumor patients. We investigated the cytotoxicity produced by sodium phenylacetate (NaPA) alone and in combination with X-rays in SF-767 human glioblastoma cells and in two medulloblastoma cell lines, Masden and Daoy. Exposure of all three cell lines to relatively low concentrations of NaPA for up to 5 days did not enhance the subsequent cell killing produced by X-irradiation. However, enhanced cell killing was achieved by exposing either oxic or hypoxic cells to relatively high drug concentrations ( > 50-70 mM) for 1 h immediately before X-irradiation. Because central nervous system toxicity can occur in humans at serum concentrations of approximately 6 mM PA, translation of these results into clinical trials will likely require local drug-delivery strategies to achieve drug concentrations that can enhance the radiation response. The safety of such an approach with this drug has not been demonstrated.

  19. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy

    PubMed Central

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-01-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood–brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors. PMID:22390560

  20. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy.

    PubMed

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-03-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood-brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors.

  1. The biology of radiosurgery and its clinical applications for brain tumors

    PubMed Central

    Kondziolka, Douglas; Shin, Samuel M.; Brunswick, Andrew; Kim, Irene; Silverman, Joshua S.

    2015-01-01

    Stereotactic radiosurgery (SRS) was developed decades ago but only began to impact brain tumor care when it was coupled with high-resolution brain imaging techniques such as computed tomography and magnetic resonance imaging. The technique has played a key role in the management of virtually all forms of brain tumor. We reviewed the radiobiological principles of SRS on tissue and how they pertain to different brain tumor disorders. We reviewed the clinical outcomes on the most common indications. This review found that outcomes are well documented for safety and efficacy and show increasing long-term outcomes for benign tumors. Brain metastases SRS is common, and its clinical utility remains in evolution. The role of SRS in brain tumor care is established. Together with surgical resection, conventional radiotherapy, and medical therapies, patients have an expanding list of options for their care. Clinicians should be familiar with radiosurgical principles and expected outcomes that may pertain to different brain tumor scenarios. PMID:25267803

  2. Cisplatin selects for stem-like cells in osteosarcoma by activating Notch signaling.

    PubMed

    Yu, Ling; Fan, Zhengfu; Fang, Shuo; Yang, Jian; Gao, Tian; Simões, Bruno M; Eyre, Rachel; Guo, Weichun; Clarke, Robert B

    2016-05-31

    Notch signaling regulates normal stem cells and is also thought to regulate cancer stem cells (CSCs). Recent data indicate that Notch signaling plays a role in the development and progression of osteosarcoma, however the regulation of Notch in chemo-resistant stem-like cells has not yet been fully elucidated. In this study we generated cisplatin-resistant osteosarcoma cells by treating them with sub-lethal dose of cisplatin, sufficient to induce DNA damage responses. Cisplatin-resistant osteosarcoma cells exhibited lower proliferation, enhanced spheroid formation and more mesenchymal characteristics than cisplatin-sensitive cells, were enriched for Stro-1+/CD117+ cells and showed increased expression of stem cell-related genes. A similar effect was observed in vivo, and in addition in vivo tumorigenicity was enhanced during serial transplantation. Using several publicly available datasets, we identified that Notch expression was closely associated with osteosarcoma stem cells and chemotherapy resistance. We confirmed that cisplatin-induced enrichment of osteosarcoma stem cells was mediated through Notch signaling in vitro, and immunohistochemistry showed that cleaved Notch1 (NICD1) positive cells were significantly increased in a relapsed xenograft which had received cisplatin treatment. Furthermore, pretreatment with a γ-secretase inhibitor (GSI) to prevent Notch signalling inhibited cisplatin-enriched osteosarcoma stem cell activity in vitro, including Stro-1+/CD117+ double positive cells and spheroid formation capacity. The Notch inhibitor DAPT also prevented tumor recurrence in resistant xenograft tumors. Overall, our results show that cisplatin induces the enrichment of osteosarcoma stem-like cells through Notch signaling, and targeted inactivation of Notch may be useful for the elimination of CSCs and overcoming drug resistance.

  3. Cervical cancer stem like cells: Systematic review and identification of reference genes for gene expression.

    PubMed

    de Campos, Rafael Paschoal; Schultz, Iago Carvalho; de Andrade Mello, Paola; Davies, Samuel; Gasparin, Manuela Sangalli; Bertoni, Ana Paula Santin; Buffon, Andréia; Wink, Márcia Rosângela

    2017-09-26

    Cervical cancer is the fourth most common cancer affecting women worldwide. Among many factors, the presence of cancer stem cells, a subpopulation of cells inside the tumor, has been associated with a worse prognosis. Considering the importance of gene expression studies to understand the biology of cervical cancer stem cells (CCSC), this work identifies stable reference genes for cervical cancer cell lines SiHa, HeLa and ME180 as well as their respective cancer stem-like cells. A literature review was performed to identify validated reference genes currently used to normalize RT-qPCR data in cervical cancer cell lines. Then, cell lines were cultured in regular monolayer or in a condition that favors tumor sphere formation. RT-qPCR was performed using five reference genes: ACTB, B2M, GAPDH, HPRT1 and TBP. Stability was assessed to validate the selected genes as suitable reference genes. The evaluation validated B2M, GAPDH, HPRT1 and TBP in these experimental conditions. Among them, GAPDH and TBP presented the lowest variability according to the analysis by Normfinder, Bestkeeper and δCq methods, being therefore the most adequate genes to normalize the combination of all samples. These results suggest that B2M, GAPDH, HPRT1 and TBP are suitable reference genes to normalize RT-qPCR data of established cervical cancer cell lines SiHa, HeLa and ME180 as well as their derived cancer stem-like cells. Indeed, GAPDH and TBP seem to be the most convenient choices for studying gene expression in these cells in monolayers or spheres. This article is protected by copyright. All rights reserved.

  4. Ubiquitin B in cervical cancer: critical for the maintenance of cancer stem-like cell characters.

    PubMed

    Tian, Yuan; Ding, Wencheng; Wang, Yingying; Ji, Teng; Sun, Shujuan; Mo, Qingqing; Chen, Pingbo; Fang, Yong; Liu, Jia; Wang, Beibei; Zhou, Jianfeng; Ma, Ding; Wu, Peng

    2013-01-01

    Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate. Ubiquitin, which is a small, highly conserved protein expressed in all eukaryotic cells, can be covalently linked to certain target proteins to mark them for degradation by the ubiquitin-proteasome system. Previous studies highlight the essential role of Ubiquitin B (UbB) and UbB-dependent proteasomal protein degradation in histone deacetylase inhibitor (HDACi) -induced tumor selectivity. We hypothesized that UbB plays a critical role in the function of cervical cancer stem cells. We measured endogenous UbB levels in mammospheres in vitro by real-time PCR and Western blotting. The function of UbB in cancer stem-like cells was assessed after knockdown of UbB expression in prolonged Trichostatin A-selected HeLa cells (HeLa/TSA) by measuring in vitro cell proliferation, cell apoptosis, invasion, and chemotherapy resistance as well as by measuring in vivo growth in an orthotopic model of cervical cancer. We also assessed the cancer stem cell frequency, tumorsphere formation, and in vivo growth of human cervical cancer xenografts after UbB silencing. We found that HeLa/TSA were resistant to chemotherapy, highly expressed the UbB gene and the stem cell markers Sox2, Oct4 and Nanog. These cells also displayed induced differentiation abilities, including enhanced migration/invasion/malignancy capabilities in vitro and in vivo. Furthermore, an elevated expression of UbB was shown in the tumor samples of chemotherapy patients. Silencing of UbB inhibited tumorsphere formation, lowered the expression of stem cell markers and decreased cervical xenograft growth. Our results demonstrate that UbB was significantly increased in prolonged Trichostatin A-selected HeLa cells and it played a key role in the maintenance of cervical cancer stem-like cells.

  5. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    PubMed Central

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-01-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases. PMID:27883015

  6. MR Vascular Fingerprinting in Stroke and Brain Tumors Models.

    PubMed

    Lemasson, B; Pannetier, N; Coquery, N; Boisserand, Ligia S B; Collomb, Nora; Schuff, N; Moseley, M; Zaharchuk, G; Barbier, E L; Christen, T

    2016-11-24

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  7. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    PubMed Central

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-01-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors. PMID:27786240

  8. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    NASA Astrophysics Data System (ADS)

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  9. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    PubMed Central

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  10. MR Vascular Fingerprinting in Stroke and Brain Tumors Models

    NASA Astrophysics Data System (ADS)

    Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.

    2016-11-01

    In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.

  11. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images.

    PubMed

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-10-27

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors.

  12. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors.

    PubMed

    Choi, Seung Ah; Choi, Jung Won; Wang, Kyu-Chang; Phi, Ji Hoon; Lee, Ji Yeoun; Park, Kyung Duk; Eum, Dayoung; Park, Sung-Hye; Kim, Il Han; Kim, Seung-Ki

    2015-06-01

    Atypical teratoid/rhabdoid tumors (AT/RT) are among the most malignant pediatric brain tumors. Cells from brain tumors with high aldehyde dehydrogenase (ALDH) activity have a number of characteristics that are similar to brain tumor initiating cells (BTICs). This study aimed to evaluate the therapeutic potential of ALDH inhibition using disulfiram (DSF) against BTICs from AT/RT. Primary cultured BTICs from AT/RT were stained with Aldefluor and isolated by fluorescence activated cell sorting. The therapeutic effect of DSF against BTICs from AT/RT was confirmed in vitro and in vivo. AT/RT cells displayed a high expression of ALDH. DSF demonstrated a more potent cytotoxic effect on ALDH(+) AT/RT cells compared with standard anticancer agents. Notably, treatment with DSF did not have a considerable effect on normal neural stem cells or fibroblasts. DSF significantly inhibited the ALDH enzyme activity of AT/RT cells. DSF decreased self-renewal ability, cell viability, and proliferation potential and induced apoptosis and cell cycle arrest in ALDH(+) AT/RT cells. Importantly, DSF reduced the metabolism of ALDH(+) AT/RT cells by increasing the nicotinamide adenine dinucleotide ratio of NAD(+)/NADH and regulating Silent mating type Information Regulator 2 homolog 1 (SIRT1), nuclear factor-kappaB, Lin28A/B, and miRNA let-7g. Animals in the DSF-treated group demonstrated a reduction of tumor volume (P < .05) and a significant survival benefit (P = .02). Our study demonstrated the therapeutic potential of DSF against BTICs from AT/RT and suggested the possibility of ALDH inhibition for clinical application. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors

    PubMed Central

    Choi, Seung Ah; Choi, Jung Won; Wang, Kyu-Chang; Phi, Ji Hoon; Lee, Ji Yeoun; Park, Kyung Duk; Eum, Dayoung; Park, Sung-Hye; Kim, Il Han; Kim, Seung-Ki

    2015-01-01

    Background Atypical teratoid/rhabdoid tumors (AT/RT) are among the most malignant pediatric brain tumors. Cells from brain tumors with high aldehyde dehydrogenase (ALDH) activity have a number of characteristics that are similar to brain tumor initiating cells (BTICs). This study aimed to evaluate the therapeutic potential of ALDH inhibition using disulfiram (DSF) against BTICs from AT/RT. Methods Primary cultured BTICs from AT/RT were stained with Aldefluor and isolated by fluorescence activated cell sorting. The therapeutic effect of DSF against BTICs from AT/RT was confirmed in vitro and in vivo. Results AT/RT cells displayed a high expression of ALDH. DSF demonstrated a more potent cytotoxic effect on ALDH+ AT/RT cells compared with standard anticancer agents. Notably, treatment with DSF did not have a considerable effect on normal neural stem cells or fibroblasts. DSF significantly inhibited the ALDH enzyme activity of AT/RT cells. DSF decreased self-renewal ability, cell viability, and proliferation potential and induced apoptosis and cell cycle arrest in ALDH+ AT/RT cells. Importantly, DSF reduced the metabolism of ALDH+ AT/RT cells by increasing the nicotinamide adenine dinucleotide ratio of NAD+/NADH and regulating Silent mating type Information Regulator 2 homolog 1 (SIRT1), nuclear factor-kappaB, Lin28A/B, and miRNA let-7g. Animals in the DSF-treated group demonstrated a reduction of tumor volume (P < .05) and a significant survival benefit (P = .02). Conclusion Our study demonstrated the therapeutic potential of DSF against BTICs from AT/RT and suggested the possibility of ALDH inhibition for clinical application. PMID:25378634

  14. The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells.

    PubMed

    Kim, Sang-Soo; Rait, Antonina; Rubab, Farwah; Rao, Abhi K; Kiritsy, Michael C; Pirollo, Kathleen F; Wang, Shangzi; Weiner, Louis M; Chang, Esther H

    2014-02-01

    Cancer stem-like cells (CSCs) have been implicated in recurrence and treatment resistance in many human cancers. Thus, a CSC-targeted drug delivery strategy to eliminate CSCs is a desirable approach for developing a more effective anticancer therapy. We have developed a tumor-targeting nanodelivery platform (scL) for systemic administration of molecular medicines. Following treatment with the scL nanocomplex carrying various payloads, we have observed exquisite tumor-targeting specificity and significant antitumor response with long-term survival benefit in numerous animal models. We hypothesized that this observed efficacy might be attributed, at least in part, to elimination of CSCs. Here, we demonstrate the ability of scL to target both CSCs and differentiated nonstem cancer cells (non-CSCs) in various mouse models including subcutaneous and intracranial xenografts, syngeneic, and chemically induced tumors. We also show that systemic administration of scL carrying the wtp53 gene was able to induce tumor growth inhibition and the death of both CSCs and non-CSCs in subcutaneous colorectal cancer xenografts suggesting that this could be an effective method to reduce cancer recurrence and treatment resistance. This scL nanocomplex is being evaluated in a number of clinical trials where it has been shown to be well tolerated with indications of anticancer activity.

  15. Expression and activity of the urokinase plasminogen activator system in canine primary brain tumors

    PubMed Central

    Rossmeisl, John H; Hall-Manning, Kelli; Robertson, John L; King, Jamie N; Davalos, Rafael V; Debinski, Waldemar; Elankumaran, Subbiah

    2017-01-01

    Background The expression of the urokinase plasminogen activator receptor (uPAR), a glycosylphosphatidylinositol-anchored protein family member, and the activity of its ligand, urokinase-type plasminogen activator (uPA), have been associated with the invasive and metastatic potentials of a variety of human brain tumors through their regulation of extracellular matrix degradation. Domesticated dogs develop naturally occurring brain tumors that share many clinical, phenotypic, molecular, and genetic features with their human counterparts, which has prompted the use of the dogs with spontaneous brain tumors as models to expedite the translation of novel brain tumor therapeutics to humans. There is currently little known regarding the role of the uPA system in canine brain tumorigenesis. The objective of this study was to characterize the expression of uPAR and the activity of uPA in canine brain tumors as justification for the development of uPAR-targeted brain tumor therapeutics in dogs. Methods We investigated the expression of uPAR in 37 primary canine brain tumors using immunohistochemistry, Western blotting, real-time quantitative polymerase chain reaction analyses, and by the assay of the activity of uPA using casein–plasminogen zymography. Results Expression of uPAR was observed in multiple tumoral microenvironmental niches, including neoplastic cells, stroma, and the vasculature of canine brain tumors. Relative to normal brain tissues, uPAR protein and mRNA expression were significantly greater in canine meningiomas, gliomas, and choroid plexus tumors. Increased activity of uPA was documented in all tumor types. Conclusions uPAR is overexpressed and uPA activity increased in canine meningiomas, gliomas, and choroid plexus tumors. This study illustrates the potential of uPAR/uPA molecularly targeted approaches for canine brain tumor therapeutics and reinforces the translational significance of canines with spontaneous brain tumors as models for human disease

  16. An automatic method of brain tumor segmentation from MRI volume based on the symmetry of brain and level set method

    NASA Astrophysics Data System (ADS)

    Li, Xiaobing; Qiu, Tianshuang; Lebonvallet, Stephane; Ruan, Su

    2010-02-01

    This paper presents a brain tumor segmentation method which automatically segments tumors from human brain MRI image volume. The presented model is based on the symmetry of human brain and level set method. Firstly, the midsagittal plane of an MRI volume is searched, the slices with potential tumor of the volume are checked out according to their symmetries, and an initial boundary of the tumor in the slice, in which the tumor is in the largest size, is determined meanwhile by watershed and morphological algorithms; Secondly, the level set method is applied to the initial boundary to drive the curve evolving and stopping to the appropriate tumor boundary; Lastly, the tumor boundary is projected one by one to its adjacent slices as initial boundaries through the volume for the whole tumor. The experiment results are compared with hand tracking of the expert and show relatively good accordance between both.

  17. Imaging brain tumor proliferative activity with [124I]iododeoxyuridine.

    PubMed

    Blasberg, R G; Roelcke, U; Weinreich, R; Beattie, B; von Ammon, K; Yonekawa, Y; Landolt, H; Guenther, I; Crompton, N E; Vontobel, P; Missimer, J; Maguire, R P; Koziorowski, J; Knust, E J; Finn, R D; Leenders, K L

    2000-02-01

    Iododeoxyuridine (IUdR) uptake and retention was imaged by positron emission tomography (PET) at 0-48 min and 24 h after administration of 28.0-64.4 MBq (0.76-1.74 mCi) of [124I]IUdR in 20 patients with brain tumors, including meningiomas and gliomas. The PET images were directly compared with gadolinium contrast-enhanced or T2-weighted magnetic resonance images. Estimates for IUdR-DNA incorporation in tumor tissue (Ki) required pharmacokinetic modeling and fitting of the 0-48 min dynamically acquired data to correct the 24-h image data for residual, nonincorporated radioactivity that did not clear from the tissue during the 24-h period after IUdR injection. Standard uptake values (SUVs) and tumor:brain activity ratios (Tm:Br) were also calculated from the 24-h image data. The Ki, SUV, and Tm/Br values were related to tumor type and grade, tumor labeling index, and survival after the PET scan. The plasma half-life of [124I]IUdR was short (2-3 min), and the arterial plasma input function was similar between patients (48 +/- 12 SUV*min). Plasma clearance of the major radiolabeled metabolite ([124I]iodide) varied somewhat between patients and was markedly prolonged in one patient with renal insufficiency. It was apparent from our analysis that a sizable fraction (15-93%) of residual nonincorporated radioactivity (largely [124I]iodide) remained in the tumors after the 24-h washout period, and this fraction varied between the different tumor groups. Because the SUV and Tm:Br ratio values reflect both IUdR-DNA incorporated and exchangeable nonincorporated radioactivity, any residual nonincorporated radioactivity will amplify their values and distort their significance and interpretation. This was particularly apparent in the meningioma and glioblastoma multiforme groups of tumors. Mean tumor Ki values ranged between 0.5 +/- 0.9 (meningiomas) and 3.9 +/- 2.3 microl/min/g (peak value for glioblastoma multiforme, GBM). Comparable SUV and Tm:Br values at 24 h ranged from 0

  18. Tumor treating fields: a novel treatment modality and its use in brain tumors

    PubMed Central

    Pacheco, Patricia

    2016-01-01

    Tumor treating fields (TTFields) are low-intensity electric fields alternating at an intermediate frequency (200kHz), which have been demonstrated to block cell division and interfere with organelle assembly. This novel treatment modality has shown promise in a variety of tumor types. It has been evaluated in randomized phase 3 trials in glioblastoma (GBM) and demonstrated to prolong progression-free survival (PFS) and overall survival (OS) when administered together with standard maintenance temozolomide (TMZ) chemotherapy in patients with newly diagnosed GBM. TTFields are continuously delivered by 4 transducer arrays consisting each of 9 insulated electrodes that are placed on the patient’s shaved scalp and connected to a portable device. Here we summarize the preclinical data and mechanism of action, the available clinical data, and further outlook of this treatment modality in brain tumors and other cancer indications. PMID:27664860

  19. Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells.

    PubMed

    Hira, Vashendriya V V; Verbovšek, Urška; Breznik, Barbara; Srdič, Matic; Novinec, Marko; Kakar, Hala; Wormer, Jill; der Swaan, Britt Van; Lenarčič, Brigita; Juliano, Luiz; Mehta, Shwetal; Van Noorden, Cornelis J F; Lah, Tamara T

    2017-03-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.

  20. A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors.

    PubMed

    Blumcke, Ingmar; Aronica, Eleonora; Urbach, Horst; Alexopoulos, Andreas; Gonzalez-Martinez, Jorge A

    2014-07-01

    Every fourth patient submitted to epilepsy surgery suffers from a brain tumor. Microscopically, these neoplasms present with a wide-ranging spectrum of glial or glio-neuronal tumor subtypes. Gangliogliomas (GG) and dysembryoplastic neuroepithelial tumors (DNTs) are the most frequently recognized entities accounting for 65 % of 1,551 tumors collected at the European Epilepsy Brain Bank (n = 5,842 epilepsy surgery samples). These tumors often present with early seizure onset at a mean age of 16.5 years, with 77 % of neoplasms affecting the temporal lobe. Relapse and malignant progression are rare events in this particular group of brain tumors. Surgical resection should be regarded, therefore, also as important treatment strategy to prevent epilepsy progression as well as seizure- and medication-related comorbidities. The characteristic clinical presentation and broad histopathological spectrum of these highly epileptogenic brain tumors will herein be classified as "long-term epilepsy associated tumors-LEATs". LEATs differ from most other brain tumors by early onset of spontaneous seizures, and conceptually are regarded as developmental tumors to explain their pleomorphic microscopic appearance and frequent association with Focal Cortical Dysplasia Type IIIb. However, the broad neuropathologic spectrum and lack of reliable histopathological signatures make these tumors difficult to classify using the WHO system of brain tumors. As another consequence from poor agreement in published LEAT series, molecular diagnostic data remain ambiguous. Availability of surgical tissue specimens from patients which have been well characterized during their presurgical evaluation should open the possibility to systematically address the origin and epileptogenicity of LEATs, and will be further discussed herein. As a conclusion, the authors propose a novel A-B-C terminology of epileptogenic brain tumors ("epileptomas") which hopefully promote the discussion between neuropathologists

  1. Anxiety in the preoperative phase of awake brain tumor surgery.

    PubMed

    Ruis, Carla; Wajer, Irene Huenges; Robe, Pierre; van Zandvoort, Martine

    2017-06-01

    Awake surgery emerges as a standard of care for brain tumors located in or near eloquent areas. Levels of preoperative anxiety in patients are important, because anxiety can influence cognitive performance and participation, hence altering the outcome of the procedure. In this study we analyzed the prevalence and potential clinical predictors of anxiety in the pre-operative phase of an awake brain tumor surgery. Seventy consecutive candidates for an awake brain tumor surgery were included. All patients received a neuropsychological pre-operative work-up. The Hospital Anxiety and Depression Scale (HADS) was administrated to investigate symptoms of anxiety. Demographic and medical data were extracted from patients' charts. Linear regression analyses, multiple regression analyses, t-tests for parametric and Mann-Whitney U tests for non-parametric data were used to analyze the relation between demographic and medical variables and pre-operative anxiety. Mean score on the anxiety scale of the HADS was 6.1 (SD=4.2, range 1-19) and 25% of the patients scored on or above the cut-off for anxiety symptoms (score >7). Women reported higher levels of anxiety than men (p<0.01). Furthermore, younger patient were more anxious than older patients (p<0.05). No other variables were significantly related to pre-operative anxiety. Merely, one in every four patients reported significant anxiety symptoms in the pre-operative phase. Besides gender and age, none of the other demographic or medical factors were significantly associated with the level of anxiety. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Statistical feature selection for enhanced detection of brain tumor

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Colen, Rivka R.

    2014-09-01

    Feature-based methods are widely used in the brain tumor recognition system. Robust of early cancer detection is one of the most powerful image processing tools. Specifically, statistical features, such as geometric mean, harmonic mean, mean excluding outliers, median, percentiles, skewness and kurtosis, have been extracted from brain tumor glioma to aid in discriminating two levels namely, Level I and Level II using fluid attenuated inversion recovery (FLAIR) sequence in the diagnosis of brain tumor. Statistical feature describes the major characteristics of each level from glioma which is an important step to evaluate heterogeneity of cancer area pixels. In this paper, we address the task of feature selection to identify the relevant subset of features in the statistical domain, while discarding those that are either redundant or confusing, thereby improving the performance of feature-based scheme to distinguish between Level I and Level II. We apply a Decision Structure algorithm to find the optimal combination of nonhomogeneity based statistical features for the problem at hand. We employ a Naïve Bayes classifier to evaluate the performance of the optimal statistical feature based scheme in terms of its glioma Level I and Level II discrimination capability and use real-data collected from 17 patients have a glioblastoma multiforme (GBM). Dataset provided from 3 Tesla MR imaging system by MD Anderson Cancer Center. For the specific data analyzed, it is shown that the identified dominant features yield higher classification accuracy, with lower number of false alarms and missed detections, compared to the full statistical based feature set. This work has been proposed and analyzed specific GBM types which Level I and Level II and the dominant features were considered as feature aid to prognostic indicators. These features were selected automatically to be better able to determine prognosis from classical imaging studies.

  3. Spatial organization and correlations of cell nuclei in brain tumors.

    PubMed

    Jiao, Yang; Berman, Hal; Kiehl, Tim-Rasmus; Torquato, Salvatore

    2011-01-01

    Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells) cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system.

  4. Why Computerized Adaptive Testing In Pediatric Brain Tumor Clinics.

    PubMed

    Lai, Jin-Shei; Beaumont, Jennifer L; Nowinski, Cindy J; Cella, David; Hartsell, William F; Han-Chih Chang, John; Manley, Peter E; Goldman, Stewart

    2017-08-07

    Monitoring of health-related quality of life (HRQOL) and symptoms of patients with brain tumors is needed yet not always feasible. This is partially due to lack of brief-yet-precise assessments with minimal administration burden that are easily incorporated into clinics. Dynamic computerized adaptive testing (CAT) or static fixed-length short-forms, derived from psychometrically-sound item banks, are designed to fill this void. This study evaluated the comparability of scores obtained from CATs and short-forms. Patients (ages 7-22) were recruited from brain tumor clinics and completed PROMIS CATs and short-forms (Fatigue, Mobility, Upper Extremity, Depressive Symptoms, Anxiety, and Peer Relationships). Pearson correlations, paired t-tests, and Cohen's d were used to evaluate the relationship, significant differences and the magnitude of the difference between these two scores, respectively. Data from 161 patients with brain tumors were analyzed. Patients completed each CAT within 2 minutes. Scores obtained from CATs and short-forms were highly correlated (r=0.95 - 0.98). Significantly different CAT versus short-form scores were found on 4 (of 6) domains yet with negligible effect sizes (|d| < 0.09). These relationships varied across patients with different levels of reported symptoms, with the strongest association at the worst or best symptom scores. This study demonstrated the comparability of scores from CATs and short-forms. Yet the agreement between these two varied across degrees of symptom severity which was a result of the ceiling effects of static short-forms. We recommend CATs to enable individualized assessment for longitudinal monitoring. Copyright © 2017. Published by Elsevier Inc.

  5. Spatial Organization and Correlations of Cell Nuclei in Brain Tumors

    PubMed Central

    Jiao, Yang; Berman, Hal; Kiehl, Tim-Rasmus; Torquato, Salvatore

    2011-01-01

    Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells) cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system. PMID:22110626

  6. Neurocognitive Deficits and Neurocognitive Rehabilitation in Adult Brain Tumors.

    PubMed

    Day, Julia; Gillespie, David C; Rooney, Alasdair G; Bulbeck, Helen J; Zienius, Karolis; Boele, Florien; Grant, Robin

    2016-05-01

    Neurocognitive deficits are common with brain tumors. If assessed at presentation using detailed neurocognitive tests, problems are detected in 80 % of cases. Neurocognition may be affected by the tumor, its treatment, associated medication, mood, fatigue, and insomnia. Interpretation of neurocognitive problems should be considered in the context of these factors. Early post-operative neurocognitive rehabilitation for brain tumor patients will produce rehabilitation outcomes (e.g., quality of life, improved physical function, subjective neurocognition) equivalent to stroke, multiple sclerosis, and head injury, but the effect size and duration of benefit needs further research. In stable patients treated with radiotherapy +/- chemotherapy, the most frequent causes of distress include neurocognitive problems, psychological factors of anxiety, depression, fatigue, and sleep. Exercise, neurocognitive training, neurocognitive behavioral therapy, and medications to treat fatigue, behavior, memory, mood, and removal of drugs that may be associated with neurocognitive side effects (e.g., anti-epileptic drugs) all show promise in helping patients to manage the effects of their neurocognitive impairments better. As these are complex symptoms, multidisciplinary expertise is necessary to evaluate the influence of each variable to plan appropriate support and intervention. Neurocognitive rehabilitation should therefore occur in parallel with disease-centered, medical management from the outset. It should not occur in series, as a restricted phase in a patient's pathway. It should be considered in the pre- and post-operative period where there are good prospects of recovery, as one would for any brain-injured patient, so that the person may reach their optimal physical, sensory, intellectual, psychological, and social functional level. Yet the identification and selection of patients for early neurological rehabilitation and routine evaluation of cognition is uncommon in

  7. Confidence-based ensemble for GBM brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Huo, Jing; van Rikxoort, Eva M.; Okada, Kazunori; Kim, Hyun J.; Pope, Whitney; Goldin, Jonathan; Brown, Matthew

    2011-03-01

    It is a challenging task to automatically segment glioblastoma multiforme (GBM) brain tumors on T1w post-contrast isotropic MR images. A semi-automated system using fuzzy connectedness has recently been developed for computing the tumor volume that reduces the cost of manual annotation. In this study, we propose a an ensemble method that combines multiple segmentation results into a final ensemble one. The method is evaluated on a dataset of 20 cases from a multi-center pharmaceutical drug trial and compared to the fuzzy connectedness method. Three individual methods were used in the framework: fuzzy connectedness, GrowCut, and voxel classification. The combination method is a confidence map averaging (CMA) method. The CMA method shows an improved ROC curve compared to the fuzzy connectedness method (p < 0.001). The CMA ensemble result is more robust compared to the three individual methods.

  8. Space Invaders: Brain Tumor Exploitation of the Stem Cell Niche.

    PubMed

    Sinnaeve, Justine; Mobley, Bret C; Ihrie, Rebecca A

    2017-10-09

    Increasing evidence indicates that the adult neurogenic niche of the ventricular sub-ventricular zone (V-SVZ), beyond serving as a potential site of origin, affects the outcome of malignant brain cancers. Glioma contact with this niche predicts worse prognosis, suggesting a supportive role for the V-SVZ environment in tumor initiation or progression. In this review, we describe unique components of the V-SVZ that may permit or promote tumor growth within the region. Cell-cell interactions, soluble factors, and extracellular matrix composition are discussed, and the role of the niche in future therapies is explored. The purpose of this review is to highlight niche intrinsic factors that may promote or support malignant cell growth and maintenance, as well as point out how we might leverage these features to improve patient outcome. Copyright © 2017. Published by Elsevier Inc.

  9. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    PubMed

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  10. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    PubMed Central

    Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2016-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501

  11. Absence of human cytomegalovirus infection in childhood brain tumors

    PubMed Central

    Sardi, Iacopo; Lucchesi, Maurizio; Becciani, Sabrina; Facchini, Ludovica; Guidi, Milena; Buccoliero, Anna Maria; Moriondo, Maria; Baroni, Gianna; Stival, Alessia; Farina, Silvia; Genitori, Lorenzo; de Martino, Maurizio

    2015-01-01

    Human cytomegalovirus (HCMV) is a common human pathogen which induces different clinical manifestations related to the age and the immune conditions of the host. HCMV infection seems to be involved in the pathogenesis of adult glioblastomas. The aim of our study was to detect the presence of HCMV in high grade gliomas and other pediatric brain tumors. This hypothesis might have important therapeutic implications, offering a new target for adjuvant therapies. Among 106 pediatric patients affected by CNS tumors we selected 27 patients with a positive HCMV serology. The serological analysis revealed 7 patients with positive HCMV IGG (≥14 U/mL), whom had also a high HCMV IgG avidity, suggesting a more than 6 months-dated infection. Furthermore, HCMV IGM were positive (≥22 U/mL) in 20 patients. Molecular and immunohistochemical analyses were performed in all the 27 samples. Despite a positive HCMV serology, confirmed by ELISA, no viral DNA was shown at the PCR analysis in the patients’ neoplastic cells. At immunohistochemistry, no expression of HCMV antigens was observed in tumoral cells. Our results are in agreement with recent results in adults which did not evidence the presence of HCMV genome in glioblastoma lesions. We did not find any correlation between HCMV infection and pediatric CNS tumors. PMID:26396923

  12. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions of interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.

  13. ET-11RESVERATROL REGULATES GLIOBLASTOMA AND GLIOBLASTOMA STEM-LIKE CELLS VIA ANTI-TUMORIGENIC AKT DEPHOSPHORYLATION AND p53 ACTIVATION

    PubMed Central

    Clark, Paul; Bhattacharya, Saswati; van Ginkel, Paul; Darjatmoko, Soesiawati; Elmayam, Ardem; Polans, Arthur; Kuo, John

    2014-01-01

    Resveratrol (RES), a natural non-toxic plant product, exerts broad anti-cancer effects. RES wa