Science.gov

Sample records for brain tumor tissue

  1. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    PubMed Central

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-01-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue. PMID:27456312

  2. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  3. Brain Tumors

    MedlinePlus

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  4. [Ultrasound tissue emulsification of brain tumors].

    PubMed

    Tertsch, D; Bönicke, R; Brinke, G; Kazmirzak, W; Senitz, D

    1986-01-01

    A report is given on the design of an equipment combination developed in co-operation with the Central Institute for Welding Technology of the GDR, by means of which cerebral tumour tissue can be emulsified and sucked off. The suitability of the equipment was tested experimentally and confirmed in clinical application.

  5. Brain tumor (image)

    MedlinePlus

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  6. Regional blood-to-tissue transport in RT-9 brain tumors.

    PubMed

    Molnar, P; Blasberg, R G; Horowitz, M; Smith, B; Fenstermacher, J

    1983-06-01

    Regional blood-to-tissue transport, expressed as a unidirectional transfer rate constant (K), was measured in experimental RT-9 brain tumors using 14C-alpha-aminoisobutyric acid (AIB) and quantitative autoradiographic techniques. The magnitude of K depends on the permeability, surface area, and blood flow of the tissue capillaries. The transfer rate constant was variable within tumor tissue (range 0.001 to 0.178 ml/gm/min) and depended on tumor size, location (intraparenchymal, meningeal, or choroid plexus associated), and to a lesser extent on necrosis and cyst formation. Brain adjacent to tumor had higher K values, particularly around larger tumors (0.004 to 0.014 ml/gm/min), than corresponding brain regions in the contralateral hemisphere (0.001 to 0.002 ml/gm/min). Estimates of the fractional extraction of AIB by intraparenchymal tumors were between 0.008 and 0.4 ml/gm/min. Values of fractional extraction in this range indicate that tumor capillaries are not freely permeable to this solute. The values of K measured with AIB in this study, for the most part, approximate the permeability-surface area product of tumor and brain capillaries. The experimental data suggest that the permeability-surface area characteristics of the microvasculature in small RT-9 tumors are similar to those of the host tissue, whereas the microvasculature of larger RT-9 tumors is influenced more by intrinsic tumor factors.

  7. Ex vivo confocal microscopy imaging to identify tumor tissue on freshly removed brain sample.

    PubMed

    Forest, Fabien; Cinotti, Elisa; Yvorel, Violaine; Habougit, Cyril; Vassal, François; Nuti, Christophe; Perrot, Jean-Luc; Labeille, Bruno; Péoc'h, Michel

    2015-09-01

    Confocal microscopy is a technique able to realize "optic sections" of a tissue with increasing applications. We wondered if we could apply an ex vivo confocal microscope designed for dermatological purpose in a routine use for the most frequent brain tumors. The aim of this work was to identify tumor tissue and its histopathological hallmarks, and to assess grading criteria used in neuropathological practice without tissue loss on freshly removed brain tissue. Seven infiltrating gliomas, nine meningiomas and three metastases of carcinomas were included. We compared imaging results obtained with the confocal microscope to frozen sections, smears and tissue sections of formalin-fixed tissue. Our results show that ex vivo confocal microscopy imaging can be applied to brain tumors in order to quickly identify tumor tissue without tissue loss. It can differentiate tumors and can assess most of grading criteria. Confocal microscopy could represent a new tool to identify tumor tissue on freshly removed sample and could help in selecting areas for biobanking of tumor tissue.

  8. Differentiation of healthy brain tissue and tumors using surface-enhanced Raman scattering.

    PubMed

    Aydin, Omer; Altaş, Murat; Kahraman, Mehmet; Bayrak, Omer Faruk; Culha, Mustafa

    2009-10-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique for characterization of biological samples. SERS spectra from healthy brain tissue and tumors are obtained by sudden freezing of tissue in liquid nitrogen and crashing and mixing it with a concentrated silver colloidal suspension. The acquired spectra from tissues show significant spectral differences that can be used to identify whether it is from a healthy region or tumor. The most significant change on SERS spectra from the healthy/peripheral brain tissue to tumor is the increase of the ratio of the peaks at around 723 to 655 cm(-1). In addition, the spectral changes indicate that the protein content in tumors increases compared to the peripheral/healthy tissue as observed with tumor invasion. The preliminary results show that SERS spectra can be used for a quick diagnosis due to the simplicity of the sample preparation and the speed of the spectral acquisition. PMID:19843358

  9. Brain tumors.

    PubMed Central

    Black, K. L.; Mazziotta, J. C.; Becker, D. P.

    1991-01-01

    Recent advances in experimental tumor biology are being applied to critical clinical problems of primary brain tumors. The expression of peripheral benzodiazepine receptors, which are sparse in normal brain, is increased as much as 20-fold in brain tumors. Experimental studies show promise in using labeled ligands to these receptors to identify the outer margins of malignant brain tumors. Whereas positron emission tomography has improved the dynamic understanding of tumors, the labeled selective tumor receptors with positron emitters will enhance the ability to specifically diagnose and greatly aid in the pretreatment planning for tumors. Modulation of these receptors will also affect tumor growth and metabolism. Novel methods to deliver antitumor agents to the brain and new approaches using biologic response modifiers also hold promise to further improve the management of brain tumors. Images PMID:1848735

  10. Collecting and Storing Blood and Brain Tumor Tissue Samples From Children With Brain Tumors

    ClinicalTrials.gov

    2016-05-17

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Newly Diagnosed Childhood Ependymoma; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma

  11. Evaluation of Raman spectra of human brain tumor tissue using the learning vector quantization neural network

    NASA Astrophysics Data System (ADS)

    Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong

    2016-05-01

    The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.

  12. Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks.

    PubMed

    Demirhan, Ayşe; Toru, Mustafa; Guler, Inan

    2015-07-01

    Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.

  13. Segmenting nonenhancing brain tumors from normal tissues in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Fletcher-Heath, Lynn M.; Hall, Lawrence O.; Goldgof, Dmitry B.

    1998-06-01

    Tumor segmentation from magnetic resonance (MR) images aids in tumor treatment by tracking the progress of tumor growth and/or shrinkage. In this paper we present an automatic segmentation method which separates non-enhancing brain tumors from healthy tissues in MR images. The MR feature images used for the segmentation consist of three weighted images (T1, T2 and proton density) for each axial slice through the head. An initial segmentation is computed using an unsupervised clustering algorithm. Then, integrated domain knowledge and image processing techniques contribute to the final tumor segmentation. The system was trained on two patient volumes and preliminary testing has shown successful tumor segmentations on four patient volumes.

  14. Terahertz spectroscopy and detection of brain tumor in rat fresh-tissue samples

    NASA Astrophysics Data System (ADS)

    Yamaguchi, S.; Fukushi, Y.; Kubota, O.; Itsuji, T.; Yamamoto, S.; Ouchi, T.

    2015-03-01

    Terahertz (THz) spectroscopy and imaging of biomedical samples is expected to be an important application of THz analysis techniques. Identification and localization of tumor tissue, imaging of biological samples, and analysis of DNA by THz spectroscopy have been reported. THz time-domain spectroscopy (TDS) is useful for obtaining the refractive index over a broad frequency range. However, THz-TDS spectra of fresh tissue samples are sensitive to procedures such as sample preparation, and a standardized measurement protocol is required. Therefore, in this work, we establish a protocol for measurements of THz spectra of fresh tissue and demonstrate reliable detection of rat brain tumor tissue. We use a reflection THz-TDS system to measure the refractive index spectra of the samples mounted on a quartz plate. The tissue samples were measured immediately after sectioning to avoid sample denaturalization during storage. Special care was taken in THz data processing to eliminate parasitic reflections and reduce noise. The error level in our refractive index measurements was as low as 0.02 in the frequency range 0.8-1.5 THz. With increasing frequency, the refractive index in the tumor and normal regions monotonically decreased, similarly to water, and it was 0.02 higher in the tumor regions. The spectral data suggest that the tumor regions have higher water content. Hematoxylin-eosin stained images showed that increased cell density was also responsible for the observed spectral features. A set of samples from 10 rats showed consistent results. Our results suggest that reliable tumor detection in fresh tissue without pretreatment is possible with THz spectroscopy measurements. THz spectroscopy has the potential to become a real-time in vivo diagnostic method.

  15. Radioresistance of Brain Tumors

    PubMed Central

    Kelley, Kevin; Knisely, Jonathan; Symons, Marc; Ruggieri, Rosamaria

    2016-01-01

    Radiation therapy (RT) is frequently used as part of the standard of care treatment of the majority of brain tumors. The efficacy of RT is limited by radioresistance and by normal tissue radiation tolerance. This is highlighted in pediatric brain tumors where the use of radiation is limited by the excessive toxicity to the developing brain. For these reasons, radiosensitization of tumor cells would be beneficial. In this review, we focus on radioresistance mechanisms intrinsic to tumor cells. We also evaluate existing approaches to induce radiosensitization and explore future avenues of investigation. PMID:27043632

  16. Understanding Brain Tumors

    MedlinePlus

    ... to Know About Brain Tumors . What is a Brain Tumor? A brain tumor is an abnormal growth
 ... Tumors” from Frankly Speaking Frankly Speaking About Cancer: Brain Tumors Download the full book Questions to ask ...

  17. Brain Tumor Diagnosis

    MedlinePlus

    ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ... Types of Brain Scans X-rays Laboratory Tests DNA Profiling Biopsy Procedure Malignant and Benign Brain Tumors Tumor ...

  18. Brain Tumors (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Brain Tumors KidsHealth > For Parents > Brain Tumors Print A ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  19. Blood-tissue barrier of human brain tumors: correlation of scintigraphic and ultrastructural finding: concise communication

    SciTech Connect

    Front, D.; Israel, O.; Kohn, S.; Nir, I.

    1984-04-01

    Through the first 2 hr, uptake of (Tc-99m)pertechnetate and of Co-57 bleomycin were assessed in 29 brain tumors and were correlated with the ultrastructure of the tumor's capillary endothelium. No difference in uptake was found between the two tracers. Permeability of brain tumors to these agents was found to be governed by the same ultrastructural features that determine permeability in experimental brain tumors: the type of junction between contiguous endothelial cells in the capillaries. That uptake of (Tc-99m)pertechnetate and of Co-57 bleomycin depends on tumor capillary ultrastructure (which determines the permeability) suggests the possibility of the use of radiopharmaceuticals as in vivo indicators of tumor permeability. Brain scintigraphy may help to assess brain-tumor availability to non-lipid-soluble chemotherapeutic drugs.

  20. Brain Tumor Symptoms

    MedlinePlus

    ... Types of Tumors Risk Factors Brain Tumor Statistics Brain Tumor Dictionary Webinars Anytime Learning About Us Our Founders Board of Directors Staff ... Types of Tumors Risk Factors Brain Tumor Statistics Brain Tumor Dictionary Webinars Anytime Learning Donate to the ABTA Help advance the understanding ...

  1. Autofluorescence of normal and neoplastic human brain tissue: an aid for intraoperative delineation of tumor resection margins

    NASA Astrophysics Data System (ADS)

    Bottiroli, Giovanni F.; Croce, Anna C.; Locatelli, Donata; Nano, Rosanna; Giombelli, Ermanno; Messina, Alberto; Benericetti, Eugenio

    1998-01-01

    Light-induced autofluorescence measurements were made on normal and tumor brain tissues to assess their spectroscopic properties and to verify the potential of this parameter for an intraoperative delineation of tumor resection margins. Spectrofluorometric analysis was performed both at the microscope on tissue sections from surgical resection, and on patients affected by glioblastoma, during surgical operation. Significant differences in autofluorescence emission properties were found between normal and tumor tissues in both ex vivo and in vivo measurements, indicating that the lesion can be distinguished from the informal surrounding tissues by the signal amplitude and the spectral shape. The non-invasiveness of the technique opens interesting prospects for improving the efficacy of neurosurgical operation, by allowing an intraoperative delimitation of tumor resection margins.

  2. Childhood Brain Tumors

    MedlinePlus

    Brain tumors are abnormal growths inside the skull. They are among the most common types of childhood ... still be serious. Malignant tumors are cancerous. Childhood brain and spinal cord tumors can cause headaches and ...

  3. Toward a real time multi-tissue Adaptive Physics-Based Non-Rigid Registration framework for brain tumor resection.

    PubMed

    Drakopoulos, Fotis; Foteinos, Panagiotis; Liu, Yixun; Chrisochoides, Nikos P

    2014-01-01

    This paper presents an adaptive non-rigid registration method for aligning pre-operative MRI with intra-operative MRI (iMRI) to compensate for brain deformation during brain tumor resection. This method extends a successful existing Physics-Based Non-Rigid Registration (PBNRR) technique implemented in ITKv4.5. The new method relies on a parallel adaptive heterogeneous biomechanical Finite Element (FE) model for tissue/tumor removal depicted in the iMRI. In contrast the existing PBNRR in ITK relies on homogeneous static FE model designed for brain shift only (i.e., it is not designed to handle brain tumor resection). As a result, the new method (1) accurately captures the intra-operative deformations associated with the tissue removal due to tumor resection and (2) reduces the end-to-end execution time to within the time constraints imposed by the neurosurgical procedure. The evaluation of the new method is based on 14 clinical cases with: (i) brain shift only (seven cases), (ii) partial tumor resection (two cases), and (iii) complete tumor resection (five cases). The new adaptive method can reduce the alignment error up to seven and five times compared to a rigid and ITK's PBNRR registration methods, respectively. On average, the alignment error of the new method is reduced by 9.23 and 5.63 mm compared to the alignment error from the rigid and PBNRR method implemented in ITK. Moreover, the total execution time for all the case studies is about 1 min or less in a Linux Dell workstation with 12 Intel Xeon 3.47 GHz CPU cores and 96 GB of RAM.

  4. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  5. Induction of immunity in peripheral tissues combined with intracerebral transplantation of interleukin-2-producing cells eliminates established brain tumors.

    PubMed

    Iwadate, Y; Yamaura, A; Sato, Y; Sakiyama, S; Tagawa, M

    2001-12-15

    Cytokine gene therapy for the induction of potent immune responses against central nervous system tumors has proven to have significant potential. However, this strategy needs improvement in the process of antigen presentation and/or insufficient recruitment of immunocompetent cells to achieve successful eradication of established brain tumors. We investigated the therapeutic potential of induced systemic immunity in peripheral tissues combined with interleukin-2 (IL-2) production in the vicinity of brain tumors to treat established brain tumors. Sequential magnetic resonance image monitoring showed that the combinatory therapy consisting of intracerebral (i.c.) transplantation of IL-2-producing rat gliosarcoma 9L (9L/IL-2) cells and s.c. vaccination using irradiated 9L or 9L/IL-2 cells could cure 9L-bearing rats, whereas either the i.c. injection of 9L/IL-2 cells or the s.c. vaccination produced little or marginal antitumor effects, respectively. Xenogeneic murine neuroblastoma cells secreting IL-2 could substitute for 9L/IL-2 cells, producing significant antitumor effects in the vaccinated rats. Tumor-specific cytotoxic activity was induced in the vaccinated rats but not fully in the rats treated only with i.c. injection of 9L/IL-2 cells. Immunohistochemical analysis revealed that a number of CD4(+) and CD8(+) T cells infiltrated into the brain tumors which were treated with the combinatory therapy. The level of cell infiltration was similar to that found in s.c. 9L/IL-2 tumors which were subsequently rejected. In contrast, the brain tumors treated with either i.c. transplantation of 9L/IL-2 cells or the s.c. vaccination showed only moderate infiltration of T cells. The combinatory strategy, i.c. grafting of IL-2-producing cells, and s.c. immunization of irradiated whole tumor cell vaccine, is, thus, effective for recruiting activated T cells into the brain tumor site and could be a potential therapy for brain tumors.

  6. Impedance spectroscopy--an outstanding method for label-free and real-time discrimination between brain and tumor tissue in vivo.

    PubMed

    Jahnke, Heinz-Georg; Heimann, Axel; Azendorf, Ronny; Mpoukouvalas, Konstantinos; Kempski, Oliver; Robitzki, Andrea A; Charalampaki, Patra

    2013-08-15

    Until today, brain tumors especially glioblastoma are difficult to treat and therefore, results in a poor survival rate of 0-14% over five years. To overcome this problem, the development of novel therapeutics as well as optimization of neurosurgical procedures to remove the tumor tissue are subject of intensive research. The main problem of the tumor excision, as the primary clinical intervention is the diffuse infiltration of the tumor cells in unaltered brain tissue that complicates the complete removal of residual tumor cells. In this context, we are developing novel approaches for the label-free discrimination between tumor tissue and unaltered brain tissue in real-time during the surgical process. Using our impedance spectroscopy-based measurement system in combination with flexible microelectrode arrays we could successfully demonstrate the discrimination between a C6-glioma and unaltered brain tissue in an in vivo rat model. The analysis of the impedance spectra revealed specific impedance spectrum shape characteristics of physiologic neuronal tissue in the frequency range of 10-500 kHz that were significantly different from the tumor tissue. Moreover, we used an adapted equivalent circuit model to get a deeper understanding for the nature of the observed effects. The impedimetric label-free and real-time discrimination of tumor from unaltered brain tissue offers the possibility for the implementation in surgical instruments to support surgeons to decide, which tissue areas should be removed and which should be remained.

  7. A robust framework for soft tissue simulations with application to modeling brain tumor mass effect in 3D MR images.

    PubMed

    Hogea, Cosmina; Biros, George; Abraham, Feby; Davatzikos, Christos

    2007-12-01

    We present a framework for black-box and flexible simulation of soft tissue deformation for medical imaging and surgical planning applications. Our main motivation in the present work is to develop robust algorithms that allow batch processing for registration of brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. We describe a fully Eulerian formulation able to handle large deformations effortlessly, with a level-set-based approach for evolving fronts. We use a regular grid-fictitious domain method approach, in which we approximate coefficient discontinuities, distributed forces and boundary conditions. This approach circumvents the need for unstructured mesh generation, which is often a bottleneck in the modeling and simulation pipeline. Our framework employs penalty approaches to impose boundary conditions and uses a matrix-free implementation coupled with a multigrid-accelerated Krylov solver. The overall scheme results in a scalable method with minimal storage requirements and optimal algorithmic complexity. We illustrate the potential of our framework to simulate realistic brain tumor mass effects at reduced computational cost, for aiding the registration process towards the construction of brain tumor atlases. PMID:18029982

  8. Brain Tumor Statistics

    MedlinePlus

    ... facts and statistics here include brain and central nervous system tumors (including spinal cord, pituitary and pineal gland ... U.S. living with a primary brain and central nervous system tumor. This year, nearly 17,000 people will ...

  9. Children's Brain Tumor Foundation

    MedlinePlus

    ... CBTF Justin's Hope Fund Grant Recipients Grants Children’s Brain Tumor Foundation, A non-profit organization, was founded ... and the long term outlook for children with brain and spinal cord tumors through research, support, education, ...

  10. Pediatric Brain Tumor Foundation

    MedlinePlus

    ... you insights into your child's treatment. LEARN MORE Brain tumors and their treatment can be deadly so ... Cancer Foundation joins the PBTF Read more >> Pediatric Brain Tumor Foundation 302 Ridgefield Court, Asheville, NC 28806 ...

  11. American Brain Tumor Association

    MedlinePlus

    ... in the Ear Canals Read More ABTA News October 5, 2016 Largest American Brain Tumor Association Team Running in Bank of America Chicago Marathon Sunday, October 9 September 21, 2016 American Brain Tumor Association Awards 16 Grants to Support ...

  12. Brain and Spinal Tumors

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Brain and Spinal Tumors Information Page Synonym(s): Spinal Cord ... en Español Additional resources from MedlinePlus What are Brain and Spinal Tumors? Tumors of the brain and ...

  13. [Chemotherapy of brain tumors].

    PubMed

    Kuratsu, J; Ushio, Y

    1994-10-01

    Despite recent attempts to improve chemotherapeutic approaches for the treatment of malignant gliomas, results remain limited and palliative. The development of effective chemotherapy for tumors of the central nervous system (CNS) is complicated in that the blood-brain barrier (B.B.B.) hampers the penetration of most drugs into the brain and cerebrospinal fluid. The factors governing delivery in the brain are the drug's molecular weight, lipophilicity and degree of ionization. Now the standard therapy for malignant glioma is maximal tumor resection followed by combination radiotherapy plus chemotherapy. Nitrosoureas are representative drugs which easily cross the B.B.B.. It has been shown that nitrosourea compounds have an additive effect to radiotherapy. The toxicity profile of nitrosoureas is leukocytopenia and thrombocytopenia as a dose-limiting factor. Furthermore, the great heterogeneity of malignant glioma tissues offered a rationale for the use of multiple drugs. Many studies were reported to show a substantial advantage for the multidrug regimen over control series utilizing single drugs alone. Despite clear examples of the effectiveness of chemotherapy, we are still far from improving the cure rate for the vast majority of patients with primary malignancies of the CNS. Further improvement in patient survival may depend upon understanding and manipulating the pathways that regulate aberrant growth in these tumors. The development of new anticancer agents, which are sensitive to malignant glioma and can reach a high concentration in glioma tissue, is warranted. PMID:7986118

  14. The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor

    PubMed Central

    de Melo, Suely Maymone; Bittencourt, Simone; Ferrazoli, Enéas Galdini; da Silva, Clivandir Severino; da Cunha, Flavia Franco; da Silva, Flavia Helena; Stilhano, Roberta Sessa; Denapoli, Priscila Martins Andrade; Zanetti, Bianca Ferrarini; Martin, Priscila Keiko Matsumoto; Silva, Leonardo Martins; dos Santos, Adara Aurea; Baptista, Leandra Santos; Longo, Beatriz Monteiro; Han, Sang Won

    2015-01-01

    Glioblastoma (GBM) is an infiltrative tumor that is difficult to eradicate. Treating GBM with mesenchymal stem cells (MSCs) that have been modified with the HSV-Tk suicide gene has brought significant advances mainly because MSCs are chemoattracted to GBM and kill tumor cells via a bystander effect. To use this strategy, abundantly present adipose-tissue-derived mesenchymal stem cells (AT-MSCs) were evaluated for the treatment of GBM in mice. AT-MSCs were prepared using a mechanical protocol to avoid contamination with animal protein and transduced with HSV-Tk via a lentiviral vector. The U-87 glioblastoma cells cultured with AT-MSC-HSV-Tk died in the presence of 25 or 50 μM ganciclovir (GCV). U-87 glioblastoma cells injected into the brains of nude mice generated tumors larger than 3.5 mm2 after 4 weeks, but the injection of AT-MSC-HSV-Tk cells one week after the U-87 injection, combined with GCV treatment, drastically reduced tumors to smaller than 0.5 mm2. Immunohistochemical analysis of the tumors showed the presence of AT-MSC-HSV-Tk cells only within the tumor and its vicinity, but not in other areas of the brain, showing chemoattraction between them. The abundance of AT-MSCs and the easier to obtain them mechanically are strong advantages when compared to using MSCs from other tissues. PMID:26067671

  15. Brain tumor - primary - adults

    MedlinePlus

    ... tumor, relieve symptoms, and improve brain function or comfort. Surgery is often needed for most primary brain ... and pressure Anticonvulsants to reduce seizures Pain medicines Comfort measures, safety measures, physical therapy, and occupational therapy ...

  16. Brain tumor - children

    MedlinePlus

    ... symptoms, and improve brain function or the child's comfort. Surgery is needed for most primary brain tumors. ... Anticonvulsants to reduce or prevent seizures Pain medicines Comfort measures, safety measures, physical therapy, occupational therapy, and ...

  17. Modern Brain Tumor Imaging

    PubMed Central

    Barajas, Ramon F.; Cha, Soonmee

    2015-01-01

    The imaging and clinical management of patients with brain tumor continue to evolve over time and now heavily rely on physiologic imaging in addition to high-resolution structural imaging. Imaging remains a powerful noninvasive tool to positively impact the management of patients with brain tumor. This article provides an overview of the current state-of-the art clinical brain tumor imaging. In this review, we discuss general magnetic resonance (MR) imaging methods and their application to the diagnosis of, treatment planning and navigation, and disease monitoring in patients with brain tumor. We review the strengths, limitations, and pitfalls of structural imaging, diffusion-weighted imaging techniques, MR spectroscopy, perfusion imaging, positron emission tomography/MR, and functional imaging. Overall this review provides a basis for understudying the role of modern imaging in the care of brain tumor patients. PMID:25977902

  18. Tissue Factor Regulation by miR-520g in Primitive Neuronal Brain Tumor Cells: A Possible Link between Oncomirs and the Vascular Tumor Microenvironment.

    PubMed

    D'Asti, Esterina; Huang, Annie; Kool, Marcel; Meehan, Brian; Chan, Jennifer A; Jabado, Nada; Korshunov, Andrey; Pfister, Stefan M; Rak, Janusz

    2016-02-01

    Pediatric embryonal brain tumors with multilayered rosettes demonstrate a unique oncogenic amplification of the chromosome 19 miRNA cluster, C19MC. Because oncogenic lesions often cause deregulation of vascular effectors, including procoagulant tissue factor (TF), this study explores whether there is a link between C19MC oncogenic miRNAs (oncomirs) and the coagulant properties of cancer cells, a question previously not studied. In a pediatric embryonal brain tumor tissue microarray, we observed an association between C19MC amplification and reduced fibrin content and TF expression, indicative of reduced procoagulant activity. In medulloblastoma cell lines (DAOY and UW228) engineered to express miR-520g, a biologically active constituent of the C19MC cluster, we observed reduced TF expression, procoagulant and TF signaling activities (responses to factor VIIa stimulation), and diminished TF emission as cargo of extracellular vesicles. Antimir and luciferase reporter assays revealed a specific and direct effect of miR-520g on the TF 3' untranslated region. Although the endogenous MIR520G locus is methylated in differentiated cells, exposure of DAOY cells to 5-aza-2'-deoxycytidine or their growth as stem cell-like spheres up-regulated endogenous miR-520g with a coincident reduction in TF expression. We propose that the properties of tumors harboring oncomirs may include unique alterations of the vascular microenvironment, including deregulation of TF, with a possible impact on the biology, therapy, and hemostatic adverse effects of both disease progression and treatment. PMID:26687818

  19. Genital soft tissue tumors.

    PubMed

    Schoolmeester, John K; Fritchie, Karen J

    2015-07-01

    Mesenchymal neoplasms of the vulvovaginal and inguinoscrotal regions are among the most diagnostically challenging specimens in the pathology laboratory owing largely to their unique intersection between general soft tissue tumors and relatively genital-specific mesenchymal tumors. Genital stromal tumors are a unique subset of soft tissue tumors encountered at this location, and this group includes fibroepithelial stromal polyp, superficial (cervicovaginal) myofibroblastoma, cellular angiofibroma, mammary-type myofibroblastoma, angiomyofibroblastoma and aggressive angiomyxoma. Aside from the striking morphologic and immunophenotypic similarity that is seen with these entities, there is evidence that a subset of genital stromal tumors may be linked genetically. This review will focus on simplifying this group of tumors and provide the pathologist or dermatopathologist with practical management information. Smooth muscle tumors of the external genitalia will also be discussed.

  20. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    SciTech Connect

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  1. Dynamics of contrast enhancement in delayed computed tomography of brain tumors: tissue-blood ratio and differential diagnosis

    SciTech Connect

    Takeda, N.; Tanaka, R.; Naki, O.; Ueki, K.

    1982-03-01

    Thirty-one patients with brain tumors were studied by delayed computed tomographic (CT) scanning performed one and two hours after intravenous administration of contrast medium. Dynamics of contrast enhancement in the lesion were analyzed quantitatively and qualitatively by calculating the tissue-blood ratio (TBR) at each scan, and are expressed as relative TBR (R-TBR). The R-TBRs obtained two hours after the first contrast-enhanced scan were found to be most useful in diagnosis, and were classified into three groups: less than 1.5 (Class I), 1.5 to 3.0 (Class II), and more than 3.0 (Class III). In the glioma group, seven of eight anaplastic gliomas were Class III and all of three anaplastic astrocytomas were Class II. All of seven meningiomas were Class I. Four of five pituitary adenomas were Class II. Three of four neurinomas were Class III. This method is potentially useful in differential diagnosis of some brain tumors.

  2. Brain tumor stem cells.

    PubMed

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies.

  3. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  4. Drugs Approved for Brain Tumors

    MedlinePlus

    ... Ask about Your Treatment Research Drugs Approved for Brain Tumors This page lists cancer drugs approved by ... that are not listed here. Drugs Approved for Brain Tumors Afinitor (Everolimus) Afinitor Disperz (Everolimus) Avastin (Bevacizumab) ...

  5. Brain tumors in infants

    PubMed Central

    Ghodsi, Seyyed Mohammad; Habibi, Zohreh; Hanaei, Sara; Moradi, Ehsan; Nejat, Farideh

    2015-01-01

    Background: Brain tumors in infants have different clinical presentations, anatomical distribution, histopathological diagnosis, and clinical prognosis compared with older children. Materials and Methods: A retrospective analysis was done in patients <12 months old who were operated on for primary brain tumor in Children's Hospital Medical Center since 2008 to 2014. Results: Thirty-one infants, 20 males and 11 females, with the mean age of 7.13 months (0.5–12) were enrolled. There were 16 supratentorial and 15 infratentorial tumors. The presenting symptoms included increased head circumference (16); bulge fontanel (15); vomiting (15); developmental regression (11); sunset eye (7); seizure (4); loss of consciousness (4); irritability (3); nystagmus (2); visual loss (2); hemiparesis (2); torticollis (2); VI palsy (3); VII, IX, X nerve palsy (each 2); and ptosis (1). Gross total and subtotal resection were performed in 19 and 11 cases, respectively. Fourteen patients needed external ventricular drainage in the perioperative period, from whom four infants required a ventriculoperitoneal shunt. One patient underwent ventriculoperitoneal shunting without tumor resection. The most common histological diagnoses were primitive neuroectodermal tumor (7), followed by anaplastic ependymoma (6) and grade II ependymoma. The rate of 30-day mortality was 19.3%. Eighteen patients are now well-controlled with or without adjuvant therapy (overall survival; 58%), from whom 13 cases are tumor free (disease free survival; 41.9%), 3 cases have residual masses with fixed or decreased size (progression-free survival; 9.6%), and 2 cases are still on chemotherapy. Conclusion: Brain tumors in infants should be treated with surgical resection, followed by chemotherapy when necessary. PMID:26962338

  6. Effect of Heterogeneity of Tissues on RF Energy Absorption in the Brain for Exposure Assessment in Epidemiological Studies on Mobile Phone Use and Brain Tumors

    NASA Astrophysics Data System (ADS)

    Varsier, Nadege; Wake, Kanako; Taki, Masao; Watanabe, Soichi

    We compared SAR distributions in major anatomical structures of the brain of a homogeneous and a heterogeneous model using FDTD calculations. Our results proved a good correlation between SAR values in lobes of the brain where tumors may arise more frequently. However SAR values at some specific locations were shown to be under or overestimated.

  7. Three mutant genes cooperatively induce brain tumor formation in Drosophila malignant brain tumor.

    PubMed

    Riede, I

    1996-09-01

    The Drosophila melanogaster strain Malignant Brain Tumor reveals temperature-sensitive transformation of the larval brain tissue. Genetic analysis shows that three gene defects, spzMBT, yetiMBT, and tldMBT, cooperatively induce brain tumor formation. Whereas spz and tld belong to the genes inducing differentiation patterns in the embryo, yeti induces cell overgrowth. spzMBT-, yetiMBT-, and tldMBT-containing animals are larval lethal, whereas Malignant Brain Tumor is kept as a homozygous strain at a permissive temperature. This reveals that this tumor-forming strain is the result of a number of adaptive mutation events.

  8. Spectromicroscopy of Brain Tissue

    NASA Astrophysics Data System (ADS)

    Frazer, Bradley; Cannara, Rachel; Gilbert, Benjamin; Destasio, Gelsomina; Ogg, Mandy; Gough, Kathy

    2001-03-01

    X-ray PhotoElectron Emission Microscopy (X-PEEM) was originally developed for studying the surface microchemistry of materials science specimens. It has then evolved into a valuable tool to investigate the magnetic properties of materials and the microchemistry of cells and tissues. We used the MEPHISTO X-PEEM instrument, installed at the UW-Synchrotron Radiation Center to detect trace concentrations of non-physiological elements in senile brain tissue specimens. These tissues contain a large number of plaques, in which all the compounds and elements that the brain does not need are disposed and stored. We hypothesized that plaques should contain elements, such as Si, B, and Al which are very abundant on the Earth crust but absent from healthy tissues. We verified this hypothesis with MEPHISTO and found evidence of Si and B, and suspect Al. We also found a higher than normal concentration of Fe.

  9. MRI and MRS of human brain tumors.

    PubMed

    Hou, Bob L; Hu, Jiani

    2009-01-01

    The purpose of this chapter is to provide an introduction to magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of human brain tumors, including the primary applications and basic terminology involved. Readers who wish to know more about this broad subject should seek out the referenced books (1. Tofts (2003) Quantitative MRI of the brain. Measuring changes caused by disease. Wiley; Bradley and Stark (1999) 2. Magnetic resonance imaging, 3rd Edition. Mosby Inc; Brown and Semelka (2003) 3. MRI basic principles and applications, 3rd Edition. Wiley-Liss) or reviews (4. Top Magn Reson Imaging 17:127-36, 2006; 5. JMRI 24:709-724, 2006; 6. Am J Neuroradiol 27:1404-1411, 2006).MRI is the most popular means of diagnosing human brain tumors. The inherent difference in the magnetic resonance (MR) properties of water between normal tissues and tumors results in contrast differences on the image that provide the basis for distinguishing tumors from normal tissues. In contrast to MRI, which provides spatial maps or images using water signals of the tissues, proton MRS detects signals of tissue metabolites. MRS can complement MRI because the observed MRS peaks can be linked to inherent differences in biochemical profiles between normal tissues and tumors.The goal of MRI and MRS is to characterize brain tumors, including tumor core, edge, edema, volume, types, and grade. The commonly used brain tumor MRI protocol includes T2-weighted images and T1-weighted images taken both before and after the injection of a contrast agent (typically gadolinium: Gd). The commonly used MRS technique is either point-resolved spectroscopy (PRESS) or stimulated echo acquisition mode (STEAM).

  10. Biomechanics of brain tissue.

    PubMed

    Prevost, Thibault P; Balakrishnan, Asha; Suresh, Subra; Socrate, Simona

    2011-01-01

    The dynamic behavior of porcine brain tissue, obtained from a series of in vitro observations and experiments, is analyzed and described here with the aid of a large strain, nonlinear, viscoelastic constitutive model. Mixed gray and white matter samples excised from the superior cortex were tested in unconfined uniaxial compression within 15h post mortem. The test sequence consisted of three successive load-unload segments at strain rates of 1, 0.1 and 0.01 s⁻¹, followed by stress relaxation (n=25). The volumetric compliance of the tissue was assessed for a subset of specimens (n=7) using video extensometry techniques. The tissue response exhibited moderate compressibility, substantial nonlinearity, hysteresis, conditioning and rate dependence. A large strain kinematics nonlinear viscoelastic model was developed to account for the essential features of the tissue response over the entire deformation history. The corresponding material parameters were obtained by fitting the model to the measured conditioned response (axial and volumetric) via a numerical optimization scheme. The model successfully captures the observed complexities of the material response in loading, unloading and relaxation over the entire range of strain rates. The accuracy of the model was further verified by comparing model predictions with the tissue response in unconfined compression at higher strain rate (10 s⁻¹) and with literature data in uniaxial tension. The proposed constitutive framework was also found to be adequate to model the loading response of brain tissue in uniaxial compression over a wider range of strain rates (0.01-3000 s⁻¹), thereby providing a valuable tool for simulations of dynamic transients (impact, blast/shock wave propagation) leading to traumatic brain injury.

  11. Brain Tumor Epidemiology Consortium (BTEC)

    Cancer.gov

    The Brain Tumor Epidemiology Consortium is an open scientific forum organized to foster the development of multi-center, international and inter-disciplinary collaborations that will lead to a better understanding of the etiology, outcomes, and prevention of brain tumors.

  12. Study of freshly excised brain tissues using terahertz imaging

    PubMed Central

    Oh, Seung Jae; Kim, Sang-Hoon; Ji, Young Bin; Jeong, Kiyoung; Park, Yeonji; Yang, Jaemoon; Park, Dong Woo; Noh, Sam Kyu; Kang, Seok-Gu; Huh, Yong-Min; Son, Joo-Hiuk; Suh, Jin-Suck

    2014-01-01

    We demonstrated that tumors in freshly excised whole brain tissue could be differentiated clearly from normal brain tissue using a reflection-type terahertz (THz) imaging system. THz binary images of brain tissues with tumors indicated that the tumor boundaries in the THz images corresponded well to those in visible images. Grey and white-matter regions were distinguishable owing to the different distribution of myelin in the brain tissue. THz images corresponded closely with magnetic resonance imaging (MRI) results. The MRI and hematoxylin and eosin-stained microscopic images were investigated to account for the intensity differences in the THz images for fresh and paraffin-embedded brain tissue. Our results indicated that the THz signals corresponded to the cell density when water was removed. Thus, THz imaging could be used as a tool for label-free and real-time imaging of brain tumors, which would be helpful for physicians to determine tumor margins during brain surgery. PMID:25136506

  13. Intra-axial brain tumors.

    PubMed

    Rapalino, Otto; Batchelor, Tracy; González, R Gilberto

    2016-01-01

    There is a wide variety of intra-axial primary and secondary brain neoplasms. Many of them have characteristic imaging features while other tumors can present in a similar fashion. There are peculiar posttreatment imaging phenomena that can present as intra-axial mass-like lesions (such as pseudoprogression or radiation necrosis), further complicating the diagnosis and clinical follow-up of patients with intracerebral tumors. The purpose of this chapter is to present a general overview of the most common intra-axial brain tumors and peculiar posttreatment changes that are very important in the diagnosis and clinical follow-up of patients with brain tumors. PMID:27432670

  14. Pediatric brain tumors and epilepsy.

    PubMed

    Wells, Elizabeth M; Gaillard, William D; Packer, Roger J

    2012-03-01

    Seizures are a common complication of pediatric brain tumors and their treatment. This article reviews the epidemiology, evaluation, and treatment of seizures in children with brain tumors. Seizures in known brain tumor patients may signify tumor progression or recurrence, or treatment-related brain damage, as well as other causes, including low drug levels and metabolic disturbances. Careful selection of antiepileptic medications is needed in this population. There are advantages to nonenzyme-inducing antiepileptic drugs including valproic acid, which has potential antitumoral properties as a histone deacetylase inhibitor. Tumor surgery cures many cases of pediatric tumor-associated seizures, and some children are controlled with anti-epileptic medication, however additional epilepsy surgery may be needed for refractory cases.

  15. Brain tumor immunotherapy: an immunologist's perspective.

    PubMed

    Lampson, Lois A

    2003-01-01

    Key concepts in brain tumor immunotherapy are reviewed. "Immunotherapy" can refer to a fully-developed, tumor-specific immune response, or to its individual cellular or molecular mediators. The immune response is initiated most efficiently in organized lymphoid tissue. After initiation, antigen-specific T lymphocytes (T cells) survey the tissues--including the brain. If the T cells re-encounter their antigen at a tumor site, they can be triggered to carry out their effector functions. T cells can attack tumor in many ways, directly and indirectly, through cell-cell contact, secreted factors, and attraction and activation of other cells, endogenous or blood-borne. Recent work expands the list of candidate tumor antigens: they are not limited to cell surface proteins and need not be absolutely tumor-specific. Once identified, tumor antigens can be targeted immunologically, or in novel ways. The immune response is under complex regulatory control. Most current work aims to enhance initiation of the response (for example, with tumor vaccines), rather than enhancing the effector phase at the tumor site. The effector phase includes a rich, interactive set of cells and mediators; some that are not usually stressed are of particular interest against tumor in the brain. Within the brain, immune regulation varies from site to site, and local neurochemicals (such as substance P or glutamate) can contribute to local control. Given the complexity of a tumor, the brain, and the immune response, animal models are essential, but more emphasis should be given to their limitations and to step-by-step analysis, rather than animal "cures".

  16. Mature brain tissue in the sacrococcygeal region

    PubMed Central

    Shrestha, Binod Bade; Ghimire, Pradeep; Ghartimagar, Dilasma; Jwarchan, Bishnu; Lalchan, Subita; Karmacharya, Mikesh

    2016-01-01

    Complete mature brain tissue in sacrococcygeal region is a rare congenital anomaly in a newborn, which usually is misdiagnosed for sacrococcygeal teratoma. Glial tumor-like ependymoma is also common in sacrococcygeal area but mostly appears later in life. We present a case of complete heterotopic brain tissue in the sacrococcygeal region. The patient underwent total excision of mass with coccygectomy. To our knowledge it is the second case being reported. PMID:27194682

  17. Mature brain tissue in the sacrococcygeal region.

    PubMed

    Shrestha, Binod Bade; Ghimire, Pradeep; Ghartimagar, Dilasma; Jwarchan, Bishnu; Lalchan, Subita; Karmacharya, Mikesh

    2016-01-01

    Complete mature brain tissue in sacrococcygeal region is a rare congenital anomaly in a newborn, which usually is misdiagnosed for sacrococcygeal teratoma. Glial tumor-like ependymoma is also common in sacrococcygeal area but mostly appears later in life. We present a case of complete heterotopic brain tissue in the sacrococcygeal region. The patient underwent total excision of mass with coccygectomy. To our knowledge it is the second case being reported. PMID:27194682

  18. Childhood Brain Tumor Epidemiology: A Brain Tumor Epidemiology Consortium Review

    PubMed Central

    Johnson, Kimberly J.; Cullen, Jennifer; Barnholtz-Sloan, Jill S.; Ostrom, Quinn T.; Langer, Chelsea E.; Turner, Michelle C.; McKean-Cowdin, Roberta; Fisher, James L.; Lupo, Philip J.; Partap, Sonia; Schwartzbaum, Judith A.; Scheurer, Michael E.

    2014-01-01

    Childhood brain tumors are the most common pediatric solid tumor and include several histological subtypes. Although progress has been made in improving survival rates for some subtypes, understanding of risk factors for childhood brain tumors remains limited to a few genetic syndromes and ionizing radiation to the head and neck. In this report, we review descriptive and analytical epidemiology childhood brain tumor studies from the past decade and highlight priority areas for future epidemiology investigations and methodological work that is needed to advance our understanding of childhood brain tumor causes. Specifically, we summarize the results of a review of studies published since 2004 that have analyzed incidence and survival in different international regions and that have examined potential genetic, immune system, developmental and birth characteristics, and environmental risk factors. PMID:25192704

  19. Radiosurgery for Pediatric Brain Tumors.

    PubMed

    Murphy, Erin S; Chao, Samuel T; Angelov, Lilyana; Vogelbaum, Michael A; Barnett, Gene; Jung, Edward; Recinos, Violette R; Mohammadi, Alireza; Suh, John H

    2016-03-01

    The utility of radiosurgery for pediatric brain tumors is not well known. For children, radiosurgery may have an important role for treating unresectable tumors, residual disease, or tumors in the recurrent setting that have received prior radiotherapy. The available evidence demonstrates utility for some children with primary brain tumors resulting in good local control. Radiosurgery can be considered for limited residual disease or focal recurrences. However, the potential toxicities are unique and not insignificant. Therefore, prospective studies need to be performed to develop guidelines for indications and treatment for children and reduce toxicity in this population. PMID:26536284

  20. Intensity-modulated radiotherapy for gliomas:dosimetric effects of changes in gross tumor volume on organs at risk and healthy brain tissue

    PubMed Central

    Yang, Zhen; Zhang, Zijian; Wang, Xia; Hu, Yongmei; Lyu, Zhiping; Huo, Lei; Wei, Rui; Fu, Jun; Hong, Jidong

    2016-01-01

    Aim The aim of this study was to explore the effects of changes in the gross tumor volume (GTV) on dose distribution in organs at risk (OARs) and healthy brain tissue in patients with gliomas. Methods Eleven patients suffering from gliomas with intensity-modulated radiotherapy (IMRT) plans treated with a simultaneous integrated boost technique planned before therapy (initial plans) were prospectively enrolled. At the end of radiotherapy, patients underwent repeat computed tomography and magnetic resonance imaging, and IMRT was replanned. The GTV and dosimetric parameters between the initial and replanned IMRT were compared using the Wilcoxon two-related-sample test, and correlations between the initial GTV and the replanned target volumes were assessed using the bivariate correlation test. Results The volume of the residual tumor did not change significantly (P>0.05), the volume of the surgical cavity decreased significantly (P<0.05), and the GTV and target volumes decreased significantly at the end of IMRT (all P<0.05). The near-maximum dose to OARs and volumes of healthy brain tissue receiving total doses of 10–50 Gy were lower in the replanned IMRT than in the initial IMRT (all P<0.05). The GTV in the initial plan was significantly positively correlated with the changes in the GTV and planning target volume 1 that occurred during IMRT (all P<0.05). Conclusion The reduction in the GTV in patients with gliomas resulted from shrinkage of the surgical cavity during IMRT, leading to decreased doses to the OARs and healthy brain tissue. Such changes appeared to be most meaningful in patients with large initial GTV values. PMID:27366091

  1. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... saved articles window. My Saved Articles » My ACS » Brain and Spinal Cord Tumors in Adults Download Printable ... the topics below to get started. What Is Brain/CNS Tumors In Adults? What are adult brain ...

  2. Metastatic brain tumor

    MedlinePlus

    ... be to relieve symptoms, improve functioning, or provide comfort. Radiation to the whole brain is often used ... symptoms. This is called palliative or supportive care. Comfort measures, safety measures, physical therapy, occupational therapy, and ...

  3. Cytogenetics of human brain tumors

    SciTech Connect

    Finkernagel, S.W.; Kletz, T.; Day-Salvatore, D.L.

    1994-09-01

    Chromosome studies of 55 brain tumors, including meningiomas, gliomas, astrocyomas and pituatary adenomas, were performed. Primary and first passage cultures were successfully obtained in 75% of these samples with an average of 18 G-banded metaphases analyzed per tumor. 44% of all the brain tumors showed numerical and or structural abnormalities. 46% of the primary and 38% of the first passage cultures showed similar numerical gains/losses and complex karyotypic changes. The most frequent numerical abnormalities (n {ge} 5) included loss of chromosomes 10, 22, and Y. The structural abnormalities most often seen involved 1p, 2, 5, 7, 17q and 19. This is an ongoing study which will attempt to correlate tumor type with specific karyotypic changes and to see if any of the observed chromosomal abnormalities provide prognostic indicators.

  4. Brain tumors in irradiated monkeys.

    NASA Technical Reports Server (NTRS)

    Haymaker, W.; Miquel, J.; Rubinstein, L. J.

    1972-01-01

    A study was made of 32 monkeys which survived one to seven years after total body exposure to protons or to high-energy X rays. Among these 32 monkeys there were 21 which survived two years or longer after exposure to 200 to 800 rad. Glioblastoma multiforme developed in 3 of the 10 monkeys surviving three to five years after receiving 600 or 800 rad 55-MeV protons. Thus, the incidence of tumor development in the present series was far higher than the incidence of spontaneously developing brain tumors in monkeys cited in the literature. This suggests that the tumors in the present series may have been radiation-induced.

  5. A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus - tumor association.

    PubMed

    Strong, Michael J; Blanchard, Eugene; Lin, Zhen; Morris, Cindy A; Baddoo, Melody; Taylor, Christopher M; Ware, Marcus L; Flemington, Erik K

    2016-01-01

    Next generation sequencing (NGS) can globally interrogate the genetic composition of biological samples in an unbiased yet sensitive manner. The objective of this study was to utilize the capabilities of NGS to investigate the reported association between glioblastoma multiforme (GBM) and human cytomegalovirus (HCMV). A large-scale comprehensive virome assessment was performed on publicly available sequencing datasets from the Cancer Genome Atlas (TCGA), including RNA-seq datasets from primary GBM (n = 157), recurrent GBM (n = 13), low-grade gliomas (n = 514), recurrent low-grade gliomas (n = 17), and normal brain (n = 5), and whole genome sequencing (WGS) datasets from primary GBM (n = 51), recurrent GBM (n = 10), and normal matched blood samples (n = 20). In addition, RNA-seq datasets from MRI-guided biopsies (n = 92) and glioma stem-like cell cultures (n = 9) were analyzed. Sixty-four DNA-seq datasets from 11 meningiomas and their corresponding blood control samples were also analyzed. Finally, three primary GBM tissue samples were obtained, sequenced using RNA-seq, and analyzed. After in-depth analysis, the most robust virus findings were the detection of papillomavirus (HPV) and hepatitis B reads in the occasional LGG sample (4 samples and 1 sample, respectively). In addition, low numbers of virus reads were detected in several datasets but detailed investigation of these reads suggest that these findings likely represent artifacts or non-pathological infections. For example, all of the sporadic low level HCMV reads were found to map to the immediate early promoter intimating that they likely originated from laboratory expression vector contamination. Despite the detection of low numbers of Epstein-Barr virus reads in some samples, these likely originated from infiltrating B-cells. Finally, human herpesvirus 6 and 7 aligned viral reads were identified in all DNA-seq and a few RNA-seq datasets but detailed analysis

  6. Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy

    PubMed Central

    Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.

    2013-01-01

    Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923

  7. The delivery of BCNU to brain tumors.

    PubMed

    Wang, C C; Li, J; Teo, C S; Lee, T

    1999-08-27

    This paper reports the development of three-dimensional simulations to study the effect of various factors on the delivery of 1-3-bis(2-chloroethyl)-1-nitrosourea (BCNU) to brain tumors. The study yields information on the efficacy of various delivery methods, and the optimal location of polymer implantation. Two types of drug deliveries, namely, systemic administration and controlled release from polymers, were simulated using fluid dynamics analysis package (FIDAP) to predict the temporal and spatial variation of drug distribution. Polymer-based delivery provides higher mean concentration, longer BCNU exposure time and reduced systemic toxicity than bolus injection. Polymer implanted in the core gives higher concentration of drug in both the core and viable zone than the polymer in the viable zone case. The penetration depth of BCNU is very short. This is because BCNU can get drained out of the system before diffusing to any appreciable distance. Since transvascular permeation is the dominant means of BCNU delivery, the interstitial convection has minor effect because of the extremely small transvascular Peclet number. The reaction of BCNU with brain tissues reduces the drug concentration in all regions and its effect increases with rate constant. The implantation of BCNU/ethylene-vinyl acetate copolymer (EVAc) matrix at the lumen of the viable zone immediately following the surgical removal of 80% of the tumor may be an effective treatment for the chemotherapy of brain tumors. The present study provides a quantitative examination on the working principle of Gliadel wafer for the treatment of brain tumors.

  8. More Complete Removal of Malignant Brain Tumors by Fluorescence-Guided Surgery

    ClinicalTrials.gov

    2016-05-13

    Benign Neoplasms, Brain; Brain Cancer; Brain Neoplasms, Benign; Brain Neoplasms, Malignant; Brain Tumor, Primary; Brain Tumor, Recurrent; Brain Tumors; Intracranial Neoplasms; Neoplasms, Brain; Neoplasms, Intracranial; Primary Brain Neoplasms; Primary Malignant Brain Neoplasms; Primary Malignant Brain Tumors; Gliomas; Glioblastoma

  9. Multiclass feature selection for improved pediatric brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Ahmed, Shaheen; Iftekharuddin, Khan M.

    2012-03-01

    In our previous work, we showed that fractal-based texture features are effective in detection, segmentation and classification of posterior-fossa (PF) pediatric brain tumor in multimodality MRI. We exploited an information theoretic approach such as Kullback-Leibler Divergence (KLD) for feature selection and ranking different texture features. We further incorporated the feature selection technique with segmentation method such as Expectation Maximization (EM) for segmentation of tumor T and non tumor (NT) tissues. In this work, we extend the two class KLD technique to multiclass for effectively selecting the best features for brain tumor (T), cyst (C) and non tumor (NT). We further obtain segmentation robustness for each tissue types by computing Bay's posterior probabilities and corresponding number of pixels for each tissue segments in MRI patient images. We evaluate improved tumor segmentation robustness using different similarity metric for 5 patients in T1, T2 and FLAIR modalities.

  10. Deregulated proliferation and differentiation in brain tumors

    PubMed Central

    Swartling, Fredrik J; Čančer, Matko; Frantz, Aaron; Weishaupt, Holger; Persson, Anders I

    2014-01-01

    Neurogenesis, the generation of new neurons, is deregulated in neural stem cell (NSC)- and progenitor-derived murine models of malignant medulloblastoma and glioma, the most common brain tumors of children and adults, respectively. Molecular characterization of human malignant brain tumors, and in particular brain tumor stem cells (BTSCs), has identified neurodevelopmental transcription factors, microRNAs, and epigenetic factors known to inhibit neuronal and glial differentiation. We are starting to understand how these factors are regulated by the major oncogenic drivers in malignant brain tumors. In this review, we will focus on the molecular switches that block normal neuronal differentiation and induce brain tumor formation. Genetic or pharmacological manipulation of these switches in BTSCs has been shown to restore the ability of tumor cells to differentiate. We will discuss potential brain tumor therapies that will promote differentiation in order to reduce treatment-resistance, suppress tumor growth, and prevent recurrence in patients. PMID:25416506

  11. Photoacoustic Measurements in Brain Tissue

    SciTech Connect

    Kasili, P.M.; Mobley, J.; Vo-Dinh, T.

    1999-09-19

    In this work, we develop and evaluate the photoacoustic technique for recording spectra of white and gray mammalian brain tissues. In addition to the experimental work, we also discuss the geometric aspects of photoacoustic signal generation using collimated light. Spectra constructed from the peak-to-peak amplitude of the photoacoustic waveforms indicate differences in the two tissue types at wavelengths between 620 and 695 nm. The potential of the technique for non-invasive diagnosis is discussed.

  12. Automated segmentation of MR images of brain tumors.

    PubMed

    Kaus, M R; Warfield, S K; Nabavi, A; Black, P M; Jolesz, F A; Kikinis, R

    2001-02-01

    An automated brain tumor segmentation method was developed and validated against manual segmentation with three-dimensional magnetic resonance images in 20 patients with meningiomas and low-grade gliomas. The automated method (operator time, 5-10 minutes) allowed rapid identification of brain and tumor tissue with an accuracy and reproducibility comparable to those of manual segmentation (operator time, 3-5 hours), making automated segmentation practical for low-grade gliomas and meningiomas. PMID:11161183

  13. Radiation therapy options for management of the brain tumor patient.

    PubMed

    Lamb, S A

    1995-03-01

    Radiation therapy rarely cures malignant brain tumors; however, it is the best treatment available at present. Refinement of radiation delivery systems must continue in order to minimize normal tissue injury and to maximize the quality of life. Multimodal therapy designed to attack cancer at its genetic makeup holds great promise. Radiation therapy will always remain one of the forms of therapy used to treat malignant brain tumors.

  14. Subacute brain atrophy after radiation therapy for malignant brain tumor

    SciTech Connect

    Asai, A.; Matsutani, M.; Kohno, T.; Nakamura, O.; Tanaka, H.; Fujimaki, T.; Funada, N.; Matsuda, T.; Nagata, K.; Takakura, K.

    1989-05-15

    Brain atrophy with mental and neurologic deterioration developing a few months after radiation therapy in patients without residual or recurrent brain tumors has been recognized. Two illustrative case reports of this pathologic entity are presented. Six autopsy cases with this entity including the two cases were reviewed neurologically, radiographically, and histopathologically. All patients presented progressive disturbances of mental status and consciousness, akinesia, and tremor-like involuntary movement. Computerized tomography (CT) demonstrated marked enlargement of the ventricles, moderate widening of the cortical sulci, and a moderately attenuated CT number for the white matter in all six patients. Four of the six patients had CSF drainage (ventriculoperitoneal shunt or continuous lumbar drainage), however, none of them improved. Histologic examination demonstrated swelling and loss of the myelin sheath in the white matter in all patients, and reactive astrocytosis in three of the six patients. Neither prominent neuronal loss in the cerebral cortex or basal ganglia, nor axonal loss in the white matter was generally identified. The blood vessels of the cerebral cortex and white matter were normal. Ependymal layer and the surrounding brain tissue were normal in all patients. These findings suggested that this pathologic condition results from demyelination secondary to direct neurotoxic effect of irradiation. The authors' previous report was reviewed and the differential diagnoses, the risk factors for this pathologic entity, and the indication for radiation therapy in aged patients with a malignant brain tumor are discussed.

  15. Gene therapy for brain tumors.

    PubMed

    Bansal, K; Engelhard, H H

    2000-09-01

    "Gene therapy" can be defined as the transfer of genetic material into a patient's cells for therapeutic purposes. To date, a diverse and creative assortment of treatment strategies utilizing gene therapy have been devised, including gene transfer for modulating the immune system, enzyme prodrug ("suicide gene") therapy, oncolytic therapy, replacement/therapeutic gene transfer, and antisense therapy. For malignant glioma, gene-directed prodrug therapy using the herpes simplex virus thymidine kinase gene was the first gene therapy attempted clinically. A variety of different strategies have now been pursued experimentally and in clinical trials. Although, to date, gene therapy for brain tumors has been found to be reasonably safe, concerns still exist regarding issues related to viral delivery, transduction efficiency, potential pathologic response of the brain, and treatment efficacy. Improved viral vectors are being sought, and potential use of gene therapy in combination with other treatments is being investigated.

  16. What underlies the diversity of brain tumors?

    PubMed Central

    Swartling, Fredrik J.; Hede, Sanna-Maria; Weiss, William A.

    2012-01-01

    Glioma and medulloblastoma represent the most commonly occurring malignant brain tumors in adults and in children respectively. Recent genomic and transcriptional approaches present a complex group of diseases, and delineate a number of molecular subgroups within tumors that share a common histopathology. Differences in cells of origin, regional niches, developmental timing and genetic events all contribute to this heterogeneity. In an attempt to recapitulate the diversity of brain tumors, an increasing array of genetically engineered mouse models (GEMMs) has been developed. These models often utilize promoters and genetic drivers from normal brain development, and can provide insight into specific cells from which these tumors originate. GEMMs show promise in both developmental biology and developmental therapeutics. This review describes numerous murine brain tumor models in the context of normal brain development, and the potential for these animals to impact brain tumor research. PMID:23085857

  17. Brain angiogenesis: Mechanism and Therapeutic Intervention in Brain Tumors

    PubMed Central

    Kim, Woo-Young; Lee, Ho-Young

    2010-01-01

    Summary Formation of new blood vessels is required for growth and metastasis of all solid tumors. New blood vessels are established in tumors mainly through angiogenesis. Brain tumors in particular are highly angiogenic. Therefore, interventions designed to prevent angiogenesis may be effective at controlling brain tumors. Indeed, many recent findings from preclinical and clinical studies of antiangiogenic therapy for brain tumors showed that it is a promising approach to managing this deadly disease, especially when combined with other cytotoxic treatments. In this review, we summarize the basic characteristics of brain tumor angiogenesis and role of known angiogenic factors in regulating this angiogenesis, which can be targets of antiangiogenic therapy. We also discuss the current status of antiangiogenic therapy for brain tumors, the suggested mechanisms of this therapy, and the limitations of this strategy. PMID:19664069

  18. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    PubMed Central

    2012-01-01

    Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD) method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors. PMID:22891953

  19. Interstitial irradiation of brain tumors: a review

    SciTech Connect

    Bernstein, M.; Gutin, P.H.

    1981-12-01

    As an adjuvant to surgery, radiation therapy has consistently proven to be the most successful form of treatment for primary and secondary malignant brain tumors and possibly for inoperable benign tumors. Because the risk of radiation necrosis of normal brain limits the amount of radiation that can be given by external beam therapy at conventional dose rates, interstitial radiation of brain tumors is a logical alternative treatment approach. We discuss the radiobiological advantages of low dose rate irradiation and intratumoral placement of sources that make interstitial irradiation an attractive treatment for brain tumors and review the history of clinical brachytherapy for intracranial neoplasia.

  20. [Conformal radiotherapy of brain tumors].

    PubMed

    Haie-Meder, C; Beaudré, A; Breton, C; Biron, B; Cordova, A; Dubray, B; Mazeron, J J

    1999-01-01

    Conformal irradiation of brain tumours is based on the three-dimensional reconstruction of the targeted volumes and at-risk organ images, the three-dimensional calculation of the dose distribution and a treatment device (immobilisation, beam energy, collimation, etc.) adapted to the high precision required by the procedure. Each step requires an appropriate methodology and a quality insurance program. Specific difficulties in brain tumour management are related to GTV and CTV definition depending upon the histological type, the quality of the surgical resection and the medical team. Clinical studies have reported dose escalation trials, mostly in high-grade gliomas and tumours at the base of the skull. Clinical data are now providing a better knowledge of the tolerance of normal tissues. As for small tumours, the implementation of beam intensity modulation is likely to narrow the gap between conformal and stereotaxic radiotherapy. PMID:10572510

  1. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  2. Hypofractionation Regimens for Stereotactic Radiotherapy for Large Brain Tumors

    SciTech Connect

    Yuan Jiankui; Wang, Jian Z. Lo, Simon; Grecula, John C.; Ammirati, Mario; Montebello, Joseph F.; Zhang Hualin; Gupta, Nilendu; Yuh, William T.C.; Mayr, Nina A.

    2008-10-01

    Purpose: To investigate equivalent regimens for hypofractionated stereotactic radiotherapy (HSRT) for brain tumor treatment and to provide dose-escalation guidance to maximize the tumor control within the normal brain tolerance. Methods and Materials: The linear-quadratic model, including the effect of nonuniform dose distributions, was used to evaluate the HSRT regimens. The {alpha}/{beta} ratio was estimated using the Gammaknife stereotactic radiosurgery (GKSRS) and whole-brain radiotherapy experience for large brain tumors. The HSRT regimens were derived using two methods: (1) an equivalent tumor control approach, which matches the whole-brain radiotherapy experience for many fractions and merges it with the GKSRS data for few fractions; and (2) a normal-tissue tolerance approach, which takes advantages of the dose conformity and fractionation of HSRT to approach the maximal dose tolerance of the normal brain. Results: A plausible {alpha}/{beta} ratio of 12 Gy for brain tumor and a volume parameter n of 0.23 for normal brain were derived from the GKSRS and whole-brain radiotherapy data. The HSRT prescription regimens for the isoeffect of tumor irradiation were calculated. The normal-brain equivalent uniform dose decreased as the number of fractions increased, because of the advantage of fractionation. The regimens for potential dose escalation of HSRT within the limits of normal-brain tolerance were derived. Conclusions: The designed hypofractionated regimens could be used as a preliminary guide for HSRT dose prescription for large brain tumors to mimic the GKSRS experience and for dose escalation trials. Clinical studies are necessary to further tune the model parameters and validate these regimens.

  3. Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis

    NASA Astrophysics Data System (ADS)

    Meyer, Tobias; Bergner, Norbert; Bielecki, Christiane; Krafft, Christoph; Akimov, Denis; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Dietzek, Benjamin; Popp, Jürgen

    2011-02-01

    Contemporary brain tumor research focuses on two challenges: First, tumor typing and grading by analyzing excised tissue is of utmost importance for choosing a therapy. Second, for prognostication the tumor has to be removed as completely as possible. Nowadays, histopathology of excised tissue using haematoxylin-eosine staining is the gold standard for the definitive diagnosis of surgical pathology specimens. However, it is neither applicable in vivo, nor does it allow for precise tumor typing in those cases when only nonrepresentative specimens are procured. Infrared and Raman spectroscopy allow for very precise cancer analysis due to their molecular specificity, while nonlinear microscopy is a suitable tool for rapid imaging of large tissue sections. Here, unstained samples from the brain of a domestic pig have been investigated by a multimodal nonlinear imaging approach combining coherent anti-Stokes Raman scattering, second harmonic generation, and two photon excited fluorescence microscopy. Furthermore, a brain tumor specimen was additionally analyzed by linear Raman and Fourier transform infrared imaging for a detailed assessment of the tissue types that is required for classification and to validate the multimodal imaging approach. Hence label-free vibrational microspectroscopic imaging is a promising tool for fast and precise in vivo diagnostics of brain tumors.

  4. Robotic multimodality stereotactic brain tissue identification: work in progress

    NASA Technical Reports Server (NTRS)

    Andrews, R.; Mah, R.; Galvagni, A.; Guerrero, M.; Papasin, R.; Wallace, M.; Winters, J.

    1997-01-01

    Real-time identification of tissue would improve procedures such as stereotactic brain biopsy (SBX), functional and implantation neurosurgery, and brain tumor excision. To standard SBX equipment has been added: (1) computer-controlled stepper motors to drive the biopsy needle/probe precisely; (2) multiple microprobes to track tissue density, detect blood vessels and changes in blood flow, and distinguish the various tissues being penetrated; (3) neural net learning programs to allow real-time comparisons of current data with a normative data bank; (4) three-dimensional graphic displays to follow the probe as it traverses brain tissue. The probe can differentiate substances such as pig brain, differing consistencies of the 'brain-like' foodstuff tofu, and gels made to simulate brain, as well as detect blood vessels imbedded in these substances. Multimodality probes should improve the safety, efficacy, and diagnostic accuracy of SBX and other neurosurgical procedures.

  5. Method for localizing heating in tumor tissue

    DOEpatents

    Doss, James D.; McCabe, Charles W.

    1977-04-12

    A method for a localized tissue heating of tumors is disclosed. Localized radio frequency current fields are produced with specific electrode configurations. Several electrode configurations are disclosed, enabling variations in electrical and thermal properties of tissues to be exploited.

  6. Laser-induced autofluorescence measurements on brain tissues.

    PubMed

    Pascu, Alexandru; Romanitan, Mihaela Oana; Delgado, Josè-Maria; Danaila, Leon; Pascu, Mihail-Lucian

    2009-12-01

    It was demonstrated that comparison of the autofluorescence spectra induced with laser radiation in ultraviolet and visible allows the identification of brain tumor tissues and normal tissues as well as the difference between them. The measurements were performed on homogenates to ensure an optimal reproducibility of the results. We conclude that the autofluorescence spectra of the tumor samples are close to those measured for normal tissues, but there are differences between them that allow distinguishing the tumor from the normal tissue. One difference is that for each pair of tumor/normal tissue samples, the peak autofluorescence for the normal tissue is shifted with respect to that for the tumor-typically between 10 and 20 nm; overall autofluorescence intensity is also different for the components of the same pair, the difference being in the range 15%-30%. A parameter that can also be used is the variation of the ratio of some fluorescence intensity peaks between normal and tumor tissue samples. Measurements of this parameter yielded variations ranging between 10% and 40%. Another conclusion of the study is that in vitro experiments show that it is mandatory to use pairs of samples (normal/tumor tissue) taken from the same patient. The results show that, after further experimental in vitro tests, the method may be adapted to real-time intraoperative conditions by measuring the autofluorescence of the tumor and of the adjacent normal tissue.

  7. Emerging insights into barriers to effective brain tumor therapeutics.

    PubMed

    Woodworth, Graeme F; Dunn, Gavin P; Nance, Elizabeth A; Hanes, Justin; Brem, Henry

    2014-01-01

    There is great promise that ongoing advances in the delivery of therapeutics to the central nervous system (CNS) combined with rapidly expanding knowledge of brain tumor patho-biology will provide new, more effective therapies. Brain tumors that form from brain cells, as opposed to those that come from other parts of the body, rarely metastasize outside of the CNS. Instead, the tumor cells invade deep into the brain itself, causing disruption in brain circuits, blood vessel and blood flow changes, and tissue swelling. Patients with the most common and deadly form, glioblastoma (GBM) rarely live more than 2 years even with the most aggressive treatments and often with devastating neurological consequences. Current treatments include maximal safe surgical removal or biopsy followed by radiation and chemotherapy to address the residual tumor mass and invading tumor cells. However, delivering effective and sustained treatments to these invading cells without damaging healthy brain tissue is a major challenge and focus of the emerging fields of nanomedicine and viral and cell-based therapies. New treatment strategies, particularly those directed against the invasive component of this devastating CNS disease, are sorely needed. In this review, we (1) discuss the history and evolution of treatments for GBM, (2) define and explore three critical barriers to improving therapeutic delivery to invasive brain tumors, specifically, the neuro-vascular unit as it relates to the blood brain barrier, the extra-cellular space in regard to the brain penetration barrier, and the tumor genetic heterogeneity and instability in association with the treatment efficacy barrier, and (3) identify promising new therapeutic delivery approaches that have the potential to address these barriers and create sustained, meaningful efficacy against GBM. PMID:25101239

  8. Emerging Insights into Barriers to Effective Brain Tumor Therapeutics

    PubMed Central

    Woodworth, Graeme F.; Dunn, Gavin P.; Nance, Elizabeth A.; Hanes, Justin; Brem, Henry

    2014-01-01

    There is great promise that ongoing advances in the delivery of therapeutics to the central nervous system (CNS) combined with rapidly expanding knowledge of brain tumor patho-biology will provide new, more effective therapies. Brain tumors that form from brain cells, as opposed to those that come from other parts of the body, rarely metastasize outside of the CNS. Instead, the tumor cells invade deep into the brain itself, causing disruption in brain circuits, blood vessel and blood flow changes, and tissue swelling. Patients with the most common and deadly form, glioblastoma (GBM) rarely live more than 2 years even with the most aggressive treatments and often with devastating neurological consequences. Current treatments include maximal safe surgical removal or biopsy followed by radiation and chemotherapy to address the residual tumor mass and invading tumor cells. However, delivering effective and sustained treatments to these invading cells without damaging healthy brain tissue is a major challenge and focus of the emerging fields of nanomedicine and viral and cell-based therapies. New treatment strategies, particularly those directed against the invasive component of this devastating CNS disease, are sorely needed. In this review, we (1) discuss the history and evolution of treatments for GBM, (2) define and explore three critical barriers to improving therapeutic delivery to invasive brain tumors, specifically, the neuro-vascular unit as it relates to the blood brain barrier, the extra-cellular space in regard to the brain penetration barrier, and the tumor genetic heterogeneity and instability in association with the treatment efficacy barrier, and (3) identify promising new therapeutic delivery approaches that have the potential to address these barriers and create sustained, meaningful efficacy against GBM. PMID:25101239

  9. Novel Magnetic Resonance Imaging Techniques in Brain Tumors.

    PubMed

    Nechifor, Ruben E; Harris, Robert J; Ellingson, Benjamin M

    2015-06-01

    Magnetic resonance imaging is a powerful, noninvasive imaging technique with exquisite sensitivity to soft tissue composition. Magnetic resonance imaging is primary tool for brain tumor diagnosis, evaluation of drug response assessment, and clinical monitoring of the patient during the course of their disease. The flexibility of magnetic resonance imaging pulse sequence design allows for a variety of image contrasts to be acquired, including information about magnetic resonance-specific tissue characteristics, molecular dynamics, microstructural organization, vascular composition, and biochemical status. The current review highlights recent advancements and novel approaches in MR characterization of brain tumors.

  10. How Are Brain and Spinal Cord Tumors in Children Diagnosed?

    MedlinePlus

    ... spinal cord tumors in children staged? How are brain and spinal cord tumors diagnosed in children? Brain ... resonance angiography (MRA) or computerized tomographic angiography (CTA). Brain or spinal cord tumor biopsy Imaging tests such ...

  11. Mixed tumor of deep soft tissue.

    PubMed

    Adachi, Toshisada; Oda, Yoshinao; Sakamoto, Akio; Saito, Tsuyoshi; Tamiya, Sadafumi; Hachitanda, Yoichi; Masuda, Sachio; Tsuneyoshi, Masazumi

    2003-01-01

    Mixed tumors of the salivary gland and skin are relatively common but are quite rare in soft tissue. It is believed that, as in the salivary gland form, most of these lesions are benign, but that a small subset behave in an aggressive fashion. We report here a patient with recurrent mixed tumor of soft tissue with infiltrative growth. The primary tumor arose in deep subfascial soft tissue of the right lower leg and was adjacent to the surface of the fibula. An open biopsy and complete resection were performed. Upon histological examination of the resected specimen, neoplastic cell infiltration at the tumor/soft tissue interface was not obvious; local recurrence, however, was observed 1 year later. The patient was treated with wide resection. Histological examination confirmed that the recurrent tumor with an extensive chondroid area invaded the osseous tissue of the fibula. At present, 1 year after the second resection surgery, there is no evidence of disease.

  12. Brain tumors at a nuclear facility.

    PubMed

    Reyes, M; Wilkinson, G S; Tietjen, G; Voelz, G L; Acquavella, J F; Bistline, R

    1984-10-01

    In response to an observed excess risk of brain tumor deaths among workers at the Rocky Flats Nuclear Facility (Colorado), a case-control study of all (n = 16) primary brain tumor deaths occurring among white males employed during 1952 through 1977 was conducted to investigate their relationship with occupational radiation/nonradiation exposures. For each case, four controls were individually matched on year of birth and period of employment. Although limited by a small number of cases, our study showed no statistically significant association between brain tumor death and exposure to internally deposited plutonium, external radiation, or other occupational risk factors. PMID:6491777

  13. Malignant metastatic carcinoid presenting as brain tumor

    PubMed Central

    Sundar, I. Vijay; Jain, S. K.; Kurmi, Dhrubajyoti; Sharma, Rakesh; Chopra, Sanjeev; Singhvi, Shashi

    2016-01-01

    Carcinoid tumors are rarely known to metastasise to the brain. It is even more rare for such patients to present with symptoms related to metastases as the initial and only symptom. We present a case of a 60-year-old man who presented with hemiparesis and imaging features suggestive of brain tumor. He underwent surgery and the histopathology revealed metastatic malignant lesion of neuroendocrine origin. A subsequent work up for the primary was negative. Patient was treated with adjuvant radiotherapy. We present this case to highlight the pathophysiological features, workup and treatment options of this rare disease and discuss the methods of differentiating it from more common brain tumors. PMID:27366273

  14. Research of the multimodal brain-tumor segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  15. The role of integrins in primary and secondary brain tumors.

    PubMed

    Schittenhelm, Jens; Tabatabai, Ghazaleh; Sipos, Bence

    2016-10-01

    The tumor environment plays an integral part in the biology of cancer, participating in tumor initiation, progression, and response to therapy. Integrins, a family of cell surface receptors, bridge the extracellular matrix to the intracellular cytoskeleton. Since their first characterization 25 years ago, a vast amount of work has been performed to understand the essential role of integrins in cell development, tissue organization, tumor growth, vessel development and their signaling mechanisms. Their potential as therapeutic targets in various types of cancer is intensively studied. In this review, we discuss the expression patterns and functional role of integrin in primary brain tumors and brain metastases, provide an overview of clinical data on integrin inhibition and their potential application in imaging and therapy of these tumors. PMID:27097828

  16. Bioengineered functional brain-like cortical tissue

    PubMed Central

    Tang-Schomer, Min D.; White, James D.; Tien, Lee W.; Schmitt, L. Ian; Valentin, Thomas M.; Graziano, Daniel J.; Hopkins, Amy M.; Omenetto, Fiorenzo G.; Haydon, Philip G.; Kaplan, David L.

    2014-01-01

    The brain remains one of the most important but least understood tissues in our body, in part because of its complexity as well as the limitations associated with in vivo studies. Although simpler tissues have yielded to the emerging tools for in vitro 3D tissue cultures, functional brain-like tissues have not. We report the construction of complex functional 3D brain-like cortical tissue, maintained for months in vitro, formed from primary cortical neurons in modular 3D compartmentalized architectures with electrophysiological function. We show that, on injury, this brain-like tissue responds in vitro with biochemical and electrophysiological outcomes that mimic observations in vivo. This modular 3D brain-like tissue is capable of real-time nondestructive assessments, offering previously unidentified directions for studies of brain homeostasis and injury. PMID:25114234

  17. Optical detection of brain tumors using quantum dots

    NASA Astrophysics Data System (ADS)

    Toms, Steven A.; Daneshvar, Hamid; Muhammad, Osman; Jackson, Heather; Vogelbaum, Michael A.; Bruchez, Marcel

    2005-11-01

    Introduction: Brain tumor margin detection remains a challenging problem in the operative resection of gliomas. A novel nanoparticle, a PEGylated quantum dot, has been shown to be phagocytized by macrophages in vivo. This feature may allow quantum dots to co-localize with brain tumors and serve as an optical aid in the surgical resection of brain tumors. Methods: Sprague-Daly rats were injected intracranially with C6 gliosarcoma cell lines to establish tumors. Two weeks after implantation of brain tumors, PEGylated quantum dots emitting at 705 nm (PEG-705 QD) were injected via the tail vein. Twenty-four hours post PEG-705 QD injection, the animals were sacrificed and their tissues examined. Results: PEGylated quantum dots are avidly phagocytized by macrophages and are taken up by liver, spleen and lymph nodes. Macrophages and microglia co-localize with glioma cells, carrying the optical nanoparticle, the quantum dot. Excitation of the PEG-705 quantum dots gives off a deep red fluorescence detectable with charge coupled device (CCD) cameras, optical spectroscopy units, and in dark field fluorescence microscopy. Conclusions: PEG-705QDs co-localize with brain tumors and may serve as an optical adjunct to aid in the operative resection of gliomas. The particles may be visualized in surgery with CCD cameras or detected by optical spectroscopy.

  18. Possibilities of new therapeutic strategies in brain tumors.

    PubMed

    Bouffet, Eric; Tabori, Uri; Huang, Annie; Bartels, Ute

    2010-06-01

    Advances in the management of pediatric brain tumors have been less successful than in other areas of pediatric oncology. This gap in outcome is essentially related to specific aspects of these tumors in this age group such as the fact that the surrounding brain is still developing, vital structures limit aggressive attempts at removing infiltrating lesions, drug penetration into the central nervous system is often poor and short and long term toxicities of some treatments to the surrounding brain are significant. This review describes new therapeutic strategies and their impact in the pediatric neuro-oncology practice. Although the number of new active antineoplastic agents has been limited during the last decade, significant improvements in the chemotherapeutic management of pediatric brain tumors have been observed. These relate to the optimization of chemotherapy protocols, the development of new schedules of administration such as metronomic schedules, sequential high dose chemotherapy, concomitant administration of chemotherapy and radiation, or the introduction of intrathecal or intraventricular chemotherapy in specific protocols. Technological advances in radiotherapy allow delivering optimal doses to the target volume while decreasing the volume of normal surrounding tissue receiving radiation. As a consequence, conformal radiation therapy currently plays a major role in the management of several pediatric brain tumors, including in infants where radiation has been traditionally avoided. The role of molecularly targeted agents is still unclear and a number of phase I and II trials are ongoing to better define the future of these new therapies in pediatric brain tumors.

  19. Staging Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood brain and spinal cord tumors ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are ...

  20. Banking Brain Tumor Specimens Using a University Core Facility.

    PubMed

    Bregy, Amade; Papadimitriou, Kyriakos; Faber, David A; Shah, Ashish H; Gomez, Carmen R; Komotar, Ricardo J; Egea, Sophie C

    2015-08-01

    Within the past three decades, the significance of banking human cancer tissue for the advancement of cancer research has grown exponentially. The purpose of this article is to detail our experience in collecting brain tumor specimens in collaboration with the University of Miami/Sylvester Tissue Bank Core Facility (UM-TBCF), to ensure the availability of high-quality samples of central nervous system tumor tissue for research. Successful tissue collection begins with obtaining informed consent from patients following institutional IRB and federal HIPAA guidelines, and it needs a well-trained professional staff and continued maintenance of high ethical standards and record keeping. Since starting in 2011, we have successfully banked 225 brain tumor specimens for research. Thus far, the most common tumor histology identified among those specimens has been glioblastoma (22.1%), followed by meningioma (18.1%). The majority of patients were White, non-Hispanics accounting for 45.1% of the patient population; Hispanic/Latinos accounted for 23%, and Black/African Americans accounted for 14%, which represent the particular population of the State of Florida according to the 2010 census data. The most common tumors found in each subgroup were as follows: Black/African American, glioblastoma and meningioma; Hispanic, metastasis and glioblastoma; White, glioblastoma and meningioma. The UM-TBCF is a valuable repository, offering high-quality tumor samples from a unique patient population. PMID:26280502

  1. Banking Brain Tumor Specimens Using a University Core Facility.

    PubMed

    Bregy, Amade; Papadimitriou, Kyriakos; Faber, David A; Shah, Ashish H; Gomez, Carmen R; Komotar, Ricardo J; Egea, Sophie C

    2015-08-01

    Within the past three decades, the significance of banking human cancer tissue for the advancement of cancer research has grown exponentially. The purpose of this article is to detail our experience in collecting brain tumor specimens in collaboration with the University of Miami/Sylvester Tissue Bank Core Facility (UM-TBCF), to ensure the availability of high-quality samples of central nervous system tumor tissue for research. Successful tissue collection begins with obtaining informed consent from patients following institutional IRB and federal HIPAA guidelines, and it needs a well-trained professional staff and continued maintenance of high ethical standards and record keeping. Since starting in 2011, we have successfully banked 225 brain tumor specimens for research. Thus far, the most common tumor histology identified among those specimens has been glioblastoma (22.1%), followed by meningioma (18.1%). The majority of patients were White, non-Hispanics accounting for 45.1% of the patient population; Hispanic/Latinos accounted for 23%, and Black/African Americans accounted for 14%, which represent the particular population of the State of Florida according to the 2010 census data. The most common tumors found in each subgroup were as follows: Black/African American, glioblastoma and meningioma; Hispanic, metastasis and glioblastoma; White, glioblastoma and meningioma. The UM-TBCF is a valuable repository, offering high-quality tumor samples from a unique patient population.

  2. Implantable tissue isolation chambers for analyzing tumor dynamics in vivo.

    PubMed

    Gruionu, Gabriel; Bazou, Despina; Maimon, Nir; Onita-Lenco, Mara; Gruionu, Lucian G; Huang, Peigen; Munn, Lance L

    2016-05-21

    Recruitment of new blood vessels from the surrounding tissue is central to tumor progression and involves a fundamental transition of the normal, organized vasculature into a dense disarray of vessels that infiltrates the tumor. At present, studying the co-development of the tumor and recruited normal tissue is experimentally challenging because many of the important events occur rapidly and over short length scales in a dense three-dimensional space. To overcome these experimental limitations, we partially confined tumors within biocompatible and optically clear tissue isolation chambers (TICs) and implanted them in mice to create a system that is more amenable to microscopic analysis. Our goal was to integrate the tumor into a recruited host tissue - complete with vasculature - and demonstrate that the system recapitulates relevant features of the tumor microenvironment. We show that the TICs allow clear visualization of the cellular events associated with tumor growth and progression at the host-tumor interface including cell infiltration, matrix remodeling and angiogenesis. The tissue within the chamber is viable for more than a month, and the process is robust in both the skin and brain. Treatment with losartan, an angiotensin II receptor antagonist, decreased the collagen density and fiber length in the TIC, consistent with the known activity of this drug. We further show that collagen fibers display characteristic tumor signatures and play a central role in angiogenesis, guiding the migration of tethered endothelial sprouts. The methodology combines accessible methods of microfabrication with animal models and will enable more informative studies of the cellular mechanisms of tumor progression. PMID:27128791

  3. Implantable tissue isolation chambers for analyzing tumor dynamics in vivo.

    PubMed

    Gruionu, Gabriel; Bazou, Despina; Maimon, Nir; Onita-Lenco, Mara; Gruionu, Lucian G; Huang, Peigen; Munn, Lance L

    2016-05-21

    Recruitment of new blood vessels from the surrounding tissue is central to tumor progression and involves a fundamental transition of the normal, organized vasculature into a dense disarray of vessels that infiltrates the tumor. At present, studying the co-development of the tumor and recruited normal tissue is experimentally challenging because many of the important events occur rapidly and over short length scales in a dense three-dimensional space. To overcome these experimental limitations, we partially confined tumors within biocompatible and optically clear tissue isolation chambers (TICs) and implanted them in mice to create a system that is more amenable to microscopic analysis. Our goal was to integrate the tumor into a recruited host tissue - complete with vasculature - and demonstrate that the system recapitulates relevant features of the tumor microenvironment. We show that the TICs allow clear visualization of the cellular events associated with tumor growth and progression at the host-tumor interface including cell infiltration, matrix remodeling and angiogenesis. The tissue within the chamber is viable for more than a month, and the process is robust in both the skin and brain. Treatment with losartan, an angiotensin II receptor antagonist, decreased the collagen density and fiber length in the TIC, consistent with the known activity of this drug. We further show that collagen fibers display characteristic tumor signatures and play a central role in angiogenesis, guiding the migration of tethered endothelial sprouts. The methodology combines accessible methods of microfabrication with animal models and will enable more informative studies of the cellular mechanisms of tumor progression.

  4. Bioreactor-Based Tumor Tissue Engineering

    PubMed Central

    Guller, A.E.; Grebenyuk, P.N.; Shekhter, A.B.; Zvyagin, A.V.; Deyev, S. M.

    2016-01-01

    This review focuses on modeling of cancer tumors using tissue engineering technology. Tumor tissue engineering (TTE) is a new method of three-dimensional (3D) simulation of malignant neoplasms. Design and development of complex tissue engineering constructs (TECs) that include cancer cells, cell-bearing scaffolds acting as the extracellular matrix, and other components of the tumor microenvironment is at the core of this approach. Although TECs can be transplanted into laboratory animals, the specific aim of TTE is the most realistic reproduction and long-term maintenance of the simulated tumor properties in vitro for cancer biology research and for the development of new methods of diagnosis and treatment of malignant neoplasms. Successful implementation of this challenging idea depends on bioreactor technology, which will enable optimization of culture conditions and control of tumor TECs development. In this review, we analyze the most popular bioreactor types in TTE and the emerging applications. PMID:27795843

  5. Surgical Outcomes of Hemorrhagic Metastatic Brain Tumors

    PubMed Central

    Yoo, Heon; Jung, Eugene; Gwak, Ho Shin; Shin, Sang Hoon

    2011-01-01

    Purpose Hemorrhagic metastatic brain tumors are not rare, but little is known about the surgical outcome following treatment. We conducted this study to determine the result of the surgical outcome of hemorrhagic metastatic brain tumors. Materials and Methods From July 2001 to December 2008, 21 patients underwent surgery for hemorrhagic metastatic brain tumors at our institution. 15 patients had lung cancer, 3 had hepatocellular carcinoma, and the rest had rectal cancer, renal cell carcinoma, and sarcoma. 20 patients had macroscopic hemorrhage in the tumors, and one patient had intracerebral hemorrhage surrounding the tumor. A retrospective clinical review was conducted focusing on the patterns of presenting symptoms and signs, as well as local recurrence following surgery. Results Among 21 hemorrhagic brain metastases, local recurrence developed in two patients. The 12 month progression free survival rate was 86.1%. Mean time to progression was 20.8 months and median survival time after surgery was 11.7 months. Conclusion The results of our study showed that hemorrhagic metastatic brain tumors rarely recurred after surgery. Surgery should be considered as a good treatment option for hemorrhagic brain metastasis, especially in cases with increased intracranial pressure or severe neurologic deficits. PMID:21811426

  6. Radiation treatment of brain tumors: Concepts and strategies

    SciTech Connect

    Marks, J.E. )

    1989-01-01

    Ionizing radiation has demonstrated clinical value for a multitude of CNS tumors. Application of the different physical modalities available has made it possible for the radiotherapist to concentrate the radiation in the region of the tumor with relative sparing of the surrounding normal tissues. Correlation of radiation dose with effect on cranial soft tissues, normal brain, and tumor has shown increasing effect with increasing dose. By using different physical modalities to alter the distribution of radiation dose, it is possible to increase the dose to the tumor and reduce the dose to the normal tissues. Alteration of the volume irradiated and the dose delivered to cranial soft tissues, normal brain, and tumor are strategies that have been effective in improving survival and decreasing complications. The quest for therapeutic gain using hyperbaric oxygen, neutrons, radiation sensitizers, chemotherapeutic agents, and BNCT has met with limited success. Both neoplastic and normal cells are affected simultaneously by all modalities of treatment, including ionizing radiation. Consequently, one is unable to totally depopulate a tumor without irreversibly damaging the normal tissues. In the case of radiation, it is the brain that limits delivery of curative doses, and in the case of chemical additives, it is other organ systems, such as bone marrow, liver, lung, kidneys, and peripheral nerves. Thus, the major obstacle in the treatment of malignant gliomas is our inability to preferentially affect the tumor with the modalities available. Until it is possible to directly target the neoplastic cell without affecting so many of the adjacent normal cells, the quest for therapeutic gain will go unrealized.72 references.

  7. Metastasis Infiltration: An Investigation of the Postoperative Brain-Tumor Interface

    SciTech Connect

    Raore, Bethwel; Schniederjan, Matthew; Prabhu, Roshan; Brat, Daniel J.; Shu, Hui-Kuo; Olson, Jeffrey J.

    2011-11-15

    Purpose: This study aims to evaluate brain infiltration of metastatic tumor cells past the main tumor resection margin to assess the biological basis for the use of stereotactic radiosurgery treatment of the tumor resection cavity and visualized resection edge or clinical target volume. Methods and Materials: Resection margin tissue was obtained after gross total resection of a small group of metastatic lesions from a variety of primary sources. The tissue at the border of the tumor and brain tissue was carefully oriented and processed to evaluate the presence of tumor cells within brain tissue and their distance from the resection margin. Results: Microscopic assessment of the radially oriented tissue samples showed no tumor cells infiltrating the surrounding brain tissue. Among the positive findings were reactive astrocytosis observed on the brain tissue immediately adjacent to the tumor resection bed margin. Conclusions: The lack of evidence of metastatic tumor cell infiltration into surrounding brain suggests the need to target only a narrow depth of the resection cavity margin to minimize normal tissue injury and prevent treatment size-dependent stereotactic radiosurgery complications.

  8. The Role of Fast Cell Cycle Analysis in Pediatric Brain Tumors.

    PubMed

    Alexiou, George A; Vartholomatos, George; Stefanaki, Kalliopi; Lykoudis, Efstathios G; Patereli, Amalia; Tseka, Georgia; Tzoufi, Meropi; Sfakianos, George; Prodromou, Neofytos

    2015-01-01

    Cell cycle analysis by flow cytometry has not been adequately studied in pediatric brain tumors. We investigated the value of a modified rapid (within 6 min) cell cycle analysis protocol for the characterization of malignancy of pediatric brain tumors and for the differentiation of neoplastic from nonneoplastic tissue for possible intraoperative application. We retrospectively studied brain tumor specimens from patients treated at our institute over a 5-year period. All tumor samples were histopathologically verified before flow-cytometric analysis. The histopathological examination of permanent tissue sections was the gold standard. There were 68 brain tumor cases. All tumors had significantly lower G0/G1 and significantly higher S phase and mitosis fractions than normal brain tissue. Furthermore low-grade tumors could be differentiated from high-grade tumors. DNA aneuploidy was detected in 35 tumors. A correlation between S phase fraction and Ki-67 index was found in medulloblastomas and anaplastic ependymomas. Rapid cell cycle analysis by flow cytometry is a promising method for the identification of neoplastic tissue intraoperatively. Low-grade tumors could be differentiated from high-grade tumors. Thus, cell cycle analysis can be a valuable adjunct to the histopathological evaluation of pediatric brain tumors, whereas its intraoperative application warrants further investigation. PMID:26287721

  9. Oncogenic extracellular vesicles in brain tumor progression.

    PubMed

    D'Asti, Esterina; Garnier, Delphine; Lee, Tae H; Montermini, Laura; Meehan, Brian; Rak, Janusz

    2012-01-01

    The brain is a frequent site of neoplastic growth, including both primary and metastatic tumors. The clinical intractability of many brain tumors and their distinct biology are implicitly linked to the unique microenvironment of the central nervous system (CNS) and cellular interactions within. Among the most intriguing forms of cellular interactions is that mediated by membrane-derived extracellular vesicles (EVs). Their biogenesis (vesiculation) and uptake by recipient cells serves as a unique mechanism of intercellular trafficking of complex biological messages including the exchange of molecules that cannot be released through classical secretory pathways, or that are prone to extracellular degradation. Tumor cells produce EVs containing molecular effectors of several cancer-related processes such as growth, invasion, drug resistance, angiogenesis, and coagulopathy. Notably, tumor-derived EVs (oncosomes) also contain oncogenic proteins, transcripts, DNA, and microRNA (miR). Uptake of this material may change properties of the recipient cells and impact the tumor microenvironment. Examples of transformation-related molecules found in the cargo of tumor-derived EVs include the oncogenic epidermal growth factor receptor (EGFRvIII), tumor suppressors (PTEN), and oncomirs (miR-520g). It is postulated that EVs circulating in blood or cerebrospinal fluid (CSF) of brain tumor patients may be used to decipher molecular features (mutations) of the underlying malignancy, reflect responses to therapy, or molecular subtypes of primary brain tumors [e.g., glioma or medulloblastoma (MB)]. It is possible that metastases to the brain may also emit EVs with clinically relevant oncogenic signatures. Thus, EVs emerge as a novel and functionally important vehicle of intercellular communication that can mediate multiple biological effects. In addition, they provide a unique platform to develop molecular biomarkers in brain malignancies. PMID:22934045

  10. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.

    PubMed

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C; Heth, Jason A; Maher, Cormac O; Sanai, Nader; Johnson, Timothy D; Freudiger, Christian W; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A

    2015-10-14

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a nondestructive, label-free optical method, to reveal glioma infiltration in animal models. We show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ = 0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density, and protein/lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density, and protein/lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery.

  11. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy

    PubMed Central

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H.; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C.; Heth, Jason A.; Maher, Cormac O.; Sanai, Nader; Johnson, Timothy D.; Freudiger, Christian W.; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A.

    2016-01-01

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a non-destructive, label-free optical method, to reveal glioma infiltration in animal models. Here we show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ=0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density and protein:lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density and protein:lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Importantly, quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery. PMID:26468325

  12. Infrared spectra of thyroid tumor tissues

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Butra, V. A.

    2010-07-01

    We used infrared spectroscopy methods to study thyroid tumor tissues removed during surgery. The IR spectra of the surgical material are compared with data from histological examination. We show that in malignant neoplasms, the spectra of proteins in the region of C=O vibrations are different from the spectra of these substances in benign tumors and in tissues outside the pathological focus at a distance >1 cm from the margin of the tumor. The differences in the spectra are due to changes in the supermolecular structure of the proteins, resulting from rearrangement of the system of hydrogen bonds. We identify the spectral signs of malignant pathologies.

  13. Clinical considerations for neutron capture therapy of brain tumors

    SciTech Connect

    Madoc-Jones, H.; Wazer, D.E.; Zamenhof, R.G.; Harling, O.K.; Bernard, J.A. Jr. )

    1990-01-01

    The radiotherapeutic management of primary brain tumors and metastatic melanoma in brain has had disappointing clinical results for many years. Although neutron capture therapy was tried in the United States in the 1950s and 1960s, the results were not as hoped. However, with the newly developed capability to measure boron concentrations in blood and tissue both quickly and accurately, and with the advent of epithermal neutron beams obviating the need for scalp and skull reflection, it should now be possible to mount such a clinical trial of NCT again and avoid serious complications. As a prerequisite, it will be important to demonstrate the differential uptake of boron compound in brain tumor as compared with normal brain and its blood supply. If this can be done, then a trial of boron neutron capture therapy for brain tumors should be feasible. Because boronated phenylalanine has been demonstrated to be preferentially taken up by melanoma cells through the biosynthetic pathway for melanin, there is special interest in a trial of boron neutron capture therapy for metastatic melanoma in brain. Again, the use of an epithermal beam would make this a practical possibility. However, because any epithermal (or thermal) beam must contain a certain contaminating level of gamma rays, and because even a pure neutron beam causes gamma rays to be generated when it interacts with tissue, we think that it is essential to deliver treatments with an epithermal beam for boron neutron capture therapy in fractions in order to minimize the late-effects of low-LET gamma rays in the normal tissue. I look forward to the remainder of this Workshop, which will detail recent progress in the development of epithermal, as well as thermal, beams and new methods for tracking and measuring the uptake of boron in normal and tumor tissues. 10 references.

  14. Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition

    PubMed Central

    Cheng, Jun; Huang, Wei; Cao, Shuangliang; Yang, Ru; Yang, Wei; Yun, Zhaoqiang; Wang, Zhijian; Feng, Qianjin

    2015-01-01

    Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI. PMID:26447861

  15. General Information about Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... Cord Tumors Treatment Overview (PDQ®)–Patient Version General Information About Childhood Brain and Spinal Cord Tumors Go ... types of brain and spinal cord tumors. The information from tests and procedures done to detect (find) ...

  16. Proton MRS imaging in pediatric brain tumors.

    PubMed

    Zarifi, Maria; Tzika, A Aria

    2016-06-01

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. PMID:27233788

  17. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    SciTech Connect

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  18. [A unusual brain cortical tumor: angiocentric glioma].

    PubMed

    Tauziède-Espariat, Arnault; Fohlen, Martine; Ferrand-Sorbets, Sarah; Polivka, Marc

    2015-04-01

    We report the case of an 11-year-old girl, who was admitted for surgery of an epilepsy-associated brain tumor. The radiological and clinical hypothesis was dysembryoplasic neuroepithelial tumor. Histopathological examination revealed a tumoral proliferation composed of spindle-shaped cells with palisade arrangements around vessels. Tumor cells have small, round and regular nuclei without atypia or mitosis. On immunohistochemistry, the neoplastic cells strongly expressed GFAP and showed a characteristic cytoplasmic dot-like staining with EMA (epithelial membrane antigen). Ki-67 labeling index was low. Molecular analysis failed to reveal the V600E mutation of BRAF gene. The patient was free of seizures after surgery. Angiocentric glioma is a rare brain tumor occuring preferably in children and young adults and is associated with seizures. The precise histogenesis remains debated. The treatment of choice is total resection. The prognosis is favorable if totally resected.

  19. Multimodality stereotactic brain tissue identification: the NASA smart probe project

    NASA Technical Reports Server (NTRS)

    Andrews, R.; Mah, R.; Aghevli, A.; Freitas, K.; Galvagni, A.; Guerrero, M.; Papsin, R.; Reed, C.; Stassinopoulos, D.

    1999-01-01

    Real-time tissue identification can benefit procedures such as stereotactic brain biopsy, functional neurosurgery and brain tumor excision. Optical scattering spectroscopy has been shown to be effective at discriminating cancer from noncancerous conditions in the colon, bladder and breast. The NASA Smart Probe extends the concept of 'optical biopsy' by using neural network techniques to combine the output from 3 microsensors contained within a cannula 2. 7 mm in diameter (i.e. the diameter of a stereotactic brain biopsy needle). Experimental data from 5 rats show the clear differentiation between tissues such as brain, nerve, fat, artery and muscle that can be achieved with optical scattering spectroscopy alone. These data and previous findings with other modalities such as (1) analysis of the image from a fiberoptic neuroendoscope and (2) the output from a microstrain gauge suggest the Smart Probe multiple microsensor technique shows promise for real-time tissue identification in neurosurgical procedures. Copyright 2000 S. Karger AG, Basel.

  20. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  1. Contrast medium accumulation and washout in canine brain tumors and irradiated normal brain: a CT study of kinetics

    SciTech Connect

    Fike, J.R.; Cann, C.E.

    1984-04-01

    Kinetics of an iodinated contrast medium were evaluated quantitatively as a function of time up to one hour after intravenous infusion in the brains of dogs with experimentally induced radiation damage and dogs with spontaneous brain tumor. Radiation damage was characterized by an increase in iodine accumulation soon after the infusion, while tumor concentration of iodine either showed no change or decreased with time. These results suggest that contrast kinetic studies may be useful in differentiating radiation damage to normal brain tissue from a malignant brain tumor.

  2. Training stem cells for treatment of malignant brain tumors

    PubMed Central

    Li, Shengwen Calvin; Kabeer, Mustafa H; Vu, Long T; Keschrumrus, Vic; Yin, Hong Zhen; Dethlefs, Brent A; Zhong, Jiang F; Weiss, John H; Loudon, William G

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system. PMID:25258664

  3. Psychiatric aspects of brain tumors: A review

    PubMed Central

    Madhusoodanan, Subramoniam; Ting, Mark Bryan; Farah, Tara; Ugur, Umran

    2015-01-01

    Infrequently, psychiatric symptoms may be the only manifestation of brain tumors. They may present with mood symptoms, psychosis, memory problems, personality changes, anxiety, or anorexia. Symptoms may be misleading, complicating the clinical picture. A comprehensive review of the literature was conducted regarding reports of brain tumors and psychiatric symptoms from 1956-2014. Search engines used include PubMed, Ovid, Psych Info, MEDLINE, and MedScape. Search terms included psychiatric manifestations/symptoms, brain tumors/neoplasms. Our literature search yielded case reports, case studies, and case series. There are no double blind studies except for post-diagnosis/-surgery studies. Early diagnosis is critical for improved quality of life. Symptoms that suggest work-up with neuroimaging include: new-onset psychosis, mood/memory symptoms, occurrence of new or atypical symptoms, personality changes, and anorexia without body dysmorphic symptoms. This article reviews the existing literature regarding the diagnosis and management of this clinically complex condition. PMID:26425442

  4. The Italian registry of soft tissue tumors.

    PubMed

    Clemente, C; Orazi, A; Rilke, F

    1988-01-01

    After a review of the incidence data on malignant soft-tissue tumors in Italy (Registro dei Tumori della Regione Lombardia, provincia di Varese), Europe (nine European Cancer Registries considered representative of various geographical areas) and extra-European countries (data of ten World Cancer Registries), the aim and the organization of the Italian Malignant Soft-Tissue Tumor Registry are described. The collection system is based on dedicated forms prepared for the computerization of all data. From 1.1.1985 to 31.3.1987, 207 cases of malignant and potentially malignant soft-tissue tumors entered the Registry, with exclusion of those sarcomas arising in viscera. The distribution, categorized by histologic type, sex and site, and the preliminary results on relapses and metastases are reported.

  5. Numerical simulations of MREIT conductivity imaging for brain tumor detection.

    PubMed

    Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged. PMID:23737862

  6. Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection

    PubMed Central

    Meng, Zi Jun; Sajib, Saurav Z. K.; Chauhan, Munish; Sadleir, Rosalind J.; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged. PMID:23737862

  7. Biphasic modeling of brain tumor biomechanics and response to radiation treatment.

    PubMed

    Angeli, Stelios; Stylianopoulos, Triantafyllos

    2016-06-14

    Biomechanical forces are central in tumor progression and response to treatment. This becomes more important in brain cancers where tumors are surrounded by tissues with different mechanical properties. Existing mathematical models ignore direct mechanical interactions of the tumor with the normal brain. Here, we developed a clinically relevant model, which predicts tumor growth accounting directly for mechanical interactions. A three-dimensional model of the gray and white matter and the cerebrospinal fluid was constructed from magnetic resonance images of a normal brain. Subsequently, a biphasic tissue growth theory for an initial tumor seed was employed, incorporating the effects of radiotherapy. Additionally, three different sets of brain tissue properties taken from the literature were used to investigate their effect on tumor growth. Results show the evolution of solid stress and interstitial fluid pressure within the tumor and the normal brain. Heterogeneous distribution of the solid stress exerted on the tumor resulted in a 35% spatial variation in cancer cell proliferation. Interestingly, the model predicted that distant from the tumor, normal tissues still undergo significant deformations while it was found that intratumoral fluid pressure is elevated. Our predictions relate to clinical symptoms of brain cancers and present useful tools for therapy planning. PMID:27086116

  8. Brain Tissue Oxygen Monitoring in Neurocritical Care.

    PubMed

    De Georgia, Michael A

    2015-12-01

    Brain injury results from ischemia, tissue hypoxia, and a cascade of secondary events. The cornerstone of neurocritical care management is optimization and maintenance of cerebral blood flow (CBF) and oxygen and substrate delivery to prevent or attenuate this secondary damage. New techniques for monitoring brain tissue oxygen tension (PtiO2) are now available. Brain PtiO2 reflects both oxygen delivery and consumption. Brain hypoxia (low brain PtiO2) has been associated with poor outcomes in patients with brain injury. Strategies to improve brain PtiO2 have focused mainly on increasing oxygen delivery either by increasing CBF or by increasing arterial oxygen content. The results of nonrandomized studies comparing brain PtiO2-guided therapy with intracranial pressure/cerebral perfusion pressure-guided therapy, while promising, have been mixed. More studies are needed including prospective, randomized controlled trials to assess the true value of this approach. The following is a review of the physiology of brain tissue oxygenation, the effect of brain hypoxia on outcome, strategies to increase oxygen delivery, and outcome studies of brain PtiO2-guided therapy in neurocritical care.

  9. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    SciTech Connect

    Adam, Jean-Francois

    2005-04-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size <50x50 {mu}m{sup 2}) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal

  10. Optical spectroscopy for stereotactic biopsy of brain tumors

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; von Berg, Anna; Fiedler, Sebastian; Goetz, Marcus; Haj-Hosseini, Neda; Polzer, Christoph; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2015-07-01

    Stereotactic biopsy procedure is performed to obtain a tissue sample for diagnosis purposes. Currently, a fiber-based mechano-optical device for stereotactic biopsies of brain tumors is developed. Two different fluorophores are employed to improve the safety and reliability of this procedure: The fluorescence of intravenously applied indocyanine green (ICG) facilitates the recognition of blood vessels and thus helps minimize the risk of cerebral hemorrhages. 5- aminolevulinic-acid-induced protoporphyrin IX (PpIX) fluorescence is used to localize vital tumor tissue. ICG fluorescence detection using a 2-fiber probe turned out to be an applicable method to recognize blood vessels about 1.5 mm ahead of the fiber tip during a brain tumor biopsy. Moreover, the suitability of two different PpIX excitation wavelengths regarding practical aspects was investigated: While PpIX excitation in the violet region (at 405 nm) allows for higher sensitivity, red excitation (at 633 nm) is noticeably superior with regard to blood layers obscuring the fluorescence signal. Contact measurements on brain simulating agar phantoms demonstrated that a typical blood coverage of the tumor reduces the PpIX signal to about 75% and nearly 0% for 633 nm and 405 nm excitation, respectively. As a result, 633 nm seems to be the wavelength of choice for PpIX-assisted detection of high-grade gliomas in stereotactic biopsy.

  11. Head, neck, and brain tumor embolization guidelines

    PubMed Central

    Duffis, E Jesus; Prestigiacomo, Charles Joseph; Abruzzo, Todd; Albuquerque, Felipe; Bulsara, Ketan R; Derdeyn, Colin P; Fraser, Justin F; Hirsch, Joshua A; Hussain, Muhammad Shazam; Do, Huy M; Jayaraman, Mahesh V; Meyers, Philip M; Narayanan, Sandra

    2012-01-01

    Background Management of vascular tumors of the head, neck, and brain is often complex and requires a multidisciplinary approach. Peri-operative embolization of vascular tumors may help to reduce intra-operative bleeding and operative times and have thus become an integral part of the management of these tumors. Advances in catheter and non-catheter based techniques in conjunction with the growing field of neurointerventional surgery is likely to expand the number of peri-operative embolizations performed. The goal of this article is to provide consensus reporting standards and guidelines for embolization treatment of vascular head, neck, and brain tumors. Summary This article was produced by a writing group comprised of members of the Society of Neurointerventional Surgery. A computerized literature search using the National Library of Medicine database (Pubmed) was conducted for relevant articles published between 1 January 1990 and 31 December 2010. The article summarizes the effectiveness and safety of peri-operative vascular tumor embolization. In addition, this document provides consensus definitions and reporting standards as well as guidelines not intended to represent the standard of care, but rather to provide uniformity in subsequent trials and studies involving embolization of vascular head and neck as well as brain tumors. Conclusions Peri-operative embolization of vascular head, neck, and brain tumors is an effective and safe adjuvant to surgical resection. Major complications reported in the literature are rare when these procedures are performed by operators with appropriate training and knowledge of the relevant vascular and surgical anatomy. These standards may help to standardize reporting and publication in future studies. PMID:22539531

  12. Development of multifunctional nanoparticles for brain tumor diagnosis and therapy

    NASA Astrophysics Data System (ADS)

    Veiseh, Omid

    Magnetic nanoparticles (MNPs) represent a class of non-invasive imaging agents developed for magnetic resonance (MR) imaging and drug delivery. MNPs have traditionally been developed for disease imaging via passive targeting, but recent advances in nanotechnology have enabled cellular-specific targeting, drug delivery and multi-modal imaging using these nanoparticles. Opportunities now exist to engineer MNP with designated features (e.g., size, coatings, and molecular functionalizations) for specific biomedical applications. The goal of this interdisciplinary research project is to develop targeting multifunctional nanoparticles, serving as both contrast agents and drug carriers that can effectively pass biological barriers, for diagnosis, staging and treatment of brain tumors. The developed nanoparticle system consists of a superparamagnetic iron oxide nanoparticle core (NP) and a shell comprised of biodegradable polymers such as polyethylene glycol (PEG) and chitosan. Additionally, near-infrared fluorescing (NIRF) molecules were integrated onto the NP shell to enable optical detection. Tumor targeting was achieved by the addition of chlorotoxin, a peptide with that has high affinity to 74 out of the 79 classifications of primary brain tumors and ability to illicit a therapeutic effect. This novel NP system was tested both in vitro and in vivo and was shown to specifically target gliomas in tissue culture and medulloblastomas in transgenic mice with an intact blood brain barriers (BBB), and delineate tumor boundaries in both MR and optical imaging. Additionally, the therapeutic potential of this NP system was explored in vitro, which revealed a unique nanoparticle-enabled pathway that enhances the therapeutic potential of bound peptides by promoting the internalization of membrane bound cell surface receptors. This NP system was further modified with siRNA and evaluated as a carrier for brain tumor targeted gene therapy. Most significantly, the evaluation of

  13. Malignant soft tissue tumors in children.

    PubMed

    Thacker, Mihir M

    2013-10-01

    Soft tissue masses are frequently seen in children. Although most are benign or reactive, soft tissue sarcomas (STS)-both rhabdomyosarcoma (most common) and non-rhabdo STS, do occur in the extremities. Appropriate evaluation of extremity soft tissue tumors often includes a biopsy as the clinical and imaging features may not be enough to establish a definitive diagnosis. Much needs to be done for improving the treatment of these rare but often devastating sarcomas. Given the small numbers of these cases seen at various centers, collaborative efforts should be made to further our understanding and improve the management of these challenging cases. PMID:24095080

  14. [Differential infratentorial brain tumor diagnosis in children].

    PubMed

    Warmuth-Metz, M; Kühl, J; Rutkowski, S; Krauss, J; Solymosi, L

    2003-11-01

    With the exception of the first year of life, infratentorial brain tumors are more frequent in the first decade than tumors in the supratentorial compartment. In particular these are cerebellar low-grade astrocytomas, medulloblastomas, brainstem gliomas and ependymomas of the fourth ventricle. The morphology on MRI and CT and the mode of dissemination permit differential diagnosis in many cases. To allow correct stratification into different treatments in possibly disseminating malignant brain tumors, knowledge of the status of dissemination is essential, and therefore not only cranial but also spinal MRI is indispensable for staging. If the spinal MRI is performed in the immediate postoperative period, knowledge of the normal non-specific purely postoperative changes, often seen as enhancement in the subdural spinal spaces, is necessary in order to avoid misinterpretation as meningial seeding. The differential diagnosis of pediatric infratentorial brain tumors and the morphology of subdural enhancement are illustrated with typical images. The natural history of the most frequent tumors and its importance for treatment decisions is discussed in light of the literature.

  15. A Rare Malignant Fetal Brain Tumor.

    PubMed

    Iruretagoyena, Jesus Igor; Heiser, Timothy; Iskandar, Bermans; Shah, Dinesh

    2016-01-01

    A gravida 4, para 3 female at 37 weeks' gestation presented for a routine ultrasound. She had an otherwise uncomplicated low-risk pregnancy. The sonographic evaluation of the fetus revealed a macrocephaly and a deviation of the brain midline structures with a mass effect as well as a massively dilated left cerebral ventricular system with ill-defined echogenic ventricular delineation. Multiple free intracavitary echogenicities and disruptions of the brain mantle were visible. Our images were suggestive of either an intracranial bleed with the presence of an underlying tumor or a spontaneous bleed. A postnatal MRI was consistent with our prenatal findings of a possible tumor. The postnatal biopsy revealed an anaplastic astroblastoma within a hemorrhagic background. The infant received multiple courses of chemotherapy and further tumor debulking. At present, the infant is 18 months old. This is only the 4th case of an astrocytoma identified in the fetal period, and our case has the longest known survival yet. PMID:26044034

  16. Organization of brain tissue - Is the brain a noisy processor.

    NASA Technical Reports Server (NTRS)

    Adey, W. R.

    1972-01-01

    This paper presents some thoughts on functional organization in cerebral tissue. 'Spontaneous' wave and unit firing are considered as essential phenomena in the handling of information. Various models are discussed which have been suggested to describe the pseudorandom behavior of brain cells, leading to a view of the brain as an information processor and its role in learning, memory, remembering and forgetting.

  17. Origin and quantification of differences between normal and tumor tissues observed by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-09-01

    The origin of the differences in the refractive index observed between normal and tumor tissues using terahertz spectroscopy has been described quantitatively. To estimate water content differences in tissues, we prepared fresh and paraffin-embedded samples from rats. An approximately 5% increase of water content in tumor tissues was calculated from terahertz time domain spectroscopy measurements compared to normal tissues. A greater than 15% increase in percentage of cell nuclei per unit area in tumor tissues was observed by hematoxylin and eosin stained samples, which generates a higher refractive index of biological components other than water. Both high water content and high cell density resulted in higher refractive index by approximately 0.05 in tumor tissues. It is predicted that terahertz spectroscopy can also be used to detect brain tumors in human tissue due to the same underlying mechanism as in rats.

  18. Multiscale modeling for image analysis of brain tumor studies.

    PubMed

    Bauer, Stefan; May, Christian; Dionysiou, Dimitra; Stamatakos, Georgios; Büchler, Philippe; Reyes, Mauricio

    2012-01-01

    Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multiscale, multiphysics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlas-based segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression. PMID:21813362

  19. NI-78LABEL-FREE MULTIPHOTON MICROSCOPY: A NOVEL TOOL FOR THE IMAGING OF BRAIN TUMORS

    PubMed Central

    Uckermann, Ortrud; Galli, Roberta; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Changes in tissue composition caused by brain tumor growth involve a series of complex biochemical alterations which can be imaged on unstained native tissue using multiphoton microscopy: We used coherent anti-Stokes Raman scattering (CARS) imaging that resonantly excites the symmetric stretching vibration of CH2 groups at 2850 cm−1 and visualizes lipid content in combination with imaging of endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) to discern different types of tumors from normal tissue in unstained, native brain samples. Experimental brain tumors were induced in nude mice NMRI nu/nu (n = 25) by stereotactic implantation of glioblastoma (U87), melanoma (A375) and breast cancer (MCF-7) cell lines. Label-free multiphoton microscopy of brain cryosections provided exhaustive information of the tumor morphochemistry. The tumor border was defined with cellular resolution by a strong reduction of CARS signal intensity to 61% (glioblastoma), 71% (melanoma) and 68% (breast cancer). This reduction of lipid content within the tumor was confirmed by Raman spectroscopy. Micrometastases infiltrating normal tissue (size 50 - 200 µm) were identified in glioblastoma and melanoma. Additionally, multiphoton microscopy proved a reduction of CARS signal intensity in all human glioblastoma samples analyzed (to 72%, n = 6). Additionally, relevant SHG and TPEF signals were detected in human primary and secondary brain tumor samples and enabled to image variations in tumor associated vasculature, fibrosis, necrosis and nuclear size and density. All primary or secondary brain tumors investigated were characterized by a lower intensity of the CARS signal, therefore offering a simple tool for objective tumor detection and delineation. The combination of techniques allows retrieving a quantity of information on native unstained tissue which is comparable to H&E staining. Therefore, label-free multiphoton microscopy has the potential to become a

  20. Sunitinib impedes brain tumor progression and reduces tumor-induced neurodegeneration in the microenvironment

    PubMed Central

    Hatipoglu, Gökçe; Hock, Stefan W; Weiss, Ruth; Fan, Zheng; Sehm, Tina; Ghoochani, Ali; Buchfelder, Michael; Savaskan, Nicolai E; Eyüpoglu, Ilker Y

    2015-01-01

    Malignant gliomas can be counted to the most devastating tumors in humans. Novel therapies do not achieve significant prolonged survival rates. The cancer cells have an impact on the surrounding vital tissue and form tumor zones, which make up the tumor microenvironment. We investigated the effects of sunitinib, a small molecule multitargeted receptor tyrosine kinase inhibitor, on constituents of the tumor microenvironment such as gliomas, astrocytes, endothelial cells, and neurons. Sunitinib has a known anti-angiogenic effect. We found that sunitinib normalizes the aberrant tumor-derived vasculature and reduces tumor vessel pathologies (i.e. auto-loops). Sunitinib has only minor effects on the normal, physiological, non-proliferating vasculature. We found that neurons and astrocytes are protected by sunitinib against glutamate-induced cell death, whereas sunitinib acts as a toxin towards proliferating endothelial cells and tumor vessels. Moreover, sunitinib is effective in inducing glioma cell death. We determined the underlying pathways by which sunitinib operates as a toxin on gliomas and found vascular endothelial growth factor receptor 2 (VEGFR2, KDR/Flk1) as the main target to execute gliomatoxicity. The apoptosis-inducing effect of sunitinib can be mimicked by inhibition of VEGFR2. Knockdown of VEGFR2 can, in part, foster the resistance of glioma cells to receptor tyrosine kinase inhibitors. Furthermore, sunitinib alleviates tumor-induced neurodegeneration. Hence, we tested whether temozolomide treatment could be potentiated by sunitinib application. Here we show that sunitinib can amplify the effects of temozolomide in glioma cells. Thus, our data indicate that combined treatment with temozolomide does not abrogate the effects of sunitinib. In conclusion, we found that sunitinib acts as a gliomatoxic agent and at the same time carries out neuroprotective effects, reducing tumor-induced neurodegeneration. Thus, this report uncovered sunitinib's actions on

  1. Segmentation of liver region with tumorous tissues

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Lee, Gobert; Tajima, Tetsuji; Kitagawa, Teruhiko; Kanematsu, Masayuki; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Hoshi, Hiroaki; Nawano, Shigeru; Shinozaki, Kenji

    2007-03-01

    Segmentation of an abnormal liver region based on CT or MR images is a crucial step in surgical planning. However, precisely carrying out this step remains a challenge due to either connectivities of the liver to other organs or the shape, internal texture, and homogeneity of liver that maybe extensively affected in case of liver diseases. Here, we propose a non-density based method for extracting the liver region containing tumor tissues by edge detection processing. False extracted regions are eliminated by a shape analysis method and thresholding processing. If the multi-phased images are available then the overall outcome of segmentation can be improved by subtracting two phase images, and the connectivities can be further eliminated by referring to the intensity on another phase image. Within an edge liver map, tumor candidates are identified by their different gray values relative to the liver. After elimination of the small and nonspherical over-extracted regions, the final liver region integrates the tumor region with the liver tissue. In our experiment, 40 cases of MDCT images were used and the result showed that our fully automatic method for the segmentation of liver region is effective and robust despite the presence of hepatic tumors within the liver.

  2. Distribution of hematoporphyrin derivative in the rat 9l gliosarcoma brain tumor analyzed by digital video fluorescence microscopy.

    PubMed

    Boggan, J E; Walter, R; Edwards, M S; Borcich, J K; Davis, R L; Koonce, M; Berns, M W

    1984-12-01

    A digital video fluorescence microscopy technique was used to evaluate the distribution of hematoporphyrin derivative (HPD) in the rat intracerebral 9L gliosarcoma brain-tumor model at 4, 24, 48, and 72 hours after intravenous administration of 10 mg/kg of the drug. Compared to surrounding normal brain, there was significant preferential uptake of HPD into the tumor. In sections surveyed, fluorescence reached a maximum value by 24 hours; however, only 33% to 44% of the tumor was fluorescent. In contrast, fluorescence within the surrounding normal brain was maximum at 4 hours, but was present in less than 1% of the brain tissue evaluated. The effect of HPD sensitization to a laser light dose (633 nm) of 30 joules/sq cm delivered through the intact skull was evaluated histologically in 10 rats. A patchy coagulation necrosis, possibly corresponding to the distribution of HPD fluorescence seen within the tumor, was observed. There was evidence that photoradiation therapy (PRT) affects defective tumor vasculature and that a direct tumor cell toxicity spared normal brain tissue. Despite these findings, limited uptake of HPD in tumor and the brain adjacent to tumor may decrease the effectiveness of PRT in the 9L gliosarcoma brain-tumor model. Because of the similarity between the capillary system of the 9L tumor and human brain tumors, PRT may have a limited therapeutic effect in patients with malignant brain tumors. PMID:6239014

  3. Finite element modeling of haptic thermography: A novel approach for brain tumor detection during minimally invasive neurosurgery.

    PubMed

    Sadeghi-Goughari, Moslem; Mojra, Afsaneh

    2015-10-01

    Intraoperative Thermal Imaging (ITI) is a novel neuroimaging method that can potentially locate tissue abnormalities and hence improves surgeon's diagnostic ability. In the present study, thermography technique coupled with artificial tactile sensing method called "haptic thermography" is utilized to investigate the presence of an abnormal object as a tumor with an elevated temperature relative to the normal tissue in the brain. The brain tissue is characterized as a hyper-viscoelastic material to be descriptive of mechanical behavior of the brain tissue during tactile palpation. Based on a finite element approach, Magnetic Resonance Imaging (MRI) data of a patient diagnosed to have a brain tumor is utilized to simulate and analyze the capability of haptic thermography in detection and localization of brain tumor. Steady-state thermal results prove that temperature distribution is an appropriate outcome of haptic thermography for the superficial tumors while heat flux distribution can be used as an extra thermal result for deeply located tumors. PMID:26590456

  4. Effects of Irradiation on Brain Vasculature Using an In Situ Tumor Model

    SciTech Connect

    Zawaski, Janice A.; Gaber, M. Waleed; Sabek, Omaima M.; Wilson, Christy M.; Duntsch, Christopher D.; Merchant, Thomas E.

    2012-03-01

    Purpose: Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials: Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood-brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results: The presence of tumor alone increases permeability but has little effect on leukocyte-endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions: We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation.

  5. Improving the accuracy of brain tumor surgery via Raman-based technology.

    PubMed

    Hollon, Todd; Lewis, Spencer; Freudiger, Christian W; Sunney Xie, X; Orringer, Daniel A

    2016-03-01

    Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors. PMID:26926067

  6. Improving the accuracy of brain tumor surgery via Raman-based technology

    PubMed Central

    Hollon, Todd; Lewis, Spencer; Freudiger, Christian W.; Xie, X. Sunney; Orringer, Daniel A.

    2016-01-01

    Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors. PMID:26926067

  7. Brain Tumor Database, a free relational database for collection and analysis of brain tumor patient information.

    PubMed

    Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio

    2015-03-01

    In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org.

  8. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    PubMed Central

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  9. Acellular organ scaffolds for tumor tissue engineering

    NASA Astrophysics Data System (ADS)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  10. Molecular imaging of brain tumors with 18F-DOPA PET and PET/CT.

    PubMed

    Calabria, Ferdinando; Chiaravalloti, Agostino; Di Pietro, Barbara; Grasso, Cristina; Schillaci, Orazio

    2012-06-01

    The objective of this study was to give an overview of the potential clinical utility of [18F]-L-dihydroxyphenylalanine (18F-DOPA) PET and PET/CT for imaging of brain tumors. Review articles and reference lists were used to supplement the search findings. 18F-DOPA has been investigated as a PET tracer for primary brain tumors, metastases of somatic cancer, and evaluation of relapse of pathology in patients with brain tumor after surgery and/or radiotherapy on the basis of enhanced cell proliferation. Available studies have provided encouraging preliminary results for diagnosis of brain tumors and relapse after surgery/radiotherapy. In the brain, excellent discrimination between tumor and normal tissue can be achieved because of the low physiological uptake of 18F-DOPA and the high ratio between tumor and normal hemispheric tissue. Information on evaluation of brain metastases is limited but encouraging. PET and PET/CT with 18F-DOPA are useful in diagnosing primary brain tumors and should be recommended in the diagnosis of relapse of disease after surgical treatment and/or radiotherapy. Semiquantitative analysis could improve diagnosis while correlative imaging with MRI is essential. Limits are due to low knowledge of potential pitfalls.

  11. [Graph-based interactive three-dimensional segmentation of magnetic resonance images of brain tumors].

    PubMed

    Li, Wei; Chen, Wu-fan

    2009-01-01

    We propose a graph-based three-dimensional (3D) algorithm to automatically segment brain tumors from magnetic resonance images (MRI). The algorithm uses minimum s/t cut criteria to obtain a global optimal result of objective function formed according to Markov Random Field Model and Maximum a posteriori (MAP-MRF) theory, and by combining the expectation-maximization (EM) algorithm to estimate the parameters of mixed Gaussian model for normal brain and tumor tissues. 3D segmentation results of brain tumors are fast achieved by our algorithm. The validation of the algorithm was tested and showed good accuracy and adaptation under simple interactions with the physicians. PMID:19218135

  12. Magnetic resonance spectroscopy for detection of choline kinase inhibition in the treatment of brain tumors

    PubMed Central

    Kumar, Manoj; Arlauckas, Sean P.; Saksena, Sona; Verma, Gaurav; Ittyerah, Ranjit; Pickup, Stephen; Popov, Anatoliy V.; Delikatny, Edward J.; Poptani, Harish

    2015-01-01

    Abnormal choline metabolism is a hallmark of cancer and is associated with oncogenesis and tumor progression. Increased choline is consistently observed in both pre-clinical tumor models and in human brain tumors by proton magnetic resonance spectroscopy (MRS). Thus, inhibition of choline metabolism using specific choline kinase inhibitors such as MN58b may be a promising new strategy for treatment of brain tumors. We demonstrate the efficacy of MN58b in suppressing phosphocholine production in three brain tumor cell lines. In vivo MRS studies of rats with intra-cranial F98-derived brain tumors showed a significant decrease in tumor total choline concentration after treatment with MN58b. High resolution MRS of tissue extracts confirmed that this decrease was due to a significant reduction in phosphocholine. Concomitantly, a significant increase in poly-unsaturated lipid resonances was also observed in treated tumors, indicating apoptotic cell death. Magnetic resonance imaging (MRI) based volume measurements demonstrated a significant growth arrest in the MN58b-treated tumors in comparison to saline-treated controls. Histologically, MN58b-treated tumors showed decreased cell density, as well as increased apoptotic cells. These results suggest that inhibition of choline kinase can be used as an adjuvant to chemotherapy in the treatment of brain tumors and that decreases in total choline observed by MRS can be used as an effective phamacodynamic biomarker of treatment response. PMID:25657334

  13. Stereotactic Radiosurgery in Treating Patients With Brain Tumors

    ClinicalTrials.gov

    2012-03-21

    Adult Central Nervous System Germ Cell Tumor; Adult Malignant Meningioma; Adult Medulloblastoma; Adult Noninfiltrating Astrocytoma; Adult Oligodendroglioma; Adult Craniopharyngioma; Adult Meningioma; Brain Metastases; Adult Ependymoma; Adult Pineal Parenchymal Tumor; Adult Brain Stem Glioma; Adult Infiltrating Astrocytoma; Mixed Gliomas; Stage IV Peripheral Primitive Neuroectodermal Tumor

  14. Third harmonic generation imaging for fast, label-free pathology of human brain tumors.

    PubMed

    Kuzmin, N V; Wesseling, P; Hamer, P C de Witt; Noske, D P; Galgano, G D; Mansvelder, H D; Baayen, J C; Groot, M L

    2016-05-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies.

  15. Third harmonic generation imaging for fast, label-free pathology of human brain tumors

    PubMed Central

    Kuzmin, N. V.; Wesseling, P.; Hamer, P. C. de Witt; Noske, D. P.; Galgano, G. D.; Mansvelder, H. D.; Baayen, J. C.; Groot, M. L.

    2016-01-01

    In brain tumor surgery, recognition of tumor boundaries is key. However, intraoperative assessment of tumor boundaries by the neurosurgeon is difficult. Therefore, there is an urgent need for tools that provide the neurosurgeon with pathological information during the operation. We show that third harmonic generation (THG) microscopy provides label-free, real-time images of histopathological quality; increased cellularity, nuclear pleomorphism, and rarefaction of neuropil in fresh, unstained human brain tissue could be clearly recognized. We further demonstrate THG images taken with a GRIN objective, as a step toward in situ THG microendoscopy of tumor boundaries. THG imaging is thus a promising tool for optical biopsies. PMID:27231629

  16. Photodynamic Therapy for Malignant Brain Tumors

    PubMed Central

    AKIMOTO, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women’s Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area. PMID:26888042

  17. Photodynamic Therapy for Malignant Brain Tumors.

    PubMed

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area. PMID:26888042

  18. Molecular Culprits Generating Brain Tumor Stem Cells

    PubMed Central

    Oh, Se-Yeong

    2013-01-01

    Despite current advances in multimodality therapies, such as surgery, radiotherapy, and chemotherapy, the outcome for patients with high-grade glioma remains fatal. Understanding how glioma cells resist various therapies may provide opportunities for developing new therapies. Accumulating evidence suggests that the main obstacle for successfully treating high-grade glioma is the existence of brain tumor stem cells (BTSCs), which share a number of cellular properties with adult stem cells, such as self-renewal and multipotent differentiation capabilities. Owing to their resistance to standard therapy coupled with their infiltrative nature, BTSCs are a primary cause of tumor recurrence post-therapy. Therefore, BTSCs are thought to be the main glioma cells representing a novel therapeutic target and should be eliminated to obtain successful treatment outcomes. PMID:24904883

  19. Multifocal brain radionecrosis masquerading as tumor dissemination

    SciTech Connect

    Safdari, H.; Boluix, B.; Gros, C.

    1984-01-01

    The authors report on an autopsy-proven case of multifocal widespread radionecrosis involving both cerebral hemispheres and masquerading as tumor dissemination on a CT scan done 13 months after complete resection of an oligodendroglioma followed by radiation therapy. This case demonstrates that radiation damage may be present in a CT scan as a multifocal, disseminated lesion. Since the survival of brain-tumor patients who have undergone radiation therapy is prolonged by aggressive therapy, the incidence and variability of radiation-induced complications in such cases is likely to increase. For similar reasons, the radionecrosis in such cases should be taken into consideration. A short review of the CT scan findings and diagnostic and therapeutic considerations in a case of widespread radionecrosis is presented. The need for appropriate diagnosis and subsequent life-saving management is emphasized.

  20. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  1. Use of chlorotoxin for targeting of primary brain tumors.

    PubMed

    Soroceanu, L; Gillespie, Y; Khazaeli, M B; Sontheimer, H

    1998-11-01

    Gliomas are primary brain tumors that arise from differentiated glial cells through a poorly understood malignant transformation. Although glioma cells retain some genetic and antigenic features common to glial cells, they show a remarkable degree of antigenic heterogeneity and variable mutations in their genome. Glioma cells have recently been shown to express a glioma-specific chloride ion channel (GCC) that is sensitive to chlorotoxin (CTX), a small peptide purified from Leiurus quinquestriatus scorpion venom [N. Ullrich et al, Neuroreport, 7: 1020-1024, 1996; and N. Ullrich and H. Sontheimer, Am. J. Physiol. (Cell Physiol.), 270: C1511-C1521, 1996]. Using native and recombinant 125I-labeled CTX, we show that toxin binding to glioma cells is specific and involves high affinity [dissociation constant (Kd)=4.2 nM] and low affinity (Kd=660 nml) binding sites. In radioreceptor assays, 125I-labeled CTX binds to a protein with Mr=72,000, presumably GCC or a receptor that modulates GCC activity. In vivo targeting and biodistribution experiments were obtained using 125I- and (131)I-labeled CTX injected into severe combined immunodeficient mice bearing xenografted gliomas. CTX selectively accumulated in the brain of tumor-bearing mice with calculated brain: muscle ratios of 36.4% of injected dose/g (ID/g), as compared to 12.4% ID/g in control animals. In the tumor-bearing severe combined immunodeficient mice, the vast majority of the brain-associated radioactivity was localized within the tumor (tumor:muscle ratio, 39.13% ID/g; contralateral brain:muscle ratio, 6.68%ID/g). Moreover, (131)I-labeled CTX distribution, visualized through in vivo imaging by gamma ray camera scans, demonstrates specific and persistent intratumoral localization of the radioactive ligand. Immunohistochemical studies using biotinylated and fluorescently tagged CTX show highly selective staining of glioma cells in vitro, in situ, and in sections of patient biopsies. Comparison tissues including

  2. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor.

    PubMed

    Valvona, Cara J; Fillmore, Helen L; Nunn, Peter B; Pilkington, Geoffrey J

    2016-01-01

    There are over 120 types of brain tumor and approximately 45% of primary brain tumors are gliomas, of which glioblastoma multiforme (GBM) is the most common and aggressive with a median survival rate of 14 months. Despite progress in our knowledge, current therapies are unable to effectively combat primary brain tumors and patient survival remains poor. Tumor metabolism is important to consider in therapeutic approaches and is the focus of numerous research investigations. Lactate dehydrogenase A (LDHA) is a cytosolic enzyme, predominantly involved in anaerobic and aerobic glycolysis (the Warburg effect); however, it has multiple additional functions in non-neoplastic and neoplastic tissues, which are not commonly known or discussed. This review summarizes what is currently known about the function of LDHA and identifies areas that would benefit from further exploration. The current knowledge of the role of LDHA in the brain and its potential as a therapeutic target for brain tumors will also be highlighted. The Warburg effect appears to be universal in tumors, including primary brain tumors, and LDHA (because of its involvement with this process) has been identified as a potential therapeutic target. Currently, there are, however, no suitable LDHA inhibitors available for tumor therapies in the clinic.

  3. Brain Penetration and Efficacy of Different Mebendazole Polymorphs in a Mouse Brain Tumor Model

    PubMed Central

    Wanjiku, Teresia; Rudek, Michelle A; Joshi, Avadhut; Gallia, Gary L.; Riggins, Gregory J.

    2015-01-01

    Purpose Mebendazole (MBZ), first used as an antiparasitic drug, shows preclinical efficacy in models of glioblastoma and medulloblastoma. Three different MBZ polymorphs (A, B and C) exist and a detailed assessment of the brain penetration, pharmacokinetics and anti-tumor properties of each individual MBZ polymorph is necessary to improve mebendazole-based brain cancer therapy. Experimental Design and Results In this study, various marketed and custom-formulated MBZ tablets were analyzed for their polymorph content by IR spectroscopy and subsequently tested in orthotopic GL261 mouse glioma model for efficacy and tolerability. The pharmacokinetics and brain concentration of MBZ polymorphs and two main metabolites were analyzed by LC-MS. We found that polymorph B and C both increased survival in a GL261 glioma model, as B exhibited greater toxicity. Polymorph A showed no benefit. Both, polymorph B and C, reached concentrations in the brain that exceeded the IC50 in GL261 cells 29-fold. In addition, polymorph C demonstrated an AUC0-24h brain-to-plasma (B/P) ratio of 0.82, whereas B showed higher plasma AUC and lower B/P ratio. In contrast, polymorph A presented markedly lower levels in the plasma and brain. Furthermore, the combination with elacridar was able to significantly improve the efficacy of polymorph C in GL261 glioma and D425 medulloblastoma models in mice. Conclusion Among MBZ polymorphs, C reaches therapeutically effective concentrations in the brain tissue and tumor with less side effects and is the better choice for brain cancer therapy. Its efficacy can be further enhanced by combination with elacridar. PMID:25862759

  4. Detection of an atypical teratoid rhabdoid brain tumor gene deletion in circulating blood using next-generation sequencing.

    PubMed

    Chakravadhanula, Madhavi; Tembe, Waibhav; Legendre, Christophe; Carpentieri, David; Liang, Winnie S; Bussey, Kimberly J; Carpten, John; Berens, Michael E; Bhardwaj, Ratan D

    2014-09-01

    Circulating biomarkers such as somatic chromosome mutations are novel diagnostic tools to detect cancer noninvasively. We describe focal deletions found in a patient with atypical teratoid rhabdoid tumor, a highly aggressive early childhood pediatric tumor. First, we used magnetic resonance imaging (MRI) and histopathology to study the tumor anatomy. Next, we used whole genome sequencing (Next Gen Sequencing) and Bioinformatics interrogation to discover the presence of 3 focal deletions in tumor tissue and 2 of these 3 focal deletions in patient's blood also. About 20% of the blood DNA sequencing reads matched the tumor DNA reads at the SMARCB1 gene locus. Circulating, tumor-specific DNA aberrations are a promising biomarker for atypical teratoid rhabdoid tumor patients. The high percentage of tumor DNA detected in blood indicates that either circulating brain tumor cells lyse in the blood or that contents of brain tumor cells traverse a possibly compromised blood-brain barrier in this patient.

  5. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy

    PubMed Central

    Ji, Minbiao; Orringer, Daniel A.; Freudiger, Christian W.; Ramkissoon, Shakti; Liu, Xiaohui; Lau, Darryl; Golby, Alexandra J.; Norton, Isaiah; Hayashi, Marika; Agar, Nathalie Y.R.; Young, Geoffrey S.; Spino, Cathie; Santagata, Sandro; Camelo-Piragua, Sandra; Ligon, Keith L.; Sagher, Oren; Xie, X. Sunney

    2013-01-01

    Surgery is an essential component in the treatment of brain tumors. However, delineating tumor from normal brain remains a major challenge. Here we describe the use of stimulated Raman scattering (SRS) microscopy for differentiating healthy human and mouse brain tissue from tumor-infiltrated brain based on histoarchitectural and biochemical differences. Unlike traditional histopathology, SRS is a label-free technique that can be rapidly performed in situ. SRS microscopy was able to differentiate tumor from non-neoplastic tissue in an infiltrative human glioblastoma xenograft mouse model based on their different Raman spectra. We further demonstrated a correlation between SRS and H&E microscopy for detection of glioma infiltration (κ=0.98). Finally, we applied SRS microscopy in vivo in mice during surgery to reveal tumor margins that were undetectable under standard operative conditions. By providing rapid intraoperative assessment of brain tissue, SRS microscopy may ultimately improve the safety and accuracy of surgeries where tumor boundaries are visually indistinct. PMID:24005159

  6. Photodynamic therapy for implanted VX2 tumor in rabbit brains

    NASA Astrophysics Data System (ADS)

    Li, Fei; Feng, Hua; Lin, Jiangkai; Zhu, Gang; Chen, Zhi; Li, Cong-yan

    2005-07-01

    To evaluate the therapeutic effect and the safety of single photodynamic therapy (PDT) with hematoporphyrin derivative produced in China, 60 New Zealand adult rabbits with VX2 tumor implanted into the brain were divided randomly into non-PDT-group and PDT-group. 36 rabbits of the PDT-group were performed photodynamic therapy. The survival time, neurological deteriorations, intracranial pressure (ICP), histology, pathology, tumor volume and brain water content were measured. Other 12 rabbits were received hematoporphyrin derivative and light irradiation of the normal brain. The ICP, histology, pathology, and brain water content were measured. The result indicated that Simple PDT may elongate the average survival time of the rabbits with VX2 tumors significantly; kill tumor cells; cause transient brain edema and increase ICP, but it is safe to be used in treating brain tumor.

  7. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    SciTech Connect

    Soloway, A.H.; Barth, R.F.

    1990-01-01

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  8. Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Lau, Y.H.

    1994-05-01

    This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions of interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.

  9. Brain tumors in man and animals: report of a workshop

    SciTech Connect

    Not Available

    1986-09-01

    This report summarizes the results of a workshop on brain tumors in man and animals. Animals, especially rodents are often used as surrogates for man to detect chemicals that have the potential to induce brain tumors in man. Therefore, the workshop was focused mainly on brain tumors in the F344 rat and B6C3F1 mouse because of the frequent use of these strains in long-term carcinogenesis studies. Over 100 brain tumors in F344 rats and more than 50 brain tumors in B6C3F1 mice were reviewed and compared to tumors found in man and domestic or companion animals. In the F344 rat, spontaneous brain tumors are uncommon, most are of glial origin, and the highly undifferentiated glioblastoma multiforme, a frequent tumor of man was not found. In the B6C3F1 mouse, brain tumors are exceedingly rare. Lipomas of the choroid plexus and meningiomas together account for more than 50% of the tumors found. Both rodent strains examined have low background rates and very little variability between control groups.

  10. Image updating for brain deformation compensation in tumor resection

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Olson, Jonathan D.; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2016-03-01

    Preoperative magnetic resonance images (pMR) are typically used for intraoperative guidance in image-guided neurosurgery, the accuracy of which can be significantly compromised by brain deformation. Biomechanical finite element models (FEM) have been developed to estimate whole-brain deformation and produce model-updated MR (uMR) that compensates for brain deformation at different surgical stages. Early stages of surgery, such as after craniotomy and after dural opening, have been well studied, whereas later stages after tumor resection begins remain challenging. In this paper, we present a method to simulate tumor resection by incorporating data from intraoperative stereovision (iSV). The amount of tissue resection was estimated from iSV using a "trial-and-error" approach, and the cortical shift was measured from iSV through a surface registration method using projected images and an optical flow (OF) motion tracking algorithm. The measured displacements were employed to drive the biomechanical brain deformation model, and the estimated whole-brain deformation was subsequently used to deform pMR and produce uMR. We illustrate the method using one patient example. The results show that the uMR aligned well with iSV and the overall misfit between model estimates and measured displacements was 1.46 mm. The overall computational time was ~5 min, including iSV image acquisition after resection, surface registration, modeling, and image warping, with minimal interruption to the surgical flow. Furthermore, we compare uMR against intraoperative MR (iMR) that was acquired following iSV acquisition.

  11. Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview.

    PubMed

    Liu, Hao-Li; Fan, Ching-Hsiang; Ting, Chien-Yu; Yeh, Chih-Kuang

    2014-01-01

    Malignant glioma is one of the most challenging central nervous system (CNS) diseases, which is typically associated with high rates of recurrence and mortality. Current surgical debulking combined with radiation or chemotherapy has failed to control tumor progression or improve glioma patient survival. Microbubbles (MBs) originally serve as contrast agents in diagnostic ultrasound but have recently attracted considerable attention for therapeutic application in enhancing blood-tissue permeability for drug delivery. MB-facilitated focused ultrasound (FUS) has already been confirmed to enhance CNS-blood permeability by temporally opening the blood-brain barrier (BBB), thus has potential to enhance delivery of various kinds of therapeutic agents into brain tumors. Here we review the current preclinical studies which demonstrate the reports by using FUS with MB-facilitated drug delivery technology in brain tumor treatment. In addition, we review newly developed multifunctional theranostic MBs for FUS-induced BBB opening for brain tumor therapy.

  12. Combining Microbubbles and Ultrasound for Drug Delivery to Brain Tumors: Current Progress and Overview

    PubMed Central

    Liu, Hao-Li; Fan, Ching-Hsiang; Ting, Chien-Yu; Yeh, Chih-Kuang

    2014-01-01

    Malignant glioma is one of the most challenging central nervous system (CNS) diseases, which is typically associated with high rates of recurrence and mortality. Current surgical debulking combined with radiation or chemotherapy has failed to control tumor progression or improve glioma patient survival. Microbubbles (MBs) originally serve as contrast agents in diagnostic ultrasound but have recently attracted considerable attention for therapeutic application in enhancing blood-tissue permeability for drug delivery. MB-facilitated focused ultrasound (FUS) has already been confirmed to enhance CNS-blood permeability by temporally opening the blood-brain barrier (BBB), thus has potential to enhance delivery of various kinds of therapeutic agents into brain tumors. Here we review the current preclinical studies which demonstrate the reports by using FUS with MB-facilitated drug delivery technology in brain tumor treatment. In addition, we review newly developed multifunctional theranostic MBs for FUS-induced BBB opening for brain tumor therapy. PMID:24578726

  13. Paleoproteomic study of the Iceman's brain tissue.

    PubMed

    Maixner, Frank; Overath, Thorsten; Linke, Dennis; Janko, Marek; Guerriero, Gea; van den Berg, Bart H J; Stade, Bjoern; Leidinger, Petra; Backes, Christina; Jaremek, Marta; Kneissl, Benny; Meder, Benjamin; Franke, Andre; Egarter-Vigl, Eduard; Meese, Eckart; Schwarz, Andreas; Tholey, Andreas; Zink, Albert; Keller, Andreas

    2013-10-01

    The Tyrolean Iceman, a Copper-age ice mummy, is one of the best-studied human individuals. While the genome of the Iceman has largely been decoded, tissue-specific proteomes have not yet been investigated. We studied the proteome of two distinct brain samples using gel-based and liquid chromatography-mass spectrometry-based proteomics technologies together with a multiple-databases and -search algorithms-driven data-analysis approach. Thereby, we identified a total of 502 different proteins. Of these, 41 proteins are known to be highly abundant in brain tissue and 9 are even specifically expressed in the brain. Furthermore, we found 10 proteins related to blood and coagulation. An enrichment analysis revealed a significant accumulation of proteins related to stress response and wound healing. Together with atomic force microscope scans, indicating clustered blood cells, our data reopens former discussions about a possible injury of the Iceman's head near the site where the tissue samples have been extracted.

  14. Novel polyomavirus associated with brain tumors in free-ranging raccoons, western United States.

    PubMed

    Dela Cruz, Florante N; Giannitti, Federico; Li, Linlin; Woods, Leslie W; Del Valle, Luis; Delwart, Eric; Pesavento, Patricia A

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010-May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons.

  15. Novel Polyomavirus associated with Brain Tumors in Free-Ranging Raccoons, Western United States

    PubMed Central

    Dela Cruz, Florante N.; Giannitti, Federico; Li, Linlin; Woods, Leslie W.; Del Valle, Luis; Delwart, Eric

    2013-01-01

    Tumors of any type are exceedingly rare in raccoons. High-grade brain tumors, consistently located in the frontal lobes and olfactory tracts, were detected in 10 raccoons during March 2010–May 2012 in California and Oregon, suggesting an emerging, infectious origin. We have identified a candidate etiologic agent, dubbed raccoon polyomavirus, that was present in the tumor tissue of all affected animals but not in tissues from 20 unaffected animals. Southern blot hybridization and rolling circle amplification showed the episomal viral genome in the tumors. The multifunctional nuclear protein large T-antigen was detectable by immunohistochemical analyses in a subset of neoplastic cells. Raccoon polyomavirus may contribute to the development of malignant brain tumors of raccoons. PMID:23260029

  16. Intraoperative brain tumor resection cavity characterization with conoscopic holography

    NASA Astrophysics Data System (ADS)

    Simpson, Amber L.; Burgner, Jessica; Chen, Ishita; Pheiffer, Thomas S.; Sun, Kay; Thompson, Reid C.; Webster, Robert J., III; Miga, Michael I.

    2012-02-01

    Brain shift compromises the accuracy of neurosurgical image-guided interventions if not corrected by either intraoperative imaging or computational modeling. The latter requires intraoperative sparse measurements for constraining and driving model-based compensation strategies. Conoscopic holography, an interferometric technique that measures the distance of a laser light illuminated surface point from a fixed laser source, was recently proposed for non-contact surface data acquisition in image-guided surgery and is used here for validation of our modeling strategies. In this contribution, we use this inexpensive, hand-held conoscopic holography device for intraoperative validation of our computational modeling approach to correcting for brain shift. Laser range scan, instrument swabbing, and conoscopic holography data sets were collected from two patients undergoing brain tumor resection therapy at Vanderbilt University Medical Center. The results of our study indicate that conoscopic holography is a promising method for surface acquisition since it requires no contact with delicate tissues and can characterize the extents of structures within confined spaces. We demonstrate that for two clinical cases, the acquired conoprobe points align with our model-updated images better than the uncorrected images lending further evidence that computational modeling approaches improve the accuracy of image-guided surgical interventions in the presence of soft tissue deformations.

  17. Brain tumor resection guided by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Leblond, Frederic; Fontaine, Kathryn M.; Valdes, Pablo; Ji, Songbai; Pogue, Brian W.; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2009-02-01

    We present the methods that are being used in the scope of an on-going clinical trial designed to assess the usefulness of ALA-PpIX fluorescence imaging when used in conjunction with pre-operative MRI. The overall objective is to develop imaging-based neuronavigation approaches to aid in maximizing the completeness of brain tumor resection, thereby improving patient survival rate. In this paper we present the imaging methods that are used, emphasizing technical aspects relating to the fluorescence optical microscope, including initial validation approaches based on phantom and small-animal experiments. The surgical workflow is then described in detail based on a high-grade glioma resection we performed.

  18. Increasing brain tumor rates: is there a link to aspartame?

    PubMed

    Olney, J W; Farber, N B; Spitznagel, E; Robins, L N

    1996-11-01

    In the past two decades brain tumor rates have risen in several industrialized countries, including the United States. During this time, brain tumor data have been gathered by the National Cancer Institute from catchment areas representing 10% of the United States population. In the present study, we analyzed these data from 1975 to 1992 and found that the brain tumor increases in the United States occurred in two distinct phases, an early modest increase that may primarily reflect improved diagnostic technology, and a more recent sustained increase in the incidence and shift toward greater malignancy that must be explained by some other factor(s). Compared to other environmental factors putatively linked to brain tumors, the artificial sweetener aspartame is a promising candidate to explain the recent increase in incidence and degree of malignancy of brain tumors. Evidence potentially implicating aspartame includes an early animal study revealing an exceedingly high incidence of brain tumors in aspartame-fed rats compared to no brain tumors in concurrent controls, the recent finding that the aspartame molecule has mutagenic potential, and the close temporal association (aspartame was introduced into US food and beverage markets several years prior to the sharp increase in brain tumor incidence and malignancy). We conclude that there is need for reassessing the carcinogenic potential of aspartame.

  19. Selective ablation of rat brain tumors by boron neutron capture therapy

    SciTech Connect

    Coderre, J.; Joel, D. ); Rubin, P.; Freedman, A.; Hansen, J.; Wooding, T.S. Jr.; Gash, D. )

    1994-03-30

    Damage to the surrounding normal brain tissue limits the amount of radiation that can be delivered to intracranial tumors. Boron neutron capture therapy (BNCT) is a binary treatment that allows selective tumor irradiation. This study evaluates the damage imparted to the normal brain during BNCT or x-irradiation. The brains of rats with implanted 9L gliosarcomas were examined 1 year after tumor-curative doses of either 250 kV X-rays or BNCT. Histopathologic techniques included hematoxylin and eosin staining, horseradish peroxidase perfusion, and electron microscopy. Longterm X-ray survivors showed extensive cortical atrophy, loss of neurons, and widespread leakage of the blood-brain barrier (BBB), particularly around the tumor scar. In contrast, the brains and the BBB of longterm BNCT survivors appeared relatively normal under both light- and electron-microscopic examination. Intact blood vessels were observed running directly through the avascular, collagenous tumor scar. The selective therapeutic effect of BNCT is evident in comparison to x-irradiation. Both groups of animals showed no evidence of residual tumor at 1 year. However, with x-irradiation there is no therapeutic ratio and tumor eradication severely injuries the remaining brain parenchyma. These observations indicate a substantial therapeutic gain for BNCT. 50 refs., 8 figs., 1 tab.

  20. Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: Crossing the blood-brain-barrier divide

    PubMed Central

    Chacko, Ann-Marie; Li, Chunsheng; Pryma, Daniel A.; Brem, Steven; Coukos, George; Muzykantov, Vladimir R.

    2014-01-01

    Introduction Brain tumors are inherently difficult to treat in large part due to the cellular blood-brain barriers (BBB) that limit the delivery of therapeutics to the tumor tissue from the systemic circulation. Virtually no large-molecules, including antibody-based proteins, can penetrate the BBB. With antibodies fast becoming attractive ligands for highly specific molecular targeting to tumor antigens, a variety of methods are being investigated to enhance the access of these agents to intracranial tumors for imaging or therapeutic applications. Areas covered This review describes the characteristics of the BBB and the vasculature in brain tumors, described as the blood-brain tumor barrier (BBTB). Antibodies targeted to molecular markers of CNS tumors will be highlighted, and current strategies for enhancing the delivery of antibodies across these cellular barriers into the brain parenchyma to the tumor will be discussed. Non-invasive imaging approaches to assess BBB/BBTB permeability and/or antibody targeting will be presented as a means of guiding the optimal delivery of targeted agents to brain tumors. Expert Opinion Pre-clinical and clinical studies highlight the potential of several approaches in increasing brain tumor delivery across the blood-brain barrier divide. However, each carries its own risks and challenges. There is tremendous potential in using neuroimaging strategies to assist in understanding and defining the challenges to translating and optimizing molecularly-targeted antibody delivery to CNS tumors to improve clinical outcomes. PMID:23751126

  1. A survey of MRI-based medical image analysis for brain tumor studies.

    PubMed

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines. PMID:23743802

  2. New treatment modalities for brain tumors in dogs and cats.

    PubMed

    Rossmeisl, John H

    2014-11-01

    Despite advancements in standard therapies, intracranial tumors remain a significant source of morbidity and mortality in veterinary and human medicine. Several newer approaches are gaining more widespread acceptance or are currently being prepared for translation from experimental to routine therapeutic use. Clinical trials in dogs with spontaneous brain tumors have contributed to the development and human translation of several novel therapeutic brain tumor approaches. PMID:25441624

  3. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    ClinicalTrials.gov

    2015-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  4. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We

  5. Drug response in organoids generated from frozen primary tumor tissues

    PubMed Central

    Walsh, Alex J.; Cook, Rebecca S.; Sanders, Melinda E.; Arteaga, Carlos L.; Skala, Melissa C.

    2016-01-01

    Primary tumor organoids grown in three-dimensional culture provide an excellent platform for studying tumor progression, invasion, and drug response. However, organoid generation protocols require fresh tumor tissue, which limits organoid research and clinical use. This study investigates cellular morphology, viability, and drug response of organoids derived from frozen tissues. The results demonstrate that viable organoids can be grown from flash-frozen and thawed tissue and from bulk tissues slowly frozen in DMSO supplemented media. While the freezing process affects the basal metabolic rate of the cells, the optical metabolic imaging index correlates between organoids derived from fresh and frozen tissue and can be used to detect drug response of organoids grown from frozen tissues. The slow, DMSO frozen tissue yielded organoids with more accurate drug response than the flash frozen tissues, and thus bulk tissue should be preserved for subsequent organoid generation by slow freezing in DMSO supplemented media. PMID:26738962

  6. Patients With Brain Tumors: Who Receives Postacute Occupational Therapy Services?

    PubMed

    Chan, Vincy; Xiong, Chen; Colantonio, Angela

    2015-01-01

    Data on the utilization of occupational therapy among patients with brain tumors have been limited to those with malignant tumors and small samples of patients outside North America in specialized palliative care settings. We built on this research by examining the characteristics of patients with brain tumors who received postacute occupational therapy services in Ontario, Canada, using health care administrative data. Between fiscal years 2004-2005 and 2008-2009, 3,199 patients with brain tumors received occupational therapy services in the home care setting after hospital discharge; 12.4% had benign brain tumors, 78.2% had malignant brain tumors, and 9.4% had unspecified brain tumors. However, patients with benign brain tumors were older (mean age=63.3 yr), and a higher percentage were female (65.2%). More than 90% of patients received in-home occupational therapy services. Additional research is needed to examine the significance of these differences and to identify factors that influence access to occupational therapy services in the home care setting.

  7. [Electroroentgenography in the diagnosis of soft tissue tumors].

    PubMed

    Vintergal'ter, S F; Vishevnik, B I

    1989-01-01

    Clinical, electroroentgenographic and X-ray studies of soft tissues were carried out in 425 patients with malignant (75), benign (246) soft tissue tumors and in cases of such soft tissue pathologies of the extremities and body (104) as bursitis, hematoma, cyst and ganglia which may clinically simulate tumors. The paper discusses the technicalities of electroroentgenography which produces on one roentgenogram separate images of all components of soft tissues and bones in a given segment. A comparison of image quality assured by electroroentgeno- and roentgenography did not establish any significant difference in soft tissue tumor semiotics. Electroroentgenography of soft tissues is relatively less sophisticated, time-consuming and cheaper; it does not require special medical facilities for examining patients bearing soft tissue tumor or suspect lesions.

  8. Multifractal texture estimation for detection and segmentation of brain tumors.

    PubMed

    Islam, Atiq; Reza, Syed M S; Iftekharuddin, Khan M

    2013-11-01

    A stochastic model for characterizing tumor texture in brain magnetic resonance (MR) images is proposed. The efficacy of the model is demonstrated in patient-independent brain tumor texture feature extraction and tumor segmentation in magnetic resonance images (MRIs). Due to complex appearance in MRI, brain tumor texture is formulated using a multiresolution-fractal model known as multifractional Brownian motion (mBm). Detailed mathematical derivation for mBm model and corresponding novel algorithm to extract spatially varying multifractal features are proposed. A multifractal feature-based brain tumor segmentation method is developed next. To evaluate efficacy, tumor segmentation performance using proposed multifractal feature is compared with that using Gabor-like multiscale texton feature. Furthermore, novel patient-independent tumor segmentation scheme is proposed by extending the well-known AdaBoost algorithm. The modification of AdaBoost algorithm involves assigning weights to component classifiers based on their ability to classify difficult samples and confidence in such classification. Experimental results for 14 patients with over 300 MRIs show the efficacy of the proposed technique in automatic segmentation of tumors in brain MRIs. Finally, comparison with other state-of-the art brain tumor segmentation works with publicly available low-grade glioma BRATS2012 dataset show that our segmentation results are more consistent and on the average outperforms these methods for the patients where ground truth is made available. PMID:23807424

  9. Tissue Tracking: Applications for Brain MRI Classification

    PubMed Central

    Melonakos, John; Gao, Yi; Tannenbaum, Allen

    2013-01-01

    Bayesian classification methods have been extensively used in a variety of image processing applications, including medical image analysis. The basic procedure is to combine data-driven knowledge in the likelihood terms with clinical knowledge in the prior terms to classify an image into a pre-determined number of classes. In many applications, it is difficult to construct meaningful priors and, hence, homogeneous priors are assumed. In this paper, we show how expectation-maximization weights and neighboring posterior probabilities may be combined to make intuitive use of the Bayesian priors. Drawing upon insights from computer vision tracking algorithms, we cast the problem in a tissue tracking framework. We show results of our algorithm on the classification of gray and white matter along with surrounding cerebral spinal fluid in brain MRI scans. We show results of our algorithm on 20 brain MRI datasets along with validation against expert manual segmentations. PMID:24392193

  10. Tissue tracking: applications for brain MRI classification

    NASA Astrophysics Data System (ADS)

    Melonakos, John; Gao, Yi; Tannenbaum, Allen

    2007-03-01

    Bayesian classification methods have been extensively used in a variety of image processing applications, including medical image analysis. The basic procedure is to combine data-driven knowledge in the likelihood terms with clinical knowledge in the prior terms to classify an image into a pre-determined number of classes. In many applications, it is difficult to construct meaningful priors and, hence, homogeneous priors are assumed. In this paper, we show how expectation-maximization weights and neighboring posterior probabilities may be combined to make intuitive use of the Bayesian priors. Drawing upon insights from computer vision tracking algorithms, we cast the problem in a tissue tracking framework. We show results of our algorithm on the classification of gray and white matter along with surrounding cerebral spinal fluid in brain MRI scans. We show results of our algorithm on 20 brain MRI datasets along with validation against expert manual segmentations.

  11. A retroperitoneal neuroendocrine tumor in ectopic pancreatic tissue.

    PubMed

    Okasha, Hussein Hassan; Al-Bassiouni, Fahim; El-Ela, Monir Abo; Al-Gemeie, Emad Hamza; Ezzat, Reem

    2013-07-01

    Ectopic pancreas is the relatively uncommon presence of pancreatic tissue outside the normal location of the pancreas. We report a case of abdominal pain due to retroperitoneal neuroendocrine tumor arising from heterotopic pancreatic tissue between the duodenal wall and the head of the pancreas. Patient underwent surgical enucleation of the tumor.

  12. A Retroperitoneal Neuroendocrine Tumor in Ectopic Pancreatic Tissue

    PubMed Central

    Okasha, Hussein Hassan; Al-Bassiouni, Fahim; El-Ela, Monir Abo; Al-Gemeie, Emad Hamza; Ezzat, Reem

    2013-01-01

    Ectopic pancreas is the relatively uncommon presence of pancreatic tissue outside the normal location of the pancreas. We report a case of abdominal pain due to retroperitoneal neuroendocrine tumor arising from heterotopic pancreatic tissue between the duodenal wall and the head of the pancreas. Patient underwent surgical enucleation of the tumor. PMID:24949389

  13. Distinctive responses of brain tumor cells to TLR2 ligands.

    PubMed

    Yoon, Hee Jung; Jeon, Sae-Bom; Koh, Han Seok; Song, Jae-Young; Kim, Sang Soo; Kim, In-Hoo; Park, Eun Jung

    2015-05-01

    Malignant brain tumor mass contains significant numbers of infiltrating glial cells that may intimately interact with tumor cells and influence cancer treatments. Understanding of characteristic discrepancies between normal GLIA and tumor cells would, therefore, be valuable for improving anticancer therapeutics. Here, we report distinct differences in toll-like receptors (TLR)-2-mediated responses between normal glia and primary brain tumor cell lines. We found that tyrosine phosphorylation of STAT1 by TLR2 ligands and its downstream events did not occur in mouse, rat, or human brain tumor cell lines, but were markedly induced in normal primary microglia and astrocytes. Using TLR2-deficient, interferon (IFN)-γ-deficient, and IFNγ-receptor-1-deficient mice, we revealed that the impaired phosphorylation of STAT1 might be linked with defective TLR2 system in tumor cells, and that a TLR2-dependent pathway, not IFNγ-receptor machinery, might be critical for tyrosine STAT1 phosphorylation by TLR2 ligands. We also found that TLR2 and its heterodimeric partners, TLR1 and 6, on brain tumor cells failed to properly respond to TLR2 ligands, and representative TLR2-dependent cellular events, such as inflammatory responses and cell death, were not detected in brain tumor cells. Similar results were obtained in in vitro and in vivo experiments using orthotopic mouse and rat brain tumor models. Collectively, these results suggest that primary brain tumor cells may exhibit a distinctive dysfunction of TLR2-associated responses, resulting in abnormal signaling and cellular events. Careful targeting of this distinctive property could serve as the basis for effective therapeutic approaches against primary brain tumors.

  14. Characterization of IRDye 800CW chlorotoxin as a targeting agent for brain tumors.

    PubMed

    Kovar, Joy L; Curtis, Evan; Othman, Shadi F; Simpson, Melanie A; Olive, D Michael

    2013-09-15

    Primary brain tumors present significant challenges for surgical resection because of their location and the frequent occurrence of malignant projections extending beyond the primary tumor. Visualization of the tumor margins during surgery is critical for a favorable outcome. We report the use of IRDye 800CW chlorotoxin (CLTX) as a targeted imaging agent for brain tumors in a spontaneous mouse model of medulloblastoma, ND2:SmoA1. Specificity and functionality of the targeted agent were confirmed in cell-based assays. Tumors were detected by magnetic resonance imaging and IRDye 800CW CLTX administered to individual animals for optical imaging at 1-month increments. The integrity of the blood-brain barrier (BBB) was measured by Evan's Blue perfusion prior to sacrifice. Results show that IRDye 800CW CLTX specifically targeted tumor tissue. The extravasation of Evan's Blue was observed in all tumors, suggesting that the presence of the tumors can introduce alterations in the permeability of the BBB. Because increased vascular permeability was observed early in the disease model, larger dye-labeled imaging agents that exceed current BBB size restrictions may warrant renewed consideration as candidates for tumor detection and surgical resection. Our study provides data characterizing in vitro and in vivo use of IRDye 800CW CLTX as a broadly applicable tumor imaging agent. PMID:23711726

  15. Characterization of IRDye 800CW chlorotoxin as a targeting agent for brain tumors.

    PubMed

    Kovar, Joy L; Curtis, Evan; Othman, Shadi F; Simpson, Melanie A; Olive, D Michael

    2013-09-15

    Primary brain tumors present significant challenges for surgical resection because of their location and the frequent occurrence of malignant projections extending beyond the primary tumor. Visualization of the tumor margins during surgery is critical for a favorable outcome. We report the use of IRDye 800CW chlorotoxin (CLTX) as a targeted imaging agent for brain tumors in a spontaneous mouse model of medulloblastoma, ND2:SmoA1. Specificity and functionality of the targeted agent were confirmed in cell-based assays. Tumors were detected by magnetic resonance imaging and IRDye 800CW CLTX administered to individual animals for optical imaging at 1-month increments. The integrity of the blood-brain barrier (BBB) was measured by Evan's Blue perfusion prior to sacrifice. Results show that IRDye 800CW CLTX specifically targeted tumor tissue. The extravasation of Evan's Blue was observed in all tumors, suggesting that the presence of the tumors can introduce alterations in the permeability of the BBB. Because increased vascular permeability was observed early in the disease model, larger dye-labeled imaging agents that exceed current BBB size restrictions may warrant renewed consideration as candidates for tumor detection and surgical resection. Our study provides data characterizing in vitro and in vivo use of IRDye 800CW CLTX as a broadly applicable tumor imaging agent.

  16. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  17. 18F-FDG PET and MR Imaging Associations Across a Spectrum of Pediatric Brain Tumors: A Report from the Pediatric Brain Tumor Consortium

    PubMed Central

    Zukotynski, Katherine; Fahey, Frederic; Kocak, Mehmet; Kun, Larry; Boyett, James; Fouladi, Maryam; Vajapeyam, Sridhar; Treves, Ted; Poussaint, Tina Y.

    2014-01-01

    The purpose of this study was to describe 18F-FDG uptake across a spectrum of pediatric brain tumors and correlate 18F-FDG PET with MR imaging variables, progression-free survival (PFS), and overall survival (OS). Methods A retrospective analysis was conducted of children enrolled in phase I/II clinical trials through the Pediatric Brain Tumor Consortium from August 2000 to June 2010. PET variables were summarized within diagnostic categories using descriptive statistics. Associations of PET with MR imaging variables and PFS and OS by tumor types were evaluated. Results Baseline 18F-FDG PET was available in 203 children; 66 had newly diagnosed brain tumors, and 137 had recurrent/refractory brain tumors before enrolling in a Pediatric Brain Tumor Consortium trial. MR imaging was performed within 2 wk of PET and before therapy in all cases. The 18F-FDG uptake pattern and MR imaging contrast enhancement (CE) varied by tumor type. On average, glioblastoma multiforme and medulloblastoma had uniform, intense uptake throughout the tumor, whereas brain stem gliomas (BSGs) had low uptake in less than 50% of the tumor and ependymoma had low uptake throughout the tumor. For newly diagnosed BSG, correlation of 18F-FDG uptake with CE portended reduced OS (P = 0.032); in refractory/recurrent BSG, lack of correlation between 18F-FDG uptake and CE suggested decreased PFS (P = 0.023). In newly diagnosed BSG for which more than 50% of the tumor had 18F-FDG uptake, there was a suggestion of lower apparent diffusion coefficient (P = 0.061) and decreased PFS (P = 0.065). Conclusion 18F-FDG PET and MR imaging showed a spectrum of patterns depending on tumor type. In newly diagnosed BSG, the correlation of 18F-FDG uptake and CE suggested decreased OS, likely related to more aggressive disease. When more than 50% of the tumor had 18F-FDG uptake, the apparent diffusion coefficient was lower, consistent with increased cellularity. In refractory/recurrent BSG, poor correlation between 18F

  18. Pediatric Brain Tumors: Genomics and Epigenomics Pave the Way.

    PubMed

    Fontebasso, Adam M; Jabado, Nada

    2015-01-01

    Primary malignant brain tumors remain a disproportionate cause of morbidity and mortality in humans. A number of studies exploring the cancer genome of brain tumors across ages using integrated genetics and epigenetics and next-generation sequencing technologies have recently emerged. This has led to considerable advances in the understanding of the basic biology and pathogenesis of brain tumors, including the most malignant and common variants in children: gliomas and medulloblastoma. Notably, studies of pediatric brain tumors have identified unexpected oncogenic pathways implicated in tumorigenesis. These range from a single pathway/molecule defect such as abnormalities of the mitogen-activated protein kinase pathway, considered to be a hallmark of pilocytic astrocytomas, to alterations in the epigenome as a critical component altered in many subgroups of high-grade brain tumors. Importantly, the type, timing, and spatial clustering of these molecular alterations provide a better understanding of the pathogenesis of the respective brain tumor they target and critical markers for therapy that will help refine pathological grading. We summarize these novel findings in pediatric brain tumors, which also are put in the context of the evolving notion of molecular pathology, now a mandated tool for proper classification and therapy assignment in the clinical setting.

  19. High Toxoplasma gondii Seropositivity among Brain Tumor Patients in Korea

    PubMed Central

    Jung, Bong-Kwang; Song, Hyemi; Kim, Min-Jae; Cho, Jaeeun; Shin, Eun-Hee; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii is an intracellular protozoan that can modulate the environment of the infected host. An unfavorable environment modulated by T. gondii in the brain includes tumor microenvironment. Literature has suggested that T. gondii infection is associated with development of brain tumors. However, in Korea, epidemiological data regarding this correlation have been scarce. In this study, in order to investigate the relationship between T. gondii infection and brain tumor development, we investigated the seroprevalence of T. gondii among 93 confirmed brain tumor patients (various histological types, including meningioma and astrocytoma) in Korea using ELISA. The results revealed that T. gondii seropositivity among brain tumor patients (18.3%) was significantly (P<0.05) higher compared with that of healthy controls (8.6%). The seropositivity of brain tumor patients showed a significant age-tendency, i.e., higher in younger age group, compared with age-matched healthy controls (P<0.05). In conclusion, this study supports the close relationship between T. gondii infection and incidence of brain tumors. PMID:27180580

  20. Novel treatment strategies for brain tumors and metastases

    PubMed Central

    El-Habashy, Salma E.; Nazief, Alaa M.; Adkins, Chris E.; Wen, Ming Ming; El-Kamel, Amal H.; Hamdan, Ahmed M.; Hanafy, Amira S.; Terrell, Tori O.; Mohammad, Afroz S.; Lockman, Paul R.; Nounou, Mohamed Ismail

    2015-01-01

    This review summarizes patent applications in the past 5 years for the management of brain tumors and metastases. Most of the recent patents discuss one of the following strategies: the development of new drug entities that specifically target the brain cells, the blood–brain barrier and the tumor cells, tailor-designing a novel carrier system that is able to perform multitasks and multifunction as a drug carrier, targeting vehicle and even as a diagnostic tool, direct conjugation of a US FDA approved drug with a targeting moiety, diagnostic moiety or PK modifying moiety, or the use of innovative nontraditional approaches such as genetic engineering, stem cells and vaccinations. Until now, there has been no optimal strategy to deliver therapeutic agents to the CNS for the treatment of brain tumors and metastases. Intensive research efforts are actively ongoing to take brain tumor targeting, and novel and targeted CNS delivery systems to potential clinical application. PMID:24998288

  1. Computational modeling of brain tumors: discrete, continuum or hybrid?

    NASA Astrophysics Data System (ADS)

    Wang, Zhihui; Deisboeck, Thomas S.

    In spite of all efforts, patients diagnosed with highly malignant brain tumors (gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances will also require a more detailed quantitative understanding of the dynamic interactions among tumor cells, and between these cells and their biological microenvironment. Data-driven computational brain tumor models have the potential to provide experimental tumor biologists with such quantitative and cost-efficient tools to generate and test hypotheses on tumor progression, and to infer fundamental operating principles governing bidirectional signal propagation in multicellular cancer systems. This review highlights the modeling objectives of and challenges with developing such in silico brain tumor models by outlining two distinct computational approaches: discrete and continuum, each with representative examples. Future directions of this integrative computational neuro-oncology field, such as hybrid multiscale multiresolution modeling are discussed.

  2. Development and characterization of non-resonant multiphoton photoacoustic spectroscopy (NMPPAS) for brain tumor margining

    NASA Astrophysics Data System (ADS)

    Dahal, Sudhir

    During tumor removal surgery, due to the problems associated with obtaining high-resolution, real-time chemical images of where exactly the tumor ends and healthy tissue begins (tumor margining), it is often necessary to remove a much larger volume of tissue than the tumor itself. In the case of brain tumor surgery, however, it is extremely unsafe to remove excess tissue. Therefore, without an accurate image of the tumor margins, some of the tumor's finger-like projections are inevitably left behind in the surrounding parenchyma to grow again. For this reason, the development of techniques capable of providing high-resolution real-time images of tumor margins up to centimeters below the surface of a tissue is ideal for the diagnosis and treatment of tumors, as well as surgical guidance during brain tumor excision. A novel spectroscopic technique, non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), is being developed with the capabilities of obtaining high-resolution subsurface chemical-based images of underlying tumors. This novel technique combines the strengths of multiphoton tissue spectroscopy and photoacoustic spectroscopy into a diagnostic methodology that will, ultimately, provide unparalleled chemical information and images to provide the state of sub-surface tissues. The NMPPAS technique employs near-infrared light (in the diagnostic window) to excite ultraviolet and/or visible light absorbing species deep below the tissue's surface. Once a multiphoton absorption event occurs, non-radiative relaxation processes generates a localized thermal expansion and subsequent acoustic wave that can be detected using a piezoelectric transducer. Since NMPPAS employs an acoustic detection modality, much deeper diagnoses can be performed than that is possible using current state of the art high-resolution chemical imaging techniques such as multiphoton fluorescence spectroscopy. NMPPAS was employed to differentiate between excised brain tumors (astrocytoma III

  3. Raman spectroscopic imaging as complementary tool for histopathologic assessment of brain tumors

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Bergner, Norbert; Romeike, Bernd; Reichart, Rupert; Kalff, Rolf; Geiger, Kathrin; Kirsch, Matthias; Schackert, Gabriele; Popp, Jürgen

    2012-02-01

    Raman spectroscopy enables label-free assessment of brain tissues and tumors based on their biochemical composition. Combination of the Raman spectra with the lateral information allows grading of tumors, determining the primary tumor of brain metastases and delineating tumor margins - even during surgery after coupling with fiber optic probes. This contribution presents exemplary Raman spectra and images collected from low grade and high grade regions of astrocytic gliomas and brain metastases. A region of interest in dried tissue sections encompassed slightly increased cell density. Spectral unmixing by vertex component analysis (VCA) and N-FINDR resolved cell nuclei in score plots and revealed the spectral contributions of nucleic acids, cholesterol, cholesterol ester and proteins in endmember signatures. The results correlated with the histopathological analysis after staining the specimens by hematoxylin and eosin. For a region of interest in non-dried, buffer immersed tissue sections image processing was not affected by drying artifacts such as denaturation of biomolecules and crystallization of cholesterol. Consequently, the results correspond better to in vivo situations. Raman spectroscopic imaging of a brain metastases from renal cell carcinoma showed an endmember with spectral contributions of glycogen which can be considered as a marker for this primary tumor.

  4. Radiosurgery-induced brain tumor. Case report.

    PubMed

    Kaido, T; Hoshida, T; Uranishi, R; Akita, N; Kotani, A; Nishi, N; Sakaki, T

    2001-10-01

    The authors describe a case of glioblastoma multiforme (GBM) associated with previous gamma knife radiosurgery for a cerebral arteriovenous malformation (AVM). A 14-year-old boy had undergone radiosurgery for an AVM, which was performed using a 201-source 60Co gamma knife system at another institution. The maximum and margin radiation doses used in the procedure were 40 and 20 Gy, respectively. One year after radiosurgery, the patient noticed onset of mild left hemiparesis due to radiation necrosis. Six and one-half years after radiosurgery, at the age of 20 years, the patient experienced an attack of generalized tonic-clonic seizure. Magnetic resonance (MR) imaging revealed the existence of a brain tumor in the right parietal lobe. The patient underwent an operation and the histological diagnosis of the lesion was GBM. Ten months following the operation, that is, 99 months postradiosurgery, this patient died. To the best of the authors' knowledge, this is the first reported case of a neoplasm induced by radiosurgery for an AVM and the second case in which it occurred following radiosurgery for intracranial disease.

  5. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  6. Tensor based tumor tissue type differentiation using magnetic resonance spectroscopic imaging.

    PubMed

    Bharath, H N; Sima, D M; Sauwen, N; Himmelreich, U; De Lathauwer, L; Van Huffel, S

    2015-08-01

    Magnetic resonance spectroscopic imaging (MRSI) has the potential to characterise different tissue types in brain tumors. Blind source separation techniques are used to extract the specific tissue profiles and their corresponding distribution from the MRSI data. A 3-dimensional MRSI tensor is constructed from in vivo 2D-MRSI data of individual tumor patients. Non-negative canonical polyadic decomposition (NCPD) with common factor in mode-1 and mode-2 and l(1) regularization on mode-3 is applied on the MRSI tensor to differentiate various tissue types. Initial in vivo study shows that NCPD has better performance in identifying tumor and necrotic tissue type in high grade glioma patients compared to previous matrix-based decompositions, such as non-negative matrix factorization and hierarchical non-negative matrix factorization. PMID:26737904

  7. Separation of the tumor and brain surface by "water jet" in cases of meningiomas.

    PubMed

    Toth, S; Vajda, J; Pasztor, E; Toth, Z

    1987-01-01

    In the surgery of meningiomas one of the most delicate problems is the separation of the tumor from the brain surface. The authors generally recommend microsurgery to preserve the brain surface anatomically and functionally. For this purpose we have developed a new surgical technique according to our concepts of tissue care. After excavating the tumor from inside the tumor brain surface was separated by repeated "water jets" into the tumor arachnoideal space. The "water jet" was produced by an ordinary bulb syringe. The front pressure of the jets was 300-1000 mm of water and the side pressure 100-300 mm of water. In the tumor-arachnoideal space the spreading water (phys. NaCl) separates the brain from the tumor with utmost care. We operated on 55 meningiomas of different types with the "water jet" technique. The immediate results were anatomically excellent. Intraoperative and postoperative acute and late edemas appeared only in a few cases. The functions of the nearby brain were generally preserved. The surgery was uneventful when the tumor surface was smooth and the tumor was spherical. When the tumor surface was uneven, one part of the tumor extended under the dura as a thin layer or the tumor was multilobulated with expanded vessels between the lobules, more microseparation was necessary. We compared the results of the "water jet" technique with the results of the "pre-water jet" series. The surgery with the "water jet" technique was much shorter and its results were better than those of microsurgery alone. PMID:3668608

  8. Cilengitide in Treating Children With Refractory Primary Brain Tumors

    ClinicalTrials.gov

    2013-09-27

    Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  9. Tissue perfusion inhomogeneity during early tumor growth in rats.

    PubMed

    Endrich, B; Reinhold, H S; Gross, J F; Intaglietta, M

    1979-02-01

    Tissue perfusion in BA 1112 sarcomas of WAG inbred Rijswijk rats was determined from in vivo measurements of capillary density, length, and erythrocyte velocity in modified Algire chamber preparations. Studies were done with the use of television techniques in situ during a period of 26 days, both in control chambers and after implantation of a 0.1-mm3 piece of tumor tissue. Perfusion in control areas void of tumor tissue. Perfusion in control areas void of tumor was approximately 8-10 ml/minute/100 g of tissue. Flow in active tumor growth regions on the outward side of the tumor edge was through undifferentiated channels and had characteristics of flow through a porous medium. Despite enhanced arterial supply, the stabilized tumor microcirculation at the inward side of the growing tumor retained its perfusion rate constant (15-18 ml/min/100 g). Perfusion in central portions of the tumor was about 2-4 ml/minute/100 g during 12 days, whereas the tumor doubled in diameter. Our findings support the concept of temporal and functional blood flow inhomogeneity in the microcirculation of spreading tumors. PMID:283271

  10. Targeted Doxorubicin Delivery to Brain Tumors via Minicells: Proof of Principle Using Dogs with Spontaneously Occurring Tumors as a Model

    PubMed Central

    MacDiarmid, Jennifer A.; Langova, Veronika; Bailey, Dale; Pattison, Scott T.; Pattison, Stacey L.; Christensen, Neil; Armstrong, Luke R.; Brahmbhatt, Vatsala N.; Smolarczyk, Katarzyna; Harrison, Matthew T.; Costa, Marylia; Mugridge, Nancy B.; Sedliarou, Ilya; Grimes, Nicholas A.; Kiss, Debra L.; Stillman, Bruce; Hann, Christine L.; Gallia, Gary L.; Graham, Robert M.; Brahmbhatt, Himanshu

    2016-01-01

    Background Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. Methodology/Principle Findings EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). Conclusions/Significance Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On

  11. Predictive analysis of optical ablation in several dermatological tumoral tissues

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Blanco-Gutiérrez, A.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2013-06-01

    Optical techniques for treatment and characterization of biological tissues are revolutionizing several branches of medical praxis, for example in ophthalmology or dermatology. The non-invasive, non-contact and non-ionizing character of optical radiation makes it specially suitable for these applications. Optical radiation can be employed in medical ablation applications, either for tissue resection or surgery. Optical ablation may provide a controlled and clean cut on a biological tissue. This is particularly relevant in tumoral tissue resection, where a small amount of cancerous cells could make the tumor appear again. A very important aspect of tissue optical ablation is then the estimation of the affected volume. In this work we propose a complete predictive model of tissue ablation that provides an estimation of the resected volume. The model is based on a Monte Carlo approach for the optical propagation of radiation inside the tissue, and a blow-off model for tissue ablation. This model is applied to several types of dermatological tumoral tissues, specifically squamous cells, basocellular and infiltrative carcinomas. The parameters of the optical source are varied and the estimated resected volume is calculated. The results for the different tumor types are presented and compared. This model can be used for surgical planning, in order to assure the complete resection of the tumoral tissue.

  12. [Metastasis and progression mechanisms of soft tissue tumors].

    PubMed

    Steinestel, K; Wardelmann, E

    2015-11-01

    Invasion and metastatic dissemination of tumor cells defines prognosis not only in patients with epithelial, but also mesenchymal neoplasms. Early and clinically inapparent micrometastases occur in many patients, and the risk for metastasis correlates with the tumor subtype and histologic tumor grade. In recent years and analogous to the situation in epithelial tumors, mechanisms of tumor cell dissemination in soft tissue tumors have been increasingly understood, and it has been shown that reorganization of the actin cytoskeleton plays a key role in these processes. This review summarizes current knowledge on the mechanisms of progression and metastasis of soft tissue tumors and points out possible targets for novel anti-invasive and anti-metastatic therapies. PMID:26324521

  13. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.

  14. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    PubMed Central

    Ertel, Adam; Verghese, Arun; Byers, Stephen W; Ochs, Michael; Tozeren, Aydin

    2006-01-01

    Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM). Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs), and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative phosphorylation. Signaling

  15. Uranyl phthalocyanines show promise in the treatment of brain tumors

    NASA Technical Reports Server (NTRS)

    Frigerio, N. A.

    1967-01-01

    Processes synthesize sulfonated and nonsulfonated uranyl phthalocyanines for application in neutron therapy of brain tumors. Tests indicate that the compounds are advantageous over the previously used boron and lithium compounds.

  16. Childhood Brain and Spinal Cord Tumors Treatment Overview

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood brain and spinal cord tumors ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are ...

  17. Treatment of Newly Diagnosed and Recurrent Childhood Brain Tumors

    MedlinePlus

    ... before the cancer is diagnosed and continue for months or years. Childhood brain and spinal cord tumors ... after treatment. Some cancer treatments cause side effects months or years after treatment has ended. These are ...

  18. Gliomatosis cerebri: no evidence for a separate brain tumor entity.

    PubMed

    Herrlinger, Ulrich; Jones, David T W; Glas, Martin; Hattingen, Elke; Gramatzki, Dorothee; Stuplich, Moritz; Felsberg, Jörg; Bähr, Oliver; Gielen, Gerrit H; Simon, Matthias; Wiewrodt, Dorothee; Schabet, Martin; Hovestadt, Volker; Capper, David; Steinbach, Joachim P; von Deimling, Andreas; Lichter, Peter; Pfister, Stefan M; Weller, Michael; Reifenberger, Guido

    2016-02-01

    Gliomatosis cerebri (GC) is presently considered a distinct astrocytic glioma entity according to the WHO classification for CNS tumors. It is characterized by widespread, typically bilateral infiltration of the brain involving three or more lobes. Genetic studies of GC have to date been restricted to the analysis of individual glioma-associated genes, which revealed mutations in the isocitrate dehydrogenase 1 (IDH1) and tumor protein p53 (TP53) genes in subsets of patients. Here, we report on a genome-wide analysis of DNA methylation and copy number aberrations in 25 GC patients. Results were compared with those obtained for 105 patients with various types of conventional, i.e., non-GC gliomas including diffuse astrocytic gliomas, oligodendrogliomas and glioblastomas. In addition, we assessed the prognostic role of methylation profiles and recurrent DNA copy number aberrations in GC patients. Our data reveal that the methylation profiles in 23 of the 25 GC tumors corresponded to either IDH mutant astrocytoma (n = 6), IDH mutant and 1p/19q codeleted oligodendroglioma (n = 5), or IDH wild-type glioblastoma including various molecular subgroups, i.e., H3F3A-G34 mutant (n = 1), receptor tyrosine kinase 1 (RTK1, n = 4), receptor tyrosine kinase 2 (classic) (RTK2, n = 2) or mesenchymal (n = 5) glioblastoma groups. Two tumors showed methylation profiles of normal brain tissue due to low tumor cell content. While histological grading (WHO grade IV vs. WHO grade II and III) was not prognostic, the molecular classification as classic/RTK2 or mesenchymal glioblastoma was associated with worse overall survival. Multivariate Cox regression analysis revealed MGMT promoter methylation as a positive prognostic factor. Taken together, DNA-based large-scale molecular profiling indicates that GC comprises a genetically and epigenetically heterogeneous group of diffuse gliomas that carry DNA methylation and copy number profiles closely matching the common molecularly

  19. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response.

    PubMed

    Moffat, Bradford A; Chenevert, Thomas L; Lawrence, Theodore S; Meyer, Charles R; Johnson, Timothy D; Dong, Qian; Tsien, Christina; Mukherji, Suresh; Quint, Douglas J; Gebarski, Stephen S; Robertson, Patricia L; Junck, Larry R; Rehemtulla, Alnawaz; Ross, Brian D

    2005-04-12

    Assessment of radiation and chemotherapy efficacy for brain cancer patients is traditionally accomplished by measuring changes in tumor size several months after therapy has been administered. The ability to use noninvasive imaging during the early stages of fractionated therapy to determine whether a particular treatment will be effective would provide an opportunity to optimize individual patient management and avoid unnecessary systemic toxicity, expense, and treatment delays. We investigated whether changes in the Brownian motion of water within tumor tissue as quantified by using diffusion MRI could be used as a biomarker for early prediction of treatment response in brain cancer patients. Twenty brain tumor patients were examined by standard and diffusion MRI before initiation of treatment. Additional images were acquired 3 weeks after initiation of chemo- and/or radiotherapy. Images were coregistered to pretreatment scans, and changes in tumor water diffusion values were calculated and displayed as a functional diffusion map (fDM) for correlation with clinical response. Of the 20 patients imaged during the course of therapy, 6 were classified as having a partial response, 6 as stable disease, and 8 as progressive disease. The fDMs were found to predict patient response at 3 weeks from the start of treatment, revealing that early changes in tumor diffusion values could be used as a prognostic indicator of subsequent volumetric tumor response. Overall, fDM analysis provided an early biomarker for predicting treatment response in brain tumor patients. PMID:15805192

  20. [Tumor Cells and Micro-environment in Brain Metastases].

    PubMed

    Zhong, Wen; Hu, Chengping

    2016-09-20

    Improvements in survival and quality of life of patients with lung cancer had been achieved due to the progression of early diagnosis and precision medicine at recent years, however, until now, treatments targeted at lesions in central nervous system are far from satisfying, thus threatening livelihood of patients involved. After all, in the issue of prophylaxis and therapeutics of brain metastases, it is crucial to learn about the biological behavior of tumor cells in brain metastases and its mechanism underlying, and the hypothesis "seed and soil", that is, tumor cells would generate series of adaptive changes to fit in the new environment, is liable to help explain this process well. In this assay, we reviewed documents concerning tumor cells, brain micro-environments and their interactions in brain metastases, aiming to provide novel insight into the treatments of brain metastases. PMID:27666556

  1. Metastatic brain tumor from urothelial carcinoma of the prostatic urethra

    PubMed Central

    Morita, Kohei; Oda, Masashi; Koyanagi, Masaomi; Saiki, Masaaki

    2016-01-01

    Background: Urothelial carcinoma occurs in the bladder, upper urinary tract, and lower urinary tract, including prostatic urethra. A majority of the reported cases of intracranial metastasis from urothelial carcinoma originates from the bladder and upper urinary tract. Brain metastasis from urothelial carcinoma of the prostatic urethra has not yet been reported in the literature. Case Description: A 72-year-old male presented with a metastatic brain tumor and a 3-year history of urothelial carcinoma of the prostatic urethra treated with cystourethrectomy and chemotherapy with gemcitabine-cisplatin. Pathological diagnosis for tumor removal was compatible with metastatic brain tumor from urothelial carcinoma. Conclusion: Brain metastasis from urothelial carcinoma of the prostatic urethra has not yet been reported in the literature. It is an extremely rare case, however, we should be careful of brain metastasis during follow-up for urothelial carcinoma in the lower urinary tract. PMID:27512612

  2. Nanoparticle-assisted photothermal ablation of brain tumor in an orthotopic canine model

    NASA Astrophysics Data System (ADS)

    Schwartz, Jon A.; Shetty, Anil M.; Price, Roger E.; Stafford, R. Jason; Wang, James C.; Uthamanthil, Rajesh K.; Pham, Kevin; McNichols, Roger J.; Coleman, Chris L.; Payne, J. Donald

    2009-02-01

    We report on a pilot study demonstrating a proof of concept for the passive delivery of nanoshells to an orthotopic tumor where they induce a local, confined therapeutic response distinct from that of normal brain resulting in the photo-thermal ablation of canine Transmissible Venereal Tumor (cTVT) in a canine brain model. cTVT fragments grown in SCID mice were successfully inoculated in the parietal lobe of immuno-suppressed, mixed-breed hound dogs. A single dose of near-infrared absorbing, 150 nm nanoshells was infused intravenously and allowed time to passively accumulate in the intracranial tumors which served as a proxy for an orthotopic brain metastasis. The nanoshells accumulated within the intracranial cTVT suggesting that its neo-vasculature represented an interruption of the normal blood-brain barrier. Tumors were thermally ablated by percutaneous, optical fiber-delivered, near-infrared radiation using a 3.5 W average, 3-minute laser dose at 808 nm that selectively elevated the temperature of tumor tissue to 65.8+/-4.1ºC. Identical laser doses applied to normal white and gray matter on the contralateral side of the brain yielded sub-lethal temperatures of 48.6+/-1.1ºC. The laser dose was designed to minimize thermal damage to normal brain tissue in the absence of nanoshells and compensate for variability in the accumulation of nanoshells in tumor. Post-mortem histopathology of treated brain sections demonstrated the effectiveness and selectivity of the nanoshell-assisted thermal ablation.

  3. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    PubMed

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  4. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  5. Brain and Spinal Tumors: Hope through Research

    MedlinePlus

    ... of the CNS. Some tools used in the operating room include a surgical microscope, the endoscope (a ... cells, which support other brain function. central nervous system (CNS)—the brain and spinal cord. cerebrospinal fluid ( ...

  6. Infant brain tumors: a neuropathologic population-based institutional reappraisal.

    PubMed

    Dunham, Christopher; Pillai, Shibu; Steinbok, Paul

    2012-10-01

    The factors that impact the long-term functional outcome for infants with brain tumor are unclear. The clinicopathologic features of all infant brain tumors occurring at our institution (1982-2005) were reexamined to explore the factors influencing prognosis. The details of the neuropathologic review are reported herein. Thirty-five cases were identified and included 7 astrocytomas (6 low grade and 1 glioblastoma), 6 atypical teratoid rhabdoid tumors, 5 choroid plexus papillomas, 4 ependymomas (3 anaplastic), 4 teratomas (3 immature), 2 supratentorial primitive neuroectodermal tumors, 2 gangliogliomas, 2 desmoplastic tumors of infancy, and 1 each of "medulloblastoma with extensive nodularity," adamantinomatous craniopharyngioma, and 1 "malignancy not otherwise specified." The original diagnosis was changed in 8 cases (23%), and atypical teratoid rhabdoid tumors was the most common revision (n = 5). Case 9 was unusual in that both the patient and her 2-year-old sister displayed INI-1 immunonegative posterior fossa tumors and extended survival. Tumor grade was altered in 6 cases (17%), the most significant instance being the downgrading from the World Health Organization grade IV to I (case 18: supratentorial primitive neuroectodermal tumors to desmoplastic tumors of infancy). As opposed to other reports in the literature, our cohort contained a substantially higher frequency of atypical teratoid rhabdoid tumors and a lower frequency of medulloblastoma. Changes in the histologic diagnosis/grade in a significant subset of cases most likely reflect the continual evolution of brain tumor classification schemes. INI-1 immunohistochemistry was instrumental in the pathologic assessment of select cases and raised the possibility that atypical teratoid rhabdoid tumors may be the most common infant brain malignancy.

  7. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.

    PubMed

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness. PMID:27069501

  8. Multiscale CNNs for Brain Tumor Segmentation and Diagnosis

    PubMed Central

    Zhao, Liya; Jia, Kebin

    2016-01-01

    Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness. PMID:27069501

  9. Imaging of Brain Tumors With Paramagnetic Vesicles Targeted to Phosphatidylserine

    PubMed Central

    Winter, Patrick M.; Pearce, John; Chu, Zhengtao; McPherson, Christopher M.; Takigiku, Ray; Lee, Jing-Huei; Qi, Xiaoyang

    2014-01-01

    Purpose To investigate paramagnetic saposin C and dioleylphosphatidylserine (SapC-DOPS) vesicles as a targeted contrast agent for imaging phosphatidylserine (PS) expressed by glioblastoma multiforme (GBM) tumors. Materials and Methods Gd-DTPA-BSA/SapC-DOPS vesicles were formulated, and the vesicle diameter and relaxivity were measured. Targeting of Gd-DTPA-BSA/ SapC-DOPS vesicles to tumor cells in vitro and in vivo was compared with nontargeted paramagnetic vesicles (lacking SapC). Mice with GBM brain tumors were imaged at 3, 10, 20, and 24 h postinjection to measure the relaxation rate (R1) in the tumor and the normal brain. Results The mean diameter of vesicles was 175 nm, and the relaxivity at 7 Tesla was 3.32 (s*mM)−1 relative to the gadolinium concentration. Gd-DTPA-BSA/SapC-DOPS vesicles targeted cultured cancer cells, leading to an increased R1 and gadolinium level in the cells. In vivo, Gd-DTPA-BSA/SapC-DOPS vesicles produced a 9% increase in the R1 of GBM brain tumors in mice 10 h postinjection, but only minimal changes (1.2% increase) in the normal brain. Nontargeted paramagnetic vesicles yielded minimal change in the tumor R1 at 10 h postinjection (1.3%). Conclusion These experiments demonstrate that Gd-DTPA-BSA/SapC-DOPS vesicles can selectively target implanted brain tumors in vivo, providing noninvasive mapping of the cancer biomarker PS. PMID:24797437

  10. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  11. Measles may be a Risk Factor for Malignant Brain Tumors

    PubMed Central

    Green, Sheryl; Rendo, Angela; Rosenzweig, Kenneth E.

    2015-01-01

    Background A possible risk factor for brain tumor might be measles, since late neurologic sequelae are part of measles pathology. Subacute sclerosing panencephalitis, a devastating neurologic illness, is prone to develop years after measles infection. Methods Because measles damage to the brain might increase the risk of brain tumor, we examined the relationship of measles incidence in 1960 and brain tumor incidence in 50 US States and the District of Columbia, 2004-2007. Data on number of cases of measles by state in 1960 are from the Morbidity and Mortality Weekly Report. In 1960 measles was a childhood illness. We calculated measles incidence by obtaining the population of each state from the 1960 US Census and then age adjusting our results to the cumulative percent of the state population under age 21, since this would have been the measles-infected group. Data on the percentage white population by state are from the US Census (www.census.gov). Age-adjusted incidence (to the 2000 US standard population) of brain tumors is from the Central Brain Tumor Registry of the United States 2011 report. Results There was a significant correlation between 1960 measles incidence and incidence of malignant brain tumors in persons 20 and older in 2004-2007 (r=0.321, p=0.026). Because glioblastoma is more frequent in whites and males, multivariate linear regression was performed with tumor incidence as the dependent variable, measles incidence, percent white population, and sex ratio by state as independent variables. Measles incidence was significantly correlated with malignant brain tumor incidence (β=0.361, p<0.001) and independent of the effect of race (β=0.734, p<0.001) and sex ratio m/f (β=-0.478, p<0.001). There was no correlation of measles incidence with brain tumor incidence in persons younger than 20. Conclusion Inflammation is a critical component of tumor development. The inflammation of measles-induced subacute sclerosing panencephalitis, even subclinical

  12. The echographic characteristics of fatty tissues and tumors.

    PubMed

    Behan, M; Kazam, E

    1978-10-01

    Fatty tissues and tumors have been described as characteristically cyst-like on ultrasound examination, with relatively few internal echoes. The authors offer several examples of lipomatous masses and tissues which are markedly echogenic. In vitro studies suggest that this is an inherent property of body fat and is not due to coexistent fibrous tissue or tumor vascularity. The echogenicity of fat has important implications for diagnostic ultrasound: (a) the presence of fat in tissues and masses may be demonstrated by ultrasound, and (b) because the high-level internal echoes blend with the echo pattern of bowel gas and retroperitoneal fat, lipomatous abdominal masses may easily be overlooked.

  13. Sox2: regulation of expression and contribution to brain tumors.

    PubMed

    Mansouri, Sheila; Nejad, Romina; Karabork, Merve; Ekinci, Can; Solaroglu, Ihsan; Aldape, Kenneth D; Zadeh, Gelareh

    2016-07-01

    Tumors of the CNS are composed of a complex mixture of neoplastic cells, in addition to vascular, inflammatory and stromal components. Similar to most other tumors, brain tumors contain a heterogeneous population of cells that are found at different stages of differentiation. The cancer stem cell hypothesis suggests that all tumors are composed of subpopulation of cells with stem-like properties, which are capable of self-renewal, display resistance to therapy and lead to tumor recurrence. One of the most important transcription factors that regulate cancer stem cell properties is SOX2. In this review, we focus on SOX2 and the complex network of signaling molecules and transcription factors that regulate its expression and function in brain tumor initiating cells. We also highlight important findings in the literature about the role of SOX2 in glioblastoma and medulloblastoma, where it has been more extensively studied. PMID:27230973

  14. Rapid and automatic detection of brain tumors in MR images

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjia; Hu, Qingmao; Loe, KiaFock; Aziz, Aamer; Nowinski, Wieslaw L.

    2004-04-01

    An algorithm to automatically detect brain tumors in MR images is presented. The key concern is speed in order to process efficiently large brain image databases and provide quick outcomes in clinical setting. The method is based on study of asymmetry of the brain. Tumors cause asymmetry of the brain, so we detect brain tumors in 3D MR images using symmetry analysis of image grey levels with respect to the midsagittal plane (MSP). The MSP, separating the brain into two hemispheres, is extracted using our previously developed algorithm. By removing the background pixels, the normalized grey level histograms are calculated for both hemispheres. The similarity between these two histograms manifests the symmetry of the brain, and it is quantified by using four symmetry measures: correlation coefficient, root mean square error, integral of absolute difference (IAD), and integral of normalized absolute difference (INAD). A quantitative analysis of brain normality based on 42 patients with tumors and 55 normals is presented. The sensitivity and specificity of IAD and INAD were 83.3% and 89.1%, and 85.7% and 83.6%, respectively. The running time for each symmetry measure for a 3D 8bit MR data was between 0.1 - 0.3 seconds on a 2.4GHz CPU PC.

  15. Irinotecan and Whole-Brain Radiation Therapy in Treating Patients With Brain Metastases From Solid Tumors

    ClinicalTrials.gov

    2010-03-15

    Brain and Central Nervous System Tumors; Cognitive/Functional Effects; Long-term Effects Secondary to Cancer Therapy in Adults; Long-term Effects Secondary to Cancer Therapy in Children; Poor Performance Status; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  16. Nonlinear microscopy and infrared and Raman microspectroscopy for brain tumor analysis

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Dietzek, Benjamin; Meyer, Tobias; Bergner, Norbert; Romeike, Bernd F. M.; Reichart, Rupert; Kalff, Rolf; Popp, Jürgen

    2011-03-01

    Scope of the neurosurgical management of brain tumors is to remove pathological tissue, preserve normal tissue and brain functions, and collect material for neuropathological diagnosis. A prerequisite is to recognize the tumor margins as precise as possible. Scope of neuropathology is to determine the type and grade of the tumor that is an important indicator for the treatment and prognosis of the patient. In this contribution we present vibrational spectroscopic approaches to complement existing neurosurgical and neuropathological tools. First, Fourier transform infrared (FTIR) imaging is applied to obtain molecular contrast from dried, thin tissue sections. Second, Raman spectroscopic images were collected from the same specimens. Finally, coherent anti-Stokes Raman scattering (CARS) microscopic images were obtained. To demonstrate the complementary nature of the techniques results from a brain metastasis of a lung cancer are discussed. Whereas CARS images could be collected within seconds, exposure times were minutes for FTIR images and hours for Raman images. However, the CARS microscope just probed a single band near 2850 cm-1. FTIR and Raman system probed the full spectral range involving the fingerprint region below 1800 cm-1 and the stretch vibrations between 2800 and 3600 cm-1. Morphological features were resolved in the images such as solid tumor, tumor islets, necrosis and cell nuclei.

  17. Apoptosis by Direct Current Treatment in Tumor Cells and Tissues

    NASA Astrophysics Data System (ADS)

    Kim, Hongbae; Sim, Sungbo; Ahn, Saeyoung

    2003-10-01

    Electric field induces cell fusion, electroporation on biological cells, including apoptosis. Apoptosis is expressed in a series of natural enzymatic reactions for the natural elimination of unhealthy, genetically damaged, or otherwise aberrant cells that are not needed or not advantageous to the well-being of the organism. Its markers involve cell shrinkage, activation of intracellular caspase proteases, externalization of phosphatidylserine at the plasma membrane, and fragmentation of DNA. Direct electric fields using direct current have been exploited recently to investigate its effects on tumor cells and tissues, but the mechanism of direct electric fields has not been exhibited clearly other than by electroosmosis or pH changes. Direct electric field induces apoptosis in tumor cells cultured and tumor tissues as indicated by cell shrinkage, DNA fragmentation and tumor suppression. In our experiment that direct electric field was applied to tumor tissues via two needle electrodes inserted into tumor tissue 5mm at distance in parallel, pH changes resulted from electrochemical reaction, exhibiting about pH 9.0, 1.83, 2.0 in the vicinity of cathodic and anodic electrode, and at their mid-point, respectively. DNA fragmentation of tumor tissues destructed by direct electric field was analyzed by Tunel assay by ApopTag technology. As a result of this analysis, it showed that apoptosis in tumor tissue destructed was increased up to 59.1normal(control) tissues, showing 41.1, 31.1cathodic tissues. In vitro cell survival was exhibited that it was decreased with enhancing electric current intensity in the same condition of electrical charge 5C having different time applied. We will show results of apoptosis analyzed by flow cytometry in vitro.

  18. Crossing the barrier: treatment of brain tumors using nanochain particles.

    PubMed

    Karathanasis, Efstathios; Ghaghada, Ketan B

    2016-09-01

    Despite advancements in surgery and radiotherapy, the aggressive forms of brain tumors, such as gliomas, are still uniformly lethal with current therapies offering only palliation complicated by significant toxicities. Gliomas are characteristically diffuse with infiltrating edges, resistant to drugs and nearly inaccessible to systemic therapies due to the brain-tumor barrier. Currently, aggressive efforts are underway to further understand brain-tumor's microenvironment and identify brain tumor cell-specific regulators amenable to pharmacologic interventions. While new potent agents are continuously becoming available, efficient drug delivery to brain tumors remains a limiting factor. To tackle the drug delivery issues, a multicomponent chain-like nanoparticle has been developed. These nanochains are comprised of iron oxide nanospheres and a drug-loaded liposome chemically linked into a 100-nm linear, chain-like assembly with high precision. The nanochain possesses a unique ability to scavenge the tumor endothelium. By utilizing effective vascular targeting, the nanochains achieve rapid deposition on the vascular bed of glioma sites establishing well-distributed drug reservoirs on the endothelium of brain tumors. After reaching the target sites, an on-command, external low-power radiofrequency field can remotely trigger rapid drug release, due to mechanical disruption of the liposome, facilitating widespread and effective drug delivery into regions harboring brain tumor cells. Integration of the nanochain delivery system with the appropriate combination of complementary drugs has the potential to unfold the field and allow significant expansion of therapies for the disease where success is currently very limited. WIREs Nanomed Nanobiotechnol 2016, 8:678-695. doi: 10.1002/wnan.1387 For further resources related to this article, please visit the WIREs website.

  19. PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model.

    PubMed

    Black, Keith L; Yin, Dali; Ong, John M; Hu, Jinwei; Konda, Bindu M; Wang, Xiao; Ko, MinHee K; Bayan, Jennifer-Ann; Sacapano, Manuel R; Espinoza, Andreas; Irvin, Dwain K; Shu, Yan

    2008-09-16

    The blood-brain tumor barrier (BTB) significantly limits delivery of therapeutic concentrations of chemotherapy to brain tumors. A novel approach to selectively increase drug delivery is pharmacologic modulation of signaling molecules that regulate BTB permeability, such as those in cGMP signaling. Here we show that oral administration of sildenafil (Viagra) and vardenafil (Levitra), inhibitors of cGMP-specific PDE5, selectively increased tumor capillary permeability in 9L gliosarcoma-bearing rats with no significant increase in normal brain capillaries. Tumor-bearing rats treated with the chemotherapy agent, adriamycin, in combination with vardenafil survived significantly longer than rats treated with adriamycin alone. The selective increase in tumor capillary permeability appears to be mediated by a selective increase in tumor cGMP levels and increased vesicular transport through tumor capillaries, and could be attenuated by iberiotoxin, a selective inhibitor for calcium-dependent potassium (K(Ca)) channels, that are effectors in cGMP signaling. The effect by sildenafil could be further increased by simultaneously using another BTB "opener", bradykinin. Collectively, this data demonstrates that oral administration of PDE5 inhibitors selectively increases BTB permeability and enhances anti-tumor efficacy for a chemotherapeutic agent. These findings have significant implications for improving delivery of anti-tumor agents to brain tumors. PMID:18674521

  20. Tissue-engineered models of human tumors for cancer research

    PubMed Central

    Villasante, Aranzazu; Vunjak-Novakovic, Gordana

    2015-01-01

    Introduction Drug toxicity often goes undetected until clinical trials, which are the most costly and dangerous phase of drug development. Both the cultures of human cells and animal studies have limitations that cannot be overcome by incremental improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. An area that could greatly benefit from these models is cancer research. Areas covered In this review, the authors first describe the engineered tumor systems, using Ewing's sarcoma as an example of human tumor that cannot be predictably studied in cell culture and animal models. Then, they discuss the importance of the tissue context for cancer progression and outline the biomimetic principles for engineering human tumors. Finally, they discuss the utility of bioengineered tumor models for cancer research and address the challenges in modeling human tumors for use in drug discovery and testing. Expert opinion While tissue models are just emerging as a new tool for cancer drug discovery, they are already demonstrating potential for recapitulating, in vitro, the native behavior of human tumors. Still, numerous challenges need to be addressed before we can have platforms with a predictive power appropriate for the pharmaceutical industry. Some of the key needs include the incorporation of the vascular compartment, immune system components, and mechanical signals that regulate tumor development and function. PMID:25662589

  1. Medical management of brain tumors and the sequelae of treatment

    PubMed Central

    Schiff, David; Lee, Eudocia Q.; Nayak, Lakshmi; Norden, Andrew D.; Reardon, David A.; Wen, Patrick Y.

    2015-01-01

    Patients with malignant brain tumors are prone to complications that negatively impact their quality of life and sometimes their overall survival as well. Tumors may directly provoke seizures, hypercoagulable states with resultant venous thromboembolism, and mood and cognitive disorders. Antitumor treatments and supportive therapies also produce side effects. In this review, we discuss major aspects of supportive care for patients with malignant brain tumors, with particular attention to management of seizures, venous thromboembolism, corticosteroids and their complications, chemotherapy including bevacizumab, and fatigue, mood, and cognitive dysfunction. PMID:25358508

  2. The roles of viruses in brain tumor initiation and oncomodulation

    PubMed Central

    Kofman, Alexander; Marcinkiewicz, Lucasz; Dupart, Evan; Lyshchev, Anton; Martynov, Boris; Ryndin, Anatolii; Kotelevskaya, Elena; Brown, Jay; Schiff, David

    2012-01-01

    While some avian retroviruses have been shown to induce gliomas in animal models, human herpesviruses, specifically, the most extensively studied cytomegalovirus, and the much less studied roseolovirus HHV-6, and Herpes simplex viruses 1 and 2, currently attract more and more attention as possible contributing or initiating factors in the development of human brain tumors. The aim of this review is to summarize and highlight the most provoking findings indicating a potential causative link between brain tumors, specifically malignant gliomas, and viruses in the context of the concepts of viral oncomodulation and the tumor stem cell origin. PMID:21720806

  3. Incidence of brain tumors in rats fed aspartame.

    PubMed

    Ishii, H

    1981-03-01

    The brain tumorigenicity of aspartame (APM) and of its diketopiperazine (DKP) was studied in 860 SCL Wistar rats. APM at dietary levels of 1 g/kg, 2 gK/, 4 g/kg or APM + DKP (3:1) 4 g/kg was fed for 104 weeks. One atypical astrocytoma was found in a control rat and 2 astrocytomas, 2 oligodendrogliomas and 1 ependymoma were scattered among the 4 test groups. There was no significant difference in the incidence of brain tumors between control and test groups. It is concluded that neither AMP nor DKP caused brain tumors in rats in this study.

  4. Tumor-like lesions of the brain

    PubMed Central

    2009-01-01

    Abstract Differentiation between tumors and tumor-like lesions of the central nervous system is essential for planning adequate treatment and for estimating outcome and future prognosis. Neuroimaging fulfills an essential role in the correct differentiation between both entities. The radiologist should be aware of all non-neoplastic pathologies and diseases that may mimic tumors. High-end anatomic and functional neuroimaging tools integrating multiple modalities and clinical correlation is mandatory. In the current review, frequent tumor-like lesions are discussed. PMID:19965288

  5. An evaluative tool for preoperative planning of brain tumor resection

    NASA Astrophysics Data System (ADS)

    Coffey, Aaron M.; Garg, Ishita; Miga, Michael I.; Thompson, Reid C.

    2010-02-01

    A patient specific finite element biphasic brain model has been utilized to codify a surgeon's experience by establishing quantifiable biomechanical measures to score orientations for optimal planning of brain tumor resection. When faced with evaluating several potential approaches to tumor removal during preoperative planning, the goal of this work is to facilitate the surgeon's selection of a patient head orientation such that tumor presentation and resection is assisted via favorable brain shift conditions rather than trying to allay confounding ones. Displacement-based measures consisting of area classification of the brain surface shifting in the craniotomy region and lateral displacement of the tumor center relative to an approach vector defined by the surgeon were calculated over a range of orientations and used to form an objective function. The objective function was used in conjunction with Levenberg-Marquardt optimization to find the ideal patient orientation. For a frontal lobe tumor presentation the model predicts an ideal orientation that indicates the patient should be placed in a lateral decubitus position on the side contralateral to the tumor in order to minimize unfavorable brain shift.

  6. Non Tumor Perfusion Changes Following Stereotactic Radiosurgery to Brain Metastases

    PubMed Central

    Jakubovic, Raphael; Sahgal, Arjun; Ruschin, Mark; Pejović-Milić, Ana; Milwid, Rachael; Aviv, Richard I.

    2015-01-01

    Purpose: To evaluate early perfusion changes in normal tissue following stereotactic radiosurgery (SRS). Methods: Nineteen patients harboring twenty-two brain metastases treated with SRS were imaged with dynamic susceptibility magnetic resonance imaging (DSC MRI) at baseline, 1 week and 1 month post SRS. Relative cerebral blood volume and flow (rCBV and rCBF) ratios were evaluated outside of tumor within a combined region of interest (ROI) and separately within gray matter (GM) and white matter (WM) ROIs. Three-dimensional dose distribution from each SRS plan was divided into six regions: (1) <2 Gy; (2) 2-5 Gy; (3) 5-10 Gy; (4) 10-12 Gy; (5) 12-16 Gy; and (6) >16 Gy. rCBV and rCBF ratio differences between baseline, 1 week and 1 month were compared. Best linear fit plots quantified normal tissue dose-dependency. Results: Significant rCBV ratio increases were present between baseline and 1 month for all ROIs and dose ranges except for WM ROI receiving <2 Gy. rCBV ratio for all ROIs was maximally increased from baseline to 1 month with the greatest changes occurring within the 5-10 Gy dose range (53.1%). rCBF ratio was maximally increased from baseline to 1 month for all ROIs within the 5-10 Gy dose range (33.9-45.0%). Both rCBV and rCBF ratios were most elevated within GM ROIs. A weak, positive but not significant association between dose, rCBV and rCBF ratio was demonstrated. Progressive rCBV and rCBF ratio increased with dose up to 10 Gy at 1 month. Conclusion: Normal tissue response following SRS can be characterized by dose, tissue, and time specific increases in rCBV and rCBF ratio. PMID:26269612

  7. Clinical application of PET for the evaluation of brain tumors

    SciTech Connect

    Coleman, R.E.; Hoffman, J.M.; Hanson, M.W.; Sostman, H.D.; Schold, S.C. )

    1991-04-01

    The combination of FDG and PET has demonstrated clinical utility in the evaluation of patients with brain tumors. At the time of diagnosis, FDG PET provides information concerning the degree of malignancy and patient prognosis. After therapy, FDG PET is able to assess persistence of tumor, determine degree of malignancy, monitor progression, differentiate recurrence from necrosis, and assess prognosis. Other studies using PET provide information that may be clinically useful. Determination of tumor blood flow and permeability of the blood-brain barrier may help in the selection of appropriate therapy. Amino acid imaging using 11C-methionine is being evaluated in patients with brain tumors and provides different information than FDG imaging.52 references.

  8. Factors affecting intellectual outcome in pediatric brain tumor patients

    SciTech Connect

    Ellenberg, L.; McComb, J.G.; Siegel, S.E.; Stowe, S.

    1987-11-01

    A prospective study utilizing repeated intellectual testing was undertaken in 73 children with brain tumors consecutively admitted to Childrens Hospital of Los Angeles over a 3-year period to determine the effect of tumor location, extent of surgical resection, hydrocephalus, age of the child, radiation therapy, and chemotherapy on cognitive outcome. Forty-three patients were followed for at least two sequential intellectual assessments and provide the data for this study. Children with hemispheric tumors had the most general cognitive impairment. The degree of tumor resection, adequately treated hydrocephalus, and chemotherapy had no bearing on intellectual outcome. Age of the child affected outcome mainly as it related to radiation. Whole brain radiation therapy was associated with cognitive decline. This was especially true in children below 7 years of age, who experienced a very significant loss of function after whole brain radiation therapy.

  9. Multi-fractal texture features for brain tumor and edema segmentation

    NASA Astrophysics Data System (ADS)

    Reza, S.; Iftekharuddin, K. M.

    2014-03-01

    In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.

  10. Neuromorphometry of primary brain tumors by magnetic resonance imaging.

    PubMed

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I; Lamothe-Molina, Paul J; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A

    2015-04-01

    Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of [Formula: see text], whereas oligodendrogliomas exhibit a mean of [Formula: see text]. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of [Formula: see text], and the necrotic region presented a mean of [Formula: see text]. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. PMID:26158107

  11. Neuromorphometry of primary brain tumors by magnetic resonance imaging

    PubMed Central

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I.; Lamothe-Molina, Paul J.; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A.

    2015-01-01

    Abstract. Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of 973±14, whereas oligodendrogliomas exhibit a mean of 942±21. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of 919±43, and the necrotic region presented a mean of 869±66. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. PMID:26158107

  12. Rho GTPases in primary brain tumor malignancy and invasion.

    PubMed

    Khalil, Bassem D; El-Sibai, Mirvat

    2012-07-01

    Gliomas are the most common type of malignant primary brain tumor in humans, accounting for 80 % of malignant cases. Expression and activity of Rho GTPases, which coordinate several cellular processes including cell-cycle progression and cell migration, are commonly altered in many types of primary brain tumor. Here we review the suggested effects of deregulated Rho GTPase signaling on brain tumor malignancy, highlighting the controversy in the field. For instance, whereas expression of RhoA and RhoB has been found to be significantly reduced in astrocytic tumors, other studies have reported Rho-dependent LPA-induced migration in glioma cells. Moreover, whereas the Rac1 expression level has been found to be reduced in astrocytic tumor, it was overexpressed and induced invasion in medulloblastoma tumors. In addition to the Rho GTPases themselves, several of their downstream effectors (including ROCK, mDia, and N-WASP) and upstream regulators (including GEFs, GAPs, PI3K, and PTEN) have also been implicated in primary brain tumors.

  13. Neuromorphometry of primary brain tumors by magnetic resonance imaging.

    PubMed

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I; Lamothe-Molina, Paul J; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A

    2015-04-01

    Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of [Formula: see text], whereas oligodendrogliomas exhibit a mean of [Formula: see text]. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of [Formula: see text], and the necrotic region presented a mean of [Formula: see text]. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor.

  14. CONTRIBUTION OF HOST-DERIVED TISSUE FACTOR TO TUMOR NEOVASCULARIZATION

    PubMed Central

    Yu, Joanne; May, Linda; Milsom, Chloe; Anderson, G. Mark; Weitz, Jeffrey I.; Luyendyk, James P.; Broze, George; Mackman, Nigel; Rak, Janusz

    2010-01-01

    Objective The role of host-derived tissue factor (TF) in tumor growth, angiogenesis and metastasis has hitherto been unclear, and was investigated in this study. Methods We compared tumor growth, vascularity and responses to cyclophosphamide (CTX) of tumors in wild type (wt) mice, or in animals with TF levels reduced by 99% (low-TF mice). Results Global growth rate of three different types of transplantable tumors (LLC, B16F1 and ES teratoma), or metastasis were unchanged in low-TF mice. However, several unexpected tumor/context-specific alterations were observed in these mice, including: (i) reduced tumor blood vessel size in B16F1 tumors; (ii) larger spleen size and greater tolerance to CTX toxicity in the LLC model; (iii) aborted tumor growth after inoculation of TF-deficient tumor cells (ES TF-/-) in low-TF mice. TF-deficient tumor cells grew readily in mice with normal TF levels, and attracted exclusively host-related blood vessels (without vasculogenic mimicry). We postulate that this complementarity may result from tumor-vascular transfer of TF-containing microvesicles, as we observed such transfer using human cancer cells (A431) and mouse endothelial cells, both in vitro and in vivo. Conclusions Our study points to an important, but context-dependent role of host TF in tumor formation, angiogenesis and therapy. PMID:18772494

  15. Orthotopic models of pediatric brain tumors in zebrafish.

    PubMed

    Eden, C J; Ju, B; Murugesan, M; Phoenix, T N; Nimmervoll, B; Tong, Y; Ellison, D W; Finkelstein, D; Wright, K; Boulos, N; Dapper, J; Thiruvenkatam, R; Lessman, C A; Taylor, M R; Gilbertson, R J

    2015-03-26

    High-throughput screens (HTS) of compound toxicity against cancer cells can identify thousands of potential new drug-leads. But only limited numbers of these compounds can progress to expensive and labor-intensive efficacy studies in mice, creating a 'bottle neck' in the drug development pipeline. Approaches that triage drug-leads for further study are greatly needed. Here we provide an intermediary platform between HTS and mice by adapting mouse models of pediatric brain tumors to grow as orthotopic xenografts in the brains of zebrafish. Freshly isolated mouse ependymoma, glioma and choroid plexus carcinoma cells expressing red fluorescence protein were conditioned to grow at 34 °C. Conditioned tumor cells were then transplanted orthotopically into the brains of zebrafish acclimatized to ambient temperatures of 34 °C. Live in vivo fluorescence imaging identified robust, quantifiable and reproducible brain tumor growth as well as spinal metastasis in zebrafish. All tumor xenografts in zebrafish retained the histological characteristics of the corresponding parent mouse tumor and efficiently recruited fish endothelial cells to form a tumor vasculature. Finally, by treating zebrafish harboring ERBB2-driven gliomas with an appropriate cytotoxic chemotherapy (5-fluorouracil) or tyrosine kinase inhibitor (erlotinib), we show that these models can effectively assess drug efficacy. Our data demonstrate, for the first time, that mouse brain tumors can grow orthotopically in fish and serve as a platform to study drug efficacy. As large cohorts of brain tumor-bearing zebrafish can be generated rapidly and inexpensively, these models may serve as a powerful tool to triage drug-leads from HTS for formal efficacy testing in mice. PMID:24747973

  16. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth

    PubMed Central

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  17. Extracellular Vesicles from Metastatic Rat Prostate Tumors Prime the Normal Prostate Tissue to Facilitate Tumor Growth.

    PubMed

    Halin Bergström, Sofia; Hägglöf, Christina; Thysell, Elin; Bergh, Anders; Wikström, Pernilla; Lundholm, Marie

    2016-01-01

    Accumulating data indicates that tumor-derived extracellular vesicles (EVs) are responsible for tumor-promoting effects. However, if tumor EVs also prepare the tumor-bearing organ for subsequent tumor growth, and if this effect is different in low and high malignant tumors is not thoroughly explored. Here we used orthotopic rat Dunning R-3327 prostate tumors to compare the role of EVs from fast growing and metastatic MatLyLu (MLL) tumors with EVs from more indolent and non-metastatic Dunning G (G) tumors. Prostate tissue pre-conditioned with MLL-EVs in vivo facilitated G tumor establishment compared to G-EVs. MLL-EVs increased prostate epithelial proliferation and macrophage infiltration into the prostate compared to G-EVs. Both types of EVs increased macrophage endocytosis and the mRNA expression of genes associated with M2 polarization in vitro, with MLL-EVs giving the most pronounced effects. MLL-EVs also altered the mRNA expression of growth factors and cytokines in primary rat prostate fibroblasts compared to G-EVs, suggesting fibroblast activation. Our findings propose that EVs from metastatic tumors have the ability to prime the prostate tissue and enhance tumor growth to a higher extent than EVs from non-metastatic tumors. Identifying these differences could lead to novel therapeutic targets and potential prognostic markers for prostate cancer. PMID:27550147

  18. The contribution of tumor and host tissue factor expression to oncogene-driven gliomagenesis.

    PubMed

    Magnus, Nathalie; Meehan, Brian; Garnier, Delphine; Hashemi, Maryam; Montermini, Laura; Lee, Tae Hoon; Milsom, Chloe; Pawlinski, Rafal; Ohlfest, John; Anderson, Mark; Mackman, Nigel; Rak, Janusz

    2014-11-14

    Glioblastoma multiforme (GBM) is an aggressive form of glial brain tumors, associated with angiogenesis, thrombosis, and upregulation of tissue factor (TF), the key cellular trigger of coagulation and signaling. Since TF is upregulated by oncogenic mutations occurring in different subsets of human brain tumors we investigated whether TF contributes to tumourigenesis driven by oncogenic activation of EGFR (EGFRvIII) and RAS pathways in the brain. Here we show that TF expression correlates with poor prognosis in glioma, but not in GBM. In situ, the TF protein expression is heterogeneously expressed in adult and pediatric gliomas. GBM cells harboring EGFRvIII (U373vIII) grow aggressively as xenografts in SCID mice and their progression is delayed by administration of monoclonal antibodies blocking coagulant (CNTO 859) and signaling (10H10) effects of TF in vivo. Mice in which TF gene is disrupted in the neuroectodermal lineage exhibit delayed progression of spontaneous brain tumors driven by oncogenic N-ras and SV40 large T antigen (SV40LT) expressed under the control of sleeping beauty transposase. Reduced host TF levels in low-TF/SCID hypomorphic mice mitigated growth of glioma subcutaneously but not in the brain. Thus, we suggest that tumor-associated TF may serve as therapeutic target in the context of oncogene-driven disease progression in a subset of glioma.

  19. Characterization of a Raman spectroscopy probe system for intraoperative brain tissue classification

    PubMed Central

    Desroches, Joannie; Jermyn, Michael; Mok, Kelvin; Lemieux-Leduc, Cédric; Mercier, Jeanne; St-Arnaud, Karl; Urmey, Kirk; Guiot, Marie-Christine; Marple, Eric; Petrecca, Kevin; Leblond, Frédéric

    2015-01-01

    A detailed characterization study is presented of a Raman spectroscopy system designed to maximize the volume of resected cancer tissue in glioma surgery based on in vivo molecular tissue characterization. It consists of a hand-held probe system measuring spectrally resolved inelastically scattered light interacting with tissue, designed and optimized for in vivo measurements. Factors such as linearity of the signal with integration time and laser power, and their impact on signal to noise ratio, are studied leading to optimal data acquisition parameters. The impact of ambient light sources in the operating room is assessed and recommendations made for optimal operating conditions. In vivo Raman spectra of normal brain, cancer and necrotic tissue were measured in 10 patients, demonstrating that real-time inelastic scattering measurements can distinguish necrosis from vital tissue (including tumor and normal brain tissue) with an accuracy of 87%, a sensitivity of 84% and a specificity of 89%. PMID:26203368

  20. Treatment of oral soft tissues benign tumors using laser

    NASA Astrophysics Data System (ADS)

    Crisan, Bogdan; Baciut, Mihaela; Crisan, Liana; Bran, Simion; Rotar, Horatiu; Dinu, Cristian; Moldovan, Iuliu; Baciut, Grigore

    2014-01-01

    The present study aimed to assess the efficacy and indications of surgical laser therapy in the treatment of oral soft tissues benign tumors compared to classic surgery. A controlled clinical study was conducted in a group of 93 patients presenting various forms of oral soft tissues benign tumors. These patients were examined pre-and postoperatively and the oral benign tumors were measured linearly and photographed. The surgery of laser-assisted biopsy excision of oral benign tumors was carried out using a diode laser device of 980 nm. In patients who received surgical laser treatment, therapeutic doses of laser to biostimulate the operated area were administered on the first day after the surgery. The interventions of conventional excision of oral soft tissues benign tumors consisted in removing them using scalpel. In patients who have received therapeutic doses of laser for biostimulation of the operated area, a faster healing of wound surfaces and tumor bed was observed during the first days after surgery. Two weeks after the surgical treatment, good healing without scarring or discomfort in the area of excision was documented. Surgical treatment of oral soft tissues benign tumors with laser assisted postoperative therapy confirms the benefits of this surgical procedure. A faster healing process of the excision area due to laser biostimulation of low intensity has been observed in patients with surgical laser assisted treatment in the postoperative period.

  1. Parameter estimation of brain tumors using intraoperative thermal imaging based on artificial tactile sensing in conjunction with artificial neural network

    NASA Astrophysics Data System (ADS)

    Sadeghi-Goughari, M.; Mojra, A.; Sadeghi, S.

    2016-02-01

    Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors.

  2. The therapy of infantile malignant brain tumors: current status?

    PubMed

    Kalifa, Chantal; Grill, Jacques

    2005-12-01

    Malignant brain tumors are not uncommon in infants as their occurrence before the age of three represents 20-25% of all malignant brain tumors in childhood [1]. Genetic predisposition to infantile malignant brain tumors are known in Gorlin syndrome for example who present with desmoplastic medulloblastoma in about 5% of the affected patients. In addition, sequelae from tumor and its treatment are more severe at this age [2]. Thus, malignant brain tumors represent a true therapeutic challenge in neuro-oncology. Before the era of modern imaging and modern neurosurgery these malignant brain tumors were misdiagnosed or could not benefit of the surgical procedures as well as older children because of increased risks in this age group. Since the end of the 80s, noninvasive imaging procedures produce accurate diagnosis of brain tumors and improvement in neurosurgery, neuroanesthesia and perioperative intensive care permit safe tumor resections or at least biopsies. Consequently, the pediatric oncologists are more often confronted with very young children who need a complementary treatment. Before the development of specific approaches for this age group, these children received the same kind of treatment than the older children did, but their survival and quality of life were significantly worse. The reasons of these poor results were probably due in part to the fear of late effects induced by radiation therapy, leading to decrease the necessary doses of irradiation which increased treatment failures without avoiding treatment related complications [3]. At the end of the 80s, pilot studies were performed using postoperative chemotherapy in young medulloblastoma patients. Van Eys treated 12 selected children with medulloblastoma with MOPP regimen and without irradiation; 8 of them were reported to be long term survivors [4]. Subsequently, the pediatric oncology cooperative groups studies have designed therapeutic trials for very young children with malignant brain tumors

  3. Cancer as rubbish: donation of tumor tissue for research.

    PubMed

    Morrell, Bronwen; Lipworth, Wendy; Axler, Renata; Kerridge, Ian; Little, Miles

    2011-01-01

    Tissue banking (or biobanking), thought by many to be an essential form of medical research, has raised a number of ethical issues that highlight a need to understand the beliefs and values of tissue donors, including the motivations underlying consent or refusal to donate. Data from our qualitative study of the legal, social, and ethical issues surrounding tumor banking in New South Wales, Australia, show that participants' attitudes to donation of tumor tissue for research are partially captured by theories of weak altruism and social exchange. However, we argue that the psychological rewards of value transformation described by Thompson's rubbish theory provide additional insights into participants' attitudes to tumor donation. We believe our data provides sufficient justification for an approach to regulation of tumor banking that is aimed at fostering a relationship based on the notions of virtuous reassignment and social exchange.

  4. Simian virus 40 transformation, malignant mesothelioma and brain tumors

    PubMed Central

    Qi, Fang; Carbone, Michele; Yang, Haining; Gaudino, Giovanni

    2011-01-01

    Simian virus 40 (SV40) is a DNA virus isolated in 1960 from contaminated polio vaccines, that induces mesotheliomas, lymphomas, brain and bone tumors, and sarcomas, including osteosarcomas, in hamsters. These same tumor types have been found to contain SV40 DNA and proteins in humans. Mesotheliomas and brain tumors are the two tumor types that have been most consistently associated with SV40, and the range of positivity has varied about from 6 to 60%, although a few reported 100% of positivity and a few reported 0%. It appears unlikely that SV40 infection alone is sufficient to cause human malignancy, as we did not observe an epidemic of cancers following the administration of SV40-contaminated vaccines. However, it seems possible that SV40 may act as a cofactor in the pathogenesis of some tumors. In vitro and animal experiments showing cocarcinogenicity between SV40 and asbestos support this hypothesis. PMID:21955238

  5. Pediatric brain tumor treatment: growth consequences and their management.

    PubMed

    Mostoufi-Moab, Sogol; Grimberg, Adda

    2010-09-01

    Tumors of the central nervous system, the most common solid tumors of childhood, are a major source of cancer-related morbidity and mortality in children. Survival rates have improved significantly following treatment for childhood brain tumors, with this growing cohort of survivors at high risk of adverse medical and late effects. Endocrine morbidities are the most prominent disorder among the spectrum of longterm conditions, with growth hormone deficiency the most common endocrinopathy noted, either from tumor location or after cranial irradiation and treatment effects on the hypothalamic/pituitary unit. Deficiency of other anterior pituitary hormones can contribute to negative effects on growth, body image and composition, sexual function, skeletal health, and quality of life. Pediatric and adult endocrinologists often provide medical care to this increasing population. Therefore, a thorough understanding of the epidemiology and pathophysiology of growth failure as a consequence of childhood brain tumor, both during and after treatment, is necessary and the main focus of this review.

  6. Prediction of brain tumor progression using a machine learning technique

    NASA Astrophysics Data System (ADS)

    Shen, Yuzhong; Banerjee, Debrup; Li, Jiang; Chandler, Adam; Shen, Yufei; McKenzie, Frederic D.; Wang, Jihong

    2010-03-01

    A machine learning technique is presented for assessing brain tumor progression by exploring six patients' complete MRI records scanned during their visits in the past two years. There are ten MRI series, including diffusion tensor image (DTI), for each visit. After registering all series to the corresponding DTI scan at the first visit, annotated normal and tumor regions were overlaid. Intensity value of each pixel inside the annotated regions were then extracted across all of the ten MRI series to compose a 10 dimensional vector. Each feature vector falls into one of three categories:normal, tumor, and normal but progressed to tumor at a later time. In this preliminary study, we focused on the trend of brain tumor progression during three consecutive visits, i.e., visit A, B, and C. A machine learning algorithm was trained using the data containing information from visit A to visit B, and the trained model was used to predict tumor progression from visit A to visit C. Preliminary results showed that prediction for brain tumor progression is feasible. An average of 80.9% pixel-wise accuracy was achieved for tumor progression prediction at visit C.

  7. Heterotopic gastrointestinal mucosa and pancreatic tissue in a retroperitoneal tumor.

    PubMed

    Hashimoto, Naoki; Hakamada, Kenichi; Narumi, Shunji; Totsuka, Eishi; Aoki, Kazunori; Kamata, Yoshimasa; Sasaki, Mutsuo

    2006-01-01

    We believe that this is the first report of a retroperitoneal tumor consisting of heterotopic gastrointestinal mucosa and pancreatic tissue. The patient was a 19-year-old woman with the chief complaint being occasional back pain. Abdominal computerized tomography demonstrated a 3.1 x 2.5 x 3.2-cm low-density solid and cystic lesion adjoining the left renal vein between the aorta and inferior vena cava. Angiography revealed that the inferior vena cava was displaced by the hypovascular tumor. The retroperitoneal lesion was diagnosed preoperatively as a benign tumor such as a neurogenic neoplasm or lymphangioma. At laparotomy, a cystic tumor was found, which existed behind the inferior vena cava and renal vessels, and contained reddish-brown fluid, suggesting hemorrhage in the past. The cut surface of the tumor showed a unilocular cyst with partially hypertrophic wall. Histopathological examination revealed a cystic tumor lined with heterotopic gastric and duodenal mucosa, with pancreatic tissue in the muscularis propria. In addition, evidence of bleeding from the gastric mucosa was observed in the cystic tumor. External secretion from these tissues could have triggered the hemorrhage and expanded the tumor, possibly resulting in the back pain.

  8. Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.

    PubMed

    Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C

    2009-09-01

    A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.

  9. Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.

    PubMed

    Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C

    2009-09-01

    A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms. PMID:19446435

  10. Tissue factor in tumor microenvironment: a systematic review

    PubMed Central

    2014-01-01

    The aberrant hemostasis is a common manifestation of cancer, and venous thromboembolism (VTE) is the second leading cause of cancer patients’ mortality. Tissue factor (TF), comprising of a 47-kDa transmembrane protein that presents in subendothelial tissues and leukocytes and a soluble isoform, have distinct roles in the initiation of extrinsic coagulation cascade and thrombosis. Laboratory and clinical evidence showed the deviant expression of TF in several cancer systems and its tumor-promoting effects. TF contributes to myeloid cell recruitment in tumor stroma, thereby remodeling of tumor microenvironment. Additionally, the number of TF-positive-microparticles (TF+MP) from tumor origins correlates with the VTE rates in cancer patients. In this review, we summarize our current understanding of the TF regulation and roles in tumor progression and clinical complications. PMID:25084809

  11. Blood Brain Barrier: A Challenge for Effectual Therapy of Brain Tumors

    PubMed Central

    Bhowmik, Arijit; Ghosh, Mrinal Kanti

    2015-01-01

    Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier. PMID:25866775

  12. Tumors in murine brains studied by grating-based phase contrast microtomography

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Dominietto, Marco; Kovacs, Zsofia; Schmitz, Rüdiger; Hieber, Simone E.; Thalmann, Peter; Beckmann, Felix; Müller, Bert

    2014-09-01

    Angiogenesis, i.e. the formation of vessels, is one of the key processes during tumor development. The newly formed vessels transport oxygen and nutrients from the healthy tissue to the tumor and gives tumor cells the possibility to replicate. The principle of anti-angiogenic therapy is to block angiogenic process in order to stop tumor growth. The aim of the present study is the investigation of murine glioma vascular architecture at early (7 days), intermediate (10 and 15 days) and late (23 days) stage of growth by means of grating-based phase contrast microtomography. We demonstrate that this technique yields premium contrast between healthy and cancerous parts of murine brain tissues.

  13. Primary brain tumors, delta 24 and tumor metabolism. Interview by Rona Williamson.

    PubMed

    Gilbert, Mark R

    2013-04-01

    Interview by Rona Williamson, Commissioning Editor Mark R Gilbert studied medicine at the Johns Hopkins School of Medicine in Baltimore (MD, USA). He completed residency training in internal medicine and neurology at the Johns Hopkins Hospital, then was named the first Keck Foundation Fellow in Neuro-Oncology at Johns Hopkins. After 2 years on the faculty at Johns Hopkins, he moved to the University of Pittsburgh to head the Brain Tumor Program. During his tenure at Pittsburgh (PA, USA), he was named Chair of the Brain Tumor Committee of the Eastern Cooperative Oncology Group. In 1996, Dr Gilbert moved to the Emory University in Atlanta (GA, USA) to lead the Medical Neuro-Oncology Program and successfully competed for the program's membership in the New Approaches to Brain Tumor Treatment consortium. Dr Gilbert moved to the MD Anderson Cancer Center in Houston (TX, USA) in 2000 as Deputy Chair of the Department of Neuro-Oncology. During his tenure at MD Anderson, he has created two brain tumor consortia. The Collaborative Ependymoma Research Network is an international effort that is focusing research efforts on patients, both adult and pediatric, with this uncommon central nervous system tumor. The Brain Tumor Trials Collaborative is a 23-institution consortium that focuses on innovative clinical trials for primary glial malignancies. In addition, Dr Gilbert holds a leadership position in the Radiation Therapy Oncology Group and has served as the principal investigator on several large randomized brain tumor clinical trials. His research focus has been in the area of clinical and translational research for primary brain tumors. This includes novel clinical trial designs and the integration of correlative tumor biology with these clinical studies.

  14. Brain tumor evaluation and segmentation by in vivo proton spectroscopy and relaxometry.

    PubMed

    Martín-Landrove, Miguel; Mayobre, Finita; Bautista, Igor; Villalta, Raúl

    2005-12-01

    A new methodology has been developed for the evaluation and segmentation of brain tumors using information obtained by different magnetic resonance techniques such as in vivo proton magnetic resonance spectroscopy (1HMRS) and relaxometry. In vivo 1HMRS may be used as a preoperative technique that allows noninvasive monitoring of metabolites to identify the different tissue types present in the lesion (active tumor, necrotic tissue, edema, and normal or non-affected tissue). Spatial resolution for treatment consideration may be improved by using 1HMRS combined or fused with images obtained by relaxometry which exhibit excellent spatial resolution. Some segmentation schemes are presented and discussed. The results show that segmentation performed in this way efficiently determines the spatial localization of the tumor both qualitatively and quantitatively. It provides appropriate information for therapy planning and application of therapies such as radiosurgery or radiotherapy and future control of patient evolution.

  15. Human brain tumor xenografts in nude mice as a chemotherapy model.

    PubMed

    Houchens, D P; Ovejera, A A; Riblet, S M; Slagel, D E

    1983-06-01

    Two human brain tumors which were previously established in nude mice were used to determine antitumor efficacy of various therapeutic agents. These tumors were a medulloblastoma (TE-671) and a glioma (U-251) with mass doubling times of 3.5 and 5.5 days respectively as subcutaneous implants in nude mice. Intracranial (i.c.) tumor challenge was accomplished by inoculating tissue culture-grown cells of either tumor into the right cerebral hemisphere to a depth of 3 mm. Median survival time (MST) in untreated mice with 10(5) i.c. injected TE-671 cells was approximately 30 days and 53 days in the U-251 tumor. With 2 X 10(5) U-251 tumor cells the MST was 27-31 days. Groups of mice which had been inoculated with tumor were treated with various doses and schedules of antineoplastic compounds by the i.p. route. The TE-671 tumor responded to AZQ treatment with an increase in life span (ILS) of 37% compared to untreated controls and an ILS of 30% with CCNU treatment. BCNU and PCNU were ineffective. With the U-251 tumor BCNU produced an ILS of greater than 60%, with 75% cures, greater than 112% ILS with PCNU and 49% ILS with CCNU. Neither tumor responded to procarbazine, PALA, dianhydrogalactitol, D-O-norleucine or dibromodulcitol. The U-251 tumor was treated on various schedules and doses with BCNU and found to respond well on late as well as early treatment. A new drug (rapamycin) being investigated by the NCI was found to be very effective against the U-251 tumor. This model system should prove valuable in assessing the effects of various chemotherapeutic modalities against brain tumors.

  16. HFE polymorphisms affect survival of brain tumor patients.

    PubMed

    Lee, Sang Y; Slagle-Webb, Becky; Sheehan, Jonas M; Zhu, Junjia; Muscat, Joshua E; Glantz, Michael; Connor, James R

    2015-03-01

    The HFE (high iron) protein plays a key role in the regulation of body iron. HFE polymorphisms (H63D and C282Y) are the common genetic variants in Caucasians. Based on frequency data, both HFE polymorphisms have been associated with increased risk in a number of cancers. The prevalence of the two major HFE polymorphisms in a human brain tumor patient populations and the impact of HFE polymorphisms on survival have not been studied. In the present study, there is no overall difference in survival by HFE genotype. However, male GBM patients with H63D HFE (H63D) have poorer overall survival than wild type HFE (WT) male GBM (p = 0.03). In GBM patients with the C282Y HFE polymorphism (C282Y), female patients have poorer survival than male patients (p = 0.05). In addition, female metastatic brain tumor patients with C282Y have shorter survival times post diagnosis than WT patients (p = 0.02) or male metastatic brain tumor patients with C282Y (p = 0.02). There is a tendency toward a lower proportion of H63D genotype in GBM patients than a non-tumor control group (p = 0.09) or other subtypes of brain tumors. In conclusion, our study suggests that HFE genotype impacts survival of brain tumor patients in a gender specific manner. We previously reported that glioma and neuroblastoma cell lines with HFE polymorphisms show greater resistance to chemo and radiotherapy. Taken together, these data suggest HFE genotype is an important consideration for evaluating and planning therapeutic strategies in brain tumor patients.

  17. Brain tumor demarcation with liquid-crystal tunable filter spectral imaging

    NASA Astrophysics Data System (ADS)

    Gebhart, Steven C.; Mahadevan-Jansen, Anita

    2006-02-01

    Past studies have demonstrated that combined fluorescence and diffuse reflectance spectroscopy can successfully discriminate between normal, tumor core, and tumor margin tissues in the brain. To achieve efficient surgical resection guidance with optical biopsy, probe-based spectroscopy must be extended to spectral imaging to spatially demarcate the tumor margins. This paper describes the design and testing of a combined fluorescence and diffuse reflectance imaging system which uses liquid-crystal tunable filter technology. Experiments were conducted to quantitatively determine its linearity, field of view, spatial and spectral resolution, and wavelength sensitivity. For functional testing, spectral images were acquired from tissue phantoms, mouse brain in vitro, and rat brain cortex in vivo. The spectral imaging system is characterized by measured intensities which are linear with sample emission intensity and integration time, a one-inch field of view for a seven-inch object distance, spectral resolution which is linear with wavelength, spatial resolution which is pixel-limited, and sensitivity functions which provide a guide for the distribution of total image integration time between wavelengths. Functional testing demonstrated good spatial and spectral constrast between brain tissue types, the capability to acquire adequate fluorescence and diffuse reflectance intensities within a one-minute imaging timeframe, and the importance of hemostasis to acquired signal strengths and imaging speed.

  18. Diagnosis and surgical treatment of childhood brain tumors.

    PubMed

    Wilson, C B

    1975-03-01

    As the most frequent solid tumor occurring in childhood, brain tumors constitute an important segment of pediatric oncology. Neurologic manifestations may be deceptively mild and easily overlooked or misinterpreted, particularly in the very young, because of the remarkable resiliency of the immature central nervous system and the skull's ability to expand throughout the pre-adolescent years. The majority of childhood tumors produce increased intracranial pressure, usually the consequence of obstructive hydrocephalus. Specific neurologic deficits correspond to the tumor's location. The posterior fossa harbors two-thirds of childhood tumors, and each of the four common tumors in this location produces a characteristic syndrome. Supratentorial tumors occupy the cerebral hemisphere, the suprasellar area, and the pineal gland. Diagnostic studies have reached a state of great sophistication and precise anatomical localization. Surgery, either alone or with adjuvant radiotherapy, cures no more than one-third of all tumors; for the remainder, it has a diagnostic and palliative role. The introduction of operative microsurgery has advanced the art, particularly in the surgical treatment of craniopharyngiomas and pinealomas, but any significant improvement in the treatment of brain tumors as a group seems unlikely to be achieved by surgery alone.

  19. Atlas-based segmentation of brain tumor images using a Markov random field-based tumor growth model and non-rigid registration.

    PubMed

    Bauer, Stefan; Seiler, Christof; Bardyn, Thibaut; Buechler, Philippe; Reyes, Mauricio

    2010-01-01

    We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.

  20. Soft tissue tumors of the head and neck.

    PubMed

    Katenkamp, D

    1987-01-01

    From the tumor register of the Institute of Pathology of Jena all soft tissue tumors of the head and neck collected between 1959 and 1984 were retrieved and reclassified. 562 out of 646 tumors (87%) were benign. Three quarter of these growths could be diagnosed as nerve sheath tumors (schwannomas and neurofibromas), hemangiomas, fibrohistiocytic tumors and lipomas. 84 tumors were malignant (13%). As the most frequent subtypes we found fibrohistiocytic sarcomas (malignant fibrous histiocytomas and atypical fibroxanthomas), muscularly differentiated sarcomas (rhabdo- and leiomyosarcomas) and unclassified sarcomas. The age and sex distribution as well as the localization and histologic peculiarities were analysed and compared with findings reported in the literature. The significance of knowing such data for diagnostic and differential diagnostic considerations is stressed and exemplified. PMID:3592924

  1. Modeling invasion of brain tissue by glioblastoma cells: ECM alignment and motility

    NASA Astrophysics Data System (ADS)

    Sander, L. M.

    2013-03-01

    A key stage in the development of highly malignant brain tumors (Glioblastoma Multiforme) is invasion of normal brain tissue by motile cells moving through a crowded, complex environment. Evidence from in vitro experiments suggests the cell motion is accompanied by considerable deformation and alignment of the extra-cellular matrix (ECM) of the brain. In the case of breast cancer, alignment effects of this sort have been seen in vivo. We have modeled features of this system including stress confinement in the non-linear elasticity of the ECM and contact guidance of the cell motion.

  2. Photo-acoustic imaging of blue nanoparticle targeted brain tumor for intra-operative glioma delineation

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Wang, Xueding; Koo Lee, Yong-Eun; Hah, HoeJin; Kim, Gwangseong; Chen, Thomas; Orrienger, Daniel; Sagher, Oren; Kopelman, Raoul

    2011-07-01

    Distinguishing the tumor from the background neo-plastic tissue is challenging for cancer surgery such as surgical resection of glioma. Attempts have been made to use visible or fluorescent markers to delineate the tumors during surgery. However, the systemic injection of the dyes requires high dose, resulting in negative side effects. A novel method to delineate rat brain tumors intra-operatively, as well as post-operatively, using a highly sensitive photoacoustic imaging technique enhanced by tumor targeting blue nanoparticle as contrast agent is demonstrated. The nanoparticles are made of polyacrylamide (PAA) matrix with covalently linked Coomassie-Blue dye. They contain 7.0% dye and the average size is 80nm. Their surface was conjugated with F3 peptide for active tumor targeting. These nanoparticles are nontoxic, chemically inert and have long plasma circulation lifetime, making them suitable as nanodevices for imaging using photoacoustics. Experiments on phantoms and rat brains tumors ex-vivo demonstrate the high sensitivity of photoacoustic imaging in delineating the tumor, containing contrast agent at concentrations too low to be visualized by eye. The control tumors without nanoparticles did not show any enhanced signal. This study shows that photoacoustic imaging facilitated with the nanoparticle contrast agent could contribute to future surgical procedures for glioma.

  3. A Dense Poly(ethylene glycol) Coating Improves Penetration of Large Polymeric Nanoparticles within Brain Tissue

    PubMed Central

    Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin

    2013-01-01

    Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224

  4. Liquid-crystal tunable filter spectral imaging for brain tumor demarcation

    NASA Astrophysics Data System (ADS)

    Gebhart, Steven C.; Thompson, Reid C.; Mahadevan-Jansen, Anita

    2007-04-01

    Past studies have demonstrated that combined fluorescence and diffuse reflectance spectroscopy can successfully discriminate between normal, tumor core, and tumor margin tissues in the brain. To achieve efficient, real-time surgical resection guidance with optical biopsy, probe-based spectroscopy must be extended to spectral imaging to spatially demarcate the tumor margins. We describe the design and characterization of a combined fluorescence and diffuse reflectance imaging system that uses liquid-crystal tunable filter technology. Experiments were conducted to quantitatively determine the linearity, field of view, spatial and spectral resolution, and wavelength sensitivity of the imaging system. Spectral images were acquired from tissue phantoms, mouse brain in vitro, and human cortex in vivo for functional testing of the system. The spectral imaging system produces measured intensities that are linear with sample emission intensity and integration time and possesses a 1 in. (2.54 cm) field of view for a 7 in. (18 cm) object distance. The spectral resolution is linear with wavelength, and the spatial resolution is pixel-limited. The sensitivity spectra for the imaging system provide a guide for the distribution of total image integration time between wavelengths. Functional tests in vitro demonstrate the capability to spectrally discriminate between brain tissues based on exogenous fluorescence contrast or endogenous tissue composition. In vivo imaging captures adequate fluorescence and diffuse reflectance intensities within a clinically viable 2 min imaging time frame and demonstrates the importance of hemostasis to acquired signal strengths and imaging speed.

  5. New strategies to deliver anticancer drugs to brain tumors

    PubMed Central

    Laquintana, Valentino; Trapani, Adriana; Denora, Nunzio; Wang, Fan; Gallo, James M.; Trapani, Giuseppe

    2009-01-01

    BACKGROUND Malignant brain tumors are among the most challenging to treat and at present there are no uniformly successful treatment strategies. Standard treatment regimens consist of maximal surgical resection followed by radiotherapy and chemotherapy. The limited survival advantage attributed to chemotherapy is partially due to low CNS penetration of antineoplastic agents across the blood-brain barrier (BBB). OBJECTIVE The objective of this paper is to review recent approaches to deliver anticancer drugs into primary brain tumors. METHODS Both preclinical and clinical strategies to circumvent the BBB are considered that includes chemical modification and colloidal carriers. CONCLUSION Analysis of the available data indicates that novel approaches may be useful for CNS delivery, yet an appreciation of pharmacokinetic issues, and improved knowledge of tumor biology will be needed to significantly impact drug delivery to the target site. PMID:19732031

  6. [Surgical treatment of malignant soft tissue tumors].

    PubMed

    Amino, K; Kawaguchi, N; Matsumoto, S; Manabe, J; Furuya, K; Isobe, Y

    1987-05-01

    The ultimate survival of patients with soft tissue sarcoma is determined by a number of factors. Radical removal by adequate surgery is one of the most important factors together with early treatment and chemotherapy. We usually select curative wide resection, amputation, or resection after radiotherapy as forms of radical surgery for soft tissue sarcomas according to each clinical stage. The method of curative wide resection is based on biological barrier effects. In this report we discuss the operative results obtained in 148 cases of soft tissue sarcoma which we have treated over the past ten years, and also discuss the causes of recurrence after radical operation. Among 55 primary NoMo which were treated by the curative wide resection cases, the recurrence rate was 5.5%, the metastatic rate was 21.8%, and 5-year survival was 79.3%. These results were better than those for 30 recurrent and additional NoMo cases. Of cases involving the extremities, 81% were controlled by limb-saving operations. PMID:3592703

  7. Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment.

    PubMed

    Tamori, Yoichiro; Suzuki, Emiko; Deng, Wu-Min

    2016-09-01

    Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity and trigger tumorigenesis remain elusive. Here, we show through analysis of conserved neoplastic tumor-suppressor genes (nTSGs) in Drosophila wing imaginal disc epithelia that tumor initiation depends on tissue-intrinsic local cytoarchitectures, causing tumors to consistently originate in a specific region of the tissue. In this "tumor hotspot" where cells constitute a network of robust structures on their basal side, nTSG-deficient cells delaminate from the apical side of the epithelium and begin tumorigenic overgrowth by exploiting endogenous Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity. Conversely, in other regions, the "tumor coldspot" nTSG-deficient cells are extruded toward the basal side and undergo apoptosis. When the direction of delamination is reversed through suppression of RhoGEF2, an activator of the Rho family small GTPases, and JAK/STAT is activated ectopically in these coldspot nTSG-deficient cells, tumorigenesis is induced. These data indicate that two independent processes, apical delamination and JAK/STAT activation, are concurrently required for the initiation of nTSG-deficient-induced tumorigenesis. Given the conservation of the epithelial cytoarchitecture, tumorigenesis may be generally initiated from tumor hotspots by a similar mechanism. PMID:27584724

  8. Epithelial Tumors Originate in Tumor Hotspots, a Tissue-Intrinsic Microenvironment

    PubMed Central

    Tamori, Yoichiro; Suzuki, Emiko; Deng, Wu-Min

    2016-01-01

    Malignant tumors are caused by uncontrolled proliferation of transformed mutant cells that have lost the ability to maintain tissue integrity. Although a number of causative genetic backgrounds for tumor development have been discovered, the initial steps mutant cells take to escape tissue integrity and trigger tumorigenesis remain elusive. Here, we show through analysis of conserved neoplastic tumor-suppressor genes (nTSGs) in Drosophila wing imaginal disc epithelia that tumor initiation depends on tissue-intrinsic local cytoarchitectures, causing tumors to consistently originate in a specific region of the tissue. In this “tumor hotspot” where cells constitute a network of robust structures on their basal side, nTSG-deficient cells delaminate from the apical side of the epithelium and begin tumorigenic overgrowth by exploiting endogenous Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling activity. Conversely, in other regions, the “tumor coldspot” nTSG-deficient cells are extruded toward the basal side and undergo apoptosis. When the direction of delamination is reversed through suppression of RhoGEF2, an activator of the Rho family small GTPases, and JAK/STAT is activated ectopically in these coldspot nTSG-deficient cells, tumorigenesis is induced. These data indicate that two independent processes, apical delamination and JAK/STAT activation, are concurrently required for the initiation of nTSG-deficient-induced tumorigenesis. Given the conservation of the epithelial cytoarchitecture, tumorigenesis may be generally initiated from tumor hotspots by a similar mechanism. PMID:27584724

  9. Infrared Spectra of Human Breast Tumor Tissue and Experimental Animal Tumors

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Belkov, M. V.; Skornyakov, I. V.; Pekhnyo, V. I.; Kozachkova, A. N.; Tsarik, H. V.; Kutsenko, I. P.; Sharykina, N. I.; Butra, V. A.

    2015-01-01

    We have used Fourier transform IR spectroscopy methods to conduct comparative studies of human breast tumors and sarcoma 180 tumor grafted into mice. The IR spectral parameters used to identify tumor tissue in mice with the sarcoma 180 strain proved to be identical to the parameters for human breast tissue in cancer. In the presence of a malignant tumor in humans, the most intense C=O vibrational bands in the protein molecules are observed in the interval 1710-1680 cm-1. For a benign tumor, in the IR spectra of breast tissue the intense bands are located in the interval 1670-1650 cm-1. We spectroscopically monitored the diagnosis and the chemotherapy process using the model of sarcoma 180 in mice. As the therapeutic drugs, we used synthesized coordination compounds based on palladium complexes with diphosphonic acid derivatives. We demonstrate the promising potential of palladium complexes with zoledronic acid as an effective cytostatic. In therapy using a palladium complex with zoledronic acid, the effect of tumor growth inhibition is accompanied by a change in its spectral characteristics. The parameters of the IR spectra for tumor tissue after treatment are close to those of the IR spectra for healthy tissue.

  10. A New Antigen Retrieval Technique for Human Brain Tissue

    PubMed Central

    Byne, William; Haroutunian, Vahram; García-Villanueva, Mercedes; Rábano, Alberto; García-Amado, María; Prensa, Lucía; Giménez-Amaya, José Manuel

    2008-01-01

    Immunohistochemical staining of tissues is a powerful tool used to delineate the presence or absence of an antigen. During the last 30 years, antigen visualization in human brain tissue has been significantly limited by the masking effect of fixatives. In the present study, we have used a new method for antigen retrieval in formalin-fixed human brain tissue and examined the effectiveness of this protocol to reveal masked antigens in tissues with both short and long formalin fixation times. This new method, which is based on the use of citraconic acid, has not been previously utilized in brain tissue although it has been employed in various other tissues such as tonsil, ovary, skin, lymph node, stomach, breast, colon, lung and thymus. Thus, we reported here a novel method to carry out immunohistochemical studies in free-floating human brain sections. Since fixation of brain tissue specimens in formaldehyde is a commonly method used in brain banks, this new antigen retrieval method could facilitate immunohistochemical studies of brains with prolonged formalin fixation times. PMID:18852880

  11. Circulating biomarker panels for targeted therapy in brain tumors.

    PubMed

    Tanase, Cristiana; Albulescu, Radu; Codrici, Elena; Popescu, Ionela Daniela; Mihai, Simona; Enciu, Ana Maria; Cruceru, Maria Linda; Popa, Adrian Claudiu; Neagu, Ana Iulia; Necula, Laura Georgiana; Mambet, Cristina; Neagu, Monica

    2015-01-01

    An important goal of oncology is the development of cancer risk-identifier biomarkers that aid early detection and target therapy. High-throughput profiling represents a major concern for cancer research, including brain tumors. A promising approach for efficacious monitoring of disease progression and therapy could be circulating biomarker panels using molecular proteomic patterns. Tailoring treatment by targeting specific protein-protein interactions and signaling networks, microRNA and cancer stem cell signaling in accordance with tumor phenotype or patient clustering based on biomarker panels represents the future of personalized medicine for brain tumors. Gathering current data regarding biomarker candidates, we address the major challenges surrounding the biomarker field of this devastating tumor type, exploring potential perspectives for the development of more effective predictive biomarker panels.

  12. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. PMID:25865822

  13. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.

  14. Progress on the diagnosis and evaluation of brain tumors

    PubMed Central

    Gao, Huile

    2013-01-01

    Abstract Brain tumors are one of the most challenging disorders encountered, and early and accurate diagnosis is essential for the management and treatment of these tumors. In this article, diagnostic modalities including single-photon emission computed tomography, positron emission tomography, magnetic resonance imaging, and optical imaging are reviewed. We mainly focus on the newly emerging, specific imaging probes, and their potential use in animal models and clinical settings. PMID:24334439

  15. Dysphagia outcomes in patients with brain tumors undergoing inpatient rehabilitation.

    PubMed

    Wesling, Michele; Brady, Susan; Jensen, Mary; Nickell, Melissa; Statkus, Donna; Escobar, Nelson

    2003-01-01

    The purpose of this retrospective study was to compare functional dysphagia outcomes following inpatient rehabilitation for patients with brain tumors with that of patients following a stroke. Group 1 (n = 24) consisted of consecutive admissions to the brain injury program with the diagnosis of brain tumor and dysphagia. Group 2 (n = 24) consisted of matched, consecutive admissions, with the diagnosis of acute stroke and dysphagia. Group 2 was matched for age, site of lesion, and initial composite cognitive FIM score. The main outcome measures for this study included the American Speech-Language-Hearing Association (ASHA) National Outcome Measurement System (NOMS) swallowing scale, length of stay, hospital charges, and medical complications. Results showed that swallowing gains made by both groups as evaluated by the admission and discharge ASHA NOMS levels were considered to be statistically significant. The differences for length of stay, total hospital charges, and speech charges between the two groups were not considered to be statistically significant. Three patients in the brain tumor group (12.5%) demonstrated dysphagia complications of either dehydration or pneumonia during their treatment course as compared to 0% in the stroke group. This study confirms that functional dysphagia gains can be achieved for patients with brain tumors undergoing inpatient rehabilitation and that they should be afforded the same type and intensity of rehabilitation for their swallowing that is provided to patients following a stroke.

  16. Agnosias: recognition disorders in patients with brain tumors.

    PubMed

    Gainotti, Guido

    2012-06-01

    Two main varieties of recognition disorders are distinguished in neuropsychology: agnosias and semantic disorders. The term agnosias is generally used to denote recognition defects limited to a single perceptual modality (which is itself apparently intact), whereas the term semantic disorders is used to denote recognition defects involving all the sensory modalities in a roughly similar manner. Brain tumors can be one of the aetiologies underlying agnosias and semantic disorders. However, due to the heterogeneity and the rarity of recognition disorders, their investigation can be useful only to suggest or exclude the oncological nature of a brain lesion, but not to systematically monitor the clinical outcome in tumor patients. Furthermore, the relevance of recognition disorders as a hint toward a diagnosis of brain tumor varies according to the type of agnosia and of semantic disorder and the localization of the underlying brain pathology. The hypothesis that a variety of agnosia (or of semantic disorder) may be due to a neoplastic lesion can, therefore, be advanced if it is consistent with our knowledge about the usual localization and the growing patterns of different types of brain tumors.

  17. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    NASA Astrophysics Data System (ADS)

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-01

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  18. Detecting brain tumor in computed tomography images using Markov random fields and fuzzy C-means clustering techniques

    SciTech Connect

    Abdulbaqi, Hayder Saad; Jafri, Mohd Zubir Mat; Omar, Ahmad Fairuz; Mustafa, Iskandar Shahrim Bin; Abood, Loay Kadom

    2015-04-24

    Brain tumors, are an abnormal growth of tissues in the brain. They may arise in people of any age. They must be detected early, diagnosed accurately, monitored carefully, and treated effectively in order to optimize patient outcomes regarding both survival and quality of life. Manual segmentation of brain tumors from CT scan images is a challenging and time consuming task. Size and location accurate detection of brain tumor plays a vital role in the successful diagnosis and treatment of tumors. Brain tumor detection is considered a challenging mission in medical image processing. The aim of this paper is to introduce a scheme for tumor detection in CT scan images using two different techniques Hidden Markov Random Fields (HMRF) and Fuzzy C-means (FCM). The proposed method has been developed in this research in order to construct hybrid method between (HMRF) and threshold. These methods have been applied on 4 different patient data sets. The result of comparison among these methods shows that the proposed method gives good results for brain tissue detection, and is more robust and effective compared with (FCM) techniques.

  19. Tumor-infiltrating lymphocytes expressing IOT-10 marker. An immunohistochemical study of a series of 185 brain tumors.

    PubMed

    Zurita, M; Vaquero, J; Coca, S; Oya, S; Garcia, N

    1993-04-01

    The presence of IOT-10-positive lymphocytes among the tumor-infiltrating-lymphocyte (TIL) population was studied in a series of 185 brain tumors. In most of the tumors, IOT-10-positive lymphocytes were identified, but generally they were scarce and masked among the tumor cells, suggesting that NK-cells exercise a poor participation in the tissular response against brain tumors. Isolated tumor cells showing IOT-10-positivity were found in low-grade astrocytomas, neurinomas and medulloblastomas. IOT-10-positivity on both tumor neuropil and tumor cells was considered a characteristic finding in oligodendrogliomas. The number of IOT-10-positive NK-cells in brain metastases and in cerebellar hemangioblastomas was comparatively greater than in other types of brain tumor. Since in brain metastases, the presence of IOT-10-positive NK-cells can be related to the tissular response to an extracerebral malignancy, their considerable presence in cerebellar hemangioblastomas is an enigmatic finding that deserves further attention.

  20. Nanoparticle-Mediated Photothermal Therapy of Brain Tumors

    NASA Astrophysics Data System (ADS)

    Makkouk, Amani R.; Madsen, Steen J.

    Nanoparticles (10-1,000 nm diameter) have been investigated for use in numerous diagnostic and therapeutic applications. Gold nanoparticles are particularly appealing due to their biological inertness and the ability to conjugate a wide variety of ligands to their surface. Additionally, their optical properties can be tuned through variations of their size, shape, and composition. For example, gold-silica nanoshells, consisting of a spherical dielectric silica core (100-120 nm diameter) surrounded by a 10-20 nm gold shell, have a strong resonant absorption at approximately 800 nm where light has significant penetration in biological tissues. Following light absorption, surface electrons are photoexcited and the resultant heated electron gas is dissipated to the surrounding medium causing thermal damage. The ability of nanoparticles to convert optical energy to thermal energy makes them ideally suited for photothermal therapy (PTT). This review focuses on the utility of gold-silica nanoshells in PTT of brain tumors. PTT has proven effective in a number of in vitro and in vivo studies. Of particular clinical relevance are results demonstrating PTT efficacy in an orthotopic canine model.

  1. In vivo pink-beam imaging and fast alignment procedure for rat brain tumor radiation therapy.

    PubMed

    Nemoz, Christian; Kibleur, Astrid; Hyacinthe, Jean Noël; Berruyer, Gilles; Brochard, Thierry; Bräuer-Krisch, Elke; Le Duc, Géraldine; Brun, Emmanuel; Elleaume, Hélène; Serduc, Raphaël

    2016-01-01

    A fast positioning method for brain tumor microbeam irradiations for preclinical studies at third-generation X-ray sources is described. The three-dimensional alignment of the animals relative to the X-ray beam was based on the X-ray tomography multi-slices after iodine infusion. This method used pink-beam imaging produced by the ID17 wiggler. A graphical user interface has been developed in order to define the irradiation parameters: field width, height, number of angles and X-ray dose. This study is the first reporting an image guided method for soft tissue synchrotron radiotherapy. It allowed microbeam radiation therapy irradiation fields to be reduced by a factor of ∼20 compared with previous studies. It permitted more targeted, more efficient brain tumor microbeam treatments and reduces normal brain toxicity of the radiation treatment.

  2. [Molecular targeted drugs for soft tissue sarcoma and neuroendocrine tumor].

    PubMed

    Kato, Shunsuke

    2015-08-01

    Both the soft tissue sarcomas and the neuroendocrine tumors are rare diseases. Therefore the recruiting of these patients was more difficult than other cancer species, and the development of the new therapy for these diseases did not readily advance. However, the identification of driver molecules for each sub-type enabled us to the development of the molecular targeted drugs. As for the GIST, several TKIs are used, but in late years it is found that susceptibility of TKIs varies according to difference in second mutation. In this chapter, the molecular target drug for the soft tissue sarcoma and the neuroendocrine tumor is reviewed. PMID:26281696

  3. Specific absorbed fractions of energy from internal photon sources in brain tumor and cerebrospinal fluid

    SciTech Connect

    Evans, J.F. )); Stubbs, J.B. )

    1995-03-01

    Transferrin, radiolabeled with In-111, can be coinjected into glioblastoma multiforme lesions, and subsequent scintigraphic imaging can demonstrate the biokinetics of the cytotoxic transferrin. The administration of [sup 111]In transferrin into a brain tumor results in distribution of radioactivity in the brain, brain tumor, and the cerebrospinal fluid (CSF). Information about absorbed radiation doses to these regions, as well as other nearby tissues and organs, is important for evaluating radiation-related risks from this procedure. The radiation dose is usually estimated for a mathematical representation of the human body. We have included source/target regions for the eye, lens of the eye, spinal column, spinal CSF, cranial CSF, and a 100-g tumor within the brain of an adult male phantom developed by Cristy and Eckerman. The spinal column, spinal CSF, and the eyes have not been routinely included in photon transport simulations. Specific absorbed fractions (SAFs) as a function of photon energy were calculated using the ALGAMP computer code, which utilizes Monte Carlo techniques for simulating photon transport. The ALGAMP code was run three times, with the source activity distributed uniformly within the tumor, cranial CSF, and the spinal CSF volumes. These SAFs, which were generated for 12 discrete photon energies ranging from 0.01 to 4.0 MeV, were used with decay scheme data to calculate [ital S]-values needed for estimating absorbed doses. [ital S]-values for [sup 111]In are given for three source regions (brain tumor, cranial CSF, and spinal CSF) and all standard target regions/organs, the eye and lens, as well as to tissues within these source regions. [ital S]-values for the skeletal regions containing active marrow are estimated. These results are useful in evaluating the radiation doses from intracranial administration of [sup 111]In transferrin.

  4. Characterization of lipids from human brain tissues by multinuclear magnetic resonance spectroscopy.

    PubMed

    Tugnoli, V; Tosi, M R; Tinti, A; Trinchero, A; Bottura, G; Fini, G

    2001-01-01

    Multinuclear ((1)H, (13)C, and (31)P) magnetic resonance spectroscopy are applied to the biochemical characterization of the total lipid fraction of healthy and neoplastic human brain tissues. Lipid extracts from normal brains, glioblastomas, anaplastic oligodendrogliomas, oligodendrogliomas, and meningiomas are examined. Moreover, the unknown liquid content of a cyst adjacent to a meningioma is analyzed. Two biopsies from glioblastomas are directly studied by (1)H-NMR without any treatment (ex vivo NMR). The (1)H- and (13)C-NMR analysis allows full characterization of the lipid component of the cerebral tissues. In particular, the presence of cholesteryl esters and triglycerides in the extracts of high grade tumors is correlated to the vascular proliferation degree, which is different from normal brain tissue and low grade neoplasms. The (31)P spectra show that phosphatidylcholine is the prominent phospholipid and its relative amount, which is higher in gliomas, is correlated to the low grade of differentiation of tumor cells and an altered membrane turnover. The ex vivo (1)H-NMR data on the glioblastoma samples show the presence of mobile lipids that are correlated to cell necrotic phenomena. Our data allow a direct correlation between biochemical results obtained by NMR and the histopathological factors (vascular and cell proliferations, differentiation, and necrosis) that are prominent in determining brain tumor grading.

  5. A Brain Tumor/Organotypic Slice Co-culture System for Studying Tumor Microenvironment and Targeted Drug Therapies.

    PubMed

    Chadwick, Emily J; Yang, David P; Filbin, Mariella G; Mazzola, Emanuele; Sun, Yu; Behar, Oded; Pazyra-Murphy, Maria F; Goumnerova, Liliana; Ligon, Keith L; Stiles, Charles D; Segal, Rosalind A

    2015-11-07

    Brain tumors are a major cause of cancer-related morbidity and mortality. Developing new therapeutics for these cancers is difficult, as many of these tumors are not easily grown in standard culture conditions. Neurosphere cultures under serum-free conditions and orthotopic xenografts have expanded the range of tumors that can be maintained. However, many types of brain tumors remain difficult to propagate or study. This is particularly true for pediatric brain tumors such as pilocytic astrocytomas and medulloblastomas. This protocol describes a system that allows primary human brain tumors to be grown in culture. This quantitative assay can be used to investigate the effect of microenvironment on tumor growth, and to test new drug therapies. This protocol describes a system where fluorescently labeled brain tumor cells are grown on an organotypic brain slice from a juvenile mouse. The response of tumor cells to drug treatments can be studied in this assay, by analyzing changes in the number of cells on the slice over time. In addition, this system can address the nature of the microenvironment that normally fosters growth of brain tumors. This brain tumor organotypic slice co-culture assay provides a propitious system for testing new drugs on human tumor cells within a brain microenvironment.

  6. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts1

    PubMed Central

    Herrmann, Kelsey; Erokwu, Bernadette O.; Johansen, Mette L.; Basilion, James P.; Gulani, Vikas; Griswold, Mark A.; Flask, Chris A.; Brady-Kalnay, Susann M.

    2016-01-01

    Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI) techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents. PMID:27084431

  7. American brain tumor patients treated with BNCT in Japan

    SciTech Connect

    Laramore, G.E.; Griffin, B.R.; Spence, A.

    1995-11-01

    The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.

  8. Epigenetics in Brain Tumors: HDACs Take Center Stage

    PubMed Central

    Eyüpoglu, Ilker Y.; Savaskan, Nicolai E.

    2016-01-01

    Primary tumors of the brain account for 2 % of all cancers with malignant gliomas taking the lion’s share at 70 %. Malignant gliomas (high grade gliomas WHO° III and °IV) belong to one of the most threatening tumor entities known for their disappointingly short median survival time of just 14 months despite maximum therapy according to current gold standards. Malignant gliomas manifest various factors, through which they adapt and manipulate the tumor microenvironment to their advantage. Epigenetic mechanisms operate on the tumor microenvironment by de- and methylation processes and imbalances between the histone deacetylases (HDAC) and histone acetylases (HAT). Many compounds have been discovered modulating epigenetically controlled signals. Recent studies indicate that xCT (system xc-, SLC7a11) and CD44 (H-CAM, ECM-III, HUTCH-1) functions as a bridge between these epigenetic regulatory mechanisms and malignant glioma progression. The question that ensues is the extent to which therapeutic intervention on these signaling pathways would exert influence on the treatment of malignant gliomas as well as the extent to which manipulation of HDAC activity can sensitize tumor cells for chemotherapeutics through ‘epigenetic priming’. In light of considering the current stagnation in the development of therapeutic options, the need for new strategies in the treatment of gliomas has never been so pressing. In this context the possibility of pharmacological intervention on tumor-associated genes by epigenetic priming opens a novel path in the treatment of primary brain tumors. PMID:26521944

  9. Prediction of drug distribution in subcutaneous xenografts of human tumor cell lines and healthy tissues in mouse: application of the tissue composition-based model to antineoplastic drugs.

    PubMed

    Poulin, Patrick; Chen, Yung-Hsiang; Ding, Xiao; Gould, Stephen E; Hop, Cornelis Eca; Messick, Kirsten; Oeh, Jason; Liederer, Bianca M

    2015-04-01

    Advanced tissue composition-based models can predict the tissue-plasma partition coefficient (Kp ) values of drugs under in vivo conditions on the basis of in vitro and physiological input data. These models, however, focus on healthy tissues and do not incorporate data from tumors. The objective of this study was to apply a tissue composition-based model to six marketed antineoplastic drugs (docetaxel, DOC; doxorubicin, DOX; gemcitabine, GEM; methotrexate, MTX; topotecan, TOP; and fluorouracil, 5-FU) to predict their Kp values in three human tumor xenografts (HCT-116, H2122, and PC3) as well as in healthy tissues (brain, muscle, lung, and liver) under steady-state in vivo conditions in female NCR nude mice. The mechanisms considered in the tissue/tumor composition-based model are the binding to lipids and to plasma proteins, but the transporter effect was also investigated. The method consisted of analyzing tissue composition, performing the pharmacokinetics studies in mice, and calculating the corresponding in vivo Kp values. Analyses of tumor composition indicated that the tumor xenografts contained no or low amounts of common transporters by contrast to lipids. The predicted Kp values were within twofold and threefold of the measured values in 77% and 93% of cases, respectively. However, predictions for brain for each drug, for liver for MTX, and for each tumor xenograft for GEM were disparate from the observed values, and, therefore, not well served by the model. Overall, this study is the first step toward the mechanism-based prediction of Kp values of small molecules in healthy and tumor tissues in mouse when no transporter and permeation limitation effect is evident. This approach will be useful in selecting compounds based on their abilities to penetrate human cancer xenografts with a physiologically based pharmacokinetic (PBPK) model, thereby increasing therapeutic index for chemotherapy in oncology study.

  10. TuBaFrost: European virtual tumor tissue banking.

    PubMed

    Riegman, P H J; Oomen, M H A; Dinjens, W N M; Oosterhuis, J W; Lam, K H; Spatz, A; Ratcliffe, C; Knox, K; Mager, R; Kerr, D; Pezzella, F; Van Damme, B; Van De Vijver, M; Van Boven, H; Morente, M M; Alonso, S; Kerjaschki, D; Pammer, J; López-Guerrero, J A; Llombart-Bosch, A; Carbone, A; Gloghini, A; Teodorovic, I; Isabelle, M; Passioukov, A; Lejeune, S; Therasse, P; Van Veen, E B

    2006-01-01

    TuBaFrost is a consortium responsible for the task to create a virtual European human frozen tumor tissue bank, composed of high quality frozen tumor tissue collections with corresponding accurate diagnosis stored in European cancer centers and universities, searchable on the Internet, providing rules for access and use and a code of conduct to comply with the various legal and ethical regulations in European countries. Such infrastructure would enlarge tissue availability and accessibility in large amounts of specified or even rare tumor samples. Design of an infrastructure for European residual tissue banking with the described characteristics, clear focus points emerge that can be broken down in dedicated subjects: (1) standardization and quality assurance (QA) to avoid inter-institute quality variation; (2) law and ethics enabling exchange of tissue samples possible between institutes in the different European countries, where law and ethics are characterized by a strong variability; (3) rules for access, with sufficient incentives for collectors; (4) central database application containing innovations on search and selection procedures; (5) support when needed with histology images; and (6) Internet access to search and upload, with in addition a solid website giving proper information on the procedures, intentions and activities not only to the scientific community, but also to the general public. One consortium decision, part of the incentives for collectors, had major impact on the infrastructure; custodianship over the tissues as well as the tissues stay with the collector institute. Resulting in specimens that are not given to an organization, taking decisions on participation of requests, but instead the local collected tissues stay very easy to access by the collector and allows autonomous negotiation between collector and requestor on cooperation, coauthorship in publication or compensation in costs. Thereby, improving availability of large amounts of

  11. Spectral domain optical coherence tomography for ex vivo brain tumor analysis

    NASA Astrophysics Data System (ADS)

    Lenz, Marcel; Krug, Robin; Jaedicke, Volker; Stroop, Ralf; Schmieder, Kirsten; Hofmann, Martin R.

    2015-07-01

    Non-contact imaging methods to distinguish between healthy tissue and brain tumor tissue during surgery would be highly desirable but are not yet available. Optical Coherence Tomography (OCT) is a non-invasive imaging technology with a resolution around 1-15 μm and a penetration depth of 1-2 mm that may satisfy the demands. To analyze its potential, we measured ex vivo human brain tumor tissue samples from 10 patients with a Spectral Domain OCT system (Thorlabs Callisto: center wavelength of 930 nm) and compared the results with standard histology. In detail, three different measurements were made for each sample. First the sample was measured directly after surgery. Then it was embedded in paraffin (also H and E staining) and examined for the second time. At last, the slices of each paraffin block cut by the pathology were measured. Each time a B-scan was created and for a better comparison with the histology a 3D image was generated, in order to get the corresponding en face images. In both, histopathological diagnosis and the analysis of the OCT images, different types of brain tumor showed difference in structure. This has been affirmed by two blinded investigators. Nevertheless the difference between two images of samples taken directly after surgery is less distinct. To enhance the contrast in the images further, we employ Spectroscopic OCT and pattern recognition algorithms and compare these results to the histopathological standard.

  12. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  13. Optically enhanced blood-brain-barrier crossing of plasmonic-active nanoparticles in preclinical brain tumor animal models

    NASA Astrophysics Data System (ADS)

    Yuan, Hsiangkuo; Wilson, Christy M.; Li, Shuqin; Fales, Andrew M.; Liu, Yang; Grant, Gerald; Vo-Dinh, Tuan

    2014-02-01

    Nanotechnology provides tremendous biomedical opportunities for cancer diagnosis, imaging, and therapy. In contrast to conventional chemotherapeutic agents where their actual target delivery cannot be easily imaged, integrating imaging and therapeutic properties into one platform facilitates the understanding of pharmacokinetic profiles, and enables monitoring of the therapeutic process in each individual. Such a concept dubbed "theranostics" potentiates translational research and improves precision medicine. One particular challenging application of theranostics involves imaging and controlled delivery of nanoplatforms across blood-brain-barrier (BBB) into brain tissues. Typically, the BBB hinders paracellular flux of drug molecules into brain parenchyma. BBB disrupting agents (e.g. mannitol, focused ultrasound), however, suffer from poor spatial confinement. It has been a challenge to design a nanoplatform not only acts as a contrast agent but also improves the BBB permeation. In this study, we demonstrated the feasibility of plasmonic gold nanoparticles as both high-resolution optical contrast agent and focalized tumor BBB permeation-inducing agent. We specifically examined the microscopic distribution of nanoparticles in tumor brain animal models. We observed that most nanoparticles accumulated at the tumor periphery or perivascular spaces. Nanoparticles were present in both endothelial cells and interstitial matrices. This study also demonstrated a novel photothermal-induced BBB permeation. Fine-tuning the irradiating energy induced gentle disruption of the vascular integrity, causing short-term extravasation of nanomaterials but without hemorrhage. We conclude that our gold nanoparticles are a powerful biocompatible contrast agent capable of inducing focal BBB permeation, and therefore envision a strong potential of plasmonic gold nanoparticle in future brain tumor imaging and therapy.

  14. Genetic abnormality predicts benefit for a rare brain tumor

    Cancer.gov

    A clinical trial has shown that addition of chemotherapy to radiation therapy leads to a near doubling of median survival time in patients with a form of brain tumor (oligodendroglioma) that carries a chromosomal abnormality called the 1p19q co-deletion.

  15. Survival Rates for Selected Childhood Brain and Spinal Cord Tumors

    MedlinePlus

    ... are at best rough estimates. Your child’s doctor knows your child’s situation and is your best source of information on this topic. Last Medical Review: 08/12/2014 Last Revised: 01/21/2016 Back to top » Guide Topics What Is Brain/CNS Tumors In Children? Causes, Risk Factors, and ...

  16. Learning Profiles of Survivors of Pediatric Brain Tumors

    ERIC Educational Resources Information Center

    Barkon, Beverly

    2009-01-01

    By 2010 it is predicted that one in 900 adults will be survivors of some form of pediatric cancer. The numbers are somewhat lower for survivors of brain tumors, though their numbers are increasing. Schools mistakenly believe that these children easily fit pre-existing categories of disability. Though these students share some of the…

  17. Life satisfaction in adult survivors of childhood brain tumors.

    PubMed

    Crom, Deborah B; Li, Zhenghong; Brinkman, Tara M; Hudson, Melissa M; Armstrong, Gregory T; Neglia, Joseph; Ness, Kirsten K

    2014-01-01

    Adult survivors of childhood brain tumors experience multiple, significant, lifelong deficits as a consequence of their malignancy and therapy. Current survivorship literature documents the substantial impact such impairments have on survivors' physical health and quality of life. Psychosocial reports detail educational, cognitive, and emotional limitations characterizing survivors as especially fragile, often incompetent, and unreliable in evaluating their circumstances. Anecdotal data suggest some survivors report life experiences similar to those of healthy controls. The aim of our investigation was to determine whether life satisfaction in adult survivors of childhood brain tumors differs from that of healthy controls and to identify potential predictors of life satisfaction in survivors. This cross-sectional study compared 78 brain tumor survivors with population-based matched controls. Chi-square tests, t tests, and linear regression models were used to investigate patterns of life satisfaction and identify potential correlates. Results indicated that life satisfaction of adult survivors of childhood brain tumors was similar to that of healthy controls. Survivors' general health expectations emerged as the primary correlate of life satisfaction. Understanding life satisfaction as an important variable will optimize the design of strategies to enhance participation in follow-up care, reduce suffering, and optimize quality of life in this vulnerable population.

  18. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle.

    PubMed

    Kircher, Moritz F; de la Zerda, Adam; Jokerst, Jesse V; Zavaleta, Cristina L; Kempen, Paul J; Mittra, Erik; Pitter, Ken; Huang, Ruimin; Campos, Carl; Habte, Frezghi; Sinclair, Robert; Brennan, Cameron W; Mellinghoff, Ingo K; Holland, Eric C; Gambhir, Sanjiv S

    2012-04-15

    The difficulty in delineating brain tumor margins is a major obstacle in the path toward better outcomes for patients with brain tumors. Current imaging methods are often limited by inadequate sensitivity, specificity and spatial resolution. Here we show that a unique triple-modality magnetic resonance imaging-photoacoustic imaging-Raman imaging nanoparticle (termed here MPR nanoparticle) can accurately help delineate the margins of brain tumors in living mice both preoperatively and intraoperatively. The MPRs were detected by all three modalities with at least a picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to MPR accumulation and retention by the tumors, with no MPR accumulation in the surrounding healthy tissue, allowing for a noninvasive tumor delineation using all three modalities through the intact skull. Raman imaging allowed for guidance of intraoperative tumor resection, and a histological correlation validated that Raman imaging was accurately delineating the brain tumor margins. This new triple-modality-nanoparticle approach has promise for enabling more accurate brain tumor imaging and resection.

  19. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle

    NASA Astrophysics Data System (ADS)

    de la Zerda, Adam; Kircher, Moritz F.; Jokerst, Jesse V.; Zavaleta, Cristina L.; Kempen, Paul J.; Mittra, Erik; Pitter, Ken; Huang, Ruimin; Campos, Carl; Habte, Frezghi; Sinclair, Robert; Brennan, Cameron W.; Mellinghoff, Ingo K.; Holland, Eric C.; Gambhir, Sanjiv S.

    2013-03-01

    The difficulty in delineating brain tumor margins is a major obstacle in the path toward better outcomes for patients with brain tumors. Current imaging methods are often limited by inadequate sensitivity, specificity and spatial resolution. Here we show that a unique triplemodality magnetic resonance imaging - photoacoustic imaging - Raman imaging nanoparticle (termed here MPR nanoparticles), can accurately help delineate the margins of brain tumors in living mice both preoperatively and intraoperatively. The MPRs were detected by all three modalities with at least a picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to MPR accumulation and retention by the tumors, with no MPR accumulation in the surrounding healthy tissue, allowing for a noninvasive tumor delineation using all three modalities through the intact skull. Raman imaging allowed for guidance of intraoperative tumor resection, and a histological correlation validated that Raman imaging was accurately delineating the brain tumor margins. This new triple-modality- nanoparticle approach has promise for enabling more accurate brain tumor imaging and resection.

  20. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle.

    PubMed

    Kircher, Moritz F; de la Zerda, Adam; Jokerst, Jesse V; Zavaleta, Cristina L; Kempen, Paul J; Mittra, Erik; Pitter, Ken; Huang, Ruimin; Campos, Carl; Habte, Frezghi; Sinclair, Robert; Brennan, Cameron W; Mellinghoff, Ingo K; Holland, Eric C; Gambhir, Sanjiv S

    2012-05-01

    The difficulty in delineating brain tumor margins is a major obstacle in the path toward better outcomes for patients with brain tumors. Current imaging methods are often limited by inadequate sensitivity, specificity and spatial resolution. Here we show that a unique triple-modality magnetic resonance imaging-photoacoustic imaging-Raman imaging nanoparticle (termed here MPR nanoparticle) can accurately help delineate the margins of brain tumors in living mice both preoperatively and intraoperatively. The MPRs were detected by all three modalities with at least a picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to MPR accumulation and retention by the tumors, with no MPR accumulation in the surrounding healthy tissue, allowing for a noninvasive tumor delineation using all three modalities through the intact skull. Raman imaging allowed for guidance of intraoperative tumor resection, and a histological correlation validated that Raman imaging was accurately delineating the brain tumor margins. This new triple-modality-nanoparticle approach has promise for enabling more accurate brain tumor imaging and resection. PMID:22504484

  1. [Utility of hyperbaric oxygenation in radiotherapy for malignant brain tumors--a literature review].

    PubMed

    Beppu, Takaaki; Tanaka, Katsuyuki; Kohshi, Kiyotaka

    2009-06-01

    Over the past 50 years, hyperbaric oxygenation (HBO) therapy has been used in a wide variety of medical conditions; this theraphy causes an increase in oxygen tension in blood and tissues. In the treatment of malignant gliomas, HBO therapy is used for the radiosensitization of cells in combination with radiotherapy (RT). Further, HBO therapy is applied for the treatment and prevention of radiation-induced brain necrosis that is the most serious complication observed after radiosurgery. We reviewed the literature to evaluate the manner in which HBO therapy contributes to clinical fields in cases of RT administration for malignant brain tumors.

  2. Gene Therapy for Brain Tumors: Basic Developments and Clinical Implementation

    PubMed Central

    Assi, Hikmat; Candolfi, Marianela; Baker, Gregory; Mineharu, Yohei; Lowenstein, Pedro R; Castro, Maria G

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common and deadliest of adult primary brain tumors. Due to its invasive nature and sensitive location, complete resection remains virtually impossible. The resistance of GBM against chemotherapy and radiotherapy necessitate the development of novel therapies. Gene therapy is proposed for the treatment of brain tumors and has demonstrated pre-clinical efficacy in animal models. Here we review the various experimental therapies that have been developed for GBM including both cytotoxic and immune stimulatory approaches. We also review the combined conditional cytotoxic immune stimulatory therapy that our lab has developed which is dependent on the adenovirus mediated expression of the conditional cytotoxic gene, Herpes Simplex Type 1 Thymidine Kinase (TK) and the powerful DC growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Combined delivery of these vectors elicits tumor cell death and an anti-tumor adaptive immune response that requires TLR2 activation. The implications of our studies indicate that the combined cytotoxic and immunotherapeutic strategies are effective strategies to combat deadly brain tumors and warrant their implementation in human Phase I clinical trials for GBM. PMID:22906921

  3. Photoacoustic monitoring of tumor and normal tissue response to radiation

    PubMed Central

    Rich, Laurie J.; Seshadri, Mukund

    2016-01-01

    Hypoxia is a recognized characteristic of tumors that influences efficacy of radiotherapy (RT). Photoacoustic imaging (PAI) is a relatively new imaging technique that exploits the optical characteristics of hemoglobin to provide information on tissue oxygenation. In the present study, PAI based measures of tumor oxygen saturation (%sO2) were compared to oxygen-enhanced magnetic resonance imaging (MRI) measurements of longitudinal relaxation rate (R1 = 1/T1) and ex-vivo histology in patient derived xenograft (PDX) models of head and neck cancer. PAI was utilized to assess early changes (24 h) in %sO2 following RT and chemoRT (CRT) and to assess changes in salivary gland hemodynamics following radiation. A significant increase in tumor %sO2 and R1 was observed following oxygen inhalation. Good spatial correlation was observed between PAI, MRI and histology. An early increase in %sO2 after RT and CRT detected by PAI was associated with significant tumor growth inhibition. Twenty four hours after RT, PAI also detected loss of hemodynamic response to gustatory stimulation in murine salivary gland tissue suggestive of radiation-induced vascular damage. Our observations illustrate the utility of PAI in detecting tumor and normal tissue hemodynamic response to radiation in head and neck cancers. PMID:26883660

  4. Tumor Engineering: The Other Face of Tissue Engineering

    PubMed Central

    2010-01-01

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue. We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of ‘tumor engineering’, that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. PMID:20214448

  5. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers

    PubMed Central

    Zhang, Fan; Mastorakos, Panagiotis; Mishra, Manoj K.; Mangraviti, Antonella; Hwang, Lee; Zhou, Jinyuan; Hanes, Justin; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Kannan, Rangaramanujam M.

    2015-01-01

    Effective blood–brain tumor barrier penetration and uniform solid tumor distribution can significantly enhance therapeutic delivery to brain tumors. Hydroxyl-functionalized, generation-4 poly(amidoamine) (PAMAM) dendrimers, with their small size, near-neutral surface charge, and the ability to selectively localize in cells associated with neuroinflammation may offer new opportunities to address these challenges. In this study we characterized the intracranial tumor biodistribution of systemically delivered PAMAM dendrimers in an intracranial rodent gliosarcoma model using fluorescence-based quantification methods and high resolution confocal microscopy. We observed selective and homogeneous distribution of dendrimer throughout the solid tumor (~6 mm) and peritumoral area within fifteen minutes after systemic administration, with subsequent accumulation and retention in tumor associated microglia/macrophages (TAMs). Neuroinflammation and TAMs have important growth promoting and pro-invasive effects in brain tumors. The rapid clearance of systemically administered dendrimers from major organs promises minimal off-target adverse effects of conjugated drugs. Therefore, selective delivery of immunomodulatory molecules to TAM, using hydroxyl PAMAM dendrimers, may hold promise for therapy of glioblastoma. PMID:25818456

  6. Uniform brain tumor distribution and tumor associated macrophage targeting of systemically administered dendrimers.

    PubMed

    Zhang, Fan; Mastorakos, Panagiotis; Mishra, Manoj K; Mangraviti, Antonella; Hwang, Lee; Zhou, Jinyuan; Hanes, Justin; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Kannan, Rangaramanujam M

    2015-06-01

    Effective blood-brain tumor barrier penetration and uniform solid tumor distribution can significantly enhance therapeutic delivery to brain tumors. Hydroxyl-functionalized, generation-4 poly(amidoamine) (PAMAM) dendrimers, with their small size, near-neutral surface charge, and the ability to selectively localize in cells associated with neuroinflammation may offer new opportunities to address these challenges. In this study we characterized the intracranial tumor biodistribution of systemically delivered PAMAM dendrimers in an intracranial rodent gliosarcoma model using fluorescence-based quantification methods and high resolution confocal microscopy. We observed selective and homogeneous distribution of dendrimer throughout the solid tumor (∼6 mm) and peritumoral area within fifteen minutes after systemic administration, with subsequent accumulation and retention in tumor associated microglia/macrophages (TAMs). Neuroinflammation and TAMs have important growth promoting and pro-invasive effects in brain tumors. The rapid clearance of systemically administered dendrimers from major organs promises minimal off-target adverse effects of conjugated drugs. Therefore, selective delivery of immunomodulatory molecules to TAM, using hydroxyl PAMAM dendrimers, may hold promise for therapy of glioblastoma.

  7. The role and clinical significance of DNA damage response and repair pathways in primary brain tumors

    PubMed Central

    2013-01-01

    Primary brain tumors, in particular, glioblastoma multiforme (GBM), continue to have dismal survivability despite advances in treating other neoplasms. The goal of new anti-glioma therapy development is to increase their therapeutic ratios by enhancing tumor control and/or decreasing the severity and incidence of side effects. Because radiotherapy and most chemotherapy agents rely on DNA damage, the cell’s DNA damage repair and response (DRR) pathways may hold the key to new therapeutic strategies. DNA double-strand breaks (DSBs) generated by ionizing radiation and chemotherapeutic agents are the most lethal form of damage, and are repaired via either homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways. Understanding and exploitation of the differences in the use of these repair pathways between tumor and normal brain cells will allow for an increase in tumor cell killing and decreased normal tissue damage. A literature review and discussion on new strategies which can improve the anti-glioma therapeutic ratio by differentially targeting HR and NHEJ function in tumor and normal neuronal tissues is the focus of this article. PMID:23388100

  8. Cutaneous soft tissue tumors that make you say, "oh $*&%!".

    PubMed

    Patel, Rajiv M; Billings, Steven D

    2012-09-01

    Subsets of cutaneous soft tissue tumors present morphologic features which are diagnostically challenging in part because of their ability to obscure the ultimate nature of the underlying neoplastic process. This review discusses entities, which in the authors' experience, present such challenges. The clinical, histologic, immunohistochemical, and where appropriate, molecular features of these entities are discussed along with their prognosis and differential diagnosis.

  9. Multi-fractal detrended texture feature for brain tumor classification

    NASA Astrophysics Data System (ADS)

    Reza, Syed M. S.; Mays, Randall; Iftekharuddin, Khan M.

    2015-03-01

    We propose a novel non-invasive brain tumor type classification using Multi-fractal Detrended Fluctuation Analysis (MFDFA) [1] in structural magnetic resonance (MR) images. This preliminary work investigates the efficacy of the MFDFA features along with our novel texture feature known as multifractional Brownian motion (mBm) [2] in classifying (grading) brain tumors as High Grade (HG) and Low Grade (LG). Based on prior performance, Random Forest (RF) [3] is employed for tumor grading using two different datasets such as BRATS-2013 [4] and BRATS-2014 [5]. Quantitative scores such as precision, recall, accuracy are obtained using the confusion matrix. On an average 90% precision and 85% recall from the inter-dataset cross-validation confirm the efficacy of the proposed method.

  10. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  11. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  12. Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

    PubMed Central

    Klinger, Neil V.

    2016-01-01

    Brain malignancies currently carry a poor prognosis despite the current multimodal standard of care that includes surgical resection and adjuvant chemotherapy and radiation. As new therapies are desperately needed, naturally occurring chemical compounds have been studied for their potential chemotherapeutic benefits and low toxicity profile. Curcumin, found in the rhizome of turmeric, has extensive therapeutic promise via its antioxidant, anti-inflammatory, and antiproliferative properties. Preclinical in vitro and in vivo data have shown it to be an effective treatment for brain tumors including glioblastoma multiforme. These effects are potentiated by curcumin's ability to induce G2/M cell cycle arrest, activation of apoptotic pathways, induction of autophagy, disruption of molecular signaling, inhibition of invasion, and metastasis and by increasing the efficacy of existing chemotherapeutics. Further, clinical data suggest that it has low toxicity in humans even at large doses. Curcumin is a promising nutraceutical compound that should be evaluated in clinical trials for the treatment of human brain tumors. PMID:27807473

  13. Brain tumor resection guided by fluorescence imaging and MRI image guidance

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo; Harris, Brent T.; Leblond, Frederic; Fontaine, Kathryn M.; Ji, Songbai; Pogue, Brian W.; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2009-02-01

    Recent evidence suggests a correlation between extent of tumor resection and patient prognosis, making maximal tumor resection a clinical ideal for neurosurgeons. Our group is currently undertaking a clinical study using fluorescence-based detection of tumor coupled with a standard 3-D image guidance system to study the effectiveness of fluorescence-based detection in the neurosurgical operating room. For fluorescence-based detection, we used 5-aminolevulinic acid to induce accumulation of protoporphyrin IX in malignant tissues. In this paper, we chose one prototypical, highly fluorescent case of glioblastoma multiforme, a high-grade glioma, to highlight some of the key findings and methodology used in our study of fluorescence-based detection and resection of brain tumors.

  14. Specific Visualization of Glioma Cells in Living Low-Grade Tumor Tissue

    PubMed Central

    Kantelhardt, Sven R.; Caarls, Wouter; de Vries, Anthony H. B.; Hagen, Guy M.; Jovin, Thomas M.; Schulz-Schaeffer, Walter; Rohde, Veit; Giese, Alf; Arndt-Jovin, Donna J.

    2010-01-01

    Background The current therapy of malignant gliomas is based on surgical resection, radio-chemotherapy and chemotherapy. Recent retrospective case-series have highlighted the significance of the extent of resection as a prognostic factor predicting the course of the disease. Complete resection in low-grade gliomas that show no MRI-enhanced images are especially difficult. The aim in this study was to develop a robust, specific, new fluorescent probe for glioma cells that is easy to apply to live tumor biopsies and could identify tumor cells from normal brain cells at all levels of magnification. Methodology/Principal Findings In this investigation we employed brightly fluorescent, photostable quantum dots (QDs) to specifically target epidermal growth factor receptor (EGFR) that is upregulated in many gliomas. Living glioma and normal cells or tissue biopsies were incubated with QDs coupled to EGF and/or monoclonal antibodies against EGFR for 30 minutes, washed and imaged. The data include results from cell-culture, animal model and ex vivo human tumor biopsies of both low-grade and high-grade gliomas and show high probe specificity. Tumor cells could be visualized from the macroscopic to single cell level with contrast ratios as high as 1000: 1 compared to normal brain tissue. Conclusions/Significance The ability of the targeted probes to clearly distinguish tumor cells in low-grade tumor biopsies, where no enhanced MRI image was obtained, demonstrates the great potential of the method. We propose that future application of specifically targeted fluorescent particles during surgery could allow intraoperative guidance for the removal of residual tumor cells from the resection cavity and thus increase patient survival. PMID:20614029

  15. A dose comparison of proton radiotherapy and photon radiotherapy for pediatric brain tumor

    NASA Astrophysics Data System (ADS)

    Kim, S. Y.; Cho, J. H.

    2014-12-01

    The purpose of this study was to investigate the effectiveness of photon radiotherapy and to compare the dose of treatment planning between proton radiotherapy and 3D conformal radiation therapy (3D-CRT) for pediatric brain tumor patients. This study was conducted in five pediatric brain tumor patients who underwent craniospinal irradiation treatment from October 2013 to April 2014 in the hospital. The study compared organs at risk (OARs) by assessing the dose distribution of normal tissue from the proton plan and 3D-CRT. Furthermore, this study assessed the treatment plans by looking at the homogeneity index (HI) and conformity index (CI). As a result, the study revealed OARs due to the small volume proton radiotherapy dose distribution in the normal tissue. Also, by comparing HI and CI between the 3D-CRT and proton radiotherapy plan, the study found that the dose of proton radiotherapy plan was homogenized. When conducting 3D-CRT and proton radiotherapy in a dose-volume histogram comparison, the dose of distribution turned out to be low. Consequently, proton radiotherapy is used for protecting the normal tissue, and is used in tumor tissue as a homogenized dose for effective treatment.

  16. Why does Jack, and not Jill, break his crown? Sex disparity in brain tumors

    PubMed Central

    2012-01-01

    It is often reported that brain tumors occur more frequently in males, and that males suffer a worse outcome from brain tumors than females. If correct, these observations suggest that sex plays a fundamental role in brain tumor biology. The following review of the literature regarding primary and metastatic brain tumors, reveals that brain tumors do occur more frequently in males compared to females regardless of age, tumor histology, or region of the world. Sexually dimorphic mechanisms that might control tumor cell biology, as well as immune and brain microenvironmental responses to cancer, are explored as the basis for this sex disparity. Elucidating the mechanisms by which sex chromosomes and sex hormones impact on brain tumorigenesis and progression will advance our understanding of basic cancer biology and is likely to be essential for optimizing the care of brain tumor patients. PMID:22277186

  17. Mitochondrial control by DRP1 in brain tumor initiating cells.

    PubMed

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs. PMID:25730670

  18. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI.

    PubMed

    Sauwen, Nicolas; Sima, Diana M; Van Cauter, Sofie; Veraart, Jelle; Leemans, Alexander; Maes, Frederik; Himmelreich, Uwe; Van Huffel, Sabine

    2015-12-01

    Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor substructures (i.e. viable tumor, necrosis and edema), which could be of added value for the diagnosis, treatment planning and follow-up of individual patients. Twenty-four patients with glioma [10 low-grade gliomas (LGGs), 14 high-grade gliomas (HGGs)] underwent a multi-parametric MRI (MP-MRI) scheme, including conventional MRI (cMRI), perfusion-weighted imaging (PWI), diffusion kurtosis imaging (DKI) and short-TE (1)H MRSI. MP-MRI parameters were derived: T2, T1 + contrast, fluid-attenuated inversion recovery (FLAIR), relative cerebral blood volume (rCBV), mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and the principal metabolites lipids (Lip), lactate (Lac), N-acetyl-aspartate (NAA), total choline (Cho), etc. Hierarchical non-negative matrix factorization (hNMF) was applied to the MP-MRI parameters, providing tissue characterization on a patient-by-patient and voxel-by-voxel basis. Tissue-specific patterns were obtained and the spatial distribution of each tissue type was visualized by means of abundance maps. Dice scores were calculated by comparing tissue segmentation derived from hNMF with the manual segmentation by a radiologist. Correlation coefficients were calculated between each pathologic tissue source and the average feature vector within the corresponding tissue region. For the patients with HGG, mean Dice scores of 78%, 85% and 83% were obtained for viable tumor, the tumor core and the complete tumor region. The mean correlation coefficients were 0.91 for tumor, 0.97 for necrosis and 0.96 for edema. For the patients with LGG, a mean Dice score of 85% and mean correlation coefficient of 0.95 were found for the tumor region. hNMF was

  19. Hierarchical non-negative matrix factorization to characterize brain tumor heterogeneity using multi-parametric MRI.

    PubMed

    Sauwen, Nicolas; Sima, Diana M; Van Cauter, Sofie; Veraart, Jelle; Leemans, Alexander; Maes, Frederik; Himmelreich, Uwe; Van Huffel, Sabine

    2015-12-01

    Tissue characterization in brain tumors and, in particular, in high-grade gliomas is challenging as a result of the co-existence of several intra-tumoral tissue types within the same region and the high spatial heterogeneity. This study presents a method for the detection of the relevant tumor substructures (i.e. viable tumor, necrosis and edema), which could be of added value for the diagnosis, treatment planning and follow-up of individual patients. Twenty-four patients with glioma [10 low-grade gliomas (LGGs), 14 high-grade gliomas (HGGs)] underwent a multi-parametric MRI (MP-MRI) scheme, including conventional MRI (cMRI), perfusion-weighted imaging (PWI), diffusion kurtosis imaging (DKI) and short-TE (1)H MRSI. MP-MRI parameters were derived: T2, T1 + contrast, fluid-attenuated inversion recovery (FLAIR), relative cerebral blood volume (rCBV), mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK) and the principal metabolites lipids (Lip), lactate (Lac), N-acetyl-aspartate (NAA), total choline (Cho), etc. Hierarchical non-negative matrix factorization (hNMF) was applied to the MP-MRI parameters, providing tissue characterization on a patient-by-patient and voxel-by-voxel basis. Tissue-specific patterns were obtained and the spatial distribution of each tissue type was visualized by means of abundance maps. Dice scores were calculated by comparing tissue segmentation derived from hNMF with the manual segmentation by a radiologist. Correlation coefficients were calculated between each pathologic tissue source and the average feature vector within the corresponding tissue region. For the patients with HGG, mean Dice scores of 78%, 85% and 83% were obtained for viable tumor, the tumor core and the complete tumor region. The mean correlation coefficients were 0.91 for tumor, 0.97 for necrosis and 0.96 for edema. For the patients with LGG, a mean Dice score of 85% and mean correlation coefficient of 0.95 were found for the tumor region. hNMF was

  20. Evaluation of endogenous species involved in brain tumors using multiphoton photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahal, Sudhir; Cullum, Brian M.

    2013-05-01

    It has been shown that using non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), excised brain tumor (grade III astrocytoma) and healthy tissue can be differentiated from each other, even in neighboring biopsy samples[1, 2]. Because of this, this powerful technique offers a great deal of potential for use as a surgical guidance technique for tumor margining with up to cellular level spatial resolution[3]. NMPPAS spectra are obtained by monitoring the non-radiative relaxation pathways via ultrasonic detection, following two-photon excitation with light in the optical diagnostic window (740nm-1100nm). Based upon significant differences in the ratiometric absorption of the tissues following 970nm and 1100nm excitation, a clear classification of the tissue can be made. These differences are the result of variations in composition and oxidation state of certain endogenous biochemical species between healthy and malignant tissues. In this work, NADH, NAD+ and ATP were measured using NMPPAS in model gelatin tissue phantoms to begin to understand which species might be responsible for the observed spectral differences in the tissue. Each species was placed in specific pH environments to provide control over the ratio of oxidized to reduced forms of the species. Ratiometric analyses were then conducted to account for variability caused due to instrumental parameters. This paper will discuss the potential roles of each of the species for tumor determination and their contribution to the spectral signature.

  1. Emerging techniques and technologies in brain tumor imaging.

    PubMed

    Ellingson, Benjamin M; Bendszus, Martin; Sorensen, A Gregory; Pope, Whitney B

    2014-10-01

    The purpose of this report is to describe the state of imaging techniques and technologies for detecting response of brain tumors to treatment in the setting of multicenter clinical trials. Within currently used technologies, implementation of standardized image acquisition and the use of volumetric estimates and subtraction maps are likely to help to improve tumor visualization, delineation, and quantification. Upon further development, refinement, and standardization, imaging technologies such as diffusion and perfusion MRI and amino acid PET may contribute to the detection of tumor response to treatment, particularly in specific treatment settings. Over the next few years, new technologies such as 2(3)Na MRI and CEST imaging technologies will be explored for their use in expanding the ability to quantitatively image tumor response to therapies in a clinical trial setting.

  2. Human and rat glioma growth, invasion, and vascularization in a novel chick embryo brain tumor model.

    PubMed

    Cretu, Alexandra; Fotos, Joseph S; Little, Brian W; Galileo, Deni S

    2005-01-01

    The mechanisms that control the insidiously invasive nature of malignant gliomas are poorly understood, and their study would be facilitated by an in vivo model that is easy to manipulate and inexpensive. The developing chick embryo brain was assessed as a new xenograft model for the production, growth, and study of human and rat glioma cell lines. Three established glioma lines (U-87 MG, C6, and 9L) were injected into chick embryo brain ventricles on embryonic day (E) 5 and brains were examined after several days to two weeks after injection. All glioma lines survived, produced vascularized intraventricular tumors, and invaded the brain in a manner similar to that in rodents. Rat C6 glioma cells spread along vasculature and also invaded the neural tissue. Human U-87 glioma cells migrated along vasculature and exhibited slight invasion of neural tissue. Rat 9L gliosarcoma cells were highly motile, but migrated only along the vasculature. A derivative of 9L cells that stably expressed the cell surface adhesion molecule NgCAM/L1 was produced and also injected into chick embryo brain ventricles to see if this protein could facilitate tumor cell migration away from the vasculature into areas such as axonal tracts. 9L/NgCAM cells, however, did not migrate away from the vasculature and, thus, this protein alone cannot be responsible for diffuse invasiveness of some gliomas. 9L/NgCAM cell motility was assessed in vitro using sophisticated time-lapse microscopy and quantitative analysis, and was significantly altered compared to parental 9L cells. These studies demonstrate that the chick embryo brain is a successful and novel xenograft model for mammalian gliomas and demonstrate the potential usefulness of this new model for studying glioma tumor cell growth, vascularization, and invasiveness.

  3. Use of EPO as an adjuvant in PDT of brain tumors to reduce damage to normal brain

    NASA Astrophysics Data System (ADS)

    Rendon, Cesar A.; Lilge, Lothar

    2004-10-01

    In order to reduce damage to surrounding normal brain in the treatment of brain tumors with photodynamic therapy (PDT), we have investigated the use of the cytokine erythropoietin (EPO) to exploit its well-established role as a neuroprotective agent. In vitro experiments demonstrated that EPO does not confer protection from PDT to rat glioma cells. In vivo testing of the possibility of EPO protecting normal brain tissue was carried out. The normal brains of Lewis rats were treated with Photofrin mediated PDT (6.25 mg/Kg B.W. 22 hours pre irradiation) and the outcome of the treatment compared between animals that received EPO (5000 U/Kg B.W. 22 hours pre irradiation) and controls. This comparison was made based on the volume of necrosis, as measured with the viability stain 2,3,5- Triphenyl tetrazoium chloride (TTC), and incidence of apoptosis, as measured with in situ end labeling assay (ISEL). Western blotting showed that EPO reaches the normal brain and activates the anti-apoptotic protein PKB/AKT1 within the brain cortex. The comparison based on volume of necrosis showed no statistical significance between the two groups. No clear difference was observed in the ISEL staining between the groups. A possible lack of responsivity in the assays that give rise to these results is discussed and future corrections are described.

  4. Pros and cons of current brain tumor imaging

    PubMed Central

    Ellingson, Benjamin M.; Wen, Patrick Y.; van den Bent, Martin J.; Cloughesy, Timothy F.

    2014-01-01

    Over the past 20 years, very few agents have been approved for the treatment of brain tumors. Recent studies have highlighted some of the challenges in assessing activity in novel agents for the treatment of brain tumors. This paper reviews some of the key challenges related to assessment of tumor response to therapy in adult high-grade gliomas and discusses the strengths and limitations of imaging-based endpoints. Although overall survival is considered the “gold standard” endpoint in the field of oncology, progression-free survival and response rate are endpoints that hold great value in neuro-oncology. Particular focus is given to advancements made since the January 2006 Brain Tumor Endpoints Workshop, including the development of Response Assessment in Neuro-Oncology criteria, the value of T2/fluid-attenuated inversion recovery, use of objective response rates and progression-free survival in clinical trials, and the evaluation of pseudoprogression, pseudoresponse, and inflammatory response in radiographic images. PMID:25313235

  5. Dynamic effects of point source electroporation on the rat brain tissue.

    PubMed

    Sharabi, Shirley; Last, David; Guez, David; Daniels, Dianne; Hjouj, Mohammad Ibrahim; Salomon, Sharona; Maor, Elad; Mardor, Yael

    2014-10-01

    In spite of aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme due to tumor infiltration into the surrounding brain as well as poor blood-brain barrier penetration of most therapeutic agents. In this paper we present a novel approach for a minimally invasive treatment and a non-invasive response assessment methodology consisting of applying intracranial point-source electroporation and assessing treatment effect volumes using magnetic resonance imaging. Using a unique setup of a single intracranial electrode and an external surface electrode we treated rats' brains with various electroporation protocols and applied magnetic resonance imaging to study the dependence of the physiological effects on electroporation treatment parameters. The extent of blood-brain barrier disruption and later volumes of permanent brain tissue damage were found to correlate significantly with the treatment voltages (r(2)=0.99, p<0.001) and the number of treatment pulses (r(2)=0.94, p<0.002). Blood-brain barrier disruption depicted 3.2±0.3 times larger volumes than the final permanent damage volumes (p<0.0001). These results indicate that it may be beneficial to use more than one modality of electroporation when planning a treatment for brain tumors.

  6. Computer-aided mapping of brain tissue

    SciTech Connect

    Rogers, W.T.; Schwaber, J.S.

    1987-08-15

    A computer-microscope system is described for use in capturing accurate, quantitative schematic (map) information from anatomical tissue sections. The system provides a rapid and convenient environment for acquisition and analysis for complex structures spread over large 3-D regions of the tissue. As a consequence of the complexity and subtlety of tissue analysis, most of the data acquisition functions of the system involve tight coupling between the hardware and the microscopist to preserve access to human judgment and intelligence. The instrument profoundly affects the ease and accuracy of neurobiological data analysis, making it practical to address previously inaccessible problems. Examples of data analyzed using the system are shown.

  7. Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps.

    PubMed

    Vijayakumar, C; Damayanti, Gharpure; Pant, R; Sreedhar, C M

    2007-10-01

    An accurate computer-assisted method to perform segmentation of brain tumor on apparent diffusion coefficient (ADC) images and evaluate its grade (malignancy state) has been designed using a mixture of unsupervised artificial neural networks (ANN) and hierarchical multiresolution wavelet. Firstly, the ADC images are decomposed by multiresolution wavelets, which are subsequently selectively reconstructed to form wavelet filtered images. These wavelet filtered images along with FLAIR and T2 weighted images have been utilized as the features to unsupervised neural network - self organizing maps (SOM) - to segment the tumor, edema, necrosis, CSF and normal tissue and grade the malignant state of the tumor. A novel segmentation algorithm based on the number of hits experienced by Best Matching Units (BMU) on SOM maps is proposed. The results shows that the SOM performs well in differentiating the tumor, edema, necrosis, CSF and normal tissue pattern vectors on ADC images. Using the trained SOM and proposed segmentation algorithm, we are able to identify high or low grade tumor, edema, necrosis, CSF and normal tissue. The results are validated against manually segmented images and sensitivity and the specificity are observed to be 0.86 and 0.93, respectively. PMID:17572068

  8. Nanoparticle mediated silencing of DNA repair sensitizes pediatric brain tumor cells to γ-irradiation

    PubMed Central

    Kievit, Forrest M.; Stephen, Zachary R.; Wang, Kui; Dayringer, Christopher J.; Sham, Jonathan G.; Ellenbogen, Richard G.; Silber, John R.; Zhang, Miqin

    2015-01-01

    Medulloblastoma (MB) and ependymoma (EP) are the most common pediatric brain tumors, afflicting 3,000 children annually. Radiotherapy (RT) is an integral component in the treatment of these tumors; however, the improvement in survival is often accompanied by radiation-induced adverse developmental and psychosocial sequelae. Therefore, there is an urgent need to develop strategies that can increase the sensitivity of brain tumors cells to RT while sparing adjacent healthy brain tissue. Apurinic endonuclease 1 (Ape1), an enzyme in the base excision repair pathway, has been implicated in radiation resistance in cancer. Pharmacological and specificity limitations inherent to small molecule inhibitors of Ape1 have hindered their clinical development. Here we report on a nanoparticle (NP) based siRNA delivery vehicle for knocking down Ape1 expression and sensitizing pediatric brain tumor cells to RT. The NP comprises a superparamagnetic iron oxide core coated with a biocompatible, biodegradable coating of chitosan, polyethylene glycol (PEG), and polyethyleneimine (PEI) that is able to bind and protect siRNA from degradation and to deliver siRNA to the perinuclear region of target cells. NPs loaded with siRNA against Ape1 (NP:siApe1) knocked down Ape1 expression over 75% in MB and EP cells, and reduced Ape1 activity by 80%. This reduction in Ape1 activity correlated with increased DNA damage post-irradiation, which resulted in decreased cell survival in clonogenic assays. The sensitization was specific to therapies generating abasic lesions as evidenced by NP:siRNA not increasing sensitivity to paclitaxel, a microtubule disrupting agent. Our results indicate NP-mediated delivery of siApe1 is a promising strategy for circumventing pediatric brain tumor resistance to RT. PMID:25681012

  9. Review of microdialysis in brain tumors, from concept to application: First Annual Carolyn Frye-Halloran Symposium

    PubMed Central

    Benjamin, Ramsis K.; Hochberg, Fred H.; Fox, Elizabeth; Bungay, Peter M.; Elmquist, William F.; Stewart, Clinton F.; Gallo, James M.; Collins, Jerry M.; Pelletier, Robert P.; de Groot, John F.; Hickner, Robert C.; Cavus, Idil; Grossman, Stuart A.; Colvin, O. Michael

    2004-01-01

    In individuals with brain tumors, pharmacodynamic and pharmacokinetic studies of therapeutic agents have historically used analyses of drug concentrations in serum or cerebrospinal fluid, which unfortunately do not necessarily reflect concentrations within the tumor and adjacent brain. This review article introduces to neurological and medical oncologists, as well as pharmacologists, the application of microdialysis in monitoring drug metabolism and delivery within the fluid of the interstitial space of brain tumor and its surroundings. Microdialysis samples soluble molecules from the extracellular fluid via a semipermeable membrane at the tip of a probe. In the past decade, it has been used predominantly in neurointensive care in the setting of brain trauma, vasospasm, epilepsy, and intracerebral hemorrhage. At the first Carolyn Frye-Halloran Symposium held at Massachusetts General Hospital in March 2002, the concept of microdialysis was extended to specifically address its possible use in treating brain tumor patients. In doing so we provide a rationale for the use of this technology by a National Cancer Institute consortium, New Approaches to Brain Tumor Therapy, to measure levels of drugs in brain tissue as part of phase 1 trials. PMID:14769143

  10. Determination of friction coefficient in unconfined compression of brain tissue.

    PubMed

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s.

  11. Rapid Detection of high-level oncogene amplifications in ultrasonic surgical aspirations of brain tumors

    PubMed Central

    2012-01-01

    Background Genomic tumor information, such as identification of amplified oncogenes, can be used to plan treatment. The two sources of a brain tumor that are commonly available include formalin-fixed, paraffin-embedded (FFPE) sections from the small diagnostic biopsy and the ultrasonic surgical aspiration that contains the bulk of the tumor. In research centers, frozen tissue of a brain tumor may also be available. This study compared ultrasonic surgical aspiration and FFPE specimens from the same brain tumors for retrieval of DNA and molecular assessment of amplified oncogenes. Methods Surgical aspirations were centrifuged to separate erythrocytes from the tumor cells that predominantly formed large, overlying buffy coats. These were sampled to harvest nuclear pellets for DNA purification. Four glioblastomas, 2 lung carcinoma metastases, and an ependymoma were tested. An inexpensive PCR technique, multiplex ligation-dependent probe amplification (MLPA), quantified 79 oncogenes using 3 kits. Copy number (CN) results were normalized to DNA from non-neoplastic brain (NB) in calculated ratios, [tumor DNA]/[NB DNA]. Bland-Altman and Spearman rank correlative comparisons were determined. Regression analysis identified outliers. Results Purification of DNA from ultrasonic surgical aspirations was rapid (<3 days) versus FFPE (weeks) and yielded greater amounts in 6 of 7 tumors. Gene amplifications up to 15-fold corresponded closely between ultrasonic aspiration and FFPE assays in Bland-Altman analysis. Correlation coefficients ranged from 0.71 to 0.99 using 3 kit assays per tumor. Although normalized CN ratios greater than 2.0 were more numerous in FFPE specimens, some were found only in the ultrasonic surgical aspirations, consistent with tumor heterogeneity. Additionally, CN ratios revealed 9 high-level (≥ 6.0) gene amplifications in FFPE of which 8 were also detected in the ultrasonic aspirations at increased levels. The ultrasonic aspiration levels of these

  12. Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors.

    PubMed

    Astrakas, Loukas G; Zurakowski, David; Tzika, A Aria; Zarifi, Maria K; Anthony, Douglas C; De Girolami, Umberto; Tarbell, Nancy J; Black, Peter McLaren

    2004-12-15

    The diagnosis and therapy of childhood brain tumors, most of which are low grade, can be complicated because of their frequent adjacent location to crucial structures, which limits diagnostic biopsy. Also, although new prognostic biomarkers identified by molecular analysis or DNA microarray gene profiling are promising, they too depend on invasive biopsy. Here, we test the hypothesis that combining information from biologically important intracellular molecules (biomarkers), noninvasively obtained by proton magnetic resonance spectroscopic imaging, will increase the diagnostic accuracy in determining the clinical grade of pediatric brain tumors. We evaluate the proton magnetic resonance spectroscopic imaging exams for 66 children with brain tumors. The intracellular biomarkers for choline-containing compounds (Cho), N-acetylaspartate, total creatine, and lipids and/or lactate were measured at the highest Cho region and normalized to the surrounding healthy tissue total creatine. Neuropathological grading was done with WHO criteria. Normalized Cho and lipids and/or lactate were elevated in high-grade (n = 23) versus low-grade (n = 43) tumors, which multiple logistic regression confirmed are independent predictors of tumor grade (for Cho, odds ratio 24.8, P < 0.001; and for lipids and/or lactate, odds ratio 4.4, P < 0.001). A linear combination of normalized Cho and lipids and/or lactate that maximizes diagnostic accuracy was calculated by maximizing the area under the receiver operating characteristic curve. Proton magnetic resonance spectroscopic imaging, although not a proxy for histology, provides noninvasive, in vivo biomarkers for predicting clinical grades of pediatric brain tumors. PMID:15623597

  13. Histogram analysis of ADC in brain tumor patients

    NASA Astrophysics Data System (ADS)

    Banerjee, Debrup; Wang, Jihong; Li, Jiang

    2011-03-01

    At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, post-contrast T1) were registered to the corresponding DTI scan at patient's first visit. Conventionally, hyper-intensity regions on T1-post contrast images are believed to represent the core tumor region while regions highlighted by FLAIR may overestimate tumor size. Thus we annotated tumor regions on the T1-post contrast scans and ADC intensity values for pixels were extracted inside tumor regions as defined on T1-post scans. We fit a mixture Gaussian (MG) model for the extracted pixels using the Expectation-Maximization (EM) algorithm, which produced a set of parameters (mean, various and mixture coefficients) for the MG model. This procedure was performed for each visits resulting in a series of GM parameters. We studied the parameters fitted for ADC and see if they can be used as indicators for tumor progression. Additionally, we studied the ADC characteristics in the peri-tumoral region as identified by hyper-intensity on FLAIR scans. The results show that ADC histogram analysis of the tumor region supports the two compartment model that suggests the low ADC value subregion corresponding to densely packed cancer cell while the higher ADC value region corresponding to a mixture of viable and necrotic cells with superimposed edema. Careful studies of the composition and relative volume of the two compartments in tumor

  14. Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.

    PubMed

    Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne

    2016-07-01

    This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment.

  15. Pediatric Brain Tumor Treatment: Growth Consequences and their Management

    PubMed Central

    Mostoufi-Moab, Sogol; Grimberg, Adda

    2014-01-01

    Tumors of the central nervous system, the most common solid tumors of childhood, are a major source of cancer-related morbidity and mortality in children. Survival rates have improved significantly following treatment for childhood brain tumors, with this growing cohort of survivors at high risk of adverse medical and late effects. Endocrine morbidities are the most prominent disorder among the spectrum of long-term conditions, with growth hormone deficiency the most common endocrinopathy noted, either from tumor location or after cranial irradiation and treatment effects on the hypothalamic/pituitary unit. Deficiency of other anterior pituitary hormones can contribute to negative effects on growth, body image and composition, sexual function, skeletal health, and quality of life. Pediatric and adult endocrinologists often provide medical care to this increasing population. Therefore, a thorough understanding of the epidemiology and pathophysiology of growth failure as a consequence of childhood brain tumor, both during and after treatment, is necessary and the main focus of this review. PMID:21037539

  16. IL-6 Receptor Is a Possible Target against Growth of Metastasized Lung Tumor Cells in the Brain

    PubMed Central

    Noda, Mami; Yamakawa, Yukiko; Matsunaga, Naoya; Naoe, Satoko; Jodoi, Taishi; Yamafuji, Megumi; Akimoto, Nozomi; Teramoto, Norihiro; Fujita, Kyota; Ohdo, Shigehiro; Iguchi, Haruo

    2013-01-01

    In the animal model of brain metastasis using human lung squamous cell carcinoma-derived cells (HARA-B) inoculated into the left ventricle of the heart of nude mice, metastasized tumor cells and brain resident cells interact with each other. Among them, tumor cells and astrocytes have been reported to stimulate each other, releasing soluble factors from both sides, subsequently promoting tumor growth significantly. Among the receptors for soluble factors released from astrocytes, only IL-6 receptor (IL-6R) on tumor cells was up-regulated during the activation with astrocytes. Application of monoclonal antibody against human IL-6R (tocilizumab) to the activated HARA-B cells, the growth of HARA-B cells stimulated by the conditioned medium of HARA-B/astrocytes was significantly inhibited. Injecting tocilizumab to animal models of brain metastasis starting at three weeks of inoculation of HARA-B cells, two times a week for three weeks, significantly inhibited the size of the metastasized tumor foci. The up-regulated expression of IL-6R on metastasized lung tumor cells was also observed in the tissue from postmortem patients. These results suggest that IL-6R on metastasized lung tumor cells would be a therapeutic target to inhibit the growth of the metastasized lung tumor cells in the brain. PMID:23271367

  17. Somatostatin receptor subtypes in neuroendocrine tumor cell lines and tumor tissues.

    PubMed

    Jonas, S; John, M; Boese-Landgraf, J; Häring, R; Prevost, G; Thomas, F; Rosewicz, S; Riecken, E O; Wiedenmann, B; Neuhaus, P

    1995-01-01

    Somatostatin receptor scintigraphy (SRS) is positive in approximately 80% of all patients who have been found to have neuroendocrine (NE) gastroenteropancreatic (GEP) tumors. The reasons for negative results are unclear. The aim of the present study was identification of the specific somatostatin receptor (SSTR) subtypes that are responsible for the in vivo binding of the widely used somatostatin (SST) analogues octreotide and lanreotide in human neuroendocrine gastroenteropancreatic tumors. Ten patients were subjected to SRS with radiolabeled octreotide. Following surgical resection, tumor tissues were analyzed for SSTR subtype mRNA expression by the reverse transcription-polymerase chain reaction (RT-PCR). In addition, SSTR subtype transcripts were investigated by Northern blot analysis and RT-PCR in neuroendocrine tumor cell lines. Expression of SSTR at the protein level was studied by chemical cross-linking experiments. Three patients were negative by SRS. However, RT-PCR revealed most prominently SSTR 2 expression in all tumor specimens. In addition, all tumor tissues analyzed by chemical crosslinking exhibited SST-14 binding sites, indicating that at least some NE tumors were false-negative on SRS.

  18. Dysembryoplastic neuroepithelial tumor: A rare brain tumor not to be misdiagnosed

    PubMed Central

    Sukheeja, Deepti; Mehta, Jayanti

    2016-01-01

    Dysembryoplastic neuroepithelial tumor (DNET) is a recently described, morphologically unique, and surgically curable low-grade brain tumor which is included in the latest WHO classification as neuronal and mixed neuronal-glial tumor. It is usually seen in children and young adults. The importance of this particular entity is that it is a surgically curable neuroepithelial neoplasm. When recognized, the need for adjuvant radiotherapy and chemotherapy is obviated. We hereby present a case report of an 8-year-old male child who presented with intractable seizures and parieto-occipital space occupying lesion. Histologically, the tumor exhibited features of WHO grade I dysembryoplastic neuroepithelial tumor which was further confirmed by immunohistochemistry. PMID:27057233

  19. Nitrite Induces the Extravasation of Iron Oxide Nanoparticles in Hypoxic Tumor Tissue

    PubMed Central

    Mistry, Nilesh; Stokes, Ashley M; Van Gambrell, James; Quarles, Christopher Chad

    2014-01-01

    Nitrite undergoes reconversion to nitric oxide (NO) under conditions characteristic of the tumor microenvironment, such as hypoxia and low pH. This selective conversion of nitrite into NO in tumor tissue has led to the possibility of using nitrite to enhance drug delivery and radiation response. In this work we propose to serially characterize the vascular response of brain tumor bearing rats to nitrite using contrast-enhanced R2* mapping. Imaging is performed using a multi-echo gradient echo sequence at baseline, post iron-oxide nanoparticle injection, and post-nitrite injection, while the animal is breathing air. The results indicate that nitrite sufficiently increases vascular permeability in C6 gliomas such that the iron oxide nanoparticles accumulate within the tumor tissue. When animals breathed 100% oxygen, the contrast agent remained within the vasculature indicating that the conversion of nitrite to nitric oxide occurs in the presence of hypoxia within the tumor. The hypoxia-dependent, nitrite-induced extravasation of iron-oxide nanoparticles observed herein has implications for the enhancement of conventional and nanotherapeutic drug delivery. PMID:24470164

  20. Distribution, characterization and significance of polyomavirus genomic sequences in tumors of the brain and its covering.

    PubMed

    Delbue, Serena; Pagani, Elisabetta; Guerini, Franca R; Agliardi, Cristina; Mancuso, Roberta; Borghi, Elisa; Rossi, Francesca; Boldorini, Renzo; Veggiani, Claudia; Car, Pier Giorgio; Ferrante, Pasquale

    2005-11-01

    The etiology of brain tumors and meningiomas is still unknown. Several factors have been considered, such as genetic predisposition and environmental risk factors, but the hypothesis that one or more infectious agents may play a role in tumor pathogenesis has also been investigated. Therefore, emphasis was placed on the neurooncogenic family Polyomaviridae and the presence of human polyomavirus DNA sequences and JCV mRNA were examined in malignant human brain biopsies. Italian patients affected with different types of neoplasias of the brain and its covering were enrolled. The patients underwent surgical tumor excision and the presence of the polyomavirus genome in biopsy and other body fluids was evaluated by PCR. In addition, the genomic organization of JCV was examined in depth, with the aim of providing information on genotype distribution and TCR rearrangements in the population affected with intracranial neoplasms. On the whole, polyomavirus DNA was found in 50% of the biopsy specimens studied, JC virus DNA and BK virus DNA were amplified in 40.6% mainly glioblastomas and 9.4% of the tissue specimens, respectively, while none of the biopsy specimens tested contained Simian virus 40 DNA. Genotype 1 and Mad 4 TCR organization were the most frequent in the population enrolled. Although a cause and effect was not demonstrated and the specific role of the viruses remains unknown, the findings appear to confirm the hypothesis that JCV and BKV could be important co-factors in tumor pathogenesis.

  1. Optical imaging of targeted β-galactosidase in brain tumors to detect EGFR levels.

    PubMed

    Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James

    2015-04-15

    A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.

  2. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation

    SciTech Connect

    Kaplan, W.D.; Takvorian, T.; Morris, J.H.; Rumbaugh, C.L.; Connolly, B.T.; Atkins, H.L.

    1987-01-01

    In patients with gliomas who were stable or improving, we noted a disparity between clinical status and computed tomography (CT) brain scan results. To elucidate this finding, 29 patients were sequentially scanned with 2.0 mCi of /sup 201/Tl (5-30 min), 20 mCi (/sup 99m/Tc)gluceptate (GH) (3-4 hr) and 7-10 mCi 67Ga (48-72 hr). A total of 198 images were obtained. A set of three scans at a midpoint in follow up was selected for analysis. Seven patients who died had neuropathologic data available; brain sections were reconstructed to match radionuclide views without knowledge of image results. In the seven patients with autopsy data, /sup 201/Tl offered the most accurate correlation with viable tumor. Gallium-67 gave similar results in patients not receiving steroids. Technetium-99m GH scans could not allow differentiation between tumor, necrosis, and edema. Similarly, the CT scan could not routinely differentiate between fibrotic, nonfibrotic, necrotic, and neoplastic tissue. In the 22 patients without autopsy data, /sup 201/Tl scans commonly showed smaller and more focal abnormal uptake when compared with (/sup 99m/Tc)GH and /sup 67/Ga scans. Thallium-201 scans more accurately reflect viable tumor burden than other radionuclide studies of primary brain tumors, are minimally affected by concomitant steroid administration, can be performed immediately following tracer administration, and complement the anatomic data obtained from CT scans.

  3. Integrated proteomic platforms for the comparative characterization of medulloblastoma and pilocytic astrocytoma pediatric brain tumors: a preliminary study.

    PubMed

    Martelli, Claudia; Iavarone, Federica; D'Angelo, Luca; Arba, Morena; Vincenzoni, Federica; Inserra, Ilaria; Delfino, Daniela; Rossetti, Diana Valeria; Caretto, Marta; Massimi, Luca; Tamburrini, Gianpiero; Di Rocco, Concezio; Caldarelli, Massimo; Messana, Irene; Castagnola, Massimo; Sanna, Maria Teresa; Desiderio, Claudia

    2015-06-01

    A top-down/bottom-up integrated proteomic approach based on LC-MS and 2-DE analysis was applied for comparative characterization of medulloblastoma and pilocytic astrocytoma posterior cranial fossa pediatric brain tumor tissues. Although rare, primary brain tumors are the most frequent solid tumors in the pediatric age. Among them the medulloblastoma is the prevalent malignant tumor in childhood while pilocytic astrocytoma is the most common, rarely showing a malignant progression. Due to the limited availability of this kind of sample, the study was applied to pooled tumor tissues for a preliminary investigation. The results showed different proteomic profiles of the two tumors and evidenced interesting differential expression of several proteins and peptides. Top-down proteomics of acid-soluble fractions of brain tumor homogenates ascribed a potential biomarker role of malignancy to β- and α-thymosins and their truncated proteoforms and to C-terminal truncated (des-GG) ubiquitin, resulting exclusively detected or over-expressed in the highly malignant medulloblastoma. The bottom-up proteomics of the acid-soluble fraction identified several proteins, some of them in common with 2-DE analysis of acid-insoluble pellets. Peroxiredoxin-1, peptidyl-prolyl cis-trans isomerase A, triosephosphate isomerase, pyruvate kinase PKM, tubulin beta and alpha chains, heat shock protein HSP-90-beta and different histones characterized the medulloblastoma while the Ig kappa chain C region, serotransferrin, tubulin beta 2A chain and vimentin the pilocytic astrocytoma. The two proteomic strategies, with their pros and cons, well complemented each other in characterizing the proteome of brain tumor tissues and in disclosing potential disease biomarkers to be validated in a future study on individual samples of both tumor histotypes. PMID:25909245

  4. Intrinsic optical signals of brains in rats during loss of tissue viability: effect of brain temperature

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Kikuchi, Makoto

    2007-07-01

    Noninvasive, real-time monitoring of brain tissue viability is crucial for the patients with stroke, traumatic brain injury, etc. For this purpose, measurement of intrinsic optical signal (IOS) is attractive because it can provide direct information about the viability of brain tissue noninvasively. We performed simultaneous measurements of IOSs that are related to morphological characteristics, i.e., light scattering, and energy metabolism for rat brains during saline infusion as a model with temporal loss of brain tissue viability. The results showed that the scattering signal was steady in an initial phase but showed a drastic, triphasic change in a certain range of infusion time, during which the reduction of CuA in cytochrome c oxidase started and proceeded rapidly. The start time of triphasic scattering change was delayed for about 100 s by lowering brain temperature from 29°C to 24°C, demonstrating the optical detection of cerebroprotection effect by brain cooling. Electron microscopic observation showed morphological changes of dendrite and mitochondria in the cortical surface tissue after the triphasic scattering change, which was thought to be associated with the change in light scattering we observed. These findings suggest that the simultaneous measurement of the intrinsic optical signals related to morphological characteristics and energy metabolism is useful for monitoring tissue viability in brain.

  5. Brain tumor segmentation in MRI based on fuzzy aggregators

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Liao, Qingmin; Dou, Weibei; Ruan, Su

    2005-07-01

    Magnetic Resonance Image (MRI) is widely used in radiology diagnosis, especially in pathology detection in human brain. Most of the methods now applied to automatically segment brain tumors rely on T1-weighted sequences exclusively despite the fact that the imaging agent is multi-spectral. The work focuses on the integration or fusion of information provided by each sequence, i.e. T1, T2 and PD. Based on the fuzzy aggregators proposed in fuzzy theory, a system integrating all these information is established. The paper discusses some famous operators, their properties and application in tumor segmentation. In particular, Davies-Bouldin index is used to determine the parameters of the parametric operations. The result shows the importance of data fusion in segmentation process, discovers that T-norms are less robust to noise compared with mean operators. Meanwhile, weights allocated illustrate the order of importance of each spectrum in pathology detection, and are in agreement with their characteristic.

  6. Free magnesium levels in normal human brain and brain tumors: sup 31 P chemical-shift imaging measurements at 1. 5 T

    SciTech Connect

    Taylor, J.S.; Vigneron, D.B.; Murphy-Boesch, J.; Nelson, S.J.; Kessler, H.B.; Coia, L.; Curran, W.; Brown, T.R. )

    1991-08-01

    The authors have studied a series of normal subjects and patients with brain tumors, by using {sup 31}P three-dimensional chemical shift imaging to obtain localized {sup 31}P spectra of the brain. A significant proportion of brain cytosolic ATP in normal brain is not complexed to Mg{sup 2+}, as indicated by the chemical shift {delta} of the {beta}-P resonance of ATP. The ATP {beta}P resonance position in brain thus is sensitive to changes in intracellular free Mg{sup 2+} concentration and in the proportion of ATP complexed with Mg because this shift lies on the rising portion of the {delta} vs. Mg{sup 2+} titration curve for ATP. They have measured the ATP {beta}-P shift and compared intracellular free Mg{sup 2+} concentration and fractions of free ATP for normal individuals and a limited series of patients with brain tumors. In four of the five spectra obtained from brain tissue containing a substantial proportion of tumor, intracellular free Mg{sup 2+} was increased, and the fraction of free ATP was decreased, compared with normal brain.

  7. Drosophila neural stem cells in brain development and tumor formation.

    PubMed

    Jiang, Yanrui; Reichert, Heinrich

    2014-01-01

    Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the central nervous system. Significant progress has been made in understanding the mechanisms regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages. Deregulation of these mechanisms can lead to severe developmental defects and the formation of malignant brain tumors. Here, the authors review the molecular genetics of Drosophila neuroblasts and discuss some recent advances in stem cell and cancer biology using this model system.

  8. Liposomally formulated phospholipid-conjugated indocyanine green for intra-operative brain tumor detection and resection.

    PubMed

    Suganami, Akiko; Iwadate, Yasuo; Shibata, Sayaka; Yamashita, Masamichi; Tanaka, Tsutomu; Shinozaki, Natsuki; Aoki, Ichio; Saeki, Naokatsu; Shirasawa, Hiroshi; Okamoto, Yoshiharu; Tamura, Yutaka

    2015-12-30

    Some tumor-specific near-infrared (NIR) fluorescent dyes such as indocyanine green (ICG), IDRye800CW, and 5-aminolevulinic acid have been used clinically for detecting tumor margins or micro-cancer lesions. In this study, we evaluated the physicochemical properties of liposomally formulated phospholipid-conjugated ICG, denoted by LP-iDOPE, as a clinically translatable NIR imaging nanoparticle for brain tumors. We also confirmed its brain-tumor-specific biodistribution and its characteristics as the intra-operative NIR imaging nanoparticles for brain tumor surgery. These properties of LP-iDOPE may enable neurosurgeons to achieve more accurate identification and more complete resection of brain tumor.

  9. Characterisation and modelling of brain tissue for surgical simulation.

    PubMed

    Mendizabal, A; Aguinaga, I; Sánchez, E

    2015-05-01

    Interactive surgical simulators capable of providing a realistic visual and haptic feedback to users are a promising technology for medical training and surgery planification. However, modelling the physical behaviour of human organs and tissues for surgery simulation remains a challenge. On the one hand, this is due to the difficulty to characterise the physical properties of biological soft tissues. On the other hand, the challenge still remains in the computation time requirements of real-time simulation required in interactive systems. Real-time surgical simulation and medical training must employ a sufficiently accurate and simple model of soft tissues in order to provide a realistic haptic and visual response. This study attempts to characterise the brain tissue at similar conditions to those that take place on surgical procedures. With this aim, porcine brain tissue is characterised, as a surrogate of human brain, on a rotational rheometer at low strain rates and large strains. In order to model the brain tissue with an adequate level of accuracy and simplicity, linear elastic, hyperelastic and quasi-linear viscoelastic models are defined. These models are simulated using the ABAQUS finite element platform and compared with the obtained experimental data. PMID:25676499

  10. Tumor Engineering: The Other Face of Tissue Engineering

    SciTech Connect

    Ghajar, Cyrus M; Bissell, Mina J

    2010-03-09

    Advances in tissue engineering have been accomplished for years by employing biomimetic strategies to provide cells with aspects of their original microenvironment necessary to reconstitute a unit of both form and function for a given tissue.We believe that the most critical hallmark of cancer is loss of integration of architecture and function; thus, it stands to reason that similar strategies could be employed to understand tumor biology. In this commentary, we discuss work contributed by Fischbach-Teschl and colleagues to this special issue of Tissue Engineering in the context of 'tumor engineering', that is, the construction of complex cell culture models that recapitulate aspects of the in vivo tumor microenvironment to study the dynamics of tumor development, progression, and therapy on multiple scales. We provide examples of fundamental questions that could be answered by developing such models, and encourage the continued collaboration between physical scientists and life scientists not only for regenerative purposes, but also to unravel the complexity that is the tumor microenvironment. In 1993, Vacanti and Langer cast a spotlight on the growing gap between patients in need of organ transplants and the amount of available donor organs; they reaffirmed that tissue engineering could eventually address this problem by 'applying principles of engineering and the life sciences toward the development of biological substitutes. Mortality figures and direct health care costs for cancer patients rival those of patients who experience organ failure. Cancer is the second leading cause of death in the United States (Source: American Cancer Society) and it is estimated that direct medical costs for cancer patients approach $100B yearly in the United States alone (Source: National Cancer Institute). In addition, any promising therapy that emerges from the laboratory costs roughly $1.7B to take from bench to bedside. Whereas we have indeed waged war on cancer, the

  11. Brain tumor-targeted delivery and therapy by focused ultrasound introduced doxorubicin-loaded cationic liposomes.

    PubMed

    Lin, Qian; Mao, Kai-Li; Tian, Fu-Rong; Yang, Jing-Jing; Chen, Pian-Pian; Xu, Jie; Fan, Zi-Liang; Zhao, Ya-Ping; Li, Wen-Feng; Zheng, Lei; Zhao, Ying-Zheng; Lu, Cui-Tao

    2016-02-01

    Brain tumor lacks effective delivery system for treatment. Focused ultrasound (FUS) can reversibly open BBB without impacts on normal tissues. As a potential drug carrier, cationic liposomes (CLs) have the ability to passively accumulate in tumor tissues for their positive charge. In this study, FUS introduced doxorubicin-loaded cationic liposomes (DOX-CLs) were applied to improve the efficiency of glioma-targeted delivery. Doxorubicin-loaded CLs (DOX-CLs) and quantum dot-loaded cationic liposomes (QD-CLs) were prepared using extrusion technology, and their characterizations were evaluated. With the advantage of QDs in tracing images, the glioma-targeted accumulation of FUS + CLs was evaluated by fluorescence imaging and flow cytometer. Cell survival rate, tumor volume, animal survival time, and brain histology in C6 glioma model were investigated to evaluate the glioma-targeted delivery of FUS + DOX-CLs. DOX-CLs and QD-CLs had suitable nanoscale sizes and high entrapment efficiency. The combined strategy of FUS introduced CLs significantly increased the glioma-targeted accumulation for load drugs. FUS + DOX-CLs showed the strongest inhibition on glioma based on glioma cell in vitro and glioma model in vivo experiments. From MRI and histological analysis, FUS + DOX-CLs group strongly suppressed the glioma progression and extended the animal survival time to 81.2 days. Among all the DOX treatment groups, FUS + DOX-CLs group showed the best cell viability and highest level of tumor apoptosis and necrosis. Combining the advantages of BBB reversible opening by FUS and glioma-targeted binding by CLs, ultrasound introduced cationic liposomes could achieve glioma-targeted delivery, which might be developed as a potential strategy for future brain tumor therapy.

  12. The time course of steroid action on blood-to-brain and blood-to-tumor transport of 82Rb: A positron emission tomographic study

    SciTech Connect

    Jarden, J.O.; Dhawan, V.; Moeller, J.R.; Strother, S.C.; Rottenberg, D.A.

    1989-03-01

    Blood-to-brain and blood-to-tumor transport rate constants for Rb (K1) and apparent tissue blood volume (Vb) were estimated in 8 patients with primary or metastatic brain tumors before and approximately 6 hours after a 100-mg intravenous bolus injection of dexamethasone using /sup 82/Rb and positron emission tomography. Eight additional patients were studied to evaluate test-retest variability and repositioning errors. Six hours following dexamethasone administration tumor K1 (but not Vb) was significantly reduced compared with contralateral control brain regions (p less than 0.03). These data are consistent with our previously published 24-hour-postdexamethasone data and suggest that comparable effects of corticosteroids on brain/tumor capillaries may be observed at 5 to 6 and 24 hours. The time course of dexamethasone-induced alterations in brain/tumor capillary permeability supports the view that these alterations may be responsible for at least some of the antiedema effects of corticosteroids.

  13. Heavy Metals and Epigenetic Alterations in Brain Tumors

    PubMed Central

    Caffo, Maria; Caruso, Gerardo; Fata, Giuseppe La; Barresi, Valeria; Visalli, Maria; Venza, Mario; Venza, Isabella

    2014-01-01

    Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature. PMID:25646073

  14. Sigma and opioid receptors in human brain tumors

    SciTech Connect

    Thomas, G.E.; Szuecs, M.; Mamone, J.Y.; Bem, W.T.; Rush, M.D.; Johnson, F.E.; Coscia, C.J. )

    1990-01-01

    Human brain tumors and nude mouse-borne human neuroblastomas and gliomas were analyzed for sigma and opioid receptor content. Sigma binding was assessed using ({sup 3}H) 1, 3-di-o-tolylguanidine (DTG), whereas opioid receptor subtypes were measured with tritiated forms of the following: {mu}, (D-ala{sup 2}, mePhe{sup 4}, gly-ol{sup 5}) enkephalin (DAMGE); {kappa}, ethylketocyclazocine (EKC) or U69,593; {delta}, (D-pen{sup 2}, D-pen{sup 5}) enkephalin (DPDPE) or (D-ala{sup 2}, D-leu{sup 5}) enkephalin (DADLE) with {mu} suppressor present. Binding parameters were estimated by homologous displacement assays followed by analysis using the LIGAND program. Sigma binding was detected in 15 of 16 tumors examined with very high levels found in a brain metastasis from an adenocarcinoma of lung and a human neuroblastoma (SK-N-MC) passaged in nude mice. {kappa} opioid receptor binding was detected in 4 of 4 glioblastoma multiforme specimens and 2 of 2 human astrocytoma cell lines tested but not in the other brain tumors analyzed.

  15. Nerve Fibers in Breast Cancer Tissues Indicate Aggressive Tumor Progression

    PubMed Central

    Huang, Di; Su, Shicheng; Cui, Xiuying; Shen, Ximing; Zeng, Yunjie; Wu, Wei; Chen, Jianing; Chen, Fei; He, Chonghua; Liu, Jiang; Huang, Wei; Liu, Qiang; Su, Fengxi; Song, Erwei; Ouyang, Nengtai

    2014-01-01

    Abstract Emerging evidence has indicated nerve fibers as a marker in the progression of various types of cancers, such as pancreatic cancer and prostate cancer. However, whether nerve fibers are associated with breast cancer progression remains unclear. In this study, we evaluated the presence of nerve fibers in 352 breast cancer specimens and 83 benign breast tissue specimens including 43 cases of cystic fibrosis and 40 cases of fibroadenoma from 2 independent breast tumor center using immunohistochemical staining for specific peripheral nerve fiber markers. In all, nerve fibers were present in 130 out of 352 breast cancer tissue specimens, while none were detected in normal breast tissue specimens. Among 352 cases, we defined 239 cases from Sun Yat-Sen Memorial Hospital, Guangzhou, China, as the training set, and 113 cases from the First Affiliated Hospital of Shantou University, Guangdong, China, as the validation set. The thickness of tumor-involving nerve fibers is significantly correlated with poor differentiation, lymph node metastasis, high clinical staging, and triple negative subtype in breast cancer. More importantly, Cox multifactor analysis indicates that the thickness of tumor-involving nerve fibers is a previously unappreciated independent prognostic factors associated with shorter disease-free survival of breast cancer patients. Our findings are further validated by online Oncomine database. In conclusion, our results show that nerve fiber involvement in breast cancer is associated with progression of the malignancy and warrant further studies in the future. PMID:25501061

  16. [The activity of redox-regulatory systems in the tumor and its surrounding tissues in various histological types of tumor].

    PubMed

    Surikova, E I; Goroshinskaja, I A; Nerodo, G A; Frantsiyants, E M; Malejko, M L; Shalashnaja, E V; Kachesova, P; Nemashkalova, L A; Leonova, A V

    2016-01-01

    According to modern concepts cancer is a complex dynamic system having multiple relationships with both the immediate environment and with remote nonmalignant tissues and organs. Changes in the redox balance in them can result in disruption of the normal tissue control. Understanding of the biology of redox processes in a particular tumor and its surroundings, and of their functioning mechanisms is necessary for the development of new anti-cancer strategies based on the effects on the redox state of the tumor and surrounding tissue. Thus the aim of this work was to investigate activity of enzymatic systems influencing the redox state in the tumor tissue, peritumoral area and nonmalignant tissue (taken along the line of resection) for different histological types of tumors. The data obtained showed a similar level of reduced glutathione (GSH) in tumor tissues of gastric adenocarcinoma and vulvar squamous cell carcinoma, but its dynamics in the tissues surrounding the tumor was different. In contrast to the gastric adenocarcinoma the carcinoma of the vulva had a significant level of GSH and higher activity of glutathione dependent enzymes in the tumor tissue and its peritumoral area compared with the surrounding nonmalignant tissue. The results indicate that there are differences in the functioning of the redox regulatory systems in the tumor tissue and its surrounding tissues of various histological origin and localization, possibly due to different mechanisms involved in maintenance of the redox balance in the originally nonmalignant tissue. PMID:27143378

  17. [The activity of redox-regulatory systems in the tumor and its surrounding tissues in various histological types of tumor].

    PubMed

    Surikova, E I; Goroshinskaja, I A; Nerodo, G A; Frantsiyants, E M; Malejko, M L; Shalashnaja, E V; Kachesova, P; Nemashkalova, L A; Leonova, A V

    2016-01-01

    According to modern concepts cancer is a complex dynamic system having multiple relationships with both the immediate environment and with remote nonmalignant tissues and organs. Changes in the redox balance in them can result in disruption of the normal tissue control. Understanding of the biology of redox processes in a particular tumor and its surroundings, and of their functioning mechanisms is necessary for the development of new anti-cancer strategies based on the effects on the redox state of the tumor and surrounding tissue. Thus the aim of this work was to investigate activity of enzymatic systems influencing the redox state in the tumor tissue, peritumoral area and nonmalignant tissue (taken along the line of resection) for different histological types of tumors. The data obtained showed a similar level of reduced glutathione (GSH) in tumor tissues of gastric adenocarcinoma and vulvar squamous cell carcinoma, but its dynamics in the tissues surrounding the tumor was different. In contrast to the gastric adenocarcinoma the carcinoma of the vulva had a significant level of GSH and higher activity of glutathione dependent enzymes in the tumor tissue and its peritumoral area compared with the surrounding nonmalignant tissue. The results indicate that there are differences in the functioning of the redox regulatory systems in the tumor tissue and its surrounding tissues of various histological origin and localization, possibly due to different mechanisms involved in maintenance of the redox balance in the originally nonmalignant tissue.

  18. The p53 gene and protein in human brain tumors

    SciTech Connect

    Louis, D.N. )

    1994-01-01

    Because p53 gene alterations are commonplace in human tumors and because p53 protein is involved in a number of important cellular pathways, p53 has become a topic of intensive investigation, both by basic scientists and clinicians. p53 was initially identified by two independent laboratories in 1979 as a 53 kilodalton (kD) protein that complexes with the large T antigen of SV40 virus. Shortly thereafter, it was shown that the E1B oncoprotein of adenovirus also binds p53. The binding of two different oncogenic viral tumor proteins to the same cellular protein suggested that p53 might be integral to tumorigenesis. The human p53 cDNA and gene were subsequently cloned in the mid-1980s, and analysis of p53 gene alterations in human tumors followed a few year later. During these 10 years, researchers grappling with the vagaries of p53 first characterized the gene as an oncogene, then as a tumor suppressor gene, and most recently as both a tumor suppressor gene and a so-called [open quotes]dominant negative[close quotes] oncogene. The last few years have seen an explosion in work on this single gene and its protein product. A review of a computerized medical database revealed approximately 650 articles on p53 in 1992 alone. p53 has assumed importance in neuro-oncology because p53 mutations and protein alterations are frequent in the common diffuse, fibrillary astrocytic tumors of adults. p53 mutations in astrocytomas were first described in 1989 and were followed by more extensive analyses of gene mutations and protein alterations in adult astrocytomas. The gene has also been studied in less common brain tumors. Elucidating the role of p53 in brain tumorigenesis will not only enhance understanding of brain tumor biology but may also contribute to improved diagnosis and therapy. This discussion reviews key aspects of the p53 gene and protein, and describe their emerging roles in central nervous system neoplasia. 102 refs., 6 figs., 1 tab.

  19. Prospective study of neuropsychological sequelae in children with brain tumors

    SciTech Connect

    Bordeaux, J.D.; Dowell, R.E. Jr.; Copeland, D.R.; Fletcher, J.M.; Francis, D.J.; van Eys, J.

    1988-01-01

    Surgery and radiotherapy are the primary modalities of treatment for pediatric brain tumors. Despite the widespread use of these treatments, little is known of their acute effects (within one year posttreatment) on neuropsychological functions. An understanding of acute treatment effects may provide valuable feedback to neurosurgeons and a baseline against which delayed sequelae may be evaluated. This study compares pre- and posttherapy neuropsychological test performance of pediatric brain tumor patients categorized into two groups on the basis of treatment modalities: surgery (n = 7) and radiotherapy (n = 7). Treatment groups were composed of children aged 56 to 196 months at the time of evaluation with heterogeneous tumor diagnoses and locations. Comparisons of pretherapy findings with normative values using confidence intervals indicated that both groups performed within the average range on most measures. Outstanding deficits at baseline were observed on tests of fine-motor, psychomotor, and timed language skills, and are likely to be attributable to tumor-related effects. Comparisons of pre- versus posttherapy neuropsychological test findings indicated no significant interval changes for either group. Results suggest that surgery and radiotherapy are not associated with acute effects on neuropsychological functions.

  20. Joint segmentation and deformable registration of brain scans guided by a tumor growth model.

    PubMed

    Gooya, Ali; Pohl, Kilian M; Bilello, Michel; Biros, George; Davatzikos, Christos

    2011-01-01

    This paper presents an approach for joint segmentation and deformable registration of brain scans of glioma patients to a normal atlas. The proposed method is based on the Expectation Maximization (EM) algorithm that incorporates a glioma growth model for atlas seeding, a process which modifies the normal atlas into one with a tumor and edema. The modified atlas is registered into the patient space and utilized for the posterior probability estimation of various tissue labels. EM iteratively refines the estimates of the registration parameters, the posterior probabilities of tissue labels and the tumor growth model parameters. We have applied this approach to 10 glioma scans acquired with four Magnetic Resonance (MR) modalities (T1, T1-CE, T2 and FLAIR) and validated the result by comparing them to manual segmentations by clinical experts. The resulting segmentations look promising and quantitatively match well with the expert provided ground truth.

  1. Magnetic resonance imaging-navigated argon-helium cryoablation therapy against a rabbit VX2 brain tumor

    PubMed Central

    WANG, YANG; KAN, HONG-LI; SUN, HONG; WANG, DONG-XIN; WANG, HUAI-WU; LIU, JI-XIN

    2015-01-01

    The aim of the present study was to investigate the feasibility of interventional magnetic resonance imaging (MRI)-guided and monitored argon-helium cryoablation for the treatment of brain tumors in rabbits. In addition, the present study evaluated the associations between imaging and pathology, the therapeutic effects and the effects on the surrounding normal tissues. A total of 14 rabbits were equally divided into groups C and D. Under general anesthesia, the skull was drilled and tumor blocks were implanted. Subsequently, a New Zealand rabbit VX2 brain tumor model was successfully established. Rabbits in group C were treated with argon-helium cryoablation and those in group D did not undergo any treatment (control). Regular postoperative MRI scanning was performed to observe the changes in tumor size, and the survival times of the rabbits in groups C and D were recorded. The extent of necrosis in the brain tumor exhibited a significant correlation with the freezing time of cryoablation, and the necrotic region was shown to be the same size as the ice ball. The survival times of the rabbits in the treatment group (group C) were significantly prolonged. Therefore, the observations of the present study demonstrated that the VX2 brain tumor model, produced using an improved tumor block implantation method, was stable and suitable for MRI observation and interventional study. In addition, argon-helium cryoablation was shown to be a safe and feasible therapeutic method for the treatment of brain tumors, and was demonstrated to significantly increase the survival times of the brain tumor-bearing rabbits. PMID:26136965

  2. Waves of ratcheting cancer cells in growing tumor tissue layer

    NASA Astrophysics Data System (ADS)

    Yang, Taeseok; Kwon, Tae; Kim, Hyun; Lee, Kyoung; CenterCell Dynamics Team

    2015-03-01

    Over many years researchers have shown that the mechanical forces generated by, and acting on, tissues influence the way they grow, develop and migrate. As for cancer research goes, understanding the role of these forces may even be as influential as deciphering the relevant genetic and molecular basis. Often the key issues in the field of cancer mechanics are to understand the interplay of mechanics and chemistry. In this study, we discuss very intriguing population density waves observed in slowly proliferating of tumor cell layers. The temporal periods are around 4 hr and their wavelength is in the order of 1 mm. Tumor cell layer, which is initially plated in a small disk area, expands as a band of tumor cells is ``ratcheting'' in concert in radially outward direction. By adding Cytochalasin D and Latrunculin B, an inhibitor of actin polymerization, or Mytomycin, a chemotherapeutic agent, we could halt and modulate the wave activities reversibly. The observed waves are visually quite similar to those of chemotaxing dictyostelium discodium amoeba population, which are driven by nonlinear chemical reaction-diffusion waves of cAMP. So far, we have not been able to show any relevant chemo-attractants inducing the collective behavior of these tumor cells. Researchers have been investigating how forces from both within and outside developing cancer cells interact in intricate feedback loops. This work reports the example of periodic density waves of tumor cells with an explanation purely based on nonlinear mechanics.

  3. Three-dimensional assessment of brain tissue morphology

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Germann, Marco; Jeanmonod, Daniel; Morel, Anne

    2006-08-01

    The microstructure of brain tissues becomes visible using different types of optical microscopy after the tissue sectioning. This preparation procedure introduces stress and strain in the anisotropic and inhomogeneous soft tissue slices, which are several 10 μm thick. Consequently, the three-dimensional dataset, generated out of the two-dimensional images with lateral submicrometer resolution, needs algorithms to correct the deformations, which can be significant for mellow tissue such as brain segments. The spatial resolution perpendicular to the slices is much worse with respect to the lateral sub-micrometer resolution. Therefore, we propose as complementary method the synchrotron-radiation-based micro computed tomography (SRμCT), which avoids any kind of preparation artifacts due to sectioning and histological processing and yields true micrometer resolution in the three orthogonal directions. The visualization of soft matter by the use of SRμCT, however, is often based on elaborate staining protocols, since the tissue exhibits (almost) the same x-ray absorption as the surrounding medium. Therefore, it is unexpected that human tissue from the pons and the medulla oblongata in phosphate buffer show several features such as the blood vessels and the inferior olivary nucleus without staining. The value of these tomograms lies especially in the precise non-rigid registration of the different sets of histological slices. Applications of this method to larger pieces of brain tissue, such as the human thalamus are planned in the context of stereotactic functional neurosurgery.

  4. Investigation of elemental changes in brain tissues following excitotoxic injury

    NASA Astrophysics Data System (ADS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca+2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca+2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  5. Multimodal brain-tumor segmentation based on Dirichlet process mixture model with anisotropic diffusion and Markov random field prior.

    PubMed

    Lu, Yisu; Jiang, Jun; Yang, Wei; Feng, Qianjin; Chen, Wufan

    2014-01-01

    Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.

  6. Multimodal brain-tumor segmentation based on Dirichlet process mixture model with anisotropic diffusion and Markov random field prior.

    PubMed

    Lu, Yisu; Jiang, Jun; Yang, Wei; Feng, Qianjin; Chen, Wufan

    2014-01-01

    Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use. PMID:25254064

  7. Multimodal Brain-Tumor Segmentation Based on Dirichlet Process Mixture Model with Anisotropic Diffusion and Markov Random Field Prior

    PubMed Central

    Lu, Yisu; Jiang, Jun; Chen, Wufan

    2014-01-01

    Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use. PMID:25254064

  8. Divergent viral presentation among human tumors and adjacent normal tissues

    PubMed Central

    Cao, Song; Wendl, Michael C.; Wyczalkowski, Matthew A.; Wylie, Kristine; Ye, Kai; Jayasinghe, Reyka; Xie, Mingchao; Wu, Song; Niu, Beifang; Grubb, Robert; Johnson, Kimberly J.; Gay, Hiram; Chen, Ken; Rader, Janet S.; Dipersio, John F.; Chen, Feng; Ding, Li

    2016-01-01

    We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets. PMID:27339696

  9. Optimizing gene expression analysis in archival brain tissue.

    PubMed

    Van Deerlin, Vivianna M D; Gill, Lisa H; Nelson, Peter T

    2002-10-01

    Analysis of gene expression in the brain is a valuable tool to study the function of the brain under normal and pathological conditions. Although there are many techniques used to measure gene expression the validity of any such experiment is directly related to the quality of the RNA in the samples. The most readily available source of human brain tissue is post-mortem and while frozen tissue is sometimes available, most archived tissue is fixed and paraffin-embedded. The use of fixed tissue for expression analysis introduces variables, which must be considered in the experimental design. In addition, factors associated with clinical variability of the patient and with tissue procurement can affect RNA transcript levels. In order to illustrate the effects of two common tissue fixatives, formalin and ethanol, on the quality of RNA for expression analysis we compare RNA extracted from these fixed tissues to the gold standard, flash-frozen tissue. We describe RNA extraction from fixed tissue and ways to assess the quality or intactness of the RNA using reverse transcription combined with polymerase chain reaction amplification. An advantage of using archived tissue is the ease with which single cells or subpopulations of cells can be obtained by laser microdissection. The successful isolation of RNA from microdissected cells is also presented. From our results and a review of the literature we conclude that RNA from fixed tissues is a viable source of RNA for expression analysis which should enable new experimental approaches and discoveries as long as attention is given to variables that can affect RNA at all levels of analysis.

  10. Comparing implementations of magnetic-resonance-guided fluorescence molecular tomography for diagnostic classification of brain tumors

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Samkoe, Kimberley S.; O'Hara, Julia A.; Gibbs-Strauss, Summer L.; Paulsen, Keith D.; Pogue, Brian W.

    2010-09-01

    Fluorescence molecular tomography (FMT) systems coupled to conventional imaging modalities such as magnetic resonance imaging (MRI) and computed tomography provide unique opportunities to combine data sets and improve image quality and content. Yet, the ideal approach to combine these complementary data is still not obvious. This preclinical study compares several methods for incorporating MRI spatial prior information into FMT imaging algorithms in the context of in vivo tissue diagnosis. Populations of mice inoculated with brain tumors that expressed either high or low levels of epidermal growth factor receptor (EGFR) were imaged using an EGF-bound near-infrared dye and a spectrometer-based MRI-FMT scanner. All data were spectrally unmixed to extract the dye fluorescence from the tissue autofluorescence. Methods to combine the two data sets were compared using student's t-tests and receiver operating characteristic analysis. Bulk fluorescence measurements that made up the optical imaging data set were also considered in the comparison. While most techniques were able to distinguish EGFR(+) tumors from EGFR(-) tumors and control animals, with area-under-the-curve values=1, only a handful were able to distinguish EGFR(-) tumors from controls. Bulk fluorescence spectroscopy techniques performed as well as most imaging techniques, suggesting that complex imaging algorithms may be unnecessary to diagnose EGFR status in these tissue volumes.

  11. Optical properties of tumor tissues grown on the chorioallantoic membrane of chicken eggs: tumor model to assay of tumor response to photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Honda, Norihiro; Kariyama, Yoichiro; Hazama, Hisanao; Ishii, Takuya; Kitajima, Yuya; Inoue, Katsushi; Ishizuka, Masahiro; Tanaka, Tohru; Awazu, Kunio

    2015-12-01

    Herein, the optical adequacy of a tumor model prepared with tumor cells grown on the chorioallantoic membrane (CAM) of a chicken egg is evaluated as an alternative to the mouse tumor model to assess the optimal irradiation conditions in photodynamic therapy (PDT). The optical properties of CAM and mouse tumor tissues were measured with a double integrating sphere and the inverse Monte Carlo technique in the 350- to 1000-nm wavelength range. The hemoglobin and water absorption bands observed in the CAM tumor tissue (10 eggs and 10 tumors) are equal to that of the mouse tumor tissue (8 animals and 8 tumors). The optical intersubject variability of the CAM tumor tissues meets or exceeds that of the mouse tumor tissues, and the reduced scattering coefficient spectra of CAM tumor tissues can be equated with those of mouse tumor tissues. These results confirm that the CAM tumor model is a viable alternative to the mouse tumor model, especially for deriving optimal irradiation conditions in PDT.

  12. Radiosensitization by nicotinamide in tumors and normal tissues: the importance of tissue oxygenation status

    SciTech Connect

    Horsman, M.R.; Hansen, P.V.; Overgaard, J.

    1989-05-01

    Nicotinamide induced radiosensitization of tumors has been suggested to be a consequence of a reduction in tumor hypoxia. We have investigated the possibility that nicotinamide may produce significant radiosensitization in a normal tissue in which the radiation response is also influenced by hypoxia. The normal tissue studied was testis and radiation damage was assessed by measuring survival of spermatogonial stem cells. The radiosensitizing action of nicotinamide in testis was compared to that observed in a C3H mammary carcinoma when assayed by both regrowth delay and local tumor control. Our results show that nicotinamide (1000 mg/kg; i.p.) enhanced radiation damage in both tissue types when the radiation was given up to at least 3 hr after drug injection. Enhancement ratios obtained when the drug and radiation were separated by a 1 hr time interval were between 1.1 to 1.2 for the testis and 1.0 to 1.5 for the tumor. The results suggest that nicotinamide will produce radiosensitization in testis, but the effect is small and less than that observed in tumors.

  13. Antitumor efficacy and intratumoral distribution of SN-38 from polymeric depots in brain tumor model

    PubMed Central

    Vejjasilpa, Ketpat; Manaspon, Chawan; Larbcharoensub, Noppadol; Boongird, Atthaporn; Hongeng, Suradej; Israsena, Nipan

    2015-01-01

    We investigate antitumor efficacy and 2D and 3D intratumoral distribution of 7-ethyl-10-hydroxycamptothecin (SN-38) from polymeric depots inside U-87MG xenograft tumor model in nude mice. Results showed that polymeric depots could be used to administer and controlled release of a large amount of SN-38 directly to the brain tumor model. SN-38 released from depots suppressed tumor growth, where the extent of suppression greatly depended on doses and the number of depot injections. Tumor suppression of SN-38 from depots was three-fold higher in animals which received double injections of depots at high dose (9.7 mg of SN-38) compared to single injection (2.2 mg). H&E staining of tumor sections showed that the area of tumor cell death/survival of the former group was two-fold higher than those of the latter group. Fluorescence imaging based on self-fluorescent property of SN-38 was used to evaluate the intratumoral distribution of this drug compared to histological results. The linear correlation between fluorescence intensity and the amount of SN-38 allowed quantitative determination of SN-38 in tumor tissues. Results clearly showed direct correlation between the amount of SN-38 in tumor sections and cancer cell death. Moreover, 3D reconstruction representing the distribution of SN-38 in tumors was obtained. Results from this study suggest the rationale for intratumoral drug administration and release of drugs inside tumor, which is necessary to design drug delivery systems with efficient antitumor activity. PMID:26080460

  14. Auto Transplant for High Risk or Relapsed Solid or CNS Tumors

    ClinicalTrials.gov

    2016-08-15

    Ewing's Family Tumors; Renal Tumors; Hepatoblastoma; Rhabdomyosarcoma; Soft Tissue Sarcoma; Primary Malignant Brain Neoplasms; Retinoblastoma; Medulloblastoma; Supra-tentorial Primative Neuro-Ectodermal Tumor (PNET); Atypical Teratoid/Rhabdoid Tumor (AT/RT); CNS Tumors; Germ Cell Tumors

  15. Tumor histology and location predict deep nuclei toxicity: Implications for late effects from focal brain irradiation

    SciTech Connect

    Plaga, Alexis; Shields, Lisa B.E.; Sun, David A.; Vitaz, Todd W.; Spalding, Aaron C.

    2012-10-01

    Normal tissue toxicity resulting from both disease and treatment is an adverse side effect in the management of patients with central nervous system malignancies. We tested the hypothesis that despite these improvements, certain tumors place patients at risk for neurocognitive, neuroendocrine, and neurosensory late effects. Defining patient groups at risk for these effects could allow for development of preventive strategies. Fifty patients with primary brain tumors underwent radiation planning with magnetic resonance imaging scan and computed tomography datasets. Organs at risk (OAR) responsible for neurocognitive, neuroendocrine, and neurosensory function were defined. Inverse-planned intensity-modulated radiation therapy was optimized with priority given to target coverage while penalties were assigned to exceeding normal tissue tolerances. Tumor laterality, location, and histology were compared with OAR doses, and analysis of variance was performed to determine the significance of any observed correlation. The ipsilateral hippocampus exceeded dose limits in frontal (74%), temporal (94%), and parietal (100%) lobe tumor locations. The contralateral hippocampus was at risk in the following tumor locations: frontal (53%), temporal (83%), or parietal (50%) lobe. Patients with high-grade glioma were at risk for ipsilateral (88%) and contralateral (73%) hippocampal damage (P <0.05 compared with other histologies). The pituitary gland and hypothalamus exceeded dose tolerances in patients with pituitary tumors (both 100%) and high-grade gliomas (50% and 75%, P <0.05 compared with other histologies), respectively. Despite application of modern radiation therapy, certain tumor locations and histologies continue to place patients at risk for morbidity. Patients with high-grade gliomas or tumors located in the frontal, temporal, or parietal lobes are at risk for neurocognitive decline, likely because of larger target volumes and higher radiation doses. Data from this study

  16. A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data

    PubMed Central

    Ortega-Martorell, Sandra; Ruiz, Héctor; Vellido, Alfredo; Olier, Iván; Romero, Enrique; Julià-Sapé, Margarida; Martín, José D.; Jarman, Ian H.; Arús, Carles; Lisboa, Paulo J. G.

    2013-01-01

    Background The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic Resonance Spectroscopy can complement imaging by supplying a metabolic fingerprint of the tissue. This study analyzes single-voxel magnetic resonance spectra, which represent signal information in the frequency domain. Given that a single voxel may contain a heterogeneous mix of tissues, signal source identification is a relevant challenge for the problem of tumor type classification from the spectroscopic signal. Methodology/Principal Findings Non-negative matrix factorization techniques have recently shown their potential for the identification of meaningful sources from brain tissue spectroscopy data. In this study, we use a convex variant of these methods that is capable of handling negatively-valued data and generating sources that can be interpreted as tumor class prototypes. A novel approach to convex non-negative matrix factorization is proposed, in which prior knowledge about class information is utilized in model optimization. Class-specific information is integrated into this semi-supervised process by setting the metric of a latent variable space where the matrix factorization is carried out. The reported experimental study comprises 196 cases from different tumor types drawn from two international, multi-center databases. The results indicate that the proposed approach outperforms a purely unsupervised process by achieving near perfect correlation of the extracted sources with the mean spectra of the tumor types. It also improves tissue type classification. Conclusions/Significance We show that source extraction by unsupervised matrix factorization benefits from the integration of the available class information, so operating in a semi-supervised learning manner, for discriminative source identification and brain

  17. MRI of brain tissue oxygen tension under hyperbaric conditions.

    PubMed

    Muir, Eric R; Cardenas, Damon P; Duong, Timothy Q

    2016-06-01

    The brain depends on a continuous supply of oxygen to maintain its structural and functional integrity. This study measured T1 from MRI under normobaric air, normobaric oxygen, hyperbaric air, and hyperbaric oxygen (HBO) conditions as a marker of tissue pO2 since dissolved molecular oxygen acts as an endogenous contrast agent. Brain tissue T1 decreased corresponding to increased pO2 with increasing inhaled oxygen concentrations, and tissue oxygenation was estimated from the T1 changes between different inhaled oxygen levels. Tissue pO2 difference maps between different oxygen conditions showed heterogeneous pO2 changes in the brain. MRI-derived tissue pO2 was markedly lower than the arterial pO2 but was slightly higher than venous pO2. Additionally, for comparison with published extracellular tissue pO2 data obtained using oxygen electrodes and other invasive techniques, a model was used to estimate extracellular and intracellular pO2 from the MRI-derived mean tissue pO2. This required multiple assumptions, and so the effects of the assumptions and parameters used in modeling brain pO2 were evaluated. MRI-derived pO2 values were strongly dependent on assumptions about the extra- and intracellular compartments but were relatively less sensitive to variations in the relaxivity constant of oxygen and contribution from oxygen in the cerebral blood compartment. This approach may prove useful in evaluating tissue oxygenation in disease states such as stroke.

  18. Mechanical response of brain tissue under blast loading.

    PubMed

    Laksari, Kaveh; Sadeghipour, Keyanoush; Darvish, Kurosh

    2014-04-01

    In this study, a framework for understanding the propagation of stress waves in brain tissue under blast loading has been developed. It was shown that tissue nonlinearity and rate dependence are the key parameters in predicting the mechanical behavior under such loadings, as they determine whether traveling waves could become steeper and eventually evolve into shock discontinuities. To investigate this phenomenon, in the present study, brain tissue has been characterized as a quasi-linear viscoelastic (QLV) material and a nonlinear constitutive model has been developed for the tissue that spans from medium loading rates up to blast rates. It was shown that development of shock waves is possible inside the head in response to high rate compressive pressure waves. Finally, it was argued that injury to the nervous tissue at the microstructural level could be partly attributed to the high stress gradients with high rates generated at the shock front and this was proposed as a mechanism of injury in brain tissue. PMID:24457112

  19. Radiosurgery in the management of pediatric brain tumors.

    PubMed

    Raco, A; Raimondi, A J; D'Alonzo, A; Esposito, V; Valentino, V

    2000-05-01

    A total of 114 patients with benign and malignant intracranial tumors were treated by Valentino at the Flaminia Radiosurgical Center using a Philips 6-MeV linear accelerator between 1987 and 1995. The tumor locations break down as follows: 36 in the cerebral hemispheres, 14 in the region of the hypothalamus/optic chiasm, 21 in the III ventricle/pineal region, 3 in the basal ganglia, 27 in the posterior fossa, 13 in the brain stem. Seventy-nine patients had multivariate/combined treatment consisting of surgery or biopsy followed by chemotherapy, radiotherapy and/or radiosurgery. Thirty-five were not operated on or biopsied but were treated primarily by radiosurgery, which was associated with chemotherapy and conventional radiotherapy. The short- and long-term results were evaluated separately for each pathology in an attempt to derive guidelines for future treatment. For tumors of the pineal region, we are of the opinion that radiosurgery is the treatment of choice in children and that more than one-third of patients can be cured by this means. The remaining patients require surgery and/or chemotherapy in addition. For medulloblastomas radiosurgery may be useful to control local recurrence if coupled with chemotherapy. In the case of ependymomas, partly because of the extreme malignancy of the lesions in our series, radiosurgery did not succeed in controlling local recurrence. We fear that limiting treatment to radiosurgery, rather than prescribing conventional radiotherapy when indicated, could permit CNS seeding. For craniopharyngiomas radiosurgery proved useful for controlling solid remnants. In glial tumors radiosurgery helped either to "sterilize" the tumor bed after removal or to treat remnants of the lesions in critical areas; for diffuse brain stem gliomas it should be considered the treatment of choice.

  20. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging.

    PubMed

    Singh-Moon, Rajinder P; Roblyer, Darren M; Bigio, Irving J; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a crosscorrelation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  1. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  2. Intraoperative magnetic resonance imaging and magnetic resonance imaging-guided therapy for brain tumors.

    PubMed

    Jolesz, Ferenc A; Talos, Ion-Florin; Schwartz, Richard B; Mamata, Hatsuho; Kacher, Daniel F; Hynynen, Kullervo; McDannold, Nathan; Saivironporn, Pairash; Zao, Lei

    2002-11-01

    Since their introduction into surgical practice in the mid 1990s, intraoperative MRI systems have evolved into essential, routinely used tools for the surgical treatment of brain tumors in many centers. Clear delineation of the lesion, "under-the-surface" vision, and the possibility of obtaining real-time feedback on the extent of resection and the position of residual tumor tissue (which may change during surgery due to "brain-shift") are the main strengths of this method. High-performance computing has further extended the capabilities of intraoperative MRI systems, opening the way for using multimodal information and 3D anatomical reconstructions, which can be updated in "near real time." MRI sensitivity to thermal changes has also opened the way for innovative, minimally invasive (LASER ablations) as well as noninvasive therapeutic approaches for brain tumors (focused ultrasound). Although we have not used intraoperative MRI in clinical applications sufficiently long to assess long-term outcomes, this method clearly enhances the ability of the neurosurgeon to navigate the surgical field with greater accuracy, to avoid critical anatomic structures with greater efficacy, and to reduce the overall invasiveness of the surgery itself.

  3. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy

    PubMed Central

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-01-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood–brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors. PMID:22390560

  4. Pretreatment prediction of brain tumors' response to radiation therapy using high b-value diffusion-weighted MRI.

    PubMed

    Mardor, Yael; Roth, Yiftach; Ochershvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm(2) to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, R(D), reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and R(D) were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P <.002 and r = 0.77, P <.001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy.

  5. Pretreatment Prediction of Brain Tumors' Response to Radiation Therapy Using High b-Value Diffusion-Weighted MRI1

    PubMed Central

    Mardor, Yael; Roth, Yiftach; Ocherashvilli, Aharon; Spiegelmann, Roberto; Tichler, Thomas; Daniels, Dianne; Maier, Stephan E; Nissim, Ouzi; Ram, Zvi; Baram, Jacob; Orenstein, Arie; Pfeffer, Raphael

    2004-01-01

    Abstract Diffusion-weighted magnetic resonance imaging (DWMRI) is sensitive to tissues' biophysical characteristics, including apparent diffusion coefficients (ADCs) and volume fractions of water in different populations. In this work, we evaluate the clinical efficacy of DWMRI and high diffusion-weighted magnetic resonance imaging (HDWMRI), acquired up to b = 4000 sec/mm2 to amplify sensitivity to water diffusion properties, in pretreatment prediction of brain tumors' response to radiotherapy. Twelve patients with 20 brain lesions were studied. Six ring-enhancing lesions were excluded due to their distinct diffusion characteristics. Conventional and DWMRI were acquired on a 0.5-T MRI. Response to therapy was determined from relative changes in tumor volumes calculated from contrast-enhanced T1-weighted MRI, acquired before and a mean of 46 days after beginning therapy. ADCs and a diffusion index, RD, reflecting tissue viability based on water diffusion were calculated from DWMRIs. Pretreatment values of ADC and RD were found to correlate significantly with later tumor response/nonresponse (r = 0.76, P < .002 and r = 0.77, P < .001). This correlation implies that tumors with low pretreatment diffusion values, indicating high viability, will respond better to radiotherapy than tumors with high diffusion values, indicating necrosis. These results demonstrate the feasibility of using DWMRI for pretreatment prediction of response to therapy in patients with brain tumors undergoing radiotherapy. PMID:15140402

  6. Boron Neutron Capture Therapy for Malignant Brain Tumors

    PubMed Central

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  7. Exploratory case-control study of brain tumors in adults

    SciTech Connect

    Burch, J.D.; Craib, K.J.; Choi, B.C.; Miller, A.B.; Risch, H.A.; Howe, G.R.

    1987-04-01

    An exploratory study of brain tumors in adults was carried out using 215 cases diagnosed in Southern Ontario between 1979 and 1982, with an individually matched, hospital control series. Significantly elevated risks were observed for reported use of spring water, drinking of wine, and consumption of pickled fish, together with a significant protective effect for the regular consumption of any of several types of fruit. While these factors are consistent with a role for N-nitroso compounds in the etiology of these tumors, for several other factors related to this hypothesis, no association was observed. Occupation in the rubber industry was associated with a significant relative risk of 9.0, though no other occupational associations were seen. Two previously unreported associations were with smoking nonfilter cigarettes with a significant trend and with the use of hair dyes or sprays. The data do not support an association between physical head trauma requiring medical attention and risk of brain tumors and indicate that exposure to ionizing radiation and vinyl chloride monomer does not contribute any appreciable fraction of attributable risk in the population studied. The findings warrant further detailed investigation in future epidemiologic studies.

  8. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting.

  9. Boron Neutron Capture Therapy for Malignant Brain Tumors.

    PubMed

    Miyatake, Shin-Ichi; Kawabata, Shinji; Hiramatsu, Ryo; Kuroiwa, Toshihiko; Suzuki, Minoru; Kondo, Natsuko; Ono, Koji

    2016-07-15

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  10. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    PubMed Central

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-01-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors. PMID:27786240

  11. Round Randomized Learning Vector Quantization for Brain Tumor Imaging.

    PubMed

    Sheikh Abdullah, Siti Norul Huda; Bohani, Farah Aqilah; Nayef, Baher H; Sahran, Shahnorbanun; Al Akash, Omar; Iqbal Hussain, Rizuana; Ismail, Fuad

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  12. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    PubMed Central

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  13. Anterior segment epibulbar choristoma containing brain tissue and with aphakia.

    PubMed

    Ullah, Muhammad Aman; Venkatraman, Bhat; Mujeeb, Imaad

    2007-01-01

    We report an unusual case of an epibulbar choristoma in a neonate born with a mass arising from the cornea. Radiologic examination showed focal corneal bulge with absence of the lens. Histologic study revealed the lesion was an epibulbar choristoma composed of only brain tissue.

  14. Injury Response of Resected Human Brain Tissue In Vitro.

    PubMed

    Verwer, Ronald W H; Sluiter, Arja A; Balesar, Rawien A; Baaijen, Johannes C; de Witt Hamer, Philip C; Speijer, Dave; Li, Yichen; Swaab, Dick F

    2015-07-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by resection (interruption of the circulation) and aggravated by the preparation of slices (severed neuronal and glial processes and blood vessels) reflect the reaction of human brain tissue to severe injury. We investigated this process using immunocytochemical markers, reverse transcriptase quantitative polymerase chain reaction and Western blot analysis. Essential features were rapid shrinkage of neurons, loss of neuronal marker expression and proliferation of reactive cells that expressed Nestin and Vimentin. Also, microglia generally responded strongly, whereas the response of glial fibrillary acidic protein-positive astrocytes appeared to be more variable. Importantly, some reactive cells also expressed both microglia and astrocytic markers, thus confounding their origin. Comparison with post-mortem human brain tissue obtained at rapid autopsies suggested that the reactive process is not a consequence of epilepsy.

  15. A Rare Presternal Soft Tissue Tumor: Ectopic Hamartomatous Thymoma (Branchial Anlage Mixed Tumor).

    PubMed

    Reusens, H; Van den Broecke, C; Creytens, D; Fierens, K

    2015-01-01

    Ectopic hamartomatous thymoma is a rare benign tumor in adults, mostly located in the lower neck region. It was first reported in 1982 by Smith and McClure. Histopathologically these tumors are typically well marginated and composed of a mixture of spindle cells, mature adipose tissue, and epithelial cells, including both glandular and squamous elements. The histogenesis of this tumor is controversial. Recently, an origin from a remnant of the cervical sinus of His was proposed. Ectopic hamartomatous thymoma needs to be differentiated from malignant lesions such as synovial sarcomas or malignant peripheral nerve sheath tumors. These tumors can have similar clinical features and radiologic images. Recognition of this tumor is important because it follows a benign clinical course and conservative surgical excision is the treatment of choice. To our knowledge, 61 cases have previously been reported. We present the case of a 45-year-old women with an uncomplicated presternal located ectopic hamartomatous thymoma. The morphological and immunohistochemical findings are discussed and a review of literature is made.

  16. [Soft tissue tumors - the view of the molecular biologist].

    PubMed

    Krsková, Lenka; Mrhalová, Marcela; Kalinová, Markéta; Campr, Vít; Capková, Linda; Grega, Marek; Háček, Jaromír; Hornofová, Ludmila; Chadimová, Mária; Chmelová, Renata; Kodetová, Daniela; Zámečník, Josef; Kodet, Roman

    2014-07-01

    Soft tissue tumors (SSTs) constitute a broad spectrum of neoplasms with diverse biological properties. Rare or unusual types are often difficult to classify. Recent studies show, that a significant subset of SSTs including many types of sarcomas are associated with specific genetic changes such as chromosomal translocations producing chimeric genes, which play a role in the pathogenesis of SSTs. Because SSTs represent a diagnostically challenging group of tumors, molecular-genetic techniques (FISH or PCR) are useful as supplementary and/or confirmatory diagnostic tools. In the present paper we demonstrate the usefulness of a combined diagnostic approach using the tools of classical histopathology and immunohistochemistry together with the molecular diagnostic approach in selected nosologic entites. PMID:25186594

  17. Studies on porphyrin photoproducts in solution, cells, and tumor tissue

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert; Rueck, Angelika C.; Koenig, Roland

    1994-07-01

    Light excitation of photosensitizing porphyrins leads to cytotoxic reactions. In addition, photobleaching and photoproduct formation occur indicating photosensitizer destruction. Photoproducts from hematoporphyrin (HP) fluoresce in aqueous solution at 642 nm, whereas photoproducts from protoporphyrin (PP) in hydrophobic environment emit around 670 nm and exhibit pronounced absorption at 665 nm. Photoproduct formation depends on singlet oxygen. The photoproducts exhibit faster fluorescence decay kinetics compared with nonirradiated porphyrins, as shown by time-grated spectroscopy and fluorescence decay measurements. Photoproduct fluorescence was observed during light exposure of cells and of tumor-bearing, nude mice, following administration of Hematoporphyrin Derivative (HpD), tetramethyl-HP, and PP. Photoconversion was also detected with naturally-occurring porphyrins (PP-producing bacteria) and ALA-simulated biosynthesis of PP in tumor tissue and in skin lesions of patients (psoriasis, mycosis fungoides). The efficiency of PDT with porphyrin photoproducts was found to be low in spite of the strong electronic transitions in the red spectral region.

  18. Extracellular Vesicles and MicroRNAs: Their Role in Tumorigenicity and Therapy for Brain Tumors.

    PubMed

    Bronisz, Agnieszka; Godlewski, Jakub; Chiocca, E Antonio

    2016-04-01

    MicroRNAs are small non-coding RNAs which mediate post-transcriptional gene regulation. Recently, microRNAs have also been found to be localized to the extracellular space, often encapsulated in secreted extracellular vesicles (EVs). This tandem of EVs and tissue-specific expressed/secreted microRNAs that can be taken up by neighboring or distant recipient cells, leading to changes in gene expression-suggests a cell-specialized role in physiological and pathological conditions. The complexity of solid tumors and their distinct pathophysiology relies on interactive communications between the various cell types in the neoplasm (tumor, endothelial, or macrophages, for instance). Understanding how such EV/microRNA-mediated communication occurs may actually lead to avenues for therapeutic exploitation and/or intervention, particularly for the most formidable cancers, such as those in the brain. In this review, the role of microRNAs/EVs in brain tumors will be discussed with emphasis on how these molecules could be utilized for tumor therapy. PMID:26983830

  19. Intranasal Delivery of Mesenchymal Stem Cells Significantly Extends Survival of Irradiated Mice with Experimental Brain Tumors

    PubMed Central

    Balyasnikova, Irina V; Prasol, Melanie S; Ferguson, Sherise D; Han, Yu; Ahmed, Atique U; Gutova, Margarita; Tobias, Alex L; Mustafi, Devkumar; Rincón, Esther; Zhang, Lingjiao; Aboody, Karen S; Lesniak, Maciej S

    2014-01-01

    Treatment options of glioblastoma multiforme are limited due to the blood–brain barrier (BBB). In this study, we investigated the utility of intranasal (IN) delivery as a means of transporting stem cell–based antiglioma therapeutics. We hypothesized that mesenchymal stem cells (MSCs) delivered via nasal application could impart therapeutic efficacy when expressing TNF-related apoptosis-inducing ligand (TRAIL) in a model of human glioma. 111In-oxine, histology and magnetic resonance imaging (MRI) were utilized to track MSCs within the brain and associated tumor. We demonstrate that MSCs can penetrate the brain from nasal cavity and infiltrate intracranial glioma xenografts in a mouse model. Furthermore, irradiation of tumor-bearing mice tripled the penetration of 111In-oxine–labeled MSCs in the brain with a fivefold increase in cerebellum. Significant increase in CXCL12 expression was observed in irradiated xenograft tissue, implicating a CXCL12-dependent mechanism of MSCs migration towards irradiated glioma xenografts. Finally, MSCs expressing TRAIL improved the median survival of irradiated mice bearing intracranial U87 glioma xenografts in comparison with nonirradiated and irradiated control mice. Cumulatively, our data suggest that IN delivery of stem cell–based therapeutics is a feasible and highly efficacious treatment modality, allowing for repeated application of modified stem cells to target malignant glioma. PMID:24002694

  20. Pc 4 photodynamic therapy of U87 (human glioma) orthotopic tumor in nude rat brain

    NASA Astrophysics Data System (ADS)

    Dean, David; George, John E., III; Ahmad, Yusra; Wolfe, Michael S.; Lilge, Lothar; Morris, Rachel L.; Peterson, Allyn; Lust, W. D.; Totonchi, Ali; Varghai, Davood; Li, Xiaolin; Hoppel, Charles L.; Sun, Jiayang; Oleinick, Nancy L.

    2005-04-01

    Introduction: Photodynamic therapy (PDT) for Barrett"s esophagus, advanced esophageal cancer, and both early and late inoperable lung carcinoma is now FDA-approved using the first generation photosensitizer PhotofrinTM (Axcan Pharma, Birmingham, AL). Photofrin-mediated PDT of glioma is now in Phase III clinical trials. A variety of second generation photosensitizers have been developed to provide improved: (1) specificity for the target tissue, (2) tumoricidal capability, and (3) rapid clearance the vascular compartment, skin, and eyes. The phthalocyanine Pc 4 is a second generation photosensitizer that is in early phase I clinical trials for skin cancer. We have undertaken a preclinical study that seeks to determine if Pc 4-mediated PDT can be of benefit for the intra-operative localization and treatment of glioma. Methods: Using a stereotactic frame, 250,000 U87 cells were injected via Hamilton syringe through a craniotomy, and the dura, 1-2 mm below the cortical surface of nude (athymic) rat brains (N=91). The craniotomy was filled with a piece of surgical PVC and the scalp closed. After two weeks of tumor growth, the animals received 0.5 mg/kg Pc 4 via tail vein injection. One day later the scalp was re-incised, and the PVC removed. The tumor was then illuminated with either 5 or 30 Joule/cm2 of 672-nm light from a diode laser at 50 mW/cm2. The animals were sacrificed one day later and the brain was cold-perfused with formaldehyde. Two thirds of the explanted brains are now being histologically surveyed for necrosis after staining with hematoxylin and eosin and for apoptosis via immunohistochemistry (i.e., TUNEL assay). The other third were analyzed by HPLC-mass spectrometry for the presence of drug in tumor, normal brain, and plasma at sacrifice. Initial histological results show PDT-induced apoptosis and necrosis confined to the growing (live) portion of the tumor. Preliminary analysis shows an average selectivity of Pc 4 uptake in the bulk tumor to be 3

  1. Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue. [Mice

    SciTech Connect

    Ogawa, Y.; Imanaka, K.; Ashida, C.; Takashima, H.; Imajo, Y.; Kimura, S.

    1983-04-01

    Active specific immunotherapy using the immune reaction of a low-dose irradiated tumor tissue was studied on the transplanted MM46 tumor of female C3H/He mice after radiotherapy. MM46 tumor cells were inoculated into the right hind paws of mice. On the 5th day, irradiation with the dose irradiated tumor tissue (2000 rad on the fifth day), were injected into the left hind paws of the tumor-bearing mice. Effectiveness of this active specific immunotherapy against tumor was evaluated by the regression of tumor and survival rate of mice. Tumor was markedly regressed and survival rate was significantly increased by the active specific immunitherapy.

  2. Application of the total reflection X-ray fluorescence method to the elemental analysis of brain tumors of different types and grades of malignancy

    NASA Astrophysics Data System (ADS)

    Lankosz, M. W.; Grzelak, M.; Ostachowicz, B.; Wandzilak, A.; Szczerbowska-Boruchowska, M.; Wrobel, P.; Radwanska, E.; Adamek, D.

    2014-11-01

    The process of carcinogenesis may influence normal biochemical reactions leading to alterations in the elemental composition of the tissue. Total reflection X-ray fluorescence analysis (TXRF) was applied to the elemental analysis of different brain tumors. The following elements were present in all the neoplastic tissues analyzed: K, Ca, Fe, Cu, Zn and Rb. The results of the analysis showed that the elemental composition of a relatively small fragment of tissue represents satisfactorily the biochemical “signature” of a cancer. On the basis of the element concentrations determined, it was possible to differentiate between some types of brain tumors.

  3. Spatial organization and correlations of cell nuclei in brain tumors.

    PubMed

    Jiao, Yang; Berman, Hal; Kiehl, Tim-Rasmus; Torquato, Salvatore

    2011-01-01

    Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells) cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system.

  4. Identifying the needs of brain tumor patients and their caregivers.

    PubMed

    Parvataneni, Rupa; Polley, Mei-Yin; Freeman, Teresa; Lamborn, Kathleen; Prados, Michael; Butowski, Nicholas; Liu, Raymond; Clarke, Jennifer; Page, Margaretta; Rabbitt, Jane; Fedoroff, Anne; Clow, Emelia; Hsieh, Emily; Kivett, Valerie; Deboer, Rebecca; Chang, Susan

    2011-09-01

    The purpose of this study is to identify the needs of brain tumor patients and their caregivers to provide improved health services to these populations. Two different questionnaires were designed for patients and caregivers. Both questionnaires contained questions pertaining to three realms: disease symptoms/treatment, health care provider, daily living/finances. The caregivers' questionnaires contained an additional domain on emotional needs. Each question was evaluated for the degree of importance and satisfaction. Exploratory analyses determined whether baseline characteristics affect responder importance or satisfaction. Also, areas of high agreement/disagreement in satisfaction between the participating patient-caregiver pairs were identified. Questions for which >50% of the patients and caregivers thought were "very important" but >30% were dissatisfied include: understanding the cause of brain tumors, dealing with patients' lower energy, identifying healthful foods and activities for patients, telephone access to health care providers, information on medical insurance coverage, and support from their employer. In the emotional realm, caregivers identified 9 out of 10 items as important but need further improvement. Areas of high disagreement in satisfaction between participating patient-caregiver pairs include: getting help with household chores (P value = 0.006) and finding time for personal needs (P value < 0.001). This study provides insights into areas to improve services for brain tumor patients and their caregivers. The caregivers' highest amount of burden is placed on their emotional needs, emphasizing the importance of providing appropriate medical and psychosocial support for caregivers to cope with emotional difficulties they face during the patients' treatment process.

  5. Statistical feature selection for enhanced detection of brain tumor

    NASA Astrophysics Data System (ADS)

    Chaddad, Ahmad; Colen, Rivka R.

    2014-09-01

    Feature-based methods are widely used in the brain tumor recognition system. Robust of early cancer detection is one of the most powerful image processing tools. Specifically, statistical features, such as geometric mean, harmonic mean, mean excluding outliers, median, percentiles, skewness and kurtosis, have been extracted from brain tumor glioma to aid in discriminating two levels namely, Level I and Level II using fluid attenuated inversion recovery (FLAIR) sequence in the diagnosis of brain tumor. Statistical feature describes the major characteristics of each level from glioma which is an important step to evaluate heterogeneity of cancer area pixels. In this paper, we address the task of feature selection to identify the relevant subset of features in the statistical domain, while discarding those that are either redundant or confusing, thereby improving the performance of feature-based scheme to distinguish between Level I and Level II. We apply a Decision Structure algorithm to find the optimal combination of nonhomogeneity based statistical features for the problem at hand. We employ a Naïve Bayes classifier to evaluate the performance of the optimal statistical feature based scheme in terms of its glioma Level I and Level II discrimination capability and use real-data collected from 17 patients have a glioblastoma multiforme (GBM). Dataset provided from 3 Tesla MR imaging system by MD Anderson Cancer Center. For the specific data analyzed, it is shown that the identified dominant features yield higher classification accuracy, with lower number of false alarms and missed detections, compared to the full statistical based feature set. This work has been proposed and analyzed specific GBM types which Level I and Level II and the dominant features were considered as feature aid to prognostic indicators. These features were selected automatically to be better able to determine prognosis from classical imaging studies.

  6. Confidence-based ensemble for GBM brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Huo, Jing; van Rikxoort, Eva M.; Okada, Kazunori; Kim, Hyun J.; Pope, Whitney; Goldin, Jonathan; Brown, Matthew

    2011-03-01

    It is a challenging task to automatically segment glioblastoma multiforme (GBM) brain tumors on T1w post-contrast isotropic MR images. A semi-automated system using fuzzy connectedness has recently been developed for computing the tumor volume that reduces the cost of manual annotation. In this study, we propose a an ensemble method that combines multiple segmentation results into a final ensemble one. The method is evaluated on a dataset of 20 cases from a multi-center pharmaceutical drug trial and compared to the fuzzy connectedness method. Three individual methods were used in the framework: fuzzy connectedness, GrowCut, and voxel classification. The combination method is a confidence map averaging (CMA) method. The CMA method shows an improved ROC curve compared to the fuzzy connectedness method (p < 0.001). The CMA ensemble result is more robust compared to the three individual methods.

  7. Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma

    PubMed Central

    Tamosaityte, Sandra; Leipnitz, Elke; Geiger, Kathrin D.; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Background Coherent anti-Stokes Raman scattering (CARS) microscopy provides fine resolution imaging and displays morphochemical properties of unstained tissue. Here, we evaluated this technique to delineate and identify brain tumors. Methods Different human tumors (glioblastoma, brain metastases of melanoma and breast cancer) were induced in an orthotopic mouse model. Cryosections were investigated by CARS imaging tuned to probe C-H molecular vibrations, thereby addressing the lipid content of the sample. Raman microspectroscopy was used as reference. Histopathology provided information about the tumor's localization, cell proliferation and vascularization. Results The morphochemical contrast of CARS images enabled identifying brain tumors irrespective of the tumor type and properties: All tumors were characterized by a lower CARS signal intensity than the normal parenchyma. On this basis, tumor borders and infiltrations could be identified with cellular resolution. Quantitative analysis revealed that the tumor-related reduction of CARS signal intensity was more pronounced in glioblastoma than in metastases. Raman spectroscopy enabled relating the CARS intensity variation to the decline of total lipid content in the tumors. The analysis of the immunohistochemical stainings revealed no correlation between tumor-induced cytological changes and the extent of CARS signal intensity reductions. The results were confirmed on samples of human glioblastoma. Conclusions CARS imaging enables label-free, rapid and objective identification of primary and secondary brain tumors. Therefore, it is a potential tool for diagnostic neuropathology as well as for intraoperative tumor delineation. PMID:25198698

  8. Iron biomineralization of brain tissue and neurodegenerative disorders

    NASA Astrophysics Data System (ADS)

    Mikhaylova (Mikhailova), Albina

    The brain is an organ with a high concentration of iron in specific areas, particularly in the globus pallidus, the substantia nigra, and the red nucleus. In certain pathological states, such as iron overload disease and neurodegenerative disorders, a disturbed iron metabolism can lead to increased accumulation of iron not only in these areas, but also in the brain regions that are typically low in iron content. Recent studies of the physical and magnetic properties of metalloproteins, and in particular the discovery of biogenic magnetite in human brain tissue, have raised new questions about the role of biogenic iron formations in living organisms. Further investigations revealed the presence of magnetite-like crystalline structures in human ferritin, and indicated that released ferritin iron might act as promoter of oxidative damage to tissue, therefore contributing to pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. The purpose of this work was to examine the elemental composition and structure of iron deposits in normal brain tissue as well as tissue affected by neurodegenerative disorders. Employing the methods of X-ray microfocus fluorescence mapping, X-ray Absorption Near Edge Structure (XANES), X-ray Absorption Fine Structure spectroscopy (XAFS), and light and electron microscopic examinations allows one to obtain qualitative as well as quantitative data with respect to the cellular distribution and chemical state of iron at levels not detected previously. The described tissue preparation technique allows not only satisfactory XAS iron elemental imaging in situ but also multimodal examination with light and electron microscopes of the same samples. The developed protocol has assured consistent and reproducible results on relatively large sections of flat-embedded tissue. The resulting tissue samples were adequate for XAS examination as well as sufficiently well-preserved for future microscopy studies

  9. The brain tissue response to surgical injury and its possible contribution to glioma recurrence.

    PubMed

    Hamard, Lauriane; Ratel, David; Selek, Laurent; Berger, François; van der Sanden, Boudewijn; Wion, Didier

    2016-05-01

    Surgery is the first line therapy for glioma. However, glioma recurs in 90 % of the patients in the resection margin. The impact of surgical brain injury (SBI) on glioma recurrence is largely overlooked. Herein, we review some of the mechanisms involved in tissue repair that may impact glioma recurrence at the resection margin. Many processes or molecules involved in tissue repair after brain injury are also critical for glioma growth. They include a wide array of secreted growth factors, cytokines and transcription factors including NFКB and STAT3 which in turn activate proliferative and anti-apoptotic genes and processes such as angiogenesis and inflammation. Because some residual glioma cells always remain in the tumor resection margin, there are now compelling arguments to suggest that some aspects of the brain tissue response to SBI can also participate to glioma recurrence at the resection margin. Brain tissue response to SBI recruits angiogenesis and inflammation that precede and then follow tumor recurrence at the resection margin. The healing response to SBI is double edged, as inflammation is involved in regeneration and healing, and has both pro- and anti-tumorigenic functions. A promising therapeutic approach is to normalize and re-educate the molecular and cellular responses at the resection margin to promote anti-tumorigenic processes involved in healing while inhibiting pro-tumorigenic activities. Manipulation of the inflammatory response to SBI to prevent local recurrence could also enhance the efficacy of other therapies such as immunotherapy. However, our current knowledge is far from sufficient to achieve this goal. Acknowledging, understanding and manipulating the double-edged role played by SBI in glioma recurrence is surely challenging, but it cannot be longer delayed. PMID:26961772

  10. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    PubMed Central

    Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2016-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501

  11. Absence of human cytomegalovirus infection in childhood brain tumors

    PubMed Central

    Sardi, Iacopo; Lucchesi, Maurizio; Becciani, Sabrina; Facchini, Ludovica; Guidi, Milena; Buccoliero, Anna Maria; Moriondo, Maria; Baroni, Gianna; Stival, Alessia; Farina, Silvia; Genitori, Lorenzo; de Martino, Maurizio

    2015-01-01

    Human cytomegalovirus (HCMV) is a common human pathogen which induces different clinical manifestations related to the age and the immune conditions of the host. HCMV infection seems to be involved in the pathogenesis of adult glioblastomas. The aim of our study was to detect the presence of HCMV in high grade gliomas and other pediatric brain tumors. This hypothesis might have important therapeutic implications, offering a new target for adjuvant therapies. Among 106 pediatric patients affected by CNS tumors we selected 27 patients with a positive HCMV serology. The serological analysis revealed 7 patients with positive HCMV IGG (≥14 U/mL), whom had also a high HCMV IgG avidity, suggesting a more than 6 months-dated infection. Furthermore, HCMV IGM were positive (≥22 U/mL) in 20 patients. Molecular and immunohistochemical analyses were performed in all the 27 samples. Despite a positive HCMV serology, confirmed by ELISA, no viral DNA was shown at the PCR analysis in the patients’ neoplastic cells. At immunohistochemistry, no expression of HCMV antigens was observed in tumoral cells. Our results are in agreement with recent results in adults which did not evidence the presence of HCMV genome in glioblastoma lesions. We did not find any correlation between HCMV infection and pediatric CNS tumors. PMID:26396923

  12. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    PubMed

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  13. Tumor treating fields: a novel treatment modality and its use in brain tumors.

    PubMed

    Hottinger, Andreas F; Pacheco, Patricia; Stupp, Roger

    2016-10-01

    Tumor treating fields (TTFields) are low-intensity electric fields alternating at an intermediate frequency (200kHz), which have been demonstrated to block cell division and interfere with organelle assembly. This novel treatment modality has shown promise in a variety of tumor types. It has been evaluated in randomized phase 3 trials in glioblastoma (GBM) and demonstrated to prolong progression-free survival (PFS) and overall survival (OS) when administered together with standard maintenance temozolomide (TMZ) chemotherapy in patients with newly diagnosed GBM. TTFields are continuously delivered by 4 transducer arrays consisting each of 9 insulated electrodes that are placed on the patient's shaved scalp and connected to a portable device. Here we summarize the preclinical data and mechanism of action, the available clinical data, and further outlook of this treatment modality in brain tumors and other cancer indications. PMID:27664860

  14. Tumor treating fields: a novel treatment modality and its use in brain tumors

    PubMed Central

    Pacheco, Patricia

    2016-01-01

    Tumor treating fields (TTFields) are low-intensity electric fields alternating at an intermediate frequency (200kHz), which have been demonstrated to block cell division and interfere with organelle assembly. This novel treatment modality has shown promise in a variety of tumor types. It has been evaluated in randomized phase 3 trials in glioblastoma (GBM) and demonstrated to prolong progression-free survival (PFS) and overall survival (OS) when administered together with standard maintenance temozolomide (TMZ) chemotherapy in patients with newly diagnosed GBM. TTFields are continuously delivered by 4 transducer arrays consisting each of 9 insulated electrodes that are placed on the patient’s shaved scalp and connected to a portable device. Here we summarize the preclinical data and mechanism of action, the available clinical data, and further outlook of this treatment modality in brain tumors and other cancer indications. PMID:27664860

  15. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation.

    PubMed

    Beare, Richard J; Chen, Jian; Kelly, Claire E; Alexopoulos, Dimitrios; Smyser, Christopher D; Rogers, Cynthia E; Loh, Wai Y; Matthews, Lillian G; Cheong, Jeanie L Y; Spittle, Alicia J; Anderson, Peter J; Doyle, Lex W; Inder, Terrie E; Seal, Marc L; Thompson, Deanne K

    2016-01-01

    Measuring the distribution of brain tissue types (tissue classification) in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation), which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM) software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF), hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T 2-weighted images of preterm infants (born ≤30 weeks' gestation) acquired at 30 weeks' corrected gestational age (n = 5), coronal T 2-weighted images of preterm infants acquired at 40 weeks' corrected gestational age (n = 5) and axial T 2-weighted images of preterm infants acquired at 40 weeks' corrected gestational age (n = 5). The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR) group, consisted of T 2-weighted images of preterm infants (born <30 weeks' gestation) acquired shortly after birth (n = 12), preterm infants acquired at term-equivalent age (n = 12), and healthy term-born infants (born ≥38 weeks' gestation) acquired within the first 9 days of life (n = 12). For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for the cortical

  16. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation

    PubMed Central

    Beare, Richard J.; Chen, Jian; Kelly, Claire E.; Alexopoulos, Dimitrios; Smyser, Christopher D.; Rogers, Cynthia E.; Loh, Wai Y.; Matthews, Lillian G.; Cheong, Jeanie L. Y.; Spittle, Alicia J.; Anderson, Peter J.; Doyle, Lex W.; Inder, Terrie E.; Seal, Marc L.; Thompson, Deanne K.

    2016-01-01

    Measuring the distribution of brain tissue types (tissue classification) in neonates is necessary for studying typical and atypical brain development, such as that associated with preterm birth, and may provide biomarkers for neurodevelopmental outcomes. Compared with magnetic resonance images of adults, neonatal images present specific challenges that require the development of specialized, population-specific methods. This paper introduces MANTiS (Morphologically Adaptive Neonatal Tissue Segmentation), which extends the unified segmentation approach to tissue classification implemented in Statistical Parametric Mapping (SPM) software to neonates. MANTiS utilizes a combination of unified segmentation, template adaptation via morphological segmentation tools and topological filtering, to segment the neonatal brain into eight tissue classes: cortical gray matter, white matter, deep nuclear gray matter, cerebellum, brainstem, cerebrospinal fluid (CSF), hippocampus and amygdala. We evaluated the performance of MANTiS using two independent datasets. The first dataset, provided by the NeoBrainS12 challenge, consisted of coronal T2-weighted images of preterm infants (born ≤30 weeks' gestation) acquired at 30 weeks' corrected gestational age (n = 5), coronal T2-weighted images of preterm infants acquired at 40 weeks' corrected gestational age (n = 5) and axial T2-weighted images of preterm infants acquired at 40 weeks' corrected gestational age (n = 5). The second dataset, provided by the Washington University NeuroDevelopmental Research (WUNDeR) group, consisted of T2-weighted images of preterm infants (born <30 weeks' gestation) acquired shortly after birth (n = 12), preterm infants acquired at term-equivalent age (n = 12), and healthy term-born infants (born ≥38 weeks' gestation) acquired within the first 9 days of life (n = 12). For the NeoBrainS12 dataset, mean Dice scores comparing MANTiS with manual segmentations were all above 0.7, except for the cortical gray

  17. Three-Staged Stereotactic Radiotherapy Without Whole Brain Irradiation for Large Metastatic Brain Tumors

    SciTech Connect

    Higuchi, Yoshinori Serizawa, Toru; Nagano, Osamu; Matsuda, Shinji; Ono, Junichi; Sato, Makoto; Iwadate, Yasuo; Saeki, Naokatsu

    2009-08-01

    Purpose: To evaluate the efficacy and toxicity of staged stereotactic radiotherapy with a 2-week interfraction interval for unresectable brain metastases more than 10 cm{sup 3} in volume. Patients and Methods: Subjects included 43 patients (24 men and 19 women), ranging in age from 41 to 84 years, who had large brain metastases (> 10 cc in volume). Primary tumors were in the colon in 14 patients, lung in 12, breast in 11, and other in 6. The peripheral dose was 10 Gy in three fractions. The interval between fractions was 2 weeks. The mean tumor volume before treatment was 17.6 {+-} 6.3 cm{sup 3} (mean {+-} SD). Mean follow-up interval was 7.8 months. The local tumor control rate, as well as overall, neurological, and qualitative survivals, were calculated using the Kaplan-Meier method. Results: At the time of the second and third fractions, mean tumor volumes were 14.3 {+-} 6.5 (18.8% reduction) and 10.6 {+-} 6.1 cm{sup 3} (39.8% reduction), respectively, showing significant reductions. The median overall survival period was 8.8 months. Neurological and qualitative survivals at 12 months were 81.8% and 76.2%, respectively. Local tumor control rates were 89.8% and 75.9% at 6 and 12 months, respectively. Tumor recurrence-free and symptomatic edema-free rates at 12 months were 80.7% and 84.4%, respectively. Conclusions: The 2-week interval allowed significant reduction of the treatment volume. Our results suggest staged stereotactic radiotherapy using our protocol to be a possible alternative for treating large brain metastases.

  18. Tumor Directed, Scalp Sparing Intensity Modulated Whole Brain Radiotherapy for Brain Metastases.

    PubMed

    Kao, Johnny; Darakchiev, Boramir; Conboy, Linda; Ogurek, Sara; Sharma, Neha; Ren, Xuemin; Pettit, Jeffrey

    2015-10-01

    Despite significant technical advances in radiation delivery, conventional whole brain radiation therapy (WBRT) has not materially changed in the past 50 years. We hypothesized that IMRT can selectively spare uninvolved brain and scalp with the goal of reducing acute and late toxicity. MRI/CT simulation image registration was performed. We performed IMRT planning to simultaneously treat the brain tumor(s) on MRI + 5 mm margin to 37.5 Gy in 15 fractions while limiting the uninvolved brain + 2 mm margin to 30 Gy in 15 fractions and the mean scalp dose to #18 Gy. Three field IMRT plans were compared to conventional WBRT plans. Symptomatic patients were started on conventional WBRT for 2 to 3 fractions while IMRT planning was performed. Seventeen consecutive patients with brain metastases with RPA class I and II disease with no leptomeningeal spread were treated with IMRT WBRT. Compared to conventional WBRT, IMRT reduced the mean scalp dose (26.2 Gy vs. 16.4 Gy, p < 0.001) and the mean PTV30 dose (38.4 Gy vs. 32.0 Gy, p < 0.001) while achieving similar mean PTV37.5 doses (38.3 Gy vs. 38.0 Gy, p = 0.26). Using Olsen hair loss score criteria, 4 of 15 assessable patients preserved at least 50% of hair coverage at 1 to 3 months after treatment while 6 patients preserved between 25 and 50% hair coverage. At a median follow-up of 6.8 months (range: 5 to 15 months), the median overall survival was 5.4 months. Four patients relapsed within the brain, one within the PTV37.5 and three outside the PTV37.5. Tumor directed, scalp sparing IMRT is feasible, achieves rational dose distributions and preserves partial hair coverage in the majority of patients. Further studies are warranted to determine whether the increased utilization of resources needed for IMRT are appropriate in this setting.

  19. Bystander effect-mediated therapy of experimental brain tumor by genetically engineered tumor cells.

    PubMed

    Namba, H; Tagawa, M; Iwadate, Y; Kimura, M; Sueyoshi, K; Sakiyama, S

    1998-01-01

    Transfer of the herpes simplex virus-thymidine kinase (HSV-tk) gene, followed by administration of ganciclovir (GCV), generates the "bystander effect," in which HSV-tk-negative wild-type cells, as well as HSV-tk-expressing cells, are killed by GCV. To eradicate an intracranial tumor by this bystander effect, we injected the tumor cells transduced with the HSV-tk gene (TK cells) in the vicinity of the preimplanted wild-type tumor and then administered GCV. Wild-type 9L-gliosarcoma cells (1 x 10[5]) were implanted into the brain of syngeneic Fisher rats. On the next day, rats were injected with TK cells (1 x 10(5) or 3 x 10[5]) or medium alone at the same brain coordinate and then treated with GCV or saline. Administration of GCV significantly prolonged the survival of the rats injected with TK cells compared with that injected with medium alone (p < 0.01). Reduction in tumor size and retardation of tumor growth were observed by serial magnetic resonance imaging in the rats that received the combination of TK cells and GCV. The results show that the bystander effect is also achieved in vivo even when TK cells and wild-type cells are not simultaneously implanted. This treatment modality circumvents potential risks accompanied with in vivo gene transfer. Because there remained substantially no HSV-tk-positive cells in the recurrent tumors, this modality offers a "safe" therapeutic strategy against human malignant gliomas. PMID:9458237

  20. The modern brain tumor operating room: from standard essentials to current state-of-the-art.

    PubMed

    Barnett, Gene H; Nathoo, Narendra

    2004-01-01

    It is just over a century since successful brain tumor resection. Since then the diagnosis, imaging, and management of brain tumors have improved, in large part due to technological advances. Similarly, the operating room (OR) for brain tumor surgery has increased in complexity and specificity with multiple forms of equipment now considered necessary as technical adjuncts. It is evident that the theme of minimalism in combination with advanced image-guidance techniques and a cohort of sophisticated technologies (e.g., robotics and nanotechnology) will drive changes in the current OR environment for the foreseeable future. In this report we describe what may be regarded today as standard essentials in an operating room for the surgical management of brain tumors and what we believe to be the current 'state-of-the-art' brain tumor OR. Also, we speculate on the additional capabilities of the brain tumor OR of the near future. PMID:15527078

  1. Consensus Conference on Brain Tumor Definition for registration. November 10, 2000.

    PubMed Central

    McCarthy, Bridget J.; Surawicz, Tanya; Bruner, Janet M.; Kruchko, Carol; Davis, Faith

    2002-01-01

    The Consensus Conference on Brain Tumor Definition was facilitated by the Central Brain Tumor Registry of the United States and held on November 10, 2000, in Chicago, Illinois, to reach multidisciplinary agreement on a standard definition of brain tumors for collecting and comparing data in the U.S. The Brain Tumor Working Group, convened in 1998 to determine the status of brain tumor collection in the U.S., outlined 4 recommendations of which the first 2 guided the discussion for the Consensus Conference: (1) standardization of a definition of primary brain tumors that is based on site alone, rather than on site and behavior, and that can be used by surveillance organizations in collecting these tumors; and (2) development of a reporting scheme that can be used for comparing estimates of primary brain tumors across registries. Consensus was reached on the collection of all primary brain tumor histologies found and reported in the brain or CNS ICD-O site codes (C70.0-C72.9 and C75.1-C75.3), including those coded benign and uncertain as well as those coded malignant. In addition, a comprehensive listing of histologies occurring in the brain and CNS, based on the CBTRUS grouping scheme, was formulated to provide a template for reporting in accordance with the second recommendation of the Brain Tumor Working Group. With consensus achieved on the first 2 recommendations, the stage is set to move forward in estimating additional resources necessary for the collection of these tumors, including funding, training for cancer registrars, identifying quality control measures, and developing computerized edit checks, as outlined in the last 2 recommendations of the Brain Tumor Working Group. PMID:11916506

  2. What's New in Research and Treatment for Brain Tumors in Children?

    MedlinePlus

    ... brain and spinal cord tumors in children What’s new in research and treatment for brain and spinal ... an investigational method, and studies are continuing. Other new treatment strategies Researchers are also testing some newer ...

  3. Analgesic use and the risk of primary adult brain tumor.

    PubMed

    Egan, Kathleen M; Nabors, Louis B; Thompson, Zachary J; Rozmeski, Carrie M; Anic, Gabriella A; Olson, Jeffrey J; LaRocca, Renato V; Chowdhary, Sajeel A; Forsyth, Peter A; Thompson, Reid C

    2016-09-01

    Glioma and meningioma are uncommon tumors of the brain with few known risk factors. Regular use of aspirin has been linked to a lower risk of gastrointestinal and other cancers, though evidence for an association with brain tumors is mixed. We examined the association of aspirin and other analgesics with the risk of glioma and meningioma in a large US case-control study. Cases were persons recently diagnosed with glioma or meningioma and treated at medical centers in the southeastern US. Controls were persons sampled from the same communities as the cases combined with friends and other associates of the cases. Information on past use of analgesics (aspirin, other anti-inflammatory agents, and acetaminophen) was collected in structured interviews. Logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for analgesic use adjusted for potential confounders. All associations were considered according to indication for use. A total of 1123 glioma cases, 310 meningioma cases and 1296 controls were included in the analysis. For indications other than headache, glioma cases were less likely than controls to report regular use of aspirin (OR 0.69; CI 0.56, 0.87), in a dose-dependent manner (P trend < 0.001). No significant associations were observed with other analgesics for glioma, or any class of pain reliever for meningioma. Results suggest that regular aspirin use may reduce incidence of glioma. PMID:26894804

  4. Gene Therapy and Virotherapy: Novel Therapeutic Approaches for Brain Tumors

    PubMed Central

    Kroeger, Kurt M.; Ghulam Muhammad, A.K.M.; Baker, Gregory J.; Assi, Hikmat; Wibowo, Mia K.; Xiong, Weidong; Yagiz, Kader; Candolfi, Marianela; Lowenstein, Pedro R.; Castro, Maria G.

    2010-01-01

    Glioblastoma multiforme (GBM) is a deadly primary brain tumor in adults, with a median survival of ~12–18 months post-diagnosis. Despite recent advances in conventional therapeutic approaches, only modest improvements in median survival have been achieved; GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are desperately needed. Our group and others are pursuing virotherapy and gene therapy strategies for the treatment of GBM. In this review, we will discuss various virotherapy and gene therapy approaches for GBM currently under preclinical and clinical evaluation including direct or conditional cytotoxic, and/or immunostimulatory approaches. We also discuss cutting-edge technologies for drug/gene delivery and targeting brain tumors, including the use of stem cells as delivery platforms, the use of targeted immunotoxins, and the therapeutic potential of using GBM microvesicles to deliver therapeutic siRNAs or virotherapies. Finally, various animal models available to test novel GBM therapies are discussed. PMID:21034670

  5. Is outpatient brain tumor surgery feasible in India?

    PubMed

    Turel, Mazda K; Bernstein, Mark

    2016-01-01

    The current trend in all fields of surgery is towards less invasive procedures with shorter hospital stays. The reasons for this change include convenience to patients, optimal resource utilization, and cost saving. Technological advances in neurosurgery, aided by improvements in anesthesia, have resulted in surgery that is faster, simpler, and safer with excellent perioperative recovery. As a result of improved outcomes, some centers are performing brain tumor surgery on an outpatient basis, wherein patients arrive at the hospital the morning of their procedure and leave the hospital the same evening, thus avoiding an overnight stay in the hospital. In addition to the medical benefits of the outpatient procedure, its impact on patient satisfaction is substantial. The economic benefits are extremely favorable for the patient, physician, as well as the hospital. In high volume centers, a day surgery program can exist alongside those for elective and emergency surgeries, providing another pathway for patient care. However, due to skepticism surrounding the medicolegal aspects, and how radical the concept at first sounds, these procedures have not gained widespread popularity. We provide an overview of outpatient brain tumor surgery in the western world, discussing the socioeconomic, medicolegal, and ethical issues related to its adaptability in a developing nation. PMID:27625225

  6. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    SciTech Connect

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  7. Updates on the cytogenetics and molecular cytogenetics of benign and intermediate soft tissue tumors

    PubMed Central

    NISHIO, JUN

    2013-01-01

    Soft tissue tumors are classified according to their histological resemblance to normal adult tissues and can be grouped into the following categories based on metastatic potential: benign, intermediate (locally aggressive), intermediate (rarely metastasizing) and malignant. Over the past two decades, considerable progress has been made in our understanding of the genetic background of soft tissue tumors. Traditional laboratory techniques, such as cytogenetic analysis and fluorescence in situ hybridization (FISH), can be used for diagnostic purposes in soft tissue pathology practice. Moreover, cytogenetic and molecular studies are often necessary for prognostics and follow-up of soft tissue sarcoma patients. This review provides updated information on the applicability of laboratory genetic testing in the diagnosis of benign and intermediate soft tissue tumors. These tumors include nodular fasciitis, chondroid lipoma, collagenous fibroma (desmoplastic fibroblastoma), giant cell tumor of tendon sheath (GCTTS)/pigmented villonodular synovitis (PVNS), angiofibroma of soft tissue, myxoinflammatory fibroblastic sarcoma (MIFS) and ossifying fibromyxoid tumor (OFMT). PMID:23255885

  8. Using autopsy brain tissue to study alcohol-related brain damage in the genomic age.

    PubMed

    Sutherland, Greg T; Sheedy, Donna; Kril, Jillian J

    2014-01-01

    The New South Wales Tissue Resource Centre at the University of Sydney, Australia, is one of the few human brain banks dedicated to the study of the effects of chronic alcoholism. The bank was affiliated in 1994 as a member of the National Network of Brain Banks and also focuses on schizophrenia and healthy control tissue. Alcohol abuse is a major problem worldwide, manifesting in such conditions as fetal alcohol syndrome, adolescent binge drinking, alcohol dependency, and alcoholic neurodegeneration. The latter is also referred to as alcohol-related brain damage (ARBD). The study of postmortem brain tissue is ideally suited to determining the effects of long-term alcohol abuse, but it also makes an important contribution to understanding pathogenesis across the spectrum of alcohol misuse disorders and potentially other neurodegenerative diseases. Tissue from the bank has contributed to 330 peer-reviewed journal articles including 120 related to alcohol research. Using the results of these articles, this review chronicles advances in alcohol-related brain research since 2003, the so-called genomic age. In particular, it concentrates on transcriptomic approaches to the pathogenesis of ARBD and builds on earlier reviews of structural changes (Harper et al. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:951) and proteomics (Matsumoto et al. Expert Rev Proteomics 2007;4:539).

  9. Nondestructive quantification of permeability of hyperosmotic agent in normal and tumor tissues

    NASA Astrophysics Data System (ADS)

    Xiong, Honglian; Guo, Zhouyi; Zeng, Changchun; Wang, Like; He, Yonghong; Liu, Songhao

    2008-12-01

    Noninvasive tumor imaging could lead to the early detection and timely treatment of cancer. Previous investigations have suggested that optical coherence tomography (OCT) is an ideal diagnostic tool distinguishing normal tissues from tumor tissues based on structural imaging because of the high resolution. In the study, the capability of OCT for functional imaging of normal and tumor tissues based on time and depth resolved quantification of the permeability of biomolecules through these tissues is investigated. An OCT system at 830 nm central wavelength was used in this study. Diffusion of 20% aqueous solution of glucose was monitored and quantified in normal stomach tissues and tumor tissues using OCT. The orthotopic graft model of gastric cancer in nude mice was used. Permeability coefficients were calculated as a function of time and tissue depth. The permeability coefficient was (9.44+/-0.42) ×10-6 cm/s in normal stomach tissues and (5.32+/-0.17)×10-5 cm/s in tumor tissues. The tumor tissues had a higher permeability coefficient compared to normal tissues. From the experimental results, it is found that the accurate and sensitive assessment of the permeability coefficients of normal and tumor tissues offer an effective OCT image method for clinical diagnosis and detection of tumor tissues.

  10. PDT-induced apoptosis: investigations using two malignant brain tumor models

    NASA Astrophysics Data System (ADS)

    Lilge, Lothar D.; Menzies, Keir; Bisland, Stuart K.; Lin, Annie; Wilson, Brian C.

    2002-06-01

    PDT included necrosis in brain tissue and an intracranial tumor has been quantified for various photosensitizers, and it has been shown to be dependent on the sub-cellular localization of these photosensitizers. In quantifying non- necrotic biological endpoints, such as PDT induced apoptosis, the expression and translation of apoptosis inhibiting or promoting genes is of considerable importance. We studied the susceptibility of two glioblastoma cell lines to under go apoptotic cell death following photodynamic treatment with either Photofrin or delta-aminolevulinic acid (delta) ALA) in vivo. Murine 9L Gliosarcoma cells or human U87 Glioblastoma cells were implanted into the cortex of rats, and following 12 or 14 days of growth respectively, subjected to either Photofrin-mediated PDT or ALA-mediated PDT. 9L gliosarcoma cells express the phosphatase Tensin homologue (PTEN) tumor suppressor gene while in U87 cells PTEN is mutated. Differences in the Photofrin mediated PDT induced apoptosis were noted between the two different cell lines in vivo, suggesting that Photofrin mediated PDT may be dependent on apoptotic pathways. ALA induced PPIX showed higher selectivity towards 9L than Photofrin mediated PDT. These studies suggests that PDT could be used as an effective treatment for intracranial neoplasm. Endogenous photosensitizers such as ALA could be used to promote apoptosis in tumor cells due to PDT treatment and thereby minimize the extent of necrotic infarction in the surrounding normal brain.

  11. Gonadal status in male survivors following childhood brain tumors.

    PubMed

    Schmiegelow, M; Lassen, S; Poulsen, H S; Schmiegelow, K; Hertz, H; Andersson, A M; Skakkebaek, N E; Müller, J

    2001-06-01

    The effect of radiotherapy (RT) and chemotherapy (CT) on gonadal function was assessed in males treated for a childhood brain tumor not directly involving the hypothalamus/pituitary (HP) axis in a population-based study with a long follow-up time. All males <15 yr at the time of diagnosis (median: 9.0 yr, range: 0.8 to 14.9 yr) and diagnosed from January 1970 through February 1997 in the eastern part of Denmark and [gte]18 yr at the time of follow-up (median: 25.8 yr, range:18.5 to 39.3 yr) were included. Thirty males fulfilled the criteria. The median age at time of RT was 9.0 yr (range: 0.8 to 14.9 yr) and the median length of follow-up was 18 yr (range: 2.0 to 28.0 yr). The biological effective dose of RT was determined to the HP region and to the spine and expressed in gray because the biological effective dose gives a means of expressing the biological effect on normal tissue of different dosage schedules in a uniform way. Levels of serum FSH, luteinizing hormone (LH), sexual hormone-binding globulin, testosterone, and inhibin B were measured and compared with healthy age-matched male controls (n = 347), and the patients had a GnRH stimulation test performed with determination of peak FSH and LH. Patients treated with RT + CT (n = 13), compared with patients treated with RT only (n = 17), had significantly higher median peak FSH (8.33 vs. 3.79 IU/L, P = 0.03) and median peak LH (20.0 vs. 12.8 IU/L, P = 0.03), and significantly lower median inhibin B (86.0 vs. 270 pg/ml, P = 0.03), and median inhibin B/FSH ratio (12.8 vs. 107.9, P = 0.04), which indicates gonadal damage. Inhibin B and inhibin B/FSH ratio were also significantly lower in the RT + CT group, compared with controls (median: 86.0 vs. 215 pg/ml, P = 0.02), (median:12.8 vs. 67; P = 0.01), respectively. We found a significantly inverse correlation between basal FSH and inhibin B and FSH and total testicular volume (r(s) = -0.83; P < 0.0001), (r(s) = -0.67; P < 0.0001), respectively, and a significant

  12. [Exchange reactions in brain tissue under chronic ethanol intoxication].

    PubMed

    Gil'miiarova, F N; Radomskaia, V M; Vinogradova, L N

    1982-01-01

    The paper deals with characterization of systems utilizing ethanol and reactions conjugated with its exchange in the brain tissue under chronic alcohol intoxication. The following is established: the absence of the alcoholdehydrogenase pathway of ethanol oxidation in rabbits, unbalanced splitting of carbohydrates under two-months ethanol load, disturbance of oxidative processes in the tricarboxylic acids cycle, a decrease in the pool of oxidized nicotin amide coenzymes. PMID:7036487

  13. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    ClinicalTrials.gov

    2016-07-08

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  14. Distribution of opiate alkaloids in brain tissue of experimental animals

    PubMed Central

    Pilija, Vladimir; Mimica-Dukic, Neda; Budakov, Branislav; Cvjeticanin, Stanko

    2012-01-01

    The present study examined regional distribution of opiate alkaloids from seized heroin in brain regions of experimental animals in order to select parts with the highest content of opiates. Their analysis should contribute to resolve causes of death due to heroin intake. The tests were performed at different time periods (5, 15, 45 and 120 min) after male and female Wistar rats were treated with seized heroin. Opiate alkaloids (codeine, morphine, acetylcodeine, 6-acetylmorphine and 3,6-diacetylmorphine) were quantitatively determined in brain regions known for their high concentration of µ-opiate receptors: cortex, brainstem, amygdala and basal ganglia, by using gas chromatography–mass spectrometry (GC–MS). The highest content of opiate alkaloids in the brain tissue of female animals was found 15 min and in male animals 45 min after treatment. The highest content of opiates was determined in the basal ganglia of the animals of both genders, indicating that this part of brain tissue presents a reliable sample for identifying and assessing contents of opiates after heroin intake. PMID:23554560

  15. In vitro bioengineered model of cortical brain tissue.

    PubMed

    Chwalek, Karolina; Tang-Schomer, Min D; Omenetto, Fiorenzo G; Kaplan, David L

    2015-09-01

    A bioengineered model of 3D brain-like tissue was developed using silk-collagen protein scaffolds seeded with primary cortical neurons. The scaffold design provides compartmentalized control for spatial separation of neuronal cell bodies and neural projections, which resembles the layered structure of the brain (cerebral cortex). Neurons seeded in a donut-shaped porous silk sponge grow robust neuronal projections within a collagen-filled central region, generating 3D neural networks with structural and functional connectivity. The silk scaffold preserves the mechanical stability of the engineered tissues, allowing for ease of handling, long-term culture in vitro and anchoring of the central collagen gel to avoid shrinkage, and enabling neural network maturation. This protocol describes the preparation and manipulation of silk-collagen constructs, including the isolation and seeding of primary rat cortical neurons. This 3D technique is useful for mechanical injury studies and as a drug screening tool, and it could serve as a foundation for brain-related disease models. The protocol of construct assembly takes 2 d, and the resulting tissues can be maintained in culture for several weeks.

  16. In vitro bioengineered model of cortical brain tissue

    PubMed Central

    Chwalek, Karolina; Tang-Schomer, Min D.; Omenetto, Fiorenzo G.; Kaplan, David L.

    2016-01-01

    A bioengineered model of three-dimensional (3D) brain-like tissue was developed using silk-collagen protein scaffolds seeded with primary cortical neurons. The scaffold design provides compartmentalized control for spatial separation of neuronal cell bodies and neural projections, resembling the layered structure of the brain (cerebral cortex). Neurons seeded in a donut-shaped porous silk sponge grow robust neuronal projections within a collagen-filled central region, generating 3D neural networks with structural and functional connectivity. The silk scaffold preserves the mechanical stability of the engineered tissues, allowing for ease of handling, long-term culture in vitro, anchoring of the central collagen gel to avoid shrinkage, and neural network maturation. This protocol describes the preparation and manipulation of silk-collagen constructs, including the isolation and seeding of primary rat cortical neurons. This 3D technique is useful for mechanical injury studies, as a drug screening tool and could serve as a foundation for brain-related disease models. The protocol of construct assembly takes 2 days and the resulting tissues can be maintained in culture for several weeks. PMID:26270395

  17. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors. Technical progress report No. 1, May 1, 1990--January 31, 1991

    SciTech Connect

    Soloway, A.H.; Barth, R.F.

    1990-12-31

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  18. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. PMID:26055434

  19. Tissue-specific sparse deconvolution for brain CT perfusion.

    PubMed

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

  20. Memoirs of an amnesiac--two years with brain cancer, or the outer space of living with brain tumors.

    PubMed

    Dor-Ner, A D

    1991-11-01

    Alexandra Dane Dor-Ner ("Ali" to friends) was a photographer, writer, and a producer of programs on child development. In February 1989, at the age of 41, she was diagnosed with malignant brain cancer. During the following months she underwent brain surgery, radiation, and implant radiation. Throughout her treatment, she continued to work on a novel and write stores and literary criticism. A volunteer in hospitals before her illness, she now became very active in a support group of brain tumor patients and often served as a first resource and contact for others diagnosed with brain cancer. All was very accomplished; her award-winning photographs have been exhibited in the Smithsonian Institution in Washington, and her articles and pictures were published in books, periodicals, and newspapers around the world. A native of Boston, Ali lived for 17 years in Israel, where she joined a group of photographers documenting disappearing neighborhoods in Jerusalem. She was awarded first prize in the "Israel Through the Camera's Eye" competition in 1977. She also taught English and photography in Israeli high schools. Ali traveled extensively on photographic assignments. Early in their 22-year marriage, she and her husband circumnavigated the globe on a freighter, producing a documentary film of the voyage. "Memoirs of an Amnesiac" was written while Ali was a student at the Warren Wilson College Writers' Program in North Carolina; she intended to explore the compensatory aspects of her disease. In February 1991, within days of completing the piece, Ali had a third brain operation to remove a regrowth of cancerous tumor cells, as well as necrotic tissue. Two days later, she was again operated on to remove blood clots resulting from the previous surgery. For the next 12 weeks she fought to regain her ability to walk, talk, and write. In May, she underwent a fifth operation to relieve pressure in the brain. She was still in the hospital when she learned, to her great pleasure

  1. Memoirs of an amnesiac--two years with brain cancer, or the outer space of living with brain tumors.

    PubMed Central

    Dor-Ner, A. D.

    1991-01-01

    Alexandra Dane Dor-Ner ("Ali" to friends) was a photographer, writer, and a producer of programs on child development. In February 1989, at the age of 41, she was diagnosed with malignant brain cancer. During the following months she underwent brain surgery, radiation, and implant radiation. Throughout her treatment, she continued to work on a novel and write stores and literary criticism. A volunteer in hospitals before her illness, she now became very active in a support group of brain tumor patients and often served as a first resource and contact for others diagnosed with brain cancer. All was very accomplished; her award-winning photographs have been exhibited in the Smithsonian Institution in Washington, and her articles and pictures were published in books, periodicals, and newspapers around the world. A native of Boston, Ali lived for 17 years in Israel, where she joined a group of photographers documenting disappearing neighborhoods in Jerusalem. She was awarded first prize in the "Israel Through the Camera's Eye" competition in 1977. She also taught English and photography in Israeli high schools. Ali traveled extensively on photographic assignments. Early in their 22-year marriage, she and her husband circumnavigated the globe on a freighter, producing a documentary film of the voyage. "Memoirs of an Amnesiac" was written while Ali was a student at the Warren Wilson College Writers' Program in North Carolina; she intended to explore the compensatory aspects of her disease. In February 1991, within days of completing the piece, Ali had a third brain operation to remove a regrowth of cancerous tumor cells, as well as necrotic tissue. Two days later, she was again operated on to remove blood clots resulting from the previous surgery. For the next 12 weeks she fought to regain her ability to walk, talk, and write. In May, she underwent a fifth operation to relieve pressure in the brain. She was still in the hospital when she learned, to her great pleasure

  2. [The x-ray study of tumors of the integumentary tissues of the head].

    PubMed

    Khazov, P D

    1991-01-01

    Possibilities of X-ray examination of tumors and tumor-like lesions of integumentary tissues of the head were studied on the basis of data on 70 such cases. The procedure and roentgenologic semiotics are described.

  3. Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery.

    PubMed

    Fan, Ching-Hsiang; Ting, Chien-Yu; Chang, Yuan-Chih; Wei, Kuo-Chen; Liu, Hao-Li; Yeh, Chih-Kuang

    2015-03-01

    Focused ultrasound (FUS) with microbubbles has been used to achieve local blood-brain barrier opening (BBB opening) and increase the penetration of therapeutic drugs into brain tumors. However, inertial cavitation of microbubbles during FUS-induced BBB opening causes intracerebral hemorrhaging (ICH), leading to acute and chronic brain injury and limiting the efficiency of drug delivery. Here we investigated whether induction of drug (1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU)-loaded bubbles (BCNU bubbles) to oscillate at their resonant frequency would reduce inertial cavitation during BBB opening, thereby eliminating ICH and enhancing drug delivery in a rat brain model. FUS was tested at 1 and 10 MHz, over a wide range of pressure (mechanical index ranging from 0.16 to 1.42) in the presence of BCNU bubbles. Excitation of BCNU bubbles by resonance frequency-matched FUS (10 MHz) resulted in predominantly stable cavitation and significantly reduced the occurrence of potential hazards of exposure to biological tissues during the BBB opening process. In addition, the drug release process could be monitored by acoustic emission obtained from ultrasound imaging. In tumor-bearing animals, BCNU bubbles with FUS showed significant control of tumor progression and improved maximum survival from 26 to 35 days. This study provides useful advancements toward the goal of successfully translating FUS theranostic bubble-enhanced brain drug delivery into clinical use.

  4. Brain Magnetic Resonance Imaging After High-Dose Chemotherapy and Radiotherapy for Childhood Brain Tumors

    SciTech Connect

    Spreafico, Filippo Gandola, Lorenza; Marchiano, Alfonso; Simonetti, Fabio; Poggi, Geraldina; Adduci, Anna; Clerici, Carlo Alfredo; Luksch, Roberto; Biassoni, Veronica; Meazza, Cristina; Catania, Serena; Terenziani, Monica; Musumeci, Renato; Fossati-Bellani, Franca; Massimino, Maura

    2008-03-15

    Purpose: Brain necrosis or other subacute iatrogenic reactions has been recognized as a potential complication of radiotherapy (RT), although the possible synergistic effects of high-dose chemotherapy and RT might have been underestimated. Methods and Materials: We reviewed the clinical and radiologic data of 49 consecutive children with malignant brain tumors treated with high-dose thiotepa and autologous hematopoietic stem cell rescue, preceded or followed by RT. The patients were assessed for neurocognitive tests to identify any correlation with magnetic resonance imaging (MRI) anomalies. Results: Of the 49 children, 18 (6 of 25 with high-grade gliomas and 12 of 24 with primitive neuroectodermal tumors) had abnormal brain MRI findings occurring a median of 8 months (range, 2-39 months) after RT and beginning to regress a median of 13 months (range, 2-26 months) after onset. The most common lesion pattern involved multiple pseudonodular, millimeter-size, T{sub 1}-weighted unevenly enhancing, and T{sub 2}-weighted hyperintense foci. Four patients with primitive neuroectodermal tumors also had subdural fluid leaks, with meningeal enhancement over the effusion. One-half of the patients had symptoms relating to the new radiographic findings. The MRI lesion-free survival rate was 74% {+-} 6% at 1 year and 57% {+-} 8% at 2 years. The number of marrow ablative courses correlated significantly to the incidence of radiographic anomalies. No significant difference was found in intelligent quotient scores between children with and without radiographic changes. Conclusion: Multiple enhancing cerebral lesions were frequently seen on MRI scans soon after high-dose chemotherapy and RT. Such findings pose a major diagnostic challenge in terms of their differential diagnosis vis-a-vis recurrent tumor. Their correlation with neurocognitive results deserves further investigation.

  5. Diffusion and related transport mechanisms in brain tissue

    NASA Astrophysics Data System (ADS)

    Nicholson, Charles

    2001-07-01

    Diffusion plays a crucial role in brain function. The spaces between cells can be likened to the water phase of a foam and many substances move within this complicated region. Diffusion in this interstitial space can be accurately modelled with appropriate modifications of classical equations and quantified from measurements based on novel micro-techniques. Besides delivering glucose and oxygen from the vascular system to brain cells, diffusion also moves informational substances between cells, a process known as volume transmission. Deviations from expected results reveal how local uptake, degradation or bulk flow may modify the transport of molecules. Diffusion is also essential to many therapies that deliver drugs to the brain. The diffusion-generated concentration distributions of well-chosen molecules also reveal the structure of brain tissue. This structure is represented by the volume fraction (void space) and the tortuosity (hindrance to diffusion imposed by local boundaries or local viscosity). Analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. Theoretical and experimental approaches borrow from classical diffusion theory and from porous media concepts. Earlier studies were based on radiotracers but the recent methods use a point-source paradigm coupled with micro-sensors or optical imaging of macromolecules labelled with fluorescent tags. These concepts and methods are likely to be applicable elsewhere to measure diffusion properties in very small volumes of highly structured but delicate material.

  6. Nanotube x-ray for cancer therapy: a compact microbeam radiation therapy system for brain tumor treatment

    PubMed Central

    Zhang, Lei; Yuan, Hong; Inscoe, Christina; Chtcheprov, Pavel; Hadsell, Michael; Lee, Yueh; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-01-01

    Microbeam radiation therapy (MRT) is a promising preclinical modality for cancer treatment, with remarkable preferential tumoricidal effects, that is, tumor eradication without damaging normal tissue functions. Significant lifespan extension has been demonstrated in brain tumor-bearing small animals treated with MRT. So far, MRT experiments can only be performed in a few synchrotron facilities around the world. Limited access to MRT facilities prevents this enormously promising radiotherapy technology from reaching the broader biomedical research community and hinders its potential clinical translation. We recently demonstrated, for the first time, the feasibility of generating microbeam radiation in a laboratory environment using a carbon nanotube x-ray source array and performed initial small animal studies with various brain tumor models. This new nanotechnology-enabled microbeam delivery method, although still in its infancy, has shown promise for achieving comparable therapeutic effects to synchrotron MRT and has offered a potential pathway for clinical translation. PMID:25417729

  7. NMPPAS fiber optic microprobe for sub-surface brain tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Kiser, John B.; Chandrasekhran, Nirmala; Cullum, Brian M.

    2005-11-01

    Brain cancer affects approximately 16,500 people a year and individuals diagnosed with glioblastoma multiforme have an average life expectancy of less than 12-18 months after diagnosis. A portable fiber-optic probe capable of distinguishing between healthy and tumor tissues, with a high degree of spatial resolution, deep within a sample would be a valuable tool for tumor diagnosis and margining. A novel technique that combines 1-2 cm penetration depths with cellular level spatial resolution to chemically distinguish cancerous from non-cancerous tissues is non-resonant multiphoton photoacoustic spectroscopy (NMPPAS). This technique focuses pulsed near infrared light into a sample, creating a two-photon excitation event, and measures the resulting non-radiative decay as an ultrasonic signal. This paper discusses the optimization of a portable fiber-optic NMPPAS probe capable of delivering nanosecond laser pulses from 740nm-1100nm to a series of lens, which focus the light into the sample. The resulting ultrasonic signal is measured using a polyvinylidene fluoride based piezoelectric detector. The two-photon excitation efficiency of the portable NMPPAS probe system has been evaluated by measuring the two-photon excitation and emission spectra of common fluorescent dyes such as rhodamine B and fluorescein. In addition, this paper also demonstrates the diagnostic potential of this technique for tumor detection and margining without the need for acquisition of an entire spectrum.

  8. Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard.

    PubMed

    Pirman, David A; Reich, Richard F; Kiss, András; Heeren, Ron M A; Yost, Richard A

    2013-01-15

    Mass spectrometric imaging (MSI) is an analytical technique used to determine the distribution of individual analytes within a given sample. A wide array of analytes and samples can be investigated by MSI, including drug distribution in rats, lipid analysis from brain tissue, protein differentiation in tumors, and plant metabolite distributions. Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique capable of desorbing and ionizing a large range of compounds, and it is the most common ionization source used in MSI. MALDI mass spectrometry (MS) is generally considered to be a qualitative analytical technique because of significant ion-signal variability. Consequently, MSI is also thought to be a qualitative technique because of the quantitative limitations of MALDI coupled with the homogeneity of tissue sections inherent in an MSI experiment. Thus, conclusions based on MS images are often limited by the inability to correlate ion signal increases with actual concentration increases. Here, we report a quantitative MSI method for the analysis of cocaine (COC) from brain tissue using a deuterated internal standard (COC-d(3)) combined with wide-isolation MS/MS for analysis of the tissue extracts with scan-by-scan COC-to-COC-d(3) normalization. This resulted in significant improvements in signal reproducibility and calibration curve linearity. Quantitative results from the MSI experiments were compared with quantitative results from liquid chromatography (LC)-MS/MS results from brain tissue extracts. Two different quantitative MSI techniques (standard addition and external calibration) produced quantitative results comparable to LC-MS/MS data. Tissue extracts were also analyzed by MALDI wide-isolation MS/MS, and quantitative results were nearly identical to those from LC-MS/MS. These results clearly demonstrate the necessity for an internal standard for quantitative MSI experiments. PMID:23214490

  9. The genesis of peritumoral vasogenic brain edema and tumor cysts: a hypothetical role for tumor-derived vascular permeability factor.

    PubMed Central

    Criscuolo, G. R.

    1993-01-01

    Cerebral edema and fluid-filled cysts are common accompaniments of brain tumors. They contribute to the mass effect imposed by the primary tumor and are often responsible for a patient's signs and symptoms. Cerebral edema significantly increases the morbidity associated with tumor biopsy, excision, radiation therapy, and chemotherapy. Both edema and cyst formation are thought to result from a deficiency in the blood-brain barrier, with consequent extravasation of water, electrolytes, and plasma proteins from altered tumor microvessels. The resultant expansion of the cerebral interstitial space contributes to the elevated intracranial pressure observed with brain tumors. Departure from the typical blood-brain barrier microvascular architecture may only partially explain the occurrence of edema and tumor cyst formation. Biochemical mediators have also been implicated in vascular extravasation. Vascular permeability factor or vascular endothelial growth factor (VPF/VEGF) is a protein that has recently been isolated from a variety of tumors including human brain tumors. VPFb is an extraordinarily potent inducer of both microvascular extravasation (edemagenesis) and the formation of new blood vessels (angiogenesis). Its role in tumor growth and progression would therefore appear pivotal. Herein, the author presents an updated account of the investigation of VPF. Historical and clinical perspectives of the study and treatment of tumor associated edema are provided. The efficacy of high-dose dexamethasone in the treatment of neoplastic brain edema is discussed. A hypothetical role for VPF in edemagenesis is presented and discussed. It is hoped that an expanded understanding of the mechanisms responsible for the genesis of edema will ultimately facilitate therapeutic intervention. Images Figure 1 Figure 2 Figure 3 PMID:7516104

  10. Monte Carlo modeling and optimization of contrast-enhanced radiotherapy of brain tumors.

    PubMed

    Pérez-López, C E; Garnica-Garza, H M

    2011-07-01

    Contrast-enhanced radiotherapy involves the use of a kilovoltage x-ray beam to impart a tumoricidal dose to a target into which a radiological contrast agent has previously been loaded in order to increase the x-ray absorption efficiency. In this treatment modality the selection of the proper x-ray spectrum is important since at the energy range of interest the penetration ability of the x-ray beam is limited. For the treatment of brain tumors, the situation is further complicated by the presence of the skull, which also absorbs kilovoltage x-ray in a very efficient manner. In this work, using Monte Carlo simulation, a realistic patient model and the Cimmino algorithm, several irradiation techniques and x-ray spectra are evaluated for two possible clinical scenarios with respect to the location of the target, these being a tumor located at the center of the head and at a position close to the surface of the head. It will be shown that x-ray spectra, such as those produced by a conventional x-ray generator, are capable of producing absorbed dose distributions with excellent uniformity in the target as well as dose differential of at least 20% of the prescribed tumor dose between this and the surrounding brain tissue, when the tumor is located at the center of the head. However, for tumors with a lateral displacement from the center and close to the skull, while the absorbed dose distribution in the target is also quite uniform and the dose to the surrounding brain tissue is within an acceptable range, hot spots in the skull arise which are above what is considered a safe limit. A comparison with previously reported results using mono-energetic x-ray beams such as those produced by a radiation synchrotron is also presented and it is shown that the absorbed dose distributions rendered by this type of beam are very similar to those obtained with a conventional x-ray beam.

  11. Affinity of 167Tm-citrate for tumor and liver tissue.

    PubMed

    Ando, A; Ando, I; Sakamoto, K; Hiraki, T; Hisada, K; Takeshita, M

    1983-01-01

    Strong affinity of 167Tm-citrate for tumor tissue was reconfirmed by using Ehrlich tumor. Excellent tumor imaging was obtained with 167Tm-citrate because of its strong tumor affinity and because of the suitable physical characteristics of 167Tm. A large number of 167Tm had accumulated in the connective tissue which contained inflammatory tissue, quite large amounts were found in areas containing viable and necrotic tumor tissue, and small amounts were present in viable tumor tissue. 167Tm was not seen in necrotic tumor tissue. It was concluded that lysosomes did not play a major role in the tumor concentration of 167Tm, but played an important role in the liver concentration of this nuclide. In the case of hepatoma AH109A, it was presumed that lysosomes played a considerably important role in the tumor concentration of 167Tm, hepatoma AH109A possessing some residual features of the liver. 167Tm was bound to acid mucopolysaccharides and transposed by the acid mucopolysaccharides in the tumor tissues and liver. The acid mucopolysaccharides to which 167Tm were bound in tumor and liver, were heparan sulfate, chondroitin sulfate (or keratosulfate) and heparin (or keratosulfate). PMID:6228426

  12. The Role of Tumor Cell-Derived Connective Tissue Growth Factor (CTGF/CCN2) in Pancreatic Tumor Growth

    PubMed Central

    Bennewith, Kevin L.; Huang, Xin; Ham, Christine M.; Graves, Edward E.; Erler, Janine T.; Kambham, Neeraja; Feazell, Jonathan; Yang, George P.; Koong, Albert

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted subcutaneously. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by PET imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed co-localization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer. PMID:19179545

  13. Discrimination between normal breast tissue and tumor tissue using CdTe series detector developed for photon-counting mammography

    NASA Astrophysics Data System (ADS)

    Okamoto, Chizuru; Ihori, Akiko; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Kato, Misa; Nakajima, Ai; Kodera, Yoshie

    2016-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) series photon-counting detector, having high absorption efficiency over a wide energy range. In a previous study, we showed that the use of high X-ray energy in digital mammography is useful from the viewpoint of exposure dose and image quality. In addition, the CdTe series detector can acquire X-ray spectrum information following transmission through a subject. This study focused on the tissue composition identified using spectral information obtained by a new photon-counting detector. Normal breast tissue consists entirely of adipose and glandular tissues. However, it is very difficult to find tumor tissue in the region of glandular tissue via a conventional mammogram, especially in dense breast because the attenuation coefficients of glandular tissue and tumor tissue are very close. As a fundamental examination, we considered a simulation phantom and showed the difference between normal breast tissue and tumor tissue of various thicknesses in a three-dimensional (3D) scatter plot. We were able to discriminate between both types of tissues. In addition, there was a tendency for the distribution to depend on the thickness of the tumor tissue. Thinner tumor tissues were shown to be closer in appearance to normal breast tissue. This study also demonstrated that the difference between these tissues could be made obvious by using a CdTe series detector. We believe that this differentiation is important, and therefore, expect this technology to be applied to new tumor detection systems in the future.

  14. Significant predictors of patients' uncertainty in primary brain tumors.

    PubMed

    Lin, Lin; Chien, Lung-Chang; Acquaye, Alvina A; Vera-Bolanos, Elizabeth; Gilbert, Mark R; Armstrong, Terri S

    2015-05-01

    Patients with primary brain tumors (PBT) face uncertainty related to prognosis, symptoms and treatment response and toxicity. Uncertainty is correlated to negative mood states and symptom severity and interference. This study identified predictors of uncertainty during different treatment stages (newly-diagnosed, on treatment, followed-up without active treatment). One hundred eighty six patients with PBT were accrued at various points in the illness trajectory. Data collection tools included: a clinical checklist/a demographic data sheet/the Mishel Uncertainty in Illness Scale-Brain Tumor Form. The structured additive regression model was used to identify significant demographic and clinical predictors of illness-related uncertainty. Participants were primarily white (80 %) males (53 %). They ranged in age from 19-80 (mean = 44.2 ± 12.6). Thirty-two of the 186 patients were newly-diagnosed, 64 were on treatment at the time of clinical visit with MRI evaluation, 21 were without MRI, and 69 were not on active treatment. Three subscales (ambiguity/inconsistency; unpredictability-disease prognoses; unpredictability-symptoms and other triggers) were different amongst the treatment groups (P < .01). However, patients' uncertainty during active treatment was as high as in newly-diagnosed period. Other than treatment stages, change of employment status due to the illness was the most significant predictor of illness-related uncertainty. The illness trajectory of PBT remains ambiguous, complex, and unpredictable, leading to a high incidence of uncertainty. There was variation in the subscales of uncertainty depending on treatment status. Although patients who are newly diagnosed reported the highest scores on most of the subscales, patients on treatment felt more uncertain about unpredictability of symptoms than other groups. Due to the complexity and impact of the disease, associated symptoms, and interference with functional status, comprehensive assessment of patients

  15. Cognitive dysfunction in children with brain tumors at diagnosis

    PubMed Central

    Studer, Martina; Ritter, Barbara Catherine; Steinlin, Maja; Leibundgut, Kurt; Heinks, Theda

    2015-01-01

    Background Survivors of brain tumors have a high risk for a wide range of cognitive problems. These dysfunctions are caused by the lesion itself and its surgical removal, as well as subsequent treatments (chemo‐ and/or radiation therapy). Multiple recent studies have indicated that children with brain tumors (BT) might already exhibit cognitive problems at diagnosis, i.e., before the start of any medical treatment. The aim of the present study was to investigate the baseline neuropsychological profile in children with BT compared to children with an oncological diagnosis not involving the central nervous system (CNS). Methods Twenty children with BT and 27 children with an oncological disease without involvement of the CNS (age range: 6.1–16.9 years) were evaluated with an extensive battery of neuropsychological tests tailored to the patient's age. Furthermore, the child and his/her parent(s) completed self‐report questionnaires about emotional functioning and quality of life. In both groups, tests were administered before any therapeutic intervention such as surgery, chemotherapy, or irradiation. Groups were comparable with regard to age, gender, and socioeconomic status. Results Compared to the control group, patients with BTs performed significantly worse in tests of working memory, verbal memory, and attention (effect sizes between 0.28 and 0.47). In contrast, the areas of perceptual reasoning, processing speed, and verbal comprehension were preserved at the time of measurement. Conclusion Our results highlight the need for cognitive interventions early in the treatment process in order to minimize or prevent academic difficulties as patients return to school. Pediatr Blood Cancer 2015;62:1805–1812. © 2015 The Authors. Pediatric Blood & Cancer, published by Wiley Periodicals, Inc. PMID:26053691

  16. Household pesticides and risk of pediatric brain tumors.

    PubMed Central

    Pogoda, J M; Preston-Martin, S

    1997-01-01

    A follow-up to a population-based case-control study of pediatric brain tumors in Los Angeles County, California, involving mothers of 224 cases and 218 controls, investigated the risk of household pesticide use from pregnancy to diagnosis. Risk was significantly elevated for prenatal exposur