Sample records for brain type ii

  1. Detrimental Effects of Centrally Administered Angiotensin II are Enhanced in a Mouse Model of Alzheimer Disease Independently of Blood Pressure.

    PubMed

    Takane, Koki; Hasegawa, Yu; Lin, Bowen; Koibuchi, Nobutaka; Cao, Cheng; Yokoo, Takashi; Kim-Mitsuyama, Shokei

    2017-04-20

    The significance of brain angiotensin II in Alzheimer disease (AD) is unclear. To examine the role of brain angiotensin II in AD, intracerebroventricular angiotensin II infusion was performed on 5XFAD mice, a mouse model of AD, and wild-type mice, and the detrimental effects of brain angiotensin II was compared between the 2 strains of mice. Intracerebroventricular angiotensin II infusion significantly impaired cognitive function in 5XFAD mice but not in wild-type mice. This vulnerability of 5XFAD mice to brain angiotensin II was associated with enhancement of hippocampal inflammation and oxidative stress and with increased cerebrovascular amyloid β deposition. We also compared the effect of brain angiotensin II on the heart and skeletal muscle between the 2 strains because AD is associated with heart failure and sarcopenia. We found that cardiac compensatory response of 5XFAD mice to brain angiotensin II-induced hypertension was less than that of wild-type mice. Brain angiotensin II caused skeletal muscle atrophy and injury in 5XFAD mice more than in wild-type mice. Brain angiotensin II seems to be involved in cognitive impairment and brain injury in AD, which is associated with oxidative stress, inflammation, and cerebral amyloid angiopathy. Further, brain angiotensin II may participate in cardiac disease and sarcopenia observed in AD. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy.

    PubMed

    Hong, Seok-Jun; Bernhardt, Boris C; Schrader, Dewi S; Bernasconi, Neda; Bernasconi, Andrea

    2016-02-16

    To perform whole-brain morphometry in patients with frontal lobe epilepsy and evaluate the utility of group-level patterns for individualized diagnosis and prognosis. We compared MRI-based cortical thickness and folding complexity between 2 frontal lobe epilepsy cohorts with histologically verified focal cortical dysplasia (FCD) (13 type I; 28 type II) and 41 closely matched controls. Pattern learning algorithms evaluated the utility of group-level findings to predict histologic FCD subtype, the side of the seizure focus, and postsurgical seizure outcome in single individuals. Relative to controls, FCD type I displayed multilobar cortical thinning that was most marked in ipsilateral frontal cortices. Conversely, type II showed thickening in temporal and postcentral cortices. Cortical folding also diverged, with increased complexity in prefrontal cortices in type I and decreases in type II. Group-level findings successfully guided automated FCD subtype classification (type I: 100%; type II: 96%), seizure focus lateralization (type I: 92%; type II: 86%), and outcome prediction (type I: 92%; type II: 82%). FCD subtypes relate to diverse whole-brain structural phenotypes. While cortical thickening in type II may indicate delayed pruning, a thin cortex in type I likely results from combined effects of seizure excitotoxicity and the primary malformation. Group-level patterns have a high translational value in guiding individualized diagnostics. © 2016 American Academy of Neurology.

  3. Neuron-specific (pro)renin receptor knockout prevents the development of salt-sensitive hypertension

    PubMed Central

    Li, Wencheng; Peng, Hua; Mehaffey, Eamonn P.; Kimball, Christie D.; Grobe, Justin L.; van Gool, Jeanette M.G.; Sullivan, Michelle N.; Earley, Scott; Danser, A.H. Jan; Ichihara, Atsuhiro; Feng, Yumei

    2013-01-01

    The (pro)renin receptor, which binds both renin and prorenin, is a newly discovered component of the renin angiotensin system that is highly expressed in the central nervous system. The significance of brain PRRs in mediating local angiotensin II formation and regulating blood pressure remains unclear. The current study was performed to test the hypothesis that PRR-mediated, non-proteolytic activation of prorenin is the main source of angiotensin II in the brain. Thus, PRR knockout in the brain is expected to prevent angiotensin II formation and development of deoxycorticosterone acetate salt induced hypertension. A neuron-specific PRR (ATP6AP2) knockout mouse model was generated using the Cre-LoxP system. Physiological parameters were recorded by telemetry. (Pro)renin receptor expression, detected by immunostaining and RT-PCR, was significantly decreased in the brains of knockout compared with wide-type mice. Intracerebroventricular infusion of mouse prorenin increased blood pressure and angiotensin II formation in wild type mice. This hypertensive response was abolished in (pro)renin receptor knockout mice in association with a reduction in angiotensin II levels. Deoxycorticosterone acetate salt increased (pro)renin receptor expression and angiotensin II formation in the brains of wild-type mice, an effect that was attenuated in (pro)renin receptor knockout mice. (Pro)renin receptor knockout in neurons prevented the development of Deoxycorticosterone acetate salt-induced hypertension as well as activation of cardiac and vasomotor sympathetic tone. In conclusion, non-proteolytic activation of prorenin through binding to the PRR mediates angiotensin II formation in the brain. Neuron-specific PRR knockout prevents the development of deoxycorticosterone acetate salt-induced hypertension, possibly through diminished angiotensin II formation. PMID:24246383

  4. Distribution of Non-AT1, Non-AT2 Binding of 125I-Sarcosine1, Isoleucine8 Angiotensin II in Neurolysin Knockout Mouse Brains

    PubMed Central

    Speth, Robert C.; Carrera, Eduardo J.; Bretón, Catalina; Linares, Andrea; Gonzalez-Reiley, Luz; Swindle, Jamala D.; Santos, Kira L.; Schadock, Ines; Bader, Michael; Karamyan, Vardan T.

    2014-01-01

    The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 µM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (−2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology. PMID:25147932

  5. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    PubMed

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  6. Brain-Targeted (Pro)Renin Receptor Knockdown attenuates Angiotensin II-Dependent Hypertension

    PubMed Central

    Li, Wencheng; Peng, Hua; Cao, Theresa; Sato, Ryosuke; McDaniels, Sarah. J.; Kobori, Hiroyuki; Navar, L. Gabriel; Feng, Yumei

    2012-01-01

    The (pro)renin receptor is a newly discovered member of the brain renin-angiotensin system. To investigate the role of brain (pro)renin receptor in hypertension, adeno-associated virus-mediated (pro)renin receptor shRNA was used to knockdown (pro)renin receptor expression in the brain of non-transgenic normotensive and human renin-angiotensinogen double transgenic hypertensive mice. Blood pressure was monitored using implanted telemetric probes in conscious animals. Real-time PCR and immunostaining were performed to determine (pro)renin receptor, angiotensin II type 1 receptor and vasopressin mRNA levels. Plasma vasopressin levels were determined by Enzyme-Linked Immuno Sorbent Assay. Double transgenic mice exhibited higher blood pressure, elevated cardiac and vascular sympathetic tone, and impaired spontaneous baroreflex sensitivity. Intracerebroventricular delivery of (pro)renin receptor shRNA significantly reduced blood pressure, cardiac and vasomotor sympathetic tone, and improved baroreflex sensitivity compared to the control virus treatment in double transgenic mice. (Pro)renin receptor knockdown significantly reduced angiotensin II type 1 receptor and vasopressin levels in double transgenic mice. These data indicate that (pro)renin receptor knockdown in the brain attenuates angiotensin II-dependent hypertension and is associated with a decrease insympathetic tone and an improvement of the baroreflex sensitivity. In addition, brain-targeted (pro)renin receptor knockdown is associated with down-regulation of angiotensin II type 1 receptor and vasopressin levels. We conclude that central (pro)renin receptor contributes to the pathogenesis of hypertension in human renin-angiotensinogen transgenic mice. PMID:22526255

  7. Volumetric neuroimaging in Usher syndrome: evidence of global involvement.

    PubMed

    Schaefer, G B; Bodensteiner, J B; Thompson, J N; Kimberling, W J; Craft, J M

    1998-08-27

    Usher syndrome is a group of genetic disorders consisting of congenital sensorineural hearing loss and retinitis pigmentosa of variable onset and severity depending on the genetic type. It was suggested that the psychosis of Usher syndrome might be secondary to a metabolic degeneration involving the brain more diffusely. There have been reports of focal and diffuse atrophic changes in the supratentorial brain as well as atrophy of some of the structures of the posterior fossa. We previously performed quantitative analysis of magnetic resonance imaging studies of 19 Usher syndrome patients (12 with type I and 7 with type II) looking at the cerebellum and various cerebellar components. We found atrophy of the cerebellum in both types and sparing of cerebellar vermis lobules I-V in type II Usher syndrome patients only. We now have studied another group of 19 patients (with some overlap in the patients studied from the previous report) with Usher syndrome (8 with type I, 11 with type II). We performed quantitative volumetric measurements of various brain structures compared to age- and sex-matched controls. We found a significant decrease in intracranial volume and in size of the brain and cerebellum with a trend toward an increase in the size of the subarachnoid spaces. These data suggest that the disease process in Usher syndrome involves the entire brain and is not limited to the posterior fossa or auditory and visual systems.

  8. Brain-targeted stem cell gene therapy corrects mucopolysaccharidosis type II via multiple mechanisms.

    PubMed

    Gleitz, Hélène Fe; Liao, Ai Yin; Cook, James R; Rowlston, Samuel F; Forte, Gabriella Ma; D'Souza, Zelpha; O'Leary, Claire; Holley, Rebecca J; Bigger, Brian W

    2018-06-08

    The pediatric lysosomal storage disorder mucopolysaccharidosis type II is caused by mutations in IDS, resulting in accumulation of heparan and dermatan sulfate, causing severe neurodegeneration, skeletal disease, and cardiorespiratory disease. Most patients manifest with cognitive symptoms, which cannot be treated with enzyme replacement therapy, as native IDS does not cross the blood-brain barrier. We tested a brain-targeted hematopoietic stem cell gene therapy approach using lentiviral IDS fused to ApoEII (IDS.ApoEII) compared to a lentivirus expressing normal IDS or a normal bone marrow transplant. In mucopolysaccharidosis II mice, all treatments corrected peripheral disease, but only IDS.ApoEII mediated complete normalization of brain pathology and behavior, providing significantly enhanced correction compared to IDS. A normal bone marrow transplant achieved no brain correction. Whilst corrected macrophages traffic to the brain, secreting IDS/IDS.ApoEII enzyme for cross-correction, IDS.ApoEII was additionally more active in plasma and was taken up and transcytosed across brain endothelia significantly better than IDS via both heparan sulfate/ApoE-dependent receptors and mannose-6-phosphate receptors. Brain-targeted hematopoietic stem cell gene therapy provides a promising therapy for MPS II patients. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  9. Distinct patterns of functional brain connectivity correlate with objective performance and subjective beliefs

    PubMed Central

    Barttfeld, Pablo; Wicker, Bruno; McAleer, Phil; Belin, Pascal; Cojan, Yann; Graziano, Martín; Leiguarda, Ramón; Sigman, Mariano

    2013-01-01

    The degree of correspondence between objective performance and subjective beliefs varies widely across individuals. Here we demonstrate that functional brain network connectivity measured before exposure to a perceptual decision task covaries with individual objective (type-I performance) and subjective (type-II performance) accuracy. Increases in connectivity with type-II performance were observed in networks measured while participants directed attention inward (focus on respiration), but not in networks measured during states of neutral (resting state) or exogenous attention. Measures of type-I performance were less sensitive to the subjects’ specific attentional states from which the networks were derived. These results suggest the existence of functional brain networks indexing objective performance and accuracy of subjective beliefs distinctively expressed in a set of stable mental states. PMID:23801762

  10. Problem of intraoperative anatomical shift in image-guided surgery

    NASA Astrophysics Data System (ADS)

    Nauta, Haring J.; Bonnen, J. G.

    1998-06-01

    Experience with image guided, frameless stereotactic neurosurgery shows that intraoperative brain position shifts can be large enough to be problematic, and can occur in different directions at different directions at different stages of an operation. An understanding of the behavior of shifts will allow the surgeon to make the most appropriate use of the image guidance by first minimizing the shift itself, and then anticipating and compensating for any influence the remaining shift will have on the accuracy of the guidance. Three types of shift are described. Type I shift is a local outward bulging that occurs after the skull and dura are opened but before a mass lesion is resected. Type II shift is a local collapse of the brain tissue into the space previously occupied by the tumor. Type III shift is related to loss of cerebrospinal fluid or brain dehydration and is a generalized, more symmetric loss of brain volume. Strategies to minimize these types of shift include appropriate use of medical measures to reduce brain swelling early in the procedure without producing so much brain dehydration that Type II shift is accentuated later in the procedure. Other strategies include mechanical stabilization of brain position with retractors. Anticipating shift, the neurosurgeon should use the guidance as far as possible to map key boundaries early in the procedure before shift becomes more pronounced. Ultimately, however, the correction for the problem of intraoperative brain shift will require the ability to update the imaging data during the surgery.

  11. Simultaneous Control of Error Rates in fMRI Data Analysis

    PubMed Central

    Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David

    2015-01-01

    The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the Likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to ‘cleaner’ looking brain maps and operationally superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain. PMID:26272730

  12. Regional distribution and subcellular associations of Type II calcium and calmodulin-dependent protein kinase in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erondu, N.E.

    1986-01-01

    Four monoclonal antibodies generated against the Type II CaM kinase have been characterized. Two of these antibodies were used to confirm that both alpha and beta subunits were part of the holoenzyme complex. I also developed liquid phase and solid phase radioimmunoassays for the kinase. With the solid phase radioimmunoassay, the distribution of the kinase in rat brain was examined. This study revealed that the concentration of the kinase varies markedly in different brain regions. It is most highly concentrated in the telencephalon where it comprises approximately 2% of total hippocampal protein, 1.3% of cortical protein and 0.7% of striatalmore » protein. It is less concentrated in lower brain regions ranging from 0.3% of hypothalamic protein to 0.1% of protein in the pons/medulla.« less

  13. Rat leucine-rich protein binds and activates the promoter of the beta isoform of Ca2+/calmodulin-dependent protein kinase II gene.

    PubMed

    Ochiai, Nagahiro; Masumoto, Shuji; Sakagami, Hiroyuki; Yoshimura, Yoshiyuki; Yamauchi, Takashi

    2007-05-01

    We previously found the neuronal cell-type specific promoter and binding partner of the beta isoform of Ca(2+)/calmodulin-dependent protein kinase II (beta CaM kinase II) in rat brain [Donai, H., Morinaga, H., Yamauchi, T., 2001. Genomic organization and neuronal cell type specific promoter activity of beta isoform of Ca(2+)/calmodulin-dependent protein kinase II of rat brain. Mol. Brain Res. 94, 35-47]. In the present study, we purified a protein that binds specifically a promoter region of beta CaM kinase II gene from a nuclear extract of the rat cerebellum using DEAE-cellulose column chromatography, ammonium sulfate fractionation, gel filtration and polyacrylamide gel electrophoresis. The purified protein was identified as rat leucine-rich protein 157 (rLRP157) using tandem mass spectrometry. Then, we prepared its cDNA by reverse transcriptase-polymerase chain reaction (RT-PCR) from poly(A)(+)RNA of rat cerebellum. The rLRP157 cDNA was introduced into mouse neuroblastomaxrat glioma hybrid NG108-15 cells, and cells stably expressing rLRP157 (NG/LRP cells) were isolated. Binding of rLRP157 with the promoter sequence was confirmed by electrophoretic mobility shift assay using nuclear extract of NG/LRP cells. A luciferase reporter gene containing a promoter of beta CaM kinase II was transiently expressed in NG/LRP cells. Under the conditions, the promoter activity was enhanced about 2.6-fold in NG/LRP cells as compared with wild-type cells. The expression of rLRP157 mRNA was paralleled with that of beta CaM kinase II in the adult and embryo rat brain detected by in situ hybridization. Nuclear localization of rLRP157 was confirmed using GFP-rLRP157 fusion protein investigated under a confocal microscope. These results indicate that rLRP157 is one of the proteins binding to, and regulating the activity of, the promoter of beta CaM kinase II.

  14. The effect of prolonged ethanol administration on central alpha 2-adrenoceptors sensitivity.

    PubMed

    Szmigielski, A; Szmigielska, H; Wejman, I

    1989-01-01

    The response of an endogenous inhibitor of protein kinases (type II inhibitor) to clonidine was used as an index of sensitivity of central alpha 2-adrenoceptors. Low doses of clonidine (20-50 micrograms/kg) induced an increase in type II inhibitor activity in the nucleus accumbens, hippocampus and in the anterior and posterior hypothalamus by stimulating presynaptic alpha 2-adrenoceptors. Stimulation of postsynaptic alpha 2-adrenoceptors by high doses of clonidine 0.5-1.0 mg/kg resulted in a dose-dependent decrease in type II inhibitor activity. Prolonged treatment with ethanol (5 g/kg/day po for 21 days) greatly reduced the action of high doses of clonidine in all the examined brain areas, suggesting subsensitivity of postsynaptic alpha 2-adrenoceptors lasting for at least 48 h after the last ethanol administration. A single dose of ethanol induced a short lasting subsensitivity of postsynaptic alpha 2-adrenoceptors in the anterior hypothalamus. 12 h after administration of alcohol the response of type II inhibitor to high doses of clonidine in this brain area was the same as in untreated rats.

  15. Stem cells distribution, cellular proliferation and migration in the adult Austrolebias charrua brain.

    PubMed

    Torres-Pérez, Maximiliano; Rosillo, Juan Carlos; Berrosteguieta, Ines; Olivera-Bravo, Silvia; Casanova, Gabriela; García-Verdugo, José Manuel; Fernández, Anabel Sonia

    2017-10-15

    Our previous studies demonstrated that Austrolebias charrua annual fish is an excellent model to study adult brain cell proliferation and neurogenesis due to the presence of active and fast neurogenesis in several regions during its short lifespan. Our main goal was to identify and localize the cells that compose the neurogenic areas throughout the Austrolebias brain. To do this, we used two thymidine halogenated analogs to detect cell proliferation at different survival times: 5-chloro-2'-deoxyuridine (CldU) at 1day and 5-iodo-2'-deoxyuridine (IdU) at 30days. Three types of proliferating cells were identified: I - transient amplifying or fast cycling cells that uptake CldU; II - stem cells or slow cycling cells, that were labeled with both CldU and IdU and did not migrate; and III - migrant cells that uptake IdU. Mapping and 3D-reconstruction of labeled nuclei showed that type I and type II cells were preferentially found close to ventricle walls. Type III cells appeared widespread and migrating in tangential and radial routes. Use of proliferation markers together with Vimentin or Nestin evidenced that type II cells are the putative stem cells that are located at the ventricular lumen. Double label cells with IdU+ and NeuN or HuC/D allowed us identify migrant neurons. Quantitation of labeled nuclei indicates that the proportion of putative stem cells is around 10% in all regions of the brain. This percentage of stem cells suggests the existence of a constant brain cell population in Austrolebias charrua that seems functional to the maintainance of adult neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Brain penetration of telmisartan, a unique centrally acting angiotensin II type 1 receptor blocker, studied by PET in conscious rhesus macaques.

    PubMed

    Noda, Akihiro; Fushiki, Hiroshi; Murakami, Yoshihiro; Sasaki, Hiroshi; Miyoshi, Sosuke; Kakuta, Hirotoshi; Nishimura, Shintaro

    2012-11-01

    Telmisartan is a widely used, long-acting antihypertensive agent. Known to be a selective angiotensin II type 1 (AT(1)) receptor (AT(1)R) blocker (ARB), telmisartan acts as a partial agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and inhibits centrally mediated effects of angiotensin II in rats following peripheral administration, although the brain penetration of telmisartan remains unclear. We investigated the brain concentration and localization of telmisartan using (11)C-labeled telmisartan and positron emission tomography (PET) in conscious rhesus macaques. Three male rhesus macaques were bolus intravenously administered [(11)C]telmisartan either alone or as a mixture with unlabeled telmisartan (1mg/kg). Dynamic PET images were acquired for 95min following administration. Blood samples were collected for the analysis of plasma concentration and metabolites, and brain and plasma concentrations were calculated from detected radioactivity using the specific activity of the administered drug preparation, in which whole blood radioactivity was used for the correction of intravascular blood radioactivity in brain. Telmisartan penetrated into the brain little but enough to block AT(1)R and showed a consistently increasing brain/plasma ratio within the PET scanning period, suggesting slow clearance of the compound from the brain compared to the plasma clearance. Brain/plasma ratios at 30, 60, and 90min were 0.06, 0.13, and 0.18, respectively. No marked localization according to the AT(1)R distribution was noted over the entire brain, even on tracer alone dosing. Telmisartan penetrated into the brain enough to block AT(1)R and showed a slow clearance from the brain in conscious rhesus macaques, supporting the long-acting and central responses of telmisartan as a unique property among ARBs. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. How the Brain May Have Shaped Muscle Anatomy and Physiology: A Preliminary Study.

    PubMed

    Muchlinski, Magdalena N; Hemingway, Holden W; Pastor, Juan; Omstead, Kailey M; Burrows, Anne M

    2018-03-01

    Skeletal muscle fibers are often used to evaluate functional differences in locomotion. However, because there are energetic differences among muscle fiber cells, muscle fiber composition could be used to address evolutionary questions about energetics. Skeletal muscle is composed of two main types of fibers: Type I and II. The difference between the two can be reduced to how these muscle cells use oxygen and glucose. Type I fibers convert glucose to ATP using oxygen, while Type II fibers rely primarily on anaerobic metabolic processes. The expensive tissue hypothesis (ETH) proposes that the energetic demands imposed on the body by the brain result in a reduction in other expensive tissues (e.g., gastrointestinal tract). The original ETH dismisses the energetic demands of skeletal muscle, despite skeletal muscle being (1) an expensive tissue when active and (2) in direct competition for glucose with the brain. Based on these observations we hypothesize that larger brained primates will have relatively less muscle mass and a decrease in Type I fibers. As part of a larger study to test this hypothesis, we present data from 10 species of primates. We collected body mass, muscle mass, and biopsied four muscles from each specimen for histological procedures. We collected endocranial volumes from the literature. Using immunohistochemistry, a muscle fiber composition profile was created for each species sampled. Results show that larger brained primates have less muscle and fewer Type I fibers than primates with smaller brains. Results clarify the relationship between muscle mass and brain mass and illustrate how muscle mass could be used to address energetic questions. Anat Rec, 301:528-537, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  18. Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain.

    PubMed

    Bogen, I L; Jensen, V; Hvalby, O; Walaas, S I

    2009-01-12

    Inactivation of the genes encoding the neuronal, synaptic vesicle-associated proteins synapsin I and II leads to severe reductions in the number of synaptic vesicles in the CNS. We here define the postnatal developmental period during which the synapsin I and/or II proteins modulate synaptic vesicle number and function in excitatory glutamatergic synapses in mouse brain. In wild-type mice, brain levels of both synapsin I and synapsin IIb showed developmental increases during synaptogenesis from postnatal days 5-20, while synapsin IIa showed a protracted increase during postnatal days 20-30. The vesicular glutamate transporters (VGLUT) 1 and VGLUT2 showed synapsin-independent development during postnatal days 5-10, following which significant reductions were seen when synapsin-deficient brains were compared with wild-type brains following postnatal day 20. A similar, synapsin-dependent developmental profile of vesicular glutamate uptake occurred during the same age periods. Physiological analysis of the development of excitatory glutamatergic synapses, performed in the CA1 stratum radiatum of the hippocampus from the two genotypes, showed that both the synapsin-dependent part of the frequency facilitation and the synapsin-dependent delayed response enhancement were restricted to the period after postnatal day 10. Our data demonstrate that while both synaptic vesicle number and presynaptic short-term plasticity are essentially independent of synapsin I and II prior to postnatal day 10, maturation and function of excitatory synapses appear to be strongly dependent on synapsin I and II from postnatal day 20.

  19. Neurobehavioral changes and alteration of gene expression in the brains of metallothionein-I/II null mice exposed to low levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Masako; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2011-10-01

    This study examined the neurobehavioral changes and alteration in gene expression in the brains of metallothionein (MT)-I/II null mice exposed to low-levels of mercury vapor (Hg(0)) during postnatal development. MT-I/II null and wild-type mice were repeatedly exposed to Hg(0) at 0.030 mg/m(3) (range: 0.023-0.043 mg/m(3)), which was similar to the current threshold value (TLV), for 6 hr per day until the 20th day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning ability in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. Hg(0)-exposed MT-I/II null mice showed a significant decrease in total locomotor activity in females, though learning ability and spatial learning ability were not affected. Immediately after Hg(0) exposure, mercury concentrations in the brain did not exceed 0.5 µg/g in any animals. Hg(0) exposure resulted in significant alterations in gene expression in the brains of both strains using DNA microarray analysis. The number of altered genes in MT-I/II null mice was higher than that in wild-type mice and calcium-calmodulin kinase II (Camk2a) involved in learning and memory in down-regulated genes was detected. These results provide useful information to elucidate the development of behavioral toxicity following low-level exposure to Hg(0).

  20. Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors.

    PubMed

    DiBona, G F

    1999-01-01

    The role of the renin-angiotensin system in the control of sympathetic nerve activity is reviewed. Two general mechanisms are considered, one that involves the effects of circulating angiotensin II (AngII) on the central nervous system and a second that involves the central nervous system effects of AngII that originates within the central nervous system. The role of type 1 AngII receptors in discrete brain sites that mediate the sympathoexcitatory actions of AngII of either circulating or central nervous system origin is examined. AngII of circulating origin has ready access to the subfornical organ and area postrema, where it can bind to type 1 AngII receptors on neurons whose connections to the nucleus tractus solitarius and rostral ventrolateral medulla result in sympathoexcitation. In the rostral ventrolateral medulla, angiotensin peptides of central nervous system origin, likely involving angiotensin species in addition to AngII and binding to receptors other than type 1 or 2 AngII receptors, tonically support sympathetic nerve activity.

  1. Locomotor activity and tissue levels following acute ...

    EPA Pesticide Factsheets

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ

  2. [Co-administration of intranasally delivered insulin and proinsulin C-peptide to rats with the types 1 and 2 diabetes mellitus restores their metabolic parameters.

    PubMed

    Derkach, K V; Bondareva, V M; Shpakov, A O

    2017-01-01

    The C-peptide, the product of proinsulin proteolysis, not only is a signal molecule, but also, forming a complex with insulin, is able to modulate the signaling functions of insulin. The signaling systems sensitive to insulin in the hypothalamus and other brain areas are among the targets of insulin. We hypothesized that in systemic deficiency of insulin and C-peptide in the type 1 diabetes mellitus (DM) and in severe forms of the type 2 DM, the increase in the level of C-peptide in the CNS will improve central effects of insulin, including its influence on peripheral metabolism. To verify this, the influence of separate and co-administration of intranasal insulin (II) and C-peptide (IP) on their metabolic parameters and sensitivity to insulin in rats with acute and mild type 1 DM induced by the treatment with streptozotocin at the doses of 60 and 35 mg/kg and in rats with neonatal type 2 DM corresponding to severe long-term form of type 2 DM in human was studied. The treatment of animals with II and IP was carried out for 7 days in the daily doses of 20 and 10 μg/rat, respectively. The co-administration of II and IP leading to an increase of insulin and C-peptide levels in the brain was most effective. In rats with type 1 DM treated with the combination of II plus IP, hyperglycemia was decreased and weight loss was prevented. In rats with type 2 DM, co-administration of II and IP led to the normalization of glucose homeostasis and the increase in insulin sensitivity, as shown by glucose-tolerance and insulin-glucose tolerance tests, and to improvement of lipid metabolism, as demonstrated by the decrease in the atherogenic index. The effectiveness of monotherapy with II was lower than in the case of a combination of II+IP, while monotherapy with C-peptide had little effect on the indicators studied. Thus, the simultaneous increase of insulin and C-peptide levels in the brain in the conditions of their deficiency in diabetic pathology can be considered as one of the promising approaches to restore the central insulin-dependent regulation of peripheral metabolism and to improve the utilization of glucose in different forms of DM.

  3. 76 FR 45543 - Notice of Availability for Exclusive, Non-Exclusive, or Partially-Exclusive Licensing of U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Polypeptide II, a Biomarker for Use in Diagnosis of Brain Injury,'' and U.S. Patent Application Serial No. 12... and Treatment of Brain Injury,'' filed August 19, 2010. The United States Government, as represented... type of brain injury. Brenda S. Bowen, Army Federal Register Liaison Officer. [FR Doc. 2011-19205 Filed...

  4. Ganglioglioma of brain stem and cervicomedullary junction: A 50years review of literature.

    PubMed

    Janjua, M Burhan; Ivasyk, Iryna; Pisapia, David J; Souweidane, Mark M

    2017-10-01

    Gangliogliomas are rare low-grade brain tumors composed of both neoplastic glial and neuronal cell elements. The treatment modalities are relatively different in this location and hence factors affecting outcome are poorly understood. We identified 142 brain stem GG patients across 46 studies. The average age was 11.4years with significant difference b/w males and females under the age of 20 (p=0.001). 100% of tumors in the CMJ while, 72% of type I and 86% of type II tumors demonstrated contrast enhancement. 72% of type I and 86% of type II tumors demonstrated contrast enhancement. All BRAF mutation positive tumors demonstrated contrast enhancement. Medulla and pons was the most favorable location followed by medulla alone, and the CMJ. In all tumors "gross total resection" (GTR, 16%), "subtotal resection" (STR, 48%) or "partial resection" (PR, 36%) was achieved. Most subtypes II and III were partially resected (86% and 66%), while, subtype I underwent STR (66%). Only 55% of the patients were positive for the BRAF V600E mutation. The overall survival dropped from 50% at 24 to 10% at 60months, postoperatively. Through this review, we found that an early diagnosis, location, and with the imaging characteristics are vital part of the preoperative planning. Surgical resection is highly dependent on location in the brain stem with radical resection only limited to the most contrast enhancing portion of these tumors. BRAF V600E mutation status should be considered to allow the possibility of targeted therapy in case of a residual tumor and/or regrowth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria

    PubMed Central

    Basu-Roy, Upal; Ty, Maureen; Alique, Matilde; Fernandez-Arias, Cristina; Movila, Alexandru; Gomes, Pollyanna; Edagha, Innocent; Wassmer, Samuel C.; Walther, Thomas

    2016-01-01

    Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum–infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter–endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin–induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC–induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised. PMID:27643439

  6. Blockade of AT1 Receptors Protects the Blood–Brain Barrier and Improves Cognition in Dahl Salt-Sensitive Hypertensive Rats

    PubMed Central

    Pelisch, Nicolas; Hosomi, Naohisa; Ueno, Masaki; Nakano, Daisuke; Hitomi, Hirofumi; Mogi, Masaki; Shimada, Kenji; Kobori, Hiroyuki; Horiuchi, Masatsugu; Sakamoto, Haruhiko; Matsumoto, Masayasu; Kohno, Masakazu; Nishiyama, Akira

    2011-01-01

    BACKGROUND The present study tested the hypothesis that inappropriate activation of the brain renin–angiotensin system (RAS) contributes to the pathogenesis of blood–brain barrier (BBB) disruption and cognitive impairment during development of salt-dependent hypertension. Effects of an angiotensin II (AngII) type-1 receptor blocker (ARB), at a dose that did not reduce blood pressure, were also examined. METHODS Dahl salt-sensitive (DSS) rats at 6 weeks of age were assigned to three groups: low-salt diet (DSS/L; 0.3% NaCl), high-salt diet (DSS/H; 8% NaCl), and high-salt diet treated with ARB, olmesartan at 1 mg/kg. RESULTS DSS/H rats exhibited hypertension, leakage from brain microvessels in the hippocampus, and impaired cognitive functions, which were associated with increased brain AngII levels, as well as decreased mRNA levels of tight junctions (TJs) and collagen-IV in the hippocampus. In DSS/H rats, olmesartan treatment, at a dose that did not alter blood pressure, restored the cognitive decline, and ameliorated leakage from brain microvessels. Olmesartan also decreased brain AngII levels and restored mRNA expression of TJs and collagen-IV in DSS/H rats. CONCLUSIONS These results suggest that during development of salt-dependent hypertension, activation of the brain RAS contributes to BBB disruption and cognitive impairment. Treatment with an ARB could elicit neuroprotective effects in cognitive disorders by preventing BBB permeability, which is independent of blood pressure changes. PMID:21164491

  7. Short-term exposure of mice to gasoline vapor increases the metallothionein expression in the brain, lungs and kidney.

    PubMed

    Grebić, D; Jakovac, H; Mrakovcić-Sutić, I; Tomac, J; Bulog, A; Micović, V; Radosević-Stasić, B

    2007-06-01

    Environmental airborne pollution has been repeatedly shown to affect multiple aspects of brain and cardiopulmonary function, leading to cognitive and behavioral changes and to the pronounced inflammatory response in the respiratory airways. Since in the cellular defense system the important role might have stress proteins-metallothionein (MT)-I and MT-II, which are involved in sequestration and dispersal of metal ions, regulation of the biosynthesis and activities of zinc-dependent transcription factors, as well as in cellular protection from reactive oxygen species, genotoxicity and apoptosis, in this study we investigated their expression in the brain, lungs and kidney, following intermittent exposure of mice to gasoline vapor. Control groups consisted of intact mice and of those closed in the metabolic chamber and ventilated with fresh air. The data obtained by immunohistochemistry showed that gasoline inhalation markedly upregulated the MTs expression in tissues which were directly or indirectly exposed to toxic components, significantly increasing the number of MT I+II positive cells in CNS (the entorhinal cortex, ependymal cells, astroglial cells in subventricular zone and inside the brain parenchyma, subgranular and CA1-CA3 zone of the dentate gyrus in hippocampus and macrophages-like cells in perivascular spaces), in the lungs (pneumocytes type I and type II) and in the kidneys (parietal wall of Bowman capsule, proximal and distal tubules). The data point to the protective and growth-regulatory effects of MT I + II on places of injuries, induced by inhalation of gasoline vapor.

  8. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    PubMed

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  9. Loss of vitamin D receptor produces polyuria by increasing thirst.

    PubMed

    Kong, Juan; Zhang, Zhongyi; Li, Dongdong; Wong, Kari E; Zhang, Yan; Szeto, Frances L; Musch, Mark W; Li, Yan Chun

    2008-12-01

    Vitamin D receptor (VDR)-null mice develop polyuria, but the underlying mechanism remains unknown. In this study, we investigated the relationship between vitamin D and homeostasis of water and electrolytes. VDR-null mice had polyuria, but the urine osmolarity was normal as a result of high salt excretion. The urinary responses to water restriction and to vasopressin were similar between wild-type and VDR-null mice, suggesting intact fluid-handling capacity in VDR-null mice. Compared with wild-type mice, however, renin and angiotensin II were dramatically upregulated in the kidney and brain of VDR-null mice, leading to a marked increase in water intake and salt appetite. Angiotensin II-mediated upregulation of intestinal NHE3 expression partially explained the increased salt absorption and excretion in VDR-null mice. In the brain of VDR-null mice, expression of c-Fos, which is known to associate with increased water intake, was increased in the hypothalamic paraventricular nucleus and the subfornical organ. Treatment with an angiotensin II type 1 receptor antagonist normalized water intake, urinary volume, and c-Fos expression in VDR-null mice. Furthermore, despite a salt-deficient diet to reduce intestinal salt absorption, VDR-null mice still maintained the increased water intake and urinary output. Together, these data indicate that the polyuria observed in VDR-null mice is not caused by impaired renal fluid handling or increased intestinal salt absorption but rather is the result of increased water intake induced by the increase in systemic and brain angiotensin II.

  10. Direct stimulation of angiotensin II type 2 receptor initiated after stroke ameliorates ischemic brain damage.

    PubMed

    Min, Li-Juan; Mogi, Masaki; Tsukuda, Kana; Jing, Fei; Ohshima, Kousei; Nakaoka, Hirotomo; Kan-No, Harumi; Wang, Xiao-Li; Chisaka, Toshiyuki; Bai, Hui-Yu; Iwanami, Jun; Horiuchi, Masatsugu

    2014-08-01

    Stroke is a leading cause of death and disability; however, meta-analysis of randomized controlled trials of blood pressure-lowering drugs in acute stroke has shown no definite evidence of a beneficial effect on functional outcome. Accumulating evidence suggests that angiotensin II type 1 receptor blockade with angiotensin II type 2 (AT2) receptor stimulation could contribute to protection against ischemic brain damage. We examined the possibility that direct AT2 receptor stimulation by compound 21 (C21) initiated even after stroke can prevent ischemic brain damage. Stroke was induced by middle cerebral artery (MCA) occlusion, and the area of cerebral infarction was measured by magnetic resonant imaging. C21 (10 µg/kg/day) treatment was initiated immediately after MCA occlusion by intraperitoneal injection followed by treatment with C21 once daily. We observed that ischemic area was enlarged in a time dependent fashion and decreased on day 5 after MCA occlusion. Treatment with C21 initiated after MCA occlusion significantly reduced the ischemic area, with improvement of neurological deficit in a time-dependent manner without affecting blood pressure. The decrease of cerebral blood flow after MCA occlusion was also ameliorated by C21 treatment. Moreover, treatment with C21 significantly attenuated superoxide anion production and expression of proinflammatory cytokines, monocyte chemoattractant protein 1, and tumor necrosis factor α. Interestingly, C21 administration significantly decreased blood-brain barrier permeability and cerebral edema on the ischemic side. These results provide new evidence that direct AT2 receptor stimulation with C21 is a novel therapeutic approach to prevent ischemic brain damage after acute stroke. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Identifying stereotypic evolving micro-scale seizures (SEMS) in the hypoxic-ischemic EEG of the pre-term fetal sheep with a wavelet type-II fuzzy classifier.

    PubMed

    Abbasi, Hamid; Bennet, Laura; Gunn, Alistair J; Unsworth, Charles P

    2016-08-01

    Perinatal hypoxic-ischemic encephalopathy (HIE) around the time of birth due to lack of oxygen can lead to debilitating neurological conditions such as epilepsy and cerebral palsy. Experimental data have shown that brain injury evolves over time, but during the first 6-8 hours after HIE the brain has recovered oxidative metabolism in a latent phase, and brain injury is reversible. Treatments such as therapeutic cerebral hypothermia (brain cooling) are effective when started during the latent phase, and continued for several days. Effectiveness of hypothermia is lost if started after the latent phase. Post occlusion monitoring of particular micro-scale transients in the hypoxic-ischemic (HI) Electroencephalogram (EEG), from an asphyxiated fetal sheep model in utero, could provide precursory evidence to identify potential biomarkers of injury when brain damage is still treatable. In our studies, we have reported how it is possible to automatically detect HI EEG transients in the form of spikes and sharp waves during the latent phase of the HI EEG of the preterm fetal sheep. This paper describes how to identify stereotypic evolving micro-scale seizures (SEMS) which have a relatively abrupt onset and termination in a frequency range of 1.8-3Hz (Delta waves) superimposed on a suppressed EEG amplitude background post occlusion. This research demonstrates how a Wavelet Type-II Fuzzy Logic System (WT-Type-II-FLS) can be used to automatically identify subtle abnormal SEMS that occur during the latent phase with a preliminary average validation overall performance of 78.71%±6.63 over the 390 minutes of the latent phase, post insult, using in utero pre-term hypoxic fetal sheep models.

  12. Assessment: transcranial Doppler ultrasonography: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology.

    PubMed

    Sloan, M A; Alexandrov, A V; Tegeler, C H; Spencer, M P; Caplan, L R; Feldmann, E; Wechsler, L R; Newell, D W; Gomez, C R; Babikian, V L; Lefkowitz, D; Goldman, R S; Armon, C; Hsu, C Y; Goodin, D S

    2004-05-11

    To review the use of transcranial Doppler ultrasonography (TCD) and transcranial color-coded sonography (TCCS) for diagnosis. The authors searched the literature for evidence of 1) if TCD provides useful information in specific clinical settings; 2) if using this information improves clinical decision making, as reflected by improved patient outcomes; and 3) if TCD is preferable to other diagnostic tests in these clinical situations. TCD is of established value in the screening of children aged 2 to 16 years with sickle cell disease for stroke risk (Type A, Class I) and the detection and monitoring of angiographic vasospasm after spontaneous subarachnoid hemorrhage (Type A, Class I to II). TCD and TCCS provide important information and may have value for detection of intracranial steno-occlusive disease (Type B, Class II to III), vasomotor reactivity testing (Type B, Class II to III), detection of cerebral circulatory arrest/brain death (Type A, Class II), monitoring carotid endarterectomy (Type B, Class II to III), monitoring cerebral thrombolysis (Type B, Class II to III), and monitoring coronary artery bypass graft operations (Type B to C, Class II to III). Contrast-enhanced TCD/TCCS can also provide useful information in right-to-left cardiac/extracardiac shunts (Type A, Class II), intracranial occlusive disease (Type B, Class II to IV), and hemorrhagic cerebrovascular disease (Type B, Class II to IV), although other techniques may be preferable in these settings.

  13. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders

    PubMed Central

    SAAVEDRA, Juan M.

    2012-01-01

    The effects of brain AngII (angiotensin II) depend on AT1 receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT1 receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood–brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT1 receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT1 receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer’s disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer’s disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic brain injury. PMID:22827472

  14. Angiotensin II Causes Neuronal Damage in Stretch-Injured Neurons: Protective Effects of Losartan, an Angiotensin T1 Receptor Blocker.

    PubMed

    Abdul-Muneer, P M; Bhowmick, Saurav; Briski, Nicholas

    2017-11-08

    Angiotensin II (Ang II) is a mediator of oxidative stress via activation/induction of reactive oxygen and nitrogen species-generating enzymes, NADPH oxidase (NOX) and inducible nitric oxide synthase (iNOS). We investigated the hypothesis that overproduction of Ang II during traumatic brain injury (TBI) induces the activation of the oxidative stress, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury. We first established that stretch injury causes a rapid increase in the level of Ang II, which causes the release of pro-inflammatory cytokines, IL-1β and TNF-α, via the induction of oxidative stress. Since angiotensin-converting enzyme (ACE) mediates the production of Ang II via the conversion of Ang I into Ang II, we analyzed the expression of ACE by western blotting. Further, we analyzed caspase-3-mediated apoptosis by TUNEL staining and annexin V western blotting. Angiotensin type I (AT 1 ) receptor antagonist losartan attenuated Ang II-induced oxidative stress and associated neuroinflammation and cell death in cultured neurons. Remarkably, we noticed that the expression of Ang II type 1 receptor (AngT 1 R) upregulated in neuronal stretch injury; losartan mitigates this upregulation. Findings from this study significantly extend our understanding of the pathophysiology of TBI and may have significant implications for developing therapeutic strategies for TBI-associated brain dysfunctions.

  15. High-Fructose Consumption Impairs the Redox System and Protein Quality Control in the Brain of Syrian Hamsters: Therapeutic Effects of Melatonin.

    PubMed

    Bermejo-Millo, Juan Carlos; Guimarães, Marcela Rodrigues Moreira; de Luxán-Delgado, Beatriz; Potes, Yaiza; Pérez-Martínez, Zulema; Díaz-Luis, Andrea; Caballero, Beatriz; Solano, Juan José; Vega-Naredo, Ignacio; Coto-Montes, Ana

    2018-02-28

    Although numerous studies have demonstrated the harmful effect of excessive fructose consumption at the systemic level, there is little information on its effects in the central nervous system. The purpose of the present work was to study the cellular alterations related to oxidative stress and protein quality control systems induced by a high-fructose diet in the brain of Syrian hamsters and their possible attenuation by exogenous melatonin. High-fructose intake induced type II diabetes together with oxidative damage, led to alterations of the unfolded protein response by activating the eIF2α branch, and impaired the macroautophagic machinery in the brain, favoring the accumulation of aggregates labeled for selective degradation and neurodegeneration markers such as β-amyloid (1-42), tau-p-S199, and tau-p-S404. Melatonin attenuated the manifestation of type II diabetes and reduced oxidative stress, deactivated eIF2α, and decreased tau-p-S404 levels in the brain of animals fed a high-fructose diet.

  16. Three types of ependymal cells with intracellular calcium oscillation are characterized by distinct cilia beating properties.

    PubMed

    Liu, Tongyu; Jin, Xingjian; Prasad, Rahul M; Sari, Youssef; Nauli, Surya M

    2014-09-01

    Ependymal cells are multiciliated epithelial cells that line the ventricles in the adult brain. Abnormal function or structure of ependymal cilia has been associated with various neurological deficits. For the first time, we report three distinct ependymal cell types, I, II, and III, based on their unique ciliary beating frequency and beating angle. These ependymal cells have specific localizations within the third ventricle of the mouse brain. Furthermore, neither ependymal cell types nor their localizations are altered by aging. Our high-speed fluorescence imaging analysis reveals that these ependymal cells have an intracellular pacing calcium oscillation property. Our study further shows that alcohol can significantly repress the amplitude of calcium oscillation and the frequency of ciliary beating, resulting in an overall decrease in volume replacement by the cilia. Furthermore, the pharmacological agent cilostazol could differentially increase cilia beating frequency in type II, but not in type I or type III, ependymal cells. In summary, we provide the first evidence of three distinct types of ependymal cells with calcium oscillation properties. © 2014 Wiley Periodicals, Inc.

  17. Excess of Aminopeptidase A in the Brain Elevates Blood Pressure via the Angiotensin II Type 1 and Bradykinin B2 Receptors without Dipsogenic Effect

    PubMed Central

    Ishida, Akio; Ohya, Yusuke

    2017-01-01

    Aminopeptidase A (APA) cleaves angiotensin (Ang) II, kallidin, and other related peptides. In the brain, it activates the renin angiotensin system and causes hypertension. Limited data are available on the dipsogenic effect of APA and pressor effect of degraded peptides of APA such as bradykinin. Wistar-Kyoto rats received intracerebroventricular (icv) APA in a conscious, unrestrained state after pretreatment with (i) vehicle, (ii) 80 μg of telmisartan, an Ang II type-1 (AT1) receptor blocker, (iii) 800 nmol of amastatin, an aminopeptidase inhibitor, and (iv) 1 nmol of HOE-140, a bradykinin B2 receptor blocker. Icv administration of 400 and 800 ng of APA increased blood pressure by 12.6 ± 3.0 and 19.0 ± 3.1 mmHg, respectively. APA did not evoke drinking behavior. Pressor response to APA was attenuated on pretreatment with telmisartan (vehicle: 22.1 ± 2.2 mmHg versus telmisartan: 10.4 ± 3.2 mmHg). Pressor response to APA was also attenuated with amastatin and HOE-140 (vehicle: 26.5 ± 1.1 mmHg, amastatin: 14.4 ± 4.2 mmHg, HOE-140: 16.4 ± 2.2 mmHg). In conclusion, APA increase in the brain evokes a pressor response via enzymatic activity without dipsogenic effect. AT1 receptors and B2 receptors in the brain may contribute to the APA-induced pressor response. PMID:28421141

  18. Angiotensin II potentiates zinc-induced cortical neuronal death by acting on angiotensin II type 2 receptor.

    PubMed

    Park, Mi-Ha; Kim, Ha Na; Lim, Joon Seo; Ahn, Jae-Sung; Koh, Jae-Young

    2013-12-01

    The angiotensin system has several non-vascular functions in the central nervous system. For instance, inhibition of the brain angiotensin system results in a reduction in neuronal death following acute brain injury such as ischemia and intracerebral hemorrhage, even under conditions of constant blood pressure. Since endogenous zinc has been implicated as a key mediator of ischemic neuronal death, we investigated the possibility that the angiotensin system affects the outcome of zinc-triggered neuronal death in cortical cell cultures. Exposure of cortical cultures containing neurons and astrocytes to 300 μM zinc for 15 min induced submaximal death in both types of cells. Interestingly, addition of angiotensin II significantly enhanced the zinc-triggered neuronal death, while leaving astrocytic cell death relatively unchanged. Both type 1 and 2 angiotensin II receptors (AT1R and AT2R, respectively) were expressed in neurons as well as astrocytes. Zinc neurotoxicity was substantially attenuated by PD123319, a specific inhibitor of AT2R, and augmented by CGP42112, a selective activator of AT2R, indicating a critical role for this receptor subtype in the augmentation of neuronal cell death.Because zinc toxicity occurs largely through oxidative stress, the levels of superoxides in zinc-treated neurons were assessed by DCF fluorescence microscopy. Combined treatment with zinc and angiotensin II substantially increased the levels of superoxides in neurons compared to those induced by zinc alone. This increase in oxidative stress by angiotensin II was completely blocked by the addition of PD123319. Finally, since zinc-induced oxidative stress may be caused by induction and/or activation of NADPH oxidase, the activation status of Rac and the level of the NADPH oxidase subunit p67phox were measured. Angiotensin II markedly increased Rac activity and the levels of p67phox in zinc-treated neurons and astrocytes in a PD123319-dependent manner. The present study shows that the angiotensin system, especially that involving AT2R, may have an oxidative injury-potentiating effect via augmentation of the activity of NADPH oxidase. Hence, blockade of angiotensin signaling cascades in the brain may prove useful in protecting against the oxidative neuronal death that is likely to occur in acute brain injury.

  19. Majewski osteodysplastic primordial dwarfism type II (MOPD II) complicated by stroke: clinical report and review of cerebral vascular anomalies.

    PubMed

    Brancati, Francesco; Castori, Marco; Mingarelli, Rita; Dallapiccola, Bruno

    2005-12-15

    We report on a 2 9/12-year-old boy with disproportionate short stature, microcephaly, subtle craniofacial dysmorphisms, and generalized skeletal dysplasia, who developed a left hemiparesis. Brain neuroimaging disclosed a complex cerebral vascular anomaly (CVA) with stenosis of the right anterior cerebral artery and telangiectatic collateral vessels supplying the cerebral cortex, consistent with moyamoya disease. Based on clinical and skeletal features, a diagnosis of Majewski osteodysplastic primordial dwarfism type II (MOPD II) was established. Review of 16 published patients with CVA affected by either Seckel syndrome or MOPD II suggested that CVA is preferentially associated to the latter subtype affecting about 1/4 of the patients. 2005 Wiley-Liss, Inc.

  20. Factors Affecting the Risk of Brain Metastasis in Small Cell Lung Cancer With Surgery: Is Prophylactic Cranial Irradiation Necessary for Stage I-III Disease?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong Linlin; Wang, Q.I.; Zhao Lujun

    2013-01-01

    Purpose: The use of prophylactic cranial irradiation (PCI) in small cell lung cancer (SCLC) with surgical resection has not been fully identified. This study undertook to assess the factors affecting the risk of brain metastases in patients with stage I-III SCLC after surgical resection. The implications of PCI treatment for these patients are discussed. Methods and Materials: One hundred twenty-six patients treated with surgical resection for stage I-III SCLC from January 1998-December 2009 were retrospectively analyzed to elucidate the risk factors of brain metastases. Log-rank test and Cox regression model were used to determine the risk factors of brain metastases.more » Results: The median survival time for this patient population was 34 months, and the 5-year overall survival rate was 34.9%. For the whole group, 23.0% (29/126) of the patients had evidence of metastases to brain. Pathologic stage not only correlated with overall survival but also significantly affected the risk of brain metastases. The 5-year survival rates for patients with pathologic stages I, II, and III were 54.8%, 35.6%, and 14.1%, respectively (P=.001). The frequency of brain metastases in patients with pathologic stages I, II, and III were 6.25% (2/32), 28.2% (11/39), and 29.1% (16/55) (P=.026), respectively. A significant difference in brain metastases between patients with complete resection and incomplete resection was also observed (20.5% vs 42.9%, P=.028). The frequency of brain metastases was not found to be correlated with age, sex, pathologic type, induction chemotherapy, adjuvant chemotherapy, or adjuvant radiation therapy. Conclusions: Stage I SCLC patients with complete resection had a low incidence of brain metastases and a favorable survival rate. Stage II-III disease had a higher incidence of brain metastases. Thus, PCI might have a role for stage II-III disease but not for stage I disease.« less

  1. A brain-penetrant RAF dimer antagonist for the noncanonical BRAF oncoprotein of pediatric low-grade astrocytomas.

    PubMed

    Sun, Yu; Alberta, John A; Pilarz, Catherine; Calligaris, David; Chadwick, Emily J; Ramkissoon, Shakti H; Ramkissoon, Lori A; Garcia, Veronica Matia; Mazzola, Emanuele; Goumnerova, Liliana; Kane, Michael; Yao, Zhan; Kieran, Mark W; Ligon, Keith L; Hahn, William C; Garraway, Levi A; Rosen, Neal; Gray, Nathanael S; Agar, Nathalie Y; Buhrlage, Sara J; Segal, Rosalind A; Stiles, Charles D

    2017-06-01

    Activating mutations or structural rearrangements in BRAF are identified in roughly 75% of all pediatric low-grade astrocytomas (PLGAs). However, first-generation RAF inhibitors approved for adult melanoma have poor blood-brain penetrance and are only effective on tumors that express the canonical BRAFV600E oncoprotein, which functions as a monomer. These drugs (type I antagonists that target the "DFG-in" conformation of the kinase) fail to block signaling via KIAA1549:BRAF, a truncation/fusion BRAF oncoprotein which functions as a dimer and is found in the most common form of PLGA. A panel of small molecule RAF inhibitors (including type II inhibitors, targeting the "DFG-out" conformation of the kinase) was screened for drugs showing efficacy on murine models of PLGA and on authentic human PLGA cells expressing KIAA1549:BRAF. We identify a type II RAF inhibitor that serves as an equipotent antagonist of BRAFV600E, KIAA1549:BRAF, and other noncanonical BRAF oncoproteins that function as dimers. This drug (MLN2480, also known as TAK-580) has good brain penetrance and is active on authentic human PLGA cells in brain organotypic cultures. MLN2480 may be an effective therapeutic for BRAF mutant pediatric astrocytomas. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Loss of Vitamin D Receptor Produces Polyuria by Increasing Thirst

    PubMed Central

    Kong, Juan; Zhang, Zhongyi; Li, Dongdong; Wong, Kari E.; Zhang, Yan; Szeto, Frances L.; Musch, Mark W.; Li, Yan Chun

    2008-01-01

    Vitamin D receptor (VDR)-null mice develop polyuria, but the underlying mechanism remains unknown. In this study, we investigated the relationship between vitamin D and homeostasis of water and electrolytes. VDR-null mice had polyuria, but the urine osmolarity was normal as a result of high salt excretion. The urinary responses to water restriction and to vasopressin were similar between wild-type and VDR-null mice, suggesting intact fluid-handling capacity in VDR-null mice. Compared with wild-type mice, however, renin and angiotensin II were dramatically upregulated in the kidney and brain of VDR-null mice, leading to a marked increase in water intake and salt appetite. Angiotensin II–mediated upregulation of intestinal NHE3 expression partially explained the increased salt absorption and excretion in VDR-null mice. In the brain of VDR-null mice, expression of c-Fos, which is known to associate with increased water intake, was increased in the hypothalamic paraventricular nucleus and the subfornical organ. Treatment with an angiotensin II type 1 receptor antagonist normalized water intake, urinary volume, and c-Fos expression in VDR-null mice. Furthermore, despite a salt-deficient diet to reduce intestinal salt absorption, VDR-null mice still maintained the increased water intake and urinary output. Together, these data indicate that the polyuria observed in VDR-null mice is not caused by impaired renal fluid handling or increased intestinal salt absorption but rather is the result of increased water intake induced by the increase in systemic and brain angiotensin II. PMID:18832438

  3. Type II fuzzy systems for amyloid plaque segmentation in transgenic mouse brains for Alzheimer's disease quantification

    NASA Astrophysics Data System (ADS)

    Khademi, April; Hosseinzadeh, Danoush

    2014-03-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly characterized by extracellular deposition of amyloid plaques (AP). Using animal models, AP loads have been manually measured from histological specimens to understand disease etiology, as well as response to treatment. Due to the manual nature of these approaches, obtaining the AP load is labourious, subjective and error prone. Automated algorithms can be designed to alleviate these challenges by objectively segmenting AP. In this paper, we focus on the development of a novel algorithm for AP segmentation based on robust preprocessing and a Type II fuzzy system. Type II fuzzy systems are much more advantageous over the traditional Type I fuzzy systems, since ambiguity in the membership function may be modeled and exploited to generate excellent segmentation results. The ambiguity in the membership function is defined as an adaptively changing parameter that is tuned based on the local contrast characteristics of the image. Using transgenic mouse brains with AP ground truth, validation studies were carried out showing a high degree of overlap and low degree of oversegmentation (0.8233 and 0.0917, respectively). The results highlight that such a framework is able to handle plaques of various types (diffuse, punctate), plaques with varying Aβ concentrations as well as intensity variation caused by treatment effects or staining variability.

  4. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Virginia C., E-mail: Moser.ginger@epa.gov

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavagemore » dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administered dose, the differences based on internal concentrations were less, with γ-cyhalothrin being 1.3- to 1.6-fold more potent than λ-cyhalothrin. These potency differences are consistent with the purity of the λ-isomer (approximately 43%) compared to the enriched isomer γ-cyhalothrin (approximately 98%). Thus, administered dose as well as differences in cyhalothrin isomers is a good predictor of behavioral effects. - Highlights: • Acute changes in locomotor activity were produced by λ- and γ-cyhalothrin. • γ-Cyhalothrin was about 2-fold more potent than λ-cyhalothrin. • Brain and plasma levels were tightly correlated across doses. • Activity changes correlated well with brain and plasma concentrations.« less

  5. Pyrethroid insecticides and radioligand displacement from the GABA receptor chloride ionophore complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crofton, K.M.; Reiter, L.W.; Mailman, R.B.

    1987-01-01

    Radioligand binding displacement studies were conducted to determine the effects of Type I and II pyrethroids on /sup 3/H-flunitrazepam (FLU), /sup 3/H-muscimol (MUS), and (/sup 35/S-t-butylbicyclophosphorothionate (TBPS) binding. Competition experiments with /sup 3/H-FLU and /sup 3/H-MUS indicate a lack of competition for binding by the pyrethroids. Type I pyrethroids failed to compete for the binding of (/sup 35/S-TBPS at concentrations as high as 50 pM. Type II pyrethroids inhibited (/sup 35/S-TBPS binding to rat brain synaptosomes with Ki values ranging from 5-10 pM. The data presented suggest that the interaction of Type II pyrethroids with the GABA receptor-ionophore complex ismore » restricted to a site near the TBPS/picrotoxinin binding site.« less

  6. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry

    PubMed Central

    Nolan, Elizabeth M.; Lippard, Stephen J.

    2008-01-01

    Conspectus Metal ions are involved in many neurobiological processes relevant to human health and disease. The metalloneurochemistry of Zn(II) is of substantial current interest. Zinc is the second most abundant d-block metal ion in the human brain and its distribution varies, with relatively high concentrations found in the hippocampus. Brain zinc is generally divided into two categories: protein-bound and loosely-bound. The latter pool is also referred to as histochemically observable, chelatable, labile, or mobile zinc. The neurophysiological and neuropathological significance of such mobile Zn(II) remains enigmatic. Studies of Zn(II) distribution, translocation, and function in vivo require tools for its detection. Because Zn(II) has a closed-shell d10 configuration and no convenient spectroscopic signature, fluorescence is a suitable method for monitoring Zn(II) in biological contexts. This Account summarizes work by our laboratory addressing the design, preparation, characterization, and use of small-molecule fluorescent sensors for imaging mobile Zn(II) in living cells and samples of brain tissue. These sensors provide “turn-on” or ratiometric Zn(II) detection in aqueous solution at neutral pH. By making alterations to the Zn(II)-binding unit and fluorophore platform, we have devised sensors with varied photophysical and metal-binding properties. We used several of these probes to image Zn(II) distribution, uptake, and mobilization in a variety of cell types, including neuronal cultures. Goals for the future include developing strategies for multi-color imaging, further defining the quenching and turn-on mechanisms of the sensors, and employing the probes to elucidate the functional significance of Zn(II) in neurobiology. PMID:18989940

  7. Moving beyond Type I and Type II neuron types.

    PubMed

    Skinner, Frances K

    2013-01-01

    In 1948, Hodgkin delineated different classes of axonal firing.  This has been mathematically translated allowing insight and understanding to emerge.  As such, the terminology of 'Type I' and 'Type II' neurons is commonplace in the Neuroscience literature today.  Theoretical insights have helped us realize that, for example, network synchronization depends on whether neurons are Type I or Type II.  Mathematical models are precise with analyses (considering Type I/II aspects), but experimentally, the distinction can be less clear.  On the other hand, experiments are becoming more sophisticated in terms of distinguishing and manipulating particular cell types but are limited in terms of being able to consider network aspects simultaneously.   Although there is much work going on mathematically and experimentally, in my opinion it is becoming common that models are either superficially linked with experiment or not described in enough detail to appreciate the biological context.  Overall, we all suffer in terms of impeding our understanding of brain networks and applying our understanding to neurological disease.  I suggest that more modelers become familiar with experimental details and that more experimentalists appreciate modeling assumptions. In other words, we need to move beyond our comfort zones.

  8. Neurons of human nucleus accumbens.

    PubMed

    Sazdanović, Maja; Sazdanović, Predrag; Zivanović-Macuzić, Ivana; Jakovljević, Vladimir; Jeremić, Dejan; Peljto, Amir; Tosevski, Jovo

    2011-08-01

    Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I--fusiform neurons; type II--fusiform neurons with lateral dendrite, arising from a part of the cell body; type III--pyramidal-like neuron; type IV--multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV--multipolar neurons. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV--multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  9. A human-specific mutation leads to the origin of a novel splice form of neuropsin (KLK8), a gene involved in learning and memory.

    PubMed

    Lu, Zhi-xiang; Peng, Jia; Su, Bing

    2007-10-01

    Neuropsin (kallikrein 8, KLK8) is a secreted-type serine protease preferentially expressed in the central nervous system and involved in learning and memory. Its splicing pattern is different in human and mouse, with the longer form (type II) only expressed in human. Sequence analysis suggested a recent origin of type II during primate evolution. Here we demonstrate that the type II form is absent in nonhuman primates, and is thus a human-specific splice form. With the use of an in vitro splicing assay, we show that a human-specific T to A mutation (c.71-127T>A) triggers the change of splicing pattern, leading to the origin of a novel splice form in the human brain. Using mutation assay, we prove that this mutation is not only necessary but also sufficient for type II expression. Our results demonstrate a molecular mechanism for the creation of novel proteins through alternative splicing in the central nervous system during human evolution. Copyright 2007 Wiley-Liss, Inc.

  10. Association between brain structural anomalies, electroencephalogram and history of seizures in Mucopolysaccharidosis type II (Hunter syndrome).

    PubMed

    Jiménez-Arredondo, Ramón Ernesto; Brambila-Tapia, Aniel Jessica Leticia; Mercado-Silva, Francisco Miguel; Ortiz-Aranda, Martha; Benites-Godinez, Verónica; Olmos-García-de-Alba, Graciela; Figuera, Luis Eduardo

    2017-03-01

    Mucopolysaccharidosis type II or Hunter syndrome (MPS II) is a genetic disease that can course with intellectual impairment and central nervous system (CNS) alterations. To date, no report has documented electroencephalogram (EEG) measures associated with CNS alterations, detected by imaging studies, and the history of seizures in patients with MPS II. Therefore, we decided to search this association. We included 9 patients with MPS II and performed imaging studies of the brain to detect the presence of cortico-subcortical atrophy, enlarged subarachnoid space and supratentorial ventricular size. Additionally, we performed EEG studies in sleep and awake conditions and a complete clinical description. Five out of the nine patients presented history of seizures and all except one patient (88.9%) presented some CNS structural alteration in the imaging studies, being the most frequent the cortico-subcortical atrophy (77.8%). The EEG results showed low amplitude in all patients and low voltage in sleep condition in eight patients with interhemispheric asymmetry in six patients during awake and sleep conditions. Although the five patients with history of seizures did not present a distinctive EEG anomaly, four of them presented some structural alteration in the imaging studies. In conclusion, most patients presented structural alterations in the CNS; likewise, all of them presented EEG anomalies mainly during sleep conditions. However, a clear association between EEG, CNS and the history of seizures was not established.

  11. Losartan Improves Impaired Nitric Oxide Synthase-Dependent Dilatation of Cerebral Arterioles in Type 1 Diabetic Rats

    PubMed Central

    Arrick, Denise M.; Sharpe, Glenda M.; Sun, Hong; Mayhan, William G.

    2009-01-01

    We examined whether activation of angiotensin-1 receptors (AT1R) could account for impaired responses of cerebral arterioles during Type 1 diabetes (T1D). First, we measured responses of cerebral arterioles in nondiabetic rats to eNOS-dependent (acetylcholine and adenosine diphosphate (ADP)) and -independent (nitroglycerin) agonists before and during application of angiotensin II. Next, we examined whether losartan could improve impaired responses of cerebral arterioles during T1D. In addition, we harvested cerebral microvessels for Western blot analysis of AT1R protein and measured production of superoxide anion by brain tissue under basal conditions and in response to angiotensin II in the absence or presence of losartan. We found that angiotensin II specifically impaired eNOS-dependent reactivity of cerebral arterioles. In addition, while losartan did not alter responses in nondiabetics, losartan restored impaired eNOS-dependent vasodilatation in diabetics. Further, AT1R protein was higher in diabetics compared to nondiabetics. Finally, superoxide production was higher in brain tissue from diabetics compared to nondiabetics under basal conditions, angiotensin II increased superoxide production in nondiabetics and diabetics, and losartan decreased basal (diabetics) and angiotensin II-induced production of superoxide (nondiabetics and diabetics). We suggest that activation of AT1R during T1D plays a critical role in impaired eNOS-dependent dilatation of cerebral arterioles. PMID:18400212

  12. Specifying the brain anatomy underlying temporo-parietal junction activations for theory of mind: A review using probabilistic atlases from different imaging modalities.

    PubMed

    Schurz, Matthias; Tholen, Matthias G; Perner, Josef; Mars, Rogier B; Sallet, Jerome

    2017-09-01

    In this quantitative review, we specified the anatomical basis of brain activity reported in the Temporo-Parietal Junction (TPJ) in Theory of Mind (ToM) research. Using probabilistic brain atlases, we labeled TPJ peak coordinates reported in the literature. This was carried out for four different atlas modalities: (i) gyral-parcellation, (ii) sulco-gyral parcellation, (iii) cytoarchitectonic parcellation and (iv) connectivity-based parcellation. In addition, our review distinguished between two ToM task types (false belief and social animations) and a nonsocial task (attention reorienting). We estimated the mean probabilities of activation for each atlas label, and found that for all three task types part of TPJ activations fell into the same areas: (i) Angular Gyrus (AG) and Lateral Occpital Cortex (LOC) in terms of a gyral atlas, (ii) AG and Superior Temporal Sulcus (STS) in terms of a sulco-gyral atlas, (iii) areas PGa and PGp in terms of cytoarchitecture and (iv) area TPJp in terms of a connectivity-based parcellation atlas. Beside these commonalities, we also found that individual task types showed preferential activation for particular labels. Main findings for the right hemisphere were preferential activation for false belief tasks in AG/PGa, and in Supramarginal Gyrus (SMG)/PFm for attention reorienting. Social animations showed strongest selective activation in the left hemisphere, specifically in left Middle Temporal Gyrus (MTG). We discuss how our results (i.e., identified atlas structures) can provide a new reference for describing future findings, with the aim to integrate different labels and terminologies used for studying brain activity around the TPJ. Hum Brain Mapp 38:4788-4805, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Dysregulation of NEUROG2 plays a key role in focal cortical dysplasia

    PubMed Central

    Avansini, Simoni H.; Torres, Fábio R.; Vieira, André S.; Dogini, Danyella B.; Rogerio, Fabio; Coan, Ana C.; Morita, Marcia E.; Guerreiro, Marilisa M.; Yasuda, Clarissa L.; Secolin, Rodrigo; Carvalho, Benilton S.; Borges, Murilo G.; Almeida, Vanessa S.; Araújo, Patrícia A. O. R.; Queiroz, Luciano; Cendes, Fernando

    2018-01-01

    Objective Focal cortical dysplasias (FCDs) are an important cause of drug‐resistant epilepsy. In this work, we aimed to investigate whether abnormal gene regulation, mediated by microRNA, could be involved in FCD type II. Methods We used total RNA from the brain tissue of 16 patients with FCD type II and 28 controls. MicroRNA expression was initially assessed by microarray. Quantitative polymerase chain reaction, in situ hybridization, luciferase reporter assays, and deep sequencing for genes in the mTOR pathway were performed to validate and further explore our initial study. Results hsa‐let‐7f (p = 0.039), hsa‐miR‐31 (p = 0.0078), and hsa‐miR34a (p = 0.021) were downregulated in FCD type II, whereas a transcription factor involved in neuronal and glial fate specification, NEUROG2 (p < 0.05), was upregulated. We also found that the RND2 gene, a NEUROG2‐target, is upregulated (p < 0.001). In vitro experiments showed that hsa‐miR‐34a downregulates NEUROG2 by binding to its 5′‐untranslated region. Moreover, we observed strong nuclear expression of NEUROG2 in balloon cells and dysmorphic neurons and found that 28.5% of our patients presented brain somatic mutations in genes of the mTOR pathway. Interpretation Our findings suggest a new molecular mechanism, in which NEUROG2 has a pivotal and central role in the pathogenesis of FCD type II. In this way, we found that the downregulation of hsa‐miR‐34a leads to upregulation of NEUROG2, and consequently to overexpression of the RND2 gene. These findings indicate that a faulty coupling in neuronal differentiation and migration mechanisms may explain the presence of aberrant cells and complete dyslamination in FCD type II. Ann Neurol 2018;83:623–635 PMID:29461643

  14. The bHLH Repressor Deadpan Regulates the Self-renewal and Specification of Drosophila Larval Neural Stem Cells Independently of Notch

    PubMed Central

    Younger, Susan; Huang, Yaling; Lee, Tzumin

    2012-01-01

    Neural stem cells (NSCs) are able to self-renew while giving rise to neurons and glia that comprise a functional nervous system. However, how NSC self-renewal is maintained is not well understood. Using the Drosophila larval NSCs called neuroblasts (NBs) as a model, we demonstrate that the Hairy and Enhancer-of-Split (Hes) family protein Deadpan (Dpn) plays important roles in NB self-renewal and specification. The loss of Dpn leads to the premature loss of NBs and truncated NB lineages, a process likely mediated by the homeobox protein Prospero (Pros). Conversely, ectopic/over-expression of Dpn promotes ectopic self-renewing divisions and maintains NB self-renewal into adulthood. In type II NBs, which generate transit amplifying intermediate neural progenitors (INPs) like mammalian NSCs, the loss of Dpn results in ectopic expression of type I NB markers Asense (Ase) and Pros before these type II NBs are lost at early larval stages. Our results also show that knockdown of Notch leads to ectopic Ase expression in type II NBs and the premature loss of type II NBs. Significantly, dpn expression is unchanged in these transformed NBs. Furthermore, the loss of Dpn does not inhibit the over-proliferation of type II NBs and immature INPs caused by over-expression of activated Notch. Our data suggest that Dpn plays important roles in maintaining NB self-renewal and specification of type II NBs in larval brains and that Dpn and Notch function independently in regulating type II NB proliferation and specification. PMID:23056424

  15. Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension.

    PubMed

    Shinohara, Keisuke; Liu, Xuebo; Morgan, Donald A; Davis, Deborah R; Sequeira-Lopez, Maria Luisa S; Cassell, Martin D; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D

    2016-12-01

    The renin-angiotensin system (RAS) in the brain is a critical determinant of blood pressure, but the mechanisms regulating RAS activity in the brain remain unclear. Expression of brain renin (renin-b) occurs from an alternative promoter-first exon. The predicted translation product is a nonsecreted enzymatically active renin whose function is unknown. We generated a unique mouse model by selectively ablating the brain-specific isoform of renin (renin-b) while preserving the expression and function of the classical isoform expressed in the kidney (renin-a). Preservation of renal renin was confirmed by measurements of renin gene expression and immunohistochemistry. Surprisingly, renin-b-deficient mice exhibited hypertension, increased sympathetic nerve activity to the kidney and heart, and impaired baroreflex sensitivity. Whereas these mice displayed decreased circulating RAS activity, there was a paradoxical increase in brain RAS activity. Physiologically, renin-b-deficient mice exhibited an exaggerated depressor response to intracerebroventricular administration of losartan, captopril, or aliskiren. At the molecular level, renin-b-deficient mice exhibited increased expression of angiotensin-II type 1 receptor in the paraventricular nucleus, which correlated with an increased renal sympathetic nerve response to leptin, which was dependent on angiotensin-II type 1 receptor activity. Interestingly, despite an ablation of renin-b expression, expression of renin-a was significantly increased in rostral ventrolateral medulla. These data support a new paradigm for the genetic control of RAS activity in the brain by a coordinated regulation of the renin isoforms, with expression of renin-b tonically inhibiting expression of renin-a under baseline conditions. Impairment of this control mechanism causes neurogenic hypertension. © 2016 American Heart Association, Inc.

  16. Neuregulin 1 Type II-ErbB Signaling Promotes Cell Divisions Generating Neurons from Neural Progenitor Cells in the Developing Zebrafish Brain.

    PubMed

    Sato, Tomomi; Sato, Fuminori; Kamezaki, Aosa; Sakaguchi, Kazuya; Tanigome, Ryoma; Kawakami, Koichi; Sehara-Fujisawa, Atsuko

    2015-01-01

    Post-mitotic neurons are generated from neural progenitor cells (NPCs) at the expense of their proliferation. Molecular and cellular mechanisms that regulate neuron production temporally and spatially should impact on the size and shape of the brain. While transcription factors such as neurogenin1 (neurog1) and neurod govern progression of neurogenesis as cell-intrinsic mechanisms, recent studies show regulatory roles of several cell-extrinsic or intercellular signaling molecules including Notch, FGF and Wnt in production of neurons/neural progenitor cells from neural stem cells/radial glial cells (NSCs/RGCs) in the ventricular zone (VZ). However, it remains elusive how production of post-mitotic neurons from neural progenitor cells is regulated in the sub-ventricular zone (SVZ). Here we show that newborn neurons accumulate in the basal-to-apical direction in the optic tectum (OT) of zebrafish embryos. While neural progenitor cells are amplified by mitoses in the apical ventricular zone, neurons are exclusively produced through mitoses of neural progenitor cells in the sub-basal zone, later in the sub-ventricular zone, and accumulate apically onto older neurons. This neurogenesis depends on Neuregulin 1 type II (NRG1-II)-ErbB signaling. Treatment with an ErbB inhibitor, AG1478 impairs mitoses in the sub-ventricular zone of the optic tectum. Removal of AG1478 resumes sub-ventricular mitoses without precedent mitoses in the apical ventricular zone prior to basal-to-apical accumulation of neurons, suggesting critical roles of ErbB signaling in mitoses for post-mitotic neuron production. Knockdown of NRG1-II impairs both mitoses in the sub-basal/sub-ventricular zone and the ventricular zone. Injection of soluble human NRG1 into the developing brain ameliorates neurogenesis of NRG1-II-knockdown embryos, suggesting a conserved role of NRG1 as a cell-extrinsic signal. From these results, we propose that NRG1-ErbB signaling stimulates cell divisions generating neurons from neural progenitor cells in the developing vertebrate brain.

  17. Medical management of moyamoya disease and recurrent stroke in an infant with Majewski osteodysplastic primordial dwarfism type II (MOPD II).

    PubMed

    Kılıç, Esra; Utine, Eda; Unal, Sule; Haliloğlu, Göknur; Oğuz, Kader Karli; Cetin, Mualla; Boduroğlu, Koray; Alanay, Yasemin

    2012-10-01

    We report an infant diagnosed with Majewski osteodysplastic primordial dwarfism type II at age 8 months, who experienced cerebrovascular morbidities related to this entity. Molecular analysis identified c.2609+1 G>A, intron 14, homozygous splice site mutation in the pericentrin gene. At age 18 months, she developed recurrent strokes and hemiparesis. Brain magnetic resonance imaging and magnetic resonance angiography showed abnormal gyral pattern, cortical acute infarcts, bilateral stenosis of the internal carotid arteries and reduced flow on the cerebral arteries, consistent with moyamoya disease. In Majewski osteodysplastic primordial dwarfism type II, life expectancy is reduced because of high risk of stroke secondary to cerebral vascular anomalies (aneurysms, moyamoya disease). Periodic screening for vascular events is recommended in individuals with Majewski osteodysplastic primordial dwarfism type II every 12-18 months following diagnosis. Our patient was medically managed with low molecular weight heparin followed with aspirin prophylaxis, in addition to carbamazepine and physical rehabilitation. We report an infant with moyamoya disease and recurrent stroke presenting 10 months after diagnosis (at age 18 months), and discuss the outcome of nonsurgical medical management. The presented case is the second youngest case developing stroke and moyamoya disease.

  18. Health Status and Performance of United States Air Force Airmen Following Mild Traumatic Brain Injury

    DTIC Science & Technology

    2009-09-01

    new onset diabetes mellitus and insipidus , pituitary disorders, adrenal disorders, and sex hormone disorders. • Determine the association between...amyotrophic lateral sclerosis o Endocrinological outcomes: type II diabetes mellitus, diabetes insipidus , thyroid disorders, adrenal disorders, pituitary

  19. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system

    PubMed Central

    Villar-Cheda, Begoña; Costa-Besada, Maria A; Valenzuela, Rita; Perez-Costas, Emma; Melendez-Ferro, Miguel; Labandeira-Garcia, Jose L

    2017-01-01

    The ‘classical’ renin–angiotensin system (RAS) is a circulating system that controls blood pressure. Local/paracrine RAS, identified in a variety of tissues, including the brain, is involved in different functions and diseases, and RAS blockers are commonly used in clinical practice. A third type of RAS (intracellular/intracrine RAS) has been observed in some types of cells, including neurons. However, its role is still unknown. The present results indicate that in brain cells the intracellular RAS counteracts the intracellular superoxide/H2O2 and oxidative stress induced by the extracellular/paracrine angiotensin II acting on plasma membrane receptors. Activation of nuclear receptors by intracellular or internalized angiotensin triggers a number of mechanisms that protect the cell, such as an increase in the levels of protective angiotensin type 2 receptors, intracellular angiotensin, PGC-1α and IGF-1/SIRT1. Interestingly, this protective mechanism is altered in isolated nuclei from brains of aged animals. The present results indicate that at least in the brain, AT1 receptor blockers acting only on the extracellular or paracrine RAS may offer better protection of cells. PMID:28880266

  20. A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity

    PubMed Central

    Hilzendeger, Aline M.; Morgan, Donald A.; Brooks, Leonard; Dellsperger, David; Liu, Xuebo; Grobe, Justin L.; Rahmouni, Kamal; Sigmund, Curt D.

    2012-01-01

    The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT1aR−/−), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT1aR−/− vs. AT1aR+/+ mice. ICV leptin in rats increased AT1aR and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT1aR mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake. PMID:22610169

  1. A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity.

    PubMed

    Hilzendeger, Aline M; Morgan, Donald A; Brooks, Leonard; Dellsperger, David; Liu, Xuebo; Grobe, Justin L; Rahmouni, Kamal; Sigmund, Curt D; Mark, Allyn L

    2012-07-15

    The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT(1a)R(-/-)), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT(1a)R(-/-) vs. AT(1a)R(+/+) mice. ICV leptin in rats increased AT(1a)R and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT(1a)R mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.

  2. Synergistic Interaction of Retigabine with Levetiracetam in the Mouse Maximal Electroshock-Induced Seizure Model: A Type II Isobolographic Analysis.

    PubMed

    Luszczki, Jarogniew J; Zagaja, Mirosław; Miziak, Barbara; Florek-Luszczki, Magdalena; Czuczwar, Stanislaw J

    2015-01-01

    To assess interactions between retigabine and levetiracetam in suppressing maximal electroshock-induced tonic seizures in Albino Swiss mice, type II isobolographic analysis was used. Total brain antiepileptic drug concentrations were measured with high pressure liquid chromatography. The combinations of retigabine with levetiracetam at the fixed-ratios of 1:5 and 1:10 were supra-additive (synergistic; p < 0.05) in terms of seizure suppression, while the combinations at the fixed-ratios of 1:1 and 1:2 were additive. No pharmacokinetic changes in total brain concentrations of levetiracetam and retigabine were documented, indicating the pharmacodynamic nature of interaction between these antiepileptic drugs in the mouse maximal electroshock-induced tonic seizure model. The combination of retigabine with levetiracetam at the fixed-ratios of 1:5 and 1:10 appears to be particularly beneficial combination exerting supra-additive interaction in suppressing maximal electroshock-induced tonic seizures. © 2015 S. Karger AG, Basel.

  3. Angiotensin II receptor type 1--a novel target for preventing neonatal meningitis in mice by Escherichia coli K1.

    PubMed

    Krishnan, Subramanian; Shanmuganathan, Muthusamy V; Behenna, Douglas; Stoltz, Brian M; Prasadarao, Nemani V

    2014-02-01

    The increasing incidence of Escherichia coli K1 meningitis due to escalating antibiotic resistance warrants alternate treatment options to prevent this deadly disease. We screened a library of small molecules from the National Institutes of Health clinical collection and identified telmisartan, an angiotensin II receptor type 1 (AT1R) blocker, as a potent inhibitor of E. coli invasion into human brain microvascular endothelial cells (HBMECs). Immunoprecipitation studies revealed that AT1R associates with endothelial cell gp96, the receptor in HBMECs for E. coli outer membrane protein A. HBMECs pretreated with telmisartan or transfected with AT1R small interfering RNA were resistant to E. coli invasion because of downregulation of protein kinase C-α phosphorylation. Administration of a soluble derivative of telmisartan to newborn mice before infection with E. coli prevented the onset of meningitis and suppressed neutrophil infiltration and glial cell migration in the brain. Therefore, telmisartan has potential as an alternate treatment option for preventing E. coli meningitis.

  4. Shock wave-induced brain injury in rat: novel traumatic brain injury animal model.

    PubMed

    Nakagawa, Atsuhiro; Fujimura, Miki; Kato, Kaoruko; Okuyama, Hironobu; Hashimoto, Tokitada; Takayama, Kazuyoshi; Tominaga, Teiji

    2008-01-01

    In blast wave injury and high-energy traumatic brain injury, shock waves (SW) play an important role along with cavitation phenomena. However, due to lack of reliable and reproducible technical approaches, extensive study of this type of injury has not yet been reported. The present study aims to develop reliable SW-induced brain injury model by focusing micro-explosion generated SW in the rat brain. Adult male rats were exposed to single SW focusing created by detonation of microgram order of silver azide crystals with laser irradiation at a focal point of a truncated ellipsoidal cavity of20 mm minor diameter and the major to minor diameter ratio of 1.41 after craniotomy. The pressure profile was recorded using polyvinylidene fluoride needle hydrophone. Animals were divided into three groups according to the given overpressure: Group I: Control, Group II: 12.5 +/- 2.5 MPa (high pressure), and Group III: 1.0 +/- 0.2 MPa (low pressure). Histological changes were evaluated over time by hematoxylin-eosin staining. Group II SW injuries resulted in contusional hemorrhage in reproducible manner. Group III exposure resulted in spindle-shaped changes of neurons and elongation of nucleus without marked neuronal injury. The use of SW loading by micro-explosion is useful to provide a reliable and reproducible SW-induced brain injury model in rats.

  5. Incidental occlusion of anterior spinal artery due to Onyx reflux in embolization of spinal type II arteriovenous malformation.

    PubMed

    Kim, Joohyun; Lee, Jang-Bo; Cho, Tai-Hyoung; Hur, Junseok W

    2017-05-01

    Onyx embolization is one of the standard treatments for brain arteriovenous malformations (AVMs) and is a promising method for spinal AVMs as well. Its advantages have been emphasized, and few complications have been reported with Onyx embolization in spinal AVMs. Here, we report an incidental anterior spinal artery (ASA) occlusion due to Onyx reflux during embolization of a spinal type II AVM. A 15-year-old boy presented with weakness in both upper and lower extremities. Magnetic resonance imaging and spinal angiogram revealed a spinal type II AVM with two feeders including the right vertebral artery (VA) and the right deep cervical artery. Onyx embolization was performed gradually from the VA to the deep cervical artery and an unexpected Onyx reflux to the ASA was observed during the latter stage deep cervical artery embolization. Post-operative quadriplegia and low cranial nerves (CN) dysfunction were observed. Rehabilitation treatment was performed and the patient showed marked improvement of neurologic deterioration at 1-year follow-up. Onyx is an effective treatment choice for spinal AVMs. However, due to the small vasculature of the spine compared to the brain, the nidus is rapidly packed with a small amount of Onyx, which allows Onyx reflux to unexpected vessels. Extreme caution is required and dual-lumen balloon catheter could be considered for Onyx embolization in spinal AVMs treatment.

  6. Actions of circulating angiotensin II and aldosterone in the brain contributing to hypertension.

    PubMed

    Leenen, Frans H H

    2014-08-01

    In the past 1-2 decades, it has become apparent that the brain renin-angiotensin-aldosterone system (RAAS) plays a crucial role in the regulation of blood pressure (BP) by the circulating RAAS. In the brain, angiotensinergic sympatho-excitatory pathways do not contribute to acute, second-to-second regulation but play a major role in the more chronic regulation of the setpoint for sympathetic tone and BP. Increases in plasma angiotensin II (Ang II) or aldosterone and in cerebrospinal fluid [Na(+)] can directly activate these pathways and chronically further activate/maintain enhanced activity by a slow neuromodulatory pathway involving local aldosterone, mineralocorticoid receptors (MRs), epithelial sodium channels, and endogenous ouabain. Blockade of any step in this slow pathway prevents Ang II-, aldosterone-, or salt and renal injury-induced forms of hypertension. It appears that the renal and arterial actions of circulating aldosterone and Ang II act as amplifiers but are not sufficient to cause chronic hypertension if their central actions are prevented, except perhaps at high concentrations. From a clinical perspective, oral treatment with an angiotensin type 1 (AT1)-receptor blocker at high doses can cause central AT1-receptor blockade and, in humans, lower sympathetic nerve activity. Low doses of the MR blocker spironolactone appear sufficient to cause central MR blockade and a decrease in sympathetic nerve activity. Integrating the brain actions of the circulating RAAS with its direct renal and arterial actions provides a better framework to understand the role of the circulating RAAS in the pathophysiology of hypertension and heart failure and to direct therapeutic strategies. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Estrogen: A master regulator of bioenergetic systems in the brain and body

    PubMed Central

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer’s disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. PMID:23994581

  8. Ammonium Accumulation and Cell Death in a Rat 3D Brain Cell Model of Glutaric Aciduria Type I

    PubMed Central

    Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana

    2013-01-01

    Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I. PMID:23326493

  9. Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I.

    PubMed

    Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana

    2013-01-01

    Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.

  10. Sodium appetite elicited by low-sodium diet is dependent on p44/42 mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activation in the brain.

    PubMed

    Monteiro, L R N; Marangon, P B; Elias, L L K; Reis, L C; Antunes-Rodrigues, J; Mecawi, A S

    2017-09-01

    Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low-sodium diet consumption. © 2017 British Society for Neuroendocrinology.

  11. Relationship between brain lesion characteristics and communication in preschool children with cerebral palsy.

    PubMed

    Coleman, Andrea; Fiori, Simona; Weir, Kelly A; Ware, Robert S; Boyd, Roslyn N

    2016-11-01

    MRI shows promise as a prognostic tool for clinical findings such as gross motor function in children with cerebral palsy(CP), however the relationship with communication skills requires exploration. To examine the relationship between the type and severity of brain lesion on MRI and communication skills in children with CP. 131 children with CP (73 males(56%)), mean corrected age(SD) 28(5) months, Gross Motor Functional Classification System distribution: I=57(44%), II=14(11%), III=19(14%), IV=17(13%), V=24(18%). Children were assessed on the Communication and Symbolic Behavioral Scales Developmental Profile (CSBS-DP) Infant-Toddler Checklist. Structural MRI was analysed with reference to type and semi-quantitative assessment of the severity of brain lesion. Children were classified for motor type, distribution and GMFCS. The relationships between type/severity of brain lesion and communication ability were analysed using multivariable tobit regression. Children with periventricular white matter lesions had better speech than children with cortical/deep grey matter lesions (β=-2.6, 95%CI=-5.0, -0.2, p=0.04). Brain lesion severity on the semi-quantitative scale was related to overall communication skills (β=-0.9, 95%CI=-1.4, -0.5, p<0.001). Motor impairment better accounted for impairment in overall communication skills than brain lesion severity. Structural MRI has potential prognostic value for communication impairment in children with CP. WHAT THIS PAPER ADDS?: This is the first paper to explore important aspects of communication in relation to the type and severity of brain lesion on MRI in a representative cohort of preschool-aged children with CP. We found a relationship between the type of brain lesion and communication skills, children who had cortical and deep grey matter lesions had overall communication skills>1 SD below children with periventricular white matter lesions. Children with more severe brain lesions on MRI had poorer overall communication skills. Children with CP born at term had poorer communication than those born prematurely and were more likely to have cortical and deep grey matter lesions. Gross motor function better accounted for overall communication skills than the type of brain lesion or brain lesion severity. Copyright © 2016. Published by Elsevier Ltd.

  12. Structure Expression and Function of kynurenine Aminotransferases in Human and Rodent Brains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Q Han; T Cai; D Tagle

    Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-D: -aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer's disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iepsilon. Knowledge regarding KATsmore » is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.« less

  13. Angiotensin II, hypertension and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease.

    PubMed

    Wiesmann, Maximilian; Roelofs, Monica; van der Lugt, Robert; Heerschap, Arend; Kiliaan, Amanda J; Claassen, Jurgen Ahr

    2017-07-01

    Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced hypertension on systolic blood pressure, and treatment with the angiotensin II receptor blockers, eprosartan mesylate, after one month of induced hypertension in wild-type C57bl/6j and AβPPswe/PS1ΔE9 (AβPP/PS1/Alzheimer's disease) mice. AβPP/PS1 showed higher systolic blood pressure than wild-type. Subsequent eprosartan mesylate treatment restored this elevated systolic blood pressure in all mice. Functional connectivity was decreased in angiotensin II-infused Alzheimer's disease and wild-type mice, and only 12 months of Alzheimer's disease mice showed impaired cerebral blood flow. Only angiotensin II-infused Alzheimer's disease mice exhibited decreased spatial learning in the Morris water maze. Altogether, angiotensin II-induced hypertension not only exacerbated Alzheimer's disease-like pathological changes such as impairment of cerebral blood flow, functional connectivity, and cognition only in Alzheimer's disease model mice, but it also induced decreased functional connectivity in wild-type mice. However, we could not detect hypertension-induced overexpression of Aβ nor increased neuroinflammation. Our findings suggest a link between midlife hypertension, decreased cerebral hemodynamics and connectivity in an Alzheimer's disease mouse model. Eprosartan mesylate treatment restored and beneficially affected cerebral blood flow and connectivity. This model could be used to investigate prevention/treatment strategies in early Alzheimer's disease.

  14. Proceedings of Workshop 1, the Human Brainmap Database Held in San Antonio, Texas on November 29-December 1, 1992.

    DTIC Science & Technology

    1993-02-17

    these differences should be reflected in fields in the database. The limiting factor is whether the methodological differences make comparisons among...another search, return to the Search Criteria - Summary screen. Fvii BrainMap Users Guide II I I I I I II 1 1 The 3-view plot screen appears when Plot is...for an organizational meeting of this type, it was quite productive . There was significant Information passed, and the Issues that needed to be

  15. Oncolytic vesicular stomatitis virus induces apoptosis in U87 glioblastoma cells by a type II death receptor mechanism and induces cell death and tumor clearance in vivo.

    PubMed

    Cary, Zachary D; Willingham, Mark C; Lyles, Douglas S

    2011-06-01

    Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-X(L) had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-X(L) overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-X(L) regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-X(L)-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-X(L) overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for GBM.

  16. MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.

    PubMed

    Yang, H; Raizada, M K

    1998-09-01

    Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activation of the Ras-Raf-1-mitogen activated protein (MAP) kinase signaling pathway, nuclear translocation of transcription factors such as Fos and Jun, and the interactions of these factors with AP-1 binding sites) is involved in this NE neuromodulation (Lu et al. J Cell Biol. 1996;135:1609-1617). The aim of this study was to compare the signal transduction mechanism of Ang II regulation of NE neuromodulation in WKY and spontaneously hypertensive rat (SHR) brain neurons, in view of the fact that AT1 receptor expression and Ang II stimulation of NE neuromodulation are higher in SHR neurons compared with WKY neurons. Despite this hyperactivity, Ang II stimulation of Ras, Raf-1, and MAP kinase activities was comparable between the neurons from WKY and SHR. Similarly, central injections of Ang II caused a comparable stimulation of MAP kinase in the hypothalamic and brain stem areas of adult WKY and SHR. Inhibition of MAP kinase by either an MAP kinase kinase inhibitor (PD98059) or an MAP kinase antisense oligonucleotide completely attenuated the stimulatory effects of Ang II on [3H]-NE uptake, NE transporter mRNA, and tyrosine hydroxylase mRNA levels in WKY neurons. These treatments resulted in only 43% to 50% inhibition of [3H]-NE uptake and NE transporter and tyrosine hydroxylase mRNAs in SHR neurons. Thus, Ang II stimulation of NE neuromodulation was completely blocked by MAP kinase inhibition in WKY neurons and only partially blocked in the SHR neurons. These observations suggest the presence of an additional signal transduction pathway involved in NE neuromodulation in SHR neurons that is independent of the MAP kinase pathway.

  17. Interactions of pyrethroid insecticides with GABA sub A and peripheral-type benzodiazepine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaud, L.L.

    1988-01-01

    Pyrethroid insecticides are potent proconvulsants in the rat. All pyrethroids evincing proconvulsant activity elicited a similar 25-30% maximal reduction of seizure threshold. The Type II pyrethroids were the most potent proconvulsants with 1R{alpha}S, cis cypermethrin having an ED{sub 50} value of 6.3 nmol/kg. The proconvulsant activity of both Type I and Type II pyrenthroids was blocked by pretreatment with PK 11195, the peripheral-type benzodiazepine receptor (PTBR) antagonist. In contrast, phenytoin did not antagonize the proconvulsant activity of either deltamethrin or permethrin. Pyrethroids displaced the specific binding of ({sup 3}H)Ro5-4864 to rat brain membranes with a significant correlation between the logmore » EC{sub 50} values for their activities as proconvulsants and the log IC{sub 50} values for their inhibition of ({sup 3}H)Ro5-4864 binding. Both Ro5-4864 and pyrethroid insecticides were found to influence specific ({sup 35}S)TBPS binding in a GABA-dependent manner. PK 11195 and the Type II pyrethroid, deltamethrin antagonized the Ro5-4864-induced modulation of ({sup 35}S)TBPS binding. Pyrethroid insecticides, Ro5-4864 and veratridine influenced GABA-gated {sup 36}Chloride influx. Moreover, the Type II pyrethroids elicited an increase in {sup 36}chloride influx in the absence of GABA-stimulation. Both of these actions were antagonized by PK 11195 and tetrodotoxin.« less

  18. A Double-Edged Sword Role for Ubiquitin-Proteasome System in Brain Stem Cardiovascular Regulation During Experimental Brain Death

    PubMed Central

    Wu, Carol H. Y.; Chan, Julie Y. H.; Chan, Samuel H. H.; Chang, Alice Y. W.

    2011-01-01

    Background Brain stem cardiovascular regulatory dysfunction during brain death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain death ensues. Furthermore, the ubiquitin-proteasome system (UPS) may be involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain death by engaging in both synthesis and degradation of NOS II in RVLM. Methodology/Principal Findings In a clinically relevant experimental model of brain death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1) potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-κB or binding between NF-κB and nos II promoter and blunted the reduced cytosolic presence of phosphorylated IκB. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-κB in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated. Conclusions/Significance We conclude that UPS participates in the defunct and maintained brain stem cardiovascular regulation during experimental brain death by engaging in both synthesis and degradation of NOS II at RVLM. Our results provide information on new therapeutic initiatives against this fatal eventuality. PMID:22110641

  19. Targeted deletion of RIC8A in mouse neural precursor cells interferes with the development of the brain, eyes, and muscles.

    PubMed

    Kask, Keiu; Tikker, Laura; Ruisu, Katrin; Lulla, Sirje; Oja, Eva-Maria; Meier, Riho; Raid, Raivo; Velling, Teet; Tõnissoo, Tambet; Pooga, Margus

    2018-04-01

    Autosomal recessive disorders such as Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and the muscle-eye-brain disease are characterized by defects in the development of patient's brain, eyes, and skeletal muscles. These syndromes are accompanied by brain malformations like type II lissencephaly in the cerebral cortex with characteristic overmigrations of neurons through the breaches of the pial basement membrane. The signaling pathways activated by laminin receptors, dystroglycan and integrins, control the integrity of the basement membrane, and their malfunctioning may underlie the pathologies found in the rise of defects reminiscent of these syndromes. Similar defects in corticogenesis and neuromuscular disorders were found in mice when RIC8A was specifically removed from neural precursor cells. RIC8A regulates a subset of G-protein α subunits and in several model organisms, it has been reported to participate in the control of cell division, signaling, and migration. Here, we studied the role of RIC8A in the development of the brain, muscles, and eyes of the neural precursor-specific conditional Ric8a knockout mice. The absence of RIC8A severely affected the attachment and positioning of radial glial processes, Cajal-Retzius' cells, and the arachnoid trabeculae, and these mice displayed additional defects in the lens, skeletal muscles, and heart development. All the discovered defects might be linked to aberrancies in cell adhesion and migration, suggesting that RIC8A has a crucial role in the regulation of cell-extracellular matrix interactions and that its removal leads to the phenotype characteristic to type II lissencephaly-associated diseases. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 374-390, 2018. © 2018 Wiley Periodicals, Inc.

  20. The endocannabinoid system as a target for the treatment of cannabis dependence.

    PubMed

    Clapper, Jason R; Mangieri, Regina A; Piomelli, Daniele

    2009-01-01

    The endocannabinoid system modulates neurotransmission at inhibitory and excitatory synapses in brain regions relevant to the regulation of pain, emotion, motivation, and cognition. This signaling system is engaged by the active component of cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), which exerts its pharmacological effects by activation of G protein-coupled type-1 (CB1) and type-2 (CB2) cannabinoid receptors. During frequent cannabis use a series of poorly understood neuroplastic changes occur, which lead to the development of dependence. Abstinence in cannabinoid-dependent individuals elicits withdrawal symptoms that promote relapse into drug use, suggesting that pharmacological strategies aimed at alleviating cannabis withdrawal might prevent relapse and reduce dependence. Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side-effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive down-regulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.

  1. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier.

    PubMed

    Biancardi, Vinicia Campana; Son, Sook Jin; Ahmadi, Sahra; Filosa, Jessica A; Stern, Javier E

    2014-03-01

    Angiotensin II-mediated vascular brain inflammation emerged as a novel pathophysiological mechanism in neurogenic hypertension. However, the precise underlying mechanisms and functional consequences in relation to blood-brain barrier (BBB) integrity and central angiotensin II actions mediating neurohumoral activation in hypertension are poorly understood. Here, we aimed to determine whether BBB permeability within critical hypothalamic and brain stem regions involved in neurohumoral regulation was altered during hypertension. Using digital imaging quantification after intravascularly injected fluorescent dyes and immunohistochemistry, we found increased BBB permeability, along with altered key BBB protein constituents, in spontaneously hypertensive rats within the hypothalamic paraventricular nucleus, the nucleus of the solitary tract, and the rostral ventrolateral medulla, all critical brain regions known to contribute to neurohumoral activation during hypertension. BBB disruption, including increased permeability and downregulation of constituent proteins, was prevented in spontaneously hypertensive rats treated with the AT1 receptor antagonist losartan, but not with hydralazine, a direct vasodilator. Importantly, we found circulating angiotensin II to extravasate into these brain regions, colocalizing with neurons and microglial cells. Taken together, our studies reveal a novel angiotensin II-mediated feed-forward mechanism during hypertension, by which circulating angiotensin II evokes increased BBB permeability, facilitating in turn its access to critical brain regions known to participate in blood pressure regulation.

  2. Angiotensin II Receptor Type 1—A Novel Target for Preventing Neonatal Meningitis in Mice by Escherichia coli K1

    PubMed Central

    Krishnan, Subramanian; Shanmuganathan, Muthusamy V.; Behenna, Douglas; Stoltz, Brian M.; Prasadarao, Nemani V.

    2014-01-01

    The increasing incidence of Escherichia coli K1 meningitis due to escalating antibiotic resistance warrants alternate treatment options to prevent this deadly disease. We screened a library of small molecules from the National Institutes of Health clinical collection and identified telmisartan, an angiotensin II receptor type 1 (AT1R) blocker, as a potent inhibitor of E. coli invasion into human brain microvascular endothelial cells (HBMECs). Immunoprecipitation studies revealed that AT1R associates with endothelial cell gp96, the receptor in HBMECs for E. coli outer membrane protein A. HBMECs pretreated with telmisartan or transfected with AT1R small interfering RNA were resistant to E. coli invasion because of downregulation of protein kinase C-α phosphorylation. Administration of a soluble derivative of telmisartan to newborn mice before infection with E. coli prevented the onset of meningitis and suppressed neutrophil infiltration and glial cell migration in the brain. Therefore, telmisartan has potential as an alternate treatment option for preventing E. coli meningitis. PMID:24041786

  3. Estrogen: a master regulator of bioenergetic systems in the brain and body.

    PubMed

    Rettberg, Jamaica R; Yao, Jia; Brinton, Roberta Diaz

    2014-01-01

    Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Biological and molecular characterizations of Toxoplasma gondii strains obtained from Southern sea otters (Enhydra lutris nereis)

    USGS Publications Warehouse

    Cole, Rebecca A.; Lindsay, D.S.; Howe, D.K.; Roderick, Constance L.; Dubey, J.P.; Thomas, N.J.; Baeten, L.A.

    2000-01-01

    Toxoplasma gondii was isolated from brain or heart tissue from 15 southern sea otters (Enhydra lutris nereis) in cell cultures. These strains were used to infect mice that developed antibodies to T. gondii as detected in the modified direct agglutination test and had T. gondii tissue cysts in their brains at necropsy. Mouse brains containing tissue cysts from 4 of the strains were fed to 4 cats. Two of the cats excreted T. gondii oocysts in their feces that were infectious for mice. Molecular analyses of 13 strains indicated that they were all type II strains, but that they were genetically distinct from one another.

  5. [Cerebral aspergillosis].

    PubMed

    Tattevin, P; Jauréguiberry, S; Gangneux, J-P

    2004-05-01

    The brain is almost always a localization of invasive aspergillosis, after hematogenous spread from pulmonary aspergillosis. Brain aspergilosis is not rare and is one of the worst prognosis factors of invasive aspergillosis. The incidence of this severe mycosis is currently on the rise due to the development of major immunosuppressive treatments. Brain aspergillosis is noteworthy for its vascular tropism, leading to infectious cerebral vasculitis, mainly involving thalamoperforating and lenticulostriate arteries, with a high frequency of thalamic or basal nuclei lesions. Extra-neurologic features that suggest this diagnosis are: i) risk factors for invasive aspergillosis (major or prolonged neutropenia, hematologic malignancies, prolonged corticosteroid treatment, bone marrow or solid organ transplant, AIDS); ii) persistent fever not responding to presumptive antibacterial treatment; iii) respiratory signs (brain aspergillosis is associated with pulmonary aspergillosis in 80 to 95 p. 100 of cases). Perspectives. Two recent major improvements in brain aspergillosis management must be outlined: i) for diagnostic purposes, the development of testing for Aspergillus antigenemia (a non-invasive procedure with good diagnostic value for invasive aspergillosis); ii) for therapeutic purposes, the demonstration that voriconazole is better than amphotericin B in terms of clinical response, tolerance and survival, for all types of invasive aspergillosis, the benefit being probably even greater in case of brain aspergillosis because of the good diffusion of voriconazole into the central nervous system. Brain aspergillosis is a severe emerging opportunistic infection for which diagnostic and therapeutic tools have recently improved. Thus, this diagnostic must be suspected early, especially in the immunocompromised patient, in the event of respiratory symptoms and when the brain lesions are localized in the central nuclei and the thalamus.

  6. T1-weighted dynamic contrast-enhanced brain magnetic resonance imaging: A preliminary study with low infusion rate in pediatric patients.

    PubMed

    Rochetams, Bruno-Bernard; Marechal, Bénédicte; Cottier, Jean-Philippe; Gaillot, Kathleen; Sembely-Taveau, Catherine; Sirinelli, Dominique; Morel, Baptiste

    2017-10-01

    Background The aim of this preliminary study is to evaluate the results of T1-weighted dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in pediatric patients at 1.5T, with a low peripheral intravenous gadoteric acid injection rate of 1 ml/s. Materials and methods Children with neurological symptoms were examined prospectively with conventional MRI and T1-weighted DCE MRI. An magnetic resonance perfusion analysis method was used to obtain time-concentration curves (persistent pattern, type-I; plateau pattern, type-II; washout pattern, type-III) and to calculate pharmacokinetic parameters. A total of two radiologists manually defined regions of interest (ROIs) in the part of the lesion exhibiting the greatest contrast enhancement and in the surrounding normal or contralateral tissue. Lesion/surrounding tissue or contralateral tissue pharmacokinetic parameter ratios were calculated. Tumors were categorized by grade (I-IV) using the World Health Organization (WHO) Grade. Mann-Whitney testing and receiver-operating characteristic (ROC) curves were performed. Results A total of nine boys and nine girls (mean age 10.5 years) were included. Lesions consisted of 10 brain tumors, 3 inflammatory lesions, 3 arteriovenous malformations and 2 strokes. We obtained analyzable concentration-time curves for all patients (6 type-I, 9 type-II, 3 type-III). K trans between tumor tissue and surrounding or contralateral tissue was significantly different ( p = 0.034). K trans ratios were significantly different between grade I tumors and grade IV tumors ( p = 0.027) and a K trans ratio value superior to 0.63 appeared to be discriminant to determine a grade IV of malignancy. Conclusions Our results confirm the feasibility of pediatric T1-weighted DCE MRI at 1.5T with a low injection rate, which could be of great value in differentiating brain tumor grades.

  7. Calcitonin Gene-Related Peptide Reduces Taste-Evoked ATP Secretion from Mouse Taste Buds.

    PubMed

    Huang, Anthony Y; Wu, Sandy Y

    2015-09-16

    Immunoelectron microscopy revealed that peripheral afferent nerve fibers innervating taste buds contain calcitonin gene-related peptide (CGRP), which may be as an efferent transmitter released from peripheral axon terminals. In this report, we determined the targets of CGRP within taste buds and studied what effect CGRP exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura-2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings showed that a subset of Presynaptic (Type III) taste cells (53%) responded to 0.1 μm CGRP with an increase in intracellular Ca(2+). In contrast, Receptor (Type II) taste cells rarely (4%) responded to 0.1 μm CGRP. Using pharmacological tools, the actions of CGRP were probed and elucidated by the CGRP receptor antagonist CGRP(8-37). We demonstrated that this effect of CGRP was dependent on phospholipase C activation and was prevented by the inhibitor U73122. Moreover, applying CGRP caused taste buds to secrete serotonin (5-HT), a Presynaptic (Type III) cell transmitter, but not ATP, a Receptor (Type II) cell transmitter. Further, our previous studies showed that 5-HT released from Presynaptic (Type III) cells provides negative paracrine feedback onto Receptor (Type II) cells by activating 5-HT1A receptors, and reducing ATP secretion. Our data showed that CGRP-evoked 5-HT release reduced taste-evoked ATP secretion. The findings are consistent with a role for CGRP as an inhibitory transmitter that shapes peripheral taste signals via serotonergic signaling during processing gustatory information in taste buds. The taste sensation is initiated with a highly complex set of interactions between a variety of cells located within the taste buds before signal propagation to the brain. Afferent signals from the oral cavity are carried to the brain in chemosensory fibers that contribute to chemesthesis, the general chemical sensitivity of the mucus membranes in the oronasal cavities and being perceived as pungency, irritation, or heat. This is a study of a fundamental question in neurobiology: how are signals processed in sensory end organs, taste buds? More specifically, taste-modifying interactions, via transmitters, between gustatory and chemosensory afferents inside taste buds will help explain how a coherent output is formed before being transmitted to the brain. Copyright © 2015 the authors 0270-6474/15/3512714-11$15.00/0.

  8. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex.

    PubMed Central

    Mato, M; Ookawara, S; Sakamoto, A; Aikawa, E; Ogawa, T; Mitsuhashi, U; Masuzawa, T; Suzuki, H; Honda, M; Yazaki, Y; Watanabe, E; Luoma, J; Yla-Herttuala, S; Fraser, I; Gordon, S; Kodama, T

    1996-01-01

    The transport of solutes between blood and brain is regulated by a specific barrier. Capillary endothelial cells of brain are known to mediate barrier function and facilitate transport. Here we report that specific cells surrounding arterioles, known as Mato's fluorescent granular perithelial (FGP) cells or perivascular microglial cells, contribute to the barrier function. Immunohistochemical and in situ hybridization studies indicate that, in normal brain cortex, type I and type II macrophage scavenger receptors are expressed only in FGP/perivascular microglial cells, and surface markers of macrophage lineage are also detected on them. These cells mediate the uptake of macromolecules, including modified low density lipoprotein, horseradish peroxidase, and ferritin injected either into the blood or into the cerebral ventricles. Accumulation of scavenged materials with aging or after the administration of a high-fat diet results in the formation of honeycomb-like foam cells and the narrowing of the lumen of arterioles in the brain cortex. These results indicate involvement of FGP/perivascular microglial cells in the barrier and scavenger functions in the central nervous system. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8622926

  9. Origin and specification of type II neuroblasts in the Drosophila embryo.

    PubMed

    Álvarez, José-Andrés; Díaz-Benjumea, Fernando J

    2018-04-05

    In Drosophila , neural stem cells or neuroblasts (NBs) acquire different identities according to their site of origin in the embryonic neuroectoderm. Their identity determines the number of times they will divide and the types of daughter cells they will generate. All NBs divide asymmetrically, with type I NBs undergoing self-renewal and generating another cell that will divide only once more. By contrast, a small set of NBs in the larval brain, type II NBs, divides differently, undergoing self-renewal and generating an intermediate neural progenitor (INP) that continues to divide asymmetrically several more times, generating larger lineages. In this study, we have analysed the origin of type II NBs and how they are specified. Our results indicate that these cells originate in three distinct clusters in the dorsal protocerebrum during stage 12 of embryonic development. Moreover, it appears that their specification requires the combined action of EGFR signalling and the activity of the related genes buttonhead and Drosophila Sp1 In addition, we also show that the INPs generated in the embryo enter quiescence at the end of embryogenesis, resuming proliferation during the larval stage. © 2018. Published by The Company of Biologists Ltd.

  10. Type II thyroplasty changes cortical activation in patients with spasmodic dysphonia.

    PubMed

    Tateya, Ichiro; Omori, Koichi; Kojima, Hisayoshi; Naito, Yasushi; Hirano, Shigeru; Yamashita, Masaru; Ito, Juichi

    2015-04-01

    Spasmodic dysphonia (SD) is a complex neurological communication disorder characterized by a choked, strain-strangled vocal quality with voice stoppages in phonation. Its symptoms are exacerbated by situations where communication failures are anticipated, and reduced when talking with animals or small children. Symptoms are also reduced following selected forms of treatment. It is reasonable to assume that surgical alteration reducing symptoms would also alter brain activity, though demonstration of such a phenomenon has not been documented. The objective of this study is to reveal brain activity of SD patients before and after surgical treatment. We performed lateralization thyroplasties on three adductor SD patients and compared pre- and post-operative positron emission tomography recordings made during vocalization. Pre-operatively, cordal supplementary motor area (SMA), bilateral auditory association areas, and thalamus were activated while reading aloud. Such activity was not observed in normal subjects. Type II thyroplasty was performed according to Isshiki's method and the strained voice was significantly reduced or eliminated in all three patients. Post-operative PET showed normal brain activation pattern with a significant decrease in cordal SMA, bilateral auditory association areas and thalamus, and a significant increase in rostral SMA compared with pre-operative recordings. This is the first report showing that treatment to a peripheral organ, which reverses voice symptoms, also reverses dysfunctional patterns of the central nervous system in patients with SD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Skeletal muscle mitochondrial health and spinal cord injury.

    PubMed

    O'Brien, Laura C; Gorgey, Ashraf S

    2016-10-18

    Mitochondria are the main source of cellular energy production and are dynamic organelles that undergo biogenesis, remodeling, and degradation. Mitochondrial dysfunction is observed in a number of disease states including acute and chronic central or peripheral nervous system injury by traumatic brain injury, spinal cord injury (SCI), and neurodegenerative disease as well as in metabolic disturbances such as insulin resistance, type II diabetes and obesity. Mitochondrial dysfunction is most commonly observed in high energy requiring tissues like the brain and skeletal muscle. In persons with chronic SCI, changes to skeletal muscle may include remarkable atrophy and conversion of muscle fiber type from oxidative to fast glycolytic, combined with increased infiltration of intramuscular adipose tissue. These changes contribute to a proinflammatory environment, glucose intolerance and insulin resistance. The loss of metabolically active muscle combined with inactivity predisposes individuals with SCI to type II diabetes and obesity. The contribution of skeletal muscle mitochondrial density and electron transport chain activity to the development of the aforementioned comorbidities following SCI is unclear. A better understanding of the mechanisms involved in skeletal muscle mitochondrial dynamics is imperative to designing and testing effective treatments for this growing population. The current editorial will review ways to study mitochondrial function and the importance of improving skeletal muscle mitochondrial health in clinical populations with a special focus on chronic SCI.

  12. Antibodies in metabolic diseases.

    PubMed

    Ahrens, Bianca

    2011-09-01

    In the past century, incidences of chronic metabolic diseases, such as obesity and type II diabetes, have increased dramatically. Obesity and abnormal insulin level are associated with a wide variety of health problems including a markedly increased risk for type II diabetes, fatty liver, hepato-biliary and gallbladder diseases, cardiovascular pathologies, neurodegenerative disorders, asthma and a variety of cancers. The development of therapeutic antibodies has evolved over the past decades into a mainstay of therapeutic options for patients with inflammatory diseases and cancer, while other indication areas such as metabolic diseases have so far only been rarely addressed. Although therapeutic antibodies might have advantages over current type II diabetes treatments like favorable serum half-life and high specificity, their development is also likely to face obstacles. For example the technical feasibility of antibody generation against G protein coupled receptors and transporters is challenging, patient compliance for a likely needle application might be limited, bioavailability in organs involved in the pathogenesis like the brain might be suboptimal and reimbursement issues for high treatment costs have to be taken into account. The current review focuses on the pathogenesis and standard therapeutic approaches as well as antibodies in development and potential antibody targets for type II diabetes. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Insulin differentially affects the distribution kinetics of amyloid beta 40 and 42 in plasma and brain.

    PubMed

    Swaminathan, Suresh Kumar; Ahlschwede, Kristen M; Sarma, Vidur; Curran, Geoffry L; Omtri, Rajesh S; Decklever, Teresa; Lowe, Val J; Poduslo, Joseph F; Kandimalla, Karunya K

    2018-05-01

    Impaired brain clearance of amyloid-beta peptides (Aβ) 40 and 42 across the blood-brain barrier (BBB) is believed to be one of the pathways responsible for Alzheimer's disease (AD) pathogenesis. Hyperinsulinemia prevalent in type II diabetes was shown to damage cerebral vasculature and increase Aβ accumulation in AD brain. However, there is no clarity on how aberrations in peripheral insulin levels affect Aβ accumulation in the brain. This study describes, for the first time, an intricate relation between plasma insulin and Aβ transport at the BBB. Upon peripheral insulin administration in wild-type mice: the plasma clearance of Aβ40 increased, but Aβ42 clearance reduced; the plasma-to-brain influx of Aβ40 increased, and that of Aβ42 reduced; and the clearance of intracerebrally injected Aβ40 decreased, whereas Aβ42 clearance increased. In hCMEC/D3 monolayers (in vitro BBB model) exposed to insulin, the luminal uptake and luminal-to-abluminal permeability of Aβ40 increased and that of Aβ42 reduced; the abluminal-to-luminal permeability of Aβ40 decreased, whereas Aβ42 permeability increased. Moreover, Aβ cellular trafficking machinery was altered. In summary, Aβ40 and Aβ42 demonstrated distinct distribution kinetics in plasma and brain compartments, and insulin differentially modulated their distribution. Cerebrovascular disease and metabolic disorders may disrupt this intricate homeostasis and aggravate AD pathology.

  14. [MRI in Duane retraction syndrome: Preliminary results].

    PubMed

    Denis, D; Cousin, M; Zanin, E; Toesca, E; Girard, N

    2011-09-01

    Duane retraction syndrome (DRS) is a congenital ocular motility disorder with innervational dysgenesis. MRI improves our understanding of this disease by providing in vivo access to nerves and oculomotor muscles. The goal of this prospective study (2000-2008) was to analyze DRS clinically and neuroradiologically. Twenty-four patients (27 eyes) received a complete ophthalmologic evaluation and a brain-orbital MRI. The average age was 6.1 years. MRI was performed with 3D T2 CISS-weighted images through the brainstem to visualize the cisternal segments of the cranial nerves and the orbit (lateral and medial recti muscles). MRI anomalies were classified according to type I, II, and III and depending on their condition in the posterior fossa (absence, hypoplasia) and in the orbit (muscle anomalies). Of 27 eyes, 70% were type I, 19% type II, and 11% type III. MRI showed abducens nerve abnormalities in 93% of the cases (78% absence) and muscle abnormalities in 57.5% of the cases. A detailed description showed 100% abducens nerve abnormalities and 58% abnormal lateral rectus muscle in type I, 60% abducens nerve abnormalities and 60% abnormal lateral rectus muscle in type II, and 100% abducens nerve abnormalities and 66% abnormal lateral rectus in type III. This study presents two major findings: detection of abducens nerve abnormalities in most cases of DRS whatever the type, associated with muscle abnormalities, and the confirmation that this absence may exist in type II (2/5). Thus MRI proved to be a valuable tool for investigating these patients, improving the comprehension of the physiopathogenics of this disease. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Brain ACE2 shedding contributes to the development of neurogenic hypertension

    PubMed Central

    Chhabra, Kavaljit H.; Lazartigues, Eric

    2015-01-01

    Rationale Over-activity of the brain Renin Angiotensin System (RAS) is a major contributor to neurogenic hypertension. While over-expression of Angiotensin-Converting Enzyme type 2 (ACE2) has been shown to be beneficial in reducing hypertension by transforming Angiotensin (Ang)-II into Ang-(1-7), several groups have reported decreased brain ACE2 expression and activity during the development of hypertension. Objective We hypothesized that ADAM17-mediated ACE2 shedding results in decreased membrane-bound ACE2 in the brain, thus promoting the development of neurogenic hypertension. Methods and Results To test this hypothesis, we used the DOCA-salt model of neurogenic hypertension in non-transgenic (NT) and syn-hACE2 mice over-expressing ACE2 in neurons. DOCA-salt treatment in NT mice led to significant increases in blood pressure, hypothalamic Ang-II levels, inflammation, impaired baroreflex sensitivity, autonomic dysfunction, as well as decreased hypothalamic ACE2 activity and expression, while these changes were blunted or prevented in syn-hACE2 mice. In addition, reduction of ACE2 expression and activity in the brain paralleled a rise in ACE2 activity in the cerebrospinal fluid of NT mice following DOCA-salt treatment and was accompanied by enhanced ADAM17 expression and activity in the hypothalamus. Chronic knockdown of ADAM17 in the brain blunted the development of hypertension and restored ACE2 activity and baroreflex function. Conclusions Our data provide the first evidence that ADAM17-mediated shedding impairs brain ACE2 compensatory activity, thus contributing to the development of neurogenic hypertension. PMID:24014829

  16. Cannabinoid-induced actomyosin contractility shapes neuronal morphology and growth

    PubMed Central

    Roland, Alexandre B; Ricobaraza, Ana; Carrel, Damien; Jordan, Benjamin M; Rico, Felix; Simon, Anne; Humbert-Claude, Marie; Ferrier, Jeremy; McFadden, Maureen H; Scheuring, Simon; Lenkei, Zsolt

    2014-01-01

    Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆9-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid and reversible non-muscle myosin II (NM II) dependent contraction of the actomyosin cytoskeleton, through a Rho-GTPase and Rho-associated kinase (ROCK). This induces rapid neuronal remodeling, such as retraction of neurites and axonal growth cones, elevated neuronal rigidity, and reshaping of somatodendritic morphology. Chronic pharmacological inhibition of NM II prevents cannabinoid-induced reduction of dendritic development in vitro and leads, similarly to blockade of endocannabinoid action, to excessive growth of corticofugal axons into the sub-ventricular zone in vivo. Our results suggest that CB1R can rapidly transform the neuronal cytoskeleton through actomyosin contractility, resulting in cellular remodeling events ultimately able to affect the brain architecture and wiring. DOI: http://dx.doi.org/10.7554/eLife.03159.001 PMID:25225054

  17. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration

    PubMed Central

    Labandeira-Garcia, Jose L.; Rodríguez-Perez, Ana I.; Garrido-Gil, Pablo; Rodriguez-Pallares, Jannette; Lanciego, Jose L.; Guerra, Maria J.

    2017-01-01

    Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a “classical” circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1–7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components. PMID:28515690

  18. Dopamine Neurons Change the Type of Excitability in Response to Stimuli

    PubMed Central

    Gutkin, Boris S.; Lapish, Christopher C.; Kuznetsov, Alexey

    2016-01-01

    The dynamics of neuronal excitability determine the neuron’s response to stimuli, its synchronization and resonance properties and, ultimately, the computations it performs in the brain. We investigated the dynamical mechanisms underlying the excitability type of dopamine (DA) neurons, using a conductance-based biophysical model, and its regulation by intrinsic and synaptic currents. Calibrating the model to reproduce low frequency tonic firing results in N-methyl-D-aspartate (NMDA) excitation balanced by γ-Aminobutyric acid (GABA)-mediated inhibition and leads to type I excitable behavior characterized by a continuous decrease in firing frequency in response to hyperpolarizing currents. Furthermore, we analyzed how excitability type of the DA neuron model is influenced by changes in the intrinsic current composition. A subthreshold sodium current is necessary for a continuous frequency decrease during application of a negative current, and the low-frequency “balanced” state during simultaneous activation of NMDA and GABA receptors. Blocking this current switches the neuron to type II characterized by the abrupt onset of repetitive firing. Enhancing the anomalous rectifier Ih current also switches the excitability to type II. Key characteristics of synaptic conductances that may be observed in vivo also change the type of excitability: a depolarized γ-Aminobutyric acid receptor (GABAR) reversal potential or co-activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) leads to an abrupt frequency drop to zero, which is typical for type II excitability. Coactivation of N-methyl-D-aspartate receptors (NMDARs) together with AMPARs and GABARs shifts the type I/II boundary toward more hyperpolarized GABAR reversal potentials. To better understand how altering each of the aforementioned currents leads to changes in excitability profile of DA neuron, we provide a thorough dynamical analysis. Collectively, these results imply that type I excitability in dopamine neurons might be important for low firing rates and fine-tuning basal dopamine levels, while switching excitability to type II during NMDAR and AMPAR activation may facilitate a transient increase in dopamine concentration, as type II neurons are more amenable to synchronization by mutual excitation. PMID:27930673

  19. Histopathological study of the outer membrane of the dura mater in chronic sub dural hematoma: Its clinical and radiological correlation

    PubMed Central

    Bokka, Sriharsha; Trivedi, Adarsh

    2016-01-01

    Background: A chronic subdural hematoma is an old clot of blood on the surface of the brain between dura and arachnoid membranes. These liquefied clots most often occur in patients aged 60 and older with brain atrophy. When the brain shrinks inside the skull over time, minor head trauma can cause tearing of blood vessels over the brain surface, resulting in a slow accumulation of blood over several days to weeks. Aim of the Study: To evaluate the role of membrane in hematoma evaluation and to correlate its histopathology with clinic-radiological aspects of the condition and overall prognosis of patients. Material and Methods: The study incorporated all cases of chronic SDH admitted to the Neurosurgery department of JLN Hospital and Research Centre, Bhilai, between November 2011 and November 2013. All such cases were analyzed clinically, radiologically like site, size, thickness in computed tomography, the attenuation value, midline shift and histopathological features were recorded. Criteria for Inclusion: All cases of chronic subdural haematoma irrespective of age and sex were incorporated into the study. Criteria for Exclusion: All cases of acute subdural haematoma and cases of chronic sub dural hematoma which were managed conservatively irrespective of age and sex were excluded from the study Results: In our series of cases, the most common histopathological type of membrane was the inflammatory membrane (Type II) seen in 42.30% of cases followed by hemorrhagic inflammatory membrane (Type III) seen in 34.62% of cases while scar inflammatory type of membrane (Type IV) was seen in 23.08% of cases. No case with noninflammatory type (Type I) was encountered. PMID:26889276

  20. Does inhibition of angiotensin function cause neuroprotection in diffuse traumatic brain injury?

    PubMed

    Khaksari, Mohammad; Rajizadeh, Mohammad Amin; Bejeshk, Mohammad Abbas; Soltani, Zahra; Motamedi, Sina; Moramdi, Fatemeh; Islami, Masoud; Shafa, Shahriyar; Khosravi, Sepehr

    2018-06-01

    Neuroprotection is created following the inhibition of angiotensin II type 1 receptor (AT1R). Therefore, the purpose of this research was examining AT1R blockage by candesartan in diffuse traumatic brain injury (TBI). Male rats were assigned into sham, TBI, vehicle, and candesartan groups. Candesartan (0.3 mg/kg) or vehicle was administered IP, 30 min post-TBI. Brain water and Evans blue contents were determined, 24 and 5 hr after TBI, respectively. Intracranial pressure (ICP) and neurologic outcome were evaluated at -1, 1, 4 and 24 hr after TBI. Oxidant index [malondialdehyde (MDA)] was determined 24 hr after TBI. Brain water and Evans blue contents, and MDA and ICP levels increased in TBI and vehicle groups in comparison with the sham group. Candesartan attenuated the TBI-induced brain water and Evans blue contents, and ICP and MDA enhancement. The neurologic score enhanced following candesartan administration, 24 hr after TBI. The blockage of AT1R may be neuroprotective by decreasing ICP associated with the reduction of lipid peroxidation, brain edema, and blood-brain barrier (BBB) permeability, which led to the improvement of neurologic outcome.

  1. Peripheral and central interactions between the renin-angiotensin system and the renal sympathetic nerves in control of renal function.

    PubMed

    DiBona, G F

    2001-06-01

    Increases in renal sympathetic nerve activity (RSNA) regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. As increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between RSNA and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, that is, the direct (via specific innervation) and indirect (via angiotensin II) contributions of increased RSNA to the regulation of renal function. The effects of increased RSNA on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with angiotensin-converting enzyme inhibitors or angiotensin II-type AT1 receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated following renal denervation. These interactions can also be extrarenal, that is, in the central nervous system, wherein RSNA and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, the permeable blood-brain barrier of which permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II type AT1 receptor antagonists, into the ventricular system or microinjected into the rostral ventrolateral medulla, are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (e.g., congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and RSNA are involved in influencing the neural control of renal function.

  2. Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function.

    PubMed

    DiBona, G F

    2000-12-01

    Increases in renal sympathetic nerve activity regulate the functions of the nephron, the vasculature, and the renin-containing juxtaglomerular granular cells. Because increased activity of the renin-angiotensin system can also influence nephron and vascular function, it is important to understand the interactions between the renal sympathetic nerves and the renin-angiotensin system in the control of renal function. These interactions can be intrarenal, for example, the direct (by specific innervation) and indirect (by angiotensin II) contributions of increased renal sympathetic nerve activity to the regulation of renal function. The effects of increased renal sympathetic nerve activity on renal function are attenuated when the activity of the renin-angiotensin system is suppressed or antagonized with ACE inhibitors or angiotensin II-type AT(1)-receptor antagonists. The effects of intrarenal administration of angiotensin II are attenuated after renal denervation. These interactions can also be extrarenal, for example, in the central nervous system, wherein renal sympathetic nerve activity and its arterial baroreflex control are modulated by changes in activity of the renin-angiotensin system. In addition to the circumventricular organs, whose permeable blood-brain barrier permits interactions with circulating angiotensin II, there are interactions at sites behind the blood-brain barrier that depend on the influence of local angiotensin II. The responses to central administration of angiotensin II-type AT(1)-receptor antagonists into the ventricular system or microinjected into the rostral ventrolateral medulla are modulated by changes in activity of the renin-angiotensin system produced by physiological changes in dietary sodium intake. Similar modulation is observed in pathophysiological models wherein activity of both the renin-angiotensin and sympathetic nervous systems is increased (eg, congestive heart failure). Thus, both renal and extrarenal sites of interaction between the renin-angiotensin system and renal sympathetic nerve activity are involved in influencing the neural control of renal function.

  3. Angiotensin II regulates brain (pro)renin receptor expression through activation of cAMP response element-binding protein

    PubMed Central

    Li, Wencheng; Liu, Jiao; Hammond, Sean L.; Tjalkens, Ronald B.; Saifudeen, Zubaida

    2015-01-01

    We reported that brain (pro)renin receptor (PRR) expression levels are elevated in DOCA-salt-induced hypertension; however, the underlying mechanism remained unknown. To address whether ANG II type 1 receptor (AT1R) signaling is involved in this regulation, we implanted a DOCA pellet and supplied 0.9% saline as the drinking solution to C57BL/6J mice. Sham pellet-implanted mice that were provided regular drinking water served as controls. Concurrently, mice were intracerebroventricularly infused with the AT1R blocker losartan, angiotensin-converting-enzyme inhibitor captopril, or artificial cerebrospinal fluid for 3 wk. Intracerebroventricular infusion of losartan or captopril attenuated DOCA-salt-induced PRR mRNA elevation in the paraventricular nucleus of the hypothalamus, suggesting a role for ANG II/AT1R signaling in regulating PRR expression during DOCA-salt hypertension. To test which ANG II/AT1R downstream transcription factors were involved in PRR regulation, we treated Neuro-2A cells with ANG II with or without CREB (cAMP response element-binding protein) or AP-1 (activator protein-1) inhibitors, or CREB siRNA. CREB and AP-1 inhibitors, as well as CREB knockdown abolished ANG II-induced increases in PRR levels. ANG II also induced PRR upregulation in primary cultured neurons. Chromatin immunoprecipitation assays revealed that ANG II treatment increased CREB binding to the endogenous PRR promoter in both cultured neurons and hypothalamic tissues of DOCA-salt hypertensive mice. This increase in CREB activity was reversed by AT1R blockade. Collectively, these findings indicate that ANG II acts via AT1R to upregulate PRR expression both in cultured cells and in DOCA-salt hypertensive mice by increasing CREB binding to the PRR promoter. PMID:25994957

  4. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy.

    PubMed

    Butler, Merlin G; Bittel, Douglas C; Kibiryeva, Nataliya; Talebizadeh, Zohreh; Thompson, Travis

    2004-03-01

    To determine whether phenotypic differences exist among individuals with Prader-Willi syndrome with either type I or type II deletions of chromosome 15 or maternal disomy 15 leading to a better understanding of cause and pathophysiology of this classical genetic syndrome. We analyzed clinical, anthropometric, and behavioral data in 12 individuals (5 men, 7 women; mean age: 25.9 +/- 8.8 years) with PWS and a type I (TI) deletion, 14 individuals (6 men, 8 women; mean age: 19.6 +/- 6.5 years) with PWS and a type II (TII) deletion, and 21 individuals (10 men, 11 women; mean age: 23.6 +/- 9.2 years) with PWS and maternal disomy 15 (UPD). The deletion type was determined by genotyping of DNA markers between proximal chromosome 15 breakpoints BP1 and BP2. TI deletions are approximately 500 kb larger than TII deletions. Several validated psychological and behavioral tests were used to assess phenotypic characteristics of individuals with PWS representing the 3 genetic subtypes. Significant differences were found between the 2 deletion groups and those with UPD in multiple psychological and behavioral tests, but no differences were observed in other clinical or anthropometric data studied. Adaptive behavior scores were generally worse in individuals with PWS and the TI deletion, and specific obsessive-compulsive behaviors were more evident in the TI individuals compared with those with UPD. Individuals with PWS with TI deletions also had poorer reading and math skills as well as visual-motor integration. Our study indicates that individuals with TI deletion generally have more behavioral and psychological problems than individuals with the TII deletion or UPD. Four recently identified genes have been identified in the chromosome region between BP1 and BP2 with 1 of the genes (NIPA-1) expressed in mouse brain tissue but not thought to be imprinted. It may be important for brain development or function. These genes are deleted in individuals with TI deletion and are implicated in compulsive behavior and lower intellectual ability in individuals with TI versus TII.

  5. Whole Brain Radiotherapy and RRx-001: Two Partial Responses in Radioresistant Melanoma Brain Metastases from a Phase I/II Clinical Trial: A TITE-CRM Phase I/II Clinical Trial.

    PubMed

    Kim, Michelle M; Parmar, Hemant; Cao, Yue; Pramanik, Priyanka; Schipper, Matthew; Hayman, James; Junck, Larry; Mammoser, Aaron; Heth, Jason; Carter, Corey A; Oronsky, Arnold; Knox, Susan J; Caroen, Scott; Oronsky, Bryan; Scicinski, Jan; Lawrence, Theodore S; Lao, Christopher D

    2016-04-01

    Kim et al. report two patients with melanoma metastases to the brain that responded to treatment with RRx-001 and whole brain radiotherapy (WBRT) without neurologic or systemic toxicity in the context of a phase I/II clinical trial. RRx-001 is an reactive oxygen and reactive nitrogen species (ROS/RNS)-dependent systemically nontoxic hypoxic cell radiosensitizer with vascular normalizing properties under investigation in patients with various solid tumors including those with brain metastases. Metastatic melanoma to the brain is historically associated with poor outcomes and a median survival of 4 to 5 months. WBRT is a mainstay of treatment for patients with multiple brain metastases, but no significant therapeutic advances for these patients have been described in the literature. To date, candidate radiosensitizing agents have failed to demonstrate a survival benefit in patients with brain metastases, and in particular, no agent has demonstrated improved outcome in patients with metastatic melanoma. Kim et al. report two patients with melanoma metastases to the brain that responded to treatment with novel radiosensitizing agent RRx-001 and WBRT without neurologic or systemic toxicity in the context of a phase I/II clinical trial. Published by Elsevier Inc.

  6. Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I.

    PubMed

    Posset, Roland; Opp, Silvana; Struys, Eduard A; Völkl, Alfred; Mohr, Heribert; Hoffmann, Georg F; Kölker, Stefan; Sauer, Sven W; Okun, Jürgen G

    2015-03-01

    Inherited deficiencies of the L-lysine catabolic pathway cause glutaric aciduria type I and pyridoxine-dependent epilepsy. Dietary modulation of cerebral L-lysine metabolism is thought to be an important therapeutic intervention for these diseases. To better understand cerebral L-lysine degradation, we studied in mice the two known catabolic routes -- pipecolate and saccharopine pathways -- using labeled stable L-lysine and brain peroxisomes purified according to a newly established protocol. Experiments with labeled stable L-lysine show that cerebral L-pipecolate is generated along two pathways: i) a minor proportion retrograde after ε-deamination of L-lysine along the saccharopine pathway, and ii) a major proportion anterograde after α-deamination of L-lysine along the pipecolate pathway. In line with these findings, we observed only little production of saccharopine in the murine brain. L-pipecolate oxidation was only detectable in brain peroxisomes, but L-pipecolate oxidase activity was low (7 ± 2μU/mg protein). In conclusion, L-pipecolate is a major degradation product from L-lysine in murine brain generated by α-deamination of this amino acid.

  7. Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II-Induced Hypertension.

    PubMed

    Diaz-Otero, Janice M; Fisher, Courtney; Downs, Kelsey; Moss, M Elizabeth; Jaffe, Iris Z; Jackson, William F; Dorrance, Anne M

    2017-12-01

    The brain is highly susceptible to injury caused by hypertension because the increased blood pressure causes artery remodeling that can limit cerebral perfusion. Mineralocorticoid receptor (MR) antagonism prevents hypertensive cerebral artery remodeling, but the vascular cell types involved have not been defined. In the periphery, the endothelial MR mediates hypertension-induced vascular injury, but cerebral and peripheral arteries are anatomically distinct; thus, these findings cannot be extrapolated to the brain. The parenchymal arterioles determine cerebrovascular resistance. Determining the effects of hypertension and MR signaling on these arterioles could lead to a better understanding of cerebral small vessel disease. We hypothesized that endothelial MR signaling mediates inward cerebral artery remodeling and reduced cerebral perfusion during angiotensin II (AngII) hypertension. The biomechanics of the parenchymal arterioles and posterior cerebral arteries were studied in male C57Bl/6 and endothelial cell-specific MR knockout mice and their appropriate controls using pressure myography. AngII increased plasma aldosterone and decreased cerebral perfusion in C57Bl/6 and MR-intact littermates. Endothelial cell MR deletion improved cerebral perfusion in AngII-treated mice. AngII hypertension resulted in inward hypotrophic remodeling; this was prevented by MR antagonism and endothelial MR deletion. Our studies suggest that endothelial cell MR mediates hypertensive remodeling in the cerebral microcirculation and large pial arteries. AngII-induced inward remodeling of cerebral arteries and arterioles was associated with a reduction in cerebral perfusion that could worsen the outcome of stroke or contribute to vascular dementia. © 2017 American Heart Association, Inc.

  8. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor.

    PubMed

    Capsoni, Simona; Malerba, Francesca; Carucci, Nicola Maria; Rizzi, Caterina; Criscuolo, Chiara; Origlia, Nicola; Calvello, Mariantonietta; Viegi, Alessandro; Meli, Giovanni; Cattaneo, Antonino

    2017-01-01

    Nerve growth factor is a therapeutic candidate for Alzheimer's disease. Due to its pain-inducing activity, in current clinical trials nerve growth factor is delivered locally into the brain by neurosurgery, but data on the efficacy of local nerve growth factor delivery in decreasing amyloid-β deposition are not available. To reduce the nerve growth factor pain-inducing side effects, thus avoiding the need for local brain injection, we developed human painless nerve growth factor (hNGFp), inspired by the human genetic disease hereditary sensory and autonomic neuropathy type V. hNGFp has identical neurotrophic potency as wild-type human nerve growth factor, but a 10-fold lower pain sensitizing activity. In this study we first mimicked, in the 5xFAD mouse model, the intraparenchymal delivery of hNGFp used in clinical trials and found it to be ineffective in decreasing amyloid-β plaque load. On the contrary, the same dose of hNGFp delivered intranasally, which was widely biodistributed in the brain and did not induce pain, showed a potent anti-amyloidogenic action and rescued synaptic plasticity and memory deficits. We found that hNGFp acts on glial cells, modulating inflammatory proteins such as the soluble TNFα receptor II and the chemokine CXCL12. We further established that the rescuing effect by hNGFp is mediated by CXCL12, as pharmacological inhibition of CXCL12 receptor CXCR4 occludes most of hNGFp effects. These findings have significant therapeutic implications: (i) we established that a widespread exposure of the brain is required for nerve growth factor to fully exert its neuroprotective actions; and (ii) we have identified a new anti-neurodegenerative pathway as a broad target for new therapeutic opportunities for neurodegenerative diseases. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  9. Microglial activation in white matter lesions and nonlesional white matter of ageing brains.

    PubMed

    Simpson, J E; Ince, P G; Higham, C E; Gelsthorpe, C H; Fernando, M S; Matthews, F; Forster, G; O'Brien, J T; Barber, R; Kalaria, R N; Brayne, C; Shaw, P J; Stoeber, K; Williams, G H; Lewis, C E; Wharton, S B

    2007-12-01

    White matter lesions (WML), a common feature in brain ageing, are classified as periventricular (PVL) or deep subcortical (DSCL), depending on their anatomical location. Microglial activation is implicated in a number of neurodegenerative diseases, but the microglial response in WML is poorly characterized and its role in pathogenesis unknown. We have characterized the microglial response in WML and control white matter using immunohistochemistry to markers of microglial activation and of proliferation. WML of brains from an unbiased population-based autopsy cohort (Medical Research Council's Cognitive Function and Ageing Study) were identified by post mortem magnetic resonance imaging and sampled for histology. PVL contain significantly more activated microglia, expressing major histocompatibility complex (MHC) class II and the costimulatory molecules B7-2 and CD40, than either control white matter (WM) or DSCL. Furthermore, we show that significantly more microglia express the replication licensing protein minichromosome maintenance protein 2 within PVL, suggesting this is a more proliferation-permissive environment than DSCL. Although microglial activation occurs in both PVL and DSCL, our findings suggest a difference in pathogenesis between these lesion-types: the ramified, activated microglia associated with PVL may reflect immune activation resulting from disruption of the blood brain barrier, while the microglia within DSCL may reflect an innate, amoeboid phagocytic phenotype. We also show that microglia in control WM from lesional cases express significantly more MHC II than control WM from nonlesional ageing brain, suggesting that WML occur in a 'field-effect' of abnormal WM.

  10. The Effect of Early Detection of Occult Brain Metastases in HER2-Positive Breast Cancer Patients on Survival and Cause of Death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwinska, Anna, E-mail: alphaonetau@poczta.onet.p; Tacikowska, Malgorzata; Murawska, Magdalena

    2010-07-15

    Purpose: The aim of the study is to evaluate disease-free survival, survival from the detection of brain metastases, overall survival, and cause of death in patients with occult brain metastases (Group I) vs. patients with symptomatic brain metastases (Group II). Methods and Materials: In 80 HER2-positive breast cancer patients, treated with trastuzumab and cytostatic agents for metastatic disease, magnetic resonance imaging screening of the brain was performed, and in 29 patients (36%) occult brain metastasis was detected (Group I). Whole-brain radiotherapy was delivered to Group I. This first group was compared with 52 patients who had symptomatic brain metastases (Groupmore » II) and was treated the same way, at the same clinic, during the same time period. Results: Median disease-free survival was 17 months in Group I and 19.9 months in Group II (p = 0.58). The median time interval between the dissemination of the disease and the detection of occult or symptomatic brain metastases was 9 and 15 months, respectively (p = 0.11). When the brain metastases were detected, the median survival was 9 and 8.78 months, respectively (p = 0.80). The median overall survival was 53 and 51 months, respectively (p = 0.94). In the group with occult brain metastases (Group I) 16% of patients died because of progression within the brain. In the group with symptomatic brain metastases (Group II) the rate of cerebral death was 48% (p = 0.009). Conclusions: Whole-brain radiotherapy of occult brain metastases in HER2-positive breast cancer patients with visceral dissemination produces a three-fold decrease in cerebral deaths but does not prolong survival.« less

  11. Quantitative fine structure of capillaries in subregions of the rat subfornical organ.

    PubMed

    Shaver, S W; Sposito, N M; Gross, P M

    1990-04-01

    The differentiated cytology across subregions of the rat subfornical organ (SFO) prompted our hypothesis that ultrastructural features of capillary endothelial cells would vary topographically and quantitatively within this small nucleus. We used electron microscopic and computer-based morphometric methods to assess fine structural dimensions of the capillary endothelium in four distinct subregions of the SFO from Long-Evans and homozygous Brattleboro rats. Three types of capillary were present. Type III capillaries (resembling those of endocrine glands) had an average wall thickness of 0.17 microns, 54% thinner than those of Type I and II capillaries. Pericapillary spaces around Type III capillaries measured 56 microns2, 100% larger than for Type I vessels (resembling those of skeletal muscle). Only Type III capillaries contained fenestrations (9 per microns2 of endothelial cell) and were the predominant type of capillary in central and caudal subregions of the SFO. Type I capillaries, prevalent in the transitional subregion between the central and rostral parts of the SFO, had 10 cytoplasmic vesicles per micron2 of endothelial cell area, a number not different from that of Type III capillaries but 3x the frequency found in Type II vessels. Type II capillaries (those typical of "blood-brain barrier" endothelium) had low vesicular density (3 per microns2), no fenestrations, and no pericapillary spaces. Luminal diameters and the densities of mitochondria and intercellular junctions were not different among capillary types or subregions in the SFO. Furthermore, there were no morphometric differences for any capillary dimensions between Long-Evans and Brattleboro rats.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma?

    PubMed

    Connor, Thomas J; Starr, Neasa; O'Sullivan, Joan B; Harkin, Andrew

    2008-08-15

    Inflammation-mediated dysregulation of the kynurenine pathway has been implicated as a contributor to a number of major brain disorders. Consequently, we examined the impact of a systemic inflammatory challenge on kynurenine pathway enzyme expression in rat brain. Indoleamine 2,3-dioxygenase (IDO) expression was induced in cortex and hippocampus following systemic lipopolysaccharide (LPS) administration. Whilst IDO expression was paralleled by increased circulating interferon (IFN)-gamma concentrations, IFN-gamma expression in the brain was only modestly altered following LPS administration. In contrast, induction of IDO was associated with increased central tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 expression. Similarly, in cultured glial cells LPS-induced IDO expression was accompanied by increased TNF-alpha and IL-6 expression, whereas IFN-gamma was not detectable. These findings indicate that IFN-gamma is not required for LPS-induced IDO expression in brain. A robust increase in kynurenine-3-monooxygenase (KMO) expression was observed in rat brain 24h post LPS, without any change in kynurenine aminotransferase II (KAT II) expression. In addition, we report that constitutive expression of KAT II is approximately 8-fold higher than KMO in cortex and 20-fold higher in hippocampus. Similarly, in glial cells constitutive expression of KAT II was approximately 16-fold higher than KMO, and expression of KMO but not KAT II was induced by LPS. These data are the first to demonstrate that a systemic inflammatory challenge stimulates KMO expression in brain; a situation that is likely to favour kynurenine metabolism in a neurotoxic direction. However, our observation that expression of KAT II is much higher than KMO in rat brain is likely to counteract potential neurotoxicity that could arise from KMO induction following an acute inflammation.

  13. Differential susceptibility of mitochondrial complex II to inhibition by oxaloacetate in brain and heart.

    PubMed

    Stepanova, Anna; Shurubor, Yevgeniya; Valsecchi, Federica; Manfredi, Giovanni; Galkin, Alexander

    2016-09-01

    Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10(-8)M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Activating Endogenous Neural Precursor Cells Using Metformin Leads to Neural Repair and Functional Recovery in a Model of Childhood Brain Injury.

    PubMed

    Dadwal, Parvati; Mahmud, Neemat; Sinai, Laleh; Azimi, Ashkan; Fatt, Michael; Wondisford, Fredric E; Miller, Freda D; Morshead, Cindi M

    2015-08-11

    The development of cell replacement strategies to repair the injured brain has gained considerable attention, with a particular interest in mobilizing endogenous neural stem and progenitor cells (known as neural precursor cells [NPCs]) to promote brain repair. Recent work demonstrated metformin, a drug used to manage type II diabetes, promotes neurogenesis. We sought to determine its role in neural repair following brain injury. We find that metformin administration activates endogenous NPCs, expanding the size of the NPC pool and promoting NPC migration and differentiation in the injured neonatal brain in a hypoxia-ischemia (H/I) injury model. Importantly, metformin treatment following H/I restores sensory-motor function. Lineage tracking reveals that metformin treatment following H/I causes an increase in the absolute number of subependyma-derived NPCs relative to untreated H/I controls in areas associated with sensory-motor function. Hence, activation of endogenous NPCs is a promising target for therapeutic intervention in childhood brain injury models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Development of obesity can be prevented in rats by chronic icv infusions of AngII but less by Ang(1-7).

    PubMed

    Winkler, Martina; Bader, Michael; Schuster, Franziska; Stölting, Ines; Binder, Sonja; Raasch, Walter

    2018-06-01

    Considering that obesity is one of the leading risks for death worldwide, it should be noted that a brain-related mechanism is involved in AngII-induced and AT 1 -receptor-dependent weight loss. It is moreover established that activation of the Ang(1-7)/ACE2/Mas axis reduces weight, but it remains unclear whether this Ang(1-7) effect is also mediated via a brain-related mechanism. Additionally to Sprague Dawley (SD) rats, we used TGR(ASrAOGEN) selectively lacking brain angiotensinogen, the precursor to AngII, as we speculated that effects are more pronounced in a model with low brain RAS activity. Rats were fed with high-calorie cafeteria diet. We investigated weight regulation, food behavior, and energy balance in response to chronic icv.-infusions of AngII (200 ng•h -1 ), or Ang(1-7) (200/600 ng•h -1 ) or artificial cerebrospinal fluid. High- but not low-dose Ang(1-7) slightly decreased weight gain and energy intake in SD rats. AngII showed an anti-obese efficacy in SD rats by decreasing energy intake and increasing energy expenditure and also improved glucose control. TGR(ASrAOGEN) were protected from developing obesity. However, Ang(1-7) did not reveal any effects in TGR(ASrAOGEN) and those of AngII were minor compared to SD rats. Our results emphasize that brain AngII is a key contributor for regulating energy homeostasis and weight in obesity by serving as a negative brain-related feedback signal to alleviate weight gain. Brain-related anti-obese potency of Ang(1-7) is lower than AngII but must be further investigated by using other transgenic models as TGR(ASrAOGEN) proved to be less valuable for answering this question.

  16. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II.

    PubMed

    Carvalho-Silva, Milena; Gomes, Lara M; Scaini, Giselli; Rebelo, Joyce; Damiani, Adriani P; Pereira, Maiara; Andrade, Vanessa M; Gava, Fernanda F; Valvassori, Samira S; Schuck, Patricia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-08-01

    Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.

  17. First description of clonal lineage type II (genotype #1) of Toxoplasma gondii in abortion outbreak in goats.

    PubMed

    de Oliveira, Júnior Mário Baltazar; de Almeida, Jonatas Campos; de Melo, Renata Pimentel Bandeira; de Barros, Luiz Daniel; Garcia, João Luis; Andrade, Müller Ribeiro; Porto, Wagnner José Nascimento; Regidor-Cerrillo, Javier; Ortega-Mora, Luis Miguel; Oliveira, Andréa Alice da Fonseca; Mota, Rinaldo Aparecido

    2018-05-01

    The purpose of this study was to perform genotypic characterization and to evaluate the virulence of Toxoplasma gondii obtained from aborted fetuses in an abortion outbreak in goats from northeastern Brazil. Brain samples from 32 fetuses were submitted to mouse bioassay for T. gondii isolation. Two isolates were obtained and subjected to genotypic characterization. Isolate virulence was evaluated using murine model in different doses (from 10 5 to 10 1 tachyzoites/mL). In genotyping, both isolates were classified as clonal lineage type II (genotype #1 ToxoDB) and showed to be virulent for mice. This is the first description of genotype #1 in cases of goat abortion, showing the circulation of virulent T. gondii isolate producing reproductive disorders in pregnant goat. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. 2-Hydroxyglutarate Detection by Short Echo Time Magnetic Resonance Spectroscopy in Routine Imaging Study of Brain Glioma at 3.0 T.

    PubMed

    Crisi, Girolamo; Filice, Silvano; Michiara, Maria; Crafa, Pellegrino; Lana, Silvia

    The objective of this study was to assess the effective performance of short echo time magnetic resonance spectroscopy (short TE MRS) for 2HG detection as biomarker of isocitrate dehydrogenase (IDH) status in all grade glioma (GL). A total of 82 GL patients were prospectively investigated by short TE MRS at 3.0 T as part of a multimodal magnetic resonance imaging study protocol. Spectral analysis was performed using linear combination model. Tumor specimens were diagnosed as IDH mutant or wild type according to the 2016 World Health Organization (WHO) classification of brain tumors. Spectra were analyzed for the presence of 2HG. The performance of short TE MRS was evaluated in terms of sensitivity, specificity, and positive and negative likelihood ratio on the overall sample and on GL WHO grades II and III and glioblastoma separately. The specificity and sensitivity estimated on the overall sample were 88% and 77%, respectively. In GL WHO grades II and III, 100% specificity and 75% sensitivity were estimated. We reiterate the feasibility to identify IDH status of brain GL using short TE MRS at 3.0 T. The method can correctly detect 2HG as expression of IDH mutation in WHO grades II and III GL with a 100% specificity but a 75% sensitivity. In the evaluation of glioblastoma, short TE MRS performs poorly having a 17% false positive rate.

  19. Are there differences in brain morphometry between twins and unrelated singletons? A pediatric MRI study.

    PubMed

    Ordaz, S J; Lenroot, R K; Wallace, G L; Clasen, L S; Blumenthal, J D; Schmitt, J E; Giedd, J N

    2010-04-01

    Twins provide a unique capacity to explore relative genetic and environmental contributions to brain development, but results are applicable to non-twin populations only to the extent that twin and singleton brains are alike. A reason to suspect differences is that as a group twins are more likely than singletons to experience adverse prenatal and perinatal events that may affect brain development. We sought to assess whether this increased risk leads to differences in child or adolescent brain anatomy in twins who do not experience behavioral or neurological sequelae during the perinatal period. Brain MRI scans of 185 healthy pediatric twins (mean age = 11.0, SD = 3.6) were compared to scans of 167 age- and sex-matched unrelated singletons on brain structures measured, which included gray and white matter lobar volumes, ventricular volume, and area of the corpus callosum. There were no significant differences between groups for any structure, despite sufficient power for low type II (i.e. false negative) error. The implications of these results are twofold: (1) within this age range and for these measures, it is appropriate to include healthy twins in studies of typical brain development, and (2) findings regarding heritability of brain structures obtained from twin studies can be generalized to non-twin populations.

  20. Complete Reversibility of the Chiari Type II Malformation After Postnatal Repair of Myelomeningocele.

    PubMed

    Beuriat, Pierre-Aurélien; Szathmari, Alexandru; Rousselle, Christophe; Sabatier, Isabelle; Di Rocco, Federico; Mottolese, Carmine

    2017-12-01

    It was believed that Chiari type II malformation (CM-II) was always present in a myelomeningocele (MMC). In fact, it is associated in about 80% of cases. Improvement of the hindbrain herniation after prenatal closure of MMC has challenged the idea that this condition was irreversible. Only 2 studies report ascent of the cerebellar tonsil after postnatal closure. This work aimed to study a large group of patients with MMC who benefited from a postnatal repair to evaluate the rate of long-term total reversibility of CM-II. Sixty-one patients were included. Mean time of follow-up was 8.1 years. The presence of CM-II after closure of the MMC was assessed on the most recent brain scan available for each patient. Forty-seven patients (77%) had a CM-II at birth (confirmed before the MMC repair). There was a significant correlation between the level of the malformation and the presence of a CM-II at birth (P = 0.003). After MMC closure, only 28 (45.9%) patients had a remaining CM-II. The reversibility rate was 40.4%. The reversibility was higher in lower level malformations (P = 0.004). The number of patients treated for hydrocephalus was significantly higher in the group of patients with remaining CM-II (P = 0.004). Only 11.5% of the children needed surgery for a symptomatic CM-II. MMC is not always associated with CM-II. The outcome of CM-II has improved. Postnatal closure can reverse the CM-II. This must be kept in mind when analyzing the result of prenatal series. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist.

    PubMed

    Lochard, Nadheige; Thibault, Gaétan; Silversides, David W; Touyz, Rhian M; Reudelhuber, Timothy L

    2004-06-11

    Angiotensin IV (Ang IV) is a metabolite of the potent vasoconstrictor angiotensin II (Ang II). Because specific binding sites for this peptide have been reported in numerous tissues including the brain, it has been suggested that a specific Ang IV receptor (AT4) might exist. Bolus injection of Ang IV in brain ventricles has been implicated in learning, memory, and localized vasodilatation. However, the functions of Ang IV in a physiological context are still unknown. In this study, we generated a transgenic (TG) mouse model that chronically releases Ang IV peptide specifically in the brain. TG mice were found to be hypertensive by the tail-cuff method as compared with control littermates. Treatment with the angiotensin-converting enzyme inhibitor captopril had no effect on blood pressure, but surprisingly treatment with the Ang II AT1 receptor antagonist candesartan normalized the blood pressure despite the fact that the levels of Ang IV in the brains of TG mice were only 4-fold elevated over the normal endogenous level of Ang peptides. Calcium mobilization assays performed on cultured CHO cells chronically transfected with the AT1 receptor confirm that low-dose Ang IV can mobilize calcium via the AT1 receptor only in the presence of Ang II, consistent with an allosteric mechanism. These results suggest that chronic elevation of Ang IV in the brain can induce hypertension that can be treated with angiotensin II AT1 receptor antagonists.

  2. Neuroanatomical profiles of alexithymia dimensions and subtypes.

    PubMed

    Goerlich-Dobre, Katharina Sophia; Votinov, Mikhail; Habel, Ute; Pripfl, Juergen; Lamm, Claus

    2015-10-01

    Alexithymia, a major risk factor for a range of psychiatric and neurological disorders, has been recognized to comprise two dimensions, a cognitive dimension (difficulties identifying, analyzing, and verbalizing feelings) and an affective one (difficulties emotionalizing and fantasizing). Based on these dimensions, the existence of four distinct alexithymia subtypes has been proposed, but never empirically tested. In this study, 125 participants were assigned to four groups corresponding to the proposed alexithymia subtypes: Type I (impairment on both dimensions), Type II (impairment on the cognitive, but not the affective dimension), Type III (impairment on the affective, but not the cognitive dimension), and Lexithymics (no impairment on either dimension). By means of voxel-based morphometry, associations of the alexithymia dimensions and subtypes with gray and white matter volumes were analyzed. Type I and Type II alexithymia were characterized by gray matter volume reductions in the left amygdala and the thalamus. The cognitive dimension was further linked to volume reductions in the right amygdala, left posterior insula, precuneus, caudate, hippocampus, and parahippocampus. Type III alexithymia was marked by volume reduction in the MCC only, and the affective dimension was further characterized by larger sgACC volume. Moreover, individuals with the intermediate alexithymia Types II and III showed gray matter volume reductions in distinct regions, and had larger corpus callosum volumes compared to Lexithymics. These results substantiate the notion of a differential impact of the cognitive and affective alexithymia dimensions on brain morphology and provide evidence for separable neuroanatomical representations of the different alexithymia subtypes. © 2015 Wiley Periodicals, Inc.

  3. Abcb1a but not Abcg2 played a predominant role in limiting the brain distribution of Huperzine A in mice.

    PubMed

    Li, Jiajun; Yue, Mei; Zhou, Dandan; Wang, Meiyu; Zhang, Hongjian

    2017-09-01

    Huperzine A has been used for improving symptoms of Alzheimer's disease. Its cholinergic side effect is thought to be an exaggerated pharmacological outcome linked to its high brain or CNS concentrations. Although Huperzine A is brain penetrable, its interaction with efflux transporters (ABCB1 and ABCG2) has not been fully investigated. The aim of the present study was to characterize roles of ABCB1 and ABCG2 in the transmembrane transport of Huperzine A and identify a rate limiting step in its brain distribution. Data obtained from stably transfected MDCK II cells showed that Huperzine A is a substrate of ABCB1 but not ABCG2. ABCB1 inhibitors significantly inhibited ABCB1 mediated efflux of Huperzine A. In Abcb1a -/- mice, the brain to plasma concentration ratio of Huperzine A was significantly increased as compared to the wild type mice, while there were no obvious differences between the wild type and Abcg2 -/- mice. Taken together, the present study demonstrated that ABCB1 but not ABCG2 played a predominant role in the efflux of Huperzine A across BBB. The current finding is clinically relevant as changes in ABCB1 activity in the presence of ABCB1 inhibitors or genetic polymorphism may affect efficacy and safety of Huperzine A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.

    PubMed

    Gusdon, Aaron M; Fernandez-Bueno, Gabriel A; Wohlgemuth, Stephanie; Fernandez, Jenelle; Chen, Jing; Mathews, Clayton E

    2015-09-10

    Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.

  5. Calmodulin regulates Cav3 T-type channels at their gating brake

    PubMed Central

    Taiakina, Valentina; Monteil, Arnaud; Piazza, Michael; Guan, Wendy; Stephens, Robert F.; Dieckmann, Thorsten; Guillemette, Joseph Guy; Spafford, J. David

    2017-01-01

    Calcium (Cav1 and Cav2) and sodium channels possess homologous CaM-binding motifs, known as IQ motifs in their C termini, which associate with calmodulin (CaM), a universal calcium sensor. Cav3 T-type channels, which serve as pacemakers of the mammalian brain and heart, lack a C-terminal IQ motif. We illustrate that T-type channels associate with CaM using co-immunoprecipitation experiments and single particle cryo-electron microscopy. We demonstrate that protostome invertebrate (LCav3) and human Cav3.1, Cav3.2, and Cav3.3 T-type channels specifically associate with CaM at helix 2 of the gating brake in the I–II linker of the channels. Isothermal titration calorimetry results revealed that the gating brake and CaM bind each other with high-nanomolar affinity. We show that the gating brake assumes a helical conformation upon binding CaM, with associated conformational changes to both CaM lobes as indicated by amide chemical shifts of the amino acids of CaM in 1H-15N HSQC NMR spectra. Intact Ca2+-binding sites on CaM and an intact gating brake sequence (first 39 amino acids of the I–II linker) were required in Cav3.2 channels to prevent the runaway gating phenotype, a hyperpolarizing shift in voltage sensitivities and faster gating kinetics. We conclude that the presence of high-nanomolar affinity binding sites for CaM at its universal gating brake and its unique form of regulation via the tuning of the voltage range of activity could influence the participation of Cav3 T-type channels in heart and brain rhythms. Our findings may have implications for arrhythmia disorders arising from mutations in the gating brake or CaM. PMID:28972185

  6. Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases.

    PubMed

    Kovacs, Gabor G; Robinson, John L; Xie, Sharon X; Lee, Edward B; Grossman, Murray; Wolk, David A; Irwin, David J; Weintraub, Dan; Kim, Christopher F; Schuck, Theresa; Yousef, Ahmed; Wagner, Stephanie T; Suh, Eunran; Van Deerlin, Vivianna M; Lee, Virginia M-Y; Trojanowski, John Q

    2017-04-01

    The term "aging-related tau astrogliopathy" (ARTAG) describes pathological accumulation of abnormally phosphorylated tau protein in astrocytes. We evaluated the correlates of ARTAG types (i.e., subpial, subependymal, white and gray matter, and perivascular) in different neuroanatomical regions. Clinical, neuropathological, and genetic (eg, APOE ε4 allele, MAPT H1/H2 haplotype) data from 628 postmortem brains from subjects were investigated; most of the patients had been longitudinally followed at the University of Pennsylvania. We found that (i) the amygdala is a hotspot for all ARTAG types; (ii) age at death, male sex, and presence of primary frontotemporal lobar degeneration (FTLD) tauopathy are significantly associated with ARTAG; (iii) age at death, greater degree of brain atrophy, ventricular enlargement, and Alzheimer disease (AD)-related variables are associated with subpial, white matter, and perivascular ARTAG types; (iv) AD-related variables are associated particularly with lobar white matter ARTAG; and (v) gray matter ARTAG in primary FTLD-tauopathies appears in areas without neuronal tau pathology. We provide a reference map of ARTAG types and propose at least 5 constellations of ARTAG. Furthermore, we propose a conceptual link between primary FTLD-tauopathy and ARTAG-related astrocytic tau pathologies. Our observations serve as a basis for etiological stratification and definition of progression patterns of ARTAG. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  7. Administration of exogenous 1,25(OH)2D3 normalizes overactivation of the central renin-angiotensin system in 1α(OH)ase knockout mice.

    PubMed

    Zhang, Wei; Chen, Lulu; Zhang, Luqing; Xiao, Ming; Ding, Jiong; Goltzman, David; Miao, Dengshun

    2015-02-19

    Previously, we reported that active vitamin D deficiency in mice causes secondary hypertension and cardiac dysfunction, but the underlying mechanism remains largely unknown. To clarify whether exogenous active vitamin D rescues hypertension by normalizing the altered central renin-angiotensin system (RAS) via an antioxidative stress mechanism, 1-alpha-hydroxylase [1α(OH)ase] knockout mice [1α(OH)ase(-/-)] and their wild-type littermates were fed a normal diet alone or with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], or a high-calcium, high-phosphorus "rescue" diet with or without antioxidant N-acetyl-l-cysteine (NAC) supplementation for 4 weeks. Compared with their wild-type littermates, 1α(OH)ase(-/-)mice had high mean arterial pressure, increased levels of renin, angiotensin II (Ang II), and Ang II type 1 receptor, and increased malondialdehyde levels, but decreased anti-peroxiredoxin I and IV proteins and the antioxidative genes glutathione reductase (Gsr) and glutathione peroxidase 4 (Gpx4) in the brain samples. Except Ang II type 1 receptor, these pathophysiological changes were rescued by exogenous 1,25(OH)2D3 or NAC plus rescue diet, but not by rescue diet alone. We conclude that 1,25(OH)2D3 normalizes the altered central RAS in 1α(OH)ase(-/-)mice, at least partially, through a central antioxidative mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Azilsartan, an angiotensin II type 1 receptor blocker, attenuates tert-butyl hydroperoxide-induced endothelial cell injury through inhibition of mitochondrial dysfunction and anti-inflammatory activity.

    PubMed

    Liu, Hao; Mao, Ping; Wang, Jia; Wang, Tuo; Xie, Chang-Hou

    2016-03-01

    Angiotensin II type 1 receptor (AT1-R) blockers protect against brain ischemia by mechanisms dependent on and independent of arterial blood pressure. However, the effects of AT1-R blockers on brain endothelial cell injury and detailed mechanisms remain unclear. The goal of this study is to investigate whether azilsartan, an AT1-R blocker, could attenuate oxidative injury in endothelial cells via regulating mitochondrial function and inflammatory responses. We found that treatment with azilsartan suppressed tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in murine brain endothelial cells (mBECs) by increasing cell viability, decreasing lactate dehydrogenase (LDH) release and inhibiting cell apoptosis. Azilsartan significantly inhibited reactive oxygen species (ROS) generation and lipid peroxidation, but had no effect on antioxidant system. We also detected preserved mitochondrial function after azilsartan treatment, as evidenced by increased mitochondrial membrane potential (MMP), reduced cytochrome c release, preserved ATP synthesis and inhibited mitochondrial swelling. In addition, azilsartan differently regulated expression of inflammatory cytokines and increased the activation of endothelial nitric oxide synthase (eNOS). Pretreatment with eNOS inhibitor L-NIO partially prevented the azilsartan-induced regulation of cytokines and protection. Furthermore, azilsartan-induced protection in our in vitro model was shown to be associated with protein stability of peroxisome proliferator-activated receptor-γ (PPAR-γ). Overall, our data suggest that the AT1-R blocker azilsartan may have therapeutic values in treating endothelial dysfunction associated neurological disorders through anti-oxidative and anti-inflammatory properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Semi-quantitative Assessment of Brain Maturation by Conventional Magnetic Resonance Imaging in Neonates with Clinically Mild Hypoxic-ischemic Encephalopathy

    PubMed Central

    Gao, Jie; Sun, Qin-Li; Zhang, Yu-Miao; Li, Yan-Yan; Li, Huan; Hou, Xin; Yu, Bo-Lang; Zhou, Xi-Hui; Yang, Jian

    2015-01-01

    Background: Mild hypoxic-ischemic encephalopathy (HIE) injury is becoming the major type in neonatal brain diseases. The aim of this study was to assess brain maturation in mild HIE neonatal brains using total maturation score (TMS) based on conventional magnetic resonance imaging (MRI). Methods: Totally, 45 neonates with clinically mild HIE and 45 matched control neonates were enrolled. Gestated age, birth weight, age after birth and postmenstrual age at magnetic resonance (MR) scan were homogenous in the two groups. According to MR findings, mild HIE neonates were divided into three subgroups: Pattern I, neonates with normal MR appearance; Pattern II, preterm neonates with abnormal MR appearance; Pattern III, full-term neonates with abnormal MR appearance. TMS and its parameters, progressive myelination (M), cortical infolding (C), involution of germinal matrix tissue (G), and glial cell migration bands (B), were employed to assess brain maturation and compare difference between HIE and control groups. Results: The mean of TMS was significantly lower in mild HIE group than it in the control group (mean ± standard deviation [SD] 11.62 ± 1.53 vs. 12.36 ± 1.26, P < 0.001). In four parameters of TMS scores, the M and C scores were significantly lower in mild HIE group. Of the three patterns of mild HIE, Pattern I (10 cases) showed no significant difference of TMS compared with control neonates, while Pattern II (22 cases), III (13 cases) all had significantly decreased TMS than control neonates (mean ± SD 10.56 ± 0.93 vs. 11.48 ± 0.55, P < 0.05; 12.59 ± 1.28 vs. 13.25 ± 1.29, P < 0.05). It was M, C, and GM scores that significantly decreased in Pattern II, while for Pattern III, only C score significantly decreased. Conclusions: The TMS system, based on conventional MRI, is an effective method to detect delayed brain maturation in clinically mild HIE. The conventional MRI can reveal the different retardations in subtle structures and development processes among the different patterns of mild HIE. PMID:25698186

  10. P43/pro-EMAPII: A Potential Biomarker for Discriminating Traumatic Versus Ischemic Brain Injury

    PubMed Central

    Yao, Changping; Williams, Anthony J.; Ottens, Andrew K.; Lu, X.-C. May; Liu, Ming Cheng; Hayes, Ronald L.; Wang, Kevin K.; Tortella, Frank C.

    2009-01-01

    Abstract To gain additional insights into the pathogenic cellular and molecular mechanisms underlying different types of brain injury (e.g., trauma versus ischemia), recently attention has focused on the discovery and study of protein biomarkers. In previous studies, using a high-throughput immunoblotting (HTPI) technique, we reported changes in 29 out of 998 proteins following acute injuries to the rat brain (penetrating traumatic versus focal ischemic). Importantly, we discovered that one protein, endothelial monocyte-activating polypeptide II precursor (p43/pro-EMAPII), was differentially expressed between these two types of brain injury. Among other functions, p43/pro-EMAPII is a known pro-inflammatory cytokine involved in the progression of apoptotic cell death. Our current objective was to verify the changes in p43/pro-EMAPII expression, and to evaluate the potentially important implications that the differential regulation of this protein has on injury development. At multiple time points following either a penetrating ballistic-like brain injury (PBBI), or a transient middle cerebral artery occlusion (MCAo) brain injury, tissue samples (6–72 h), CSF samples (24 h), and blood samples (24 h) were collected from rats for analysis. Changes in protein expression were assessed by Western blot analysis and immunohistochemistry. Our results indicated that p43/pro-EMAPII was significantly increased in brain tissues, CSF, and plasma following PBBI, but decreased after MCAo injury compared to their respective sham control samples. This differential expression of p43/pro-EMAPII may be a useful injury-specific biomarker associated with the underlying pathologies of traumatic versus ischemic brain injury, and provide valuable information for directing injury-specific therapeutics. PMID:19317603

  11. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey.

    PubMed

    Schüz, A; Demianenko, G P

    1995-01-01

    Synapses and dendritic spines were investigated in the parietal cortex of the hedgehog (Erinaceus europaeus) and the monkey (Macaca mulatta). There was no significant difference in the density of synapses between the two species (14 synapses/100 microns2 in the hedgehog, 15/100 microns2 in the monkey), neither in the size of the synaptic junctions, in the proportion of Type I and Type II synapses (8-10% were of Type II in the hedgehog, 10-14% in the monkey) nor in the proportion of perforated synapses (8% in the hedgehog, 5% in the monkey). The only striking difference at the electron microscopic level concerned the frequency of synapses in which the postsynaptic profile was deeply indented into the presynaptic terminal. Such synapses were 10 times more frequent in the monkey. Dendritic spines were investigated in Golgi-preparations. The density of spines along dendrites was similar in both species. The results are discussed with regard to connectivity in the cortex of small and large brains.

  12. Isolation and RFLP genotyping of Toxoplasma gondii from the gray wolf (Canis lupus).

    PubMed

    Dubey, J P; Choudhary, S; Ferreira, L R; Kwok, O C H; Butler, E; Carstensen, M; Yu, L; Su, C

    2013-11-08

    Little is known of the genetic diversity of Toxoplasma gondii circulating in wildlife. In the present study feral gray wolves (Canis lupus) from Minnesota were examined for T. gondii infection. Antibodies to T. gondii were detected in 130 (52.4%) of 248 wolves tested by the modified agglutination test (cut-off titer of 25). Tissues (hearts, brains or both) of 109 wolves were bioassayed in mice for protozoal isolation. Viable T. gondii was isolated from 25 and the isolates were further propagated in cell culture. T. gondii DNA from these isolates was characterized using 10 PCR-RFLP markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico). Four genotypes were detected. Twenty-one isolates were Type 12 (ToxoDB PCR-RFLP genotype #5), 2 were Type II clonal (ToxoDB #1), 1 was Type II variant (ToxoDB #3), and 1 was a new genotype designated as ToxoDB genotype #219. Published by Elsevier B.V.

  13. Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder.

    PubMed

    Wang, Y; Wang, J; Jia, Y; Zhong, S; Zhong, M; Sun, Y; Niu, M; Zhao, L; Zhao, L; Pan, J; Huang, L; Huang, R

    2017-07-04

    Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression. Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in differentiating these disorders.

  14. Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder

    PubMed Central

    Wang, Y; Wang, J; Jia, Y; Zhong, S; Zhong, M; Sun, Y; Niu, M; Zhao, L; Zhao, L; Pan, J; Huang, L; Huang, R

    2017-01-01

    Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression. Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in differentiating these disorders. PMID:28675389

  15. Five-year Survival After Surgical Removal and Gamma Knife Stereotactic Radiosurgery for a Cerebellar Metastasis from an Esophagogastric Junction Cancer: A Case Report and Literature Review

    PubMed Central

    KANAZAWA, YOSHIKAZU; FUJITA, ITSUO; KAKINUMA, DAISUKE; AOKI, YUTO; KANNO, HITOSHI; ARAI, HIROKI; MATSUNO, KUNIHIKO; SHIMODA, TOMOHIRO; MATSUTANI, TAKESHI; HAGIWARA, NOBUTOSHI; NOMURA, TSUTOMU; YAMADA, TAKESHI; KATO, SHUNJI; NAITO, ZENYA; TAKASAKI, HIDEAKI; UCHIDA, EIJI

    2017-01-01

    Brain metastases originating from esophageal or gastric cancer are rare, accounting for 2.1-3.3% of all brain tumors registered in Japan. There are no established therapeutic measures for brain metastases, which accordingly have a poor prognosis. We present here a patient who survived for 5 years after surgery and gamma knife treatment of a cerebellar metastasis from esophagogastric adenocarcinoma. The primary gastric cancer was treated by laparotomy with total gastrectomy, splenectomy, and D2 lymphadenectomy. It was diagnosed as a esophagogastric junction Siewert type II tumor, type 3, tub1-2, pT3 (SS), pN1, and stage IIB on histopathological examination of the surgical specimen. Five months postoperatively, a solitary cerebellar metastasis was identified and surgically removed, followed by 20 Gy administered by gamma knife stereotactic radiosurgery; the patient received no subsequent treatment such as chemotherapy. Five years after the primary surgery, there have been no recurrences and the patient has a good quality of life. There are very few case reports of long-term survival after surgical treatment of cerebellar metastases from esophagogastric junction cancer. We report our experience and review published case reports of surgical treatment of brain metastases from gastric cancer. PMID:29102948

  16. The Disrupted-in-Schizophrenia-1 Ser704Cys polymorphism and brain neurodevelopmental markers in schizophrenia and healthy subjects.

    PubMed

    Takahashi, Tsutomu; Nakamura, Mihoko; Nakamura, Yukako; Aleksic, Branko; Kido, Mikio; Sasabayashi, Daiki; Takayanagi, Yoichiro; Furuichi, Atsushi; Nishikawa, Yumiko; Noguchi, Kyo; Ozaki, Norio; Suzuki, Michio

    2015-01-02

    Increasing evidence has implicated the role of Disrupted-in-Schizophrenia-1 (DISC1), a potential susceptibility gene for schizophrenia, in early neurodevelopmental processes. However, the effect of its genotype variation on brain morphologic changes related to neurodevelopmental abnormalities in schizophrenia remains largely unknown. This magnetic resonance imaging study examined the association between DISC1 Ser704Cys polymorphism and a range of brain neurodevelopmental markers [cavum septi pellucidi (CSP), adhesio interthalamica (AI), olfactory sulcus depth, and sulcogyral pattern (Types I, II, III, and IV) in the orbitofrontal cortex (OFC)] in an all Japanese sample of 75 schizophrenia patients and 87 healthy controls. The Cys carriers had significantly larger CSP than the Ser homozygotes for both schizophrenia patients and healthy controls. The Cys carriers also exhibited a reduction in the Type I pattern of the right OFC in the healthy controls, but not in the schizophrenia patients. The DISC1 Ser704Cys polymorphism did not affect the AI and olfactory sulcus depth in either group. These results suggested a possible role of the DISC1 genotype in the early neurodevelopment of human brains, but failed to show its specific role in the neurodevelopmental pathology of schizophrenia. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Moebius Syndrome

    MedlinePlus

    ... by small or absent brain stem nuclei that control the cranial nerves; Group II, characterized by loss and degeneration of neurons ... by small or absent brain stem nuclei that control the cranial nerves; Group II, characterized by loss and degeneration of neurons ...

  18. Mixed vascular nevus syndrome: a report of four new cases and a literature review.

    PubMed

    Ruggieri, Martino; Polizzi, Agata; Strano, Serena; Schepis, Carmelo; Morano, Massimiliano; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Sofia, Vito; David, Emanuele; Salpietro, Vincenzo; Mankad, Kshitij; Milone, Pietro

    2016-10-01

    Mixed vascular nevus (or nevus vascularis mixtus) represents an admixture of cutaneous vascular malformations of the telangiectatic type and angiospastic spots of nevus anemicus. It can occur as an purely cutaneous trait or as a hallmark of a neurocutaneous phenotype (mixed vascular nevus syndrome) characterised by the combination of: (I) paired vascular (telangiectatic and anemic) twin nevi and brain abnormalities of the Dyke-Davidoff-Masson type (i.e., crossed cerebral/cerebellar hemiatrophy with hypoplasia of the ipsilateral cerebral vessels and homolateral hypertrophy of the skull and sinuses (hyperpneumatisation) with contralateral hemispheric hypertrophy); or (II) paired vascular twin nevi and brain malformations of the Dyke-Davidoff-Masson type in association with systemic abnormalities consisting in facial asymmetry, skeletal anomalies (i.e., Legg-Calvé-Perthes-like disease) and disorders of autoimmunity (i.e., diabetes, thyroiditis). In 2014, Happle proposed to name the syndrome with the eponym Ruggieri-Leech syndrome. Review of the existing literature on nevus vascularis mixtus and information on our personal experience on new cases and follow-up of previously reported cases by some of us. The existing literature revealed 4 previous studies including 33 cases with an inferred purely cutaneous trait and 3 cases with a combination of paired vascular twin nevi and brain malformation of the Dyke-Davidoff-Masson type. Our personal experience includes 4 unpublished patients (1 female and 3 males; currently aged 2 to 34 years) seen and followed-up at our Institutions in Italy who had: paired vascular nevi involving either the face (n=2) or the face and parts of the body (n=2); facial asymmetry (n=4); mild to moderate facial dysmorphic features (n=2); developmental delay (n=3); seizures/stroke-like episodes and associated hemiplegia (n=4); muscular hypotrophy (n=2); mild to moderate hemispheric atrophy (n=4); skull osseous hypertrophy (n=4); hyperpneumatisation of the sinuses (n=2); hypoplastic brain vessels (n=4); colpocephaly and malformation of cortical development (n=2). Follow-up data on our previous 2 cases revealed that the vascular abnormalities in the skin and nervous system were stable over years without neurological progression or deterioration. Pathogenically, this complex phenotype suggests that embryonic pairing and somatic recombination of recessive (didymotic) alleles controlling the balance between constriction (i.e., nevus anemicus) and dilatation (i.e., nevus telangiectaticus) of blood vessels could be the primary event causing the phenomena of cutaneous and brain vascular twin spotting and the paired phenomena of skull hyperpneumatisation vs . hypertrophy and brain megalencephaly/colpocephaly vs . cortical dysplasia. This association is likely more frequent than previously thought and should be investigated by means of: (I) brain and spinal cord imaging (combination of CT and MRI studies); (II) skeletal X-ray studies (when dictated by clinical findings); (III) systemic ultrasound studies; (IV) neurophysiologic studies (EEG); (V) psychomotor testing; (VI) and laboratory investigation (including immune-mediated dysfunction).

  19. Mixed vascular nevus syndrome: a report of four new cases and a literature review

    PubMed Central

    Polizzi, Agata; Strano, Serena; Schepis, Carmelo; Morano, Massimiliano; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Sofia, Vito; David, Emanuele; Salpietro, Vincenzo; Mankad, Kshitij; Milone, Pietro

    2016-01-01

    Background Mixed vascular nevus (or nevus vascularis mixtus) represents an admixture of cutaneous vascular malformations of the telangiectatic type and angiospastic spots of nevus anemicus. It can occur as an purely cutaneous trait or as a hallmark of a neurocutaneous phenotype (mixed vascular nevus syndrome) characterised by the combination of: (I) paired vascular (telangiectatic and anemic) twin nevi and brain abnormalities of the Dyke-Davidoff-Masson type (i.e., crossed cerebral/cerebellar hemiatrophy with hypoplasia of the ipsilateral cerebral vessels and homolateral hypertrophy of the skull and sinuses (hyperpneumatisation) with contralateral hemispheric hypertrophy); or (II) paired vascular twin nevi and brain malformations of the Dyke-Davidoff-Masson type in association with systemic abnormalities consisting in facial asymmetry, skeletal anomalies (i.e., Legg-Calvé-Perthes-like disease) and disorders of autoimmunity (i.e., diabetes, thyroiditis). In 2014, Happle proposed to name the syndrome with the eponym Ruggieri-Leech syndrome. Methods Review of the existing literature on nevus vascularis mixtus and information on our personal experience on new cases and follow-up of previously reported cases by some of us. Results The existing literature revealed 4 previous studies including 33 cases with an inferred purely cutaneous trait and 3 cases with a combination of paired vascular twin nevi and brain malformation of the Dyke-Davidoff-Masson type. Our personal experience includes 4 unpublished patients (1 female and 3 males; currently aged 2 to 34 years) seen and followed-up at our Institutions in Italy who had: paired vascular nevi involving either the face (n=2) or the face and parts of the body (n=2); facial asymmetry (n=4); mild to moderate facial dysmorphic features (n=2); developmental delay (n=3); seizures/stroke-like episodes and associated hemiplegia (n=4); muscular hypotrophy (n=2); mild to moderate hemispheric atrophy (n=4); skull osseous hypertrophy (n=4); hyperpneumatisation of the sinuses (n=2); hypoplastic brain vessels (n=4); colpocephaly and malformation of cortical development (n=2). Follow-up data on our previous 2 cases revealed that the vascular abnormalities in the skin and nervous system were stable over years without neurological progression or deterioration. Conclusions Pathogenically, this complex phenotype suggests that embryonic pairing and somatic recombination of recessive (didymotic) alleles controlling the balance between constriction (i.e., nevus anemicus) and dilatation (i.e., nevus telangiectaticus) of blood vessels could be the primary event causing the phenomena of cutaneous and brain vascular twin spotting and the paired phenomena of skull hyperpneumatisation vs. hypertrophy and brain megalencephaly/colpocephaly vs. cortical dysplasia. This association is likely more frequent than previously thought and should be investigated by means of: (I) brain and spinal cord imaging (combination of CT and MRI studies); (II) skeletal X-ray studies (when dictated by clinical findings); (III) systemic ultrasound studies; (IV) neurophysiologic studies (EEG); (V) psychomotor testing; (VI) and laboratory investigation (including immune-mediated dysfunction). PMID:27942471

  20. Damaging effects of a high-fat diet to the brain and cognition: A review of proposed mechanisms

    PubMed Central

    Freeman, Linnea R.; Haley-Zitlin, Vivian; Rosenberger, Dorothea S.; Granholm, Ann-Charlotte

    2014-01-01

    The prevalence of obesity is growing and now includes at least one-third of the adult population in the United States. As obesity and dementia rates reach epidemic proportions, an even greater interest in the effects of nutrition on the brain have become evident. This review discusses various mechanisms by which a high fat diet and/or obesity can alter the brain and cognition. It is well known that a poor diet and obesity can lead to certain disorders such as type II diabetes, metabolic syndrome, and heart disease. However, long-term effects of obesity on the brain need to be further examined. The contribution of insulin resistance and oxidative stress is briefly reviewed from studies in the current literature. The role of inflammation and vascular alterations are described in more detail due to our laboratory’s experience in evaluating these specific factors. It is very likely that each of these factors plays a role in diet-induced and/or obesity-induced cognitive decline. PMID:24192577

  1. Drinking and changes in blood pressure in response to angiotensin II in the pigeon Columba livia.

    PubMed

    Evered, M D; Fitzsimons, J T

    1981-01-01

    1. Angiotensin II is as potent a stimulus to drink in pigeons as it is in mammals. There are striking similarities in the action of this peptide in pigeons and mammals. 2. Angiotensin II injected intracranially, I.V. or I.P. consistently caused short-latency and vigorous drinking in pigeons but no other behaviour. Drinking was completed rapidly and intakes were very large, sometimes in excess of 10% of the bird's body weight. 3. The latency to drink and the amount drunk were dose dependent for all routes of injection. Angiotensin II was most effective when injected directly into the brain. As little as 10(-4) mol angiotensin II injected into the cerebral ventricles caused birds to drink. 4. The rapid cessation of drinking after intracranial injection of angiotensin II was not caused by rapid loss of activity of the peptide in the brain but by the actual ingestion of the water. 5. The brain sites most sensitive to the dipsogenic action of angiotensin II in the pigeon were the dorsal and ventral third ventricle, the tissue adjacent and anterior to these sites, and the lateral ventricles. The lateral hypothalamic area was only slightly less sensitive. Negative sites for drinking were found in the lateral forebrain and the hind brain. These findings are similar to those in mammals. 6. Pigeons drank during I.V. infusion of as little as 16 X 10(-12) mol angiotensin II kg-1 min-1. This was near the threshold for increasing arterial pressure in pigeons and is near the threshold for drinking in rats and dogs. 7. The Asn1, Asp1, Val5 and Ile5 analogues of angiotensin II were equipotent as stimuli to drink but a wide range of other peptides and drugs injected into the brain failed to increase water intake. An exception was eledoisin which was, comparing molecule with molecule, only 10-100 times less potent than angiotensin II in the pigeon. 8. Injections of angiotensin II into brain sites which caused drinking failed to alter heart rate or arterial pressure in pigeons. 9. This and other recent studies demonstrate the wide phylogenetic distribution of the dipsogenic action of angiotensin II and support the idea that the control of water intake is an important physiological function of the renin-angiotensin system in vertebrates.

  2. Central angiotensin modulation of baroreflex control of renal sympathetic nerve activity in the rat: influence of dietary sodium.

    PubMed

    DiBona, G F

    2003-03-01

    Administration of angiotensin II (angII) into the cerebral ventricles or specific brain sites impairs arterial baroreflex regulation of renal sympathetic nerve activity (SNA). Further insight into this effect was derived from: (a) using specific non-peptide angII receptor antagonists to assess the role of endogenous angII acting on angII receptor subtypes, (b) microinjection of angII receptor antagonists into brain sites behind an intact blood-brain barrier to assess the role of endogenous angII of brain origin and (c) alterations in dietary sodium intake, a known physiological regulator of activity of the renin-angiotensin system (RAS), to assess the ability to physiologically regulate the activity of the brain RAS. In rats in balance on low, normal or dietary sodium intake, losartan or candesartan was injected into the lateral cerebral ventricle or the rostral ventrolateral medulla (RVLM) and the effects on basal renal SNA and the arterial baroreflex sigmoidal relationship between renal SNA and arterial pressure were determined. With both routes of administration, the effects were proportional to the activity of the RAS as indexed by plasma renin activity (PRA). The magnitude of both the decrease in basal renal SNA and the parallel resetting of arterial baroreflex regulation of renal SNA to a lower arterial pressure was greatest in low-sodium rats with highest PRA and least in high-sodium rats with lowest PRA. Disinhibition of the paraventricular nucleus (PVN) by injection of bicuculline causes pressor, tachycardic and renal sympathoexcitatory responses mediated via an angiotensinergic projection from PVN to RVLM. In comparison with responses in normal sodium rats, these responses were greatly diminished in high-sodium rats and greatly enhanced in low-sodium rats. Physiological changes in the activity of the RAS produced by alterations in dietary sodium intake regulate the contribution of endogenous angII of brain origin in the modulation of arterial baroreflex regulation of renal SNA.

  3. Novel ETFDH mutation and imaging findings in an adult with glutaric aciduria type II.

    PubMed

    Rosenbohm, Angela; Süssmuth, Sigurd D; Kassubek, Jan; Müller, Hans-Peter; Pontes, Christina; Abicht, Angela; Bulst, Stefanie; Ludolph, Albert C; Pinkhardt, Elmar

    2014-03-01

    Glutaric aciduria type II (GAII) is a rare autosomal recessive disorder with variable clinical course. The disorder is caused by a defect in the mitochondrial electron transfer flavoprotein or the electron transfer flavoprotein dehydrogenase (ETFDH). We performed clinical characterization, brain and whole body MRI, muscle histopathology, and genetic analysis of the ETFDH gene in a young woman. She presented with rhabdomyolysis and severe quadriparesis. We identified a novel homozygous missense mutation in ETFDH (c.1544G>T, p.Ser515Ile). Body fat MRI revealed a large amount of subcutaneous fat but no increase in visceral fat despite steatosis of liver and muscle. Diffusion tensor imaging (DTI) of cerebral MRI revealed reduced directionality of the white matter tracts. Histopathological findings showed lipid storage myopathy. In this study, we highlight diagnostic clues and body fat MRI in this rare metabolic disorder. Copyright © 2013 Wiley Periodicals, Inc.

  4. Blood-Brain Barriers in Obesity.

    PubMed

    Rhea, Elizabeth M; Salameh, Therese S; Logsdon, Aric F; Hanson, Angela J; Erickson, Michelle A; Banks, William A

    2017-07-01

    After decades of rapid increase, the rate of obesity in adults in the USA is beginning to slow and the rate of childhood obesity is stabilizing. Despite these improvements, the obesity epidemic continues to be a major health and financial burden. Obesity is associated with serious negative health outcomes such as cardiovascular disease, type II diabetes, and, more recently, cognitive decline and various neurodegenerative dementias such as Alzheimer's disease. In the past decade, major advancements have contributed to the understanding of the role of the central nervous system (CNS) in the development of obesity and how peripheral hormonal signals modulate CNS regulation of energy homeostasis. In this article, we address how obesity affects the structure and function of the blood-brain barrier (BBB), the impact of obesity on Alzheimer's disease, the effects of obesity on circulating proteins and their transport into the brain, and how these changes can potentially be reversed by weight loss.

  5. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.

    PubMed

    Villapol, Sonia; Balarezo, María G; Affram, Kwame; Saavedra, Juan M; Symes, Aviva J

    2015-11-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and PPARγ activating properties have therapeutic potential for traumatic brain injury. Published by Oxford University Press on behalf of the Guarantors of Brain 2015. This work is written by US Government employees and is in the public domain in the US.

  6. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method

    PubMed Central

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions. PMID:28588470

  7. Examining Brain Morphometry Associated with Self-Esteem in Young Adults Using Multilevel-ROI-Features-Based Classification Method.

    PubMed

    Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang

    2017-01-01

    Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.

  8. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism.

    PubMed

    Rauch, Anita; Thiel, Christian T; Schindler, Detlev; Wick, Ursula; Crow, Yanick J; Ekici, Arif B; van Essen, Anthonie J; Goecke, Timm O; Al-Gazali, Lihadh; Chrzanowska, Krystyna H; Zweier, Christiane; Brunner, Han G; Becker, Kristin; Curry, Cynthia J; Dallapiccola, Bruno; Devriendt, Koenraad; Dörfler, Arnd; Kinning, Esther; Megarbane, André; Meinecke, Peter; Semple, Robert K; Spranger, Stephanie; Toutain, Annick; Trembath, Richard C; Voss, Egbert; Wilson, Louise; Hennekam, Raoul; de Zegher, Francis; Dörr, Helmuth-Günther; Reis, André

    2008-02-08

    Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ).

  9. Interplay between brain stem angiotensins and monocyte chemoattractant protein-1 as a novel mechanism for pressor response after ischemic stroke.

    PubMed

    Chang, Alice Y W; Li, Faith C H; Huang, Chi-Wei; Wu, Julie C C; Dai, Kuang-Yu; Chen, Chang-Han; Li, Shau-Hsuan; Su, Chia-Hao; Wu, Re-Wen

    2014-11-01

    Pressor response after stroke commonly leads to early death or susceptibility to stroke recurrence, and detailed mechanisms are still lacking. We assessed the hypothesis that the renin-angiotensin system contributes to pressor response after stroke by differential modulation of the pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1) in the rostral ventrolateral medulla (RVLM), a key brain stem site that maintains blood pressure. We also investigated the beneficial effects of a novel renin inhibitor, aliskiren, against stroke-elicited pressor response. Experiments were performed in male adult Sprague-Dawley rats. Stroke induced by middle cerebral artery occlusion elicited significant pressor response, accompanied by activation of angiotensin II (Ang II)/type I receptor (AT1R) and AT2R signaling, depression of Ang-(1-7)/MasR and Ang IV/AT4R cascade, alongside augmentation of MCP-1/C-C chemokine receptor 2 (CCR2) signaling and neuroinflammation in the RVLM. Stroke-elicited pressor response was significantly blunted by antagonism of AT1R, AT2R or MCP-1/CCR2 signaling, and eliminated by applying Ang-(1-7) or Ang IV into the RVLM. Furthermore, stroke-activated MCP-1/CCR2 signaling was enhanced by AT1R and AT2R activation, and depressed by Ang-(1-7)/MasR and Ang IV/AT4R cascade. Aliskiren inhibited stroke-elicited pressor response via downregulating MCP-1/CCR2 activity and reduced neuroinflammation in the RVLM; these effects were potentiated by Ang-(1-7) or Ang IV. We conclude that whereas Ang II/AT1R or Ang II/AT2R signaling in the brain stem enhances, Ang-(1-7)/MasR or Ang IV/AT4R antagonizes pressor response after stroke by differential modulations of MCP-1 in the RVLM. Furthermore, combined administration of aliskiren and Ang-(1-7) or Ang IV into the brain stem provides more effective amelioration of stroked-induced pressor response. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Activation of PKC isoform beta(I) at the blood-brain barrier rapidly decreases P-glycoprotein activity and enhances drug delivery to the brain.

    PubMed

    Rigor, Robert R; Hawkins, Brian T; Miller, David S

    2010-07-01

    P-glycoprotein is an ATP (adenosine triphosphate)-driven drug efflux transporter that is highly expressed at the blood-brain barrier (BBB) and is a major obstacle to the pharmacotherapy of central nervous system diseases, including brain tumors, neuro-AIDS, and epilepsy. Previous studies have shown that P-glycoprotein transport activity in rat brain capillaries is rapidly reduced by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha) acting through protein kinase C (PKC)-dependent signaling. In this study, we used isolated rat brain capillaries to show that the TNF-alpha-induced reduction of P-glycoprotein activity was prevented by a PKCbeta(I/II) inhibitor, LY333531, and mimicked by a PKCbeta(I/II) activator, 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA). Western blotting of brain capillary extracts with phospho-specific antibodies showed that dPPA activated PKCbeta(I), but not PKCbeta(II). Moreover, in intact rats, intracarotid infusion of dPPA potently increased brain accumulation of the P-glycoprotein substrate, [(3)H]-verapamil without compromising tight junction integrity. Thus, PKCbeta(I) activation selectively reduced P-glycoprotein activity both in vitro and in vivo. Targeting PKCbeta(I) at the BBB may prove to be an effective strategy for enhancing the delivery of small molecule therapeutics to the brain.

  11. Hypothermia inhibits translocation of CaM kinase II and PKC-alpha, beta, gamma isoforms and fodrin proteolysis in rat brain synaptosome during ischemia-reperfusion.

    PubMed

    Harada, Kazuki; Maekawa, Tsuyoshi; Tsuruta, Ryosuke; Kaneko, Tadashi; Sadamitsu, Daikai; Yamashima, Tetsumori; Yoshida Ki, Ken-ichi

    2002-03-01

    To clarify the involvement of intracellular signaling pathway and calpain in the brain injury and its protection by mild hypothermia, immunoblotting analyses were performed in the rat brain after global forebrain ischemia and reperfusion. After 30 min of ischemia followed by 60 min of reperfusion, Ca2+/calmodulin-dependent kinase II (CaM kinase II) and protein kinase C (PKC)-alpha, beta, gamma isoforms translocated to the synaptosomal fraction, while mild hypothermia (32 degrees C) inhibited the translocation. The hypothermia also inhibited fodrin proteolysis caused by ischemia-reperfusion, indicating the inhibition of calpain. These effects of hypothermia may explain the mechanism of the protection against brain ischemia-reperfusion injury through modulating synaptosomal function.

  12. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.

    PubMed

    Hájos, Norbert; Ellender, Tommas J; Zemankovics, Rita; Mann, Edward O; Exley, Richard; Cragg, Stephanie J; Freund, Tamás F; Paulsen, Ole

    2009-01-01

    Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers, they have been harder to obtain in submerged-type chambers, which offer significant experimental advantages, including fast exchange of pharmacological agents, visually guided patch-clamp recordings, and imaging techniques. Here, we investigated conditions for the emergence of network oscillations in submerged slices prepared from the hippocampus of rats and mice. We found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave-ripple oscillations and cholinergically induced fast oscillations. We suggest three ways to improve the oxygen supply to slices under submerged conditions: (i) optimizing chamber design for laminar flow of superfusion fluid; (ii) increasing the flow rate of superfusion fluid; and (iii) superfusing both surfaces of the slice. These improvements to the recording conditions enable detailed studies of neurons under more realistic conditions of network activity, which are essential for a better understanding of neuronal network operation.

  13. Usherin expression is highly conserved in mouse and human tissues.

    PubMed

    Pearsall, Nicole; Bhattacharya, Gautam; Wisecarver, Jim; Adams, Joe; Cosgrove, Dominic; Kimberling, William

    2002-12-01

    Usher syndrome is an autosomal recessive disease that results in varying degrees of hearing loss and retinitis pigmentosa. Three types of Usher syndrome (I, II, and III) have been identified clinically with Usher type II being the most common of the three types. Usher type II has been localized to three different chromosomes 1q41, 3p, and 5q, corresponding to Usher type 2A, 2B, and 2C respectively. Usherin is a basement membrane protein encoded by the USH2A gene. Expression of usherin has been localized in the basement membrane of several tissues, however it is not ubiquitous. Immunohistochemistry detected usherin in the following human tissues: retina, cochlea, small and large intestine, pancreas, bladder, prostate, esophagus, trachea, thymus, salivary glands, placenta, ovary, fallopian tube, uterus, and testis. Usherin was absent in many other tissues such as heart, lung, liver, kidney, and brain. This distribution is consistent with the usherin distribution seen in the mouse. Conservation of usherin is also seen at the nucleotide and amino acid level when comparing the mouse and human gene sequences. Evolutionary conservation of usherin expression at the molecular level and in tissues unaffected by Usher 2a supports the important structural and functional role this protein plays in the human. In addition, we believe that these results could lead to a diagnostic procedure for the detection of Usher syndrome and those who carry an USH2A mutation.

  14. Beta-galactosidase deficiency in a Korat cat: a new form of feline GM1-gangliosidosis.

    PubMed

    De Maria, R; Divari, S; Bo, S; Sonnio, S; Lotti, D; Capucchio, M T; Castagnaro, M

    1998-09-01

    A 7-month-old Korat cat was referred for a slowly progressive neurological disease. Circulating monocytes and lymphocytes showed the presence of single or multiple empty vacuoles and blood leukocytes enzyme assay revealed a very low beta-galactosidase activity level (4.7 nmol/mg per h) as compared to unaffected parents and relatives. Histologically, the cat, euthanized at the owner request at 21 months of age, presented diffuse vacuolization and enlargement of neurons throughout the brain, spinal cord and peripheral ganglia, severe cerebellar neuronal cell loss, and moderate astrocytosis. Stored material was stained with periodic acid-Schiff on frozen sections and with the lectins Ricinus conmmunis agglutinin-I, concanavalin A and wheat germ agglutinin on paraffin-embedded sections. Ultrastructurally, neuronal vacuoles were filled with concentrically whorled lamellae and small membrane-bound vesicles. In the affected cat, beta-galactosidase activity was markedly reduced in brain (18.9%) and liver (33.25%), while total beta-hexosaminidase activity showed a remarkable increase. Quantitation of total gangliosides revealed a 3-fold increase in brain and 1.7-fold in liver of affected cat. High-performance thin layer chromatography (HPTLC) detected a striking increase of GM1-ganglioside. On densitometric analysis of HPTLC bands, the absorption of GM1-ganglioside band was 98.52% of all stained bands (GD1a, GD1b, GT1b). Based on clinical onset, morphological and histochemical features, and biochemical findings, the Korat cat GM1-gangliosidosis is comparable with the human type II (juvenile) form. However, clinical progression, survival time and level of beta-galactosidase deficiency do not completely fit with those of human type II GM1-gangliosidosis. The disease in the Korat cat is also different from other reported forms of feline GM1-gangliosidosis.

  15. Tetrazepam: a benzodiazepine which dissociates sedation from other benzodiazepine activities. II. In vitro and in vivo interactions with benzodiazepine binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keane, P.E.; Bachy, A.; Morre, M.

    1988-05-01

    Tetrazepam is a 1,4-benzodiazepine (BZD) derivative which, in rodents, appears to have very little sedative and ataxic effects. In an attempt to identify the molecular mechanisms underlying this particular pharmacological profile we examined the interaction of tetrazepam with BZD binding sites. Tetrazepam interacted competitively with central and peripheral BZD binding sites and exhibited comparable affinities for both sites. Tetrazepam was approximately one-seventh as potent as diazepam at the central receptor and as potent as diazepam at the peripheral binding site. Tetrazepam did not distinguish type I from type II central BZD receptors, as evidenced by comparable affinities for the cerebellarmore » and hippocampal receptors. In vitro autoradiographic studies showed that tetrazepam displaced (3H)flunitrazepam from rat brain membranes without any clear regional specificity. Like all BZD receptor agonists, tetrazepam exhibited a gamma-aminobutyric acid shift, a photoaffinity shift and potentiated the binding of 35S-t-butyl-bicyclophosphorothionate to rat brain membranes. However, the latter effect was observed at relatively high concentrations of tetrazepam. In vivo, tetrazepam displaced specifically bound (3H)flunitrazepam from mouse brain (ID50, 37 mg/kg p.o. vs 3.5 mg/kg p.o. for diazepam) and from mouse kidney (ID50, 38 mg/kg p.o. vs. 21 mg/kg p.o. for diazepam). It is concluded that tetrazepam is a BZD receptor agonist; the molecular mechanisms which underly the low sedative potential of the drug cannot at present be explained by a particular interaction with either central or peripheral BZD binding sites, but may be related to the drug's relatively weak effect on 35S-t-butyl-bicyclophosphorothionate binding.« less

  16. Innate immune responses in central nervous system inflammation.

    PubMed

    Finsen, Bente; Owens, Trevor

    2011-12-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. EXPERIMENTAL EVALUATION OF NEW LABORATORY METHODS FOR THE STUDY OF VIRUS OF POLIOMYELITIS WITH THE AID OF TISSUE CULTURES

    DTIC Science & Technology

    The multiplication of poliomyelitis types I, II and III viruses in cultures with surviving and growing tissues (brain, skin and muscle) of human...embryo has been established. The virus of poliomyelitis , during multiplication of tissue cultures, caused a characteristic necrosis of the cells. The...cytopathogenic action of the virus of poliomyelitis was easily established during inspection under a microscope of the cultures with young growing cells

  18. CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome).

    PubMed

    Motas, Sandra; Haurigot, Virginia; Garcia, Miguel; Marcó, Sara; Ribera, Albert; Roca, Carles; Sánchez, Xavier; Sánchez, Víctor; Molas, Maria; Bertolin, Joan; Maggioni, Luca; León, Xavier; Ruberte, Jesús; Bosch, Fatima

    2016-06-16

    Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9- Ids ) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9- Ids -treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment.

  19. CNS-directed gene therapy for the treatment of neurologic and somatic mucopolysaccharidosis type II (Hunter syndrome)

    PubMed Central

    Motas, Sandra; Haurigot, Virginia; Garcia, Miguel; Marcó, Sara; Ribera, Albert; Roca, Carles; Sánchez, Víctor; Molas, Maria; Bertolin, Joan; Maggioni, Luca; León, Xavier; Ruberte, Jesús; Bosch, Fatima

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is an X-linked lysosomal storage disease characterized by severe neurologic and somatic disease caused by deficiency of iduronate-2-sulfatase (IDS), an enzyme that catabolizes the glycosaminoglycans heparan and dermatan sulphate. Intravenous enzyme replacement therapy (ERT) currently constitutes the only approved therapeutic option for MPSII. However, the inability of recombinant IDS to efficiently cross the blood-brain barrier (BBB) limits ERT efficacy in treating neurological symptoms. Here, we report a gene therapy approach for MPSII through direct delivery of vectors to the CNS. Through a minimally invasive procedure, we administered adeno-associated virus vectors encoding IDS (AAV9-Ids) to the cerebrospinal fluid of MPSII mice with already established disease. Treated mice showed a significant increase in IDS activity throughout the encephalon, with full resolution of lysosomal storage lesions, reversal of lysosomal dysfunction, normalization of brain transcriptomic signature, and disappearance of neuroinflammation. Moreover, our vector also transduced the liver, providing a peripheral source of therapeutic protein that corrected storage pathology in visceral organs, with evidence of cross-correction of nontransduced organs by circulating enzyme. Importantly, AAV9-Ids-treated MPSII mice showed normalization of behavioral deficits and considerably prolonged survival. These results provide a strong proof of concept for the clinical translation of our approach for the treatment of Hunter syndrome patients with cognitive impairment. PMID:27699273

  20. Mitochondrial proteomic profiling reveals increased carbonic anhydrase II in aging and neurodegeneration.

    PubMed

    Pollard, Amelia; Shephard, Freya; Freed, James; Liddell, Susan; Chakrabarti, Lisa

    2016-10-10

    Carbonic anhydrase inhibitors are used to treat glaucoma and cancers. Carbonic anhydrases perform a crucial role in the conversion of carbon dioxide and water into bicarbonate and protons. However, there is little information about carbonic anhydrase isoforms during the process of ageing. Mitochondrial dysfunction is implicit in ageing brain and muscle. We have interrogated isolated mitochondrial fractions from young adult and middle aged mouse brain and skeletal muscle. We find an increase of tissue specific carbonic anhydrases in mitochondria from middle-aged brain and skeletal muscle. Mitochondrial carbonic anhydrase II was measured in the Purkinje cell degeneration ( pcd 5J ) mouse model. In pcd 5J we find mitochondrial carbonic anhydrase II is also elevated in brain from young adults undergoing a process of neurodegeneration. We show C.elegans exposed to carbonic anhydrase II have a dose related shorter lifespan suggesting that high CAII levels are in themselves life limiting. We show for the first time that the mitochondrial content of brain and skeletal tissue are exposed to significantly higher levels of active carbonic anhydrases as early as in middle-age. Carbonic anhydrases associated with mitochondria could be targeted to specifically modulate age related impairments and disease.

  1. Ultrasonographic character of carotid plaque and postprocedural brain embolisms in carotid artery stenting and carotid endarterectomy.

    PubMed

    Mitsuoka, Hiroshi; Shintani, Tsunehiro; Furuya, Hidekazu; Nakao, Yoshinaga; Higashi, Shigeki

    2011-01-01

    To investigate ultrasonographic character of carotid plaques, and incidences of brain embolism in carotid angioplasty and stenting (CAS) and carotid endarterectomy (CEA). CEA (22/25 symptomatic lesions) and CAS (17/20 symptomatic lesions) between 2007 and 2010. Embolic protection devices (15 occlusion and 5 filtering devices) were used during CAS. Carotid plaques were classified into three categories (I: calcificated, II: intermediately echogenic, III: echolucent). Magnetic resonance imaging (MRI) was used to investigate brain emboli. Ultrasonographic character of the plaques in CEA cases (I: 4%, II: 88%, III: 8%) was different from the one in CAS cases (I: 10%, II: 90%, III: 0%). The incidence of brain embolism in the CAS cases was 52.6% while 0% in the CEA cases (p = 0.00037). CAS had high incidences of brain embolism in any plaques (I: 100%, II: 43.8%). In the most recent 9 procedures of CAS using occlusion devices, averaged number of embolic lesion was 1.0 (0 post operative day; 0 POD). The number increased as 1.4 (1 POD) and 2.0 (7 POD). CEA should be currently the first choice for most patients with a high-grade and symptomatic carotid artery stenosis.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, M.W.

    We have determined that ShN I, a 48-residue type 2 sea anemone toxin, delays the inactivation of the Na channel in lobster olfactory somas. The receptor for ShN I was identified in vesicle preparations of neuronal tissues from both crustaceans and mammals; however, the K{sub D} values for the former is more than 1,000 fold lower for the later. The binding of ({sup 125}I)-ShN I to this receptor was determined to be unaffected by Anemonia sulcata II, depolarization of the membrane, or veratridine. ShN I was unable to displace ({sup 125}I)-Androctonus austrialis Hector II, whereas unlabeled AaH II and Asmore » II displaced the labeled scorpion toxin from rat brain synaptosomes. This is the first characterization of a new Na channel receptor site which specifically binds type 2 anemone toxins. To study the interactions that specific amino acid residues of ShN I have with this receptor, we developed a strategy using solid phase peptide synthesis. Prior to the synthesis of analogs to ShN I, we assembled the native ShN I sequence and reoxidized the three intramolecular disulfide bonds. Chemical, physical, and pharmacological characterization of the purified synthetic ShN I showed it to be indistinguishable from the natural toxin.« less

  3. Upregulation of ASCL1 and inhibition of Notch signaling pathway characterize progressive astrocytoma.

    PubMed

    Somasundaram, Kumaravel; Reddy, Sreekanth P; Vinnakota, Katyayni; Britto, Ramona; Subbarayan, Madhavan; Nambiar, Sandeep; Hebbar, Aparna; Samuel, Cini; Shetty, Mitesh; Sreepathi, Hari Kishore; Santosh, Vani; Hegde, Alangar Sathyaranjandas; Hegde, Sridevi; Kondaiah, Paturu; Rao, M R S

    2005-10-27

    Astrocytoma is the most common type of brain cancer constituting more than half of all brain tumors. With an aim to identify markers describing astrocytoma progression, we have carried out microarray analysis of astrocytoma samples of different grades using cDNA microarray containing 1152 cancer-specific genes. Data analysis identified several differentially regulated genes between normal brain tissue and astrocytoma as well as between grades II/III astrocytoma and glioblastoma multiforme (GBM; grade IV). We found several genes known to be involved in malignancy including Achaete-scute complex-like 1 (Drosophila) (ASCL1; Hash 1). As ASCL has been implicated in neuroendocrine, medullary thyroid and small-cell lung cancers, we chose to examine the role of ASCL1 in the astrocytoma development. Our data revealed that ASCL1 is overexpressed in progressive astrocytoma as evidenced by increased levels of ASCL1 transcripts in 85.71% (6/7) of grade II diffuse astrocytoma (DA), 90% (9/10) of grade III anaplastic astrocytoma (AA) and 87.5% (7/8) of secondary GBMs, while the majority of primary de novo GBMs expressed similar to or less than normal brain levels (66.67%; 8/12). ASCL1 upregulation in progressive astrocytoma is accompanied by inhibition of Notch signaling as seen by uninduced levels of HES1, a transcriptional target of Notch1, increased levels of HES6, a dominant-negative inhibitor of HES1-mediated repression of ASCL1, and increased levels of Notch ligand Delta1, which is capable of inhibiting Notch signaling by forming intracellular Notch ligand autonomous complexes. Our results imply that inhibition of Notch signaling may be an important early event in the development of grade II DA and subsequent progression to grade III AA and secondary GBM. Furthermore, ASCL1 appears to be a putative marker to distinguish primary GBM from secondary GBM.

  4. Effects of Neuromodulation on Excitatory-Inhibitory Neural Network Dynamics Depend on Network Connectivity Structure

    NASA Astrophysics Data System (ADS)

    Rich, Scott; Zochowski, Michal; Booth, Victoria

    2018-01-01

    Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.

  5. The gray area between synapse structure and function-Gray's synapse types I and II revisited.

    PubMed

    Klemann, Cornelius J H M; Roubos, Eric W

    2011-11-01

    On the basis of ultrastructural parameters, the concept was formulated that asymmetric Type I and symmetric Type II synapses are excitatory and inhibitory, respectively. This "functional Gray synapses concept" received strong support from the demonstration of the excitatory neurotransmitter glutamate in Type I synapses and of the inhibitory neurotransmitter γ-aminobutyric acid in Type II synapses, and is still frequently used in modern literature. However, morphological and functional evidence has accumulated that the concept is less tenable. Typical features of synapses like shape and size of presynaptic vesicles and synaptic cleft and presence of a postsynaptic density (PsD) do not always fit the postulated (excitatory/inhibitory) function of Gray's synapses. Furthermore, synapse function depends on postsynaptic receptors and associated signal transduction mechanisms rather than on presynaptic morphology and neurotransmitter type. Moreover, the notion that many synapses are difficult to classify as either asymmetric or symmetric has cast doubt on the assumption that the presence of a PsD is a sign of excitatory synaptic transmission. In view of the morphological similarities of the PsD in asymmetric synapses with membrane junctional structures such as the zonula adherens and the desmosome, asymmetric synapses may play a role as links between the postsynaptic and presynaptic membrane, thus ensuring long-term maintenance of interneuronal communication. Symmetric synapses, on the other hand, might be sites of transient communication as takes place during development, learning, memory formation, and pathogenesis of brain disorders. Confirmation of this idea might help to return the functional Gray synapse concept its central place in neuroscience. Copyright © 2011 Wiley-Liss, Inc.

  6. Brain Type or Sex Differences? A structural equation model of the relation between brain type, sex, and motivation to learn science

    NASA Astrophysics Data System (ADS)

    Zeyer, Albert; Bölsterli, Katrin; Brovelli, Dorothee; Odermatt, Freia

    2012-03-01

    Sex is considered to be one of the most significant factors influencing attitudes towards science. However, the so-called brain type approach from cognitive science suggests that the difference in motivation to learn science does not primarily differentiate the girls from the boys, but rather the so-called systemisers from the empathizers. The present study investigates this hypothesis by using structural equation modelling on a sex-stratified sample of 500 male and female students of secondary II level. The results show, that the motivation to learn science is directly influenced by the systemizing quotient SQ, but not by sex. The impact of sex on the motivation to learn science, measured by five key concepts, only works indirectly, namely through the influence of sex on the SQ. The empathizing quotient (EQ) has no impact on the motivation to learn science. The SQ explains between 13 and 23 percent of the variation of the five key constructs. In female students, the impact of the SQ is very similar for all key concepts. In male students, it is highest for self-efficacy and lowest for assessment anxiety. The motivation to learn science is significantly larger for male students in all involved SMQ key concepts, but the difference is small. The interpretation of these findings and conclusions for science teaching and further research are discussed.

  7. Localization of the peroxisome proliferator-activated receptor in the brain.

    PubMed

    Kainu, T; Wikström, A C; Gustafsson, J A; Pelto-Huikko, M

    1994-12-20

    This paper describes the localization of the alpha-type peroxisome proliferator-activated receptor (PPAR alpha) in the rat brain using immunocytochemistry and in situ hybridization. Expression of PPAR alpha mRNA was highest in the granular cells of the cerebellar cortex and in the dentate gyrus, with a somewhat lower expression in areas CA1-CA4 of the hippocampus. PPAR alpha mRNA was also found in some neurones of the cerebral cortex (layers II-IV) and the molecular layer of the cerebellar cortex, and in the olfactory tubercle. Immunocytochemistry revealed nuclear PPAR alpha-immunoreactivity (-IR) in the same areas as seen with the in situ hybridization. Furthermore, PPAR alpha-IR was also localized in oligodendrocytes, whereas the other glial cell types appeared to lack PPAR alpha. These results suggest that peroxisome proliferators and chemicals acting similarly have effects on discrete populations of neurones. The presence of PPAR alpha in oligodendrocytes lends further support to the suggestion that peroxisomes are important in the assembly and degradation of myelin.

  8. Suppressed neural complexity during ketamine- and propofol-induced unconsciousness.

    PubMed

    Wang, Jisung; Noh, Gyu-Jeong; Choi, Byung-Moon; Ku, Seung-Woo; Joo, Pangyu; Jung, Woo-Sung; Kim, Seunghwan; Lee, Heonsoo

    2017-07-13

    Ketamine and propofol have distinctively different molecular mechanisms of action and neurophysiological features, although both induce loss of consciousness. Therefore, identifying a common feature of ketamine- and propofol-induced unconsciousness would provide insight into the underlying mechanism of losing consciousness. In this study we search for a common feature by applying the concept of type-II complexity, and argue that neural complexity is essential for a brain to maintain consciousness. To test this hypothesis, we show that complexity is suppressed during loss of consciousness induced by ketamine or propofol. We analyzed the randomness (type-I complexity) and complexity (type-II complexity) of electroencephalogram (EEG) signals before and after bolus injection of ketamine or propofol. For the analysis, we use Mean Information Gain (MIG) and Fluctuation Complexity (FC), which are information-theory-based measures that quantify disorder and complexity of dynamics respectively. Both ketamine and propofol reduced the complexity of the EEG signal, but ketamine increased the randomness of the signal and propofol decreased it. The finding supports our claim and suggests EEG complexity as a candidate for a consciousness indicator. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Immunocytochemical localization of metabotropic (mGluR2/3 and mGluR4a) and ionotropic (GluR2/3) glutamate receptors in adrenal medullary ganglion cells.

    PubMed

    Sarría, R; Díez, J; Losada, J; Doñate-Oliver, F; Kuhn, R; Grandes, P

    2006-02-01

    The localization of metabotropic glutamate receptors of groups II (mGluR2/3) and III (mGluR4a) and the subunits 2 and 3 of alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) ionotropic glutamate receptors (GluR2/3) was investigated with immunocytochemical methods in the rat adrenal gland. MGluR2/3, mGluR4a and GluR2/3 immunoreactivities were observed in large-sized, centrally located type I adrenal medullary ganglion neurons. Furthermore, the small-sized type II adrenal ganglion neurons identified by their immunoreactivity to brain nitric oxide synthase (bNOS), also expressed mGluR2/3, mGluR4a and GluR2/3. These cells were disposed in the peripheral portion of the adrenal medulla. None of the type I neurons were positively labeled for bNOS. These morphological observations suggest that activation of glutamate receptors in ganglion neurons may be instrumental in the control of adrenal endocrine systems as well as blood regulation.

  10. Gadobutrol Versus Gadopentetate Dimeglumine or Gadobenate Dimeglumine Before DCE-MRI in Diagnosing Patients With Multiple Sclerosis, Grade II-IV Glioma, or Brain Metastases

    ClinicalTrials.gov

    2017-03-22

    Adult Anaplastic (Malignant) Meningioma; Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Neoplasm; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Primary Melanocytic Lesion of Meninges; Adult Supratentorial Primitive Neuroectodermal Tumor; Malignant Adult Intracranial Hemangiopericytoma; Metastatic Malignant Neoplasm in the Brain; Multiple Sclerosis; Recurrent Adult Brain Neoplasm

  11. Comparison of inducible nitric oxide synthase expression in the brains of Listeria monocytogenes-infected cattle, sheep, and goats and in macrophages stimulated in vitro.

    PubMed

    Jungi, T W; Pfister, H; Sager, H; Fatzer, R; Vandevelde, M; Zurbriggen, A

    1997-12-01

    The expression of inducible nitric oxide synthase (iNOS) was studied in the brains of cattle, sheep, and goat that succumbed to a natural infection with Listeria monocytogenes. The lesions in infected brains are characterized by microabscesses, perivascular cuffs, gliosis, glial nodules, and large areas of malacia. Using immunocytochemistry, we detected bacteria in microabscesses, particularly in sheep and goats, and in areas without signs of inflammation, but not in perivascular infiltrates. iNOS was expressed by macrophage (Mphi)-type cells of microabscesses and glial nodules but rarely by Mphi in areas of malacia, as determined by immunohistochemistry with iNOS-specific antibodies. iNOS was not detected in perivascular cuffs. Major histocompatibility complex class II molecules (MHC-II), another marker of cell activation, showed a different pattern of distribution. Perivascular cuffs contained high numbers of MHC-II-positive cells, including some with Mphi characteristics. Microabscesses in sheep and goats showed low expression of MHC-II, particularly in iNOS-expressing cells. In cattle, the expression of markers for activated or recruited phagocytes, the calcium-binding proteins S100A8 and S100A9 (formerly called MRP-8 and MRP-14, respectively), was largely restricted to cells showing weak or undetectable iNOS expression; iNOS-positive Mphi showed a low expression of S100A8 and S100A9. Thus, iNOS is expressed by a restricted subset of Mphi in listeric encephalitis. In cultured sheep and goat Mphi, a low proportion of cells expressed iNOS upon activation by L. monocytogenes and gamma interferon, resulting in nitrite generation at least 1 order of magnitude lower than that in similarly treated cattle Mphi. Since these species differences were much less obvious in vivo, it appears that the well-known species variation in iNOS expression by Mphi could reflect an in vitro phenomenon.

  12. A Child's Brain. Part II. The Human Brain: How Every Single Cell is Organized for Action.

    ERIC Educational Resources Information Center

    Sylwester, Robert

    1982-01-01

    The second in a series of three articles concerning children's brain development focuses on the organization of the brain. Aspects of the brain's vertical, neocortex, and temporal organization are discussed and references for further reading are provided. (CJ)

  13. Corticotropin-releasing hormone-mediated metamorphosis in the neotenic axolotl Ambystoma mexicanum: synergistic involvement of thyroxine and corticoids on brain type II deiodinase.

    PubMed

    Kühn, Eduard R; De Groef, Bert; Van der Geyten, Serge; Darras, Veerle M

    2005-08-01

    In the present study, morphological changes leading to complete metamorphosis have been induced in the neotenic axolotl Ambystoma mexicanum using a submetamorphic dose of T(4) together with an injection of corticotropin-releasing hormone (CRH). An injection of CRH alone is ineffective in this regard presumably due to a lack of thyrotropic stimulation. Using this low hormone profile for induction of metamorphosis, the deiodinating enzymes D2 and D3 known to be present in amphibians were measured in liver and brain 24h following an intraperitoneal injection. An injection of T(4) alone did not influence liver nor brain D2 and D3, but dexamethasone (DEX) or CRH alone or in combination with T(4) decreased liver D2 and D3. Brain D2 activity was slightly increased with a higher dose of DEX, though CRH did not have this effect. A profound synergistic effect occurred when T(4) and DEX or CRH were injected together, in the dose range leading to metamorphosis, increasing brain D2 activity more than fivefold. This synergistic effect was not found in the liver. It is concluded that brain T(3) availability may play an important role for the onset of metamorphosis in the neotenic axolotl.

  14. 34 CFR 222.50 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., autism, traumatic brain injury, other health impairments, or specific learning disabilities; and (ii) Who... conditions such as perceptual disabilities, brain injury, minimal brain dysfunction, dyslexia, and...

  15. 34 CFR 222.50 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., autism, traumatic brain injury, other health impairments, or specific learning disabilities; and (ii) Who... conditions such as perceptual disabilities, brain injury, minimal brain dysfunction, dyslexia, and...

  16. 34 CFR 222.50 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., autism, traumatic brain injury, other health impairments, or specific learning disabilities; and (ii) Who... conditions such as perceptual disabilities, brain injury, minimal brain dysfunction, dyslexia, and...

  17. Endoplasmic reticulum stress in the brain subfornical organ contributes to sex differences in angiotensin-dependent hypertension in rats.

    PubMed

    Dai, S-Y; Fan, J; Shen, Y; He, J-J; Peng, W

    2016-05-01

    Endoplasmic reticulum (ER) stress in the brain subfornical organ (SFO), a key cardiovascular regulatory centre, has been implicated in angiotensin (ANG) II-induced hypertension in males; however, the contribution of ER stress to ANG II-induced hypertension in females is unknown. Female hormones have been shown to prevent ER stress in the periphery. We tested the hypothesis that females are less susceptible to ANG II-induced SFO ER stress than males, leading to sex differences in hypertension. Male, intact and ovariectomized (OVX) female rats received a continuous 2-week subcutaneous infusion of ANG II or saline. Additional male, intact and OVX female rats received intracerebroventricular (ICV) injection of ER stress inducer tunicamycin. ANG II, but not saline, increased blood pressure (BP) in both males and females, but intact females exhibited smaller increase in BP and less depressor response to ganglionic blockade compared with males or OVX females. Molecular studies revealed that ANG II elevated expression of ER stress biomarkers and Fra-like activity in the SFO in both males and females; however, elevations in these parameters were less in intact females than in males or OVX females. Moreover, ICV tunicamycin induced smaller elevation in BP and less increase in expression of ER stress biomarkers in the SFO in intact females compared with males or OVX females. The results suggest that differences in ANG II-induced brain ER stress between males and females contribute to sex differences in ANG II-mediated hypertension and that oestrogen protects females against ANG II-induced brain ER stress. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  18. [Individual Types Reactivity of EEG Oscillations in Effective Heart Rhythm Biofeedback Parameters in Adolescents and Young People in the North].

    PubMed

    Krivonogova, E V; Poskotinova, L V; Demin, D B

    2015-01-01

    A single session of heart rate variability (HRV) biofeedback in apparently healthy young people and adolescents aged 14-17 years in order to increase vagal effects on heart rhythm and also electroencephalograms were carried out. Different variants of EEG spectral power during the successful HRV biofeedback session were identified. In the case of I variant of EEG activity the increase of power spectrum of alpha-, betal-, theta-components takes place in all parts of the brain. In the case of II variant of EEG activity the reduction of power spectrum of alpha-, betal-, theta-activity in all parts of the brain was observed. I and II variants of EEG activity cause more intensive regime of cortical-subcortical interactions. During the III variant of EEG activity the successful biofeedback is accompanied by increase of alpha activity in the central, front and anteriofrontal brain parts and so indicates the formation of thalamocortical relations of neural network in order to optimize the vegetal regulation of heart function. There was an increase in alpha- and beta1-activity in the parietal, central, frontal and temporal brain parts during the IV variant of EEG activity and so that it provides the relief of neural networks communication for information processing. As a result of V variance of EEG activity there was the increase of power spectrum of theta activity in the central and frontal parts of both cerebral hemispheres, so it was associated with the cortical-hippocampal interactions to achieve a successful biofeedback.

  19. Characterization of R132H mutation-specific IDH1 antibody binding in brain tumors.

    PubMed

    Capper, David; Weissert, Susanne; Balss, Jörg; Habel, Antje; Meyer, Jochen; Jäger, Diana; Ackermann, Ulrike; Tessmer, Claudia; Korshunov, Andrey; Zentgraf, Hanswalter; Hartmann, Christian; von Deimling, Andreas

    2010-01-01

    Heterozygous point mutations of isocitrate dehydrogenase (IDH)1 codon 132 are frequent in grade II and III gliomas. Recently, we reported an antibody specific for the IDH1R132H mutation. Here we investigate the capability of this antibody to differentiate wild type and mutated IDH1 protein in central nervous system (CNS) tumors by Western blot and immunohistochemistry. Results of protein analysis are correlated to sequencing data. In Western blot, anti-IDH1R132H mouse monoclonal antibody mIDH1R132H detected a specific band only in mutated tumors. Immunohistochemistry of 345 primary brain tumors demonstrated a strong cytoplasmic and weaker nuclear staining in 122 cases. Correlation with direct sequencing of 186 cases resulted in consensus of 177 cases. Genetic retesting of cases with conflicting findings resulted in a match of 186/186 cases, with all discrepancies resolving in favor of immunohistochemistry. Intriguing is the ability of mIDH1R132H to detect single infiltrating tumor cells. The very high frequency and the distribution of this mutation among specific brain tumor entities allow the highly sensitive and specific discrimination of various tumors by immunohistochemistry, such as anaplastic astrocytoma from primary glioblastoma or diffuse astrocytoma World Health Organization (WHO) grade II from pilocytic astrocytoma or ependymoma. Noteworthy is the discrimination of the infiltrating edge of tumors with IDH1 mutation from reactive gliosis.

  20. Delineating SPTAN1 associated phenotypes: from isolated epilepsy to encephalopathy with progressive brain atrophy.

    PubMed

    Syrbe, Steffen; Harms, Frederike L; Parrini, Elena; Montomoli, Martino; Mütze, Ulrike; Helbig, Katherine L; Polster, Tilman; Albrecht, Beate; Bernbeck, Ulrich; van Binsbergen, Ellen; Biskup, Saskia; Burglen, Lydie; Denecke, Jonas; Heron, Bénédicte; Heyne, Henrike O; Hoffmann, Georg F; Hornemann, Frauke; Matsushige, Takeshi; Matsuura, Ryuki; Kato, Mitsuhiro; Korenke, G Christoph; Kuechler, Alma; Lämmer, Constanze; Merkenschlager, Andreas; Mignot, Cyril; Ruf, Susanne; Nakashima, Mitsuko; Saitsu, Hirotomo; Stamberger, Hannah; Pisano, Tiziana; Tohyama, Jun; Weckhuysen, Sarah; Werckx, Wendy; Wickert, Julia; Mari, Francesco; Verbeek, Nienke E; Møller, Rikke S; Koeleman, Bobby; Matsumoto, Naomichi; Dobyns, William B; Battaglia, Domenica; Lemke, Johannes R; Kutsche, Kerstin; Guerrini, Renzo

    2017-09-01

    De novo in-frame deletions and duplications in the SPTAN1 gene, encoding the non-erythrocyte αII spectrin, have been associated with severe West syndrome with hypomyelination and pontocerebellar atrophy. We aimed at comprehensively delineating the phenotypic spectrum associated with SPTAN1 mutations. Using different molecular genetic techniques, we identified 20 patients with a pathogenic or likely pathogenic SPTAN1 variant and reviewed their clinical, genetic and imaging data. SPTAN1 de novo alterations included seven unique missense variants and nine in-frame deletions/duplications of which 12 were novel. The recurrent three-amino acid duplication p.(Asp2303_Leu2305dup) occurred in five patients. Our patient cohort exhibited a broad spectrum of neurodevelopmental phenotypes, comprising six patients with mild to moderate intellectual disability, with or without epilepsy and behavioural disorders, and 14 patients with infantile epileptic encephalopathy, of which 13 had severe neurodevelopmental impairment and four died in early childhood. Imaging studies suggested that the severity of neurological impairment and epilepsy correlates with that of structural abnormalities as well as the mutation type and location. Out of seven patients harbouring mutations outside the α/β spectrin heterodimerization domain, four had normal brain imaging and three exhibited moderately progressive brain and/or cerebellar atrophy. Twelve of 13 patients with mutations located within the spectrin heterodimer contact site exhibited severe and progressive brain, brainstem and cerebellar atrophy, with hypomyelination in most. We used fibroblasts from five patients to study spectrin aggregate formation by Triton-X extraction and immunocytochemistry followed by fluorescence microscopy. αII/βII aggregates and αII spectrin in the insoluble protein fraction were observed in fibroblasts derived from patients with the mutations p.(Glu2207del), p.(Asp2303_Leu2305dup) and p.(Arg2308_Met2309dup), all falling in the nucleation site of the α/β spectrin heterodimer region. Molecular modelling of the seven SPTAN1 amino acid changes provided preliminary evidence for structural alterations of the A-, B- and/or C-helices within each of the mutated spectrin repeats. We conclude that SPTAN1-related disorders comprise a wide spectrum of neurodevelopmental phenotypes ranging from mild to severe and progressive. Spectrin aggregate formation in fibroblasts with mutations in the α/β heterodimerization domain seems to be associated with a severe neurodegenerative course and suggests that the amino acid stretch from Asp2303 to Met2309 in the α20 repeat is important for α/β spectrin heterodimer formation and/or αII spectrin function. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma Detector... evaluate suspected brain hematomas. (b) Classification. Class II (special controls). The special controls...

  2. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma Detector... evaluate suspected brain hematomas. (b) Classification. Class II (special controls). The special controls...

  3. MIC-1, A Potential Inhibitor of Breast Tumor Progression

    DTIC Science & Technology

    2005-10-01

    lines with intact TGF-S signaling pathways, but not in certain cells lacking TGF-9 receptors type I, II or Smad4 (15). The founding member of the TGF...mutations in the TGF-9 Page. 4 Koniaris M.D., Leonidas George receptors or its downstream signaling partners such as Smad4 have been described in a number...brain (18) (10) lesions. GDF-15/ MIC-1 has anti-apoptotic effects on cerebellar granular cells partly through (9) (10) AKT activation GDF-1 5/ MIC-1 is

  4. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  5. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  6. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  7. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  8. 21 CFR 882.1310 - Cortical electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identification. A cortical electrode is an electrode which is temporarily placed on the surface of the brain for stimulating the brain or recording the brain's electrical activity. (b) Classification. Class II (performance...

  9. Characterization of angiotensin-binding sites in the bovine adrenal and the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogulja, I.

    1989-01-01

    The first study was designed to determine whether systemically administered MSG affects neurons in the CVOs that are potentially important in mediating angiotensin-dependent responses. Rats were pretreated with MSG and the receptors for angiotensin II were assayed by radioligand binding in brain homogenates from the septum anteroventral third ventricular region (AV3V) and the thalamus/hypothalamus region using {sup 125}I-angiotensin II as the radioligand. The results of this experiment indicate that systematically administered MSG in the rat significantly reduced the number (Bmax) of Ang II receptors in a tissue sample which contained both extra blood-brain barrier organs as well as tissue withinmore » the blood-brain barrier with no change in the affinity (Kd) of the binding sites. The second chapter reports the successful solubilization of bovine adrenal {sup 125}I Ang II and {sup 125}I Sar{sup 1},Ile{sup 8}-Ang II binding sites with the detergent CHAPS. The results of our studies indicate the presence of two angiotensin binding sites. The one site is specific for naturally occurring angiotensins as well as sarcosine-1 substituted angiotensin analogues. The other site which can be optimally stabilized be re-addition of 0.3% CHAPS into the incubation assay binds sarcosine-1 substituted angiotensins exclusively. Hydrophobic interaction chromatography experiments suggest that these sites, possibly, represent distinct proteins. The third chapter discusses the successful solubilization and partial characterization of the rat brain angiotensin receptor.« less

  10. The Arcuate Nucleus: A Site of Fast Negative Feedback for Corticosterone Secretion in Male Rats

    PubMed Central

    Kawata, Mitsuhiro; Escobar, Carolina

    2017-01-01

    Abstract Variations in circulating corticosterone (Cort) are driven by the paraventricular nucleus of the hypothalamus (PVN), mainly via the sympathetic autonomic nervous system (ANS) directly stimulating Cort release from the adrenal gland and via corticotropin-releasing hormone targeting the adenohypophysis to release adrenocorticotropic hormone (ACTH). Cort feeds back through glucocorticoid receptors (GRs). Here we show in male Wistar rats that PVN neurons projecting to the adrenal gland do not express GRs, leaving the question of how the ANS in the PVN gets information about circulating Cort levels to control the adrenal. Since the arcuate nucleus (ARC) shows a less restrictive blood–brain barrier, expresses GRs, and projects to the PVN, we investigated whether the ARC can detect and produce fast adjustments of circulating Cort. In low Cort conditions (morning), local microdialysis in the ARC with type I GR antagonist produced a fast and sustained increase of Cort. This was not observed with a type II antagonist. At the circadian peak levels of Cort (afternoon), a type II GR antagonist, but not a type I antagonist, increased Cort levels but not ACTH levels. Antagonist infusions in the PVN did not modify circulating Cort levels, demonstrating the specificity of the ARC to give Cort negative feedback. Furthermore, type I and II GR agonists in the ARC prevented the increase of Cort after stress, demonstrating the role of the ARC as sensor to modulate Cort release. Our findings show that the ARC may be essential to sense blood levels of Cort and adapt Cort secretion depending on such conditions as stress or time of day. PMID:28275717

  11. Gender-related similarities and differences in the body distribution of grape seed flavanols in rats.

    PubMed

    Margalef, Maria; Pons, Zara; Iglesias-Carres, Lisard; Arola, Lluís; Muguerza, Begoña; Arola-Arnal, Anna

    2016-04-01

    Dietary flavanols produce beneficial health effects, and once absorbed, they are recognized as xenobiotics and undergo phase-II enzymatic detoxification. Flavanols health-promoting properties are mainly attributed to their metabolic products. This work aimed to elucidate whether rats of the opposite sex exhibited differences in the metabolism and distribution of ingested flavanols. Acute doses of grape seed polyphenols were administered to male and female rats. After 1, 2 and 4 h, plasma, liver, mesenteric white adipose tissue (MWAT), brain and hypothalamus flavanol metabolites were quantified by HPLC-MS/MS. Results indicated important sex-related quantitative differences in plasma and brain. Moreover, remarkable sex-related differences in the distributions and types of flavanol metabolites were also observed between liver and brain. This study demonstrated that sex differentially influences the metabolism and distribution of flavanols throughout the bodies of rats, which may affect the physiological bioactivities of flavanols between males and females. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    NASA Astrophysics Data System (ADS)

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  13. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas.

    PubMed

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69-80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene ( IDH1 ), of which 83-90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice.

  14. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation

    PubMed Central

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J.; Cao, Huojun; Amendt, Brad A.

    2017-01-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1−/− mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. PMID:28746823

  15. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation.

    PubMed

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J; Cao, Huojun; Amendt, Brad A

    2017-09-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1 -/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The neural correlates of moral decision-making: A systematic review and meta-analysis of moral evaluations and response decision judgements.

    PubMed

    Garrigan, Beverley; Adlam, Anna L R; Langdon, Peter E

    2016-10-01

    The aims of this systematic review were to determine: (a) which brain areas are consistently more active when making (i) moral response decisions, defined as choosing a response to a moral dilemma, or deciding whether to accept a proposed solution, or (ii) moral evaluations, defined as judging the appropriateness of another's actions in a moral dilemma, rating moral statements as right or wrong, or identifying important moral issues; and (b) shared and significantly different activation patterns for these two types of moral judgements. A systematic search of the literature returned 28 experiments. Activation likelihood estimate analysis identified the brain areas commonly more active for moral response decisions and for moral evaluations. Conjunction analysis revealed shared activation for both types of moral judgement in the left middle temporal gyrus, cingulate gyrus, and medial frontal gyrus. Contrast analyses found no significant clusters of increased activation for the moral evaluations-moral response decisions contrast, but found that moral response decisions additionally activated the left and right middle temporal gyrus and the right precuneus. Making one's own moral decisions involves different brain areas compared to judging the moral actions of others, implying that these judgements may involve different processes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    PubMed

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  18. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma.

    PubMed

    Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P

    2016-05-31

    The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.

  19. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma

    PubMed Central

    Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N.; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H.C.; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P.

    2016-01-01

    The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma. PMID:27049916

  20. Quantitative detection of Toxoplasma gondii in tissues of experimentally infected turkeys and in retail turkey products by magnetic-capture PCR.

    PubMed

    Koethe, Martin; Straubinger, Reinhard K; Pott, Susan; Bangoura, Berit; Geuthner, Anne-Catrin; Daugschies, Arwid; Ludewig, Martina

    2015-12-01

    Magnetic-capture PCR was applied for the quantitative detection of Toxoplasma gondii in tissues of experimentally infected turkeys and retail turkey meat products. For experimental infection, three T. gondii strains (ME49, CZ-Tiger, NED), varying infectious doses in different matrices (organisms in single mouse brains or 10(3), 10(5), or 10(6) oocysts in buffer) were used. From all animals, breast, thigh, and drumstick muscle tissues and for CZ-Tiger-infected animals additionally brains and hearts were analyzed. Using the magnetic-capture PCR large volumes of up to 100 g were examined. Our results show that most T. gondii parasites are present in brain and heart tissue. Of the three skeletal muscle types, drumsticks were affected at the highest and breast at the lowest level. Type III strain (NED) seems to be less efficient in infecting turkeys compared to type II strains, because only few tissues of NED infected animals contained T. gondii DNA. Furthermore, the number of detected parasitic stages increased with the level of infectious dose. Infection mode by either oocyst or tissue cyst stage did not have an effect on the amount of T. gondii present in tissues. In retail turkey meat products T. gondii DNA was not detectable although a contact with the parasite was inferred by serology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The effects of para-chloromercuribenzoic acid and different oxidative and sulfhydryl agents on a novel, non-AT1, non-AT2 angiotensin binding site identified as neurolysin

    PubMed Central

    Santos, Kira L.; Vento, Megan A; Wright, John W.; Speth, Robert C.

    2013-01-01

    A novel, non-AT1, non-AT2 brain binding site for angiotensin peptides that is unmasked by p-chloromercuribenzoate (PCMB) has been identified as a membrane associated variant of neurolysin. The ability of different organic and inorganic oxidative and sulfhydryl reactive agents to unmask or inhibit 125I-Sar1Ile8 angiotensin II (SI-Ang II) binding to this site was presently examined. In tissue membranes from homogenates of rat brain and testis incubated in assay buffer containing losartan (10 μM) and PD123319 (10 μM) plus 100 μM PCMB, 5 of the 39 compounds tested inhibited 125I-SI Ang II binding in brain and testis. Mersalyl acid, mercuric chloride (HgCl2) and silver nitrate (AgNO3) most potently inhibited 125I-SI Ang II binding with IC50’s ~1–20 μM This HgCl2 inhibition was independent of any interaction of HgCl2 with angiotensin II (Ang II) based on the lack of effect of HgCl2 on the dipsogenic effects of intracerebroventricularly administered Ang II and 125I-SI Ang II binding to AT1 receptors in the liver. Among sulfhydryl reagents, cysteamine and reduced glutathione (GSH), but not oxidized glutathione (GSSG) up to 1 mM, inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis. Thimerosal and 4-hydroxymercuribenzoate moderately inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis at 100 μM; however, they also unmasked non-AT1, non-AT2 binding independent of PCMB. 4-hydroxybenzoic acid did not promote 125 I-SI Ang II binding to this binding site indicating that only specific organomercurial compounds can unmask the binding site. The common denominator for all of these interacting substances is the ability to bind to protein cysteine sulfur. Comparison of cysteines between neurolysin and the closely related enzyme thimet oligopeptidase revealed an unconserved cysteine (cys650, based on the full length variant) in the proposed ligand binding channel (Brown et al., 2001) [1] near the active site of neurolysin. It is proposed that the mercuric ion in PCMB and closely related organomercurial compounds binds to cys650, while the acidic anion forms an ionic bond with a nearby arginine or lysine along the channel to effect a conformational change in neurolysin that promotes Ang II binding. PMID:23511333

  2. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II

    PubMed Central

    Di Martino, Adriana; O’Connor, David; Chen, Bosi; Alaerts, Kaat; Anderson, Jeffrey S.; Assaf, Michal; Balsters, Joshua H.; Baxter, Leslie; Beggiato, Anita; Bernaerts, Sylvie; Blanken, Laura M. E.; Bookheimer, Susan Y.; Braden, B. Blair; Byrge, Lisa; Castellanos, F. Xavier; Dapretto, Mirella; Delorme, Richard; Fair, Damien A.; Fishman, Inna; Fitzgerald, Jacqueline; Gallagher, Louise; Keehn, R. Joanne Jao; Kennedy, Daniel P.; Lainhart, Janet E.; Luna, Beatriz; Mostofsky, Stewart H.; Müller, Ralph-Axel; Nebel, Mary Beth; Nigg, Joel T.; O’Hearn, Kirsten; Solomon, Marjorie; Toro, Roberto; Vaidya, Chandan J.; Wenderoth, Nicole; White, Tonya; Craddock, R. Cameron; Lord, Catherine; Leventhal, Bennett; Milham, Michael P.

    2017-01-01

    The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions. The combination of ABIDE I and ABIDE II provides investigators with 2156 unique cross-sectional datasets allowing selection of samples for discovery and/or replication. This sample size can also facilitate the identification of neurobiological subgroups, as well as preliminary examinations of sex differences in ASD. Additionally, ABIDE II includes a range of psychiatric variables to inform our understanding of the neural correlates of co-occurring psychopathology; 284 diffusion imaging datasets are also included. It is anticipated that these enhancements will contribute to unraveling key sources of ASD heterogeneity. PMID:28291247

  3. A Confirmatory Factor Analysis of the California Verbal Learning Test-Second Edition (CVLT-II) in a Traumatic Brain Injury Sample

    ERIC Educational Resources Information Center

    DeJong, Joy; Donders, Jacobus

    2009-01-01

    The latent structure of the California Verbal Learning Test-Second Edition (CVLT-II) was examined in a clinical sample of 223 persons with traumatic brain injury that had been screened to remove individuals with complicating premorbid (e.g., psychiatric) or comorbid (e.g., financial compensation seeking) histories. Analyses incorporated the…

  4. Impaired capacity for upregulation of MHC class II in tumor-associated microglia.

    PubMed

    Schartner, Jill M; Hagar, Aaron R; Van Handel, Michelle; Zhang, Leying; Nadkarni, Nivedita; Badie, Behnam

    2005-09-01

    Immunotherapy for malignant gliomas is being studied as a possible adjunctive therapy for this highly fatal disease. Thus far, inadequate understanding of brain tumor immunology has hindered the design of such therapies. For instance, the role of microglia and macrophages, which comprise a significant proportion of tumor-infiltrating inflammatory cells, in the regulation of the local anti-tumor immune response is poorly understood. To study the response of microglia and macrophages to known activators in brain tumors, we injected CpG oligodeoxynucleotide (ODN), interferon-gamma (IFN-gamma), and IFN-gamma/LPS into normal and intracranial RG2 glioma-bearing rodents. Microglia/macrophage infiltration and their surface expression of MHC class II B7.1 and B7.2 was examined by flow cytometry. Each agent evaluated yielded a distinct microglia/macrophage response: CpG ODN was the most potent inducer of microglia/macrophage infiltration and B7.1 expression, while IFN-gamma resulted in the highest MHC-II expression in both normal and tumors. Regardless of the agent injected, however, MHC-II induction was significantly muted in tumor microglia/macrophage as compared with normal brain. These data suggest that microglia/macrophage responsiveness to activators can vary in brain tumors when compared with normal brain. Understanding the mechanism of these differences may be critical in the development of novel immunotherapies for malignant glioma. (c) 2005 Wiley-Liss, Inc.

  5. The brain renin‐angiotensin system plays a crucial role in regulating body weight in diet‐induced obesity in rats

    PubMed Central

    Winkler, Martina; Schuchard, Johanna; Stölting, Ines; Vogt, Florian M; Barkhausen, Jörg; Thorns, Christoph; Bader, Michael

    2016-01-01

    Background and Purpose Reduced weight gain after treatment with AT1 receptor antagonists may involve a brain‐related mechanism. Here, we investigated the role of the brain renin‐angiotensin system on weight regulation and food behaviour, with or without additional treatment with telmisartan. Methods Transgenic rats with a brain‐specific deficiency in angiotensinogen (TGR(ASrAOGEN)) and the corresponding wild‐type, Sprague Dawley (SD) rats were fed (3 months) with a high‐calorie cafeteria diet (CD) or standard chow. SD and TGR(ASrAOGEN) rats on the CD diet were also treated with telmisartan (8 mg·kg−1·d−1, 3 months). Results Compared with SD rats, TGR(ASrAOGEN) rats (i) had lower weights during chow feeding, (ii) did not become obese during CD feeding, (iii) had normal baseline leptin plasma concentrations independent of the feeding regimen, whereas plasma leptin of SD rats was increased due to CD, (iv) showed a reduced energy intake, (v) had a higher, strain‐dependent energy expenditure, which is additionally enhanced during CD feeding, (vi) had enhanced mRNA levels of pro‐opiomelanocortin and (vii) showed improved glucose control. Weight gain and energy intake in rats fed the CD diet were markedly reduced by telmisartan in SD rats but only to a minor extent in TGR(ASrAOGEN) rats. Conclusions The brain renin‐angiotensin system affects body weight regulation, feeding behaviour and metabolic disorders. When angiotensin II levels are low in brain, rats are protected from developing diet‐induced obesity and obesity‐related metabolic impairments. We further suggest that telmisartan at least partly lowers body weight via a CNS‐driven mechanism. PMID:26892671

  6. A phase II study of icotinib and whole-brain radiotherapy in Chinese patients with brain metastases from non-small cell lung cancer.

    PubMed

    Fan, Yun; Huang, Zhiyu; Fang, Luo; Miao, Lulu; Gong, Lei; Yu, Haifeng; Yang, Haiyan; Lei, Tao; Mao, Weimin

    2015-09-01

    Icotinib is a new first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. A phase II study was conducted to evaluate the efficacy and safety of icotinib in combination with whole-brain radiotherapy (WBRT) in Chinese NSCLC patients with brain metastases (BMs); the cerebrospinal fluid (CSF)/plasma concentrations of icotinib were also investigated. Eligible patients had BMs from NSCLC, regardless of the EGFR status. Icotinib was administered at 125 mg orally 3 times/day until tumor progression or unacceptable toxicity, concurrently with WBRT (3.0 Gy per day, 5 days per week, to 30 Gy). CSF and plasma samples were collected simultaneously from 10 patients. Icotinib concentrations in the CSF and plasma were measured by high-performance liquid chromatography coupled with tandem mass spectrometry. Twenty patients were enrolled. The median follow-up time was 20.0 months. The overall response rate was 80.0%. The median progression-free survival time was 7.0 months (95% CI 1.2-13.2 months), and the median survival time (MST) was 14.6 months (95% CI 12.5-16.7 months). Of the 18 patients with known EGFR status, the MST was 22.0 months for those with an EGFR mutation and was 7.5 months for those with wild-type EGFR (P = 0.0001). The CSF concentration and penetration rate of icotinib were 11.6 ± 9.1 ng/mL and 1.4 ± 1.1%, respectively. No patient experienced ≥grade 4 toxicity. Icotinib was well tolerated in combination with WBRT and showed efficacy in patients with BMs from NSCLC. This clinical benefit was related to the presence of activating EGFR mutations.

  7. New Breast Cancer Recursive Partitioning Analysis Prognostic Index in Patients With Newly Diagnosed Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwinska, Anna, E-mail: alphaonetau@poczta.onet.pl; Murawska, Magdalena

    2012-04-01

    Purpose: The aim of the study was to present a new breast cancer recursive partitioning analysis (RPA) prognostic index for patients with newly diagnosed brain metastases as a guide in clinical decision making. Methods and Materials: A prospectively collected group of 441 consecutive patients with breast cancer and brain metastases treated between the years 2003 and 2009 was assessed. Prognostic factors significant for univariate analysis were included into RPA. Results: Three prognostic classes of a new breast cancer RPA prognostic index were selected. The median survival of patients within prognostic Classes I, II, and III was 29, 9, and 2.4more » months, respectively (p < 0.0001). Class I included patients with one or two brain metastases, without extracranial disease or with controlled extracranial disease, and with Karnofsky performance status (KPS) of 100. Class III included patients with multiple brain metastases with KPS of {<=}60. Class II included all other cases. Conclusions: The breast cancer RPA prognostic index is an easy and valuable tool for use in clinical practice. It can select patients who require aggressive treatment and those in whom whole-brain radiotherapy or symptomatic therapy is the most reasonable option. An individual approach is required for patients from prognostic Class II.« less

  8. Early-onset progressive ataxia associated with the first CACNA1A mutation identified within the I-II loop.

    PubMed

    Cricchi, F; Di Lorenzo, C; Grieco, G S; Rengo, C; Cardinale, A; Racaniello, M; Santorelli, F M; Nappi, G; Pierelli, F; Casali, C

    2007-03-15

    Familial hemiplegic migraine type 1, spinocerebellar ataxia type 6 (SCA6) and episodic ataxia type 2 (EA2) are allelic disorders associated with mutations in the CACNA1A gene, which encodes the alpha1 subunit of the P/Q-type calcium channel (Ca(V)2.1). SCA6 and EA2 share a number of clinical features, such as prominent cerebellar involvement and good response to acetazolamide therapy. However, while SCA6 develops as a late-onset, progressive ataxia, EA2 has an earlier, and episodic, onset. We report on two sisters with a heterogeneous clinical phenotype. The first developed progressive cerebellar ataxia after age 30, without noticeable episodes of vertigo or headache. A 1 year trial with acetazolamide did not produce significant results. The other reported episodes of vertigo, headache and gait imbalance since late childhood, with good response to acetazolamide, before developing moderate chronic cerebellar ataxia. Brain MRI showed cerebellar atrophy, especially in the vermis, in both patients. Direct sequencing of CACNA1A identified a heterozygous 1360G>A mutation in exon 11 resulting in the substitution of alanine for threonine at residue 454 (p.Ala454Thr). This is the first description of a change residing in the cytoplasmic I-II loop associated with a clinical phenotype.

  9. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    PubMed

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Brain Distribution of a Novel MEK Inhibitor E6201: Implications in the Treatment of Melanoma Brain Metastases.

    PubMed

    Gampa, Gautham; Kim, Minjee; Cook-Rostie, Nicholas; Laramy, Janice K; Sarkaria, Jann N; Paradiso, Linda; DePalatis, Louis; Elmquist, William F

    2018-05-01

    Clinically meaningful efficacy in the treatment of brain tumors, including melanoma brain metastases (MBM), requires selection of a potent inhibitor against a suitable target, and adequate drug distribution to target sites in the brain. Deregulated constitutive signaling of mitogen-activated protein kinase (MAPK) pathway has been frequently observed in melanoma, and mitogen-activated protein/extracellular signal-regulated kinase (MEK) has been identified to be an important target. E6201 is a potent synthetic small-molecule MEK inhibitor. The purpose of this study was to evaluate brain distribution of E6201, and examine the impact of active efflux transport at the blood-brain barrier on the central nervous system (CNS) exposure of E6201. In vitro studies utilizing transfected Madin-Darby canine kidney II (MDCKII) cells indicate that E6201 is not a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp). In vivo studies also suggest a minimal involvement of P-gp and Bcrp in E6201's brain distribution. The total concentrations in brain were higher than in plasma, resulting in a brain-to-plasma AUC ratio (Kp) of 2.66 in wild-type mice. The brain distribution was modestly enhanced in Mdr1a/b -/- , Bcrp1 -/- , and Mdr1a/b -/- Bcrp1 -/- knockout mice. The nonspecific binding of E6201 was higher in brain compared with plasma. However, free-drug concentrations in brain following 40 mg/kg intravenous dose reach levels that exceed reported in vitro half-maximal inhibitory concentration (IC 50 ) values, suggesting that E6201 may be efficacious in inhibiting MEK-driven brain tumors. The brain distribution characteristics of E6201 make it an attractive targeted agent for clinical testing in MBM, glioblastoma, and other CNS tumors that may be effectively targeted with inhibition of MEK signaling. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency.

    PubMed

    Hainfellner, J A; Heinzl, H

    2010-01-01

    Brain tumors comprise a large spectrum of rare malignancies in children and adults that are often associated with severe neurological symptoms and fatal outcome. Neuropathological tumor typing provides both prognostic and predictive tissue information which is the basis for optimal postoperative patient management and therapy. Molecular biomarkers may extend and refine prognostic and predictive information in a brain tumor case, providing more individualized and optimized treatment options. In the recent past a few neuropathological brain tumor biomarkers have translated smoothly into clinical use whereas many candidates show protracted translation. We investigated the causes of protracted translation of candidate brain tumor biomarkers. Considering the research environment from personal, social and systemic perspectives we identified eight determinants of translational success: methodology, funding, statistics, organization, phases of research, cooperation, self-reflection, and scientific progeny. Smoothly translating biomarkers are associated with low degrees of translational complexity whereas biomarkers with protracted translation are associated with high degrees. Key issues for translational efficiency of neuropathological brain tumor biomarker research seem to be related to (i) the strict orientation to the mission of medical research, that is the improval of medical practice as primordial purpose of research, (ii) definition of research priorities according to clinical needs, and (iii) absorption of translational complexities by means of operatively beneficial standards. To this end, concrete actions should comprise adequate scientific education of young investigators, and shaping of integrative diagnostics and therapy research both on the local level and the level of influential international brain tumor research platforms.

  12. Comparative brain morphology of Neotropical parrots (Aves, Psittaciformes) inferred from virtual 3D endocasts.

    PubMed

    Carril, Julieta; Tambussi, Claudia Patricia; Degrange, Federico Javier; Benitez Saldivar, María Juliana; Picasso, Mariana Beatriz Julieta

    2016-08-01

    Psittaciformes are a very diverse group of non-passerine birds, with advanced cognitive abilities and highly developed locomotor and feeding behaviours. Using computed tomography and three-dimensional (3D) visualization software, the endocasts of 14 extant Neotropical parrots were reconstructed, with the aim of analysing, comparing and exploring the morphology of the brain within the clade. A 3D geomorphometric analysis was performed, and the encephalization quotient (EQ) was calculated. Brain morphology character states were traced onto a Psittaciformes tree in order to facilitate interpretation of morphological traits in a phylogenetic context. Our results indicate that: (i) there are two conspicuously distinct brain morphologies, one considered walnut type (quadrangular and wider than long) and the other rounded (narrower and rostrally tapered); (ii) Psittaciformes possess a noticeable notch between hemisphaeria that divides the bulbus olfactorius; (iii) the plesiomorphic and most frequently observed characteristics of Neotropical parrots are a rostrally tapered telencephalon in dorsal view, distinctly enlarged dorsal expansion of the eminentia sagittalis and conspicuous fissura mediana; (iv) there is a positive correlation between body mass and brain volume; (v) psittacids are characterized by high EQ values that suggest high brain volumes in relation to their body masses; and (vi) the endocranial morphology of the Psittaciformes as a whole is distinctive relative to other birds. This new knowledge of brain morphology offers much potential for further insight in paleoneurological, phylogenetic and evolutionary studies. © 2015 Anatomical Society.

  13. [Acupuncture Intervention Reduced Weight Gain Induced by Hypoglycemic Agents through Food Intake-related Targets in Central Nervous System].

    PubMed

    Jing, Xin-yue; Ou, Chen; Lu, Sheng-feng; Zhu, Bing-mei

    2015-12-01

    Clinical practice shows that thiazolidinediones (TZDs) induce weight gain in patients with type-II diabetes mellitus during treatment, which restrains its application and generalization clinically. It has been demonstrated that acupuncture therapy is useful in easing obesity in clinical trials. In the present paper, we summarize the underlying mechanism of weight gain induced by TZDs through food intake-related targets in the central nervous system and analyze the possible effects of acupuncture therapy. Acupuncture therapy is expected to reduce weight gain side effect of TZDs through 1) lowering permeability of blood brain barrier to reduce TZDs concentration in the brain, 2) upregulating the expression of hypothalamic leptin and inhibiting hypothalamic neuropiptide Y expression, and 3) down-regulating activities of peroxisome proliferator-activated receptor to reduce energy intake and fat syntheses.

  14. Proton Beam Radiation Therapy in Treating Patients With Low Grade Gliomas

    ClinicalTrials.gov

    2015-12-14

    Adult Brain Tumor; Adult Brain Stem Glioma; Adult Diffuse Astrocytoma; Adult Ependymoma; Adult Grade II Meningioma; Adult Melanocytic Lesion; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Pineal Gland Astrocytoma; Adult Pineocytoma; Recurrent Adult Brain Tumor

  15. Unlocking the Secrets of the Brain, Part II: A Continuing Look at Techniques for Exploring the Brain.

    ERIC Educational Resources Information Center

    Powledge, Tabitha M.

    1997-01-01

    Describes techniques for delving into the brain including positron emission tomography (PET), single photon emission computed tomography (SPECT), electroencephalogram (EEG), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and low-tech indirect studies. (JRH)

  16. Hierarchical Cluster Analysis of Three-Dimensional Reconstructions of Unbiased Sampled Microglia Shows not Continuous Morphological Changes from Stage 1 to 2 after Multiple Dengue Infections in Callithrix penicillata

    PubMed Central

    Diniz, Daniel G.; Silva, Geane O.; Naves, Thaís B.; Fernandes, Taiany N.; Araújo, Sanderson C.; Diniz, José A. P.; de Farias, Luis H. S.; Sosthenes, Marcia C. K.; Diniz, Cristovam G.; Anthony, Daniel C.; da Costa Vasconcelos, Pedro F.; Picanço Diniz, Cristovam W.

    2016-01-01

    It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous. PMID:27047345

  17. Hierarchical Cluster Analysis of Three-Dimensional Reconstructions of Unbiased Sampled Microglia Shows not Continuous Morphological Changes from Stage 1 to 2 after Multiple Dengue Infections in Callithrix penicillata.

    PubMed

    Diniz, Daniel G; Silva, Geane O; Naves, Thaís B; Fernandes, Taiany N; Araújo, Sanderson C; Diniz, José A P; de Farias, Luis H S; Sosthenes, Marcia C K; Diniz, Cristovam G; Anthony, Daniel C; da Costa Vasconcelos, Pedro F; Picanço Diniz, Cristovam W

    2016-01-01

    It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 h later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous.

  18. Vision restoration after brain and retina damage: the "residual vision activation theory".

    PubMed

    Sabel, Bernhard A; Henrich-Noack, Petra; Fedorov, Anton; Gall, Carolin

    2011-01-01

    Vision loss after retinal or cerebral visual injury (CVI) was long considered to be irreversible. However, there is considerable potential for vision restoration and recovery even in adulthood. Here, we propose the "residual vision activation theory" of how visual functions can be reactivated and restored. CVI is usually not complete, but some structures are typically spared by the damage. They include (i) areas of partial damage at the visual field border, (ii) "islands" of surviving tissue inside the blind field, (iii) extrastriate pathways unaffected by the damage, and (iv) downstream, higher-level neuronal networks. However, residual structures have a triple handicap to be fully functional: (i) fewer neurons, (ii) lack of sufficient attentional resources because of the dominant intact hemisphere caused by excitation/inhibition dysbalance, and (iii) disturbance in their temporal processing. Because of this resulting activation loss, residual structures are unable to contribute much to everyday vision, and their "non-use" further impairs synaptic strength. However, residual structures can be reactivated by engaging them in repetitive stimulation by different means: (i) visual experience, (ii) visual training, or (iii) noninvasive electrical brain current stimulation. These methods lead to strengthening of synaptic transmission and synchronization of partially damaged structures (within-systems plasticity) and downstream neuronal networks (network plasticity). Just as in normal perceptual learning, synaptic plasticity can improve vision and lead to vision restoration. This can be induced at any time after the lesion, at all ages and in all types of visual field impairments after retinal or brain damage (stroke, neurotrauma, glaucoma, amblyopia, age-related macular degeneration). If and to what extent vision restoration can be achieved is a function of the amount of residual tissue and its activation state. However, sustained improvements require repetitive stimulation which, depending on the method, may take days (noninvasive brain stimulation) or months (behavioral training). By becoming again engaged in everyday vision, (re)activation of areas of residual vision outlasts the stimulation period, thus contributing to lasting vision restoration and improvements in quality of life. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The angiotensin II type 1 receptor-neprilysin inhibitor LCZ696 blocked aldosterone synthesis in a human adrenocortical cell line.

    PubMed

    Miura, Shin-Ichiro; Suematsu, Yasunori; Matsuo, Yoshino; Tomita, Sayo; Nakayama, Asuka; Goto, Masaki; Arimura, Tadaaki; Kuwano, Takashi; Yahiro, Eiji; Saku, Keijiro

    2016-11-01

    A recent clinical study indicated that an angiotensin II (Ang II) type 1 (AT 1 ) receptor-neprilysin inhibitor (ARNi) designated LCZ696 (sacubitril/valsartan, as combined sodium complex) was superior to enalapril at reducing the risks of death and hospitalization due to heart failure. Therefore, we investigated the possible mechanisms of the beneficial effect of LCZ696, in which the inhibition of neprilysin enhances atrial natriuretic peptide (NP) or brain NP (ANP or BNP)-evoked signals that can block Ang II/AT 1 receptor-induced aldosterone (Ald) synthesis in human adrenocortical cells. The binding affinity of valsartan+LBQ657 (active moiety of sacubitril) to the AT 1 receptor was greater than that of valsartan alone in an AT 1 receptor-expressing human embryonic kidney cell-based assay. There was no difference in the dissociation from the AT 1 receptor between valsartan+LBQ657 and valsartan alone. In Ang II-sensitized human adrenocortical cells, ANP or BNP alone, but not LBQ657 or valsartan alone, significantly decreased Ald synthesis. The level of suppression of Ald synthesis by ANP or BNP with LBQ657 was greater than that by ANP or BNP without LBQ657. The suppression of ANP was blocked by inhibitors of regulator of G-protein signaling proteins and cyclic GMP-dependent protein kinase. The inhibition of neprilysin did not change the mRNA levels of the AT 1 receptor, ANP receptor A, regulator of G-protein signaling protein, renin or 3β-hydroxysteroid dehydrogenases. In conclusion, the inhibition of neprilysin by LBQ657 enhances the NP-evoked signals that can block Ang II/AT 1 receptor-induced Ald synthesis in human adrenocortical cells.

  20. When Long-Range Zero-Lag Synchronization is Feasible in Cortical Networks

    PubMed Central

    Viriyopase, Atthaphon; Bojak, Ingo; Zeitler, Magteld; Gielen, Stan

    2012-01-01

    Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP. PMID:22866034

  1. Convergent properties of vestibular-related brain stem neurons in the gerbil

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    2000-01-01

    Three classes of vestibular-related neurons were found in and near the prepositus and medial vestibular nuclei of alert or decerebrate gerbils, those responding to: horizontal translational motion, horizontal head rotation, or both. Their distribution ratios were 1:2:2, respectively. Many cells responsive to translational motion exhibited spatiotemporal characteristics with both response gain and phase varying as a function of the stimulus vector angle. Rotationally sensitive neurons were distributed as Type I, II, or III responses (sensitive to ipsilateral, contralateral, or both directions, respectively) in the ratios of 4:6:1. Four tested factors shaped the response dynamics of the sampled neurons: canal-otolith convergence, oculomotor-related activity, rotational Type (I or II), and the phase of the maximum response. Type I nonconvergent cells displayed increasing gains with increasing rotational stimulus frequency (0.1-2.0 Hz, 60 degrees /s), whereas Type II neurons with convergent inputs had response gains that markedly decreased with increasing translational stimulus frequency (0.25-2.0 Hz, +/-0.1 g). Type I convergent and Type II nonconvergent neurons exhibited essentially flat gains across the stimulus frequency range. Oculomotor-related activity was noted in 30% of the cells across all functional types, appearing as burst/pause discharge patterns related to the fast phase of nystagmus during head rotation. Oculomotor-related activity was correlated with enhanced dynamic range compared with the same category that had no oculomotor-related response. Finally, responses that were in-phase with head velocity during rotation exhibited greater gains with stimulus frequency increments than neurons with out-of-phase responses. In contrast, for translational motion, neurons out of phase with head acceleration exhibited low-pass characteristics, whereas in-phase neurons did not. Data from decerebrate preparations revealed that although similar response types could be detected, the sampled cells generally had lower background discharge rates, on average one-third lower response gains, and convergent properties that differed from those found in the alert animals. On the basis of the dynamic response of identified cell types, we propose a pair of models in which inhibitory input from vestibular-related neurons converges on oculomotor neurons with excitatory inputs from the vestibular nuclei. Simple signal convergence and combinations of different types of vestibular labyrinth information can enrich the dynamic characteristics of the rotational and translational vestibuloocular responses.

  2. Brain-Mediated Dysregulation of the Bone Marrow Activity in Angiotensin II-induced Hypertension

    PubMed Central

    Jun, Joo Yun; Zubcevic, Jasenka; Qi, Yanfei; Afzal, Aqeela; Carvajal, Jessica Marulanda; Thinschmidt, Jeffrey S; Grant, Maria B.; Mocco, J; Raizada, Mohan K

    2012-01-01

    Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus (PVN) of the hypothalamus, is driven by mitochondrial reactive oxygen species (ROS) and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II (Ang II) infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the PVN. This was associated with 46% decrease in BM EPCs and 250% increase in BM ICs, resulting in 5 fold decrease of EPCs/ICs ratio in the BM. Treatment with mitoTEMPO, a scavenger of mitochondrial O2−• intracerebroventricularly but not subcutaneously, attenuated Ang II-induced hypertension, decreased activation of microglia in the PVN, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with GFP-tagged pseudorabies virus (PRV). Administration of GFP-PRV into the BM resulted in predominant labeling of PVN neurons within 3 days, with some fluorescence in the NTS, RVLM and SFO. Taken together, these data demonstrate that inhibition of mitochondrial ROS attenuates Ang II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension. PMID:23045460

  3. Evidence for the involvement of type I interferon in pulmonary arterial hypertension.

    PubMed

    George, Peter M; Oliver, Eduardo; Dorfmuller, Peter; Dubois, Olivier D; Reed, Daniel M; Kirkby, Nicholas S; Mohamed, Nura A; Perros, Frederic; Antigny, Fabrice; Fadel, Elie; Schreiber, Benjamin E; Holmes, Alan M; Southwood, Mark; Hagan, Guy; Wort, Stephen J; Bartlett, Nathan; Morrell, Nicholas W; Coghlan, John G; Humbert, Marc; Zhao, Lan; Mitchell, Jane A

    2014-02-14

    Evidence is increasing of a link between interferon (IFN) and pulmonary arterial hypertension (PAH). Conditions with chronically elevated endogenous IFNs such as systemic sclerosis are strongly associated with PAH. Furthermore, therapeutic use of type I IFN is associated with PAH. This was recognized at the 2013 World Symposium on Pulmonary Hypertension where the urgent need for research into this was highlighted. To explore the role of type I IFN in PAH. Cells were cultured using standard approaches. Cytokines were measured by ELISA. Gene and protein expression were measured using reverse transcriptase polymerase chain reaction, Western blotting, and immunohistochemistry. The role of type I IFN in PAH in vivo was determined using type I IFN receptor knockout (IFNAR1(-/-)) mice. Human lung cells responded to types I and II but not III IFN correlating with relevant receptor expression. Type I, II, and III IFN levels were elevated in serum of patients with systemic sclerosis associated PAH. Serum interferon γ inducible protein 10 (IP10; CXCL10) and endothelin 1 were raised and strongly correlated together. IP10 correlated positively with pulmonary hemodynamics and serum brain natriuretic peptide and negatively with 6-minute walk test and cardiac index. Endothelial cells grown out of the blood of PAH patients were more sensitive to the effects of type I IFN than cells from healthy donors. PAH lung demonstrated increased IFNAR1 protein levels. IFNAR1(-/-) mice were protected from the effects of hypoxia on the right heart, vascular remodeling, and raised serum endothelin 1 levels. These data indicate that type I IFN, via an action of IFNAR1, mediates PAH.

  4. Defined types of cortical interneurone structure space and spike timing in the hippocampus

    PubMed Central

    Somogyi, Peter; Klausberger, Thomas

    2005-01-01

    The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390

  5. An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas

    PubMed Central

    Yamamichi, Akane; Kasama, Toshihiro; Ohka, Fumiharu; Suzuki, Hiromichi; Kato, Akira; Motomura, Kazuya; Hirano, Masaki; Ranjit, Melissa; Chalise, Lushun; Kurimoto, Michihiro; Kondo, Goro; Aoki, Kosuke; Kaji, Noritada; Tokeshi, Manabu; Matsubara, Toshio; Senga, Takeshi; Kaneko, Mika K.; Suzuki, Hidenori; Hara, Masahito; Wakabayashi, Toshihiko; Baba, Yoshinobu; Kato, Yukinari; Natsume, Atsushi

    2016-01-01

    Abstract World Health Organization grade II and III gliomas most frequently occur in the central nervous system (CNS) in adults. Gliomas are not circumscribed; tumor edges are irregular and consist of tumor cells, normal brain tissue, and hyperplastic reactive glial cells. Therefore, the tumors are not fully resectable, resulting in recurrence, malignant progression, and eventual death. Approximately 69–80% of grade II and III gliomas harbor mutations in the isocitrate dehydrogenase 1 gene (IDH1), of which 83–90% are found to be the IDH1-R132H mutation. Detection of the IDH1-R132H mutation should help in the differential diagnosis of grade II and III gliomas from other types of CNS tumors and help determine the boundary between the tumor and normal brain tissue. In this study, we established a highly sensitive antibody-based device, referred to as the immuno-wall, to detect the IDH1-R132H mutation in gliomas. The immuno-wall causes an immunoreaction in microchannels fabricated using a photo-polymerizing polymer. This microdevice enables the analysis of the IDH1 status with a small sample within 15 min with substantially high sensitivity. Our results suggested that 10% content of the IDH1-R132H mutation in a sample of 0.33 μl volume, with 500 ng protein, or from 500 cells is theoretically sufficient for the analysis. The immuno-wall device will enable the rapid and highly sensitive detection of the IDH1-R132H mutation in routine clinical practice. PMID:27877908

  6. Assessment of depression in medical patients: a systematic review of the utility of the Beck Depression Inventory-II.

    PubMed

    Wang, Yuan-Pang; Gorenstein, Clarice

    2013-09-01

    To perform a systematic review of the utility of the Beck Depression Inventory for detecting depression in medical settings, this article focuses on the revised version of the scale (Beck Depression Inventory-II), which was reformulated according to the DSM-IV criteria for major depression. We examined relevant investigations with the Beck Depression Inventory-II for measuring depression in medical settings to provide guidelines for practicing clinicians. Considering the inclusion and exclusion criteria seventy articles were retained. Validation studies of the Beck Depression Inventory-II, in both primary care and hospital settings, were found for clinics of cardiology, neurology, obstetrics, brain injury, nephrology, chronic pain, chronic fatigue, oncology, and infectious disease. The Beck Depression Inventory-II showed high reliability and good correlation with measures of depression and anxiety. Its threshold for detecting depression varied according to the type of patients, suggesting the need for adjusted cut-off points. The somatic and cognitive-affective dimension described the latent structure of the instrument. The Beck Depression Inventory-II can be easily adapted in most clinical conditions for detecting major depression and recommending an appropriate intervention. Although this scale represents a sound path for detecting depression in patients with medical conditions, the clinician should seek evidence for how to interpret the score before using the Beck Depression Inventory-II to make clinical decisions.

  7. Critical role of androgen receptor in the postnatal period in male sexual behavior in rats.

    PubMed

    Yamada, Shunji; Ohoya, Miku; Takanami, Keiko; Matsuda, Ken Ichi; Kawata, Mitsuhiro

    2015-11-16

    Gonadal hormones have a developmental role in organization of the nervous system that regulates sexually dimorphic behavior. It is well known that androgen secreted from testes in the perinatal period is converted to estrogen by aromatase in rodent brain, and that estrogen and its receptor play a pivotal role in masculinization of brain structure and function. Treatment with flutamide, an androgen receptor (AR) antagonist, during the perinatal period inhibits development of malespecific brain structure and function, suggesting that androgen signaling via AR also influences brain masculinization. In this study, we investigated which stage during the postnatal period is critical for androgen signaling in brain masculinization. The postnatal period was designated as postnatal days (PD) 0-22, and divided into stages I (PD 0-7), II (PD 8-14), and III (PD 15-22). Newborn male rats were given flutamide subcutaneously in each stage. After adulthood, the effects of postnatal flutamide treatment on brain masculinization were evaluated byanalysis of male sexual behavior. Continuous inhibition of AR throughout stages I and II caused a robust reduction of the intromission ratio and ejaculation frequency compared with other groups. AR inhibition in stage I, II, or III did not cause any change. AR inhibition had no effect onmount behavior. These results show that stage-specific AR activation in the first two postnatal weeks may contribute to brain masculinization mediating male sexual behavior in adulthood. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Effects of diabetes on brain metabolism--is brain glycogen a significant player?

    PubMed

    Sickmann, Helle M; Waagepetersen, Helle S

    2015-02-01

    Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may be associated with brain impairments e.g. cognitive decline and dementia. It is however, not clear how these impairments on brain function are linked to alterations in brain energy and neurotransmitter metabolism. In this review, we will illuminate how rodent diabetes models have contributed to a better understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes.

  9. Congenital extrahepatic portosystemic shunt: an underdiagnosed but treatable cause of hepatopulmonary syndrome.

    PubMed

    Fu, Lijun; Wang, Qian; Wu, Jinjin; Guo, Ying; Huang, Meirong; Liu, Tingliang; Chen, Qimin; Li, Fen

    2016-02-01

    Congenital extrahepatic portosystemic shunt (CEPS) is a rare malformation of the mesenteric vasculature, which may lead to severe complications. In this report, we describe a case series of three children with type II CEPS (presenting as hypoxemia) and hepatopulmonary syndrome (HPS). The first patient was a 4-year-old male who did not receive any specific treatment and subsequently died of brain abscess 5 years after the diagnosis. The second patient was a 10-year-old female with a 5-year history of cyanosis and dyspnea on exertion. She had partial regression of hypoxemia and improved exercise tolerance at 8 months after a surgical shunt closure. The third patient was a 4-year-old male with a 3-year history of cyanosis and decreased exercise tolerance. He had full regression of hypoxemia at 3 months after a transcatheter shunt closure. These results indicate that CEPS may present in children with unexplained hypoxemia, which may lead to devastating clinical consequences. Closure of portosystemic shunts may result in resolution of HPS in type II CEPS and the length of period for resolution varies depending on the severity of HPS. Congenital extrahepatic portosystemic shunt (CEPS) is a rare cause of hepatopulmonary syndrome (HPS). There have been few reports in the literature about the management and outcome of HPS in children with CEPS. CEPS may present in children with unexplained hypoxemia, which may lead to devastating clinical consequences. Closure of portosystemic shunts may result in resolution of HPS in type II CEPS.

  10. Anatomical Variability of the Posterior Communicating Artery.

    PubMed

    Gunnal, Sandhya Arvind; Farooqui, Mujibuddin S; Wabale, Rajendra N

    2018-01-01

    Although posterior communicating artery (PCoA) is a smaller branch of the internal carotid artery, it gives the main contribution in the formation of circle of Willis (CW) by communicating with the internal carotid arterial system and the vertebro-basilar arterial system. The size of PCoA varies frequently. The present work aims to study the PCoA regarding its morphology, morphometry, and symmetry. This study was conducted on 170 human cadaveric brains. Brains were dissected carefully and delicately to expose all components of CW, especially PCoA. Morphological variations of PCoA were noted along with its morphometry and symmetry. Morphological variations of PCoA were aplasia (3.52%), hypoplasia (25.29%), fenestration (0.58%), and persistent fetal pattern (16.47%). In the present study, we found the five different types of terminations of PCoA. Type I termination was the most common type, seen in 92.94% of cases, Type II termination was seen in 1.17%, Type III and Type IV terminations both were seen in 0.58%, and Type V was seen in 1.17%. The mean length of PCoA was 15.9 mm and 15.3 mm on the right and left sides, respectively. The mean diameter of PCoA was 2.1 mm and 1.9 mm on the right and left sides, respectively. Symmetry of PCoA was seen in 65.29% and asymmetric PCoA was seen in 34.70% of cases. The present study provides the complete description of PCoA regarding its morphology, symmetry, and morphometry. Awareness of these anatomical variations is important in neurovascular procedures.

  11. First CT findings and improvement in GOS and GOSE scores 6 and 12 months after severe traumatic brain injury.

    PubMed

    Corral, Luisa; Herrero, José Ignacio; Monfort, José Luis; Ventura, José Luis; Javierre, Casimiro F; Juncadella, Montserrat; García-Huete, Lucía; Bartolomé, Carlos; Gabarrós, Andreu

    2009-05-01

    To analyse the association between individual initial computerized tomography (CT) scan characteristics and Glasgow Outcome Scale (GOS) and Extended Glasgow Outcome Scale (GOSE) improvement between 6 months and 1 year. Two hundred and twenty-four adult patients with severe traumatic brain injury and Glasgow Coma Scale (GCS) score of 8 or less who were admitted to an intensive care unit were studied. GOS and GOSE scores were obtained 6 and 12 months after injury in 203 subjects. Patients were predominantly male (84%) and median age was 35 years. Traumatic Coma Data Bank (TCDB) CT classification was associated with GOS/GOSE improvement between 6 months and 1 year, with diffuse injury type I, type II and evacuated mass improving more than diffuse injury type III, type IV and non-evacuated mass; for GOS 43/155 (28%) vs 3/48 (6%) (chi(2) = 9.66, p < 0.01) and for GOSE 71/155 (46%) vs 7/48 (15%) (chi(2) = 15.1, p < 0.01). CT individual abnormalities were not associated with GOS/GOSE improvement, with the exception of subarachnoid haemorrhage, which showed a negative association with GOSE improvement (chi(2) = 4.08, p < 0.05). TCDB CT scan classification and subarachnoid haemorrhage were associated with GOS/GOSE improvement from 6-12 months, but individual CT abnormalities were not associated.

  12. Law, evolution and the brain: applications and open questions.

    PubMed Central

    Jones, Owen D

    2004-01-01

    This paper discusses several issues at the intersection of law and brain science. It focuses principally on ways in which an improved understanding of how evolutionary processes affect brain function and human behaviour may improve law's ability to regulate behaviour. It explores sample uses of such 'evolutionary analysis in law' and also raises questions about how that analysis might be improved in the future. Among the discussed uses are: (i) clarifying cost-benefit analyses; (ii) providing theoretical foundation and potential predictive power; (iii) assessing comparative effectiveness of legal strategies; and (iv) revealing deep patterns in legal architecture. Throughout, the paper emphasizes the extent to which effective law requires: (i) building effective behavioural models; (ii) integrating life-science perspectives with social-science perspectives; (iii) considering the effects of brain biology on behaviours that law seeks to regulate; and (iv) examining the effects of evolutionary processes on brain design. PMID:15590611

  13. Law, evolution and the brain: applications and open questions.

    PubMed

    Jones, Owen D

    2004-11-29

    This paper discusses several issues at the intersection of law and brain science. It focuses principally on ways in which an improved understanding of how evolutionary processes affect brain function and human behaviour may improve law's ability to regulate behaviour. It explores sample uses of such 'evolutionary analysis in law' and also raises questions about how that analysis might be improved in the future. Among the discussed uses are: (i) clarifying cost-benefit analyses; (ii) providing theoretical foundation and potential predictive power; (iii) assessing comparative effectiveness of legal strategies; and (iv) revealing deep patterns in legal architecture. Throughout, the paper emphasizes the extent to which effective law requires: (i) building effective behavioural models; (ii) integrating life-science perspectives with social-science perspectives; (iii) considering the effects of brain biology on behaviours that law seeks to regulate; and (iv) examining the effects of evolutionary processes on brain design.

  14. The Neuroanatomy of Genetic Subtype Differences in Prader-Willi Syndrome

    PubMed Central

    Honea, Robyn A.; Holsen, Laura M.; Lepping, Rebecca J.; Perea, Rodrigo; Butler, Merlin G.; Brooks, William M.; Savage, Cary R.

    2012-01-01

    Objective Despite behavioral differences between genetic subtypes of Prader-Willi syndrome, no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of Prader-Willi syndrome (PWS) [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Methods Fifteen individuals with PWS due to a typical deletion ((DEL) Type I; n=5, Type II; n=10), 8 with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume between groups, covarying for age, sex, and body mass index (BMI). Results Overall, compared to HWC, PWS individuals had lower gray matter volumes that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower white matter volumes in the brain stem, cerebellum, medial temporal and frontal cortex. Compared to UPD, the DEL subtypes had lower gray matter volume primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and white matter volumes in the orbitofrontal and limbic cortices compared to HWC. Conclusions These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. PMID:22241551

  15. The neuroanatomy of genetic subtype differences in Prader-Willi syndrome.

    PubMed

    Honea, Robyn A; Holsen, Laura M; Lepping, Rebecca J; Perea, Rodrigo; Butler, Merlin G; Brooks, William M; Savage, Cary R

    2012-03-01

    Despite behavioral differences between genetic subtypes of Prader-Willi syndrome (PWS), no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of PWS [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Fifteen individuals with PWS due to a typical deletion [(DEL) type I; n = 5, type II; n = 10], eight with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume (WMV) between groups, covarying for age, sex, and body mass index (BMI). Overall, compared to HWC, PWS individuals had lower gray matter volumes (GMV) that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower WMVs in the brain stem, cerebellum, medial temporal, and frontal cortex. Compared to UPD, the DEL subtypes had lower GMV primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and WMVs in the orbitofrontal and limbic cortices compared to HWC. These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. Copyright © 2012 Wiley Periodicals, Inc.

  16. Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice

    PubMed Central

    Sahni, Prateek V.; Zhang, Jimmy; Sosunov, Sergey; Galkin, Alexander; Niatsetskaya, Zoya; Starkov, Anatoly; Brookes, Paul S.; Ten, Vadim S.

    2017-01-01

    Background Reverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate. Methods Neonatal mice were subjected to Rice-Vannucci model of hypoxicischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H2O2 generation rate in the ischemic brain. Results While brain mitochondria from control mice exhibited a rotenonesensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H2O2 emission rate in HI-mice compared to controls. At sixty minutes of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls. Conclusion These data are the first ex-vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion. PMID:29211056

  17. Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice.

    PubMed

    Sahni, Prateek V; Zhang, Jimmy; Sosunov, Sergey; Galkin, Alexander; Niatsetskaya, Zoya; Starkov, Anatoly; Brookes, Paul S; Ten, Vadim S

    2018-02-01

    BackgroundReverse electron transport (RET) driven by the oxidation of succinate has been proposed as the mechanism of accelerated production of reactive oxygen species (ROS) in post-ischemic mitochondria. However, it remains unclear whether upon reperfusion, mitochondria preferentially oxidase succinate.MethodsNeonatal mice were subjected to Rice-Vannucci model of hypoxic-ischemic brain injury (HI) followed by assessment of Krebs cycle metabolites, mitochondrial substrate preference, and H 2 O 2 generation rate in the ischemic brain.ResultsWhile brain mitochondria from control mice exhibited a rotenone-sensitive complex-I-dependent respiration, HI-brain mitochondria, at the initiation of reperfusion, demonstrated complex-II-dependent respiration, as rotenone minimally affected, but inhibition of complex-II ceased respiration. This was associated with a 30-fold increase of cerebral succinate concentration and significantly elevated H 2 O 2 emission rate in HI-mice compared to controls. At 60 min of reperfusion, cerebral succinate content and the mitochondrial response to rotenone did not differ from that in controls.ConclusionThese data are the first ex vivo evidence, that at the initiation of reperfusion, brain mitochondria transiently shift their metabolism from complex-I-dependent oxidation of NADH toward complex II-linked oxidation of succinate. Our study provides a critical piece of support for existence of the RET-dependent mechanism of elevated ROS production in reperfusion.

  18. Treatment rationale and design of the RAMNITA study: A phase II study of the efficacy of docetaxel + ramucirumab for non-small cell lung cancer with brain metastasis.

    PubMed

    Tanimura, Keiko; Uchino, Junji; Tamiya, Nobuyo; Kaneko, Yoshiko; Yamada, Tadaaki; Yoshimura, Kenichi; Takayama, Koichi

    2018-06-01

    We described the treatment rationale and procedure for a phase II study of docetaxel plus ramucirumab for non-small cell lung cancer (NSCLC) patients with brain metastasis (RAMNITA study: University Information Network Clinical Trials Registry identification no. [UMIN]: 000024551). Combination therapy of angiogenetic inhibitor with chemotherapy improved the outcome of patients with brain metastasis in previous reports; however, the efficacy of ramucirumab, a vascular endothelial growth factor receptor-2 monoclonal antibody, for brain metastasis has not been shown. This RAMNITA study is a prospective, multicenter, open-label, single-arm phase II study designed to evaluate efficacy and safety of docetaxel and ramucirumab for advanced NSCLC patients with brain metastasis. Eligible patients will receive docetaxel (60 mg/m) and ramucirumab (10 mg/kg) every 21 days until disease progression. The primary endpoint is progression-free survival (PFS), and secondary endpoints are overall survival, intracranial PFS, response rate, and safety. Sixty-five participants will be recruited from September 2017 to December 2019 and followed up for 1 year after final registration. The results from this study may suggest a treatment option for brain metastasis in NSCLC. The protocol was approved by the institutional review board of each study center. Written informed consent will be obtained from all patients before registration, in accordance with the Declaration of Helsinki.

  19. Clinical outcomes from maximum-safe resection of primary and metastatic brain tumors using awake craniotomy.

    PubMed

    Groshev, Anastasia; Padalia, Devang; Patel, Sephalie; Garcia-Getting, Rosemarie; Sahebjam, Solmaz; Forsyth, Peter A; Vrionis, Frank D; Etame, Arnold B

    2017-06-01

    To retrospectively analyze outcomes in patients undergoing awake craniotomies for tumor resection at our institution in terms of extent of resection, functional preservation and length of hospital stay. All cases of adults undergoing awake-craniotomy from September 2012-February 2015 were retrospectively reviewed based on an IRB approved protocol. Information regarding patient age, sex, cancer type, procedure type, location, hospital stay, extent of resection, and postoperative complications was extracted. 76 patient charts were analyzed. Resected cancer types included metastasis to the brain (41%), glioblastoma (34%), WHO grade III anaplastic astrocytoma (18%), WHO grade II glioma (4%), WHO grade I glioma (1%), and meningioma (1%). Over a half of procedures were performed in the frontal lobes, followed by temporal, and occipital locations. The most common indication was for motor cortex and primary somatosensory area lesions followed by speech. Extent of resection was gross total for 59% patients, near-gross total for 34%, and subtotal for 7%. Average hospital stay for the cohort was 1.7days with 75% of patients staying at the hospital for only 24h or less post surgery. In the postoperative period, 67% of patients experienced improvement in neurological status, 21% of patients experienced no change, 7% experienced transient neurological deficits, which resolved within two months post op, 1% experienced transient speech deficit, and 3% experienced permanent weakness. In a consecutive series of 76 patients undergoing maximum-safe resection for primary and metastatic brain tumors, awake-craniotomy was associated with a short hospital stay and low postoperative complications rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Education and the Brain; The Seventy-seventh Yearbook of the National Society for the Study of Education. Part II.

    ERIC Educational Resources Information Center

    Chall, Jeanne S., Ed.; Mirsky, Allan F., Ed.

    The brain sciences and education is the topic for this yearbook volume, which is divided into five parts. Part one consists of an introduction to the brain sciences that is a primer on the neuroanatomy, neurochemistry, and neurophysiology of the brain. Part two contains chapters on some of the basic processes of the brain: attention, cognition,…

  1. Reliability issues in human brain temperature measurement

    PubMed Central

    2009-01-01

    Introduction The influence of brain temperature on clinical outcome after severe brain trauma is currently poorly understood. When brain temperature is measured directly, different values between the inside and outside of the head can occur. It is not yet clear if these differences are 'real' or due to measurement error. Methods The aim of this study was to assess the performance and measurement uncertainty of body and brain temperature sensors currently in use in neurocritical care. Two organic fixed-point, ultra stable temperature sources were used as the temperature references. Two different types of brain sensor (brain type 1 and brain type 2) and one body type sensor were tested under rigorous laboratory conditions and at the bedside. Measurement uncertainty was calculated using internationally recognised methods. Results Average differences between the 26°C reference temperature source and the clinical temperature sensors were +0.11°C (brain type 1), +0.24°C (brain type 2) and -0.15°C (body type), respectively. For the 36°C temperature reference source, average differences between the reference source and clinical thermometers were -0.02°C, +0.09°C and -0.03°C for brain type 1, brain type 2 and body type sensor, respectively. Repeat calibrations the following day confirmed that these results were within the calculated uncertainties. The results of the immersion tests revealed that the reading of the body type sensor was sensitive to position, with differences in temperature of -0.5°C to -1.4°C observed on withdrawing the thermometer from the base of the isothermal environment by 4 cm and 8 cm, respectively. Taking into account all the factors tested during the calibration experiments, the measurement uncertainty of the clinical sensors against the (nominal) 26°C and 36°C temperature reference sources for the brain type 1, brain type 2 and body type sensors were ± 0.18°C, ± 0.10°C and ± 0.12°C respectively. Conclusions The results show that brain temperature sensors are fundamentally accurate and the measurements are precise to within 0.1 to 0.2°C. Subtle dissociation between brain and body temperature in excess of 0.1 to 0.2°C is likely to be real. Body temperature sensors need to be secured in position to ensure that measurements are reliable. PMID:19573241

  2. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex

    PubMed Central

    Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2016-01-01

    Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles. PMID:27832100

  3. Wiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex.

    PubMed

    Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2016-01-01

    Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this study, we analyze the neuronal wiring of complete basal arborizations of pyramidal neurons in layer II, III, IV, Va, Vb and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. For each cell, we search for the optimal basal arborization and compare its length with the length of the real dendritic structure. Here the optimal arborization is defined as the arborization that has the shortest total wiring length provided that all neuron bifurcations are respected and the extent of the dendritic arborizations remain unchanged. We use graph theory and evolutionary computation techniques to search for the minimal wiring arborizations. Despite morphological differences between pyramidal neurons located in different cortical layers, we found that the neuronal wiring is near-optimal in all cases (the biggest difference between the shortest synthetic wiring found for a dendritic arborization and the length of its real wiring was less than 5%). We found, however, that the real neuronal wiring was significantly closer to the best solution found in layers II, III and IV. Our studies show that the wiring economy of cortical neurons is related not to the type of neurons or their morphological complexities but to general wiring economy principles.

  4. Adjustable shunt valve-induced magnetic resonance imaging artifact: a comparative study.

    PubMed

    Toma, Ahmed K; Tarnaris, Andrew; Grieve, Joan P; Watkins, Laurence D; Kitchen, Neil D

    2010-07-01

    In this paper, the authors' goal was to compare the artifact induced by implanted (in vivo) adjustable shunt valves in spin echo, diffusion weighted (DW), and gradient echo MR imaging pulse sequences. The MR images obtained in 8 patients with proGAV and 6 patients with Strata II adjustable shunt valves were assessed for artifact areas in different planes as well as the total volume for different pulse sequences. Artifacts induced by the Strata II valve were significantly larger than those induced by proGAV valve in spin echo MR imaging pulse sequence (29,761 vs 2450 mm(3) on T2-weighted fast spin echo, p = 0.003) and DW images (100,138 vs 38,955 mm(3), p = 0.025). Artifacts were more marked on DW MR images than on spin echo pulse sequence for both valve types. Adjustable valve-induced artifacts can conceal brain pathology on MR images. This should influence the choice of valve implantation site and the type of valve used. The effect of artifacts on DW images should be highlighted pending the development of less MR imaging artifact-inducing adjustable shunt valves.

  5. Sensory Processing and Integration at the Carotid Body Tripartite Synapse: Neurotransmitter Functions and Effects of Chronic Hypoxia.

    PubMed

    Leonard, Erin M; Salman, Shaima; Nurse, Colin A

    2018-01-01

    Maintenance of homeostasis in the respiratory and cardiovascular systems depends on reflexes that are initiated at specialized peripheral chemoreceptors that sense changes in the chemical composition of arterial blood. In mammals, the bilaterally-paired carotid bodies (CBs) are the main peripheral chemoreceptor organs that are richly vascularized and are strategically located at the carotid bifurcation. The CBs contribute to the maintenance of O 2 , CO 2 /H + , and glucose homeostasis and have attracted much clinical interest because hyperactivity in these organs is associated with several pathophysiological conditions including sleep apnea, obstructive lung disease, heart failure, hypertension, and diabetes. In response to a decrease in O 2 availability (hypoxia) and elevated CO 2 /H + (acid hypercapnia), CB receptor type I (glomus) cells depolarize and release neurotransmitters that stimulate apposed chemoafferent nerve fibers. The central projections of those fibers in turn activate cardiorespiratory centers in the brainstem, leading to an increase in ventilation and sympathetic drive that helps restore blood PO 2 and protect vital organs, e.g., the brain. Significant progress has been made in understanding how neurochemicals released from type I cells such as ATP, adenosine, dopamine, 5-HT, ACh, and angiotensin II help shape the CB afferent discharge during both normal and pathophysiological conditions. However, type I cells typically occur in clusters and in addition to their sensory innervation are ensheathed by the processes of neighboring glial-like, sustentacular type II cells. This morphological arrangement is reminiscent of a "tripartite synapse" and emerging evidence suggests that paracrine stimulation of type II cells by a variety of CB neurochemicals may trigger the release of "gliotransmitters" such as ATP via pannexin-1 channels. Further, recent data suggest novel mechanisms by which dopamine, acting via D2 receptors (D2R), may inhibit action potential firing at petrosal nerve endings. This review will update current ideas concerning the presynaptic and postsynaptic mechanisms that underlie chemosensory processing in the CB. Paracrine signaling pathways will be highlighted, and particularly those that allow the glial-like type II cells to participate in the integrated sensory response during exposures to chemostimuli, including acute and chronic hypoxia.

  6. Fetal eye movements on magnetic resonance imaging.

    PubMed

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3-45%. In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations.

  7. Brain magnetic resonance imaging findings and auditory brainstem response in a child with spastic paraplegia 2 due to a PLP1 splice site mutation.

    PubMed

    Kubota, Kazuo; Saito, Yoshiaki; Ohba, Chihiro; Saitsu, Hirotomo; Fukuyama, Tetsuhiro; Ishiyama, Akihiko; Saito, Takashi; Komaki, Hirofumi; Nakagawa, Eiji; Sugai, Kenji; Sasaki, Masayuki; Matsumoto, Naomichi

    2015-01-01

    A boy with spastic paraplegia type 2 (SPG2) due to a novel splice site mutation of PLP1 presented with progressive spasticity of lower limbs, which was first observed during late infancy, when he gained the ability to walk with support. His speech was slow and he had dysarthria. The patient showed mildly delayed intellectual development. Subtotal dysmyelination in the central nervous system was revealed, which was especially prominent in structures known to be myelinated during earlier period, whereas structures that are myelinated later were better myelinated. These findings on the brain magnetic resonance imaging were unusual for subjects with PLP1 mutations. Peaks I and II of the auditory brainstem response (ABR) were normally provoked, but peaks III-V were not clearly demarcated, similarly to the findings in Pelizaeus-Merzbacher disease. These findings of brain MRI and ABR may be characteristic for a subtype of SPG2 patients. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  8. Depletion of angiotensin-converting enzyme 2 reduces brain serotonin and impairs the running-induced neurogenic response.

    PubMed

    Klempin, Friederike; Mosienko, Valentina; Matthes, Susann; Villela, Daniel C; Todiras, Mihail; Penninger, Josef M; Bader, Michael; Santos, Robson A S; Alenina, Natalia

    2018-04-20

    Physical exercise induces cell proliferation in the adult hippocampus in rodents. Serotonin (5-HT) and angiotensin (Ang) II are important mediators of the pro-mitotic effect of physical activity. Here, we examine precursor cells in the adult brain of mice lacking angiotensin-converting enzyme (ACE) 2, and explore the effect of an acute running stimulus on neurogenesis. ACE2 metabolizes Ang II to Ang-(1-7) and is essential for the intestinal uptake of tryptophan (Trp), the 5-HT precursor. In ACE2-deficient mice, we observed a decrease in brain 5-HT levels and no increase in the number of BrdU-positive cells following exercise. Targeting the Ang II/AT1 axis by blocking the receptor, or experimentally increasing Trp/5-HT levels in the brain of ACE2-deficient mice, did not rescue the running-induced effect. Furthermore, mice lacking the Ang-(1-7) receptor, Mas, presented a normal neurogenic response to exercise. Our results identify ACE2 as a novel factor required for exercise-dependent modulation of adult neurogenesis and essential for 5-HT metabolism.

  9. Peripheral DNA methylation, cognitive decline and brain aging: pilot findings from the Whitehall II imaging study.

    PubMed

    Chouliaras, Leonidas; Pishva, Ehsan; Haapakoski, Rita; Zsoldos, Eniko; Mahmood, Abda; Filippini, Nicola; Burrage, Joe; Mill, Jonathan; Kivimäki, Mika; Lunnon, Katie; Ebmeier, Klaus P

    2018-05-01

    The present study investigated the link between peripheral DNA methylation (DNAm), cognitive impairment and brain aging. We tested the association between blood genome-wide DNAm profiles using the Illumina 450K arrays, cognitive dysfunction and brain MRI measures in selected participants of the Whitehall II imaging sub-study. Eight differentially methylated regions were associated with cognitive impairment. Accelerated aging based on the Hannum epigenetic clock was associated with mean diffusivity and global fractional anisotropy. We also identified modules of co-methylated loci associated with white matter hyperintensities. These co-methylation modules were enriched among pathways relevant to β-amyloid processing and glutamatergic signaling. Our data support the notion that blood DNAm changes may have utility as a biomarker for cognitive dysfunction and brain aging.

  10. Apparent Diffusion Coefficient Value Changes and Clinical Correlation in 90 Cases of Cytomegalovirus-Infected Fetuses with Unremarkable Fetal MRI Results.

    PubMed

    Kotovich, D; Guedalia, J S B; Hoffmann, C; Sze, G; Eisenkraft, A; Yaniv, G

    2017-07-01

    Cytomegalovirus is the leading intrauterine infection. Fetal MR imaging is an accepted tool for fetal brain evaluation, yet it still lacks the ability to accurately predict the extent of the neurodevelopmental impairment, especially in fetal MR imaging scans with unremarkable findings. Our hypothesis was that intrauterine cytomegalovirus infection causes diffusional changes in fetal brains and that those changes may correlate with the severity of neurodevelopmental deficiencies. A retrospective analysis was performed on 90 fetal MR imaging scans of cytomegalovirus-infected fetuses with unremarkable results and compared with a matched gestational age control group of 68 fetal head MR imaging scans. ADC values were measured and averaged in the frontal, parietal, occipital, and temporal lobes; basal ganglia; thalamus; and pons. For neurocognitive assessment, the Vineland Adaptive Behavior Scales, Second Edition (VABS-II) was used on 58 children in the cytomegalovirus-infected group. ADC values were reduced for the cytomegalovirus-infected fetuses in most brain areas studied. The VABS-II showed no trend for the major domains or the composite score of the VABS-II for the cytomegalovirus-infected children compared with the healthy population distribution. Some subdomains showed an association between ADC values and VABS-II scores. Cytomegalovirus infection causes diffuse reduction in ADC values in the fetal brain even in unremarkable fetal MR imaging scans. Cytomegalovirus-infected children with unremarkable fetal MR imaging scans do not deviate from the healthy population in the VABS-II neurocognitive assessment. ADC values were not correlated with VABS-II scores. However, the lack of clinical findings, as seen in most cytomegalovirus-infected fetuses, does not eliminate the possibility of future neurodevelopmental pathology. © 2017 by American Journal of Neuroradiology.

  11. Evaluating a Novel Eye Tracking Tool to Detect Invalid Responding in Neurocognitive Assessment

    DTIC Science & Technology

    2014-05-07

    Learning Test-II (CVLT-II; 63), Rey Auditory Verbal Learning Test (RAVLT; 231), Warrington’s Recognition Memory Test (RMT; 274), and Seashore Rhythm...history of brain injury (BR) and unbiased responders without a history of brain injury (UR). Demographics (e.g., age, sex , race/ethnicity, years of...project (i.e., “true” invalid responding) is rarely observed with certainty or experimentally induced . However, behavior that approximates true invalid

  12. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    PubMed Central

    Sandi, Carmen

    1998-01-01

    Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681

  13. Clinical, imaging, and immunohistochemical characteristics of focal cortical dysplasia Type II extratemporal epilepsies in children: analyses of an institutional case series.

    PubMed

    Knerlich-Lukoschus, Friederike; Connolly, Mary B; Hendson, Glenda; Steinbok, Paul; Dunham, Christopher

    2017-02-01

    OBJECTIVE Focal cortical dysplasia (FCD) Type II is divided into 2 subgroups based on the absence (IIA) or presence (IIB) of balloon cells. In particular, extratemporal FCD Type IIA and IIB is not completely understood in terms of clinical, imaging, biological, and neuropathological differences. The aim of the authors was to analyze distinctions between these 2 formal entities and address clinical, MRI, and immunohistochemical features of extratemporal epilepsies in children. METHODS Cases formerly classified as Palmini FCD Type II nontemporal epilepsies were identified through the prospectively maintained epilepsy database at the British Columbia Children's Hospital in Vancouver, Canada. Clinical data, including age of seizure onset, age at surgery, seizure type(s) and frequency, affected brain region(s), intraoperative electrocorticographic findings, and outcome defined by Engel's classification were obtained for each patient. Preoperative and postoperative MRI results were reevaluated. H & E-stained tissue sections were reevaluated by using the 2011 International League Against Epilepsy classification system and additional immunostaining for standard cellular markers (neuronal nuclei, neurofilament, glial fibrillary acidic protein, CD68). Two additional established markers of pathology in epilepsy resection, namely, CD34 and α-B crystallin, were applied. RESULTS Seven nontemporal FCD Type IIA and 7 Type B cases were included. Patients with FCD Type IIA presented with an earlier age of epilepsy onset and slightly better Engel outcome. Radiology distinguished FCD Types IIA and IIB, in that Type IIB presented more frequently with characteristic cortical alterations. Nonphosphorylated neurofilament protein staining confirmed dysplastic cells in dyslaminated areas. The white-gray matter junction was focally blurred in patients with FCD Type IIB. α-B crystallin highlighted glial cells in the white matter and subpial layer with either of the 2 FCD Type II subtypes and balloon cells in patients with FCD Type IIB. α-B crystallin positivity proved to be a valuable tool for confirming the histological diagnosis of FCD Type IIB in specimens with rare balloon cells or difficult section orientation. Distinct nonendothelial cellular CD34 staining was found exclusively in tissue from patients with MRI-positive FCD Type IIB. CONCLUSIONS Extratemporal FCD Types IIA and IIB in the pediatric age group exhibited imaging and immunohistochemical characteristics; cellular immunoreactivity to CD34 emerged as an especially potential surrogate marker for lesional FCD Type IIB, providing additional evidence that FCD Types IIA and IIB might differ in their etiology and biology. Although the sample number in this study was small, the results further support the theory that postoperative outcome-defined by Engel's classification-is multifactorial and determined by not only histology but also the extent of the initial lesion, its location in eloquent areas, intraoperative electrocorticographic findings, and achieved resection grade.

  14. Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas.

    PubMed

    Badie, Behnam; Bartley, Becky; Schartner, Jill

    2002-12-01

    To assess the immune function of microglia and macrophages in brain tumors, the expression of MHC class II and B7 costimulatory molecules in three rodent glioma models was examined. Microglia and macrophages, which accounted for 5-12% of total cells, expressed B7.1 and MHC class II molecules in the C6 and 9L tumors, but not RG2 gliomas. Interestingly, the expression of B7.1 and MHC class II molecules by microglia and macrophage was associated with an increase in the number of tumor-infiltrating lymphocytes in C6 and 9L tumors. B7.2 expression, which was present at low levels on microglia and macrophages in normal brain, did not significantly change in tumors. Interestingly, the expression of all three surface antigens increased after microglia were isolated from intracranial C6 tumors and cultured for a short period of time. We conclude that microglia immune activity may be suppressed in gliomas and directly correlates to the immunogenecity of experimental brain tumors.

  15. Relations between brain volumes, neuropsychological assessment and parental questionnaire in prematurely born children.

    PubMed

    Lind, Annika; Haataja, Leena; Rautava, Liisi; Väliaho, Anniina; Lehtonen, Liisa; Lapinleimu, Helena; Parkkola, Riitta; Korkman, Marit

    2010-05-01

    The objective of this study is to assess the relationship between brain volumes at term equivalent age and neuropsychological functions at 5 years of age in very low birth weight (VLBW) children, and to compare the results from a neuropsychological assessment and a parental questionnaire at 5 years of age. The study group included a regional cohort of 97 VLBW children and a control group of 161 children born at term. At term equivalent age, brain magnetic resonance imaging (MRI) was performed on the VLBW children, and analysed for total and regional brain volumes. At 5 years of age, a psychologist assessed the neuropsychological performance with NEPSY II, and parents completed the Five to fifteen (FTF) questionnaire on development and behaviour. The results of the control group were used to give the age-specific reference values. No significant associations were found between the brain volumes and the NEPSY II domains. As for the FTF, significant associations were found between a smaller total brain tissue volume and poorer executive functions, between a smaller cerebellar volume and both poorer executive functions and motor skills, and, surprisingly, between a larger volume of brainstem and poorer language functions. Even after adjustment for total brain tissue volume, the two associations between the cerebellar volume and the FTF domains remained borderline significant (P = 0.05). The NEPSY II domains Executive Functioning, Language and Motor Skills were significantly associated with the corresponding FTF domains. In conclusion, altered brain volumes at term equivalent age appear to affect development still at 5 years of age. The FTF seems to be a good instrument when used in combination with other neuropsychological assessment.

  16. Cognitive and adaptive measurement endpoints for clinical trials in mucopolysaccharidoses types I, II, and III: A review of the literature.

    PubMed

    Janzen, Darren; Delaney, Kathleen A; Shapiro, Elsa G

    2017-06-01

    Sensitive, reliable measurement instruments are critical for the evaluation of disease progression and new treatments that affect the brain in the mucopolysaccharidoses (MPS). MPS I, II, and III have early onset clinical phenotypes that affect the brain during development and result in devastating cognitive decline and ultimately death without treatment. Comparisons of outcomes are hindered by diverse protocols and approaches to assessment including applicability to international trials necessary in rare diseases. We review both cognitive and adaptive measures with the goal of providing evidence to a Delphi panel to come to a consensus about recommendations for clinical trials for various age groups. The results of the consensus panel are reported in an accompanying article. The following data were gathered (from internet resources and from test manuals) for each measure and summarized in the discussion: reliability, validity, date and adequacy of normative data, applicability of the measure's metrics, cross cultural validity including translations and adaptations, feasibility in the MPS population, familiarity to sites, sensitivity to change, and interpretability. If, resulting from this consensus, standard protocols are used for both natural history and treatment studies, patients, their families, and health care providers will benefit from the ability to compare study outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways

    PubMed Central

    Lee, M. C.; O'Neill, J.; Dickenson, A. H.; Iannetti, G. D.

    2016-01-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronization of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptors exclusively. In contrast, low-intensity intraepidermal electrical stimulation (IES) allows selective activation of type II Aδ-mechano-heat nociceptors (II-AMHs) and elicits reproducible brain potentials. However, it is unclear whether hyperalgesia from IES occurs and coexists with secondary mechanical punctate hyperalgesia, and whether the magnitude of the electroencephalographic (EEG) responses evoked by IES within the hyperalgesic area is increased. To address these questions, we explored the modulation of the psychophysical and EEG responses to IES by intraepidermal injection of capsaicin in healthy human subjects. We obtained three main results. First, the intensity of the sensation elicited by IES was significantly increased in participants who developed robust mechanical punctate hyperalgesia after capsaicin injection (i.e., responders), indicating that hyperalgesia from IES coexists with punctate mechanical hyperalgesia. Second, the N2 peak magnitude of the EEG responses elicited by IES was significantly increased after the intraepidermal injection of capsaicin in responders only. Third, a receiver-operator characteristics analysis showed that the N2 peak amplitude is clearly predictive of the presence of CS. These findings suggest that the EEG responses elicited by IES reflect secondary hyperalgesia and therefore represent an objective correlate of CS. PMID:27098022

  18. Specific regions of the brain are capable of fructose metabolism.

    PubMed

    Oppelt, Sarah A; Zhang, Wanming; Tolan, Dean R

    2017-02-15

    High fructose consumption in the Western diet correlates with disease states such as obesity and metabolic syndrome complications, including type II diabetes, chronic kidney disease, and non-alcoholic fatty acid liver disease. Liver and kidneys are responsible for metabolism of 40-60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood. The primary metabolic pathway for fructose includes the fructose-transporting solute-like carrier transport proteins 2a (SLC2a or GLUT), including GLUT5 and GLUT9, ketohexokinase (KHK), and aldolase. Bioinformatic analysis of gene expression encoding these proteins (glut5, glut9, khk, and aldoC, respectively) identifies other organs capable of this fructose metabolism. This analysis predicts brain, lymphoreticular tissue, placenta, and reproductive tissues as possible additional organs for fructose metabolism. While expression of these genes is highest in liver, the brain is predicted to have expression levels of these genes similar to kidney. RNA in situ hybridization of coronal slices of adult mouse brains validate the in silico expression of glut5, glut9, khk, and aldoC, and show expression across many regions of the brain, with the most notable expression in the cerebellum, hippocampus, cortex, and olfactory bulb. Dissected samples of these brain regions show KHK and aldolase enzyme activity 5-10 times the concentration of that in liver. Furthermore, rates of fructose oxidation in these brain regions are 15-150 times that of liver slices, confirming the bioinformatics prediction and in situ hybridization data. This suggests that previously unappreciated regions across the brain can use fructose, in addition to glucose, for energy production. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Specific regions of the brain are capable of fructose metabolism

    PubMed Central

    Oppelt, Sarah A.; Zhang, Wanming; Tolan, Dean R.

    2017-01-01

    High fructose consumption in the Western diet correlates with disease states such as obesity and metabolic syndrome complications, including type II diabetes, chronic kidney disease, and nonalcoholic fatty acid liver disease. Liver and kidneys are responsible for metabolism of 40–60% of ingested fructose, while the physiological fate of the remaining fructose remains poorly understood. The primary metabolic pathway for fructose includes the fructose-transporting solute-like carrier transport proteins 2a (SLC2a or GLUT), including GLUT5 and GLUT9, ketohexokinase (KHK), and aldolase. Bioinformatic analysis of gene expression encoding these proteins (glut5, glut9, khk, and aldoC, respectively) identifies other organs capable of this fructose metabolism. This analysis predicts brain, lymphoreticular tissue, placenta, and reproductive tissues as possible additional organs for fructose metabolism. While expression of these genes is highest in liver, the brain is predicted to have expression levels of these genes similar to kidney. RNA in situ hybridization of coronal slices of adult mouse brains validate the in silico expression of glut5, glut9, khk, and aldoC, and show expression across many regions of the brain, with the most notable expression in the cerebellum, hippocampus, cortex, and olfactory bulb. Dissected samples of these brain regions show KHK and aldolase enzyme activity 5–10 times the concentration of that in liver. Furthermore, rates of fructose oxidation in these brain regions are 15–150 times that of liver slices, confirming the bioinformatics prediction and in situ hybridization data. This suggests that previously unappreciated regions across the brain can use fructose, in addition to glucose, for energy production. PMID:28034722

  20. Studies of copper trafficking in a mouse model of Alzheimer's disease by positron emission tomography: comparison of 64Cu acetate and 64CuGTSM.

    PubMed

    Andreozzi, Erica M; Torres, Julia Baguña; Sunassee, Kavitha; Dunn, Joel; Walker-Samuel, Simon; Szanda, Istvan; Blower, Philip J

    2017-11-15

    Alzheimer's disease can involve brain copper dyshomeostasis. We aimed to determine the effect of AD-like pathology on 64 Cu trafficking in mice, using positron emission tomography (PET imaging), during 24 hours after intravenous administration of ionic 64 Cu (Cu(ii) acetate) and 64 Cu-GTSM (GTSMH 2 = glyoxalbis(thiosemicarbazone)). Copper trafficking was evaluated in 6-8-month-old and 13-15 month-old TASTPM transgenic and wild-type mice, by imaging 0-30 min and 24-25 h after intravenous administration of 64 Cu tracer. Regional 64 Cu distribution in brains was compared by ex vivo autoradiography to that of amyloid-β plaque. 64 Cu-acetate showed uptake in, and excretion through, liver and kidneys. There was minimal uptake in other tissues by 30 minutes, and little further change after 24 h. Radioactivity within brain was focussed in and around the ventricles and was significantly greater in younger mice. 64 CuGTSM was taken up in all tissues by 30 min, remaining high in brain but clearing substantially from other tissues by 24 h. Distribution in brain was not localised to specific regions. TASTPM mice showed no major changes in global or regional 64 Cu brain uptake compared to wildtype after administration of 64 Cu acetate (unlike 64 Cu-GTSM) but efflux of 64 Cu from brain by 24 h was slightly greater in 6-8 month-old TASTPM mice than in wildtype controls. Changes in copper trafficking associated with Alzheimer's-like pathology after administration of ionic 64 Cu are minor compared to those observed after administration of 64 Cu-GTSM. PET imaging with 64 Cu could help understand changes in brain copper dynamics in AD and underpin new clinical diagnostic imaging methods.

  1. Effects of cell phone radiation on lipid peroxidation, glutathione and nitric oxide levels in mouse brain during epileptic seizure.

    PubMed

    Esmekaya, Meric Arda; Tuysuz, Mehmet Zahid; Tomruk, Arın; Canseven, Ayse G; Yücel, Engin; Aktuna, Zuhal; Keskil, Semih; Seyhan, Nesrin

    2016-09-01

    The objective of the this study was to evaluate the effects of cellular phone radiation on oxidative stress parameters and oxide levels in mouse brain during pentylenetetrazole (PTZ) induced epileptic seizure. Eight weeks old mice were used in the study. Animals were distributed in the following groups: Group I: Control group treated with PTZ, Group II: 15min cellular phone radiation+PTZ treatment+30min cellular phone radiation, Group III: 30min cellular phone radiation+PTZ treatment+30min cellular phone radiation. The RF radiation was produced by a 900MHz cellular phone. Lipid peroxidation, which is the indicator of oxidative stress was quantified by measuring the formation of thiobarbituric acid reactive substances (TBARS). The glutathione (GSH) levels were determined by the Ellman method. Tissue total nitric oxide (NOx) levels were obtained using the Griess assay. Lipid peroxidation and NOx levels of brain tissue increased significantly in group II and III compared to group I. On the contrary, GSH levels were significantly lower in group II and III than group I. However, no statistically significant alterations in any of the endpoints were noted between group II and Group III. Overall, the experimental findings demonstrated that cellular phone radiation may increase the oxidative damage and NOx level during epileptic activity in mouse brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The electroneutral sodium/bicarbonate cotransporter containing an amino terminal 123-amino-acid cassette is expressed predominantly in the heart

    PubMed Central

    Cooper, Deborah S.; Lee, Hye Jeong; Yang, Han Soo; Kippen, Joseph; Yun, C. Chris; Choi, Inyeong

    2006-01-01

    Summary In this study, we examined the tissue-specific expression of two electroneutral Na/HCO3 cotransporter (NBCn1) variants that differ from each other by the presence of the N-terminal 123 amino acids (cassette II). A rat Northern blot with the probe to nucleotides encoding cassette II detected a 9 kb NBCn1 mRNA strongly in the heart and weakly in skeletal muscles, but absent from most of the tissues including kidney, brain, and pancreas. In the rat heart, PCR with primers flanking cassette II preferentially amplified a DNA fragment that lacked cassette II. However, in the human heart, PCR preferentially amplified a fragment that contained cassette II. This larger PCR product was found virtually in all regions of the human cardiovascular system with strong amplification in the apex, atrium, and atrioventricular nodes. These findings indicate that the variant containing cassette II is almost absent in tissues including brain, kidney, and pancreas, where NBCn1 has been extensively examined. PMID:16547769

  3. Brain Tumors (For Parents)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Brain Tumors KidsHealth / For Parents / Brain Tumors What's in ... radiation therapy or chemotherapy, or both. Types of Brain Tumors There are many different types of brain ...

  4. 21 CFR 882.4100 - Ventricular catheter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...

  5. 21 CFR 882.4100 - Ventricular catheter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...

  6. 21 CFR 882.4100 - Ventricular catheter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...

  7. 21 CFR 882.4100 - Ventricular catheter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...

  8. 21 CFR 882.4100 - Ventricular catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A ventricular catheter is a device used to gain access to the cavities of the brain for injection of material into, or removal of material from, the brain. (b) Classification. Class II (performance...

  9. IGF-II Promotes Stemness of Neural Restricted Precursors

    PubMed Central

    Ziegler, Amber N.; Schneider, Joel S.; Qin, Mei; Tyler, William A.; Pintar, John E.; Fraidenraich, Diego; Wood, Teresa L.; Levison, Steven W.

    2016-01-01

    Insulin-like growth factor (IGF)-I and IGF-II regulate brain development and growth through the IGF type 1 receptor (IGF-1R). Less appreciated is that IGF-II, but not IGF-I, activates a splice variant of the insulin receptor (IR) known as IR-A. We hypothesized that IGF-II exerts distinct effects from IGF-I on neural stem/progenitor cells (NSPs) via its interaction with IR-A. Immunofluorescence revealed high IGF-II in the medial region of the subventricular zone (SVZ) comprising the neural stem cell niche, with IGF-II mRNA predominant in the adjacent choroid plexus. The IGF-1R and the IR isoforms were differentially expressed with IR-A predominant in the medial SVZ, whereas the IGF-1R was more abundant laterally. Similarly, IR-A was more highly expressed by NSPs, whereas the IGF-1R was more highly expressed by lineage restricted cells. In vitro, IGF-II was more potent in promoting NSP expansion than either IGF-I or standard growth medium. Limiting dilution and differentiation assays revealed that IGF-II was superior to IGF-I in promoting stemness. In vivo, NSPs propagated in IGF-II migrated to and took up residence in periventricular niches while IGF-I-treated NSPs predominantly colonized white matter. Knockdown of IR or IGF-1R using shRNAs supported the conclusion that the IGF-1R promotes progenitor proliferation, whereas the IR is important for self-renewal. Q-PCR revealed that IGF-II increased Oct4, Sox1, and FABP7 mRNA levels in NSPs. Our data support the conclusion that IGF-II promotes the self-renewal of neural stem/progenitors via the IR. By contrast, IGF-1R functions as a mitogenic receptor to increase precursor abundance. PMID:22593020

  10. Sex Differences in the Behavioral Desensitization of Water Intake Observed After Repeated Central Injections of Angiotensin II.

    PubMed

    Santollo, Jessica; Volcko, K Linnea; Daniels, Derek

    2018-02-01

    Previous in vivo and in vitro studies demonstrate that the angiotensin type 1 receptor rapidly desensitizes after exposure to angiotensin II (AngII). Behaviorally, this likely underlies the reduced drinking observed after acute repeated central injections of AngII. To date, this phenomenon has been studied exclusively in male subjects. Because there are sex differences in the dipsogenic potency of AngII, we hypothesized that sex differences also exist in desensitization caused by AngII. As expected, when male rats were pretreated with AngII, they drank less water after a test injection of AngII than did rats pretreated with vehicle. Intact cycling female rats, however, drank similar amounts of water after AngII regardless of the pretreatment. To probe the mechanism underlying this sex difference, we tested the role of gonadal hormones in adult and developing rats. Gonadectomy in adults did not produce a male-like propensity for desensitization of water intake in female rats, nor did it produce a female-like response in male rats. To test if neonatal brain masculinization generated a male-like responsiveness, female pups were treated at birth with vehicle, testosterone propionate (TP), or dihydrotestosterone (DHT). When tested as adults, TP-treated female rats showed a male-like desensitization after repeated AngII that was not found in vehicle- or DHT-treated rats. Together, these data reveal a striking sex difference in the behavioral response to elevated AngII that is mediated by organizational effects of gonadal hormones and provide an example of one of the many ways that sex influences the renin-angiotensin-aldosterone system. Copyright © 2018 Endocrine Society.

  11. Do the Brain Networks of Scientists Account for Their Superiority in Hypothesis-Generating?

    ERIC Educational Resources Information Center

    Lee, Jun-Ki

    2012-01-01

    Where do scientists' superior abilities originate from when generating a creative idea? What different brain functions are activated between scientists and i) general academic high school students and ii) science high school students when generating a biological hypothesis? To reveal brain level explanations for these questions, this paper…

  12. Brain-Wise Leadership

    ERIC Educational Resources Information Center

    Murphy, Carole; Ozturgut, Osman; French, Joan

    2013-01-01

    The purpose of this article is to help leaders do their jobs more effectively by examining the components of brain-wise leadership. The article is divided into five parts: Part I is a general overview, defining brain-wise leadership, its traits, attributes and some of the styles of effective leadership. Part II begins with the strategies for…

  13. Childhood Aphasia and Brain Damage: Volume II, Differential Diagnosis.

    ERIC Educational Resources Information Center

    Rappaport, Sheldon R., Ed.

    Addressing itself to factors leading to the misdiagnosis of the brain damaged child and the aphasic child, the Pathway School's Second Annual Institute considered the differences between the following: the aphasic and the aphasoid child; the sensory aphasic and the deaf child; the psychotic and the psychotic aphasic child; childhood brain damage…

  14. Contrasting Acute and Slow-Growing Lesions: A New Door to Brain Plasticity

    ERIC Educational Resources Information Center

    Desmurget, Michel; Bonnetblanc, FranCois; Duffau, Hugues

    2007-01-01

    The concept of plasticity describes the mechanisms that rearrange cerebral organization following a brain injury. During the last century, plasticity has been mainly investigated in humans with acute strokes. It was then shown: (i) that the brain is organized into highly specialized functional areas, often designated "eloquent" areas and (ii) that…

  15. Anatomical Variability of the Posterior Communicating Artery

    PubMed Central

    Gunnal, Sandhya Arvind; Farooqui, Mujibuddin S.; Wabale, Rajendra N.

    2018-01-01

    Objective: Although posterior communicating artery (PCoA) is a smaller branch of the internal carotid artery, it gives the main contribution in the formation of circle of Willis (CW) by communicating with the internal carotid arterial system and the vertebro-basilar arterial system. The size of PCoA varies frequently. The present work aims to study the PCoA regarding its morphology, morphometry, and symmetry. Materials and Methods: This study was conducted on 170 human cadaveric brains. Brains were dissected carefully and delicately to expose all components of CW, especially PCoA. Morphological variations of PCoA were noted along with its morphometry and symmetry. Results: Morphological variations of PCoA were aplasia (3.52%), hypoplasia (25.29%), fenestration (0.58%), and persistent fetal pattern (16.47%). In the present study, we found the five different types of terminations of PCoA. Type I termination was the most common type, seen in 92.94% of cases, Type II termination was seen in 1.17%, Type III and Type IV terminations both were seen in 0.58%, and Type V was seen in 1.17%. The mean length of PCoA was 15.9 mm and 15.3 mm on the right and left sides, respectively. The mean diameter of PCoA was 2.1 mm and 1.9 mm on the right and left sides, respectively. Symmetry of PCoA was seen in 65.29% and asymmetric PCoA was seen in 34.70% of cases. Conclusion: The present study provides the complete description of PCoA regarding its morphology, symmetry, and morphometry. Awareness of these anatomical variations is important in neurovascular procedures. PMID:29682035

  16. A new Homo erectus (Zhoukoudian V) brain endocast from China.

    PubMed

    Wu, Xiujie; Schepartz, Lynne A; Liu, Wu

    2010-01-22

    A new Homo erectus endocast, Zhoukoudian (ZKD) V, is assessed by comparing it with ZKD II, ZKD III, ZKD X, ZKD XI, ZKD XII, Hexian, Trinil II, Sambungmacan (Sm) 3, Sangiran 2, Sangiran 17, KNM-ER 3733, KNM-WT 15 000, Kabwe, Liujiang and 31 modern Chinese. The endocast of ZKD V has an estimated endocranial volume of 1140 ml. As the geological age of ZKD V is younger than the other ZKD H. erectus, evolutionary changes in brain morphology are evaluated. The brain size of the ZKD specimens increases slightly over time. Compared with the other ZKD endocasts, ZKD V shows important differences, including broader frontal and occipital lobes, some indication of fuller parietal lobes, and relatively large brain size that reflect significant trends documented in later hominin brain evolution. Bivariate and principal component analyses indicate that geographical variation does not characterize the ZKD, African and other Asian specimens. The ZKD endocasts share some common morphological and morphometric features with other H. erectus endocasts that distinguish them from Homo sapiens.

  17. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy.

    PubMed

    Lyoo, C H; Jeong, Y; Ryu, Y H; Lee, S Y; Song, T J; Lee, J H; Rinne, J O; Lee, M S

    2008-02-01

    To study the effect of disease duration on the clinical, neuropsychological and [(18)F]-deoxyglucose (FDG) PET findings in patients with mixed type multiple system atrophy (MSA), this study included 16 controls and 37 mixed-type MSA patients with a shorter than a 3-year history of cerebellar or parkinsonian symptoms. We classified the patients into three groups according to the duration of parkinsonian or cerebellar symptoms (Group I =

  18. Pork as a source of transmission of Toxoplasma gondii to humans: a parasite burden study in pig tissues after infection with different strains of Toxoplasma gondii as a function of time and different parasite stages.

    PubMed

    Gisbert Algaba, Ignacio; Verhaegen, Bavo; Jennes, Malgorzata; Rahman, Mizanur; Coucke, Wim; Cox, Eric; Dorny, Pierre; Dierick, Katelijne; De Craeye, Stéphane

    2018-06-01

    Toxoplasma gondii is an ubiquitous apicomplexan parasite which can infect any warm-blooded animal including humans. Humans and carnivores/omnivores can also become infected by consumption of raw or undercooked infected meat containing muscle cysts. This route of transmission is considered to account for at least 30% of human toxoplasmosis cases. To better assess the role of pork as a source of infection for humans, the parasite burden resulting from experimental infection with different parasite stages and different strains of T. gondii during the acute and chronic phases was studied. The parasite burden in different tissues was measured with a ISO 17025 validated Magnetic Capture-quantitative PCR. A high burden of infection was found in heart and lungs during the acute phase of infection and heart and brain were identified as the most parasitised tissues during the chronic phase of infection, independent of the parasite stage and the strain used. Remarkably, a higher parasite burden was measured in different tissues following infection with oocysts of a type II strain compared with a tissue cyst infection with three strains of either type II or a type I/II. However, these results could have been affected by the use of different strains and euthanasia time points. The parasite burden resulting from a tissue cyst infection was not significantly different between the two strains. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  19. Chronic shin splints. Classification and management of medial tibial stress syndrome.

    PubMed

    Detmer, D E

    1986-01-01

    A clinical classification and treatment programme has been developed for chronic medial tibial stress syndrome. Medial tibial stress syndrome has been reported to be either tibial stress fracture or microfracture, tibial periostitis, or distal deep posterior chronic compartment syndrome. Three chronic types exist and may coexist: Type I (tibial microfracture, bone stress reaction or cortical fracture); type II (periostalgia from chronic avulsion of the periosteum at the periosteal-fascial junction); and type III (chronic compartment syndrome syndrome). Type I disease is treated nonoperatively. Operations for resistant types II and III medial tibial stress syndrome were performed in 41 patients. Bilaterality was common (type II, 50% type III, 88%). Seven had coexistent type II/III; one had type I/II. Preoperative symptoms averaged 24 months in type II, 6 months in type III, and 33 months in types II/III. Mean age was 22 years (15 to 51). Resting compartment pressures were normal in type II (mean 12 mm Hg) and elevated in type III and type II/III (mean 23 mm Hg). Type II and type II/III patients received fasciotomy plus periosteal cauterisation. Type III patients had fasciotomy only. All procedures were performed on an outpatient basis using local anaesthesia. Follow up was complete and averaged 6 months (2 to 14 months). Improved performance was as follows: type II, 93%, type III, 100%; type II/III, 86%. Complete cures were as follows: type II, 78%; type III, 75%; and type II/III, 57%. This experience suggests that with precise diagnosis and treatment involving minimal risk and cost the athlete has a reasonable chance of return to full activity.

  20. Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD.

    PubMed

    Ebihara, Ken; Fujiwara, Hironori; Awale, Suresh; Dibwe, Dya Fita; Araki, Ryota; Yabe, Takeshi; Matsumoto, Kinzo

    2017-09-15

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms of social impairments and restrictive repetitive behaviors. Recent evidence has implicated a dysfunction in the GABAergic system in the pathophysiology of ASD. We investigated the role of endogenous allopregnanolone (ALLO), a neurosteroidal positive allosteric modulator of GABA A receptors, in the regulation of ASD-like behavior in male mice using SKF105111 (SKF), an inhibitor of type I and type II 5α-reductase, a rate-limiting enzyme of ALLO biosynthesis. SKF impaired sociability-related performance, as analyzed by three different tests; i.e., the 3-chamber test and social interaction in the open field and resident-intruder tests, without affecting olfactory function elucidated by the buried food test. SKF also induced repetitive grooming behavior without affecting anxiety-like behavior. SKF had no effect on short-term spatial working memory or long-term fear memory, but enhanced latent learning ability in male mice. SKF-induced ASD-like behavior in male mice was abolished by the systemic administration of ALLO (1mg/kg, i.p.) and methylphenidate (MPH: 2.5mg/kg, i.p.), a dopamine transporter inhibitor. The effects of SKF on brain ALLO contents in male mice were reversed by ALLO, but not MPH. On the other hand, SKF failed to induce ASD-like behavior or a decline in brain ALLO contents in female mice. These results suggest that ALLO regulates episodes of ASD-like behavior by positively modulating the function of GABA A receptors linked to the dopaminergic system. Moreover, a sex-dependently induced decrease in brain ALLO contents may provide an animal model to study the main features of ASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia

    PubMed Central

    Mirzaa, Ghayda M.; Ishak, Gisele E.; O'Roak, Brian J.; Hiatt, Joseph B.; Roden, William H.; Gunter, Sonya A.; Christian, Susan L.; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G.; Shendure, Jay; Hevner, Robert F.; Dobyns, William B.

    2015-01-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. PMID:25722288

  2. Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxia–Ischemia

    PubMed Central

    Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523

  3. Neural responses of rat cortical layers due to infrared neural modulation and photoablation of thalamocortical brain slices

    NASA Astrophysics Data System (ADS)

    Jenkins, J. Logan; Kao, Chris C.; Cayce, Jonathan M.; Mahadevan-Jansen, Anita; Jansen, E. Duco

    2017-02-01

    Infrared neural modulation (INM) is a label-free method for eliciting neural activity with high spatial selectivity in mammalian models. While there has been an emphasis on INM research towards applications in the peripheral nervous system and the central nervous system (CNS), the biophysical mechanisms by which INM occurs remains largely unresolved. In the rat CNS, INM has been shown to elicit and inhibit neural activity, evoke calcium signals that are dependent on glutamate transients and astrocytes, and modulate inhibitory GABA currents. So far, in vivo experiments have been restricted to layers I and II of the rat cortex which consists mainly of astrocytes, inhibitory neurons, and dendrites from deeper excitatory neurons owing to strong absorption of light in these layers. Deeper cortical layers (III-VI) have vastly different cell type composition, consisting predominantly of excitatory neurons which can be targeted for therapies such as deep brain stimulation. The neural responses to infrared light of deeper cortical cells have not been well defined. Acute thalamocortical brain slices will allow us to analyze the effects of INS on various components of the cortex, including different cortical layers and cell populations. In this study, we present the use of photoablation with an erbium:YAG laser to reduce the thickness of the dead cell zone near the cutting surface of brain slices. This technique will allow for more optical energy to reach living cells, which should contribute the successful transduction of pulsed infrared light to neural activity. In the future, INM-induced neural responses will lead to a finer characterization of the parameter space for the neuromodulation of different cortical cell types and may contribute to understanding the cell populations that are important for allowing optical stimulation of neurons in the CNS.

  4. Magnetic Resonance Fingerprinting of Adult Brain Tumors: Initial Experience

    PubMed Central

    Badve, Chaitra; Yu, Alice; Dastmalchian, Sara; Rogers, Matthew; Ma, Dan; Jiang, Yun; Margevicius, Seunghee; Pahwa, Shivani; Lu, Ziang; Schluchter, Mark; Sunshine, Jeffrey; Griswold, Mark; Sloan, Andrew; Gulani, Vikas

    2016-01-01

    Background Magnetic resonance fingerprinting (MRF) allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assesses the utility of MRF in differentiating between common types of adult intra-axial brain tumors. Methods MRF acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 WHO grade II lower-grade gliomas and 8 metastases. T1, T2 of the solid tumor (ST), immediate peritumoral white matter (PW), and contralateral white matter (CW) were summarized within each region of interest. Statistical comparisons on mean, standard deviation, skewness and kurtosis were performed using univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple comparisons testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases and area under the receiver operator curve (AUC) was calculated. Results Mean T2 values could differentiate solid tumor regions of lower-grade gliomas from metastases (mean±sd: 172±53ms and 105±27ms respectively, p =0.004, significant after Bonferroni correction). Mean T1 of PW surrounding lower-grade gliomas differed from PW around glioblastomas (mean±sd: 1066±218ms and 1578±331ms respectively, p=0.004, significant after Bonferroni correction). Logistic regression analysis revealed that mean T2 of ST offered best separation between glioblastomas and metastases with AUC of 0.86 (95% CI 0.69–1.00, p<0.0001). Conclusion MRF allows rapid simultaneous T1, T2 measurement in brain tumors and surrounding tissues. MRF based relaxometry can identify quantitative differences between solid-tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. PMID:28034994

  5. MR Fingerprinting of Adult Brain Tumors: Initial Experience.

    PubMed

    Badve, C; Yu, A; Dastmalchian, S; Rogers, M; Ma, D; Jiang, Y; Margevicius, S; Pahwa, S; Lu, Z; Schluchter, M; Sunshine, J; Griswold, M; Sloan, A; Gulani, V

    2017-03-01

    MR fingerprinting allows rapid simultaneous quantification of T1 and T2 relaxation times. This study assessed the utility of MR fingerprinting in differentiating common types of adult intra-axial brain tumors. MR fingerprinting acquisition was performed in 31 patients with untreated intra-axial brain tumors: 17 glioblastomas, 6 World Health Organization grade II lower grade gliomas, and 8 metastases. T1, T2 of the solid tumor, immediate peritumoral white matter, and contralateral white matter were summarized within each ROI. Statistical comparisons on mean, SD, skewness, and kurtosis were performed by using the univariate Wilcoxon rank sum test across various tumor types. Bonferroni correction was used to correct for multiple-comparison testing. Multivariable logistic regression analysis was performed for discrimination between glioblastomas and metastases, and area under the receiver operator curve was calculated. Mean T2 values could differentiate solid tumor regions of lower grade gliomas from metastases (mean, 172 ± 53 ms, and 105 ± 27 ms, respectively; P = .004, significant after Bonferroni correction). The mean T1 of peritumoral white matter surrounding lower grade gliomas differed from peritumoral white matter around glioblastomas (mean, 1066 ± 218 ms, and 1578 ± 331 ms, respectively; P = .004, significant after Bonferroni correction). Logistic regression analysis revealed that the mean T2 of solid tumor offered the best separation between glioblastomas and metastases with an area under the curve of 0.86 (95% CI, 0.69-1.00; P < .0001). MR fingerprinting allows rapid simultaneous T1 and T2 measurement in brain tumors and surrounding tissues. MR fingerprinting-based relaxometry can identify quantitative differences between solid tumor regions of lower grade gliomas and metastases and between peritumoral regions of glioblastomas and lower grade gliomas. © 2017 by American Journal of Neuroradiology.

  6. A Probabilistic Atlas of Diffuse WHO Grade II Glioma Locations in the Brain

    PubMed Central

    Baumann, Cédric; Zouaoui, Sonia; Yordanova, Yordanka; Blonski, Marie; Rigau, Valérie; Chemouny, Stéphane; Taillandier, Luc; Bauchet, Luc; Duffau, Hugues; Paragios, Nikos

    2016-01-01

    Diffuse WHO grade II gliomas are diffusively infiltrative brain tumors characterized by an unavoidable anaplastic transformation. Their management is strongly dependent on their location in the brain due to interactions with functional regions and potential differences in molecular biology. In this paper, we present the construction of a probabilistic atlas mapping the preferential locations of diffuse WHO grade II gliomas in the brain. This is carried out through a sparse graph whose nodes correspond to clusters of tumors clustered together based on their spatial proximity. The interest of such an atlas is illustrated via two applications. The first one correlates tumor location with the patient’s age via a statistical analysis, highlighting the interest of the atlas for studying the origins and behavior of the tumors. The second exploits the fact that the tumors have preferential locations for automatic segmentation. Through a coupled decomposed Markov Random Field model, the atlas guides the segmentation process, and characterizes which preferential location the tumor belongs to and consequently which behavior it could be associated to. Leave-one-out cross validation experiments on a large database highlight the robustness of the graph, and yield promising segmentation results. PMID:26751577

  7. Brain uptake of a non-radioactive pseudo-carrier and its effect on the biodistribution of [(18)F]AV-133 in mouse brain.

    PubMed

    Wu, Xianying; Zhou, Xue; Zhang, Shuxian; Zhang, Yan; Deng, Aifang; Han, Jie; Zhu, Lin; Kung, Hank F; Qiao, Jinping

    2015-07-01

    9-[(18)F]Fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) is a new PET imaging agent targeting vesicular monoamine transporter type II (VMAT2). To shorten the preparation of [(18)F]AV-133 and to make it more widely available, a simple and rapid purification method using solid-phase extraction (SPE) instead of high-pressure liquid chromatography (HPLC) was developed. The SPE method produced doses containing the non-radioactive pseudo-carrier 9-hydroxypropyl-(+)-dihydrotetrabenazine (AV-149). The objectives of this study were to evaluate the brain uptake of AV-149 by UPLC-MS/MS and its effect on the biodistribution of [(18)F]AV-133 in the brains of mice. The mice were injected with a bolus including [(18)F]AV-133 and different doses of AV-149. Brain tissue and blood samples were harvested. The effect of different amounts of AV-149 on [(18)F]AV-133 was evaluated by quantifying the brain distribution of radiolabelled tracer [(18)F]AV-133. The concentrations of AV-149 in the brain and plasma were analyzed using a UPLC-MS/MS method. The concentrations of AV-149 in the brain and plasma exhibited a good linear relationship with the doses. The receptor occupancy curve was fit, and the calculated ED50 value was 8.165mg/kg. The brain biodistribution and regional selectivity of [(18)F]AV-133 had no obvious differences at AV-149 doses lower than 0.1mg/kg. With increasing doses of AV-149, the brain biodistribution of [(18)F]AV-133 changed significantly. The results are important to further support that the improved radiolabelling procedure of [(18)F]AV-133 using an SPE method may be suitable for routine clinical application. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.

    PubMed

    Gelband, C H; Sumners, C; Lu, D; Raizada, M K

    1997-10-31

    The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.

  9. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.

    PubMed

    Gelband, C H; Sumners, C; Lu, D; Raizada, M K

    1998-02-27

    The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.

  10. Pros and Cons While Looking Through an Asian Window on the Rome IV Criteria for Irritable Bowel Syndrome: Pros.

    PubMed

    Ghoshal, Uday C

    2017-07-30

    A decade after Rome III, in 2016, Rome IV criteria were published. There are major differences between Rome IV and the earlier iteration, some of which are in line with Asian viewpoints. The clinical applicability of the Rome IV criteria of irritable bowel syndrome (IBS) in Asian perspective is reviewed here. Instead of considering functional gastrointestinal disorders (FGIDs) to be largely psychogenic, Rome IV suggested the importance of the gut over brain ("disorders of gut-brain interaction" not "brain-gut interaction"). The word "functional" is underplayed. Multi-dimensional clinical profile attempts to recognize micro-organic nature, like slow colon transit and fecal evacuation disorders in constipation and dietary intolerance including that of lactose and fructose, bile acid malabsorption, non-celiac wheat sensitivity, small intestinal bacterial overgrowth, and gastrointestinal infection in diarrhea. Overlap between different FGIDs has been recognized as Rome IV suggests these to be a spectrum rather than discrete disorders. Bloating, common in Asia, received attention, though less. Sub-typing of IBS may be more clinician-friendly now as the patient-reported stool form may be used than a diary. However, a few issues, peculiar to Asia, need consideration; Rome IV, like Rome III, suggests that Bristol type I-II stool to denote constipation though Asian experts include type III as well. Work-up for physiological factors should be given greater importance. Language issue is important. Bloating, common in IBS, should be listed in the criteria. Threshold values for symptoms in Rome IV criteria are based on Western data. Post-infectious malabsorption (tropical sprue) should be excluded to diagnose post-infectious IBS, particularly in Asia.

  11. Effect of gonadotropin-releasing hormone II receptor (GnRHR-II) knockdown on testosterone secretion in the boar

    USDA-ARS?s Scientific Manuscript database

    Unlike the classical gonadotropin-releasing hormone (GnRH-I), the second mammalian GnRH isoform (GnRH-II; His5, Trp7, Tyr8) is a poor stimulator of gonadotropin secretion. In addition, GnRH-II is ubiquitously expressed, with transcript levels highest in tissues outside of the brain. A receptor speci...

  12. Computational neuroanatomy: mapping cell-type densities in the mouse brain, simulations from the Allen Brain Atlas

    NASA Astrophysics Data System (ADS)

    Grange, Pascal

    2015-09-01

    The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.

  13. Dual MAPK inhibition is an effective therapeutic strategy for a subset of class II BRAF mutant melanoma.

    PubMed

    Dankner, Matthew; Lajoie, Mathieu; Moldoveanu, Dan; Nguyen, Tan-Trieu; Savage, Paul; Rajkumar, Shivshankari; Huang, Xiu; Lvova, Maria; Protopopov, Alexei; Vuzman, Dana; Hogg, David; Park, Morag; Guiot, Marie-Christine; Petrecca, Kevin; Mihalcioiu, Catalin; Watson, Ian R; Siegel, Peter M; Rose, April A N

    2018-06-14

    Dual MAPK pathway inhibition (dMAPKi) with BRAF and MEK inhibitors improves survival in BRAF V600E/K mutant melanoma, but the efficacy of dMAPKi in non-V600 BRAF mutant tumors is poorly understood. We sought to characterize the responsiveness of class II (enhanced kinase activity, dimerization dependent) BRAF mutant melanoma to dMAPKi. Tumors from patients with BRAF WT, V600E (class I) and L597S (class II) metastatic melanoma were used to generate patient-derived-xenografts (PDX). We assembled a panel of melanoma cell lines with class IIa (activation segment) or IIb (p-loop) mutations and compared these to wild-type or V600E/K BRAF mutant cells. Cell lines and PDXs were treated with BRAFi (vemurafenib, dabrafenib, encorafenib, LY3009120), MEKi (cobimetinib, trametinib, binimetinib) or the combination. We identified two patients with BRAF L597S metastatic melanoma who were treated with dMAPKi. BRAFi impaired MAPK signalling and cell growth in class I and II BRAF mutant cells. dMAPKi was more effective than either single MAPKi at inhibiting cell growth in all class II BRAF mutant cells tested. dMAPKi caused tumor regression in two melanoma PDXs with class II BRAF mutations, and prolonged survival of mice with class II BRAF mutant melanoma brain metastases. Two patients with BRAF L597S mutant melanoma clinically responded to dMAPKi. Class II BRAF mutant melanoma are growth inhibited by dMAPKi. Responses to dMAPKi have been observed in two patients with class II BRAF mutant melanoma. This data provides rationale for clinical investigation of dMAPKi in patients with class II BRAF mutant metastatic melanoma. Copyright ©2018, American Association for Cancer Research.

  14. Brain-mediated dysregulation of the bone marrow activity in angiotensin II-induced hypertension.

    PubMed

    Jun, Joo Yun; Zubcevic, Jasenka; Qi, Yanfei; Afzal, Aqeela; Carvajal, Jessica Marulanda; Thinschmidt, Jeffrey S; Grant, Maria B; Mocco, J; Raizada, Mohan K

    2012-11-01

    Oxidative stress in the brain is implicated in increased sympathetic drive, inflammatory status, and vascular dysfunctions, associated with development and establishment of hypertension. However, little is known about the mechanism of this impaired brain-vascular communication. Here, we tested the hypothesis that increased oxidative stress in the brain cardioregulatory areas, such as the paraventricular nucleus of the hypothalamus, is driven by mitochondrial reactive oxygen species and leads to increased inflammatory cells (ICs) and decreased/dysfunctional endothelial progenitor cells (EPCs), thereby compromising vasculature repair and accelerating hypertension. Chronic angiotensin II infusion resulted in elevated blood pressure and sympathetic vasomotor drive, decreased spontaneous baroreflex gain, and increased microglia activation in the paraventricular nucleus. This was associated with 46% decrease in bone marrow (BM)-derived EPCs and 250% increase in BM ICs, resulting in 5-fold decrease of EPC/IC ratio in the BM. Treatment with mitochondrial-targeted antioxidant, a scavenger of mitochondrial O(2)(-·), intracerebroventricularly but not subcutaneously attenuated angiotensin II-induced hypertension, decreased activation of microglia in the paraventricular nucleus, and normalized EPCs/ICs. This functional communication between the brain and BM was confirmed by retrograde neuronal labeling from the BM with green fluorescent protein-tagged pseudorabies virus. Administration of green fluorescent protein-tagged pseudorabies virus into the BM resulted in predominant labeling of paraventricular nucleus neurons within 3 days, with some fluorescence in the nucleus tractus solitarius, the rostral ventrolateral medulla, and subfornical organ. Taken together, these data demonstrate that inhibition of mitochondrial reactive oxygen species attenuates angiotensin II-induced hypertension and corrects the imbalance in EPCs/ICs in the BM. They suggest that an imbalance in vascular reparative and ICs may perpetuate vascular pathophysiology in this model of hypertension.

  15. Clinical utility of the Conners' Continuous Performance Test-II to detect poor effort in U.S. military personnel following traumatic brain injury.

    PubMed

    Lange, Rael T; Iverson, Grant L; Brickell, Tracey A; Staver, Tara; Pancholi, Sonal; Bhagwat, Aditya; French, Louis M

    2013-06-01

    The purpose of this study is to examine the clinical utility of the Conners' Continuous Performance Test (CPT-II) as an embedded marker of poor effort in military personnel undergoing neuropsychological evaluations following traumatic brain injury. Participants were 158 U.S. military service members divided into 3 groups on the basis of brain injury severity and performance (pass/fail) on 2 symptom validity tests: Mild Traumatic Brain Injury (MTBI)-Pass (n = 87), MTBI-Fail (n = 42), and severe traumatic brain injury (STBI)-Pass (n = 29). The MTBI-Fail group performed worse on the majority of CPT-II measures compared with both the MTBI-Pass and STBI-Pass groups. When comparing the MTBI-Fail group and MTBI-Pass groups, the most accurate measure for identifying poor effort was the Commission T score. When selected measures were combined (i.e., Omissions, Commissions, and Perseverations), there was a very small increase in sensitivity (from .26 to .29). When comparing the MTBI-Fail group and STBI-Pass groups, the most accurate measure for identifying poor effort was the Omission and Commissions T score. When selected measures were combined, sensitivity again increased (from .24 to .45). Overall, these results suggest that individual CPT-II measures can be useful for identifying people who are suspected of providing poor effort from those who have provided adequate effort. However, due to low sensitivity and modest negative predictive power values, this measure cannot be used in isolation to detect poor effort, and is largely useful as a test to "rule in," not "rule out" poor effort. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Comparative analyses identify molecular signature of MRI-classified SVZ-associated glioblastoma

    PubMed Central

    Lin, Chin-Hsing Annie; Rhodes, Christopher T.; Lin, ChenWei; Phillips, Joanna J.; Berger, Mitchel S.

    2017-01-01

    ABSTRACT Glioblastoma (GBM) is a highly aggressive brain cancer with limited therapeutic options. While efforts to identify genes responsible for GBM have revealed mutations and aberrant gene expression associated with distinct types of GBM, patients with GBM are often diagnosed and classified based on MRI features. Therefore, we seek to identify molecular representatives in parallel with MRI classification for group I and group II primary GBM associated with the subventricular zone (SVZ). As group I and II GBM contain stem-like signature, we compared gene expression profiles between these 2 groups of primary GBM and endogenous neural stem progenitor cells to reveal dysregulation of cell cycle, chromatin status, cellular morphogenesis, and signaling pathways in these 2 types of MRI-classified GBM. In the absence of IDH mutation, several genes associated with metabolism are differentially expressed in these subtypes of primary GBM, implicating metabolic reprogramming occurs in tumor microenvironment. Furthermore, histone lysine methyltransferase EZH2 was upregulated while histone lysine demethylases KDM2 and KDM4 were downregulated in both group I and II primary GBM. Lastly, we identified 9 common genes across large data sets of gene expression profiles among MRI-classified group I/II GBM, a large cohort of GBM subtypes from TCGA, and glioma stem cells by unsupervised clustering comparison. These commonly upregulated genes have known functions in cell cycle, centromere assembly, chromosome segregation, and mitotic progression. Our findings highlight altered expression of genes important in chromosome integrity across all GBM, suggesting a common mechanism of disrupted fidelity of chromosome structure in GBM. PMID:28278055

  17. Novel modeling of cancer cell signaling pathways enables systematic drug repositioning for distinct breast cancer metastases.

    PubMed

    Zhao, Hong; Jin, Guangxu; Cui, Kemi; Ren, Ding; Liu, Timothy; Chen, Peikai; Wong, Solomon; Li, Fuhai; Fan, Yubo; Rodriguez, Angel; Chang, Jenny; Wong, Stephen T C

    2013-10-15

    A new type of signaling network element, called cancer signaling bridges (CSB), has been shown to have the potential for systematic and fast-tracked drug repositioning. On the basis of CSBs, we developed a computational model to derive specific downstream signaling pathways that reveal previously unknown target-disease connections and new mechanisms for specific cancer subtypes. The model enables us to reposition drugs based on available patient gene expression data. We applied this model to repurpose known or shelved drugs for brain, lung, and bone metastases of breast cancer with the hypothesis that cancer subtypes have their own specific signaling mechanisms. To test the hypothesis, we addressed specific CSBs for each metastasis that satisfy (i) CSB proteins are activated by the maximal number of enriched signaling pathways specific to a given metastasis, and (ii) CSB proteins are involved in the most differential expressed coding genes specific to each breast cancer metastasis. The identified signaling networks for the three types of breast cancer metastases contain 31, 15, and 18 proteins and are used to reposition 15, 9, and 2 drug candidates for the brain, lung, and bone metastases. We conducted both in vitro and in vivo preclinical experiments as well as analysis on patient tumor specimens to evaluate the targets and repositioned drugs. Of special note, we found that the Food and Drug Administration-approved drugs, sunitinib and dasatinib, prohibit brain metastases derived from breast cancer, addressing one particularly challenging aspect of this disease. ©2013 AACR.

  18. Mapping of the serotonin 5-HT{sub 1D{beta}} autoreceptor gene on chromosome 6 and direct analysis for sequence variants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lappalainen, J.; Dean, M.; Virkkunen, M.

    1995-04-24

    Abnormal brain serotonin function may be characteristic of several neuropsychiatric disorders. Thus, it is important to identify polymorphic genes and screen for functional variants at loci coding for genes that control normal serotonin functions. 5-HT{sub 1D{beta}} is a terminal serotonin autoreceptor which may play a role in regulating serotonin synthesis and release. Using an SSCP technique we screened for 5-HT{sub 1D{beta}} coding sequence variants in psychiatrically interviewed populations, which included controls, alcoholics, and alcoholic arsonists and alcoholic violent offenders with low CSF concentrations of the main serotonin metabolite 5-HIAA. A common polymorphism was identified in the 5-HT{sub 1D{beta}} gene withmore » allele frequencies of 0.72 and 0.28. The SSCP variant was caused by a silent G to C substitution at nucleotide 861 of the coding region. This polymorphism could also be detected as a HincII RFLP of amplified DNA. DNAs from informative CEPH families were typed for the HincII RFLP and analyzed with respect to 20 linked markers on chromosome 6. Multipoint analysis placed the 5-HT{sub 1D{beta}} receptor gene between markers D6S286 and D6S275. A maximum two-point lod score of 10.90 was obtained to D6S26, which had been previously localized on 6q14-15. Chromosomal aberrations involving this region have been previously shown to cause retinal anomalies, developmental delay, and abnormal brain development. This region also contains the gene for North Carolina-type macular dystrophy. 34 refs., 3 figs., 1 tab.« less

  19. Multimodal detection of GM2 and GM3 lipid species in the brain of mucopolysaccharidosis type II mouse by serial imaging mass spectrometry and immunohistochemistry.

    PubMed

    Dufresne, Martin; Guneysu, Daniel; Patterson, Nathan Heath; Marcinkiewicz, Mieczyslaw Martin; Regina, Anthony; Demeule, Michel; Chaurand, Pierre

    2017-02-01

    Mucopolysaccharidosis type II (Hunter's disease) mouse model (IdS-KO) was investigated by both imaging mass spectrometry (IMS) and immunohistochemistry (IHC) performed on the same tissue sections. For this purpose, IdS-KO mice brain sections were coated with sublimated 1,5-diaminonaphtalene and analyzed by high spatial resolution IMS (5 μm) and anti-GM3 IHC on the same tissue sections to characterize the ganglioside monosialated ganglioside (GM) deposits found in Hunter's disease. IMS analysis have found that two species of GM3 and GM2 that are only different due to the length of their fatty acid residue (stearic or arachidic residue) were overexpressed in the IdS-KO mice compared to a control mouse. GM3 and GM2 were characterized by on-tissue exact mass and MS/MS compared to a GM3 standard. Realignment of both IMS and IHC data sets further confirmed the observed regioselective signal previously detected by providing direct correlation of the IMS image for the two GM3 overly expressed MS signals with the anti-GM3 IHC image. Furthermore, these regioselective GM MS signals were also found to have highly heterogeneous distributions within the GM3-IHC staining. Some deposits showed high content in GM3 and GM2 stearic species (r = 0.74) and others had more abundant GM3 and GM2 arachidic species (r = 0.76). Same-section analysis of Hunter's disease mouse model by both high spatial resolution IMS and IHC provides a more in-depth analysis of the composition of the GM aggregates while providing spatial distribution of the observed molecular species. Graphical Abstract Ganglioside imaging mass spectrometry followed by immunohistochemistry performed on the same tissue section.

  20. Multimodal Approach for Radical Excision of Focal Cortical Dysplasia by Combining Advanced Magnetic Resonance Imaging Data to Intraoperative Ultrasound, Electrocorticography, and Cortical Stimulation: A Preliminary Experience.

    PubMed

    Tringali, Giovanni; Bono, Beatrice; Dones, Ivano; Cordella, Roberto; Didato, Giuseppe; Villani, Flavio; Prada, Francesco

    2018-05-01

    Type II focal cortical dysplasia is the most common malformation of cortical development associated with drug resistant epilepsy and susceptible to surgical resection. Although, at present, advanced imaging modalities are capable of detecting most cortical disorders, it is still a challenge for the surgeon to visualize them intraoperatively. The lack of direct identification between normal brain and subtle dysplastic tissue may explain the poor results in terms of being seizure-free versus other forms of epilepsy. The aim of this study is to compare magnetic resonance imaging (MRI) and intraoperative ultrasound-guided neuronavigation, along with cortical stimulation and acute electrocorticography, as a multimodal surgical approach to cortical dysplasia's tailored resection. Six consecutive patients with type II cortical dysplasia underwent epilepsy surgery by means of MRI/intraoperative ultrasound-guided neuronavigation. Intraoperative cortical stimulation of sensory/motor cortex was performed to localize cortical eloquent areas. Acute electrocorticography was used to identify epileptogenic tissue. These findings were correlated to real-time ultrasound imaging to establish the extent of the resection. Intraoperative ultrasound depicted cortical dysplasias at a higher resolution and accuracy than MRI. Therefore it maximized the extent of the resection. Both postoperative MRIs and pathology documented the extent of the resection in all patients. Seizure-freedom was achieved in 5 cases (Engel class IA), and in 1 patient it was classified as Engel class IB. No postoperative neurological deficits were observed. These results strongly suggest feasibility of ultrasound-guided resection of focal cortical dysplasia. Providing high resolution and accuracy, it allows an easy, real-time discrimination between normal and dysplastic brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Simvastatin pretreatment protects cerebrum from neuronal injury by decreasing the expressions of phosphor-CaMK II and AQP4 in ischemic stroke rats.

    PubMed

    Zhu, Min-xia; Lu, Chao; Xia, Chun-mei; Qiao, Zhong-wei; Zhu, Da-nian

    2014-12-01

    Excitotoxicity and cytotoxic edema are the two major factors resulting in neuronal injury during brain ischemia and reperfusion. Ca2+/calmodulin-dependent protein kinase II (CaMK II), the downstream signal molecular of N-methyl-D-aspartate receptors (NMDARs), is a mediator in the excitotoxicity. Aquaporin 4 (AQP4), expressed mainly in the brain, is an important aquaporin to control the flux of water. In a previous study, we had reported that pretreatment of simvastatin protected the cerebrum from ischemia and reperfusion injury by decreasing neurological deficit score and infarct area (Zhu et al. PLoS One 7:e51552, 2012). The present study used a middle cerebral artery occlusion (MCAO) model to further explore the pleiotropic effect of simvastatin via CaMK II and AQP4. The results showed that simvastatin reduced degenerated cells and brain edema while decreasing the protein expressions of phosphor-CaMK II and AQP4, and increasing the ratios of Bcl-2/Bax, which was independent of cholesterol-lowering effect. Immunocomplexes formed between the subunit of NMDARs-NR3A and AQP4 were detected for the first time. It was concluded that simvastatin could protect the cerebrum from neuronal excitotoxicity and cytotoxic edema by downregulating the expressions of phosphor-CaMK II and AQP4, and that the interaction between NR3A and AQP4 might provide the base for AQP4 involving in the signaling pathways mediated by NMDARs.

  2. PI3K/AKT pathway mutations cause a spectrum of brain malformations from megalencephaly to focal cortical dysplasia.

    PubMed

    Jansen, Laura A; Mirzaa, Ghayda M; Ishak, Gisele E; O'Roak, Brian J; Hiatt, Joseph B; Roden, William H; Gunter, Sonya A; Christian, Susan L; Collins, Sarah; Adams, Carissa; Rivière, Jean-Baptiste; St-Onge, Judith; Ojemann, Jeffrey G; Shendure, Jay; Hevner, Robert F; Dobyns, William B

    2015-06-01

    Malformations of cortical development containing dysplastic neuronal and glial elements, including hemimegalencephaly and focal cortical dysplasia, are common causes of intractable paediatric epilepsy. In this study we performed multiplex targeted sequencing of 10 genes in the PI3K/AKT pathway on brain tissue from 33 children who underwent surgical resection of dysplastic cortex for the treatment of intractable epilepsy. Sequencing results were correlated with clinical, imaging, pathological and immunohistological phenotypes. We identified mosaic activating mutations in PIK3CA and AKT3 in this cohort, including cancer-associated hotspot PIK3CA mutations in dysplastic megalencephaly, hemimegalencephaly, and focal cortical dysplasia type IIa. In addition, a germline PTEN mutation was identified in a male with hemimegalencephaly but no peripheral manifestations of the PTEN hamartoma tumour syndrome. A spectrum of clinical, imaging and pathological abnormalities was found in this cohort. While patients with more severe brain imaging abnormalities and systemic manifestations were more likely to have detected mutations, routine histopathological studies did not predict mutation status. In addition, elevated levels of phosphorylated S6 ribosomal protein were identified in both neurons and astrocytes of all hemimegalencephaly and focal cortical dysplasia type II specimens, regardless of the presence or absence of detected PI3K/AKT pathway mutations. In contrast, expression patterns of the T308 and S473 phosphorylated forms of AKT and in vitro AKT kinase activities discriminated between mutation-positive dysplasia cortex, mutation-negative dysplasia cortex, and non-dysplasia epilepsy cortex. Our findings identify PI3K/AKT pathway mutations as an important cause of epileptogenic brain malformations and establish megalencephaly, hemimegalencephaly, and focal cortical dysplasia as part of a single pathogenic spectrum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Partially silencing brain toll-like receptor 4 prevents in part left ventricular remodeling with sympathoinhibition in rats with myocardial infarction-induced heart failure.

    PubMed

    Ogawa, Kiyohiro; Hirooka, Yoshitaka; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji

    2013-01-01

    Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure.

  4. Subtypes of the Type II Pit Pattern Reflect Distinct Molecular Subclasses in the Serrated Neoplastic Pathway.

    PubMed

    Aoki, Hironori; Yamamoto, Eiichiro; Yamano, Hiro-O; Sugai, Tamotsu; Kimura, Tomoaki; Tanaka, Yoshihito; Matsushita, Hiro-O; Yoshikawa, Kenjiro; Takagi, Ryo; Harada, Eiji; Nakaoka, Michiko; Yoshida, Yuko; Harada, Taku; Sudo, Gota; Eizuka, Makoto; Yorozu, Akira; Kitajima, Hiroshi; Niinuma, Takeshi; Kai, Masahiro; Nojima, Masanori; Suzuki, Hiromu; Nakase, Hiroshi

    2018-03-15

    Colorectal serrated lesions (SLs) are important premalignant lesions whose clinical and biological features are not fully understood. We aimed to establish accurate colonoscopic diagnosis and treatment of SLs through evaluation of associations among the morphological, pathological, and molecular characteristics of SLs. A total of 388 premalignant and 18 malignant colorectal lesions were studied. Using magnifying colonoscopy, microsurface structures were assessed based on Kudo's pit pattern classification system, and the Type II pit pattern was subcategorized into classical Type II, Type II-Open (Type II-O) and Type II-Long (Type II-L). BRAF/KRAS mutations and DNA methylation of CpG island methylator phenotype (CIMP) markers (MINT1, - 2, - 12, - 31, p16, and MLH1) were analyzed through pyrosequencing. Type II-O was tightly associated with sessile serrated adenoma/polyps (SSA/Ps) with BRAF mutation and CIMP-high. Most lesions with simple Type II or Type II-L were hyperplastic polyps, while mixtures of Type II or Type II-L plus more advanced pit patterns (III/IV) were characteristic of traditional serrated adenomas (TSAs). Type II-positive TSAs frequently exhibited BRAF mutation and CIMP-low, while Type II-L-positive TSAs were tightly associated with KRAS mutation and CIMP-low. Analysis of lesions containing both premalignant and cancerous components suggested Type II-L-positive TSAs may develop into KRAS-mutated/CIMP-low/microsatellite stable cancers, while Type II-O-positive SSA/Ps develop into BRAF-mutated/CIMP-high/microsatellite unstable cancers. These results suggest that Type II subtypes reflect distinct molecular subclasses in the serrated neoplasia pathway and that they could be useful hallmarks for identifying SLs at high risk of developing into CRC.

  5. Copper transport mediated by nanocarrier systems in a blood-brain barrier in vitro model.

    PubMed

    Fehse, Susanne; Nowag, Sabrina; Quadir, Mohiuddin; Kim, Kwang Sik; Haag, Rainer; Multhaup, Gerd

    2014-05-12

    Copper (Cu) is a cofactor of various metalloenzymes and has a role in neurodegenerative diseases with disturbed Cu homeostasis, for example, in Alzheimer's disease (AD) and Menkes disease. To address Cu imbalances, we synthesized two different dendritic nanoparticles (NP) for the transport of Cu(II) ions across the blood-brain barrier (BBB). The synthesized NPs show low toxicity and high water solubility and can stabilize high amounts of Cu(II). The Cu(II)-laden NPs crossed cellular membranes and increased the cellular Cu level. A human brain microvascular endothelial cell (HBMEC) model was established to investigate the permeability of the NPs through the BBB. By comparing the permeability × surface area product (PSe) of reference substances with those of NPs, we observed that NPs crossed the BBB model two times more effectively than (14)C-sucrose and sodium fluorescein (NaFl) and up to 60× better than Evans Blue labeled albumin (EBA). Our results clearly indicate that NPs cross the BBB model effectively. Furthermore, Cu was shielded by the NPs, which decreased the Cu toxicity. The novel design of the core-shell NP enabled the complexation of Cu(II) in the outer shell and therefore facilitated the pH-dependent release of Cu in contrast to core-multishell NPs, where the Cu(II) ions are encapsulated in the core. This allows a release of Cu into the cytoplasm. In addition, by using a cellular detection system based on a metal response element with green fluorescent protein (MRE-GFP), we demonstrated that Cu could also be released intracellularly from NPs and is accessible for biological processes. Our results indicate that NPs are potential candidates to rebalance metal-ion homeostasis in disease conditions affecting brain and neuronal systems.

  6. A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, Christopher D.; Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612; Tiwari, Vaibhav

    2006-03-15

    Heparan sulfate (HS) 3-O-sulfotransferase isoform-2 (3-OST-2), which belongs to a family of enzymes capable of generating herpes simplex virus type-1 (HSV-1) entry and spread receptors, is predominantly expressed in human brain. Despite its unique expression pattern, the ability of 3-OST-2 to mediate HSV-1 entry and cell-to-cell fusion is not known. Our results demonstrate that expression of 3-OST-2 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and mutant strains of HSV-1. Evidence for generation of gD receptors by 3-OST-2 were suggested by gD-mediated interference assay and the ability of 3-OST-2-expressing CHO-K1 cells to preferentially bind HSV-1more » gD, which could be reversed by prior treatment of cells with HS lyases (heparinases II/III). In addition, 3-OST-2-expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins, a phenomenon that mimics a way of viral spread in vivo. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together, our results raise the possibility of a role of 3-OST-2 in the spread of HSV-1 infection in the brain.« less

  7. Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary

    PubMed Central

    Premer, Courtney; Lamondin, Courtney; Mitzey, Ann; Speth, Robert C.; Brownfield, Mark S.

    2013-01-01

    Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors. PMID:23573410

  8. Oxidative impairment and histopathological alterations in kidney and brain of mice following subacute lambda-cyhalothrin exposure.

    PubMed

    Pawar, Nitin Nanasaheb; Badgujar, Prarabdh Chandrakant; Sharma, Laxman Prasad; Telang, Avinash Gopal; Singh, Karam P

    2017-03-01

    Lambda cyhalothrin (LCT), a broad-spectrum type II (α-cyano) synthetic pyrethroid pesticide, is widely employed in various agricultural and animal husbandry practices for the control of pests. Acute and chronic exposure to LCT can elicit several adverse effects including oxidative stress. With the objective to investigate nephrotoxicity and neurotoxicity of LCT in mice, we evaluated oxidative stress parameters and histological changes in the kidney and brain of LCT exposed mice. Swiss albino mice were divided randomly into four groups ( n = 6 per group) as: (A) corn oil/vehicle control; (B) 0.5 mg/kg body weight (b.w.) LCT; (C) 1 mg/kg b.w. LCT; (D) 2 mg/kg b.w. LCT. Mice were treated orally for 28 days. LCT exposure significantly increased serum urea nitrogen, creatinine and urea levels. LCT exposure also increased lipid peroxidation, superoxide anion generation, nitrite level and decreased the level of reduced glutathione. The activities of superoxide dismutase, catalase and glutathione- S-transferase were depleted significantly in both kidney and brain. Histological examination revealed marked histopathological changes in the kidney and brain of mice that were more pronounced at high dose of LCT. Thus, results of the present study indicate that 28 days oral exposure of LCT causes oxidative damage to the kidney and brain of mice which in turn could be responsible for nephrotoxicity and neurotoxicity. Nevertheless, further detailed studies are required to prove these effects especially after long-term exposure.

  9. Transcriptional up-regulation of nitric oxide synthase II by nuclear factor-kappaB at rostral ventrolateral medulla in a rat mevinphos intoxication model of brain stem death.

    PubMed

    Chan, Julie Y H; Wu, Carol H Y; Tsai, Ching-Yi; Cheng, Hsiao-Lei; Dai, Kuang-Yu; Chan, Samuel H H; Chang, Alice Y W

    2007-06-15

    As the origin of a 'life-and-death' signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this vital phenomenon. Using a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult, we evaluated the hypothesis that transcriptional up-regulation of nitric oxide synthase I or II (NOS I or II) gene expression by nuclear factor-kappaB (NF-kappaB) on activation of muscarinic receptors in the RVLM underlies brain stem death. In Sprague-Dawley rats maintained under propofol anaesthesia, co-microinjection of muscarinic M2R (methoctramine) or M4R (tropicamide), but not M1R (pirenzepine) or M3R (4-diphenylacetoxy-N-dimethylpiperidinium) antagonist significantly reduced the enhanced NOS I-protein kinase G signalling ('pro-life' phase) or augmented NOS II-peroxynitrite cascade ('pro-death' phase) in ventrolateral medulla, blunted the biphasic increase and decrease in baroreceptor reflex-mediated sympathetic vasomotor tone that reflect the transition from life to death, and diminished the elevated DNA binding activity or nucleus-bound translocation of NF-kappaB in RVLM neurons induced by microinjection of Mev into the bilateral RVLM. However, NF-kappaB inhibitors (diethyldithiocarbamate or pyrrolidine dithiocarbamate) or double-stranded kappaB decoy DNA preferentially antagonized the augmented NOS II-peroxynitrite cascade and the associated cardiovascular depression exhibited during the 'pro-death' phase. We conclude that transcriptional up-regulation of NOS II gene expression by activation of NF-kappaB on selective stimulation of muscarinic M2 or M4 subtype receptors in the RVLM underlies the elicited cardiovascular depression during the 'pro-death' phase in our Mev intoxication model of brain stem death.

  10. Mimicry by asx- and ST-turns of the four main types of beta-turn in proteins.

    PubMed

    Duddy, William J; Nissink, J Willem M; Allen, Frank H; Milner-White, E James

    2004-11-01

    Hydrogen-bonded beta-turns in proteins occur in four categories: type I (the most common), type II, type II', and type I'. Asx-turns resemble beta-turns, in that both have an NH. . .OC hydrogen bond forming a ring of 10 atoms. Serine and threonine side chains also commonly form hydrogen-bonded turns, here called ST-turns. Asx-turns and ST-turns can be categorized into four classes, based on side chain rotamers and the conformation of the central turn residue, which are geometrically equivalent to the four types of beta-turns. We propose asx- and ST-turns be named using the type I, II, I', and II' beta-turn nomenclature. Using this, the frequency of occurrence of both asx- and ST-turns is: type II' > type I > type II > type I', whereas for beta-turns it is type I > type II > type I' > type II'. Almost all type II asx-turns occur as a recently described three residue feature named an asx-nest.

  11. Brain structural changes and their correlation with vascular disease in type 2 diabetes mellitus patients: a voxel-based morphometric study.

    PubMed

    Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun

    2014-08-15

    Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no significant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atrophy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.

  12. Prolyl oligopeptidase and dipeptidyl peptidase II/dipeptidyl peptidase IV ratio in the cerebrospinal fluid in Parkinson's disease: historical overview and future prospects.

    PubMed

    Nagatsu, Toshiharu

    2017-06-01

    Prolyl oligopeptidase (also named prolyl endopeptidase; PREP) hydrolyzes the Pro-Xaa bonds of biologically active oligopeptides on their carboxyl side. In 1987, we detected PREP activity in human cerebrospinal fluid (CSF) using highly sensitive liquid chromatography-fluorometry with succinyl-Gly-Pro-4-methyl-coumarin amide as a new synthetic substrate, and found a marked decrease in its activity in the cerebrospinal fluid (CSF) from patients with Parkinson's disease (PD) as compared with its level in control patients without neurological diseases. In 2013, Hannula et al. found co-localization of PREP with α-synuclein in the postmortem PD brain. Several recent studies also suggest that the level of PREP in the brain of PD patients may be related to dopamine (DA) cell death via promotion of α-synuclein oligomerization and that inhibitors of PREP may play a neuroprotective role in PD. Although the relationship between another family of prolyl oligopeptidase enzymes, dipeptidyl peptidase II (DPP II) and dipeptidyl peptidase IV (DPP IV), and α-synuclein in the PD brain is not yet clear, we found that the DPP II activity/DPP IV activity ratio in the CSF was significantly increased in PD patients. This review discusses the possibility of PREP as well as the DPP II/DPP IV ratio in the CSF as potential biomarkers of PD.

  13. Renin–angiotensin–aldosterone system in insulin resistance and metabolic syndrome

    PubMed Central

    2016-01-01

    Abstract Obesity and its consequent complications such as hypertension and metabolic syndrome are increasing in incidence in almost all countries. Insulin resistance is common in obesity. Renin– angiotensin system (RAS) is an important target in the treatment of hypertension and drugs that act on RAS improve insulin resistance and decrease the incidence of type 2 diabetes mellitus, explaining the close association between hypertension and type 2 diabetes mellitus. RAS influences food intake by modulating the hypothalamic expression of neuropeptide Y and orexins via AMPK dephosphorylation. Estrogen reduces appetite by its action on the brain in a way similar to leptin, an anorexigenic action that seems to be mediated via hypothalamic pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and synaptic plasticity in the arcuate nucleus similar to leptin. Estrogen stimulates lipoxin A4, a potent vasodilator and platelet anti-aggregator. Since both RAS and estrogen act on the hypothalamic neuropeptides and regulate food intake and obesity, it is likely that RAS modulates LXA4 synthesis. Thus, it is proposed that Angiotensin-II receptor blockers and angiotensin-converting enzymes and angiotensin-II antagonists may have the ability to augment LXA4 synthesis and thus bring about their beneficial actions. PMID:28191524

  14. Release phenomena and iterative activities in psychiatric geriatric patients

    PubMed Central

    Villeneuve, A.; Turcotte, J.; Bouchard, M.; Côté, J. M.; Jus, A.

    1974-01-01

    This survey was undertaken to assess the frequency of some of the so-called release phenomena and iterative activities in an aged psychiatric population. Three groups of geriatric psychiatric patients with diagnoses of (I) organic brain syndrome, including senile dementia (56), (II) functional psychoses, predominantly schizophrenia (51) and (III) chronic schizophrenia never treated by neuroleptics or other biologic agents (16), were compared with (IV) a control group of 32 elderly people in good physical and mental health. In general, for the manifestations studied, the geriatric psychiatric patients suffering from an organic brain syndrome and treated with neuroleptics differed notably from the control group. This latter group, although older, had few neurological signs of senescence and the spontaneous oral movements usually associated with the use of neuroleptics were absent. Release phenomena such as the grasp and pouting reflexes, as well as the stereotyped activities, were encountered significantly more frequently in patients with an organic brain syndrome than in the two other groups of patients. Our survey has yielded limited results with regard to the possible influence of type of illness and neuroleptic treatment on the incidence of release phenomena and iterative activities. PMID:4810188

  15. First isolate of Toxoplasma gondii from arctic fox (Vulpes lagopus) from Svalbard.

    PubMed

    Prestrud, Kristin Wear; Dubey, J P; Asbakk, Kjetil; Fuglei, Eva; Su, C

    2008-02-14

    Cats are considered essential for the maintenance of Toxoplasma gondii in nature. However, T. gondii infection has been reported in arctic fox (Vulpes lagopus) from the Svalbard high arctic archipelago where felids are virtually absent. To identify the potential source of T. gondii, we attempted to isolate and genetically characterize the parasite from arctic foxes in Svalbard. Eleven foxes were trapped live in Grumant (78 degrees 11'N, 15 degrees 09'E), Svalbard, in September 2005 and 2006. One of the foxes was found to be seropositive to T. gondii by the modified agglutination test (MAT). The fox was euthanized and its heart and brain were bioassayed in mice for the isolation of T. gondii. All 10 mice inoculated with brain tissue and one of the five inoculated with heart developed MAT antibodies, and tissue cysts were found in the brains of seropositive mice. Two cats fed tissues from infected mice shed T. gondii oocysts. Genotyping using 10 PCR-RFLP markers and DNA sequencing of gene loci BSR4, GRA6, UPRT1 and UPRT2 determined the isolate to be Type II strain, the predominant T. gondii lineage in the world.

  16. A Novel c-Jun N-terminal Kinase (JNK) Signaling Complex Involved in Neuronal Migration during Brain Development.

    PubMed

    Zhang, Feng; Yu, Jingwen; Yang, Tao; Xu, Dan; Chi, Zhixia; Xia, Yanheng; Xu, Zhiheng

    2016-05-27

    Disturbance of neuronal migration may cause various neurological disorders. Both the transforming growth factor-β (TGF-β) signaling and microcephaly-associated protein WDR62 are important for neuronal migration during brain development; however, the underlying molecular mechanisms involved remain unclear. We show here that knock-out or knockdown of Tak1 (TGFβ-activated kinase 1) and Jnk2 (c-Jun N-terminal kinase 2) perturbs neuronal migration during cortical development and that the migration defects incurred by knock-out and/or knockdown of Tβr2 (type II TGF-β receptor) or Tak1 can be partially rescued by expression of TAK1 and JNK2, respectively. Furthermore, TAK1 forms a protein complex with RAC1 and two scaffold proteins of the JNK pathway, the microcephaly-associated protein WDR62 and the RAC1-interacting protein POSH (plenty of Src homology). Components of the complex coordinate with each other in the regulation of TAK1 as well as JNK activities. We suggest that unique JNK protein complexes are involved in the diversified biological and pathological functions during brain development and pathogenesis of diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways.

    PubMed

    Liang, M; Lee, M C; O'Neill, J; Dickenson, A H; Iannetti, G D

    2016-08-01

    Central sensitization (CS), the increased sensitivity of the central nervous system to somatosensory inputs, accounts for secondary hyperalgesia, a typical sign of several painful clinical conditions. Brain potentials elicited by mechanical punctate stimulation using flat-tip probes can provide neural correlates of CS, but their signal-to-noise ratio is limited by poor synchronization of the afferent nociceptive input. Additionally, mechanical punctate stimulation does not activate nociceptors exclusively. In contrast, low-intensity intraepidermal electrical stimulation (IES) allows selective activation of type II Aδ-mechano-heat nociceptors (II-AMHs) and elicits reproducible brain potentials. However, it is unclear whether hyperalgesia from IES occurs and coexists with secondary mechanical punctate hyperalgesia, and whether the magnitude of the electroencephalographic (EEG) responses evoked by IES within the hyperalgesic area is increased. To address these questions, we explored the modulation of the psychophysical and EEG responses to IES by intraepidermal injection of capsaicin in healthy human subjects. We obtained three main results. First, the intensity of the sensation elicited by IES was significantly increased in participants who developed robust mechanical punctate hyperalgesia after capsaicin injection (i.e., responders), indicating that hyperalgesia from IES coexists with punctate mechanical hyperalgesia. Second, the N2 peak magnitude of the EEG responses elicited by IES was significantly increased after the intraepidermal injection of capsaicin in responders only. Third, a receiver-operator characteristics analysis showed that the N2 peak amplitude is clearly predictive of the presence of CS. These findings suggest that the EEG responses elicited by IES reflect secondary hyperalgesia and therefore represent an objective correlate of CS. Copyright © 2016 the American Physiological Society.

  18. Multiple imputation of missing fMRI data in whole brain analysis

    PubMed Central

    Vaden, Kenneth I.; Gebregziabher, Mulugeta; Kuchinsky, Stefanie E.; Eckert, Mark A.

    2012-01-01

    Whole brain fMRI analyses rarely include the entire brain because of missing data that result from data acquisition limits and susceptibility artifact, in particular. This missing data problem is typically addressed by omitting voxels from analysis, which may exclude brain regions that are of theoretical interest and increase the potential for Type II error at cortical boundaries or Type I error when spatial thresholds are used to establish significance. Imputation could significantly expand statistical map coverage, increase power, and enhance interpretations of fMRI results. We examined multiple imputation for group level analyses of missing fMRI data using methods that leverage the spatial information in fMRI datasets for both real and simulated data. Available case analysis, neighbor replacement, and regression based imputation approaches were compared in a general linear model framework to determine the extent to which these methods quantitatively (effect size) and qualitatively (spatial coverage) increased the sensitivity of group analyses. In both real and simulated data analysis, multiple imputation provided 1) variance that was most similar to estimates for voxels with no missing data, 2) fewer false positive errors in comparison to mean replacement, and 3) fewer false negative errors in comparison to available case analysis. Compared to the standard analysis approach of omitting voxels with missing data, imputation methods increased brain coverage in this study by 35% (from 33,323 to 45,071 voxels). In addition, multiple imputation increased the size of significant clusters by 58% and number of significant clusters across statistical thresholds, compared to the standard voxel omission approach. While neighbor replacement produced similar results, we recommend multiple imputation because it uses an informed sampling distribution to deal with missing data across subjects that can include neighbor values and other predictors. Multiple imputation is anticipated to be particularly useful for 1) large fMRI data sets with inconsistent missing voxels across subjects and 2) addressing the problem of increased artifact at ultra-high field, which significantly limit the extent of whole brain coverage and interpretations of results. PMID:22500925

  19. Locations and properties of angiotensin II-responsive neurones in the circumventricular region of the duck brain.

    PubMed Central

    Matsumura, K; Simon, E

    1990-01-01

    1. In brain slice preparations from the hypothalamus of domestic ducks, single-unit activity was recorded extracellularly to investigate location and properties of angiotensin II (AngII)-responsive neurones in various periventricular regions. 2. When exposing the slice to 10(-7) M-AngII in the perfusion medium, more than 65% of the neurones recorded in the subfornical organ (SFO) were activated (49 out of 75) and none inhibited. In the magnocellular (MC) region of the paraventricular nucleus (PVN) only four out of eighty-one neurones were influenced by AngII; one was inhibited and three were activated. In the anterior third ventricle region (A3V) two out of twenty-one neurones were activated by AngII. In the dorsal periventricular (PeV) region, one out of thirty-seven neurones was activated and one inhibited. The changes in firing rate of AngII-responsive neurones at comparable doses of AngII were generally large in the SFO and A3V but were small in neurones from the MC and PeV regions. 3. Analysis of AngII-responsive SFO neurones consistently revealed a dose-dependent stimulation with a threshold at 10(-9) M-AngII. The AngII antagonist 1Sar-8Ile-AngII (4 x 10(-7) to 10(-6) M) caused reversible, complete or partial suppression of responsiveness to 10(-7) M-AngII. Synaptic blockade with a medium low in Ca2+ and high in Mg2+ did not abolish AngII responsiveness in eight out of ten SFO neurones tested. 4. Angiotensin III affected neither AngII-responsive nor AngII-insensitive neurones. When eighteen AngII-responsive neurones were exposed to hypertonic stimulation (+20 to +30 mosmol/kg) by adding NaCl to the perfusion medium, only one neurone was stimulated and two were inhibited. 5. The results indicate that: (a) the SFO is a specific target for circulating AngII; (b) although neurones in the A3V responsive to AngII are rare, the pronounced excitation of those which were found suggest that neurones in this region might serve as targets for AngII acting from the brain side; (c) neurones in the MC region do not seem to function as direct AngII targets; (d) neuronal AngII responsiveness in the duck's hypothalamus seems to be specific inasmuch as activation by AngII (i) is readily blocked by an AngII antagonist, (ii) cannot be induced by AngIII, and (iii) is not associated, as a rule, with responsiveness to hypertonic stimulation. PMID:2277348

  20. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    PubMed

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. © 2015 International Society for Neurochemistry.

  1. Activation of PI3K/Akt signaling in rostral ventrolateral medulla impairs brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2014-03-01

    As the most widely used pesticides in the globe, the organophosphate compounds are understandably linked with the highest incidence of suicidal poisoning. Whereas the elicited toxicity is often associated with circulatory depression, the underlying mechanisms require further delineation. Employing the pesticide mevinphos as our experimental tool, we evaluated the hypothesis that transcriptional upregulation of nitric oxide synthase II (NOS II) by NF-κB on activation of the PI3K/Akt cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins the circulatory depressive effects of organophosphate poisons. Microinjection of mevinphos (10 nmol) bilaterally into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied sequentially by an increase (Phase I) and a decrease (Phase II) of an experimental index for the baroreflex-mediated sympathetic vasomotor tone. There were also progressive augmentations in PI3K or Akt enzyme activity and phosphorylation of p85 or Akt(Thr308) subunit in the RVLM that were causally related to an increase in NF-κB transcription activity and elevation in NOS II or peroxynitrite expression. Loss-of-function manipulations of PI3K or Akt in the RVLM significantly antagonized the reduced baroreflex-mediated sympathetic vasomotor tone and hypotension during Phase II mevinphos intoxication, and blunted the increase in NF-κB/NOS II/peroxynitrite signaling. We conclude that activation of the PI3K/Akt cascade, leading to upregulation of NF-κB/NOS II/peroxynitrite signaling in the RVLM, elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. ON THE RELATIONSHIP BETWEEN THE TWO BRANCHES OF THE KYNURENINE PATHWAY IN THE RAT BRAIN IN VIVO

    PubMed Central

    Amori, Laura; Guidetti, Paolo; Pellicciari, Roberto; Kajii, Yasushi; Schwarcz, Robert

    2013-01-01

    In the mammalian brain, kynurenine aminotransferase II (KAT II) and kynurenine 3-monooxygenase (KMO), key enzymes of the kynurenine pathway of tryptophan degradation, form the neuroactive metabolites kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK), respectively. Although physically segregated, both enzymes use the pivotal kynurenine pathway metabolite L-kynurenine as a substrate. We studied the functional consequences of this cellular compartmentalization in vivo using two specific tools, the KAT II inhibitor BFF 122 and the KMO inhibitor UPF 648. The acute effects of selective KAT II or KMO inhibition were studied using a radiotracing method in which the de novo synthesis of KYNA, and of 3-HK and its downstream metabolite quinolinic acid (QUIN), is monitored following an intrastriatal injection of 3H-kynurenine. In naïve rats, intrastriatal BFF 122 decreased newly formed KYNA by 66%, without influencing 3-HK or QUIN production. Conversely, UPF 648 reduced 3-HK synthesis (by 64%) without affecting KYNA formation. Similar, selective effects of KAT II and KMO inhibition were observed when the inhibitors were applied acutely together with the excitotoxin QUIN, which impairs local KP metabolism. Somewhat different effects of KMO (but not KAT II) inhibition were obtained in rats that had received an intrastriatal QUIN injection 7 days earlier. In these neuron-depleted striata, UPF 648 not only decreased both 3-HK and QUIN production (by 77% and 66%, respectively) but also moderately raised KYNA synthesis (by 27%). These results indicate a remarkable functional segregation of the two pathway branches in the brain, boding well for the development of selective KAT II or KMO inhibitors for cognitive enhancement and neuroprotection, respectively. PMID:19226371

  3. On the relationship between the two branches of the kynurenine pathway in the rat brain in vivo.

    PubMed

    Amori, Laura; Guidetti, Paolo; Pellicciari, Roberto; Kajii, Yasushi; Schwarcz, Robert

    2009-04-01

    In the mammalian brain, kynurenine aminotransferase II (KAT II) and kynurenine 3-monooxygenase (KMO), key enzymes of the kynurenine pathway (KP) of tryptophan degradation, form the neuroactive metabolites kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK), respectively. Although physically segregated, both enzymes use the pivotal KP metabolite l-kynurenine as a substrate. We studied the functional consequences of this cellular compartmentalization in vivo using two specific tools, the KAT II inhibitor BFF 122 and the KMO inhibitor UPF 648. The acute effects of selective KAT II or KMO inhibition were studied using a radiotracing method in which the de novo synthesis of KYNA, and of 3-HK and its downstream metabolite quinolinic acid (QUIN), is monitored following an intrastriatal injection of (3)H-kynurenine. In naïve rats, intrastriatal BFF 122 decreased newly formed KYNA by 66%, without influencing 3-HK or QUIN production. Conversely, UPF 648 reduced 3-HK synthesis (by 64%) without affecting KYNA formation. Similar, selective effects of KAT II and KMO inhibition were observed when the inhibitors were applied acutely together with the excitotoxin QUIN, which impairs local KP metabolism. Somewhat different effects of KMO (but not KAT II) inhibition were obtained in rats that had received an intrastriatal QUIN injection 7 days earlier. In these neuron-depleted striata, UPF 648 not only decreased both 3-HK and QUIN production (by 77% and 66%, respectively) but also moderately raised KYNA synthesis (by 27%). These results indicate a remarkable functional segregation of the two pathway branches in the brain, boding well for the development of selective KAT II or KMO inhibitors for cognitive enhancement and neuroprotection, respectively.

  4. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging

    NASA Astrophysics Data System (ADS)

    Cooper, Robert J.; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C.

    2014-05-01

    We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.

  5. How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension

    PubMed Central

    Leenen, Frans H. H.; Chen, Ling; Golovina, Vera A.; Hamlyn, John M.; Pallone, Thomas L.; Van Huysse, James W.; Zhang, Jin; Wier, W. Gil

    2012-01-01

    Excess dietary salt is a major cause of hypertension. Nevertheless, the specific mechanisms by which salt increases arterial constriction and peripheral vascular resistance, and thereby raises blood pressure (BP), are poorly understood. Here we summarize recent evidence that defines specific molecular links between Na+ and the elevated vascular resistance that directly produces high BP. In this new paradigm, high dietary salt raises cerebrospinal fluid [Na+]. This leads, via the Na+-sensing circumventricular organs of the brain, to increased sympathetic nerve activity (SNA), a major trigger of vasoconstriction. Plasma levels of endogenous ouabain (EO), the Na+ pump ligand, also become elevated. Remarkably, high cerebrospinal fluid [Na+]-evoked, locally secreted (hypothalamic) EO participates in a pathway that mediates the sustained increase in SNA. This hypothalamic signaling chain includes aldosterone, epithelial Na+ channels, EO, ouabain-sensitive α2 Na+ pumps, and angiotensin II (ANG II). The EO increases (e.g.) hypothalamic ANG-II type-1 receptor and NADPH oxidase and decreases neuronal nitric oxide synthase protein expression. The aldosterone-epithelial Na+ channel-EO-α2 Na+ pump-ANG-II pathway modulates the activity of brain cardiovascular control centers that regulate the BP set point and induce sustained changes in SNA. In the periphery, the EO secreted by the adrenal cortex directly enhances vasoconstriction via an EO-α2 Na+ pump-Na+/Ca2+ exchanger-Ca2+ signaling pathway. Circulating EO also activates an EO-α2 Na+ pump-Src kinase signaling cascade. This increases the expression of the Na+/Ca2+ exchanger-transient receptor potential cation channel Ca2+ signaling pathway in arterial smooth muscle but decreases the expression of endothelial vasodilator mechanisms. Additionally, EO is a growth factor and may directly participate in the arterial structural remodeling and lumen narrowing that is frequently observed in established hypertension. These several central and peripheral mechanisms are coordinated, in part by EO, to effect and maintain the salt-induced elevation of BP. PMID:22058154

  6. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  7. Correlates of invalid neuropsychological test performance after traumatic brain injury.

    PubMed

    Donders, Jacobus; Boonstra, Tyler

    2007-03-01

    To investigate external correlates of invalid test performance after traumatic brain injury, as assessed by the California Verbal Learning Test - Second Edition (CVLT-II) and Word Memory Test (WMT). Consecutive 2-year series of rehabilitation referrals with a diagnosis of traumatic brain injury (n = 87). Logistic regression analysis was used to determine which demographic and neurological variables best differentiated those with vs. without actuarial CVLT-II or WMT evidence for invalid responding. Twenty-one participants (about 24%) performed in the invalid range. The combination of a premorbid psychiatric history with minimal or no coma was associated with an approximately four-fold increase in the likelihood of invalid performance. Premorbid psychosocial complicating factors constitute a significant threat to validity of neuropsychological test results after (especially mild) traumatic brain injury. At the same time, care should be taken to not routinely assume that all persons with mild traumatic brain injury and premorbid psychiatric histories are simply malingering. The WMT appears to be a promising instrument for the purpose of identifying those cases where neuropsychological test results are confounded by factors not directly related to acquired cerebral impairment.

  8. Transmission in near-infrared optical windows for deep brain imaging.

    PubMed

    Shi, Lingyan; Sordillo, Laura A; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    Near-infrared (NIR) radiation has been employed using one- and two-photon excitation of fluorescence imaging at wavelengths 650-950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR-low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100-1,350 nm), third (III, 1,600-1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Plasma Levels of Glucose and Insulin in Patients with Brain Tumors

    PubMed Central

    ALEXANDRU, OANA; ENE, L.; PURCARU, OANA STEFANA; TACHE, DANIELA ELISE; POPESCU, ALISA; NEAMTU, OANA MARIA; TATARANU, LIGIA GABRIELA; GEORGESCU, ADA MARIA; TUDORICA, VALERICA; ZAHARIA, CORNELIA; DRICU, ANICA

    2014-01-01

    In the last years there were many authors that suggest the existence of an association between different components of metabolic syndrome and various cancers. Two important components of metabolic syndrome are hyperglycemia and hyperinsulinemia. Both of them had already been linked with the increased risk of pancreatic, breast, endometrial or prostate cancer. However the correlation of the level of the glucose and insulin with various types and grades of brain tumors remains unclear. In this article we have analysed the values of plasma glucose and insulin in 267 patients, consecutively diagnosed with various types of brain tumors. Our results showed no correlation between the glycemia and brain tumor types or grades. High plasma levels of insulin were found in brain metastasis and astrocytomas while the other types of brain tumors (meningiomas and glioblastomas) had lower levels of the peptide. The levels of insulin were also higher in brain metastasis and grade 3 brain tumors when compared with grade 1, grade 2 and grade 4 brain tumors. PMID:24791202

  10. Localization of migraine susceptibility genes in human brain by single-cell RNA sequencing.

    PubMed

    Renthal, William

    2018-01-01

    Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.

  11. The big sell: Managing stigma and workplace discrimination following moderate to severe brain injury.

    PubMed

    Stergiou-Kita, Mary; Grigorovich, Alisa; Damianakis, Thecla; Le Dorze, Guylaine; David, Christine; Lemsky, Carolyn; Hebert, Debbie

    2017-01-01

    Misperceptions regarding persons with brain injuries (PWBI) can lead to stigmatization, workplace discrimination and, in turn, influence PWBIs full vocational integration. In this study we explored how stigma may influence return-to-work processes, experiences of stigma and discrimination at the workplace for persons with (moderate to severe) brain injuries, and strategies that can be employed to manage disclosure. Exploratory qualitative study; used in-depth interviews and an inductive thematic analytical approach in data analysis. Ten PWBI and five employment service providers participated. PWBI discussed their work experiences, relationships with supervisors and co-workers and experiences of stigma and/or discrimination at work. Employment service providers discussed their perceptions regarding PWBI's rights and abilities to work, reported incidents of workplace discrimination, and how issues related to stigma, discrimination and disclosure are managed. Three themes were identified: i) public, employer and provider knowledge about brain injury and beliefs about PWBI; ii) incidents of workplace discrimination; iii) disclosure. Misperceptions regarding PWBI persist amongst the public and employers. Incidents of workplace discrimination included social exclusion at the workplace, hiring discrimination, denial of promotion/demotion, harassment, and failure to provide reasonable accommodations. Disclosure decisions required careful consideration of PWBI needs, the type of information that should be shared, and the context in which that information is shared. Public understanding about PWBI remains limited. PWBI require further assistance to manage disclosure and incidents of workplace discrimination.

  12. White Matter Volume Predicts Language Development in Congenital Heart Disease

    PubMed Central

    Rollins, Caitlin K.; Asaro, Lisa A.; Akhondi-Asl, Alireza; Kussman, Barry D.; Rivkin, Michael J.; Bellinger, David C.; Warfield, Simon K.; Wypij, David; Newburger, Jane W.; Soul, Janet S.

    2016-01-01

    Objective To determine whether brain volume is reduced at one year and whether these volumes are associated with neurodevelopment in biventricular congenital heart disease (CHD) repaired in infancy. Study design Infants with biventricular CHD (n = 48) underwent brain magnetic resonance imaging (MRI) and neurodevelopmental testing with the Bayley Scales of Infant Development-II (BSID-II) and the MacArthur-Bates Communicative Development Inventories (CDI) at one year. A multi-template based probabilistic segmentation algorithm was applied to volumetric MRI data. We compared volumes with those of 13 healthy control infants of comparable ages. In the CHD group, we measured Spearman correlations between neurodevelopmental outcomes and the residuals from linear regression of the volumes on corrected chronological age at MRI and sex. Results Compared with controls, CHD infant had reductions of 54 mL in total brain (P = 0.009), 40 mL in cerebral white matter (P < 0.001), and 1.2 mL in brainstem (P = 0.003) volumes. Within the CHD group, brain volumes were not correlated with BSID-II scores but did correlate positively with CDI language development. Conclusion Infants with biventricular CHD show total brain volume reductions at one year of age, driven by differences in cerebral white matter. White matter volume correlates with language development, but not broader developmental indices. These findings suggest that abnormalities in white matter development detected months after corrective heart surgery may contribute to language impairment. Trial registration ClinicalTrials.gov: NCT00006183 PMID:27837950

  13. Fetal Eye Movements on Magnetic Resonance Imaging

    PubMed Central

    Woitek, Ramona; Kasprian, Gregor; Lindner, Christian; Stuhr, Fritz; Weber, Michael; Schöpf, Veronika; Brugger, Peter C.; Asenbaum, Ulrika; Furtner, Julia; Bettelheim, Dieter; Seidl, Rainer; Prayer, Daniela

    2013-01-01

    Objectives Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. Methods Dynamic SSFP sequences were acquired in 72 singleton fetuses (17–40 GW, three age groups [17–23 GW, 24–32 GW, 33–40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. Results In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3–45%. Conclusions In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations. PMID:24194885

  14. Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase.

    PubMed

    Rodrigues-Ferreira, Clara; da Silva, Ana Paula Pereira; Galina, Antonio

    2012-02-01

    The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨ(m)), O(2) consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.

  15. RAS in the central nervous system: Potential role in neuropsychiatric disorders.

    PubMed

    Rocha, Natalia Pessoa; Simões e Silva, Ana Cristina; Prestes, Thiago Ruiz Rodrigues; Feracin, Victor; Machado, Caroline Amaral; Ferreira, Rodrigo Novaes; Teixeira, Antonio Lucio; de Miranda, Aline Silva

    2018-02-25

    The Renin-Angiotensin System (RAS) is a key regulator of cardiovascular and renal homeostasis, but also plays important roles in mediating physiological functions in the central nervous system (CNS). The effects of the RAS were classically described as mediated by angiotensin (Ang) II via angiotensin type 1 (AT1) receptors. However, another arm of the RAS formed by the angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and the Mas receptor has been a matter of investigation due to its important physiological roles, usually counterbalancing the classical effects exerted by Ang II. We aim to provide an overview of effects elicited by the RAS, especially Ang-(1-7), in the brain. We also aim to discuss the therapeutic potential for neuropsychiatric disorders of the modulation of RAS. We carried out an extensive literature search in PubMed central. Within the brain, Ang-(1-7) contributes to the regulation of blood pressure by acting at regions that control cardiovascular functions. In contrast with Ang II, Ang-(1-7) improves baroreflex sensitivity and plays an inhibitory role in hypothalamic noradrenergic neurotransmission. Ang-(1-7) not only exerts effects related to blood pressure regulation, but also acts as a neuroprotective component of the RAS, for instance, by reducing cerebral infarct size, inflammation, oxidative stress and neuronal apoptosis. Pre-clinical evidence supports a relevant role for ACE2/Ang-(1-7)/Mas receptor axis in several neuropsychiatric conditions, including stress-related and mood disorders, cerebrovascular ischemic and haemorrhagic lesions and neurodegenerative diseases. However, very few data are available regarding the ACE2/Ang-(1-7)/Mas receptor axis in human CNS. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Lactate flux in astrocytes is enhanced by a non-catalytic action of carbonic anhydrase II

    PubMed Central

    Stridh, Malin H; Alt, Marco D; Wittmann, Sarah; Heidtmann, Hella; Aggarwal, Mayank; Riederer, Brigitte; Seidler, Ursula; Wennemuth, Gunther; McKenna, Robert; Deitmer, Joachim W; Becker, Holger M

    2012-01-01

    Rapid exchange of metabolites between different cell types is crucial for energy homeostasis of the brain. Besides glucose, lactate is a major metabolite in the brain and is primarily produced in astrocytes. In the present study, we report that carbonic anhydrase 2 (CAII) enhances both influx and efflux of lactate in mouse cerebellar astrocytes. The augmentation of lactate transport is independent of the enzyme's catalytic activity, but requires direct binding of CAII to the C-terminal of the monocarboxylate transporter MCT1, one of the major lactate/proton cotransporters in astrocytes and most tissues. By employing its intramolecular proton shuttle, CAII, bound to MCT1, can act as a ‘proton collecting antenna’ for the transporter, suppressing the formation of proton microdomains at the transporter-pore and thereby enhancing lactate flux. By this mechanism CAII could enhance transfer of lactate between astrocytes and neurons and thus provide the neurons with an increased supply of energy substrate. PMID:22451434

  17. Peptide-induced emesis in dogs: possible relevance to radiation-induced emesis. Final report Oct 80-Sep 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, D.O.

    1982-09-01

    Results of earlier investigators indicate that radioemesis is mediated by some humoral agent(s). Peptides are likely candiates since they exert a number of biological effects and are released from storage sites by various stimuli, including radiation. Peptides at various concentrations were injected singly intravenously into conscious dogs, and the dog's emetic response was observed. Of the peptides tested, neurotensin, angiotensin II, vasopressin, oxytocin, and TRH produced consistent emetic responses. Inhibition of drug-induced emesis was studied both centrally (chlorpromazine) and peripherally (domperidone) acting dopamine antagonists. Results indicate inhibition by chlorpromazine, which crosses the blood brain barrier, but only partial blockade bymore » domperidone, which does not cross the blood brain barrier. Preliminary studies were conducted attempting to characterize types of receptors on area postrema neurons. Single-cell recordings from these neurons, challenged by iontophoretic administration of various neurotransmitters, show stimulation by glutamic acid and serotonin and inhibiiton by norepinephrine.« less

  18. The many faces of research on face perception.

    PubMed

    Little, Anthony C; Jones, Benedict C; DeBruine, Lisa M

    2011-06-12

    Face perception is fundamental to human social interaction. Many different types of important information are visible in faces and the processes and mechanisms involved in extracting this information are complex and can be highly specialized. The importance of faces has long been recognized by a wide range of scientists. Importantly, the range of perspectives and techniques that this breadth has brought to face perception research has, in recent years, led to many important advances in our understanding of face processing. The articles in this issue on face perception each review a particular arena of interest in face perception, variously focusing on (i) the social aspects of face perception (attraction, recognition and emotion), (ii) the neural mechanisms underlying face perception (using brain scanning, patient data, direct stimulation of the brain, visual adaptation and single-cell recording), and (iii) comparative aspects of face perception (comparing adult human abilities with those of chimpanzees and children). Here, we introduce the central themes of the issue and present an overview of the articles.

  19. Differential gene expression reveals mitochondrial dysfunction in an imprinting center deletion mouse model of Prader-Willi syndrome.

    PubMed

    Yazdi, Puya G; Su, Hailing; Ghimbovschi, Svetlana; Fan, Weiwei; Coskun, Pinar E; Nalbandian, Angèle; Knoblach, Susan; Resnick, James L; Hoffman, Eric; Wallace, Douglas C; Kimonis, Virginia E

    2013-10-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by deficiency of imprinted gene expression from the paternal chromosome 15q11-15q13 and clinically characterized by neonatal hypotonia, short stature, cognitive impairment, hypogonadism, hyperphagia, morbid obesity, and diabetes. Previous clinical studies suggest that a defect in energy metabolism may be involved in the pathogenesis of PWS. We focused our attention on the genes associated with energy metabolism and found that there were 95 and 66 mitochondrial genes differentially expressed in PWS muscle and brain, respectively. Assessment of enzyme activities of mitochondrial oxidative phosphorylation complexes in the brain, heart, liver, and muscle were assessed. We found the enzyme activities of the cardiac mitochondrial complexes II+‫III were up-regulated in the PWS imprinting center deletion mice compared to the wild-type littermates. These studies suggest that differential gene expression, especially of the mitochondrial genes may contribute to the pathophysiology of PWS. © 2013 Wiley Periodicals, Inc.

  20. Incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer.

    PubMed

    Dawood, Shaheenah; Lei, Xiudong; Litton, Jennifer K; Buchholz, Thomas A; Hortobagyi, Gabriel N; Gonzalez-Angulo, Ana M

    2012-10-01

    This retrospective study sought to define the incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer (TNBC). A total of 2448 patients with stage I through III TNBC who were diagnosed between 1990 and 2010 were identified. We computed the cumulative incidence of developing brain metastases as a first site of recurrence at 2 and 5 years. Cox proportional hazards models were fitted to determine factors that could predict for the development of brain metastases as a first site of recurrence. The Kaplan-Meier product limit method was used to compute survival following a diagnosis of brain metastases. At a median follow-up of 39 months, 115 (4.7%) patients had developed brain metastases as a first site of recurrence. The cumulative incidence at 2 and 5 years was 3.7% (95% confidence interval [CI] = 2.9%-4.5%) and 5.4% (95% CI = 4.4%-6.5%), respectively. Among patients with stage I, II, and III disease, the 2-year cumulative incidence of brain metastases was 0.8%, 3.1%, and 8%, respectively (P < .0001). The 5-year cumulative incidence was 2.8%, 4.6%, and 9.6% among patients with stage I, II, and III disease, respectively (P < .0001). In the multivariable model, patients with stage III disease had a significant increase in the risk of developing brain metastases as a first site of recurrence (hazards ratio = 3.51; 95% CI = 1.85-6.67; P = .0001) compared to patients with stage I disease. Those with stage II disease had a nonsignificant increased risk of developing brain metastases as a first site of recurrence (hazards ratio = 1.61; 95% CI = 0.92-2.81; P = .10) compared with patients with stage I disease. Median survival following a diagnosis of brain metastases was 7.2 months (range, 5.7-9.4 months). Patients with nonmetastatic TNBC have a high early incidence of developing brain metastases as a first site of recurrence, which is associated with subsequent poor survival. Patients with stage III TNBC in particular would be an ideal cohort in which to research preventive strategies. Copyright © 2012 American Cancer Society.

  1. Binge-Like Ethanol Consumption Increases Corticosterone Levels and Neurodegneration whereas occupancy of Type II Glucocorticoid Receptors with Mifepristone is Neuroprotective

    PubMed Central

    Cippitelli, Andrea; Damadzic, Ruslan; Hamelink, Carol; Brunnquell, Michael; Thorsell, Annika; Heilig, Markus; Eskay, Robert L

    2012-01-01

    Excessive ethanol (EtOH) use leads to impaired memory and cognition. Using a rat model of binge-like intoxication, we tested whether elevated corticosterone (Cort) levels contribute to the neurotoxic consequences of EtOH exposure. Rats were adrenalectomized (Adx) and implanted with cholesterol pellets, or cholesterol pellets containing basal, medium or high Cort. Intragastric EtOH or an isocaloric control solution was given 3 times daily for 4 days to achieve blood alcohol levels (BALs) ranging between 200-350 mg/dl. Mean 24 hour (24-hr) plasma Cort levels were ~110 ng/ml and ~40 ng/ml in intact EtOH treated and intact control, respectively. Basal Cort replacement in EtOH-treated Adx animals animals did not exacerbate alcohol-induced neurodegeneration in the hippocampal dentate gyrus (DG) or the entorhinal cortex (EC) as observed by amino-cupric silver staining. In contrast, Cort replacement resulting in levels 2-fold higher (medium) than normal, or higher (high) in Adx-Cort-EtOH animals increased neurodegeneration. In separate experiments, pharmacological blockade of the Type II glucocortocoid (GC) receptor was initiated with mifepristone (RU38486; 0, 5, 15 mg/kg/day, i.p.). At the higher dose, mifepristone decreased the number of degenerating hippocampal DG cells in binge-EtOH treated intact animals, whereas, only a trend for reduction was observed in 15 mg/kg/day mifepristone treated animals in the EC, as determined by Fluoro Jade B staining. These results suggest that Cort in part mediates EtOH-induced neurotoxicity in the brain through activation of Type II GC receptors. PMID:22500955

  2. Group-Level Progressive Alterations in Brain Connectivity Patterns Revealed by Diffusion-Tensor Brain Networks across Severity Stages in Alzheimer’s Disease

    PubMed Central

    Rasero, Javier; Alonso-Montes, Carmen; Diez, Ibai; Olabarrieta-Landa, Laiene; Remaki, Lakhdar; Escudero, Iñaki; Mateos, Beatriz; Bonifazi, Paolo; Fernandez, Manuel; Arango-Lasprilla, Juan Carlos; Stramaglia, Sebastiano; Cortes, Jesus M.

    2017-01-01

    Alzheimer’s disease (AD) is a chronically progressive neurodegenerative disease highly correlated to aging. Whether AD originates by targeting a localized brain area and propagates to the rest of the brain across disease-severity progression is a question with an unknown answer. Here, we aim to provide an answer to this question at the group-level by looking at differences in diffusion-tensor brain networks. In particular, making use of data from Alzheimer’s Disease Neuroimaging Initiative (ADNI), four different groups were defined (all of them matched by age, sex and education level): G1 (N1 = 36, healthy control subjects, Control), G2 (N2 = 36, early mild cognitive impairment, EMCI), G3 (N3 = 36, late mild cognitive impairment, LMCI) and G4 (N4 = 36, AD). Diffusion-tensor brain networks were compared across three disease stages: stage I (Control vs. EMCI), stage II (Control vs. LMCI) and stage III (Control vs. AD). The group comparison was performed using the multivariate distance matrix regression analysis, a technique that was born in genomics and was recently proposed to handle brain functional networks, but here applied to diffusion-tensor data. The results were threefold: First, no significant differences were found in stage I. Second, significant differences were found in stage II in the connectivity pattern of a subnetwork strongly associated to memory function (including part of the hippocampus, amygdala, entorhinal cortex, fusiform gyrus, inferior and middle temporal gyrus, parahippocampal gyrus and temporal pole). Third, a widespread disconnection across the entire AD brain was found in stage III, affecting more strongly the same memory subnetwork appearing in stage II, plus the other new subnetworks, including the default mode network, medial visual network, frontoparietal regions and striatum. Our results are consistent with a scenario where progressive alterations of connectivity arise as the disease severity increases and provide the brain areas possibly involved in such a degenerative process. Further studies applying the same strategy to longitudinal data are needed to fully confirm this scenario. PMID:28736521

  3. Levels of detail analysis of microwave scattering from human head models for brain stroke detection

    PubMed Central

    2017-01-01

    In this paper, we have presented a microwave scattering analysis from multiple human head models. This study incorporates different levels of detail in the human head models and its effect on microwave scattering phenomenon. Two levels of detail are taken into account; (i) Simplified ellipse shaped head model (ii) Anatomically realistic head model, implemented using 2-D geometry. In addition, heterogenic and frequency-dispersive behavior of the brain tissues has also been incorporated in our head models. It is identified during this study that the microwave scattering phenomenon changes significantly once the complexity of head model is increased by incorporating more details using magnetic resonance imaging database. It is also found out that the microwave scattering results match in both types of head model (i.e., geometrically simple and anatomically realistic), once the measurements are made in the structurally simplified regions. However, the results diverge considerably in the complex areas of brain due to the arbitrary shape interface of tissue layers in the anatomically realistic head model. After incorporating various levels of detail, the solution of subject microwave scattering problem and the measurement of transmitted and backscattered signals were obtained using finite element method. Mesh convergence analysis was also performed to achieve error free results with a minimum number of mesh elements and a lesser degree of freedom in the fast computational time. The results were promising and the E-Field values converged for both simple and complex geometrical models. However, the E-Field difference between both types of head model at the same reference point differentiated a lot in terms of magnitude. At complex location, a high difference value of 0.04236 V/m was measured compared to the simple location, where it turned out to be 0.00197 V/m. This study also contributes to provide a comparison analysis between the direct and iterative solvers so as to find out the solution of subject microwave scattering problem in a minimum computational time along with memory resources requirement. It is seen from this study that the microwave imaging may effectively be utilized for the detection, localization and differentiation of different types of brain stroke. The simulation results verified that the microwave imaging can be efficiently exploited to study the significant contrast between electric field values of the normal and abnormal brain tissues for the investigation of brain anomalies. In the end, a specific absorption rate analysis was carried out to compare the ionizing effects of microwave signals to different types of head model using a factor of safety for brain tissues. It is also suggested after careful study of various inversion methods in practice for microwave head imaging, that the contrast source inversion method may be more suitable and computationally efficient for such problems. PMID:29177115

  4. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood-Brain Barrier on (18)F-2-Fluoro-2-Deoxy-D-glucose ( (18)F-FDG) Brain Kinetics.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Goutal, Sébastien; Gervais, Philippe; Valette, Héric; Scherrmann, Jean-Michel; Bottlaender, Michel; Cisternino, Salvatore

    2015-05-01

    The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.

  5. A standardized Hippophae extract (SBL-1) counters neuronal tissue injuries and changes in neurotransmitters: implications in radiation protection.

    PubMed

    Bala, Madhu; Gupta, Vanita; Prasad, Jagdish

    2017-12-01

    Effects of a radioprotective, standardized leaf extract (code SBL-1) from traditional medicinal plant, sea buckthorn [Hippophae rhamnoides L. (Elaeagnaceae)], on neurotransmitters and brain injuries in rats showing radiation-induced conditioned taste aversion (CTA), are not known. Understanding CTA in rats is important because its process is considered parallel to nausea and vomiting in humans. This study investigated the levels of neurotransmitters, antioxidant defences and histological changes in rats showing radiation CTA, and their modification by SBL-1. The inbred male Sprague-Dawley rats (age 65 days, weighing 190 ± 10 g) were used. Saccharin-preferring rats were selected using standard procedure and divided into groups. Group I (untreated control) was administered sterile water, group II was 60 Co-γ-irradiated (2 Gy), and group III was administered SBL-1 before irradiation. Observations were recorded up to day 5. Irradiation (2 Gy) caused (i) non-recoverable CTA (≥ 64.7 ± 5.0%); (ii) degenerative changes in cerebral cortex, amygdala and hippocampus; (iii) increases in brain dopamine (DA, 63.4%), norepinephrine (NE, 157%), epinephrine (E, 233%), plasma NE (103%) and E (160%); and (iv) decreases in brain superoxide dismutase (67%), catalase (60%) and glutathione (51%). SBL-1 treatment (12 mg/kg body weight) 30 min before irradiation (i) countered brain injuries, (ii) reduced CTA (38.7 ± 3.0%, day 1) and (iii) normalized brain DA, NE, E, superoxide dismutase, catalase and CTA from day 3 onwards. Radiation CTA was coupled with brain injuries, disturbances in neurotransmitters and antioxidant defences. SBL-1 pretreatment countered these disturbances, indicating neuroprotective action.

  6. Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats.

    PubMed

    Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas

    2014-11-01

    Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome.

  7. Blockade of Central Angiotensin II AT1 Receptor Protects the Brain from Ischemia/Reperfusion Injury in Normotensive Rats

    PubMed Central

    Panahpour, Hamdolah; Nekooeian, Ali Akbar; Dehghani, Gholam Abbas

    2014-01-01

    Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats. Methods: In this experimental study, 48 male Sprague-Dawley rats were randomly divided into four groups (n=12). Sham group, the control ischemic group, and two ischemic groups received candesartan at doses of 0.1 or 0.5 mg/kg at one hour before ischemia. Transient focal cerebral ischemia was induced by 60 minutes occlusion of the middle cerebral artery, followed by 24 h reperfusion. The neurological deficit score was evaluated at the end of the reperfusion period. The total cortical and striatal infarct volumes were determined using triphenyltetrazolium chloride staining technique. Tissue swelling was calculated for the investigation of ischemic brain edema formation. Results: In comparison with the control ischemic group, AT1 receptor blockade with both doses of candesartan (0.1 or 0.5 mg/kg) significantly improved neurological deficit and lowered cortical and striatal infarct sizes. In addition, pretreatment with candesartan significantly reduced ischemia induced tissue swelling. Conclusion: Angiotensin II by stimulating AT1 receptors, participates in ischemia-reperfusion injuries and edema formation. AT1 receptor blockade with candesartan decreased ischemic brain injury and edema and improved neurological outcome. PMID:25429176

  8. Region-specific expression of brain-derived neurotrophic factor splice variants in morphine conditioned place preference in mice.

    PubMed

    Meng, Min; Zhao, Xinhan; Dang, Yonghui; Ma, Jingyuan; Li, Lixu; Gu, Shanzhi

    2013-06-26

    It is well established that brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain plasticity-related processes, such as learning, memory and drug addiction. However, changes in expression of BDNF splice variants after acquisition, extinction and reinstatement of cue-elicited morphine seeking behavior have not yet been investigated. Real-time PCR was used to assess BDNF splice variants (I, II, IV and VI) in various brain regions during acquisition, extinction and reinstatement of morphine-conditioned place preference (CPP) in mice. Repeated morphine injections (10mg/kg, i.p.) increased expression of BDNF splice variants II, IV and VI in the hippocampus, caudate putamen (CPu) and nucleus accumbens (NAcc). Levels of BDNF splice variants decreased after extinction training and continued to decrease during reinstatement induced by a morphine priming injection (10mg/kg, i.p.). However, after reinstatement induced by exposure to 6 min of forced swimming (FS), expression of BDNF splice variants II, IV and VI was increased in the hippocampus, CPu, NAcc and prefrontal cortex (PFC). After reinstatement induced by 40 min of restraint, expression of BDNF splice variants was increased in PFC. These results show that exposure to either morphine or acute stress can induce reinstatement of drug-seeking, but expression of BDNF splice variants is differentially affected by chronic morphine and acute stress. Furthermore, BDNF splice variants II, IV and VI may play a role in learning and memory for morphine addiction in the hippocampus, CPu and NAcc. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. [Influence of n-hexane on vascular endothelial active substances in brain tissue in mice].

    PubMed

    Lin, L; Zhang, Z Q; Zhang, C Z

    2017-01-20

    Objective: To investigate the influence of n - hexane on vascular endothelial active substances in brain tissue in mice and its significance. Methods: A total of 48 healthy Kunming mice were randomly divided into high - dose exposure group, middle - dose exposure group, low - dose exposure group, and control group, with 12 mice in each group. All groups except the control group were exposed to n - hexane via static inhalation (0.035 g/L, 0.018 g/L, and 0.009 g/L for the high - , middle - , and low - dose exposure groups, respectively) 4 hours a day for 21 days. the mice in the control groups were not exposed to n - hexane. After the exposure, the lev-els of endothelin - 1 (ET - 1) , nitric oxide (NO) , and angiotensin II (Ang II) in brain tissue were measured in all groups. Results: There were significant differences in the levels of ET - 1, NO, and Ang II between the three ex-posure groups and the control group ( P <0.05). Compared with the control group, the high - and middle - dose expo-sure group had significant increases in the levels of ET - 1 and Ang II and the high - dose exposure group had a sig-nificant reduction in the level of NO ( P <0.05 or P <0.01). Conclusion: n - Hexane can affect the vascular endothe-lial active substances in brain tissue in mice, and the changes and imbalance in vascular endothelial active sub-stances may be one of the reasons for central nervous system impairment caused by n - hexane.

  10. Impact of P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) on the Brain Distribution of a Novel BRAF Inhibitor: Vemurafenib (PLX4032)

    PubMed Central

    Mittapalli, Rajendar K.; Vaidhyanathan, Shruthi; Sane, Ramola

    2012-01-01

    Vemurafenib [N-(3-{[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]carbonyl}-2,4-difluorophenyl)propane-1-sulfonamide(PLX4032)] is a novel small-molecule BRAF inhibitor, recently approved by the Food and Drug Administration for the treatment of patients with metastatic melanoma with a BRAFV600E mutation. The objective of this study was to investigate the role of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in the distribution of vemurafenib to the central nervous system. In vitro studies conducted in transfected Madin-Darby canine kidney II cells show that the intracellular accumulation of vemurafenib is significantly restricted because of active efflux by P-gp and BCRP. Bidirectional flux studies indicated greater transport in the basolateral-to-apical direction than the apical-to-basolateral direction because of active efflux by P-gp and BCRP. The selective P-gp and BCRP inhibitors zosuquidar and (3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino(1′,2′:1,6)pyrido(3,4-b)indole-3-propanoic acid-1,1-dimethylethyl ester (Ko143) were able to restore the intracellular accumulation and bidirectional net flux of vemurafenib. The in vivo studies revealed that the brain distribution coefficient (area under the concentration time profile of brain/area under the concentration time profile of plasma) of vemurafenib was 0.004 in wild-type mice. The steady-state brain-to-plasma ratio of vemurafenib was 0.035 ± 0.009 in Mdr1a/b(−/−) mice, 0.009 ± 0.006 in Bcrp1(−/−) mice, and 1.00 ± 0.19 in Mdr1a/b(−/−)Bcrp1(−/−) mice compared with 0.012 ± 0.004 in wild-type mice. These data indicate that the brain distribution of vemurafenib is severely restricted at the blood-brain barrier because of active efflux by both P-gp and BCRP. This finding has important clinical significance given the ongoing trials examining the efficacy of vemurafenib in brain metastases of melanoma. PMID:22454535

  11. Comparison of stereotactic radiosurgery (SRS) alone and whole brain radiotherapy (WBRT) plus a stereotactic boost (WBRT+SRS) for one to three brain metastases.

    PubMed

    Rades, Dirk; Kueter, Jan-Dirk; Hornung, Dagmar; Veninga, Theo; Hanssens, Patrick; Schild, Steven E; Dunst, Juergen

    2008-12-01

    The best available treatment of patients with one to three brain metastases is still unclear. This study compared the results of stereotactic radiosurgery (SRS) alone and whole brain radiotherapy (WBRT) plus SRS (WBRT+SRS). Survival (OS), intracerebral control (IC), and local control of treated metastases (LC) were retrospectively analyzed in 144 patients receiving SRS alone (n=93) or WBRT+SRS (n=51). Eight additional potential prognostic factors were evaluated: age, gender, Eastern Cooperative Oncology Group performance score (ECOG-PS), tumor type, number of brain metastases, extracerebral metastases, recursive partitioning analysis (RPA) class, and interval from tumor diagnosis to irradiation. Subgroup analyses were performed for RPA class I and II patients. 1-year-OS was 53% after SRS and 56% after WBRT+SRS (p=0.24). 1-year-IC rates were 51% and 66% (p=0.015), respectively. 1-year-LC rates were 66% and 87% (p=0.003), respectively. On multivariate analyses, OS was associated with age (p=0.004), ECOG-PS (p=0.005), extracerebral metastases (p<0.001), RPA class (p<0.001), and interval from tumor diagnosis to irradiation (p<0.001). IC was associated with interval from tumor diagnosis to irradiation (p=0.004) and almost with treatment (p=0.09), and LC with treatment (p=0.026) and almost with interval (p=0.08). The results of the subgroup analyses were similar to those of the entire cohort. The increase in IC was stronger in RPA class I patients. WBRT+SRS resulted in better IC and LC but not better OS than SRS alone. Because also IC and LC are important end-points, additional WBRT appears justified in patients with one to three brain metastases, in particular in RPA class I patients.

  12. Pacific white shrimp (Litopenaeus vannamei) vitellogenesis-inhibiting hormone (VIH) is predominantly expressed in the brain and negatively regulates hepatopancreatic vitellogenin (VTG) gene expression.

    PubMed

    Chen, Ting; Zhang, Lv-Ping; Wong, Nai-Kei; Zhong, Ming; Ren, Chun-Hua; Hu, Chao-Qun

    2014-03-01

    Ovarian maturation in crustaceans is temporally orchestrated by two processes: oogenesis and vitellogenesis. The peptide hormone vitellogenesis-inhibiting hormone (VIH), by far the most potent negative regulator of crustacean reproduction known, critically modulates crustacean ovarian maturation by suppressing vitellogenin (VTG) synthesis. In this study, cDNA encoding VIH was cloned from the eyestalk of Pacific white shrimp, Litopenaeus vannamei, a highly significant commercial culture species. Phylogenetic analysis suggests that L. vannamei VIH (lvVIH) can be classified as a member of the type II crustacean hyperglycemic hormone family. Northern blot and RT-PCR results reveal that both the brain and eyestalk were the major sources for lvVIH mRNA expression. In in vitro experiments on primary culture of shrimp hepatopancreatic cells, it was confirmed that some endogenous inhibitory factors existed in L. vannamei hemolymph, brain, and eyestalk that suppressed hepatopancreatic VTG gene expression. Purified recombinant lvVIH protein was effective in inhibiting VTG mRNA expression in both in vitro primary hepatopancreatic cell culture and in vivo injection experiments. Injection of recombinant VIH could also reverse ovarian growth induced by eyestalk ablation. Furthermore, unilateral eyestalk ablation reduced the mRNA level of lvVIH in the brain but not in the remaining contralateral eyestalk. Our study, as a whole, provides new insights on VIH regulation of shrimp reproduction: 1) the brain and eyestalk are both important sites of VIH expression and therefore possible coregulators of hepatopancreatic VTG mRNA expression and 2) eyestalk ablation could increase hepatopancreatic VTG expression by transcriptionally abolishing eyestalk-derived VIH and diminishing brain-derived VIH.

  13. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors.

    PubMed

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A

    2015-11-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  14. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    PubMed Central

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A.

    2015-01-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional. PMID:26644943

  15. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs

    PubMed Central

    Muguruza, Carolina; Meana, J. Javier; Callado, Luis F.

    2016-01-01

    Schizophrenia is a chronic psychiatric disorder which substantially impairs patients’ quality of life. Despite the extensive research in this field, the pathophysiology and etiology of schizophrenia remain unknown. Different neurotransmitter systems and functional networks have been found to be affected in the brain of patients with schizophrenia. In this context, postmortem brain studies as well as genetic assays have suggested alterations in Group II metabotropic glutamate receptors (mGluRs) in schizophrenia. Despite many years of drug research, several needs in the treatment of schizophrenia have not been addressed sufficiently. In fact, only 5–10% of patients with schizophrenia successfully achieve a full recovery after treatment. In recent years mGluRs have turned up as novel targets for the design of new antipsychotic medications for schizophrenia. Concretely, Group II mGluRs are of particular interest due to their regulatory role in neurotransmission modulating glutamatergic activity in brain synapses. Preclinical studies have demonstrated that orthosteric Group II mGluR agonists exhibit antipsychotic-like properties in animal models of schizophrenia. However, when these compounds have been tested in human clinical studies with schizophrenic patients results have been inconclusive. Nevertheless, it has been recently suggested that this apparent lack of efficacy in schizophrenic patients may be related to previous exposure to atypical antipsychotics. Moreover, the role of the functional heterocomplex formed by 5-HT2A and mGlu2 receptors in the clinical response to Group II mGluR agonists is currently under study. PMID:27242534

  16. Emergence of Pathogenic Coronaviruses in Cats by Homologous Recombination between Feline and Canine Coronaviruses

    PubMed Central

    Terada, Yutaka; Matsui, Nobutaka; Noguchi, Keita; Kuwata, Ryusei; Shimoda, Hiroshi; Soma, Takehisa; Mochizuki, Masami; Maeda, Ken

    2014-01-01

    Type II feline coronavirus (FCoV) emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV). In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3′-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5′-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently. PMID:25180686

  17. Dynamics of regional brain activity in epilepsy: a cross-disciplinary study on both intracranial and scalp-recorded epileptic seizures.

    PubMed

    Minadakis, George; Ventouras, Errikos; Gatzonis, Stylianos D; Siatouni, Anna; Tsekou, Hara; Kalatzis, Ioannis; Sakas, Damianos E; Stonham, John

    2014-04-01

    Recent cross-disciplinary literature suggests a dynamical analogy between earthquakes and epileptic seizures. This study extends the focus of inquiry for the applicability of models for earthquake dynamics to examine both scalp-recorded and intracranial electroencephalogram recordings related to epileptic seizures. First, we provide an updated definition of the electric event in terms of magnitude and we focus on the applicability of (i) a model for earthquake dynamics, rooted in a nonextensive Tsallis framework, (ii) the traditional Gutenberg and Richter law and (iii) an alternative method for the magnitude-frequency relation for earthquakes. Second, we apply spatiotemporal analysis in terms of nonextensive statistical physics and we further examine the behavior of the parameters included in the nonextensive formula for both types of electroencephalogram recordings under study. We confirm the previously observed power-law distribution, showing that the nonextensive formula can adequately describe the sequences of electric events included in both types of electroencephalogram recordings. We also show the intermittent behavior of the epileptic seizure cycle which is analogous to the earthquake cycles and we provide evidence of self-affinity of the regional electroencephalogram epileptic seizure activity. This study may provide a framework for the analysis and interpretation of epileptic brain activity and other biological phenomena with similar underlying dynamical mechanisms.

  18. On High and Low Starting Frequencies of Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Sharma, J.; Mittal, N.

    2017-06-01

    We have studied the characteristics of type II radio burst during the period May 1996 to March 2015, for the solar cycle 23 and 24, observed by WIND/WAVES radio instrument. A total of 642 events were recorded by the instrument during the study period. We have divided the events with two starting frequency range (high > 1 MHz; low ≤ 1MHz) as type II1 (i.e., 1-16 MHz) radio burst and type II2 (i.e., 20 KHz - 1020 KHz) radio burst which constitute the DH and km type II radio burst observed by WIND spacecraft, and determined their time and frequency characteristics. The mean drift rate of type II1 and type II2 radio bursts is 29.76 × 10-4 MHz/s and 0.17 × 10-4 MHz/s respectively, which shows that type II1 with high start frequency hase larger drift rate than the type II2 with low starting frequencies. We have also reported that the start frequency and the drift rate of type II1 are in good correlation, with a linear correlation coefficient of 0.58.

  19. Relating Structure and Function in the Human Brain: Relative Contributions of Anatomy, Stationary Dynamics, and Non-stationarities

    PubMed Central

    Messé, Arnaud; Rudrauf, David; Benali, Habib; Marrelec, Guillaume

    2014-01-01

    Investigating the relationship between brain structure and function is a central endeavor for neuroscience research. Yet, the mechanisms shaping this relationship largely remain to be elucidated and are highly debated. In particular, the existence and relative contributions of anatomical constraints and dynamical physiological mechanisms of different types remain to be established. We addressed this issue by systematically comparing functional connectivity (FC) from resting-state functional magnetic resonance imaging data with simulations from increasingly complex computational models, and by manipulating anatomical connectivity obtained from fiber tractography based on diffusion-weighted imaging. We hypothesized that FC reflects the interplay of at least three types of components: (i) a backbone of anatomical connectivity, (ii) a stationary dynamical regime directly driven by the underlying anatomy, and (iii) other stationary and non-stationary dynamics not directly related to the anatomy. We showed that anatomical connectivity alone accounts for up to 15% of FC variance; that there is a stationary regime accounting for up to an additional 20% of variance and that this regime can be associated to a stationary FC; that a simple stationary model of FC better explains FC than more complex models; and that there is a large remaining variance (around 65%), which must contain the non-stationarities of FC evidenced in the literature. We also show that homotopic connections across cerebral hemispheres, which are typically improperly estimated, play a strong role in shaping all aspects of FC, notably indirect connections and the topographic organization of brain networks. PMID:24651524

  20. Zoledronic acid inhibits macrophage/microglia-assisted breast cancer cell invasion

    PubMed Central

    Rietkötter, Eva; Menck, Kerstin; Bleckmann, Annalen; Farhat, Katja; Schaffrinski, Meike; Schulz, Matthias; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The bisphosphonate zoledronic acid (ZA) significantly reduces complications of bone metastasis by inhibiting resident macrophages, the osteoclasts. Recent clinical trials indicate additional anti-metastatic effects of ZA outside the bone. However, which step of metastasis is influenced and whether this is due to direct toxicity on cancer cells or inhibition of the tumor promoting microenvironment, is unknown. In particular, tumor-associated and resident macrophages support each step of organ metastasis and could be a crucial target of ZA. Thus, we comparatively investigate the ZA effects on: i) different types of macrophages, ii) on breast cancer cells but also iii) on macrophage-induced invasion. We demonstrate that ZA concentrations reflecting the plasma level affected viability of human macrophages, murine bone marrow-derived macrophages as well as their resident brain equivalents, the microglia, while it did not influence the tested cancer cells. However, the effects on the macrophages subsequently reduced the macrophage/microglia-induced invasiveness of the cancer cells. In line with this, manipulation of microglia by ZA in organotypic brain slice cocultures reduced the tissue invasion by carcinoma cells. The characterization of human macrophages after ZA treatment revealed a phenotype/response shift, in particular after external stimulation. In conclusion, we show that therapeutic concentrations of ZA affect all types of macrophages but not the cancer cells. Thus, anti-metastatic effects of ZA are predominantly caused by modulating the microenvironment. Most importantly, our findings demonstrate that ZA reduced microglia-assisted invasion of cancer cells to the brain tissue, indicating a potential therapeutic role in the prevention of cerebral metastasis. PMID:24036536

  1. The DSM-III concept of organic brain syndrome.

    PubMed

    Fox, H A

    1983-04-01

    The shortcomings of the DSM-II classification of organic brain syndrome are described, including the limitation of the concept to the global brain disorders; the idiosyncratic use of the terms acute and chronic; and the unsatisfactory categories psychotic and nonpsychotic. Organic brain syndrome is defined according to DSM-III and the 10 separate brain syndrome categories are outlined. The diagnostic criteria for each category are listed and the general principles underlying the criteria are described. Finally, the goals of the authors' of DSM-III to enhance diagnostic reliability and validity are discussed and the impact of the new nomenclature is assessed.

  2. Brain/MINDS: brain-mapping project in Japan

    PubMed Central

    Okano, Hideyuki; Miyawaki, Atsushi; Kasai, Kiyoto

    2015-01-01

    There is an emerging interest in brain-mapping projects in countries across the world, including the USA, Europe, Australia and China. In 2014, Japan started a brain-mapping project called Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS). Brain/MINDS aims to map the structure and function of neuronal circuits to ultimately understand the vast complexity of the human brain, and takes advantage of a unique non-human primate animal model, the common marmoset (Callithrix jacchus). In Brain/MINDS, the RIKEN Brain Science Institute acts as a central institute. The objectives of Brain/MINDS can be categorized into the following three major subject areas: (i) structure and functional mapping of a non-human primate brain (the marmoset brain); (ii) development of innovative neurotechnologies for brain mapping; and (iii) human brain mapping; and clinical research. Brain/MINDS researchers are highly motivated to identify the neuronal circuits responsible for the phenotype of neurological and psychiatric disorders, and to understand the development of these devastating disorders through the integration of these three subject areas. PMID:25823872

  3. Schizophrenia Risk Variation in the NRG1 gene Exerts Effects on NRG1-IV Splicing During Fetal and Early Postnatal Human Neocortical Development

    PubMed Central

    Paterson, Clare; Wang, Yanhong; Kleinman, Joel E.; Law, Amanda J.

    2015-01-01

    OBJECTIVE Neuregulin 1 (NRG1) is a multifunctional neurotrophin and a critical mediator of neurodevelopment and risk for schizophrenia. NRG1 undergoes extensive alternative splicing, and association of brain NRG1-IV isoform expression with the schizophrenia-risk polymorphism, rs6994992, is a potential molecular mechanism of risk. Novel splice variants of NRG1-IV (NRG1-IVNV), with predicted unique signaling capabilities, have been cloned in fetal brain. Because the developmental expression and genetic regulation of NRG1-IVNV in human brain and relationship to schizophrenia is unknown, the authors investigated the temporal dynamics of NRG1-IVNV transcription, compared to the major NRG1 isoforms (types I-IV), across human prenatal and postnatal prefrontal cortical development and examined the association of rs6994992 with NRG1-IVNV expression. METHOD NRG1, types I-IV and NRG1-IVNV isoform expression was evaluated using quantitative real-time PCR in prefrontal cortex during human fetal brain development (14-39 weeks gestation: N=41) and postnatally through aging (age range 0-83 years: N=195). The association of rs6994992 genotype with NRG1-IVNV expression was determined. In-vitro assays were performed to determine the subcellular distribution and proteolytic processing of NRG1-IVNV isoforms. RESULTS Expression of NRG1, types I, II, III was temporally regulated during human prenatal and postnatal neocortical development and the trajectory of NRG1-IVNV was unique, being expressed from 16 weeks gestation until 3 years of age, after which it was undetectable. NRG1-IVNVs expression was associated with rs6994992 genotype, whereby homozygosity for the schizophrenia-risk allele (T) conferred lower cortical NRG1-IVNV levels. Finally, in-vitro cellular assays demonstrate that NRG1-IVNV is a novel nuclear enriched, truncated NRG1 protein that is resistant to proteolytic processing. CONCLUSION This study provides the first quantitative map of NRG1 isoform expression during human neocortical development and aging and identifies a potential mechanism of early developmental risk for schizophrenia at the NRG1 locus, involving a novel class of NRG1 proteins. PMID:24935406

  4. Interaction of “readthrough” acetylcholinesterase with RACK1 and PKCβII correlates with intensified fear-induced conflict behavior

    PubMed Central

    Birikh, Klara R.; Sklan, Ella H.; Shoham, Shai; Soreq, Hermona

    2003-01-01

    Behavioral reactions to stress are altered in numerous psychiatric and neurodegenerative syndromes, but the corresponding molecular processes and signal transduction pathways are yet unknown. Here, we report that, in mice, the stress-induced splice variant of acetylcholinesterase, AChE-R, interacts intraneuronally with the scaffold protein RACK1 and through it, with its target, protein kinase CβII (PKCβII), which is known to be involved in fear conditioning. In stress-responsive brain regions of normal FVB/N mice, the mild stress of i.p. injection increased AChE and PKCβII levels in a manner suppressible by antisense prevention of AChE-R accumulation. Injection stress also prolonged conflict between escape and hiding in the emergence into an open field test. Moreover, transgenic FVB/N mice overexpressing AChE-R displayed prolonged delay to emerge into another field (fear-induced behavioral inhibition), associated with chronically intensified neuronal colabeling of RACK1 and PKCβII in stress-responsive brain regions. These findings are consistent with the hypothesis that stress-associated changes in cholinergic gene expression regulate neuronal PKCβII functioning, promoting fear-induced conflict behavior after stress. PMID:12509514

  5. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children.

    PubMed

    Lind, Annika; Parkkola, Riitta; Lehtonen, Liisa; Munck, Petriina; Maunu, Jonna; Lapinleimu, Helena; Haataja, Leena

    2011-08-01

    Altered brain volumes and associations between volumes and developmental outcomes have been reported in prematurely born children. To assess which regional brain volumes are different in very low birth weight (VLBW) children without neurodevelopmental impairments ([NDI] cerebral palsy, hearing loss, blindness and significantly delayed cognitive performance) compared with VLBW children with NDI, and to evaluate the association between regional brain volumes at term-equivalent age and cognitive development and neurological performance at a corrected age of 2 years. The study group consisted of a regional cohort of 164 VLBW children, divided into one group of children without NDI (n = 148) and one group of children with NDI (n = 16). Brain (MRI) was performed at term-equivalent age, from which brain volumes were manually analysed. Cognitive development was assessed with the Bayley Scales of Infant Development II (BSID-II), and neurological performance with the Hammersmith Infant Neurological Examination at the corrected age of 2 years. The volumes of total brain tissue, cerebrum, frontal lobes, basal ganglia and thalami, and cerebellum were significantly smaller, and the volume of the ventricles significantly larger, in the children with NDI than in those without NDI. Even in children without NDI, a smaller cerebellar volume was significantly correlated with poor neurological performance at 2 years of corrected age. Volumetric analysis at brain MRI can provide an additional parameter for early prediction of outcome in VLBW children.

  6. What is a representative brain? Neuroscience meets population science.

    PubMed

    Falk, Emily B; Hyde, Luke W; Mitchell, Colter; Faul, Jessica; Gonzalez, Richard; Heitzeg, Mary M; Keating, Daniel P; Langa, Kenneth M; Martz, Meghan E; Maslowsky, Julie; Morrison, Frederick J; Noll, Douglas C; Patrick, Megan E; Pfeffer, Fabian T; Reuter-Lorenz, Patricia A; Thomason, Moriah E; Davis-Kean, Pamela; Monk, Christopher S; Schulenberg, John

    2013-10-29

    The last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain-behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective--population neuroscience--that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas.

  7. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity

    PubMed Central

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623

  8. Yoga Therapy in Treating Patients With Malignant Brain Tumors

    ClinicalTrials.gov

    2017-07-27

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Meningioma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Choroid Plexus Tumor; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade II Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Oligodendroglioma; Adult Papillary Meningioma; Adult Pineal Gland Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Recurrent Adult Brain Tumor

  9. [Effect of noradrenaline and angiotensin II on the brain and kidney blood supply with changes in systemic arterial pressure].

    PubMed

    Beketov, A I; Korneliuk, I K

    1981-01-01

    Hydrogen clearance was used in experiments on anesthetized cats to demonstrate that intravenous infusions of noradrenaline induced an increase in cerebral blood supply and reduction of renal blood flow both in anesthetized animals and in the presence of hypotension. In these conditions, angiotensin II lowered the cerebral and renal blood flow. Hypotension enhanced the reactions of the cerebral and renal blood flow to the action of vasopressor agents. The intensity of the reactions was consistent with the degree of vascular autocontrol preservation in the brain and kidneys.

  10. Determination of Serotonin and Dopamine Metabolites in Human Brain Microdialysis and Cerebrospinal Fluid Samples by UPLC-MS/MS: Discovery of Intact Glucuronide and Sulfate Conjugates

    PubMed Central

    Suominen, Tina; Uutela, Päivi; Ketola, Raimo A.; Bergquist, Jonas; Hillered, Lars; Finel, Moshe; Zhang, Hongbo; Laakso, Aki; Kostiainen, Risto

    2013-01-01

    An UPLC-MS/MS method was developed for the determination of serotonin (5-HT), dopamine (DA), their phase I metabolites 5-HIAA, DOPAC and HVA, and their sulfate and glucuronide conjugates in human brain microdialysis samples obtained from two patients with acute brain injuries, ventricular cerebrospinal fluid (CSF) samples obtained from four patients with obstructive hydrocephalus, and a lumbar CSF sample pooled mainly from patients undergoing spinal anesthesia in preparation for orthopedic surgery. The method was validated by determining the limits of detection and quantification, linearity, repeatability and specificity. The direct method enabled the analysis of the intact phase II metabolites of 5-HT and DA, without hydrolysis of the conjugates. The method also enabled the analysis of the regioisomers of the conjugates, and several intact glucuronide and sulfate conjugates were identified and quantified for the first time in the human brain microdialysis and CSF samples. We were able to show the presence of 5-HIAA sulfate, and that dopamine-3-O-sulfate predominates over dopamine-4-O-sulfate in the human brain. The quantitative results suggest that sulfonation is a more important phase II metabolism pathway than glucuronidation in the human brain. PMID:23826355

  11. Altered blood-brain barrier permeability in rats with prehepatic portal hypertension turns to normal when portal pressure is lowered

    PubMed Central

    Eizayaga, Francisco; Scorticati, Camila; Prestifilippo, Juan P; Romay, Salvador; Fernandez, Maria A; Castro, José L; Lemberg, Abraham; Perazzo, Juan C

    2006-01-01

    AIM: To study the blood-brain barrier integrity in prehepatic portal hypertensive rats induced by partial portal vein ligation, at 14 and 40 d after ligation when portal pressure is spontaneously normalized. METHODS: Adult male Wistar rats were divided into four groups: Group I: Sham14d , sham operated; Group II: PH14d , portal vein stenosis; (both groups were used 14 days after surgery); Group III: Sham40d, Sham operated and Group IV: PH40d Portal vein stenosis (Groups II and IV used 40 d after surgery). Plasma ammonia, plasma and cerebrospinal fluid protein and liver enzymes concentrations were determined. Trypan and Evans blue dyes, systemically injected, were investigated in hippocampus to study blood-brain barrier integrity. Portal pressure was periodically recorded. RESULTS: Forty days after stricture, portal pressure was normalized, plasma ammonia was moderately high, and both dyes were absent in central nervous system parenchyma. All other parameters were reestablished. When portal pressure was normalized and ammonia level was lowered, but not normal, the altered integrity of blood-brain barrier becomes reestablished. CONCLUSION: The impairment of blood-brain barrier and subsequent normalization could be a mechanism involved in hepatic encephalopathy reversibility. Hemodynamic changes and ammonia could trigger blood-brain barrier alterations and its reestablishment. PMID:16552803

  12. Immunohistochemical analysis of cyclooxygenase-2 and brain fatty acid binding protein expression in grades I-II meningiomas: correlation with tumor grade and clinical outcome after radiotherapy.

    PubMed

    Kang, Hyun-Cheol; Kim, Il Han; Park, Charn Il; Park, Sung-Hye

    2014-10-01

    This study was done to evaluate the association of cyclooxygenase 2 (COX-2) and brain fatty acid binding protein (BFABP) with tumor grade and outcome of grades I-II meningiomas treated with radiotherapy. From 1996 to 2008, 40 patients with intracranial grades I-II meningiomas were treated with radiotherapy. Immunohistochemical staining for COX-2 and BFABP were performed on formalin-fixed paraffin-embedded tissues. COX-2 expression was significantly associated with BFABP status and both COX-2 (P < 0.01) and BFABP (P = 0.01) expression were stronger in the grade II meningiomas than in grade I tumors. Among the clinicopathologic factors, age and COX-2 status were prognostic in progression-free survival. Patients with moderate or strong COX-2 expression had worse outcome than those with negative or weak COX-2 expression (P = 0.03) after controlling for potential confounders. Our results suggest that the molecular biomarker COX-2 has prognostic significance in intracranial grades I-II meningiomas following radiotherapy. © 2014 Japanese Society of Neuropathology.

  13. Proportion of collagen type II in the extracellular matrix promotes the differentiation of human adipose-derived mesenchymal stem cells into nucleus pulposus cells.

    PubMed

    Tao, Yiqing; Zhou, Xiaopeng; Liu, Dongyu; Li, Hao; Liang, Chengzhen; Li, Fangcai; Chen, Qixin

    2016-01-01

    During degeneration process, the catabolism of collagen type II and anabolism of collagen type I in nucleus pulposus (NP) may influence the bioactivity of transplanted cells. Human adipose-derived mesenchymal stem cells (hADMSCs) were cultured as a micromass or in a series of gradual proportion hydrogels of a mix of collagen types I and II. Cell proliferation and cytotoxicity were detected using CCK-8 and LDH assays respectively. The expression of differentiation-related genes and proteins, including SOX9, aggrecan, collagen type I, and collagen type II, was examined using RT-qPCR and Western blotting. Novel phenotypic genes were also detected by RT-qPCR and western blotting. Alcian blue and dimethylmethylene blue assays were used to investigate sulfate proteoglycan expression, and PI3K/AKT, MAPK/ERK, and Smad signaling pathways were examined by Western blotting. The results showed collagen hydrogels have good biocompatibility, and cell proliferation increased after collagen type II treatment. Expressions of SOX9, aggrecan, and collagen type II were increased in a collagen type II dependent manner. Sulfate proteoglycan synthesis increased in proportion to collagen type II concentration. Only hADMSCs highly expressed NP cell marker KRT19 in collagen type II culture. Additionally, phosphorylated Smad3, which is associated with phosphorylated ERK, was increased after collagen type II-stimulation. The concentration and type of collagen affect hADMSC differentiation into NP cells. Collagen type II significantly ameliorates hADMSC differentiation into NP cells and promotes extracellular matrix synthesis. Therefore, anabolism of collagen type I and catabolism of type II may attenuate the differentiation and biosynthesis of transplanted stem cells. © 2016 International Union of Biochemistry and Molecular Biology.

  14. Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III.

    PubMed

    Juric-Sekhar, Gordana; Kapur, Raj P; Glass, Ian A; Murray, Mitzi L; Parnell, Shawn E; Hevner, Robert F

    2011-04-01

    Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria-lissencephaly.

  15. The effect of constitutive over-expression of insulin-like growth factor 1 on the cognitive function in aged mice.

    PubMed

    Hu, Ankang; Yuan, Honghua; Wu, Lianlian; Chen, Renjin; Chen, Quangang; Zhang, Tengye; Wang, Zhenzhen; Liu, Peng; Zhu, Xiaorong

    2016-01-15

    The neurotrophic factor insulin-like growth factor (IGF)-1 promotes neurogenesis in the mammalian brain and provides protection against brain injury. However, studies regarding the effects of IGF-1 on cognitive function in aged mice remain limited. We investigated the effects of overexpression of IGF-1 specifically in neural stem cells of the hippocampal dentate gyrus on the recognitive function in 18-month-old transgenic mice. Immunohistocytochemistry and Nissl staining revealed the increased population of BrdU-positive cells as well as the upregulated expression of Nestin and neuronal nuclei (NeuN), respective markers for neural progenitors and neurons, in the hippocampus of the aged IGF-1 transgenic mice versus the wild-type, suggesting that IGF-1 overexpression promotes neurogenesis. In addition, the IGF-1 receptor (IGF-1R), the phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase (ERK) were enhanced in the transgenic mice than in the wild-type. Transgenic mice also showed superior performance in the Morris water maze and step-down memory tests to their wild-type counterparts. Moreover, the learning and memory abilities of transgenic mice were significantly undermined with the blockage of CaMKII and ERK signaling pathway. Accordingly, our findings indicated that IGF-1 may mitigate the aged-associated cognitive decline via promoting neurogenesis in the hippocampus and activating CaMKII and ERK signaling by binding with IGF-1R. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Assessing Mitochondrial Bioenergetics in Isolated Mitochondria from Various Mouse Tissues Using Seahorse XF96 Analyzer.

    PubMed

    Iuso, Arcangela; Repp, Birgit; Biagosch, Caroline; Terrile, Caterina; Prokisch, Holger

    2017-01-01

    Working with isolated mitochondria is the gold standard approach to investigate the function of the electron transport chain in tissues, free from the influence of other cellular factors. In this chapter, we outline a detailed protocol to measure the rate of oxygen consumption (OCR) with the high-throughput analyzer Seahorse XF96. More importantly, this protocol wants to provide practical tips for handling many different samples at once, and take a real advantage of using a high-throughput system. As a proof of concept, we have isolated mitochondria from brain, heart, liver, muscle, kidney, and lung of a wild-type mouse, and measured basal respiration (State II), ADP-stimulated respiration (State III), non-ADP-stimulated respiration (State IV o ), and FCCP-stimulated respiration (State III u ) using respiratory substrates specific to the respiratory chain complex I (RCCI) and complex II (RCCII). Mitochondrial purification and Seahorse runs were performed in less than eight working hours.

  17. Modic changes in lumbar spine: prevalence and distribution patterns of end plate oedema and end plate sclerosis.

    PubMed

    Xu, Lei; Chu, Bin; Feng, Yang; Xu, Feng; Zou, Yue-Fen

    2016-01-01

    The purpose of this study is to evaluate the distribution of end plate oedema in different types of Modic change especially in mixed type and to analyze the presence of end plate sclerosis in various types of Modic change. 276 patients with low back pain were scanned with 1.5-T MRI. Three radiologists assessed the MR images by T1 weighted, T2 weighted and fat-saturation T2 weighted sequences and classified them according to the Modic changes. Pure oedematous end plate signal changes were classified as Modic Type I; pure fatty end plate changes were classified as Modic Type II; and pure sclerotic end plate changes as Modic Type III. A mixed feature of both Types I and II with predominant oedematous signal change is classified as Modic I-II, and a mixture of Types I and II with predominant fatty change is classified as Modic II-I. Thus, the mixed types can further be subdivided into seven subtypes: Types I-II, Types II-I, Types I-III, Types III-I, Types II-III, Types III-II and Types I-III. During the same period, 52 of 276 patients who underwent CT and MRI were retrospectively reviewed to determine end plate sclerosis. (1) End plate oedema: of the 2760 end plates (276 patients) examined, 302 end plates showed Modic changes, of which 82 end plates showed mixed Modic changes. The mixed Modic changes contain 92.7% of oedematous changes. The mixed types especially Types I-II and Types II-I made up the majority of end plate oedematous changes. (2) End plate sclerosis: 52 of 276 patients were examined by both MRI and CT. Of the 520 end plates, 93 end plates showed Modic changes, of which 34 end plates have shown sclerotic changes in CT images. 11.8% of 34 end plates have shown Modic Type I, 20.6% of 34 end plates have shown Modic Type II, 2.9% of 34 end plates have shown Modic Type III and 64.7% of 34 end plates have shown mixed Modic type. End plate oedema makes up the majority of mixed types especially Types I-II and Types II-I. The end plate sclerosis on CT images may not just mean Modic Type III but does exist in all types of Modic changes, especially in mixed Modic types, and may reflect vertebral body mineralization rather than change in the bone marrow. End plate oedema and end plate sclerosis are present in a large proportion of mixed types.

  18. Brain GLP-1/IGF-1 Signaling and Autophagy Mediate Exendin-4 Protection Against Apoptosis in Type 2 Diabetic Rats.

    PubMed

    Candeias, Emanuel; Sebastião, Inês; Cardoso, Susana; Carvalho, Cristina; Santos, Maria Sancha; Oliveira, Catarina Resende; Moreira, Paula I; Duarte, Ana I

    2018-05-01

    Type 2 diabetes (T2D) is a modern socioeconomic burden, mostly due to its long-term complications affecting nearly all tissues. One of them is the brain, whose dysfunctional intracellular quality control mechanisms (namely autophagy) may upregulate apoptosis, leading to cognitive dysfunction and Alzheimer disease (AD). Since impaired brain insulin signaling may constitute the crosslink between T2D and AD, its restoration may be potentially therapeutic herein. Accordingly, the insulinotropic anti-T2D drugs from glucagon-like peptide-1 (GLP-1) mimetics, namely, exendin-4 (Ex-4), could be a promising therapy. In line with this, we hypothesized that peripherally administered Ex-4 rescues brain intracellular signaling pathways, promoting autophagy and ultimately protecting against chronic T2D-induced apoptosis. Thus, we aimed to explore the effects of chronic, continuous, subcutaneous (s.c.) exposure to Ex-4 in brain cortical GLP-1/insulin/insulin-like growth factor-1 (IGF-1) signaling, and in autophagic and cell death mechanisms in middle-aged (8 months old), male T2D Goto-Kakizaki (GK) rats. We used brain cortical homogenates obtained from middle-aged (8 months old) male Wistar (control) and T2D GK rats. Ex-4 was continuously administered for 28 days, via s.c. implanted micro-osmotic pumps (5 μg/kg/day; infusion rate 2.5 μL/h). Peripheral characterization of the animal models was given by the standard biochemical analyses of blood or plasma, the intraperitoneal glucose tolerance test, and the heart rate. GLP-1, insulin, and IGF-1, their downstream signaling and autophagic markers were evaluated by specific ELISA kits and Western blotting. Caspase-like activities and other apoptotic markers were given by colorimetric methods and Western blotting. Chronic Ex-4 treatment attenuated peripheral features of T2D in GK rats, including hyperglycemia and insulin resistance. Furthermore, s.c. Ex-4 enhanced their brain cortical GLP-1 and IGF-1 levels, and subsequent signaling pathways. Specifically, Ex-4 stimulated protein kinase A (PKA) and phosphoinositide 3-kinase (PI3K)/Akt signaling, increasing cGMP and AMPK levels, and decreasing GSK3β and JNK activation in T2D rat brains. Moreover, Ex-4 regulated several markers for autophagy in GK rat brains (as mTOR, PI3K class III, LC3 II, Atg7, p62, LAMP-1, and Parkin), ultimately protecting against apoptosis (by decreasing several caspase-like activities and mitochondrial cytochrome c, and increasing Bcl2 levels upon T2D). Altogether, this study demonstrates that peripheral Ex-4 administration may constitute a promising therapy against the chronic complications of T2D affecting the brain.

  19. Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer's Disease.

    PubMed

    Brown, Rosalind; Lam, Alice D; Gonzalez-Sulser, Alfredo; Ying, Andrew; Jones, Mary; Chou, Robert Chang-Chih; Tzioras, Makis; Jordan, Crispin Y; Jedrasiak-Cape, Izabela; Hemonnot, Anne-Laure; Abou Jaoude, Maurice; Cole, Andrew J; Cash, Sydney S; Saito, Takashi; Saido, Takaomi; Ribchester, Richard R; Hashemi, Kevan; Oren, Iris

    2018-01-01

    Network hyperexcitability is a feature of Alzheimer' disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients. We studied network hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD, and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model expressing APP at physiological levels (APP NL/F ). We recorded continuous long-term electrocorticogram (ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report that while J20s exhibit frequent interictal spikes (IISs), APP NL/F mice do not. In J20 mice, IISs were most prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM) sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that most closely recapitulate network hyperexcitability in human AD.

  20. Circadian and Brain State Modulation of Network Hyperexcitability in Alzheimer’s Disease

    PubMed Central

    Ying, Andrew; Jones, Mary; Chou, Robert Chang-Chih; Jordan, Crispin Y.; Jedrasiak-Cape, Izabela; Abou Jaoude, Maurice; Hashemi, Kevan

    2018-01-01

    Abstract Network hyperexcitability is a feature of Alzheimer’ disease (AD) as well as numerous transgenic mouse models of AD. While hyperexcitability in AD patients and AD animal models share certain features, the mechanistic overlap remains to be established. We aimed to identify features of network hyperexcitability in AD models that can be related to epileptiform activity signatures in AD patients. We studied network hyperexcitability in mice expressing amyloid precursor protein (APP) with mutations that cause familial AD, and compared a transgenic model that overexpresses human APP (hAPP) (J20), to a knock-in model expressing APP at physiological levels (APPNL/F). We recorded continuous long-term electrocorticogram (ECoG) activity from mice, and studied modulation by circadian cycle, behavioral, and brain state. We report that while J20s exhibit frequent interictal spikes (IISs), APPNL/F mice do not. In J20 mice, IISs were most prevalent during daylight hours and the circadian modulation was associated with sleep. Further analysis of brain state revealed that IIS in J20s are associated with features of rapid eye movement (REM) sleep. We found no evidence of cholinergic changes that may contribute to IIS-circadian coupling in J20s. In contrast to J20s, intracranial recordings capturing IIS in AD patients demonstrated frequent IIS in non-REM (NREM) sleep. The salient differences in sleep-stage coupling of IIS in APP overexpressing mice and AD patients suggests that different mechanisms may underlie network hyperexcitability in mice and humans. We posit that sleep-stage coupling of IIS should be an important consideration in identifying mouse AD models that most closely recapitulate network hyperexcitability in human AD. PMID:29780880

  1. Upregulation of FLJ10540, a PI3K-association protein, in rostral ventrolateral medulla impairs brain stem cardiovascular regulation during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Chen, Chang-Han; Chang, Alice Y W; Chan, Julie Y H; Chan, Samuel H H

    2015-01-01

    FLJ10540, originally identified as a microtubule-associated protein, induces cell proliferation and migration during tumorigenesis via the formation of FLJ10540-PI3K complex and enhancement of PI3K kinase activity. Interestingly, activation of PI3K/Akt cascade, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite signaling in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, mediates the impairment of brain stem cardiovascular regulation induced by the pesticide mevinphos. We evaluated the hypothesis that upregulation of FLJ10540 in the RVLM is upstream to this repertoire of signaling cascade that underpins mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied by an increase (Phase I), followed by a decrease (Phase II) of an experimental index for baroreflex-mediated sympathetic vasomotor tone. There was augmentation in FLJ10540 mRNA in the RVLM or FLJ10540 protein in RVLM neurons, both of which were causally and temporally related to an augmentation of binding between the catalytic subunit (p110) and regulatory subunit (p85) of PI3K, phosphorylation of Akt at Thr308 site, and NOS II, superoxide or peroxynitrite level in the RVLM. Immunoneutralization of FJL10540 in the RVLM significantly antagonized those biochemical changes, and blunted the progressive hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during mevinphos intoxication. We conclude that upregulation of FLJ10540 in the RVLM elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication via activation of PI3K/Akt/NOS II/peroxynitrite signaling cascade in the RVLM. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Cerebral ischemia induced inflammatory response and altered glutaminergic function mediated through brain AT1 and not AT2 receptor.

    PubMed

    Justin, A; Divakar, S; Ramanathan, M

    2018-06-01

    In the present study, we investigated the effects of angiotensin (Ang II) receptor blockers in cerebral ischemia by administration of telmisartan (AT 1 blocker) and/or PD123319 (AT 2 blocker) in global ischemic mice model. The neuroprotective effect of AT antagonists was evaluated through monitoring muscle co-ordination and cerebral blood perfusion in ischemic mice. Gene expression studies (NF-κB, GSK-3β, EAAT-2, AT 1 & AT 2 receptors) and staining of brain regions with cresyl violet, GFAP, synaptophysin and NSE methods were carried out in to understand the molecular mechanisms. Further, the brain glutamate, cytokines, and Ang II peptide levels were evaluated and their correlation with EAAT-2 mRNA expression was performed. Our results indicate that the induction of ischemia elevates brain Ang II, cytokines, and glutamate levels and reduced muscle co-ordination and cerebral blood perfusion. The expressions of NF-κB, GSK-3β and AT 1 were significantly increased, whereas, EAAT-2 expression was decreased. Blocking of AT 1 receptors by telmisartan (TM) reversed the detrimental responses of cerebral ischemia and restored the cerebral blood flow denoting blockade of Ang II/AT 1 pathway is beneficial in ischemia, whereas, blockade of AT 2 receptors by PD123319 (PD) increased the ischemic injury in mice. This vulnerable effect of PD may be attributed through augmenting the Ang II/AT 1 dependent cytokines mediated glutamate transporter (EAAT-2) dysfunction. Interestingly, the beneficial effects of AT 1 blocker was remarkably antagonized by AT 2 blocker in most of the parameters studied in ischemic conditions. Also, the expression of AT 2 receptors was significantly increased compared to that of AT 1 receptors upon ischemic induction. It denotes that the endogenous Ang II predominantly acts on AT 2 receptor, thereby promoting its own mRNA transcription. Hence, the increased expression of AT 2 receptors in ischemic condition could be used as target protein for therapeutic benefit. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Herpesviruses in brain and Alzheimer's disease.

    PubMed

    Lin, Woan-Ru; Wozniak, Matthew A; Cooper, Robert J; Wilcock, Gordon K; Itzhaki, Ruth F

    2002-07-01

    It has been established, using polymerase chain reaction (PCR), that herpes simplex virus type 1 (HSV1) is present in a high proportion of brains of elderly normal subjects and Alzheimer's disease (AD) patients. It was subsequently discovered that the virus confers a strong risk of AD when in brain of carriers of the type 4 allele of the apolipoprotein E gene (apoE-epsilon4). This study has now sought, using PCR, the presence of three other herpesviruses in brain: human herpesvirus 6 (HHV6)-types A and B, herpes simplex virus type 2 (HSV2) and cytomegalovirus (CMV). HHV6 is present in a much higher proportion of the AD than of age-matched normal brains (70% vs. 40%, p=0.003) and there is extensive overlap with the presence of HSV1 in AD brains, but HHV6, unlike HSV1, is not directly associated in AD with apoE-epsilon4. In 59% of the AD patients' brains harbouring HHV6, type B is present while 38% harbour both type A and type B, and 3% type A. HSV2 is present at relatively low frequency in brains of both AD patients and normals (13% and 20%), and CMV at rather higher frequencies in the two groups (36% and 35%); in neither case is the difference between the groups statistically significant. It is suggested that the striking difference in the proportion of elderly brains harbouring HSV1 and HSV2 might reflect the lower proportion of people infected with the latter, or the difference in susceptibility of the frontotemporal regions to the two viruses. In the case of HHV6, it is not possible to exclude its presence as an opportunist, but alternatively, it might enhance the damage caused by HSV1 and apoE-epsilon4 in AD; in some viral diseases it is associated with characteristic brain lesions and it also augments the damage caused by certain viruses in cell culture and in animals. Copyright 2002 John Wiley & Sons, Ltd.

  4. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders.

    PubMed

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M; Weinberger, Daniel R; Kleinman, Joel E; Law, Amanda J

    2017-03-01

    Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I-IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. NRG3 isoform classes I-IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Mapping the temporal expression of genes during human brain development provides vital insight into gene function and identifies critical sensitive periods whereby genetic factors may influence risk for psychiatric disease. Here the authors provide comprehensive insight into the transcriptional landscape of the psychiatric risk gene, NRG3, in human neocortical development and expand on previous findings in schizophrenia to identify increased expression of developmentally and genetically regulated isoforms in the brain of patients with mood disorders. Principally, the finding that NRG3 classes II and III are brain-specific isoforms predicted by rs10748842 risk genotype and are increased in mood disorders further implicates a molecular mechanism of psychiatric risk at the NRG3 locus and identifies a potential developmental role for NRG3 in bipolar disorder and major depression. These observations encourage investigation of the neurobiology of NRG3 isoforms and highlight inhibition of NRG3 signaling as a potential target for psychiatric treatment development.

  5. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

    PubMed Central

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.

    2018-01-01

    Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions Mapping the temporal expression of genes during human brain development provides vital insight into gene function and identifies critical sensitive periods whereby genetic factors may influence risk for psychiatric disease. Here the authors provide comprehensive insight into the transcriptional landscape of the psychiatric risk gene, NRG3, in human neocortical development and expand on previous findings in schizophrenia to identify increased expression of developmentally and genetically regulated isoforms in the brain of patients with mood disorders. Principally, the finding that NRG3 classes II and III are brain-specific isoforms predicted by rs10748842 risk genotype and are increased in mood disorders further implicates a molecular mechanism of psychiatric risk at the NRG3 locus and identifies a potential developmental role for NRG3 in bipolar disorder and major depression. These observations encourage investigation of the neurobiology of NRG3 isoforms and highlight inhibition of NRG3 signaling as a potential target for psychiatric treatment development. PMID:27771971

  6. Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal recrudescence in the catfish, Clarias gariepinus.

    PubMed

    Sudhakumari, Cheni-Chery; Anitha, Arumugam; Murugananthkumar, Raju; Tiwari, Dinesh Kumar; Bhasker, Dharavath; Senthilkumaran, Balasubramanian; Dutta-Gupta, Aparna

    2017-09-15

    Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Genetics Home Reference: distal hereditary motor neuropathy, type II

    MedlinePlus

    ... hereditary motor neuropathy, type II Distal hereditary motor neuropathy, type II Printable PDF Open All Close All ... the expand/collapse boxes. Description Distal hereditary motor neuropathy, type II is a progressive disorder that affects ...

  8. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    ERIC Educational Resources Information Center

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  9. Restriction endonuclease analysis as a taxonomic tool in the study of pig isolates belonging to the Australis serogroup of Leptospira interrogans.

    PubMed Central

    Ellis, W A; Montgomery, J M; Thiermann, A B

    1991-01-01

    Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis. Images PMID:1647408

  10. Restriction endonuclease analysis as a taxonomic tool in the study of pig isolates belonging to the Australis serogroup of Leptospira interrogans.

    PubMed

    Ellis, W A; Montgomery, J M; Thiermann, A B

    1991-05-01

    Restriction endonuclease analysis was performed on DNAs from the type strains of the Australis serogroup of Leptospira interrogans by using 20 restriction enzymes, and the electrophoretic patterns obtained were compared with patterns obtained from 162 Australis serogroup isolates from pigs. It proved to be a quick and reliable method for typing such strains. All of the pig isolates were identified as either serovar bratislava or muenchen. It also showed differences at the subserovar level which may be important in (i) understanding the epidemiology of the Australis serogroup, (ii) the development of suitable vaccines, and (iii) pathogenesis and pathogenicity studies. Two genotypes (B2b and M2) accounted for 92% of isolates from aborted or stillborn piglets, while a third genotype (B2a) was the only one recovered from the brains of piglets with meningitis.

  11. Clinical and radiologic features of unilateral and bilateral schizencephaly in polish pediatric patients.

    PubMed

    Kopyta, Ilona; Jamroz, Ewa; Kluczewska, Ewa; Sarecka-Hujar, Beata

    2014-04-01

    Schizencephaly is a rare and severe congenital brain defect. Its etiology is not unequivocal and its clinical course differs with every case. The aim of the study was to analyze correlations between clinical and radiologic features of schizencephaly in Polish patients. The study group consisted of 25 children. Epileptic seizures were observed in 60% of cases and in 32% epilepsy was drug resistant. Generalized hypotonia was found in 24%, spastic diparesis in 48%, and spastic hemiparesis in 28% of cases. Seizures were more frequent in the bilateral than unilateral schizencephaly subgroup (72% vs 29%, P = .045). There was a correlation between the presence of the bilateral type II schizencephaly and the occurrence of seizures (P = .002, r = 0.578). There is a correlation between the type of schizencephaly and the presence of seizures in Polish pediatric patients. In most of the patients, schizencephaly leads to developmental retardation and epileptic seizures.

  12. Floquet Weyl semimetals in light-irradiated type-II and hybrid line-node semimetals

    NASA Astrophysics Data System (ADS)

    Chen, Rui; Zhou, Bin; Xu, Dong-Hui

    2018-04-01

    Type-II Weyl semimetals have recently attracted intensive research interest because they host Lorentz-violating Weyl fermions as quasiparticles. The discovery of type-II Weyl semimetals evokes the study of type-II line-node semimetals (LNSMs) whose linear dispersion is strongly tilted near the nodal ring. We present here a study on the circularly polarized light-induced Floquet states in type-II LNSMs, as well as those in hybrid LNSMs that have a partially overtilted linear dispersion in the vicinity of the nodal ring. We illustrate that two distinct types of Floquet Weyl semimetal (WSM) states can be induced in periodically driven type-II and hybrid LNSMs, and the type of Floquet WSMs can be tuned by the direction and intensity of the incident light. We construct phase diagrams of light-irradiated type-II and hybrid LNSMs which are quite distinct from those of light-irradiated type-I LNSMs. Moreover, we show that photoinduced Floquet type-I and type-II WSMs can be characterized by the emergence of different anomalous Hall conductivities.

  13. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs.

    PubMed

    Ufnal, Marcin; Skrzypecki, Janusz

    2014-04-01

    Accumulating evidence suggests that blood borne hormones modulate brain mechanisms regulating blood pressure. This appears to be mediated by the circumventricular organs which are located in the walls of the brain ventricular system and lack the blood-brain barrier. Recent evidence shows that neurons of the circumventricular organs express receptors for the majority of cardiovascular hormones. Intracerebroventricular infusions of hormones and their antagonists is one approach to evaluate the influence of blood borne hormones on the neural mechanisms regulating arterial blood pressure. Interestingly, there is no clear correlation between peripheral and central effects of cardiovascular hormones. For example, angiotensin II increases blood pressure acting peripherally and centrally, whereas peripherally acting pressor catecholamines decrease blood pressure when infused intracerebroventricularly. The physiological role of such dual hemodynamic responses has not yet been clarified. In the paper we review studies on hemodynamic effects of catecholamines, neuropeptide Y, angiotensin II, aldosterone, natriuretic peptides, endothelins, histamine and bradykinin in the context of their role in a cross-talk between peripheral and brain mechanisms involved in the regulation of arterial blood pressure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Molecular determinants on the insect sodium channel for the specific action of type II pyrethroid insecticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Yuzhe; Nomura, Yoshiko; Luo Ningguang

    2009-01-15

    Pyrethroid insecticides are classified as type I or type II based on their distinct symptomology and effects on sodium channel gating. Structurally, type II pyrethroids possess an {alpha}-cyano group at the phenylbenzyl alcohol position, which is lacking in type I pyrethroids. Both type I and type II pyrethroids inhibit deactivation consequently prolonging the opening of sodium channels. However, type II pyrethroids inhibit the deactivation of sodium channels to a greater extent than type I pyrethroids inducing much slower decaying of tail currents upon repolarization. The molecular basis of a type II-specific action, however, is not known. Here we report themore » identification of a residue G{sup 1111} and two positively charged lysines immediately downstream of G{sup 1111} in the intracellular linker connecting domains II and III of the cockroach sodium channel that are specifically involved in the action of type II pyrethroids, but not in the action of type I pyrethroids. Deletion of G{sup 1111}, a consequence of alternative splicing, reduced the sodium channel sensitivity to type II pyrethroids, but had no effect on channel sensitivity to type I pyrethroids. Interestingly, charge neutralization or charge reversal of two positively charged lysines (Ks) downstream of G{sup 1111} had a similar effect. These results provide the molecular insight into the type II-specific interaction of pyrethroids with the sodium channel at the molecular level.« less

  15. Interplanetary type II radio bursts and their association with CMEs and flares

    NASA Astrophysics Data System (ADS)

    Shanmugaraju, A.; Suresh, K.; Vasanth, V.; Selvarani, G.; Umapathy, S.

    2018-06-01

    We study the characteristics of the CMEs and their association with the end-frequency of interplanetary (IP)-type-II bursts by analyzing a set of 138 events (IP-type-II bursts-flares-CMEs) observed during the period 1997-2012. The present analysis consider only the type II bursts having starting frequency < 14 MHz to avoid the extension of coronal type IIs. The selected events are classified into three groups depending on the end-frequency of type IIs as follows, (A) Higher, (B) Intermediate and (C) Lower end-frequency. We compare characteristics of CMEs, flares and type II burst for the three selected groups of events and report some of the important differences. The observed height of CMEs is compared with the height of IP type IIs estimated using the electron density models. By applying a density multiplier (m) to this model, the density has been constrained both in the upper corona and in the interplanetary medium, respectively as m= 1 to 10 and m = 1 to 3. This study indicates that there is a correlation between the observed CME height and estimated type II height for groups B and C events whereas this correlation is absent in group A. In all the groups (A, B & C), the different heights of CMEs and type II reveal that the type IIs are not only observed at the nose but also at the flank of the CMEs.

  16. Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin‐1E

    PubMed Central

    Hönigsperger, Christoph; Nigro, Maximiliano J.

    2016-01-01

    Key points Kv2 channels underlie delayed‐rectifier potassium currents in various neurons, although their physiological roles often remain elusive. Almost nothing is known about Kv2 channel functions in medial entorhinal cortex (mEC) neurons, which are involved in representing space, memory formation, epilepsy and dementia.Stellate cells in layer II of the mEC project to the hippocampus and are considered to be space‐representing grid cells. We used the new Kv2 blocker Guangxitoxin‐1E (GTx) to study Kv2 functions in these neurons.Voltage clamp recordings from mEC stellate cells in rat brain slices showed that GTx inhibited delayed‐rectifier K+ current but not transient A‐type current.In current clamp, GTx had multiple effects: (i) increasing excitability and bursting at moderate spike rates but reducing firing at high rates; (ii) enhancing after‐depolarizations; (iii) reducing the fast and medium after‐hyperpolarizations; (iv) broadening action potentials; and (v) reducing spike clustering.GTx is a useful tool for studying Kv2 channels and their functions in neurons. Abstract The medial entorhinal cortex (mEC) is strongly involved in spatial navigation, memory, dementia and epilepsy. Although potassium channels shape neuronal activity, their roles in mEC are largely unknown. We used the new Kv2 blocker Guangxitoxin‐1E (GTx; 10–100 nm) in rat brain slices to investigate Kv2 channel functions in mEC layer II stellate cells (SCs). These neurons project to the hippocampus and are considered to be grid cells representing space. Voltage clamp recordings from SCs nucleated patches showed that GTx inhibited a delayed rectifier K+ current activating beyond –30 mV but not transient A‐type current. In current clamp, GTx (i) had almost no effect on the first action potential but markedly slowed repolarization of late spikes during repetitive firing; (ii) enhanced the after‐depolarization (ADP); (iii) reduced fast and medium after‐hyperpolarizations (AHPs); (iv) strongly enhanced burst firing and increased excitability at moderate spike rates but reduced spiking at high rates; and (v) reduced spike clustering and rebound potentials. The changes in bursting and excitability were related to the altered ADPs and AHPs. Kv2 channels strongly shape the activity of mEC SCs by affecting spike repolarization, after‐potentials, excitability and spike patterns. GTx is a useful tool and may serve to further clarify Kv2 channel functions in neurons. We conclude that Kv2 channels in mEC SCs are important determinants of intrinsic properties that allow these neurons to produce spatial representation. The results of the present study may also be important for the accurate modelling of grid cells. PMID:27562026

  17. Brain MRI Characteristics of Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis and Their Associations with 2-Year Clinical Outcome.

    PubMed

    Zhang, T; Duan, Y; Ye, J; Xu, W; Shu, N; Wang, C; Li, K; Liu, Y

    2018-05-01

    Anti- N -methyl-D-aspertate receptor encephalitis is an autoimmune-mediated disease without specific brain MRI features. Our aim was to investigate the brain MR imaging characteristics of anti- N -methyl-D-aspartate receptor encephalitis and their associations with clinical outcome at a 2-year follow-up. We enrolled 53 patients with anti- N -methyl-D-aspartate receptor encephalitis and performed 2-year follow-up. Brain MRIs were acquired for all patients at the onset phase. The brain MR imaging manifestations were classified into 4 types: type 1: normal MR imaging findings; type 2: only hippocampal lesions; type 3: lesions not involving the hippocampus; and type 4: lesions in both the hippocampus and other brain areas. The modified Rankin Scale score at 2-year follow-up was assessed, and the association between the mRS and onset brain MR imaging characteristics was evaluated. Twenty-eight (28/53, 53%) patients had normal MR imaging findings (type 1), and the others (25/53, 47%) had abnormal MRI findings: type 2: 7 patients (13%); type 3: seven patients (13%); and type 4: eleven patients (21%). Normal brain MRI findings were more common in female patients ( P = .02). Psychiatric and behavioral abnormalities were more common in adults ( P = .015), and autonomic symptoms ( P = .025) were more common in pediatric patients. The presence of hippocampal lesions ( P = .008, OR = 9.584; 95% CI, 1.803-50.931) and relapse ( P = .043, OR = 0.111; 95% CI, 0.013-0.930) was associated with poor outcome. Normal brain MRI findings were observed in half of the patients. Lesions in the hippocampus were the most common MR imaging abnormal finding. The presence of hippocampal lesions is the main MR imaging predictor for poor prognosis in patients with anti- N -methyl-D-aspartate receptor encephalitis. © 2018 by American Journal of Neuroradiology.

  18. Solar Type II Radio Bursts and IP Type II Events

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2005-01-01

    We have examined radio data from the WAVES experiment on the Wind spacecraft in conjunction with ground-based data in order to investigate the relationship between the shocks responsible for metric type II radio bursts and the shocks in front of coronal mass ejections (CMEs). The bow shocks of fast, large CMEs are strong interplanetary (IP) shocks, and the associated radio emissions often consist of single broad bands starting below approx. 4 MHz; such emissions were previously called IP type II events. In contrast, metric type II bursts are usually narrowbanded and display two harmonically related bands. In addition to displaying complete dynamic spectra for a number of events, we also analyze the 135 WAVES 1 - 14 MHz slow-drift time periods in 2001-2003. We find that most of the periods contain multiple phenomena, which we divide into three groups: metric type II extensions, IP type II events, and blobs and bands. About half of the WAVES listings include probable extensions of metric type II radio bursts, but in more than half of these events, there were also other slow-drift features. In the 3 yr study period, there were 31 IP type II events; these were associated with the very fastest CMEs. The most common form of activity in the WAVES events, blobs and bands in the frequency range between 1 and 8 MHz, fall below an envelope consistent with the early signatures of an IP type II event. However, most of this activity lasts only a few tens of minutes, whereas IP type II events last for many hours. In this study we find many examples in the radio data of two shock-like phenomena with different characteristics that occur simultaneously in the metric and decametric/hectometric bands, and no clear example of a metric type II burst that extends continuously down in frequency to become an IP type II event. The simplest interpretation is that metric type II bursts, unlike IP type II events, are not caused by shocks driven in front of CMEs.

  19. PTEN, a negative regulator of PI3K/Akt signaling, sustains brain stem cardiovascular regulation during mevinphos intoxication.

    PubMed

    Tsai, Ching-Yi; Wu, Jacqueline C C; Fang, Chi; Chang, Alice Y W

    2017-09-01

    Activation of PI3K/Akt signaling, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite cascade in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, underpins cardiovascular depression induced by the organophosphate pesticide mevinphos. By exhibiting dual-specificity protein- and lipid-phosphatase activity, phosphatase and tensin homolog (PTEN) directly antagonizes the PI3K/Akt signaling by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate, the lipid product of PI3K. Based on the guiding hypothesis that PTEN may sustain brain stem cardiovascular regulation during mevinphos intoxication as a negative regulator of PI3K/Akt signaling in the RVLM, we aimed in this study to clarify the mechanistic role of PTEN in mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10 nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension and a decrease in baroreflex-mediated sympathetic vasomotor tone. There was progressive augmentation in PTEN activity as reflected by a decrease in the oxidized form of PTEN in the RVLM during mevinhpos intoxication, without significant changes in the mRNA or protein level of PTEN. Loss-of-function manipulations of PTEN in the RVLM by immunoneutralization, pharmacological blockade or siRNA pretreatment significantly potentiated the increase in Akt activity or NOS II/peroxynitrite cascade in the RVLM, enhanced the elicited hypotension and exacerbated the already reduced baroreflex-mediated sympathetic vasomotor tone. We conclude that augmented PTEN activity via a decrease of its oxidized form in the RVLM sustains brain stem cardiovascular regulation during mevinphos intoxication via downregulation of the NOS II/peroxynitrite cascade as a negative regulator of PI3K/Akt signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons.

    PubMed

    Lu, D; Yang, H; Lenox, R H; Raizada, M K

    1998-07-13

    Angiotensin II (Ang II) exerts chronic stimulatory actions on tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), and the norepinephrine transporter (NET), in part, by influencing the transcription of their genes. These neuromodulatory actions of Ang II involve Ras-Raf-MAP kinase signal transduction pathways (Lu, D., H. Yang, and M.K. Raizada. 1997. J. Cell Biol. 135:1609-1617). In this study, we present evidence to demonstrate participation of another signaling pathway in these neuronal actions of Ang II. It involves activation of protein kinase C (PKC)beta subtype and phosphorylation and redistribution of myristoylated alanine-rich C kinase substrate (MARCKS) in neurites. Ang II caused a dramatic redistribution of MARCKS from neuronal varicosities to neurites. This was accompanied by a time-dependent stimulation of its phosphorylation, that was mediated by the angiotensin type 1 receptor subtype (AT1). Incubation of neurons with PKCbeta subtype specific antisense oligonucleotide (AON) significantly attenuated both redistribution and phosphorylation of MARCKS. Furthermore, depletion of MARCKS by MARCKS-AON treatment of neurons resulted in a significant decrease in Ang II-stimulated accumulation of TH and DbetaH immunoreactivities and [3H]NE uptake activity in synaptosomes. In contrast, mRNA levels of TH, DbetaH, and NET were not influenced by MARKS-AON treatment. MARCKS pep148-165, which contains PKC phosphorylation sites, inhibited Ang II stimulation of MARCKS phosphorylation and reduced the amount of TH, DbetaH, and [3H]NE uptake in neuronal synaptosomes. These observations demonstrate that phosphorylation of MARCKS by PKCbeta and its redistribution from varicosities to neurites is important in Ang II-induced synaptic accumulation of TH, DbetaH, and NE. They suggest that a coordinated stimulation of transcription of TH, DbetaH, and NET, mediated by Ras-Raf-MAP kinase followed by their transport mediated by PKCbeta-MARCKS pathway are key in persistent stimulation of Ang II's neuromodulatory actions.

  1. Age dependence of pilocarpine-induced status epilepticus and inhibition of CaM kinase II activity in the rat.

    PubMed

    Singleton, Michael W; Holbert, William H; Ryan, Matthew L; Lee, Anh Tuyet; Kurz, Jonathan E; Churn, Severn B

    2005-04-21

    This study was conducted to characterize the post-pubertal developmental aspects on seizure susceptibility and severity as well as calcium/calmodulin protein kinase type II (CaM kinase II) activity in status epilepticus (SE). Thirty- to ninety-day-old rats, in 10-day increments, were studied. This corresponds to a developmental age group that has not received thorough attention. The pilocarpine model of SE was characterized both behaviorally and electrographically. Seven criteria were analyzed for electrographical characterization: seizure severity, SE susceptibility, the average number of discrete seizures, average time until first seizure, average time to SE, average time from first discrete seizure to SE, and death. After 1 h of SE, specific brain regions were isolated for biochemical study. Phosphate incorporation into a CaM kinase II-specific substrate, autocamtide III, was used to determine kinase activity. There was no developmental effect on the average number of discrete seizures, average time until first seizure, average time to SE, average time from first discrete seizure to SE, and death; however, there was a significant effect on SE probability and seizure severity. Once SE was expressed, all animals showed a decrease in both cortical and hippocampal CaM kinase II activities. Conversely, seizure activity in the absence of SE did not result in a decrease in CaM kinase II activity. The data suggest that there is a gradual age-dependent modulation of SE susceptibility and seizure severity within the developmental stages studied. Additionally, once status epilepticus is observed at any age, there is a corresponding SE-induced inhibition of CaM kinase II.

  2. Angiotensin-2-mediated Ca2+ signaling in the retinal pigment epithelium: role of angiotensin-receptor-associated-protein and TRPV2 channel.

    PubMed

    Barro-Soria, Rene; Stindl, Julia; Müller, Claudia; Foeckler, Renate; Todorov, Vladimir; Castrop, Hayo; Strauß, Olaf

    2012-01-01

    Angiotensin II (AngII) receptor (ATR) is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE) expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap), and transient-receptor-potential channel-V2 (TRPV2). AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE) cells by AngII results in biphasic increases in intracellular free Ca(2+)inhibited by losartan. Xestospongin C (xest C) and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca(2+)response. RPE cells from Atrap(-/-) mice showed smaller AngII-evoked Ca(2+)peak (by 22%) and loss of sustained Ca(2+)elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD) at 15 µM stimulates intracellular Ca(2+)-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor) reduced the cannabidiol-induced Ca(2+)-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca(2+)transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca(2+)transients in the RPE by releasing Ca(2+)from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca(2+)elevation.

  3. Angiotensin-2-Mediated Ca2+ Signaling in the Retinal Pigment Epithelium: Role of Angiotensin-Receptor- Associated-Protein and TRPV2 Channel

    PubMed Central

    Barro-Soria, Rene; Stindl, Julia; Müller, Claudia; Foeckler, Renate; Todorov, Vladimir; Castrop, Hayo; Strauß, Olaf

    2012-01-01

    Angiotensin II (AngII) receptor (ATR) is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE) expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap), and transient-receptor-potential channel-V2 (TRPV2). AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE) cells by AngII results in biphasic increases in intracellular free Ca2+inhibited by losartan. Xestospongin C (xest C) and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca2+response. RPE cells from Atrap−/− mice showed smaller AngII-evoked Ca2+peak (by 22%) and loss of sustained Ca2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD) at 15 µM stimulates intracellular Ca2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor) reduced the cannabidiol-induced Ca2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca2+transients in the RPE by releasing Ca2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca2+elevation. PMID:23185387

  4. Activation of Group II Metabotropic Glutamate Receptors Induces Depotentiation in Amygdala Slices and Reduces Fear-Potentiated Startle in Rats

    ERIC Educational Resources Information Center

    Lin, Chia-Ho; Lee, Chia-Ching; Huang, Ya-Chun; Wang, Su-Jane; Gean, Po-Wu

    2005-01-01

    There is a close correlation between long-term potentiation (LTP) in the synapses of lateral amygdala (LA) and fear conditioning in animals. We predict that reversal of LTP (depotentiation) in this area of the brain may ameliorate conditioned fear. Activation of group II metabotropic glutamate receptors (mGluR II) with DCG-IV induces…

  5. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo.

    PubMed

    Douam, Florian; Soto Albrecht, Yentli E; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V; Ploss, Alexander

    2017-08-15

    Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR -/- ) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR -/- ) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR -/- λR -/- mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity. IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the role of type III interferon (IFN)-mediated signaling, a host immune defense mechanism, in controlling YFV-17D infection and attenuation in different mouse models. We uncovered a critical role of type III IFN-mediated signaling in preserving the integrity of the blood-brain barrier and preventing viral brain invasion. Type III IFN also played a major role in regulating the induction of a potent but balanced immune response that prevented viral evasion of the host immune system. An improved understanding of the complex mechanisms regulating YFV-17D attenuation will provide insights into the key virus-host interactions that regulate host immune responses and infection outcomes as well as open novel avenues for the development of innovative vaccine strategies. Copyright © 2017 Douam et al.

  6. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease

    PubMed Central

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression. PMID:27512952

  7. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.

    PubMed

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-08-11

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression.

  8. Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease).

    PubMed Central

    Muldoon, L. L.; Neuwelt, E. A.; Pagel, M. A.; Weiss, D. L.

    1994-01-01

    The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8178934

  9. Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease).

    PubMed

    Muldoon, L L; Neuwelt, E A; Pagel, M A; Weiss, D L

    1994-05-01

    The Korat cat provides an animal model for type II GM2-gangliosidosis (Sandhoff disease) that may be suitable for tests of gene replacement therapy with the HEXB gene encoding the beta subunit of the beta-hexosaminidases. In the present report, we examined the brain and liver pathology of a typical Sandhoff-affected cat. We characterized the feline HEXB complementary DNA (cDNA) and determined the molecular defect in this feline model. cDNA libraries were produced from one normal and one affected animal, and cDNA clones homologous to human HEXB were sequenced. In the affected cDNA clone, the deletion of a cytosine residue at position +39 of the putative coding region results in a frame shift and a stop codon at base +191. This disease-related deletion was consistently detected by sequencing of cloned polymerase chain reaction amplified reverse transcribed messenger RNA from one more normal Korat and two additional affected animals. The defect was further demonstrated using single-strand conformational polymorphism analysis of the polymerase chain reaction products. In addition, alternative splicing of both normal and affected messenger RNAs was demonstrated. These results should facilitate the use of this animal model to assess gene therapy.

  10. Dosha brain-types: A neural model of individual differences.

    PubMed

    Travis, Frederick T; Wallace, Robert Keith

    2015-01-01

    This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations.

  11. Type I and II Endometrial Cancers: Have They Different Risk Factors?

    PubMed Central

    Setiawan, Veronica Wendy; Yang, Hannah P.; Pike, Malcolm C.; McCann, Susan E.; Yu, Herbert; Xiang, Yong-Bing; Wolk, Alicja; Wentzensen, Nicolas; Weiss, Noel S.; Webb, Penelope M.; van den Brandt, Piet A.; van de Vijver, Koen; Thompson, Pamela J.; Strom, Brian L.; Spurdle, Amanda B.; Soslow, Robert A.; Shu, Xiao-ou; Schairer, Catherine; Sacerdote, Carlotta; Rohan, Thomas E.; Robien, Kim; Risch, Harvey A.; Ricceri, Fulvio; Rebbeck, Timothy R.; Rastogi, Radhai; Prescott, Jennifer; Polidoro, Silvia; Park, Yikyung; Olson, Sara H.; Moysich, Kirsten B.; Miller, Anthony B.; McCullough, Marjorie L.; Matsuno, Rayna K.; Magliocco, Anthony M.; Lurie, Galina; Lu, Lingeng; Lissowska, Jolanta; Liang, Xiaolin; Lacey, James V.; Kolonel, Laurence N.; Henderson, Brian E.; Hankinson, Susan E.; Håkansson, Niclas; Goodman, Marc T.; Gaudet, Mia M.; Garcia-Closas, Montserrat; Friedenreich, Christine M.; Freudenheim, Jo L.; Doherty, Jennifer; De Vivo, Immaculata; Courneya, Kerry S.; Cook, Linda S.; Chen, Chu; Cerhan, James R.; Cai, Hui; Brinton, Louise A.; Bernstein, Leslie; Anderson, Kristin E.; Anton-Culver, Hoda; Schouten, Leo J.; Horn-Ross, Pamela L.

    2013-01-01

    Purpose Endometrial cancers have long been divided into estrogen-dependent type I and the less common clinically aggressive estrogen-independent type II. Little is known about risk factors for type II tumors because most studies lack sufficient cases to study these much less common tumors separately. We examined whether so-called classical endometrial cancer risk factors also influence the risk of type II tumors. Patients and Methods Individual-level data from 10 cohort and 14 case-control studies from the Epidemiology of Endometrial Cancer Consortium were pooled. A total of 14,069 endometrial cancer cases and 35,312 controls were included. We classified endometrioid (n = 7,246), adenocarcinoma not otherwise specified (n = 4,830), and adenocarcinoma with squamous differentiation (n = 777) as type I tumors and serous (n = 508) and mixed cell (n = 346) as type II tumors. Results Parity, oral contraceptive use, cigarette smoking, age at menarche, and diabetes were associated with type I and type II tumors to similar extents. Body mass index, however, had a greater effect on type I tumors than on type II tumors: odds ratio (OR) per 2 kg/m2 increase was 1.20 (95% CI, 1.19 to 1.21) for type I and 1.12 (95% CI, 1.09 to 1.14) for type II tumors (Pheterogeneity < .0001). Risk factor patterns for high-grade endometrioid tumors and type II tumors were similar. Conclusion The results of this pooled analysis suggest that the two endometrial cancer types share many common etiologic factors. The etiology of type II tumors may, therefore, not be completely estrogen independent, as previously believed. PMID:23733771

  12. [Subtemporal approach according to house versus Wigand in intrameatal CPA tumors type A].

    PubMed

    Schipper, J; Maier, W; Laszig, R

    2004-10-01

    The subtemporal approach is indicated in intrameatal CPA tumors type A in order to preserve hearing. The exploration of the inner auditory canal for tumor exposure varies. It reaches from a locally limited uncovering of the bony inner auditory canal to a complete removal of the surrounding bony bed with the circular skeletization (360 degrees ) according to Wigand of the 7 (th) and 8 (th) nerve. Concerning the preservation of the function of the cranial nerve as well as an avoidable hyperelevation of the temporal cerebral lobe with a possible consecutive organic brain syndrome, both approaches have often been discussed controversially. In a quality assurance analysis, we examined patients suffering from a unilateral, intrameatally limited CPA tumor type A in tumor stages 1 to 5. The functions of the 7 (th) and 8 (th) cranial nerves were assessed according to the consensus conference "Systems for reporting results in acoustic neuroma", Tokyo, November 2001, under consideration of the recommendations of the "American Academy of Otolaryngology, Head and Neck Surgery -- Committee on hearing and equilibrium guidelines for the evaluation of hearing preservation in acoustic neuroma", 1995, as well as indications for a possible organic brain syndrome. The results then were compared to current literature. 37 patients with an intrameatal confined CPA tumor after subtemporal tumor exstirpation were evaluated. In these patients, the inner auditory canal was only exposed in the area of the bony tectum (90 degrees - 120 degrees ) adjusted to the volume of the tumor, as described by House: 1 patient with tumor stage 1, 2 patients stage 2, 12 patients stage 3, 16 patients stage 4 and 6 patients with a tumor stage 5. The N. VII was anatomically preserved in 100 %. Immediately after surgery the function of N. VII was assessed in 32 % of the cases as stage I, 43 % stage II, 3 % stage IIIa, 14 % stage IIIb, 3 % stage IV, 0 % stage V, 5 % stage VI. All patients in stage VI had a restricted function of N. VII in stage II or IIIa already before surgery. N. VIII could be preserved anatomically in 78 % of the cases. 1 to 6 months postoperatively the hearing was at stage A in 10 % of the cases, at 25 % in stage B, 33 % in stage C, 16 % in stage D, 5 % in stage E and 11 % in stage F. One patient demonstrated signs of a possible organic brain syndrome postoperatively even after 12 months of latency (headache, unsteady walking, attention disorders). When comparing own data with the clinical results from literature, no differences can be found concerning the function of the 7 (th) and 8 (th) cranial nerves. There are no data concerning the incidence of a potential organic brain syndrome. The advantage of the House method is a noticeably reduced drilling time as well as possibly a reduced elevation of the temporal cerebral lobes. The Wigand method, however, allows a better overview and is needed for extrameatally growing tumors anyway.

  13. PREDICTING APHASIA TYPE FROM BRAIN DAMAGE MEASURED WITH STRUCTURAL MRI

    PubMed Central

    Yourganov, Grigori; Smith, Kimberly G.; Fridriksson, Julius; Rorden, Chris

    2015-01-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca’s, Wernicke’s, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery. Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients’ aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. PMID:26465238

  14. Predicting aphasia type from brain damage measured with structural MRI.

    PubMed

    Yourganov, Grigori; Smith, Kimberly G; Fridriksson, Julius; Rorden, Chris

    2015-12-01

    Chronic aphasia is a common consequence of a left-hemisphere stroke. Since the early insights by Broca and Wernicke, studying the relationship between the loci of cortical damage and patterns of language impairment has been one of the concerns of aphasiology. We utilized multivariate classification in a cross-validation framework to predict the type of chronic aphasia from the spatial pattern of brain damage. Our sample consisted of 98 patients with five types of aphasia (Broca's, Wernicke's, global, conduction, and anomic), classified based on scores on the Western Aphasia Battery (WAB). Binary lesion maps were obtained from structural MRI scans (obtained at least 6 months poststroke, and within 2 days of behavioural assessment); after spatial normalization, the lesions were parcellated into a disjoint set of brain areas. The proportion of damage to the brain areas was used to classify patients' aphasia type. To create this parcellation, we relied on five brain atlases; our classifier (support vector machine - SVM) could differentiate between different kinds of aphasia using any of the five parcellations. In our sample, the best classification accuracy was obtained when using a novel parcellation that combined two previously published brain atlases, with the first atlas providing the segmentation of grey matter, and the second atlas used to segment the white matter. For each aphasia type, we computed the relative importance of different brain areas for distinguishing it from other aphasia types; our findings were consistent with previously published reports of lesion locations implicated in different types of aphasia. Overall, our results revealed that automated multivariate classification could distinguish between aphasia types based on damage to atlas-defined brain areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavitt, Ania S.; Bylaska, Eric J.; Tratnyek, Paul G.

    As described in the main text, we classified our voltammograms into four types. For phenols, most compounds were type I or type II, except four phenols that were type III (4-nitrophenol, 4-cyanophenol, DNOC, and 4-hydroxyacetphenone); and two phenols that were type IV (4-aminophenol and dopamine). Almost all of the compounds gave the same type by SCV and SWV, except for 2,4-dinitrophenol (whose current went up and down and therefore could be considered a type II or III), 4-cyanophenol (which fell into a type III for SCV, but whose current went up and down in SWV (type II or III)), andmore » 4-hydroxyacetophenone (which was a type III in SCV, but a type II in SWV). The majority of the anilines were type I except for p-toluidine (type II) and 4-methyl-3-nitroaniline and 2-methoxy-5-nitroaniline (both were type I for SWV, but for SCV fell into type III and type II respectively).« less

  16. Oxidation potentials of phenols and anilines: correlation analysis of electrochemical and theoretical values

    DOE PAGES

    Pavitt, Ania S.; Bylaska, Eric J.; Tratnyek, Paul G.

    2017-02-10

    As described in the main text, we classified our voltammograms into four types. For phenols, most compounds were type I or type II, except four phenols that were type III (4-nitrophenol, 4-cyanophenol, DNOC, and 4-hydroxyacetphenone); and two phenols that were type IV (4-aminophenol and dopamine). Almost all of the compounds gave the same type by SCV and SWV, except for 2,4-dinitrophenol (whose current went up and down and therefore could be considered a type II or III), 4-cyanophenol (which fell into a type III for SCV, but whose current went up and down in SWV (type II or III)), andmore » 4-hydroxyacetophenone (which was a type III in SCV, but a type II in SWV). The majority of the anilines were type I except for p-toluidine (type II) and 4-methyl-3-nitroaniline and 2-methoxy-5-nitroaniline (both were type I for SWV, but for SCV fell into type III and type II respectively).« less

  17. Past and current perspective on new therapeutic targets for Type-II diabetes.

    PubMed

    Patil, Pradip D; Mahajan, Umesh B; Patil, Kalpesh R; Chaudhari, Sandip; Patil, Chandragouda R; Agrawal, Yogeeta O; Ojha, Shreesh; Goyal, Sameer N

    2017-01-01

    Loss of pancreatic β-cell function is a hallmark of Type-II diabetes mellitus (DM). It is a chronic metabolic disorder that results from defects in both insulin secretion and insulin action. Recently, United Kingdom Prospective Diabetes Study reported that Type-II DM is a progressive disorder. Although, DM can be treated initially by monotherapy with oral agent; eventually, it may require multiple drugs. Additionally, insulin therapy is needed in many patients to achieve glycemic control. Pharmacological approaches are unsatisfactory in improving the consequences of insulin resistance. Single therapeutic approach in the treatment of Type-II DM is unsuccessful and usually a combination therapy is adopted. Increased understanding of biochemical, cellular and pathological alterations in Type-II DM has provided new insight in the management of Type-II DM. Knowledge of underlying mechanisms of Type-II DM development is essential for the exploration of novel therapeutic targets. Present review provides an insight into therapeutic targets of Type-II DM and their role in the development of insulin resistance. An overview of important signaling pathways and mechanisms in Type-II DM is provided for the better understanding of disease pathology. This review includes case studies of drugs that are withdrawn from the market. The experience gathered from previous studies and knowledge of Type-II DM pathways can guide the anti-diabetic drug development toward the discovery of clinically viable drugs that are useful in Type-II DM.

  18. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism.

    PubMed

    Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel

    2017-10-05

    The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. On the source conditions for herringbone structure in type II solar radio bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; White, S. M.

    1989-01-01

    An investigation is made of the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. It is shown that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21 percent of all type II bursts show herringbone, about 60 percent of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. It is also shown that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. It is argued that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.

  20. Peptidomics of Cpefat/fat mouse brain regions: Implications for neuropeptide processing

    PubMed Central

    Zhang, Xin; Che, Fa-Yun; Berezniuk, Iryna; Sonmez, Kemal; Toll, Lawrence; Fricker, Lloyd D.

    2009-01-01

    SUMMARY Quantitative peptidomics was used to compare levels of peptides in wild type and Cpefat/fat mice, which lack carboxypeptidase E (CPE) activity due to a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in wild type mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpefat/fat mouse brain, relative to wild type mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpefat/fat mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpefat/fat mouse brain at levels similar to those in wild type mouse brain. Many peptides were greatly elevated in the Cpefat/fat mice; these peptide processing intermediates with C-terminal Lys and/or Arg were generally not detectable in wild type mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides. PMID:19014391

  1. Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain.

    PubMed

    Arbib, Michael A

    2016-03-01

    We make the case for developing a Computational Comparative Neuroprimatology to inform the analysis of the function and evolution of the human brain. First, we update the mirror system hypothesis on the evolution of the language-ready brain by (i) modeling action and action recognition and opportunistic scheduling of macaque brains to hypothesize the nature of the last common ancestor of macaque and human (LCA-m); and then we (ii) introduce dynamic brain modeling to show how apes could acquire gesture through ontogenetic ritualization, hypothesizing the nature of evolution from LCA-m to the last common ancestor of chimpanzee and human (LCA-c). We then (iii) hypothesize the role of imitation, pantomime, protosign and protospeech in biological and cultural evolution from LCA-c to Homo sapiens with a language-ready brain. Second, we suggest how cultural evolution in Homo sapiens led from protolanguages to full languages with grammar and compositional semantics. Third, we assess the similarities and differences between the dorsal and ventral streams in audition and vision as the basis for presenting and comparing two models of language processing in the human brain: A model of (i) the auditory dorsal and ventral streams in sentence comprehension; and (ii) the visual dorsal and ventral streams in defining "what language is about" in both production and perception of utterances related to visual scenes provide the basis for (iii) a first step towards a synthesis and a look at challenges for further research. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain

    NASA Astrophysics Data System (ADS)

    Arbib, Michael A.

    2016-03-01

    We make the case for developing a Computational Comparative Neuroprimatology to inform the analysis of the function and evolution of the human brain. First, we update the mirror system hypothesis on the evolution of the language-ready brain by (i) modeling action and action recognition and opportunistic scheduling of macaque brains to hypothesize the nature of the last common ancestor of macaque and human (LCA-m); and then we (ii) introduce dynamic brain modeling to show how apes could acquire gesture through ontogenetic ritualization, hypothesizing the nature of evolution from LCA-m to the last common ancestor of chimpanzee and human (LCA-c). We then (iii) hypothesize the role of imitation, pantomime, protosign and protospeech in biological and cultural evolution from LCA-c to Homo sapiens with a language-ready brain. Second, we suggest how cultural evolution in Homo sapiens led from protolanguages to full languages with grammar and compositional semantics. Third, we assess the similarities and differences between the dorsal and ventral streams in audition and vision as the basis for presenting and comparing two models of language processing in the human brain: A model of (i) the auditory dorsal and ventral streams in sentence comprehension; and (ii) the visual dorsal and ventral streams in defining ;what language is about; in both production and perception of utterances related to visual scenes provide the basis for (iii) a first step towards a synthesis and a look at challenges for further research.

  3. Effect of Boric Acid Supplementation on the Expression of BDNF in African Ostrich Chick Brain.

    PubMed

    Tang, Juan; Zheng, Xing-ting; Xiao, Ke; Wang, Kun-lun; Wang, Jing; Wang, Yun-xiao; Wang, Ke; Wang, Wei; Lu, Shun; Yang, Ke-li; Sun, Peng-Peng; Khaliq, Haseeb; Zhong, Juming; Peng, Ke-Mei

    2016-03-01

    The degree of brain development can be expressed by the levels of brain brain-derived neurotrophic factor (BDNF). BDNF plays an irreplaceable role in the process of neuronal development, protection, and restoration. The aim of the present study was to evaluate the effects of boric acid supplementation in water on the ostrich chick neuronal development. One-day-old healthy animals were supplemented with boron in drinking water at various concentrations, and the potential effects of boric acid on brain development were tested by a series of experiments. The histological changes in brain were observed by hematoxylin and eosin (HE) staining and Nissl staining. Expression of BDNF was analyzed by immunohistochemistry, quantitative real-time PCR (QRT-PCR), and enzyme linked immunosorbent assay (ELISA). Apoptosis was evaluated with Dutp-biotin nick end labeling (TUNEL) reaction, and caspase-3 was detected with QRT-PCR. The results were as follows: (1) under the light microscope, the neuron structure was well developed with abundance of neurites and intact cell morphology when animals were fed with less than 160 mg/L of boric acid (groups II, III, IV). Adversely, when boric acid doses were higher than 320 mg/L(groups V, VI), the high-dose boric acid neuron structure was damaged with less neurites, particularly at 640 mg/L; (2) the quantity of BDNF expression in groups II, III, and IV was increased while it was decreased in groups V and VI when compared with that in group I; (3) TUNEL reaction and the caspase-3 mRNA level showed that the amount of cell apoptosis in group II, group III, and group IV were decreased, but increased in group V and group VI significantly. These results indicated that appropriate supplementation of boric acid, especially at 160 mg/L, could promote ostrich chicks' brain development by promoting the BDNF expression and reducing cell apoptosis. Conversely, high dose of boric acid particularly in 640 mg/L would damage the neuron structure of ostrich chick brain by inhibiting the BDNF expression and increasing cell apoptosis. Taken together, the 160 mg/L boric acid supplementation may be the optimal dose for the brain development of ostrich chicks.

  4. Interleukin-1 receptor 1 deletion in focal and diffuse experimental traumatic brain injury in mice.

    PubMed

    Chung, Joon Yong; Krapp, Nicolas; Wu, Limin; Lule, Sevda; McAllister, Lauren; Edmiston Iii, William; Martin, Samantha; Levy, Emily; Songtachalert, Tanya; Sherwood, John; Buckley, Erin; Sanders, Bharat; Izzy, Saef; Hickman, Suzanne; Guo, Shuzhen; Lok, Josephine; El Khoury, Joseph; Lo, Eng; Kaplan, David; Whalen, Michael

    2018-05-17

    Important differences in the biology of focal and diffuse traumatic brain injury (TBI) subtypes may result in unique pathophysiological responses to shared molecular mechanisms. Interleukin-1 (IL-1) signaling has been tested as a potential therapeutic target in preclinical models of cerebral contusion and diffuse TBI, and in a phase II clinical trial, but no published studies have examined IL-1 signaling in an impact/acceleration closed head injury (CHI) model. We hypothesized that genetic deletion of IL-1 receptor-1 (IL-1R1 KO) would be beneficial in focal (contusion) and CHI in mice. Wild type and IL-1R1 KO mice were subjected to controlled cortical impact (CCI), or to CHI. CCI produced brain leukocyte infiltration, HMGB1 translocation and release, edema, cell death, and cognitive deficits. CHI induced peak rotational acceleration of 9.7 x 105 + 8.1 x 104 rad/s2, delayed time to righting reflex, and robust Morris water maze deficits without deficits in tests of anxiety, locomotion, sensorimotor function, or depression. CHI produced no discernable acute plasmalemma damage or cell death, blood-brain barrier permeability to IgG, or brain edema and only a modest increase in brain leukocyte infiltration at 72 h. In both models, mature (17 kDa) interleukin-1 beta (IL-1β) was induced by 24 h in CD31+ endothelial cells isolated from injured brain but was not induced in CD11b+ cells in either model. High mobility group box protein-1 was released from injured brain cells in CCI but not CHI. Surprisingly, cognitive outcome in mice with global deletion of IL-1R1 was improved in CHI, but worse after CCI without affecting lesion size, edema, or infiltration of CD11b+/CD45+ leukocytes in CCI. IL-1R1 may induce unique biological responses, beneficial or detrimental to cognitive outcome, after TBI depending on the pathoanatomical subtype. Brain endothelium is a hitherto unrecognized source of mature IL-1β in both models.

  5. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    PubMed

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  6. Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice.

    PubMed

    Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee

    2017-12-30

    In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.

  7. [Effect of RAAS inhibition on stroke prevention].

    PubMed

    Tanahashi, Norio

    2012-09-01

    Recently, molecular and experimental studies revealed that the brain possesses its own renin-angiotensin-aldosterone system(RAAS) and the brain angiotensin(Ang) II plays an important role on stroke protection, mediating its effects through stimulation of AT2 and possibly the AT4 receptors. Moreover, the novel ACE2/Ang-(1-7)/Mas receptor axis was found to counterbalance the vasoconstrictive actions of the ACE/Ang II/AT1 receptor. Recent clinical trials indicate that blockade of RAAS has a potential role in stroke prevention, but was not conclusive. More carefully designed large clinical trial are needed to verify blood pressure-independent stroke prevention effect by RAAS inhibition.

  8. Endovascular brain intervention and mapping in a dog experimental model using magnetically-guided micro-catheter technology.

    PubMed

    Kara, Tomas; Leinveber, Pavel; Vlasin, Michal; Jurak, Pavel; Novak, Miroslav; Novak, Zdenek; Chrastina, Jan; Czechowicz, Krzysztof; Belehrad, Milos; Asirvatham, Samuel J

    2014-06-01

    Despite the substantial progress that has been achieved in interventional cardiology and cardiac electrophysiology, endovascular intervention for the diagnosis and treatment of central nervous system (CNS) disorders such as stroke, epilepsy and CNS malignancy is still limited, particularly due to highly tortuous nature of the cerebral arterial and venous system. Existing interventional devices and techniques enable only limited and complicated access especially into intra-cerebral vessels. The aim of this study was to develop a micro-catheter magnetically-guided technology specifically designed for endovascular intervention and mapping in deep CNS vascular structures. Mapping of electrical brain activity was performed via the venous system on an animal dog model with the support of the NIOBE II system. A novel micro-catheter specially designed for endovascular interventions in the CNS, with the support of the NIOBE II technology, was able to reach safely deep intra-cerebral venous structures and map the electrical activity there. Such structures are not currently accessible using standard catheters. This is the first study demonstrating successful use of a new micro-catheter in combination with NIOBE II technology for endovascular intervention in the brain.

  9. Pattern classification of brain activation during emotional processing in subclinical depression: psychosis proneness as potential confounding factor.

    PubMed

    Modinos, Gemma; Mechelli, Andrea; Pettersson-Yeo, William; Allen, Paul; McGuire, Philip; Aleman, Andre

    2013-01-01

    We used Support Vector Machine (SVM) to perform multivariate pattern classification based on brain activation during emotional processing in healthy participants with subclinical depressive symptoms. Six-hundred undergraduate students completed the Beck Depression Inventory II (BDI-II). Two groups were subsequently formed: (i) subclinical (mild) mood disturbance (n = 17) and (ii) no mood disturbance (n = 17). Participants also completed a self-report questionnaire on subclinical psychotic symptoms, the Community Assessment of Psychic Experiences Questionnaire (CAPE) positive subscale. The functional magnetic resonance imaging (fMRI) paradigm entailed passive viewing of negative emotional and neutral scenes. The pattern of brain activity during emotional processing allowed correct group classification with an overall accuracy of 77% (p = 0.002), within a network of regions including the amygdala, insula, anterior cingulate cortex and medial prefrontal cortex. However, further analysis suggested that the classification accuracy could also be explained by subclinical psychotic symptom scores (correlation with SVM weights r = 0.459, p = 0.006). Psychosis proneness may thus be a confounding factor for neuroimaging studies in subclinical depression.

  10. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    PubMed

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  11. Terahertz reflectometry imaging for low and high grade gliomas

    NASA Astrophysics Data System (ADS)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-10-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes.

  12. Angiotensin II inhibits iron uptake and release in cultured neurons.

    PubMed

    Liu, Yong; Huang, Suna; Du, Fang; Yang, Guang; Jiang, Li Rong; Zhang, Chao; Qian, Zhong-ming

    2014-05-01

    Based on the well-confirmed roles of angiotensin II (ANGII) in iron transport of peripheral organs and cells, the causative link of excess brain iron with and the involvement of ANGII in neurodegenerative disorders, we speculated that ANGII might also have an effect on expression of iron transport proteins in the brain. In the present study, we investigated effects of ANGII on iron uptake and release using the radio-isotope methods as well as expression of cell iron transport proteins by Western blot analysis in cultured neurons. Our findings demonstrated for the first time that ANGII significantly reduced transferrin-bound iron and non-transferrin bound iron uptake and iron release as well as expression of two major iron uptake proteins transferrin receptor 1 and divalent metal transporter 1 and the key iron exporter ferroportin 1 in cultured neurons. The findings suggested that endogenous ANGII might have a physiological significance in brain iron metabolism.

  13. Genetic and biologic characteristics of Toxoplasma gondii isolates in free-range chickens from Colombia, South America.

    PubMed

    Dubey, J P; Gomez-Marin, Jorge E; Bedoya, Angela; Lora, Fabiana; Vianna, M C B; Hill, D; Kwok, O C H; Shen, S K; Marcet, P L; Lehmann, T

    2005-11-25

    The prevalence of Toxoplasma gondii in free-ranging chickens is a good indicator of the prevalence of T. gondii oocysts in the soil because chickens feed from the ground. The prevalence of T. gondii in 77 free-range chickens (Gallus domesticus) from Colombia, South America was determined. Antibodies to T. gondii were assayed by the modified agglutination test (MAT), and found in 32 (44.4%) of 72 chickens with titers of 1:5 in 4, 1:10 in 3, 1:20 in 1, 1:40 in 1, 1:80 in 8, 1:160 in 8, 1:320 in 3, and 1:640 or higher in 4. Hearts and brains of 31 seropositive chickens were pooled and bioassayed in mice. Tissues from 32 (16+16) seronegative chickens were pooled and fed to two, T. gondii-free cats, and tissues from nine chickens without matching sera were fed to one T. gondii-free cat. Feces of cats were examined for oocysts. T. gondii oocysts were excreted by a cat that was fed tissues of 16 seronegative chickens. T. gondii was isolated by bioassay in mice from 23 chickens with MAT titers of 1:20 or higher. All infected mice from 16 of the 23 isolates died of toxoplasmosis. Overall, 82 (81.1%) of 101 mice that became infected after inoculation with chicken tissues died of toxoplasmosis. Genotyping of these 24 isolates using polymorphisms at the SAG2 locus indicated that seven T. gondii isolates were Type I, 17 were Type III, and none was Type II. Phenotypically, T. gondii isolates from chickens from Colombia were similar to isolates from Brazil but different from the isolates from North America; most isolates from chickens from Brazil and Colombia were lethal for mice whereas isolates from North America did not kill inoculated mice. Genetically, none of the T. gondii isolates from Colombia and Brazil was SAG2 Type II, whereas most isolates from chickens from North America were Type II. This is the first report of genetic characterization of T. gondii isolates from Colombia, South America.

  14. Teaching Both Sides of the Brain: Book II: Reading.

    ERIC Educational Resources Information Center

    Dombrower, Jule; And Others

    Part of a program to increase the academic growth of preschool and primary grade students through the utilization of brain hemisphere research, this volume contains lessons designed to improve basic reading skills. Material is divided into two sections. Section 1 contains 17 activities to develop letter and word recognition. In activities 1-12,…

  15. Implementing New Non-Chromate Coatings Systems (Briefing Charts)

    DTIC Science & Technology

    2011-02-09

    Initiate Cr6+ authorization process for continued Cr6+ use using the form, Authorization to Use Hexavalent Chromium. YES NO • Approval of...Aluminum and magnesium anodizing • Hard Chrome Plating • Type II conversion coating on aluminum alloys under chromated primer • Type II conversion coating...Elimination of Hexavalent Chromium 80% 5% 14% 1% Type II Type III Type IC Type IC Fatigue Critical 50% 50% Type II Type IC FRC-SE (JAX) Fully Integrated FRC

  16. Protective effects of telmisartan and tempol on lipopolysaccharide-induced cognitive impairment, neuroinflammation, and amyloidogenesis: possible role of brain-derived neurotrophic factor.

    PubMed

    Khallaf, Waleed A I; Messiha, Basim A S; Abo-Youssef, Amira M H; El-Sayed, Nesrine S

    2017-07-01

    Angiotensin II has pro-inflammatory and pro-oxidant potentials. We investigated the possible protective effects of the Angiotensin II receptor blocker telmisartan, compared with the superoxide scavenger tempol, on lipopolysaccharide (LPS)-induced cognitive decline and amyloidogenesis. Briefly, mice were allocated into a normal control group, an LPS control group, a tempol treatment group, and 2 telmisartan treatment groups. A behavioral study was conducted followed by a biochemical study via assessment of brain levels of beta amyloid (Aβ) and brain-derived neurotropic factor (BDNF) as amyloidogenesis and neuroplasticity markers, tumor necrosis factor alpha (TNF-α), nitric oxide end products (NOx), neuronal and inducible nitric oxide synthase (nNOS and iNOS) as inflammatory markers, and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using routine and special Congo red stains. Tempol and telmisartan improved cognition, decreased brain Aβ deposition and BDNF depletion, decreased TNF-α, NOx, nNOS, iNOS, MDA, and NT brain levels, and increased brain SOD and GSH contents, parallel to confirmatory histopathological evidences. In conclusion, tempol and telmisartan are promising drugs in managing cognitive impairment and amyloidogenesis, at least via upregulation of BDNF with inhibition of neuroinflammation and oxido-nitrosative stress.

  17. Systematic review of clinical practice guidelines to identify recommendations for rehabilitation after stroke and other acquired brain injuries

    PubMed Central

    Lannin, Natasha A; Hoffmann, Tammy

    2018-01-01

    Objectives Rehabilitation clinical practice guidelines (CPGs) contain recommendation statements aimed at optimising care for adults with stroke and other brain injury. The aim of this study was to determine the quality, scope and consistency of CPG recommendations for rehabilitation covering the acquired brain injury populations. Design Systematic review. Interventions Included CPGs contained recommendations for inpatient rehabilitation or community rehabilitation for adults with an acquired brain injury diagnosis (stroke, traumatic or other non-progressive acquired brain impairments). Electronic databases (n=2), guideline organisations (n=4) and websites of professional societies (n=17) were searched up to November 2017. Two independent reviewers used the Appraisal of Guidelines for Research and Evaluation (AGREE) II instrument, and textual syntheses were used to appraise and compare recommendations. Results From 427 papers screened, 20 guidelines met the inclusion criteria. Only three guidelines were rated high (>75%) across all domains of AGREE-II; highest rated domains were ‘scope and purpose’ (85.1, SD 18.3) and ‘clarity’ (76.2%, SD 20.5). Recommendations for assessment and for motor therapies were most commonly reported, however, varied in the level of detail across guidelines. Conclusion Rehabilitation CPGs were consistent in scope, suggesting little difference in rehabilitation approaches between vascular and traumatic brain injury. There was, however, variability in included studies and methodological quality. PROSPERO registration number CRD42016026936. PMID:29490958

  18. Multi-Tiered Analysis of Brain Injury in Neonates with Congenital Heart Disease

    PubMed Central

    Mulkey, Sarah B.; Swearingen, Christopher J.; Melguizo, Maria S.; Schmitz, Michael L.; Ou, Xiawei; Ramakrishnaiah, Raghu H.; Glasier, Charles M.; Schaefer, G. Bradley; Bhutta, Adnan T.

    2014-01-01

    Early brain injury occurs in newborns with congenital heart disease (CHD) placing them at risk for impaired neurodevelopmental outcomes. Predictors for preoperative brain injury have not been well described in CHD newborns. This study aimed to analyze, retrospectively, brain magnetic resonance imaging (MRI) in a heterogeneous group of newborns who had CHD surgery during the first month of life using a detailed qualitative CHD MRI Injury Score, quantitative imaging assessments (regional apparent diffusion coefficient [ADC] values and brain volumes), and clinical characteristics. Seventy-three newborns that had CHD surgery at 8 ± 5 (mean ± standard deviation) days of life and preoperative brain MRI were included; 38 also had postoperative MRI. Thirty-four (34/73, 47%) had at least 1 type of preoperative brain injury, and 28/38 (74%) had postoperative brain injury. The 5-minute APGAR score was negatively associated with preoperative injury, but there was no difference between CHD types. Infants with intraparenchymal hemorrhage, deep gray matter injury, and/or watershed infarcts had the highest CHD MRI Injury Scores. ADC values and brain volumes were not different in infants with different CHD types, or in those with and without brain injury. In a mixed group of CHD newborns, brain injury was found preoperatively on MRI in almost 50%, and there were no significant baseline characteristic differences to predict this early brain injury, except 5-minute APGAR score. We conclude that all infants, regardless of CHD type, who require early surgery, should be evaluated with MRI as they are all at high risk for brain injury. PMID:23652966

  19. Antioxidants reverse the changes in energy metabolism of rat brain after chronic administration of L.-tyrosine.

    PubMed

    Teodorak, Brena P; Scaini, Giselli; Carvalho-Silva, Milena; Gomes, Lara M; Teixeira, Letícia J; Rebelo, Joyce; De Prá, Samira D T; Zeni, Neila; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-04-01

    Tyrosinemia type II is a rare autosomal recessive disease caused by deficiency of hepatic tyrosine aminotransferase and is associated with neurologic and development difficulties in numerous patients. Considering that the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly known and that high concentrations of tyrosine provoke mitochondrial dysfunction and oxidative stress, in the present study we investigated the in vivo influence of antioxidants (N-acetylcysteine, NAC; and deferoxamine, DFX) administration on the inhibitory effects on parameters of energy metabolism in cerebral cortex, hippocampus and striatum of rats, provoked by chronic administration of L.-tyrosine. Our results showed that chronic administration of L.-tyrosine results in a marked decrease in the activity of citrate synthase in all the analyzed structures and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants administration can prevent this inhibition in hippocampus and striatum. Moreover, chronic administration of L.-tyrosine inhibited the activity of complex I, II-III and IV in the striatum, which can be prevented by antioxidant treatment. However, the co-administration of NAC plus DFX could not prevent the inhibition of creatine kinase activity in the striatum. In conclusion, the present study demonstrates that the administration of antioxidants NAC and DFX attenuates the L.-tyrosine effects on enzymes of the Krebs cycle and the mitochondrial respiratory chain, suggesting that impairment of energy metabolism can be involved with oxidative stress. These results also indicate a possible neuroprotective role for NAC and DFX as a potential adjuvant therapy to the patients with Tyrosinemia type II.

  20. Brain Tumor Symptoms

    MedlinePlus

    ... Fatigue Other Symptoms Diagnosis Types of Tumors Risk Factors Brain Tumor Statistics Brain Tumor Dictionary Webinars Anytime Learning About Us Our Founders Board of Directors Staff Leadership Strategic Plan Financials News Careers Brain Tumor Information Brain Anatomy Brain ...

  1. Outcomes from ovarian cancer screening in the PLCO trial: Histologic heterogeneity impacts detection, overdiagnosis and survival.

    PubMed

    Temkin, Sarah M; Miller, Eric A; Samimi, Goli; Berg, Christine D; Pinsky, Paul; Minasian, Lori

    2017-12-01

    A mortality benefit from screening for ovarian cancer has never been demonstrated. The aim of this study was to evaluate the screening outcomes for different histologic subtypes of ovarian cancers. Women in the screening arm of the Prostate, Lung, Colorectal and Ovarian Screening Trial underwent CA-125 and transvaginal ultrasound annually for 3-5 years. We compared screening test characteristics (including overdiagnosis) and outcomes by tumour type (type II versus other) and study arm (screening versus usual care). Of 78,215 women randomised, 496 women were diagnosed with ovarian cancer. Of the tumours that were characterised (n = 413; 83%), 74% (n = 305) were type II versus 26% other (n = 108). Among screened patients, 70% of tumours were type II compared to 78% in usual care (p = 0.09). Within the screening arm, 29% of type II tumours were screen detected compared to 54% of the others (p < 0.01). The sensitivity of screening was 65% for type II tumours versus 86% for other types (p = 0.02). 15% of type II screen-detected tumours were stage I/II, compared to 81% of other tumours (p < 0.01). The overdiagnosis rate was lower for type II compared to other tumours (28.2% versus 72.2%; p < 0.01). Ovarian cancer-specific survival was worse for type II tumours compared to others (p < 0.01). Survival was similar for type II (p = 0.74) or other types (p = 0.32) regardless of study arm. Test characteristics of screening for ovarian cancer differed for type II tumours compared to other ovarian tumours. Type II tumours were less likely to be screen diagnosed, early stage at diagnosis or overdiagnosed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension.

    PubMed

    Li, Wencheng; Sullivan, Michelle N; Zhang, Sheng; Worker, Caleb J; Xiong, Zhenggang; Speth, Robert C; Feng, Yumei

    2015-02-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT(1) receptor-dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension. © 2014 American Heart Association, Inc.

  3. Intracerebroventricular Infusion of the (Pro)renin Receptor Antagonist PRO20 Attenuates Deoxycorticosterone Acetate-Salt–Induced Hypertension

    PubMed Central

    Li, Wencheng; Sullivan, Michelle N.; Zhang, Sheng; Worker, Caleb J.; Xiong, Zhenggang; Speth, Robert C.; Feng, Yumei

    2016-01-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT1 receptor–dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension. PMID:25421983

  4. The Kinetic Mechanism for Cytochrome P450 Metabolism of Type II Binding Compounds: Evidence Supporting Direct Reduction

    PubMed Central

    Pearson, Joshua; Dahal, Upendra P.; Rock, Daniel; Peng, Chi-Chi; Schenk, James O.; Joswig-Jones, Carolyn; Jones, Jeffrey P.

    2011-01-01

    The metabolic stability of a drug is an important property that should be optimized during drug design and development. Nitrogen incorporation is hypothesized to increase the stability by coordination of nitrogen to the heme iron of cytochrome P450, a binding mode that is referred to as type II binding. However, we noticed that the type II binding compound 1 has less metabolic stability at subsaturating conditions than a closely related type I binding compound 3. Three kinetic models will be presented for type II binder metabolism; 1) Dead-end type II binding, 2) a rapid equilibrium between type I and II binding modes before reduction, and 3) a direct reduction of the type II coordinated heme. Data will be presented on reduction rates of iron, the off rates of substrate (using surface plasmon resonance) and the catalytic rate constants. These data argue against the dead-end, and rapid equilibrium models, leaving the direct reduction kinetic mechanism for metabolism of the type II binding compound 1. PMID:21530484

  5. Synapsin I and Synapsin II regulate neurogenesis in the dentate gyrus of adult mice.

    PubMed

    Barbieri, Raffaella; Contestabile, Andrea; Ciardo, Maria Grazia; Forte, Nicola; Marte, Antonella; Baldelli, Pietro; Benfenati, Fabio; Onofri, Franco

    2018-04-10

    Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype. We found that Syns I and II play an important role in the regulation of adult neurogenesis. In juvenile mice, Syn II deletion was associated with a specific decrease in the proliferation of neuronal progenitors, whereas Syn I deletion impaired the survival of newborn neurons. These defects were reverted after the appearance of the epileptic phenotype, with Syn I KO and Syn II KO mice exhibiting significant increases in survival and proliferation, respectively. Interestingly, long-term potentiation dependent on newborn neurons was present in both juvenile Syn mutants while, at later ages, it was only preserved in Syn II KO mice that also displayed an increased expression of brain-derived neurotrophic factor. This study suggests that Syns I and II play a role in adult neurogenesis and the defects in neurogenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice.

  6. ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis.

    PubMed

    Anderson, Joshua C; Grammer, J Robert; Wang, Wenquan; Nabors, L Burton; Henkin, Jack; Stewart, Jerry E; Gladson, Candece L

    2007-03-01

    Anti-angiogenic therapies would be particularly beneficial in the treatment of malignant gliomas. Peptides derived from the second type 1 repeat (TSR) of thrombospondin-1 (TSP-1) have been shown to inhibit angiogenesis in non-glioma tumor models and a modified TSR peptide, ABT-510, has now entered into Phase II clinical trials of its efficacy in non-glioma tumors. As microvascular endothelial cells (MvEC) exhibit heterogeneity, we evaluated the ability of the modified TSR peptide (NAcSarGlyValDallolleThrNvalleArgProNHE, ABT-510) to inhibit malignant glioma growth in vivo and to induce apoptosis of brain microvessel endothelial cells (MvEC) propagated in vitro. We found that daily administration of ABT-510 until euthanasia (days 7 to 19), significantly inhibited the growth of human malignant astrocytoma tumors established in the brain of athymic nude mice. The microvessel density was significantly lower and the number of apoptotic MvEC was significantly higher (3-fold) in the tumors of the ABT-510-treated animals. Similar results were found using a model in which the established tumor is an intracerebral malignant glioma propagated in a syngeneic mouse model. ABT-510 treatment of primary human brain MvEC propagated as a monolayer resulted in induction of apoptosis in a dose- and time-dependent manner through a caspase-8-dependent mechanism. It also inhibited tubular morphogenesis of MvEC propagated in collagen gels in a dose- and caspase-8 dependent manner through a mechanism that requires the TSP-1 receptor (CD36) on the MvEC. These findings indicate that ABT-510 should be evaluated as a therapeutic option for patients with malignant glioma.

  7. Using a count of neonatal morbidities to predict poor outcome in extremely low birth weight infants: added role of neonatal infection.

    PubMed

    Bassler, Dirk; Stoll, Barbara J; Schmidt, Barbara; Asztalos, Elizabeth V; Roberts, Robin S; Robertson, Charlene M T; Sauve, Reg S

    2009-01-01

    A count of 3 neonatal morbidities (bronchopulmonary dysplasia, brain injury, and severe retinopathy of prematurity) strongly predict the risk of death or neurosensory impairment in extremely low birth weight infants who survive to 36 weeks' postmenstrual age. Neonatal infection has also been linked with later impairment. We examined whether the addition of infection to the count of 3 neonatal morbidities further improves the prediction of poor outcome. We studied 944 infants who participated in the Trial of Indomethacin Prophylaxis in Preterms and survived to 36 weeks' postmenstrual age. Culture-proven sepsis, meningitis, and stage II or III necrotizing enterocolitis were recorded prospectively. We investigated the incremental prognostic importance of neonatal infection by adding terms for the different types of infection to a logistic model that already contained terms for the count of bronchopulmonary dysplasia, brain injury, and severe retinopathy. Poor outcome at 18 months of age was death or survival with 1 or more of the following: cerebral palsy, cognitive delay, severe hearing loss, and bilateral blindness. There were 414 (44%) infants with at least 1 episode of infection or necrotizing enterocolitis. Meningitis and the presence of any type of infection added independent prognostic information to the morbidity-count model. The odds ratio associated with infection or necrotizing enterocolitis in this model was 50% smaller than the odds ratio associated with each count of the other 3 neonatal morbidities. Meningitis was rare and occurred in 22 (2.3%) of 944 infants. In this cohort of extremely low birth weight infants who survived to 36 weeks' postmenstrual age, neonatal infection increased the risk of a late death or survival with neurosensory impairment. However, infection was a weaker predictor of poor outcome than bronchopulmonary dysplasia, brain injury, and severe retinopathy.

  8. Orbital Fibroblasts From Thyroid Eye Disease Patients Differ in Proliferative and Adipogenic Responses Depending on Disease Subtype

    PubMed Central

    Kuriyan, Ajay E.; Woeller, Collynn F.; O'Loughlin, Charles W.; Phipps, Richard P.; Feldon, Steven E.

    2013-01-01

    Purpose. Thyroid eye disease (TED) patients are classified as type I (predominantly fat compartment enlargement) or type II (predominantly extraocular muscle enlargement) based on orbital imaging. Orbital fibroblasts (OFs) can be driven to proliferate or differentiate into adipocytes in vitro. We tested the hypothesis that type I OFs undergo more adipogenesis than type II OFs, whereas type II OFs proliferate more than type I OFs. We also examined the effect of cyclooxygenase (COX) inhibitors on OF adipogenesis and proliferation. Methods. Type I, type II, and non-TED OFs were treated with transforming growth factor-beta (TGFβ) to induce proliferation and with 15-deoxy-Δ−12,14-prostaglandin J2 (15d-PGJ2) to induce adipogenesis. Proliferation was measured using the [3H]thymidine assay, and adipogenesis was measured using the AdipoRed assay, Oil Red O staining, and flow cytometry. The effect of COX inhibition on adipogenesis and proliferation was also studied. Results. Type II OFs incorporated 1.7-fold more [3H]thymidine than type I OFs (P < 0.05). Type I OFs accumulated 4.8-fold more lipid than type II OFs (P < 0.05) and 12.6-fold more lipid than non-TED OFs (P < 0.05). Oil Red O staining and flow cytometry also demonstrated increased adipogenesis in type I OFs compared to type II and non-TED OFs. Cyclooxygenase inhibition significantly decreased proliferation and adipogenesis in type II OFs, but not type I OFs. Conclusions. We have demonstrated that OFs from TED patients have heterogeneous responses to proproliferative and proadipogenic stimulators in vitro in a manner that corresponds to their different clinical manifestations. Furthermore, we demonstrated a differential effect of COX inhibitors on type I and type II OF proliferation and adipogenesis. PMID:24135759

  9. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    PubMed

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Transduction of Nonhuman Primate Brain with Adeno-Associated Virus Serotype 1: Vector Trafficking and Immune Response

    PubMed Central

    Forsayeth, John; Mirek, Hanna; Munson, Keith; Bringas, John; Pivirotto, Phil; McBride, Jodi L; Davidson, Beverly L.; Bankiewicz, Krystof S.

    2009-01-01

    Abstract We used convection-enhanced delivery (CED) to characterize gene delivery mediated by adeno-associated virus type 1 (AAV1) by tracking expression of hrGFP (humanized green fluorescent protein from Renilla reniformis) into the striatum, basal forebrain, and corona radiata of monkey brain. Four cynomolgus monkeys received single infusions into corona radiata, putamen, and caudate. The other group (n = 4) received infusions into basal forebrain. Thirty days after infusion animals were killed and their brains were processed for immunohisto-chemical evaluation. Volumetric analysis of GFP-positive brain areas was performed. AAV1-hrGFP infusions resulted in approximately 550, 700, and 73 mm3 coverage after infusion into corona radiata, striatum, and basal forebrain, respectively. Aside from targeted regions, other brain structures also showed GFP signal (internal and external globus pallidus, subthalamic nucleus), supporting the idea that AAV1 is actively trafficked to regions distal from the infusion site. In addition to neuronal transduction, a significant nonneuronal cell population was transduced by AAV1 vector; for example, oligodendrocytes in corona radiata and astrocytes in the striatum. We observed a strong humoral and cell-mediated response against AAV1-hrGFP in transduced monkeys irrespective of the anatomic location of the infusion, as evidenced by induction of circulating anti-AAV1 and anti-hrGFP antibodies, as well as infiltration of CD4+ lymphocytes and upregulation of MHC-II in regions infused with vector. We conclude that transduction of antigen-presenting cells within the CNS is a likely cause of this response and that caution is warranted when foreign transgenes are used as reporters in gene therapy studies with vectors with broader tropism than AAV2. PMID:19292604

  11. Brain Trauma Foundation Guideline Compliance: Results of a Multidisciplinary, International Survey.

    PubMed

    Hirschi, Ryan; Rommel, Casey; Letsinger, Joshua; Nirula, Raminder; Hawryluk, Gregory W J

    2018-05-09

    Brain Trauma Foundation (BTF) guidelines reflect evidence-based best practices in management of traumatic brain injury. The aim of this study was to examine self-reported physician compliance and predictors of compliance related to BTF guidelines. We conducted an international, multidisciplinary survey examining self-reported adherence to BTF guidelines and multiple factors potentially affecting adherence. We also surveyed intracranial pressure monitoring practices. Of 154 physician respondents, 15.9% reported their institutions "always" follow BTF guidelines and 72.2% reported that they follow them "most of the time." Personal volume of traumatic brain injury cases and years in practice were not significantly related to adherence. Reported adherence varied significantly in association with respondent's institutional trauma level (P = 0.0010): 17.3% of practitioners at level I, 13.0% at level II, and 0% at level III trauma centers reported "always" following guidelines. Reported adherence to guidelines also varied significantly in association with provider specialty (P = 0.015) and institutional volume of severe traumatic brain injury cases (P = 0.008). Regarding intracranial pressure monitoring practices, 52% of respondents used external ventricular drains, 21% used intraparenchymal monitors, and 27% had no preference (P < 0.001). Of respondents not routinely using external ventricular drains, 36% claimed to "always" follow guidelines. There was no apparent association between type of intracranial pressure monitoring used and reported guideline adherence. Few respondents reported their institutions "always" follow BTF guidelines. General surgeons and providers at high-volume level I trauma centers were more likely to comply with guidelines. Differences in survey responses based on provider and institutional characteristics may help target educational efforts. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Inhibition of type I insulin-like growth factor receptor signaling attenuates the development of breast cancer brain metastasis.

    PubMed

    Saldana, Sandra M; Lee, Heng-Huan; Lowery, Frank J; Khotskaya, Yekaterina B; Xia, Weiya; Zhang, Chenyu; Chang, Shih-Shin; Chou, Chao-Kai; Steeg, Patricia S; Yu, Dihua; Hung, Mien-Chie

    2013-01-01

    Brain metastasis is a common cause of mortality in cancer patients, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF-IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that IGF-IR is constitutively autophosphorylated in brain-seeking breast cancer sublines. Knockdown of IGF-IR results in a decrease of phospho-AKT and phospho-p70s6k, as well as decreased migration and invasion of MDA-MB-231Br brain-seeking cells. In addition, transient ablation of IGFBP3, which is overexpressed in brain-seeking cells, blocks IGF-IR activation. Using an in vivo experimental brain metastasis model, we show that IGF-IR knockdown brain-seeking cells have reduced potential to establish brain metastases. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.

  13. The predictive value of resting heart rate following osmotherapy in brain injury: back to basics.

    PubMed

    Hasanpour Mir, Mahsa; Yousefshahi, Fardin; Abdollahi, Mohammad; Ahmadi, Arezoo; Nadjafi, Atabak; Mojtahedzadeh, Mojtaba

    2012-12-30

    The importance of resting heart rate as a prognostic factor was described in several studies. An elevated heart rate is an independent risk factor for adverse cardiovascular events and total mortality in patients with coronary artery disease, chronic heart failure, and the general population. Also heart rate is elevated in the Multi Organ Dysfunction Syndrome (MODS) and the mortality due to MODS is highly correlated with inadequate sinus tachycardia.To evaluate the value of resting heart rate in predicting mortality in patients with traumatic brain injury along scoring systems like Acute Physiology and Chronic Health Evaluation(APACHE II), Sequential Organ Failure Assessment (SOFA) and Glasgow Coma Score (GCS). By analyzing data which was collected from an open labeled randomized clinical trial that compared the different means of osmotherapy (mannitol vs bolus or infusion hypertonic saline), heart rate, GCS, APACHE II and SOFA score were measured at baseline and daily for 7 days up to 60 days and the relationship between elevated heart rate and mortality during the first 7 days and 60th day were assessed. After adjustments for confounding factors, although there was no difference in mean heart rate between either groups of alive and expired patients, however, we have found a relative correlation between 60th day mortality rate and resting heart rate (P=0.07). Heart rate can be a prognostic factor for estimating mortality rate in brain injury patients along with APACHE II and SOFA scores in patients with brain injury.

  14. Crystal Structure-Based Selective Targeting of the Pyridoxal 5′-Phosphate Dependent Enzyme Kynurenine Aminotransferase II for Cognitive Enhancement†

    PubMed Central

    Rossi, Franca; Valentina, Casazza; Garavaglia, Silvia; Sathyasaikumar, Korrapati V.; Schwarcz, Robert; Kojima, Shin-ichi; Okuwaki, Keisuke; Ono, Shin-ichiro; Kajii, Yasushi; Rizzi, Menico

    2014-01-01

    Fluctuations in the brain levels of the neuromodulator kynurenic acid may control cognitive processes and play a causative role in several catastrophic brain diseases. Elimination of the pyridoxal 5′-phosphate dependent enzyme kynurenine aminotransferase II reduces cerebral kynurenic acid synthesis and has procognitive effects. The present description of the crystal structure of human kynurenine aminotransferase II in complex with its potent and specific primary amine-bearing fluoroquinolone inhibitor (S)-(−)-9-(4-aminopiperazin-1-yl)-8-fluoro-3-methyl-6-oxo-2,3-dihydro-6H-1-oxa-3a-azaphenalene-5-carboxylic acid (BFF-122) should facilitate the structure-based development of cognition-enhancing drugs. From a medicinal chemistry perspective our results demonstrate that the issue of inhibitor specificity for highly conserved PLP-dependent enzymes could be successfully addressed. PMID:20684605

  15. Predictors of invalid neuropsychological test performance after traumatic brain injury.

    PubMed

    Moore, Bret A; Donders, Jacobus

    2004-10-01

    To investigate the usefulness of the Test of Memory Malingering (TOMM) and the California Verbal Learning Test-Second Edition (CVLT-II) in assessing invalid test performance after traumatic brain injury (TBI). Consecutive 3-year series of rehabilitation referrals (n = 132). Percentage of participants who failed validity criteria was determined. Hierarchical logistic regression analysis and odds ratios were used to identify predictors of invalid test performance. Twenty patients (15%) performed in the invalid range when held to a priori specified criteria for invalid test performance (i.e. TOMM <45/50 on Trial 2 or CVLT-II <15/16 on Forced-Choice recognition trial). Both psychiatric history and financial compensation seeking were associated with an almost 4-fold increase in likelihood of invalid responding. The TOMM and CVLT-II are sensitive to the potential impact of current financial compensation seeking and prior psychiatric history on neuropsychological test performance after TBI.

  16. Brain Type or Sex Differences? A Structural Equation Model of the Relation between Brain Type, Sex, and Motivation to Learn Science

    ERIC Educational Resources Information Center

    Zeyer, Albert; Bolsterli, Katrin; Brovelli, Dorothee; Odermatt, Freia

    2012-01-01

    Sex is considered to be one of the most significant factors influencing attitudes towards science. However, the so-called brain type approach from cognitive science suggests that the difference in motivation to learn science does not primarily differentiate the girls from the boys, but rather the so-called systemisers from the empathizers. The…

  17. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells

    PubMed Central

    Mossel, Eric C.; Wang, Jieru; Jeffers, Scott; Edeen, Karen E.; Wang, Shuanglin; Cosgrove, Gregory P.; Funk, C. Joel; Manzer, Rizwan; Miura, Tanya A.; Pearson, Leonard D.; Holmes, Kathryn V.; Mason, Robert J.

    2008-01-01

    Severe acute respiratory syndrome (SARS) is a disease characterized by diffuse alveolar damage. We isolated alveolar type II cells and maintained them in a highly differentiated state. Type II cell cultures supported SARS-CoV replication as evidenced by RT-PCR detection of viral subgenomic RNA and an increase in virus titer. Virus titers were maximal by 24 hours and peaked at approximately 105 pfu/mL. Two cell types within the cultures were infected. One cell type was type II cells, which were positive for SP-A, SP-C, cytokeratin, a type II cell-specific monoclonal antibody, and Ep-CAM. The other cell type was composed of spindle-shaped cells that were positive for vimentin and collagen III and likely fibroblasts. Viral replication was not detected in type I-like cells or macrophages. Hence, differentiated adult human alveolar type II cells were infectible but alveolar type I-like cells and alveolar macrophages did not support productive infection. PMID:18022664

  18. Advances in immunotherapy for the treatment of glioblastoma.

    PubMed

    Tivnan, Amanda; Heilinger, Tatjana; Lavelle, Ed C; Prehn, Jochen H M

    2017-01-01

    Glioblastoma (GBM) is an aggressive brain tumour, associated with extremely poor prognosis and although there have been therapeutic advances, treatment options remain limited. This review focuses on the use of immunotherapy, harnessing the power of the host's immune system to reject cancer cells. Key challenges in glioma specific immunotherapy as with many other cancers are the limited immunogenicity of the cancer cells and the immunosuppressive environment of the tumour. Although specific antigens have been identified in several cancers; brain tumours, such as GBM, are considered poorly immunogenic. However, as detailed in this review, strategies aimed at circumventing these challenges are showing promise for GBM treatment; including identification of glioma specific antigens and endogenous immune cell activation in an attempt to overcome the immunosuppressive environment which is associated with GBM tumours. An up-to-date summary of current Phase I/II and ongoing Phase III GBM immunotherapy clinical trials is provided in addition to insights into promising preclinical approaches which are focused predominantly on increased induction of Type 1 helper T cell (T h 1) immune responses within patients.

  19. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    PubMed

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  20. Neuronal gap junctions play a role in the secondary neuronal death following controlled cortical impact.

    PubMed

    Belousov, Andrei B; Wang, Yongfu; Song, Ji-Hoon; Denisova, Janna V; Berman, Nancy E; Fontes, Joseph D

    2012-08-22

    In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI) and epilepsy. Recent studies in mice showed a critical role for neuronal gap junctions in NMDA receptor-mediated excitotoxicity and ischemia-mediated neuronal death. Here, using controlled cortical impact (CCI) in adult mice, as a model of TBI, and Fluoro-Jade B staining for analysis of neuronal death, we set to determine whether neuronal gap junctions play a role in the CCI-mediated secondary neuronal death. We report that 24h post-CCI, substantial neuronal death is detected in a number of brain regions outside the injury core, including the striatum. The striatal neuronal death is reduced both in wild-type mice by systemic administration of mefloquine (a relatively selective blocker of neuronal gap junctions) and in knockout mice lacking connexin 36 (neuronal gap junction protein). It is also reduced by inactivation of group II metabotropic glutamate receptors (with LY341495) which, as reported previously, control the rapid increase in neuronal gap junction coupling following different types of neuronal injury. The results suggest that neuronal gap junctions play a critical role in the CCI-induced secondary neuronal death. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Dynamics of regional brain activity in epilepsy: a cross-disciplinary study on both intracranial and scalp-recorded epileptic seizures

    NASA Astrophysics Data System (ADS)

    Minadakis, George; Ventouras, Errikos; Gatzonis, Stylianos D.; Siatouni, Anna; Tsekou, Hara; Kalatzis, Ioannis; Sakas, Damianos E.; Stonham, John

    2014-04-01

    Objective. Recent cross-disciplinary literature suggests a dynamical analogy between earthquakes and epileptic seizures. This study extends the focus of inquiry for the applicability of models for earthquake dynamics to examine both scalp-recorded and intracranial electroencephalogram recordings related to epileptic seizures. Approach. First, we provide an updated definition of the electric event in terms of magnitude and we focus on the applicability of (i) a model for earthquake dynamics, rooted in a nonextensive Tsallis framework, (ii) the traditional Gutenberg and Richter law and (iii) an alternative method for the magnitude-frequency relation for earthquakes. Second, we apply spatiotemporal analysis in terms of nonextensive statistical physics and we further examine the behavior of the parameters included in the nonextensive formula for both types of electroencephalogram recordings under study. Main results. We confirm the previously observed power-law distribution, showing that the nonextensive formula can adequately describe the sequences of electric events included in both types of electroencephalogram recordings. We also show the intermittent behavior of the epileptic seizure cycle which is analogous to the earthquake cycles and we provide evidence of self-affinity of the regional electroencephalogram epileptic seizure activity. Significance. This study may provide a framework for the analysis and interpretation of epileptic brain activity and other biological phenomena with similar underlying dynamical mechanisms.

  2. Absence of IFNγ Increases Brain Pathology in EAE-susceptible DRB1*0301.DQ8 HLA Transgenic Mice Through Secretion of Pro-inflammatory Cytokine IL-17 and Induction of Pathogenic Monocytes/Microglia into the CNS

    PubMed Central

    Mangalam, Ashutosh; Luo, Ningling; Luckey, David; Papke, Louisa; Hubbard, Alyssa; Wussow, Arika; Smart, Michele; Giri, Shailendra; Rodriguez, Moses; David, Chella

    2014-01-01

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS) of presumed autoimmune origin. Of all the genetic factors linked with MS, MHC class-II molecules have the strongest association. Generation of HLA class-II transgenic mice has helped to elucidate the role of HLA class-II genes in chronic inflammatory and demyelinating diseases. We have shown that the human HLA-DRB1*0301 gene predisposes to proteolipid protein (PLP)-induced EAE, whereas HLA-DQβ1*0601 (DQ6) was resistant. We also showed that the DQ6 molecule protects from EAE in DRB1*0301.DQ6 double transgenic mice by producing anti-inflammatory interferon gamma (IFNγ). HLA-DQβ1*0302 (DQ8) transgenic mice were also resistant to PLP91-110-induced EAE, but production of pro-inflammatory IL-17 exacerbated disease in DRB1*0301.DQ8 mice. To further confirm the role of IFNγ in protection, we generated DRB1*0301.DQ8 mice lacking IFNγ (DRB1*0301.DQ8.IFNγ−/−). Immunization with PLP91-110 peptide caused atypical EAE in DRB1*0301.DQ8.IFNγ−/− mice characterized by ataxia, spasticity and dystonia, hallmarks of brain-specific disease. Severe brain specific inflammation and demyelination in DRB1*0301.DQ8.IFNγ−/− mice with minimal spinal cord pathology further confirmed brain-specific pathology. Atypical EAE in DRB1*0301.DQ8.IFNγ−/− mice was associated with increased encephalitogenicity of CD4 T cells and their ability to produce higher levels of IL-17 and GM-CSF compared to DRB1*0301.DQ8 mice. Further, areas with demyelination showed increased presence of CD68+ inflammatory cells, suggesting an important role for monocytes/microglia in causing brain pathology. Thus, our study supports a protective role for IFNγ in the demyelination of brain through down regulation of IL-17/GM-CSF and induction of neuro-protective factors in the brain by monocytes/microglial cells. PMID:25339670

  3. Type-1 angiotensin receptor signaling in central nervous system myeloid cells is pathogenic during fatal alphavirus encephalitis in mice.

    PubMed

    Blakely, Pennelope K; Huber, Amanda K; Irani, David N

    2016-08-25

    Alphaviruses can cause fatal encephalitis in humans. Natural infections occur via the bite of infected mosquitos, but aerosol transmissibility makes some of these viruses potential bioterrorism agents. Central nervous system (CNS) host responses contribute to alphavirus pathogenesis in experimental models and are logical therapeutic targets. We investigated whether reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity within the CNS contributes to fatal alphavirus encephalitis in mice. Infected animals were treated systemically with the angiotensin receptor-blocking drug, telmisartan, given its ability to cross the blood-brain barrier, selectively block type-1 angiotensin receptors (AT1R), and inhibit Nox-derived ROS production in vascular smooth muscle and other extraneural tissues. Clinical, virological, biochemical, and histopathological outcomes were followed over time. The importance of the angiotensin II (Ang II)/AT1R axis in disease pathogenesis was confirmed by demonstrating increased Ang II levels in the CNS following infection, enhanced disease survival when CNS Ang II production was suppressed, increased AT1R expression on microglia and tissue-infiltrating myeloid cells, and enhanced disease survival in AT1R-deficient mice compared to wild-type (WT) controls. Systemic administration of telmisartan protected WT mice from lethal encephalitis caused by two different alphaviruses in a dose-dependent manner without altering virus replication or exerting any anti-inflammatory effects in the CNS. Infection triggered up-regulation of multiple Nox subunits in the CNS, while drug treatment inhibited local Nox activity, ROS production, and oxidative neuronal damage. Telmisartan proved ineffective in Nox-deficient mice, demonstrating that this enzyme is its main target in this experimental setting. Nox-derived ROS, likely arising from CNS myeloid cells triggered by AT1R signaling, are pathogenic during fatal alphavirus encephalitis in mice. Systemically administered telmisartan at non-hypotensive doses targets Nox activity in the CNS to exert a neuroprotective effect. Disruption of this pathway may have broader implications for the treatment of related infections as well as for other CNS diseases driven by oxidative injury.

  4. Heart type fatty acid binding protein (H-FABP) is decreased in brains of patients with Down syndrome and Alzheimer's disease.

    PubMed

    Cheon, M S; Kim, S H; Fountoulakis, M; Lubec, G

    2003-01-01

    Fatty acid binding proteins (FABPs) are thought to play a role in the binding, targeting and transport of long-chain fatty acids, and at least three types of FABPs are found in human brain; heart type (H)-FABP, brain type (B)-FABP and epidermal type (E)-FABP. Although all three FABPs could be involved in normal brain function in prenatal and postnatal life, a neurobiological role of FABPs in neurodegenerative diseases has not been reported yet. These made us evaluate the protein levels of FABPs in brains from patients with Down syndrome (DS) and Alzheimer's disease (AD) and fetal cerebral cortex with DS using two-dimensional (2-D) gel electrophoresis with subsequent matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS) identification and specific software for quantification of proteins. In adult brain, B-FABP was significantly increased in occipital cortex of DS, and H-FABP was significantly decreased in DS (frontal, occipital and parietal cortices) and AD (frontal, temporal, occipital and parietal cortices). In fetal brain, B-FABP and epidermal E-FABP levels were comparable in controls and DS. We conclude that aberrant expression of FABPs, especially H-FABP may alter membrane fluidity and signal transduction, and consequently could be involved in cellular dysfunction in neurodegenerative disorders.

  5. Alveolar type II cell-fibroblast interactions, synthesis and secretion of surfactant and type I collagen.

    PubMed

    Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T

    1993-06-01

    During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium contained low levels of IGF-1 and the stimulation of type I collagen secretion was abolished when the conditioned medium was pre-incubated with antibodies to insulin-like growth factor 1 (IGF-1). There are important reciprocal interactions between alveolar type II cells and fibroblasts in co-culture. Direct contacts between alveolar type II cells and fibroblasts appear to have a trophic effect on cultured alveolar type II cells, increasing the levels of mRNA for SP-A. Rat lung alveolar type II cells appear to release a factor (possibly IGF-1) that stimulates type I collagen secretion by fibroblasts.

  6. Excitonic transitions in highly efficient (GaIn)As/Ga(AsSb) type-II quantum-well structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gies, S.; Kruska, C.; Berger, C.

    2015-11-02

    The excitonic transitions of the type-II (GaIn)As/Ga(AsSb) gain medium of a “W”-laser structure are characterized experimentally by modulation spectroscopy and analyzed using microscopic quantum theory. On the basis of the very good agreement between the measured and calculated photoreflectivity, the type-I or type-II character of the observable excitonic transitions is identified. Whereas the energetically lowest three transitions exhibit type-II character, the subsequent energetically higher transitions possess type-I character with much stronger dipole moments. Despite the type-II character, the quantum-well structure exhibits a bright luminescence.

  7. Replication and Pedagogy in the History of Psychology II: Fowler & Wells's Phrenology

    ERIC Educational Resources Information Center

    Trevino, Kelly M.; Konrad, Krista K.

    2008-01-01

    Phrenologists believed that specific brain regions corresponded to certain character traits. In addition, the size of each brain region was believed to determine the strength of the respective trait. Phrenology originated in Austria with Franz Josef Gall and was popularized and commercialized in America at the end of the 19th century by Orson…

  8. Brain Korea 21 Phase II: A New Evaluation Model. Monograph

    ERIC Educational Resources Information Center

    Seong, Somi; Popper, Steven W.; Goldman, Charles A.; Evans, David K.

    2008-01-01

    In the late 1990s, the Korea Ministry of Education and Human Resources, in response to concern over the relatively low standing of the nation's universities and researchers, launched the Brain Korea 21 program BK21). BK21 seeks to make Korean research universities globally competitive and to produce more high-quality researchers in Korea. It…

  9. Classroom Strategies for Teaching Veterans with Post-Traumatic Stress Disorder and Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Sinski, Jennifer Blevins

    2012-01-01

    Postsecondary institutions currently face the largest influx of veteran students since World War II. As the number of veteran students who may experience learning problems caused by Post-Traumatic Stress Disorder and/or Traumatic Brain Injury continues to rise, the need for instructional strategies that address their needs increases. Educators may…

  10. Traumatic Brain Injury in K-12 Students II: Response to Instruction--When Will They Ever Learn?

    ERIC Educational Resources Information Center

    Schutz, Larry E.; McNamara, Elizabeth A.

    2011-01-01

    Most students who have sustained severe traumatic brain injury (TBI) appear normal when they return to school. Hopeful parents, encouraged by deceptively positive medical feedback, expect a return to regular education. In the classroom, the students initially seem almost ready to resume learning, but instead they fall farther behind grade level…

  11. Association of metallothionein-III with oligodendroglial cytoplasmic inclusions in multiple system atrophy.

    PubMed

    Pountney, D L; Dickson, T C; Power, J H T; Vickers, J C; West, A J; Gai, W P

    2011-01-01

    Multiple system atrophy (MSA) is an adult-onset neurodegenerative disease characterised by Parkinsonian and autonomic symptoms and by widespread intracytoplasmic inclusion bodies in oligodendrocytes. These glial cytoplasmic inclusions (GCIs) are comprised of 9-10 nm filaments rich in the protein alpha-synuclein, also found in neuronal inclusion bodies associated with Parkinson's disease. Metallothioneins (MTs) are a class of low-molecular weight (6-7 kDa), cysteine-rich metal-binding proteins the expression of which is induced by heavy metals, glucocorticoids, cytokines and oxidative stress. Recent studies have shown a role for the ubiquitously expressed MT-I/II isoforms in the brain following a variety of stresses, whereas, the function of the brain-specific MT isoform, MT-III, is less clear. MT-III and MT-I/II immunostaining of post-mortem tissue in MSA and normal control human brains showed that the number of MT-III-positive cells is significantly increased in MSA in visual cortex, whereas MT-I/II isoforms showed no significant difference in the distribution of immunopositive cells in MSA compared to normal tissue. GCIs were immunopositive for MT-III, but were immunonegative for the MT-I/II isoforms. Immunofluorescence double labelling showed the co-localisation of alpha-synuclein and MT-III in GCIs in MSA tissue. In isolated GCIs, transmission electron microscopy demonstrated MT-III immunogold labelling of the amorphous material surrounding alpha-synuclein filaments in GCIs. High-molecular weight MT-III species in addition to MT-III monomer were detected in GCIs by Western analysis of the detergent-solubilised proteins of purified GCIs. These results show that MT-III, but not MT-I/II, is a specific component of GCIs, present in abnormal aggregated forms external to the alpha-synuclein filaments.

  12. Type II endoleak after endovascular abdominal aortic aneurysm repair: a conservative approach with selective intervention is safe and cost-effective.

    PubMed

    Steinmetz, Eric; Rubin, Brian G; Sanchez, Luis A; Choi, Eric T; Geraghty, Patrick J; Baty, Jack; Thompson, Robert W; Flye, M Wayne; Hovsepian, David M; Picus, Daniel; Sicard, Gregorio A

    2004-02-01

    The conservative versus therapeutic approach to type II endoleak after endovascular repair of abdominal aortic aneurysm (EVAR) has been controversial. The purpose of this study was to evaluate the safety and cost-effectiveness of the conservative approach of embolizing type II endoleak only when persistent for more than 6 months and associated with aneurysm sac growth of 5 mm or more. Data for 486 consecutive patients who underwent EVAR were analyzed for incidence and outcome of type II endoleaks. Spiral computed tomography (CT) scans were reviewed, and patient outcome was evaluated at either office visit or telephone contact. Patients with new or late-appearing type II endoleak were evaluated with spiral CT at 6-month intervals to evaluate both persistence of the endoleak and size of the aneurysm sac. Persistent (>or=6 months) type II endoleak and aneurysm sac growth of 5 mm or greater were treated with either translumbar glue or coil embolization of the lumbar source, or transarterial coil embolization of the inferior mesenteric artery. Type II endoleaks were detected in 90 (18.5%) patients. With a mean follow-up of 21.7 +/- 16 months, only 35 (7.2%) patients had type II endoleak that persisted for 6 months or longer. Aneurysm sac enlargement was noted in 5 patients, representing 1% of the total series. All 5 patients underwent successful translumbar sac embolization (n = 4) or transarterial inferior mesenteric artery embolization (n = 4) at a mean follow-up of 18.2 +/- 8.0 months, with no recurrence or aneurysm sac growth. No patient with treated or untreated type II endoleak has had rupture of the aneurysm. The mean global cost for treatment of persistent type II endoleak associated with aneurysm sac growth was US dollars 6695.50 (hospital cost plus physician reimbursement). Treatment in the 30 patients with persistent type II endoleak but no aneurysm sac growth would have represented an additional cost of US dollars 200000 or more. The presence or absence of a type II endoleak did not affect survival (78% vs 73%) at 48 months. Selective intervention to treat type II endoleak that persists for 6 months and is associated with aneurysm enlargement seems to be both safe and cost-effective. Longer follow-up will determine whether this conservative approach to management of type II endoleak is the standard of care.

  13. Application of laser therapy in the treatment of brain ischemia

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Nechipurenko, N. I.; Musienko, J. I.; Kuchinsky, A. V.

    2007-06-01

    Intravenous laser irradiation of blood (ILIB) by helium-neon laser (HNL) with λ=632.8 nm, 2.5-4.5 mW at the light guide outlet was employed to investigate ILIB influence on blood oxygen transport (BOT), hydro-ion balance for normal rabbits and after modeling of local ischemia of brain (LIB). Marked improvement of disturbances typical for ischemia was revealed for both hydro-ion balance characteristics and BOT parameters such as oxygen tension (p vO II), oxygen hemoglobin saturation (s vO II), p vO II of blood under its 50% saturation by O II (p50) and tendency was found to their normalization. To identify the molecular photoacceptors and the mechanisms of primary photoreactions the spectral data were used both in visible and infrared regions. On the basis of spectral analysis hemoglobin was discussed as a possible photoacceptor when blood is irradiated with HNL radiation. Variations in the redox properties of respiratory chain components were considered as primary mechanisms of light action on photoacceptor molecules that initiated a cascade of secondary reactions controlling cellular homeostasis parameters.

  14. Irradiation Alters MMP-2/TIMP-2 System and Collagen Type IV Degradation in Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Won Hee; Warrington, Junie P.; Sonntag, William E.

    Purpose: Blood-brain barrier (BBB) disruption is one of the major consequences of radiation-induced normal tissue injury in the central nervous system. We examined the effects of whole-brain irradiation on matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in the brain. Methods and Materials: Animals received either whole-brain irradiation (a single dose of 10 Gy {gamma}-rays or a fractionated dose of 40 Gy {gamma}-rays, total) or sham-irradiation and were maintained for 4, 8, and 24 h following irradiation. mRNA expression levels of MMPs and TIMPs in the brain were analyzed by real-time reverse transcriptase-polymerase chain reaction (PCR).more » The functional activity of MMPs was measured by in situ zymography, and degradation of ECM was visualized by collagen type IV immunofluorescent staining. Results: A significant increase in mRNA expression levels of MMP-2, MMP-9, and TIMP-1 was observed in irradiated brains compared to that in sham-irradiated controls. In situ zymography revealed a strong gelatinolytic activity in the brain 24 h postirradiation, and the enhanced gelatinolytic activity mediated by irradiation was significantly attenuated in the presence of anti-MMP-2 antibody. A significant reduction in collagen type IV immunoreactivity was also detected in the brain at 24 h after irradiation. In contrast, the levels of collagen type IV were not significantly changed at 4 and 8 h after irradiation compared with the sham-irradiated controls. Conclusions: The present study demonstrates for the first time that radiation induces an imbalance between MMP-2 and TIMP-2 levels and suggests that degradation of collagen type IV, a major ECM component of BBB basement membrane, may have a role in the pathogenesis of brain injury.« less

  15. Adaptive Capacity: An Evolutionary Neuroscience Model Linking Exercise, Cognition, and Brain Health.

    PubMed

    Raichlen, David A; Alexander, Gene E

    2017-07-01

    The field of cognitive neuroscience was transformed by the discovery that exercise induces neurogenesis in the adult brain, with the potential to improve brain health and stave off the effects of neurodegenerative disease. However, the basic mechanisms underlying exercise-brain connections are not well understood. We use an evolutionary neuroscience approach to develop the adaptive capacity model (ACM), detailing how and why physical activity improves brain function based on an energy-minimizing strategy. Building on studies showing a combined benefit of exercise and cognitive challenge to enhance neuroplasticity, our ACM addresses two fundamental questions: (i) what are the proximate and ultimate mechanisms underlying age-related brain atrophy, and (ii) how do lifestyle changes influence the trajectory of healthy and pathological aging? Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characteristics of interplanetary type II radio emission and the relationship to shock and plasma properties

    NASA Technical Reports Server (NTRS)

    Lengyel-Frey, D.; Stone, R. G.

    1989-01-01

    A large sample of type II events is the basis of the present study of the properties of interplanetary type II bursts' radio-emission properties. Type II spectra seem to be composed of fundamental and harmonic components of plasma emission, where the intensity of the fundamental component increases relative to the harmonic as the burst evolves with heliocentric distance; burst average flux density increases as a power of the associated shock's average velocity. Solar wind density structures may have a significant influence on type II bandwidths.

  17. An ecological analysis of food outlet density and prevalence of type II diabetes in South Carolina counties.

    PubMed

    AlHasan, Dana M; Eberth, Jan Marie

    2016-01-05

    Studies suggest that the built environment with high numbers of fast food restaurants and convenience stores and low numbers of super stores and grocery stores are related to obesity, type II diabetes mellitus, and other chronic diseases. Since few studies assess these relationships at the county level, we aim to examine fast food restaurant density, convenience store density, super store density, and grocery store density and prevalence of type II diabetes among counties in South Carolina. Pearson's correlation between four types of food outlet densities- fast food restaurants, convenience stores, super stores, and grocery stores- and prevalence of type II diabetes were computed. The relationship between each of these food outlet densities were mapped with prevalence of type II diabetes, and OLS regression analysis was completed adjusting for county-level rates of obesity, physical inactivity, density of recreation facilities, unemployment, households with no car and limited access to stores, education, and race. We showed a significant, negative relationship between fast food restaurant density and prevalence of type II diabetes, and a significant, positive relationship between convenience store density and prevalence of type II diabetes. In adjusted analysis, the food outlet densities (of any type) was not associated with prevalence of type II diabetes. This ecological analysis showed no associations between fast food restaurants, convenience stores, super stores, or grocery stores densities and the prevalence of type II diabetes. Consideration of environmental, social, and cultural determinants, as well as individual behaviors is needed in future research.

  18. Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Zhang, Baile

    2016-11-01

    Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.

  19. Mimicry by asx- and ST-turns of the four main types of β-turn in proteins

    PubMed Central

    Duddy, William J.; Nissink, J. Willem M.; Allen, Frank H.; Milner-White, E. James

    2004-01-01

    Hydrogen-bonded β-turns in proteins occur in four categories: type I (the most common), type II, type II’, and type I’. Asx-turns resemble β-turns, in that both have an NH. . .OC hydrogen bond forming a ring of 10 atoms. Serine and threonine side chains also commonly form hydrogen-bonded turns, here called ST-turns. Asx-turns and ST-turns can be categorized into four classes, based on side chain rotamers and the conformation of the central turn residue, which are geometrically equivalent to the four types of β-turns. We propose asx- and ST-turns be named using the type I, II, I’, and II’ β-turn nomenclature. Using this, the frequency of occurrence of both asx- and ST-turns is: type II’ > type I > type II > type I’, whereas for β-turns it is type I > type II > type I’ > type II’. Almost all type II asx-turns occur as a recently described three residue feature named an asx-nest. PMID:15459339

  20. Visuospatial learning and memory in the Cebus apella and microglial morphology in the molecular layer of the dentate gyrus and CA1 lacunosum molecular layer.

    PubMed

    Santos-Filho, Carlos; de Lima, Camila M; Fôro, César A R; de Oliveira, Marcus A; Magalhães, Nara G M; Guerreiro-Diniz, Cristovam; Diniz, Daniel G; Vasconcelos, Pedro F da C; Diniz, Cristovam W P

    2014-11-01

    We investigated whether the morphology of microglia in the molecular layer of the dentate gyrus (DG-Mol) or in the lacunosum molecular layer of CA1 (CA1-LMol) was correlated with spatial learning and memory in the capuchin monkey (Cebus apella). Learning and memory was tested in 4 monkeys with visuo-spatial, paired associated learning (PAL) tasks from the Cambridge battery of neuropsychological tests. After testing, monkeys were sacrificed, and hippocampi were sectioned. We specifically immunolabeled microglia with an antibody against the adapter binding, ionized calcium protein. Microglia were selected from the middle and outer thirds of the DG-Mol (n=268) and the CA1-LMol (n=185) for three-dimensional reconstructions created with Neurolucida and Neuroexplorer software. Cluster and discriminant analyses, based on microglial morphometric parameters, identified two major morphological microglia phenotypes (types I and II) found in both the CA1-LMol and DG-Mol of all individuals. Compared to type II, type I microglia were significantly smaller, thinner, more tortuous and ramified, and less complex (lower fractal dimensions). PAL performance was both linearly and non-linearly correlated with type I microglial morphological features from the rostral and caudal DG-Mol, but not with microglia from the CA1-LMol. These differences in microglial morphology and correlations with PAL performance were consistent with previous proposals of hippocampal regional contributions for spatial learning and memory. Our results suggested that at least two morphological microglial phenotypes provided distinct physiological roles to learning-associated activity in the rostral and caudal DG-Mol of the monkey brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Neuronal migration disorders in microcephalic osteodysplastic primordial dwarfism type I/III

    PubMed Central

    Juric-Sekhar, Gordana; Kapur, Raj P.; Glass, Ian A.; Murray, Mitzi L.; Parnell, Shawn E.

    2011-01-01

    Microcephalic osteodysplastic primordial dwarfism (MOPD) is a rare microlissencephaly syndrome, with at least two distinct phenotypic and genetic types. MOPD type II is caused by pericentrin mutations, while types I and III appear to represent a distinct entity (MOPD I/III) with variably penetrant phenotypes and unknown genetic basis. The neuropathology of MOPD I/III is little understood, especially in comparison to other forms of lissencephaly. Here, we report postmortem brain findings in an 11-month-old female infant with MOPD I/III. The cerebral cortex was diffusely pachygyric, with a right parietal porencephalic lesion. Histologically, the cortex was abnormally thick and disorganized. Distinct malformations were observed in different cerebral lobes, as characterized using layer-specific neuronal markers. Frontal cortex was severely disorganized and coated with extensive leptomeningeal glioneuronal heterotopia. Temporal cortex had a relatively normal 6-layered pattern, despite cortical thickening. Occipital cortex was variably affected. The corpus callosum was extremely hypoplastic. Brainstem and cerebellar malformations were also present, as well as old necrotic foci. Findings in this case suggest that the cortical malformation in MOPD I/III is distinct from other forms of pachygyria–lissencephaly. PMID:20857301

  2. [¹⁸F]Altanserin and small animal PET: impact of multidrug efflux transporters on ligand brain uptake and subsequent quantification of 5-HT₂A receptor densities in the rat brain.

    PubMed

    Kroll, Tina; Elmenhorst, David; Matusch, Andreas; Celik, A Avdo; Wedekind, Franziska; Weisshaupt, Angela; Beer, Simone; Bauer, Andreas

    2014-01-01

    The selective 5-hydroxytryptamine type 2a receptor (5-HT(2A)R) radiotracer [(18)F]altanserin is a promising ligand for in vivo brain imaging in rodents. However, [(18)F]altanserin is a substrate of P-glycoprotein (P-gp) in rats. Its applicability might therefore be constrained by both a differential expression of P-gp under pathological conditions, e.g. epilepsy, and its relatively low cerebral uptake. The aim of the present study was therefore twofold: (i) to investigate whether inhibition of multidrug transporters (MDT) is suitable to enhance the cerebral uptake of [(18)F]altanserin in vivo and (ii) to test different pharmacokinetic, particularly reference tissue-based models for exact quantification of 5-HT(2A)R densities in the rat brain. Eighteen Sprague-Dawley rats, either treated with the MDT inhibitor cyclosporine A (CsA, 50 mg/kg, n=8) or vehicle (n=10) underwent 180-min PET scans with arterial blood sampling. Kinetic analyses of tissue time-activity curves (TACs) were performed to validate invasive and non-invasive pharmacokinetic models. CsA application lead to a two- to threefold increase of [(18)F]altanserin uptake in different brain regions and showed a trend toward higher binding potentials (BP(ND)) of the radioligand. MDT inhibition led to an increased cerebral uptake of [(18)F]altanserin but did not improve the reliability of BP(ND) as a non-invasive estimate of 5-HT(2A)R. This finding is most probable caused by the heterogeneous distribution of P-gp in the rat brain and its incomplete blockade in the reference region (cerebellum). Differential MDT expressions in experimental animal models or pathological conditions are therefore likely to influence the applicability of imaging protocols and have to be carefully evaluated. © 2013.

  3. Fluorescence lifetime spectroscopy for guided therapy of brain tumors.

    PubMed

    Butte, Pramod V; Mamelak, Adam N; Nuno, Miriam; Bannykh, Serguei I; Black, Keith L; Marcu, Laura

    2011-01-01

    This study evaluates the potential of time-resolved laser induced fluorescence spectroscopy (TR-LIFS) as intra-operative tool for the delineation of brain tumor from normal brain. Forty two patients undergoing glioma (WHO grade I-IV) surgery were enrolled in this study. A TR-LIFS prototype apparatus (gated detection, fast digitizer) was used to induce in-vivo fluorescence using a pulsed N2 laser (337 nm excitation, 0.7 ns pulse width) and to record the time-resolved spectrum (360-550 nm range, 10 nm interval). The sites of TR-LIFS measurement were validated by conventional histopathology (H&E staining). Parameters derived from the TR-LIFS data including intensity values and time-resolved intensity decay features (average fluorescence lifetime and Laguerre coefficients values) were used for tissue characterization and classification. 71 areas of tumor and normal brain were analyzed. Several parameters allowed for the differentiation of distinct tissue types. For example, normal cortex (N=35) and normal white matter (N=12) exhibit a longer-lasting fluorescence emission at 390 nm (τ390=2.12±0.10 ns) when compared with 460 nm (τ460=1.16±0.08 ns). High grade glioma (grades III and IV) samples (N=17) demonstrate emission peaks at 460 nm, with large variation at 390 nm while low grade glioma (I and II) samples (N=7) demonstrated a peak fluorescence emission at 460 nm. A linear discriminant algorithm allowed for the classification of low-grade gliomas with 100% sensitivity and 98% specificity. High-grade glioma demonstrated a high degree of heterogeneity thus reducing the discrimination accuracy of these tumors to 47% sensitivity and 94% specificity. Current findings demonstrate that TR-LIFS holds the potential to diagnose brain tumors intra-operatively and to provide a valuable tool for aiding the neurosurgeon-neuropathologist team in to rapidly distinguish between tumor and normal brain during surgery. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro.

    PubMed

    Rooprai, H K; Kandanearatchi, A; Maidment, S L; Christidou, M; Trillo-Pazos, G; Dexter, D T; Rucklidge, G J; Widmer, W; Pilkington, G J

    2001-02-01

    Although intrinsic tumours of the brain seldom metastasize to distant sites, their diffuse, infiltrative-invasive growth within the brain generally precludes successful surgical and adjuvant therapy. Hence, attention has now focused on novel therapeutic approaches to combat brain tumours that include the use of anti-invasive and anti-proliferative agents. The effect of four anti-invasive agents, swainsonine (a locoweed alkaloid), captopril (an anti-hypertensive drug), tangeretin and nobiletin (both citrus flavonoids), were investigated on various parameters of brain tumour invasion such as matrix metalloproteinase (MMP) secretion, migration, invasion and adhesion. A standard cytotoxicity assay was used to optimize working concentrations of the drugs on seven human brain tumour-derived cell lines of various histological type and grade of malignancy. A qualitative assessment by gelatin zymography revealed that the effect of these agents varied between the seven cell lines such that the low grade pilocytic astrocytoma was unaffected by three of the agents. In contrast, downregulation of the two gelatinases, MMP-2 and MMP-9 was seen in the grade 3 astrocytoma irrespective of which agent was used. Generally, swainsonine was the least effective whereas the citrus flavonoids, particularly nobiletin, showed the greatest downregulation of secretion of the MMPs. Furthermore, captopril and nobiletin were most efficient at inhibiting invasion, migration and adhesion in four representative cell lines (an ependymoma, a grade II oligoastrocytoma, an anaplastic astrocytoma and a glioblastoma multiforme). Yet again, the effects of the four agents varied between the four cell lines. Nobiletin was, nevertheless, the most effective agent used in these assays. In conclusion, the differential effects seen on the various parameters studied by these putative anti-invasive agents may be the result of interference with MMPs and other mechanisms underlying the invasive phenotype. From these pilot studies, it is possible that these agents, especially the citrus flavonoids, could be of future therapeutic value. However, further work is needed to validate this in a larger study.

  5. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn; Zhang, Dong-Mei; Yu, Xiao-Jing

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiacmore » atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE attenuates ANG II-induced hypertension and cardiac hypertrophy. • PVN inhibition of ACE attenuates ANG II-induced imbalance of PVN neurotransmitters. • PVN inhibition of ACE attenuates ANG II-induced imbalance of cytokines in the PVN. • PVN blockade of AT1-R attenuates ANG II-induced imbalance of cytokines in the PVN.« less

  6. Localization of Usher syndrome type II to chromosome 1q.

    PubMed

    Kimberling, W J; Weston, M D; Möller, C; Davenport, S L; Shugart, Y Y; Priluck, I A; Martini, A; Milani, M; Smith, R J

    1990-06-01

    Usher syndrome is characterized by congenital hearing loss, progressive visual impairment due to retinitis pigmentosa, and variable vestibular problems. The two subtypes of Usher syndrome, types I and II, can be distinguished by the degree of hearing loss and by the presence or absence of vestibular dysfunction. Type I is characterized by a profound hearing loss and totally absent vestibular responses, while type II has a milder hearing loss and normal vestibular function. Fifty-five members of eight type II Usher syndrome families were typed for three DNA markers in the distal region of chromosome 1q: D1S65 (pEKH7.4), REN (pHRnES1.9), and D1S81 (pTHH33). Statistically significant linkage was observed for Usher syndrome type II with a maximum multipoint lod score of 6.37 at the position of the marker THH33, thus localizing the Usher type II (USH2) gene to 1q. Nine families with type I Usher syndrome failed to show linkage to the same three markers. The statistical test for heterogeneity of linkage between Usher syndrome types I and II was highly significant, thus demonstrating that they are due to mutations at different genetic loci.

  7. 75 FR 43153 - Procurement List Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ...- LRG XX-LONG 8405-00-NIB-0442--Type II Blouse, Women's, Navy Work Uniform 32 X-SHORT 8405-00-NIB-0443--Type II Blouse, Women's, Navy Work Uniform 32 SHORT 8405-00-NIB-0444--Type II Blouse, Women's, Navy Work Uniform 35 X-SHORT 8405-00-NIB-0445--Type II Blouse, Women's, Navy Work Uniform 35 SHORT 8405-00...

  8. Infection of neuroblastoma cells by rabies virus is modulated by the virus titer.

    PubMed

    Fuoco, Natalia Langenfeld; Dos Ramos Silva, Sandriana; Fernandes, Elaine Raniero; Luiz, Fernanda Guedes; Ribeiro, Orlando Garcia; Katz, Iana Suly Santos

    2018-01-01

    Rabies is a lethal viral infection that can affect almost all mammals, including humans. To better understand the replication of Rabies lyssavirus, we investigated if the viral load in brains naturally infected with rabies influences viral internalization and viral growth kinetics in neuroblastoma cells, and if the viral load affects mortality in mice after intradermal infection. We noted that high initial viral loads in brains (group II) were unfavourable for increasing viral titers during serial passages in neuroblastoma cells when compared to low initial viral loads in brains (group I). In addition, group I strains showed higher viral growth and enhanced internalization efficiency in neuroblastoma cells than group II strains. However, we observed that the dominant virus subpopulation in group II promoted efficient viral infection in the central nervous system in the new host, providing a selective advantage to the virus. Our data indicate that rabies infection in animal models depends on not only the virus strain but also the amount of virus. This study may serve as a basis for understanding the biologic proprieties of Rabies lyssavirus strains with respect to the effects on viral replication and the impact on pathogenesis, improving virus yields for use in vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  10. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    PubMed

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  11. What is a representative brain? Neuroscience meets population science

    PubMed Central

    Falk, Emily B.; Hyde, Luke W.; Mitchell, Colter; Faul, Jessica; Gonzalez, Richard; Heitzeg, Mary M.; Keating, Daniel P.; Langa, Kenneth M.; Martz, Meghan E.; Maslowsky, Julie; Morrison, Frederick J.; Noll, Douglas C.; Patrick, Megan E.; Pfeffer, Fabian T.; Reuter-Lorenz, Patricia A.; Thomason, Moriah E.; Davis-Kean, Pamela; Monk, Christopher S.; Schulenberg, John

    2013-01-01

    The last decades of neuroscience research have produced immense progress in the methods available to understand brain structure and function. Social, cognitive, clinical, affective, economic, communication, and developmental neurosciences have begun to map the relationships between neuro-psychological processes and behavioral outcomes, yielding a new understanding of human behavior and promising interventions. However, a limitation of this fast moving research is that most findings are based on small samples of convenience. Furthermore, our understanding of individual differences may be distorted by unrepresentative samples, undermining findings regarding brain–behavior mechanisms. These limitations are issues that social demographers, epidemiologists, and other population scientists have tackled, with solutions that can be applied to neuroscience. By contrast, nearly all social science disciplines, including social demography, sociology, political science, economics, communication science, and psychology, make assumptions about processes that involve the brain, but have incorporated neural measures to differing, and often limited, degrees; many still treat the brain as a black box. In this article, we describe and promote a perspective—population neuroscience—that leverages interdisciplinary expertise to (i) emphasize the importance of sampling to more clearly define the relevant populations and sampling strategies needed when using neuroscience methods to address such questions; and (ii) deepen understanding of mechanisms within population science by providing insight regarding underlying neural mechanisms. Doing so will increase our confidence in the generalizability of the findings. We provide examples to illustrate the population neuroscience approach for specific types of research questions and discuss the potential for theoretical and applied advances from this approach across areas. PMID:24151336

  12. Synapsin I and Synapsin II regulate neurogenesis in the dentate gyrus of adult mice

    PubMed Central

    Barbieri, Raffaella; Contestabile, Andrea; Ciardo, Maria Grazia; Forte, Nicola; Marte, Antonella; Baldelli, Pietro; Benfenati, Fabio; Onofri, Franco

    2018-01-01

    Adult neurogenesis is emerging as an important player in brain functions and homeostasis, while impaired or altered adult neurogenesis has been associated with a number of neuropsychiatric diseases, such as depression and epilepsy. Here we investigated the possibility that synapsins (Syns) I and II, beyond their known functions in developing and mature neurons, also play a role in adult neurogenesis. We performed a systematic evaluation of the distinct stages of neurogenesis in the hippocampal dentate gyrus of Syn I and Syn II knockout (KO) mice, before (2-months-old) and after (6-months-old) the appearance of the epileptic phenotype. We found that Syns I and II play an important role in the regulation of adult neurogenesis. In juvenile mice, Syn II deletion was associated with a specific decrease in the proliferation of neuronal progenitors, whereas Syn I deletion impaired the survival of newborn neurons. These defects were reverted after the appearance of the epileptic phenotype, with Syn I KO and Syn II KO mice exhibiting significant increases in survival and proliferation, respectively. Interestingly, long-term potentiation dependent on newborn neurons was present in both juvenile Syn mutants while, at later ages, it was only preserved in Syn II KO mice that also displayed an increased expression of brain-derived neurotrophic factor. This study suggests that Syns I and II play a role in adult neurogenesis and the defects in neurogenesis associated with Syn deletion may contribute to the alterations of cognitive functions observed in Syn-deficient mice. PMID:29721159

  13. The Attenuation of Central Angiotensin II-dependent Pressor Response and Intra-neuronal Signaling by Intracarotid Injection of Nanoformulated Copper/Zinc Superoxide Dismutase

    PubMed Central

    Rosenbaugh, Erin G.; Roat, James; Gao, Lie; Yang, Rui-Fang; Manickam, Devika S.; Yin, Jing-Xiang; Schultz, Harold D.; Bronich, Tatiana K.; Batrakova, Elena V.; Kabanov, Alexander V.; Zucker, Irving H.; Zimmerman, Matthew C.

    2010-01-01

    Adenoviral-mediated overexpression of the intracellular superoxide (O2•−) scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD) in the brain attenuates central angiotensin II (AngII)-induced cardiovascular responses. However, the therapeutic potential for adenoviral vectors is weakened by toxicity and the inability of adenoviral vectors to target the brain following peripheral administration. Therefore, we developed a non-viral delivery system in which CuZnSOD protein is electrostatically bound to a synthetic poly(ethyleneimine)-poly(ethyleneglycol) (PEI-PEG) polymer to form a polyion complex (CuZnSOD nanozyme). We hypothesized that PEI-PEG polymer increases transport of functional CuZnSOD to neurons, which inhibits AngII intra-neuronal signaling. The AngII-induced increase in O2•−, as measured by dihydroethidium fluorescence and electron paramagnetic resonance spectroscopy, was significantly inhibited in CuZnSOD nanozyme-treated neurons compared to free CuZnSOD- and non-treated neurons. CuZnSOD nanozyme also attenuated the AngII-induced inhibition of K+ current in neurons. Intracarotid injection of CuZnSOD nanozyme into rabbits significantly inhibited the pressor response of intracerebroventricular-delivered AngII; however, intracarotid injection of free CuZnSOD or PEI-PEG polymer alone failed to inhibit this response. Importantly, neither the PEI-PEG polymer alone nor the CuZnSOD nanozyme induced neuronal toxicity. These findings indicate that CuZnSOD nanozyme inhibits AngII intra-neuronal signaling in vitro and in vivo. PMID:20378166

  14. Abnormalities in whisking behaviour are associated with lesions in brain stem nuclei in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Grant, Robyn A; Sharp, Paul S; Kennerley, Aneurin J; Berwick, Jason; Grierson, Andrew; Ramesh, Tennore; Prescott, Tony J

    2014-02-01

    The transgenic SOD1(G93A) mouse is a model of human amyotrophic lateral sclerosis (ALS) and recapitulates many of the pathological hallmarks observed in humans, including motor neuron degeneration in the brain and the spinal cord. In mice, neurodegeneration particularly impacts on the facial nuclei in the brainstem. Motor neurons innervating the whisker pad muscles originate in the facial nucleus of the brain stem, with contractions of these muscles giving rise to "whisking" one of the fastest movements performed by mammals. A longitudinal study was conducted on SOD1(G93A) mice and wild-type litter mate controls, comparing: (i) whisker movements using high-speed video recordings and automated whisker tracking, and (ii) facial nucleus degeneration using MRI. Results indicate that while whisking still occurs in SOD1(G93A) mice and is relatively resistant to neurodegeneration, there are significant disruptions to certain whisking behaviours, which correlate with facial nuclei lesions, and may be as a result of specific facial muscle degeneration. We propose that measures of mouse whisker movement could potentially be used in tandem with measures of limb dysfunction as biomarkers of disease onset and progression in ALS mice and offers a novel method for testing the efficacy of novel therapeutic compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering.

    PubMed

    Yang, Guang; Raschke, Felix; Barrick, Thomas R; Howe, Franklyn A

    2015-09-01

    To investigate whether nonlinear dimensionality reduction improves unsupervised classification of (1) H MRS brain tumor data compared with a linear method. In vivo single-voxel (1) H magnetic resonance spectroscopy (55 patients) and (1) H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With (1) H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. The LE method is promising for unsupervised clustering to separate brain and tumor tissue with automated color-coding for visualization of (1) H MRSI data after cluster analysis. © 2014 Wiley Periodicals, Inc.

  16. Is the brain of migraineurs "different" even in dreams?

    PubMed

    Lovati, C; DeAngeli, F; D'Amico, D; Giani, L; D'Alessandro, C M; Zardoni, M; Scaglione, V; Castoldi, D; Capiluppi, E; Curone, M; Bussone, G; Mariani, C

    2014-05-01

    Migraineurs brain is hyper-excitable and hypo-metabolic. Dreaming is a mental state characterized by hallucinatory features in which imagery, emotion, motor skills and memory are created de novo. To evaluate dreams in different kinds of headache. We included 219 controls; 148 migraineurs (66 with aura-MA, 82 without aura-MO); 45 tension type headache (TTH) patients. ICHD-II diagnostic criteria were used. Ad hoc questionnaire was used to evaluate oneiric activity. The Generalized Anxiety Disorder Questionnaire, and the Patient Health Questionnaire were administered to evaluate anxiety and mood. The prevalence of dreamers was similar in different groups. Frequency of visual and auditory dreams was not different between groups. Migraineurs, particularly MA, had an increased frequency of taste dreams (present in 19.6 % of controls, 40.9 % of MA, 23.2 % of MO, 11.1 % of TTH, p < 0.01), and of olfactory dreams (present in 20 % of controls, 36 % of MA, 35 % of MO and 20 % of TTH, p < 0.01). Anxiety and mood did not influence these results. The increased frequency of taste and olfactory dreams among migraineurs seems to be specific, possibly reflecting a particular sensitivity of gustative and olfactory brain structures, as suggested by osmofobia and nausea, typical of migraine. This may suggest the role of some cerebral structures, such as amygdala and hypothalamus, which are known to be involved in migraine mechanisms as well in the biology of sleep and dreaming.

  17. Alterations of apoptosis and autophagy in developing brain of rats with epilepsy: Changes in LC3, P62, Beclin-1 and Bcl-2 levels.

    PubMed

    Li, Qinrui; Han, Ying; Du, Junbao; Jin, Hongfang; Zhang, Jing; Niu, Manman; Qin, Jiong

    2018-05-01

    Current studies have indicated that apoptotic and autophagic signaling pathways are triggered by epileptic seizures, but the precise roles of these processes in epilepsy-induced neuronal loss remain unclear. Identifying a concrete molecular mechanism may help researchers develop relevant epilepsy therapies that are more effective than existing treatments. Autophagy is a type of conserved degradation that contributes to cellular homeostasis. The involved signaling pathways allow us to observe alterations in autophagy and apoptosis during epileptic seizures over time. This study investigated the time-dependent changes in autophagy, apoptosis and neuronal morphology in developing brain of epilepsy model rats. At 48h after epileptic seizure onset, the number of neurons in neocortex decreased, and the number of apoptotic cells in neocortex increased. The ratio of microtubule-associated protein 1 light chain 3 (LC3) II to LC3 I and Beclin-1 protein levels increased from 12h to 48h after epileptic seizure onset. P62 protein and Bcl-2 protein levels decreased from 24h to 48h after epileptic seizure onset. The changes in the levels of these autophagy and apoptosis markers indicate that autophagy starts before apoptosis in rats with epilepsy, demonstrating a potential role of autophagy in epilepsy-induced neuronal loss in developing brain. Copyright © 2017. Published by Elsevier B.V.

  18. Blood-Brain Barrier Integrity and Glial Support: Mechanisms that can be targeted for Novel Therapeutic Approaches in Stroke

    PubMed Central

    Ronaldson, Patrick T.; Davis, Thomas P.

    2014-01-01

    The blood-brain barrier (BBB) is a critical regulator of CNS homeostasis. Additionally, the BBB is the most significant obstacle to effective CNS drug delivery. It possesses specific charcteristics (i.e., tight junction protein complexes, influx and efflux transporters) that control permeation of circulating solutes including therapeutic agents. In order to form this “barrier,” brain microvascular endothelial cells require support of adjacent astrocytes and microglia. This intricate relationship also occurs between endothelial cells and other cell types and structures of the CNS (i.e., pericytes, neurons, extracellular matrix), which implies existence of a “neurovascular unit.” Ischemic stroke can disrupt the neurovascular unit at both the structural and functional level, which leads to an increase in leak across the BBB. Recent studies have identified several pathophysiological mechanisms (i.e., oxidative stress, activation of cytokine-mediated intracellular signaling systems) that mediate changes in the neurovascular unit during ischemic stroke. This review summarizes current knowledge in this area and emphasizes pathways (i.e., oxidative stress, cytokine-mediated intracellular signaling, glial-expressed receptors/targets) that can be manipulated pharmacologically for i) preservation of BBB and glial integrity during ischemic stroke and ii) control of drug permeation and/or transport across the BBB in an effort to identify novel targets for optimization of CNS delivery of therapeutics in the setting of ischemic stroke. PMID:22574987

  19. Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization.

    PubMed

    Molina, David; Pérez-Beteta, Julián; Martínez-González, Alicia; Martino, Juan; Velasquez, Carlos; Arana, Estanislao; Pérez-García, Víctor M

    2017-01-01

    Textural measures have been widely explored as imaging biomarkers in cancer. However, their robustness under dynamic range and spatial resolution changes in brain 3D magnetic resonance images (MRI) has not been assessed. The aim of this work was to study potential variations of textural measures due to changes in MRI protocols. Twenty patients harboring glioblastoma with pretreatment 3D T1-weighted MRIs were included in the study. Four different spatial resolution combinations and three dynamic ranges were studied for each patient. Sixteen three-dimensional textural heterogeneity measures were computed for each patient and configuration including co-occurrence matrices (CM) features and run-length matrices (RLM) features. The coefficient of variation was used to assess the robustness of the measures in two series of experiments corresponding to (i) changing the dynamic range and (ii) changing the matrix size. No textural measures were robust under dynamic range changes. Entropy was the only textural feature robust under spatial resolution changes (coefficient of variation under 10% in all cases). Textural measures of three-dimensional brain tumor images are not robust neither under dynamic range nor under matrix size changes. Standards should be harmonized to use textural features as imaging biomarkers in radiomic-based studies. The implications of this work go beyond the specific tumor type studied here and pose the need for standardization in textural feature calculation of oncological images.

  20. Isolation and genetic characterization of Toxoplasma gondii from striped dolphin (Stenella coeruleoalba) from Costa Rica.

    PubMed

    Dubey, J P; Morales, J A; Sundar, N; Velmurugan, G V; González-Barrientos, C R; Hernández-Mora, G; Su, C

    2007-06-01

    Toxoplasma gondii infection in marine mammals is of interest because of mortality and mode of transmission. It has been suggested that marine mammals become infected with T. gondii oocysts washed from land to the sea. We report the isolation and genetic characterization of viable T. gondii from a striped dolphin (Stenella coeruleoalba), the first time from this host. An adult female dolphin was found stranded on the Pacific Coast of Costa Rica, and the animal died the next day. The dolphin had a high (1:6400) antibody titer to T. gondii in the modified agglutination test. Severe nonsuppurative meningoencephalomyelitis was found in its brain and spinal cord, but T. gondii was not found in histological sections of the dolphin. Portions of its brain and the heart were bioassayed in mice for the isolation of T. gondii. Viable T. gondii was isolated from the brain, but not from the heart, of the dolphin. A cat fed mice infected with the dolphin isolate (designated TgSdCol) shed oocysts. Genomic DNA from tachyzoites of this isolate was used for genotyping at 10 genetic loci, including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico, and this TgSdCo1 isolate was found to be Type II.

Top