UniGene Tabulator: a full parser for the UniGene format.
Lenzi, Luca; Frabetti, Flavia; Facchin, Federica; Casadei, Raffaella; Vitale, Lorenza; Canaider, Silvia; Carinci, Paolo; Zannotti, Maria; Strippoli, Pierluigi
2006-10-15
UniGene Tabulator 1.0 provides a solution for full parsing of UniGene flat file format; it implements a structured graphical representation of each data field present in UniGene following import into a common database managing system usable in a personal computer. This database includes related tables for sequence, protein similarity, sequence-tagged site (STS) and transcript map interval (TXMAP) data, plus a summary table where each record represents a UniGene cluster. UniGene Tabulator enables full local management of UniGene data, allowing parsing, querying, indexing, retrieving, exporting and analysis of UniGene data in a relational database form, usable on Macintosh (OS X 10.3.9 or later) and Windows (2000, with service pack 4, XP, with service pack 2 or later) operating systems-based computers. The current release, including both the FileMaker runtime applications, is freely available at http://apollo11.isto.unibo.it/software/
De novo transcriptomic analysis and development of EST-SSRs for Sorbus pohuashanensis (Hance) Hedl.
Guan, Xuelian; Fu, Qiang; Zhang, Ze; Hu, Zenghui; Zheng, Jian; Lu, Yizeng; Li, Wei
2017-01-01
Sorbus pohuashanensis is a native tree species of northern China that is used for a variety of ecological purposes. The species is often grown as an ornamental landscape tree because of its beautiful form, silver flowers in early summer, attractive pinnate leaves in summer, and red leaves and fruits in autumn. However, development and further utilization of the species are hindered by the lack of comprehensive genetic information, which impedes research into its genetics and molecular biology. Recent advances in de novo transcriptome sequencing (RNA-seq) technology have provided an effective means to obtain genomic information from non-model species. Here, we applied RNA-seq for sequencing S. pohuashanensis leaves and obtained a total of 137,506 clean reads. After assembly, 96,213 unigenes with an average length of 770 bp were obtained. We found that 64.5% of the unigenes could be annotated using bioinformatics tools to analyze gene function and alignment with the NCBI database. Overall, 59,089 unigenes were annotated using the Nr database(non-redundant protein database), 35,225 unigenes were annotated using the GO (Gene Ontology categories) database, and 33,168 unigenes were annotated using COG (Cluster of Orthologous Groups). Analysis of the unigenes using the KEGG (Kyoto Encyclopedia of Genes and Genomes) database indicated that 13,953 unigenes were involved in 322 metabolic pathways. Finally, simple sequence repeat (SSR) site detection identified 6,604 unigenes that included EST-SSRs and a total of 7,473 EST-SSRs in the unigene sequences. Fifteen polymorphic SSRs were screened and found to be of use for future genetic research. These unigene sequences will provide important genetic resources for genetic improvement and investigation of biochemical processes in S. pohuashanensis. PMID:28614366
[Locus HS.633957 expression in human gastrointestinal tract and tumors].
Polev, D E; Krukovskaia, L L; Kozlov, A P
2011-01-01
Human locus HS.633957 corresponds to its namesake cluster in the UniGene database http:/www.ncbi.nlm.nih.gov/unigene. It is located on chromosome 7 and is 3.7 tpn in size. It does not seem to encode proteins nor has its function been identified. According to bioinformation evidence, its expression is tumor-specific. PCR assay on kDNA samples from different intact human tissues detected its slight expression in liver, heart, embryonal brain and kidney as well as in a wide spectrum of tumors. This work features locus Hs.633957 expression in different parts of human gastrointestinal tract and tumors.
Ma, Jun; Kanakala, S; He, Yehua; Zhang, Junli; Zhong, Xiaolan
2015-01-01
Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus.
Ma, Jun; Kanakala, S.; He, Yehua; Zhang, Junli; Zhong, Xiaolan
2015-01-01
Background Ananas comosus var. bracteatus (Red Pineapple) is an important ornamental plant for its colorful leaves and decorative red fruits. Because of its complex genome, it is difficult to understand the molecular mechanisms involved in the growth and development. Thus high-throughput transcriptome sequencing of Ananas comosus var. bracteatus is necessary to generate large quantities of transcript sequences for the purpose of gene discovery and functional genomic studies. Results The Ananas comosus var. bracteatus transcriptome was sequenced by the Illumina paired-end sequencing technology. We obtained a total of 23.5 million high quality sequencing reads, 1,555,808 contigs and 41,052 unigenes. In total 41,052 unigenes of Ananas comosus var. bracteatus, 23,275 unigenes were annotated in the NCBI non-redundant protein database and 23,134 unigenes were annotated in the Swiss-Port database. Out of these, 17,748 and 8,505 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. Functional annotation against Kyoto Encyclopedia of Genes and Genomes Pathway database identified 5,825 unigenes which were mapped to 117 pathways. The assembly predicted many unigenes that were previously unknown. The annotated unigenes were compared against pineapple, rice, maize, Arabidopsis, and sorghum. Unigenes that did not match any of those five sequence datasets are considered to be Ananas comosus var. bracteatus unique. We predicted unigenes encoding enzymes involved in terpenoid and phenylpropanoid biosynthesis. Conclusion The sequence data provide the most comprehensive transcriptomic resource currently available for Ananas comosus var. bracteatus. To our knowledge; this is the first report on the de novo transcriptome sequencing of the Ananas comosus var. bracteatus. Unigenes obtained in this study, may help improve future gene expression, genetic and genomics studies in Ananas comosus var. bracteatus. PMID:25769053
Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan
2015-01-01
Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal molecular traits for root induction and initiation. This study provides a platform for functional genomic research with this species. PMID:26177103
Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan
2015-01-01
Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal molecular traits for root induction and initiation. This study provides a platform for functional genomic research with this species.
Xiao, Da; Tan, Xiaoling; Wang, Wenjuan; Zhang, Fan; Desneux, Nicolas; Wang, Su
2017-01-01
Biological control is usually used in combination with chemical control for practical agricultural applications. Thus, the influence of insecticides on the natural predators used for biological control should be investigated for integrated pest management. The ladybird Harmonia axyridis is an effective predator on aphids and coccids. Beta-cypermethrin is a broad-spectrum insecticide used worldwide for controlling insect pests. H. axyridis is becoming increasingly threatened by this insecticide. Here, we investigated the effect of a sublethal dose of beta-cypermethrin on flight, locomotion, respiration, and detoxification system of H. axyridis. After exposure to beta-cypermethrin, succinic female adults flew more times, longer distances, and during longer time periods. Exposure to a sublethal dose of beta-cypermethrin also promoted an increase in walking rate, walking distance, walking duration, and also an increase in respiratory quotient and respiratory rate. To investigate the effects of beta-cypermethrin on H. axyridis detoxification system, we analyzed the transcriptome of H. axyridis adults, focusing on genes related to detoxification systems. De novo assembly generated 65,509 unigenes with a mean length of 799 bp. From these genes, 26,020 unigenes (40.91% of all unigenes) exhibited clear homology to known genes in the NCBI non-redundant database. In addition, 10,402 unigenes were annotated in the Cluster of Orthologous Groups database, 12,088 unigenes were assigned to the Gene Ontology database and 12,269 unigenes were in the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Exposure to beta-cypermethrin had significant effects on the transcriptome profile of H. axyridis adult. Based on uniquely mapped reads, 3,296 unigenes were differentially expressed, 868 unigenes were up-regulated and 2,248 unigenes were down-regulated. We identified differentially-expressed unigenes related to general detoxification systems in H. axyridis. This assembled, annotated transcriptome provides a valuable genomic resource for further understanding the molecular basis of detoxification mechanisms in H. axyridis. PMID:28239355
Xiao, Da; Tan, Xiaoling; Wang, Wenjuan; Zhang, Fan; Desneux, Nicolas; Wang, Su
2017-01-01
Biological control is usually used in combination with chemical control for practical agricultural applications. Thus, the influence of insecticides on the natural predators used for biological control should be investigated for integrated pest management. The ladybird Harmonia axyridis is an effective predator on aphids and coccids. Beta-cypermethrin is a broad-spectrum insecticide used worldwide for controlling insect pests. H. axyridis is becoming increasingly threatened by this insecticide. Here, we investigated the effect of a sublethal dose of beta-cypermethrin on flight, locomotion, respiration, and detoxification system of H. axyridis . After exposure to beta-cypermethrin, succinic female adults flew more times, longer distances, and during longer time periods. Exposure to a sublethal dose of beta-cypermethrin also promoted an increase in walking rate, walking distance, walking duration, and also an increase in respiratory quotient and respiratory rate. To investigate the effects of beta-cypermethrin on H. axyridis detoxification system, we analyzed the transcriptome of H. axyridis adults, focusing on genes related to detoxification systems. De novo assembly generated 65,509 unigenes with a mean length of 799 bp. From these genes, 26,020 unigenes (40.91% of all unigenes) exhibited clear homology to known genes in the NCBI non-redundant database. In addition, 10,402 unigenes were annotated in the Cluster of Orthologous Groups database, 12,088 unigenes were assigned to the Gene Ontology database and 12,269 unigenes were in the Kyoto Encyclopedia of Genes and Genome (KEGG) database. Exposure to beta-cypermethrin had significant effects on the transcriptome profile of H. axyridis adult. Based on uniquely mapped reads, 3,296 unigenes were differentially expressed, 868 unigenes were up-regulated and 2,248 unigenes were down-regulated. We identified differentially-expressed unigenes related to general detoxification systems in H. axyridis . This assembled, annotated transcriptome provides a valuable genomic resource for further understanding the molecular basis of detoxification mechanisms in H. axyridis .
Sun, Xiudong; Zhou, Shumei; Meng, Fanlu; Liu, Shiqi
2012-10-01
Garlic is widely used as a spice throughout the world for the culinary value of its flavor and aroma, which are created by the chemical transformation of a series of organic sulfur compounds. To analyze the transcriptome of Allium sativum and discover the genes involved in sulfur metabolism, cDNAs derived from the total RNA of Allium sativum buds were analyzed by Illumina sequencing. Approximately 26.67 million 90 bp paired-end clean reads were achieved in two libraries. A total of 127,933 unigenes were generated by de novo assembly and were compared with the sequences in public databases. Of these, 45,286 unigenes had significant hits to the sequences in the Nr database, 29,514 showed significant similarity to known proteins in the Swiss-Prot database and, 20,706 and 21,952 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Moreover, genes involved in organic sulfur biosynthesis were identified. These unigenes data will provide the foundation for research on gene expression, genomics and functional genomics in Allium sativum. Key message The obtained unigenes will provide the foundation for research on functional genomics in Allium sativum and its closely related species, and fill the gap of the existing plant EST database.
Zhu, Haisheng; Liu, Jianting; Wen, Qingfang; Chen, Mindong; Wang, Bin; Zhang, Qianrong; Xue, Zhuzheng
2017-01-01
Fresh-cut luffa (Luffa cylindrica) fruits commonly undergo browning. However, little is known about the molecular mechanisms regulating this process. We used the RNA-seq technique to analyze the transcriptomic changes occurring during the browning of fresh-cut fruits from luffa cultivar 'Fusi-3'. Over 90 million high-quality reads were assembled into 58,073 Unigenes, and 60.86% of these were annotated based on sequences in four public databases. We detected 35,282 Unigenes with significant hits to sequences in the NCBInr database, and 24,427 Unigenes encoded proteins with sequences that were similar to those of known proteins in the Swiss-Prot database. Additionally, 20,546 and 13,021 Unigenes were similar to existing sequences in the Eukaryotic Orthologous Groups of proteins and Kyoto Encyclopedia of Genes and Genomes databases, respectively. Furthermore, 27,301 Unigenes were differentially expressed during the browning of fresh-cut luffa fruits (i.e., after 1-6 h). Moreover, 11 genes from five gene families (i.e., PPO, PAL, POD, CAT, and SOD) identified as potentially associated with enzymatic browning as well as four WRKY transcription factors were observed to be differentially regulated in fresh-cut luffa fruits. With the assistance of rapid amplification of cDNA ends technology, we obtained the full-length sequences of the 15 Unigenes. We also confirmed these Unigenes were expressed by quantitative real-time polymerase chain reaction analysis. This study provides a comprehensive transcriptome sequence resource, and may facilitate further studies aimed at identifying genes affecting luffa fruit browning for the exploitation of the underlying mechanism.
Chen, Shuangyan; Huang, Xin; Yan, Xueqing; Liang, Ye; Wang, Yuezhu; Li, Xiaofeng; Peng, Xianjun; Ma, Xingyong; Zhang, Lexin; Cai, Yueyue; Ma, Tian; Cheng, Liqin; Qi, Dongmei; Zheng, Huajun; Yang, Xiaohan; Li, Xiaoxia; Liu, Gongshe
2013-01-01
Background Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. Results The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. Conclusions This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species. PMID:23861841
Chen, Shuangyan; Huang, Xin; Yan, Xueqing; Liang, Ye; Wang, Yuezhu; Li, Xiaofeng; Peng, Xianjun; Ma, Xingyong; Zhang, Lexin; Cai, Yueyue; Ma, Tian; Cheng, Liqin; Qi, Dongmei; Zheng, Huajun; Yang, Xiaohan; Li, Xiaoxia; Liu, Gongshe
2013-01-01
Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.
Chen, Mindong; Wang, Bin; Zhang, Qianrong; Xue, Zhuzheng
2017-01-01
Fresh-cut luffa (Luffa cylindrica) fruits commonly undergo browning. However, little is known about the molecular mechanisms regulating this process. We used the RNA-seq technique to analyze the transcriptomic changes occurring during the browning of fresh-cut fruits from luffa cultivar ‘Fusi-3’. Over 90 million high-quality reads were assembled into 58,073 Unigenes, and 60.86% of these were annotated based on sequences in four public databases. We detected 35,282 Unigenes with significant hits to sequences in the NCBInr database, and 24,427 Unigenes encoded proteins with sequences that were similar to those of known proteins in the Swiss-Prot database. Additionally, 20,546 and 13,021 Unigenes were similar to existing sequences in the Eukaryotic Orthologous Groups of proteins and Kyoto Encyclopedia of Genes and Genomes databases, respectively. Furthermore, 27,301 Unigenes were differentially expressed during the browning of fresh-cut luffa fruits (i.e., after 1–6 h). Moreover, 11 genes from five gene families (i.e., PPO, PAL, POD, CAT, and SOD) identified as potentially associated with enzymatic browning as well as four WRKY transcription factors were observed to be differentially regulated in fresh-cut luffa fruits. With the assistance of rapid amplification of cDNA ends technology, we obtained the full-length sequences of the 15 Unigenes. We also confirmed these Unigenes were expressed by quantitative real-time polymerase chain reaction analysis. This study provides a comprehensive transcriptome sequence resource, and may facilitate further studies aimed at identifying genes affecting luffa fruit browning for the exploitation of the underlying mechanism. PMID:29145430
Senatore, Adriano; Edirisinghe, Neranjan; Katz, Paul S.
2015-01-01
Background The sea slug Tritonia diomedea (Mollusca, Gastropoda, Nudibranchia), has a simple and highly accessible nervous system, making it useful for studying neuronal and synaptic mechanisms underlying behavior. Although many important contributions have been made using Tritonia, until now, a lack of genetic information has impeded exploration at the molecular level. Results We performed Illumina sequencing of central nervous system mRNAs from Tritonia, generating 133.1 million 100 base pair, paired-end reads. De novo reconstruction of the RNA-Seq data yielded a total of 185,546 contigs, which partitioned into 123,154 non-redundant gene clusters (unigenes). BLAST comparison with RefSeq and Swiss-Prot protein databases, as well as mRNA data from other invertebrates (gastropod molluscs: Aplysia californica, Lymnaea stagnalis and Biomphalaria glabrata; cnidarian: Nematostella vectensis) revealed that up to 76,292 unigenes in the Tritonia transcriptome have putative homologues in other databases, 18,246 of which are below a more stringent E-value cut-off of 1x10-6. In silico prediction of secreted proteins from the Tritonia transcriptome shotgun assembly (TSA) produced a database of 579 unique sequences of secreted proteins, which also exhibited markedly higher expression levels compared to other genes in the TSA. Conclusions Our efforts greatly expand the availability of gene sequences available for Tritonia diomedea. We were able to extract full length protein sequences for most queried genes, including those involved in electrical excitability, synaptic vesicle release and neurotransmission, thus confirming that the transcriptome will serve as a useful tool for probing the molecular correlates of behavior in this species. We also generated a neurosecretome database that will serve as a useful tool for probing peptidergic signalling systems in the Tritonia brain. PMID:25719197
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shuangyan; Huang, Xin; Yang, Xiaohan
BACKGROUND: Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. RESULTS: The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resultedmore » in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. CONCLUSIONS: This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.« less
Ke, Tao; Yu, Jingyin; Dong, Caihua; Mao, Han; Hua, Wei; Liu, Shengyi
2015-01-21
Oil crop seeds are important sources of fatty acids (FAs) for human and animal nutrition. Despite their importance, there is a lack of an essential bioinformatics resource on gene transcription of oil crops from a comparative perspective. In this study, we developed ocsESTdb, the first database of expressed sequence tag (EST) information on seeds of four large-scale oil crops with an emphasis on global metabolic networks and oil accumulation metabolism that target the involved unigenes. A total of 248,522 ESTs and 106,835 unigenes were collected from the cDNA libraries of rapeseed (Brassica napus), soybean (Glycine max), sesame (Sesamum indicum) and peanut (Arachis hypogaea). These unigenes were annotated by a sequence similarity search against databases including TAIR, NR protein database, Gene Ontology, COG, Swiss-Prot, TrEMBL and Kyoto Encyclopedia of Genes and Genomes (KEGG). Five genome-scale metabolic networks that contain different numbers of metabolites and gene-enzyme reaction-association entries were analysed and constructed using Cytoscape and yEd programs. Details of unigene entries, deduced amino acid sequences and putative annotation are available from our database to browse, search and download. Intuitive and graphical representations of EST/unigene sequences, functional annotations, metabolic pathways and metabolic networks are also available. ocsESTdb will be updated regularly and can be freely accessed at http://ocri-genomics.org/ocsESTdb/ . ocsESTdb may serve as a valuable and unique resource for comparative analysis of acyl lipid synthesis and metabolism in oilseed plants. It also may provide vital insights into improving oil content in seeds of oil crop species by transcriptional reconstruction of the metabolic network.
Insight into the transcriptome of Arthrobotrys conoides using high throughput sequencing.
Ramesh, Pandit; Reena, Patel; Amitbikram, Mohapatra; Chaitanya, Joshi; Anju, Kunjadia
2015-12-01
Arthrobotrys conoides is a nematode-trapping fungus belonging to Orbiliales, Ascomycota group, and traps prey nematodes by means of adhesive network. Fungus has a potential to be used as a biocontrol agent against plant parasitic nematodes. In the present study, we characterized the transcriptome of A. conoides using high-throughput sequencing technology and characterized its virulence unigenes. Total 7,255 cDNA contigs with an average length of 425 bp were generated and 6184 (61.81%) transcripts were functionally annotated and characterized. Majority of unigenes were found analogous to the genes of plant pathogenic fungi. A total of 1749 transcripts were found to be orthologous with eukaryotic proteins of KOG database. Several carbohydrate active enzymes and peptidases were identified. We also analyzed classically and nonclassically secreted proteins and confirmed by BLASTP against fungal secretome database. A total of 916 contigs were analogous to 556 unique proteins of Pathogen Host Interaction (PHI) database. Further, we identified 91 unigenes homologous to the database of fungal virulence factor (DFVF). A total of 104 putative protein kinases coding transcripts were identified by BLASTP against KinBase database, which are major players in signaling pathways. This study provides a comprehensive look at the transcriptome of A. conoides and the identified unigenes might have a role in catching and killing prey nematodes by A. conoides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, X J; Jiang, H Y; Li, L M; Yuan, L H; Chen, J P
2016-06-20
The aim of this study was to provide comprehensive insights into the genetic background of sturgeon by transcriptome study. We performed a de novo assembly of the Amur sturgeon Acipenser schrenckii transcriptome using Illumina Hiseq 2000 sequencing. A total of 148,817 non-redundant unigenes with base length of approximately 121,698,536 bp and ranges from 201 to 26,789 bp were obtained. All the unigenes were classified into 3368 distinct categories and 145,449 singletons by homologous transcript cluster analysis. In all, 46,865 (31.49%) unigenes showed homologous matches with Nr database and 32,214 (21.65%) unigenes were matched to Nt database. In total, 24,862 unigenes were categorized into significantly enriched 52 function groups by GO analysis, and 38,436 unigenes were classified into 25 groups by KOG prediction, as well as 128 enriched KEGG pathways were identified by 45,598 unigenes (P < 0.05). Subsequently, a total of 19,860 SSRs markers were identified with the abundant di-nucleotide type (10,658; 53.67%) and the most AT/TA motif repeats (2689; 13.54%). A total of 1341 conserved lncRNAs were identified by a customized pipeline. Our study provides new sequence and function information for A. schrenckii, which will be the basis for further genetic studies on sturgeon species. The huge number of potential SSRs and putatively conserved lncRNAs isolated by the transcriptome also shed light on research in many fields, including the evolution, conservation management, and biological processes in sturgeon.
Tang, Cheng; Lan, Daoliang; Zhang, Huanrong; Ma, Jing; Yue, Hua
2013-01-01
Duck is an economically important poultry and animal model for human viral hepatitis B. However, the molecular mechanisms underlying host-virus interaction remain unclear because of limited information on the duck genome. This study aims to characterize the duck normal liver transcriptome and to identify the differentially expressed transcripts at 24 h after duck hepatitis A virus genotype C (DHAV-C) infection using Illumina-Solexa sequencing. After removal of low-quality sequences and assembly, a total of 52,757 unigenes was obtained from the normal liver group. Further blast analysis showed that 18,918 unigenes successfully matched the known genes in the database. GO analysis revealed that 25,116 unigenes took part in 61 categories of biological processes, cellular components, and molecular functions. Among the 25 clusters of orthologous group categories (COG), the cluster for "General function prediction only" represented the largest group, followed by "Transcription" and "Replication, recombination, and repair." KEGG analysis showed that 17,628 unigenes were involved in 301 pathways. Through comparison of normal and infected transcriptome data, we identified 20 significantly differentially expressed unigenes, which were further confirmed by real-time polymerase chain reaction. Of the 20 unigenes, nine matched the known genes in the database, including three up-regulated genes (virus replicase polyprotein, LRRC3B, and PCK1) and six down-regulated genes (CRP, AICL-like 2, L1CAM, CYB26A1, CHAC1, and ADAM32). The remaining 11 novel unigenes that did not match any known genes in the database may provide a basis for the discovery of new transcripts associated with infection. This study provided a gene expression pattern for normal duck liver and for the previously unrecognized changes in gene transcription that are altered during DHAV-C infection. Our data revealed useful information for future studies on the duck genome and provided new insights into the molecular mechanism of host-DHAV-C interaction.
2013-01-01
Background Litchi (Litchi chinensis Sonn.) is one of the most important fruit trees cultivated in tropical and subtropical areas. However, a lack of transcriptomic and genomic information hinders our understanding of the molecular mechanisms underlying fruit set and fruit development in litchi. Shading during early fruit development decreases fruit growth and induces fruit abscission. Here, high-throughput RNA sequencing (RNA-Seq) was employed for the de novo assembly and characterization of the fruit transcriptome in litchi, and differentially regulated genes, which are responsive to shading, were also investigated using digital transcript abundance(DTA)profiling. Results More than 53 million paired-end reads were generated and assembled into 57,050 unigenes with an average length of 601 bp. These unigenes were annotated by querying against various public databases, with 34,029 unigenes found to be homologous to genes in the NCBI GenBank database and 22,945 unigenes annotated based on known proteins in the Swiss-Prot database. In further orthologous analyses, 5,885 unigenes were assigned with one or more Gene Ontology terms, 10,234 hits were aligned to the 24 Clusters of Orthologous Groups classifications and 15,330 unigenes were classified into 266 Kyoto Encyclopedia of Genes and Genomes pathways. Based on the newly assembled transcriptome, the DTA profiling approach was applied to investigate the differentially expressed genes related to shading stress. A total of 3.6 million and 3.5 million high-quality tags were generated from shaded and non-shaded libraries, respectively. As many as 1,039 unigenes were shown to be significantly differentially regulated. Eleven of the 14 differentially regulated unigenes, which were randomly selected for more detailed expression comparison during the course of shading treatment, were identified as being likely to be involved in the process of fruitlet abscission in litchi. Conclusions The assembled transcriptome of litchi fruit provides a global description of expressed genes in litchi fruit development, and could serve as an ideal repository for future functional characterization of specific genes. The DTA analysis revealed that more than 1000 differentially regulated unigenes respond to the shading signal, some of which might be involved in the fruitlet abscission process in litchi, shedding new light on the molecular mechanisms underlying organ abscission. PMID:23941440
Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun
2016-01-01
Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri.
Yu, Shijiang; Ding, Lili; Luo, Ren; Li, Xiaojiao; Yang, Juan; Liu, Haoqiang; Cong, Lin; Ran, Chun
2016-01-01
Dialeurodes citri is a major pest in citrus producing areas, and large-scale outbreaks have occurred increasingly often in recent years. Lecanicillium attenuatum is an important entomopathogenic fungus that can parasitize and kill D. citri. We separated the fungus from corpses of D. citri larvae. However, the sound immune defense system of pests makes infection by an entomopathogenic fungus difficult. Here we used RNA sequencing technology (RNA-Seq) to build a transcriptome database for D. citri and performed digital gene expression profiling to screen genes that act in the immune defense of D. citri larvae infected with a pathogenic fungus. De novo assembly generated 84,733 unigenes with mean length of 772 nt. All unigenes were searched against GO, Nr, Swiss-Prot, COG, and KEGG databases and a total of 28,190 (33.3%) unigenes were annotated. We identified 129 immunity-related unigenes in transcriptome database that were related to pattern recognition receptors, information transduction factors and response factors. From the digital gene expression profile, we identified 441 unigenes that were differentially expressed in D. citri infected with L. attenuatum. Through calculated Log2Ratio values, we identified genes for which fold changes in expression were obvious, including cuticle protein, vitellogenin, cathepsin, prophenoloxidase, clip-domain serine protease, lysozyme, and others. Subsequent quantitative real-time polymerase chain reaction analysis verified the results. The identified genes may serve as target genes for microbial control of D. citri. PMID:27644092
Tariq, Mansoor; Chen, Rong; Yuan, Hongyu; Liu, Yanjie; Wu, Yanan; Wang, Junya; Xia, Chun
2015-01-01
Background The Chinese goose is one of the most economically important poultry birds and is a natural reservoir for many avian viruses. However, the nature and regulation of the innate and adaptive immune systems of this waterfowl species are not completely understood due to limited information on the goose genome. Recently, transcriptome sequencing technology was applied in the genomic studies focused on novel gene discovery. Thus, this study described the transcriptome of the goose peripheral blood lymphocytes to identify immunity relevant genes. Principal Findings De novo transcriptome assembly of the goose peripheral blood lymphocytes was sequenced by Illumina-Solexa technology. In total, 211,198 unigenes were assembled from the 69.36 million cleaned reads. The average length, N50 size and the maximum length of the assembled unigenes were 687 bp, 1,298 bp and 18,992 bp, respectively. A total of 36,854 unigenes showed similarity by BLAST search against the NCBI non-redundant (Nr) protein database. For functional classification, 163,161 unigenes were comprised of three Gene Ontology (Go) categories and 67 subcategories. A total of 15,334 unigenes were annotated into 25 eukaryotic orthologous groups (KOGs) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) database annotated 39,585 unigenes into six biological functional groups and 308 pathways. Among the 2,757 unigenes that participated in the 15 immune system KEGG pathways, 125 of the most important immune relevant genes were summarized and analyzed by STRING analysis to identify gene interactions and relationships. Moreover, 10 genes were confirmed by PCR and analyzed. Of these 125 unigenes, 109 unigenes, approximately 87%, were not previously identified in the goose. Conclusion This de novo transcriptome analysis could provide important Chinese goose sequence information and highlights the value of new gene discovery, pathways investigation and immune system gene identification, and comparison with other avian species as useful tools to understand the goose immune system. PMID:25816068
Qi, Zhitao; Wu, Ping; Zhang, Qihuan; Wei, Youchuan; Wang, Zisheng; Qiu, Ming; Shao, Rong; Li, Yao; Gao, Qian
2016-02-01
Soiny mullet (Liza haematocheila) is becoming an economically important aquaculture mugilid species in China and other Asian countries. However, increasing incidences of bacterial pathogenic diseases has greatly hampered the production of the soiny mullet. Deeper understanding of the soiny mullet immune system and its related genes in response to bacterial infections are necessary for disease control in this species. In this study, the transcriptomic profile of spleen from soiny mullet challenged with Streptococcus dysgalactiae was analyzed by Illumina-based paired-end sequencing method. After assembly, 86,884 unique transcript fragments (unigenes) were assembled, with an average length of 991 bp. Approximately 41,795 (48.1%) unigenes were annotated in the nr NCBI database and 57.9% of the unigenes were similar to that of the Nile tilapia. A total of 24,299 unigenes were categorized into three Gene Ontology (GO) categories (molecular function, cellular component and biological process), 13,570 unigenes into 25 functional Clusters of Orthologous Groups of proteins (COG) categories, and 30,547 unigenes were grouped into 258 known pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Following S. dysgalactiae infection, 11,461 differentially expressed unigenes were identified including 4658 up-regulated unigenes and 6803 down-regulated unigenes. Significant enrichment analysis of these differentially expressed unigenes identified major immune related pathways, including the Toll-like receptor, complement and coagulation cascades, T cell receptor signaling pathway and B cell receptor signaling pathway. In addition, 24,813 simple sequence repeats (SSRs) and 127,503 candidate single nucleotide polymorphisms (SNPs) were identified from the mullet spleen transcriptome. To this date, this study has globally analyzed the transcriptome profile from the spleen of L. haematocheila after S. dysgalactiae infection. Therefore, the results of our study contributes to better on the immune system and defense mechanisms of soiny mullet in response to bacterial infection, and provides valuable references for related studies in mugilidae species which currently lack genomic reference. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dong, Bin; Wu, Bin; Hong, Wenhong; Li, Xiuping; Li, Zhuo; Xue, Li; Huang, Yongfang
2017-01-01
The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped all the unigenes to the NCBI 'nr' (non-redundant), SwissProt, KEGG, and clusters of orthologous groups (COG) databases, where 52,531 (68.6%) unigenes were functionally annotated. According to the annotation, 46,171 (60.8%) unigenes belong to 338 KEGG pathways. We identified a series of unigenes that are related to the synthesis and regulation of abscisic acid (ABA), the activity of protective enzymes, vitamin B6 metabolism, the metabolism of osmolytes, and pathways related to the biosynthesis of secondary metabolites. After exposed to drought for 12 hours, the number of differentially-expressed genes (DEGs) between treated plants and control plants increased in the G4 cultivar, while there was no significant increase in the drought-tolerant C3 cultivar. DEGs associated with drought stress responsive pathways were identified by KEGG pathway enrichment analysis. Moreover, we found 789 DEGs related to transcription factors. Finally, according to the results of qRT-PCR, the expression levels of the 20 unigenes tested were consistent with the results of next-generation sequencing. In the present study, we identified a large set of cDNA unigenes from C. oleifera annotated using public databases. Further studies of DEGs involved in metabolic pathways related to drought stress and transcription will facilitate the discovery of novel genes involved in resistance to drought stress in this commercially important plant.
Wu, Bin; Hong, Wenhong; Li, Xiuping; Li, Zhuo; Xue, Li; Huang, Yongfang
2017-01-01
Background The tea-oil camellia (Camellia oleifera) is the most important oil plant in southern China, and has a strong resistance to drought and barren soil. Understanding the molecular mechanisms of drought tolerance would greatly promote its cultivation and molecular breeding. Results In total, we obtained 76,585 unigenes with an average length of 810 bp and an N50 of 1,092 bp. We mapped all the unigenes to the NCBI ‘nr’ (non-redundant), SwissProt, KEGG, and clusters of orthologous groups (COG) databases, where 52,531 (68.6%) unigenes were functionally annotated. According to the annotation, 46,171 (60.8%) unigenes belong to 338 KEGG pathways. We identified a series of unigenes that are related to the synthesis and regulation of abscisic acid (ABA), the activity of protective enzymes, vitamin B6 metabolism, the metabolism of osmolytes, and pathways related to the biosynthesis of secondary metabolites. After exposed to drought for 12 hours, the number of differentially-expressed genes (DEGs) between treated plants and control plants increased in the G4 cultivar, while there was no significant increase in the drought-tolerant C3 cultivar. DEGs associated with drought stress responsive pathways were identified by KEGG pathway enrichment analysis. Moreover, we found 789 DEGs related to transcription factors. Finally, according to the results of qRT-PCR, the expression levels of the 20 unigenes tested were consistent with the results of next-generation sequencing. Conclusions In the present study, we identified a large set of cDNA unigenes from C. oleifera annotated using public databases. Further studies of DEGs involved in metabolic pathways related to drought stress and transcription will facilitate the discovery of novel genes involved in resistance to drought stress in this commercially important plant. PMID:28759610
Wu, Shaohua; Zhang, Shixin; Chao, Jinquan; Deng, Xiaomin; Chen, Yueyi; Shi, Minjing; Tian, Wei-Min
2016-01-01
The secondary laticifer in rubber tree (Hevea brasiliensis Muell. Arg.) is a specific tissue within the secondary phloem. This tissue differentiates from the vascular cambia, and its function is natural rubber biosynthesis and storage. Given that jasmonates play a pivotal role in secondary laticifer differentiation, we established an experimental system with jasmonate (JA) mimic coronatine (COR) for studying the secondary laticifer differentiation: in this system, differentiation occurs within five days of the treatment of epicormic shoots with COR. In the present study, the experimental system was used to perform transcriptome sequencing and gene expression analysis. A total of 67,873 unigenes were assembled, and 50,548 unigenes were mapped at least in one public database. Of these being annotated unigenes, 15,780 unigenes were differentially expressed early after COR treatment, and 19,824 unigenes were differentially expressed late after COR treatment. At the early stage, 8,646 unigenes were up-regulated, while 7,134 unigenes were down-regulated. At the late stage, the numbers of up- and down-regulated unigenes were 7,711 and 12,113, respectively. The annotation data and gene expression analysis of the differentially expressed unigenes suggest that JA-mediated signalling, Ca2+ signal transduction and the CLAVATA-MAPK-WOX signalling pathway may be involved in regulating secondary laticifer differentiation in rubber trees. PMID:27808245
Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome.
Yu, Guo-Jun; Wang, Man; Huang, Jie; Yin, Ya-Lin; Chen, Yi-Jie; Jiang, Shuai; Jin, Yan-Xia; Lan, Xian-Qing; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui
2012-01-01
Ganoderma lucidum is a basidiomycete white rot fungus and is of medicinal importance in China, Japan and other countries in the Asiatic region. To date, much research has been performed in identifying the medicinal ingredients in Ganoderma lucidum. Despite its important therapeutic effects in disease, little is known about Ganoderma lucidum at the genomic level. In order to gain a molecular understanding of this fungus, we utilized Illumina high-throughput technology to sequence and analyze the transcriptome of Ganoderma lucidum. We obtained 6,439,690 and 6,416,670 high-quality reads from the mycelium and fruiting body of Ganoderma lucidum, and these were assembled to form 18,892 and 27,408 unigenes, respectively. A similarity search was performed against the NCBI non-redundant nucleotide database and a customized database composed of five fungal genomes. 11,098 and 8, 775 unigenes were matched to the NCBI non-redundant nucleotide database and our customized database, respectively. All unigenes were subjected to annotation by Gene Ontology, Eukaryotic Orthologous Group terms and Kyoto Encyclopedia of Genes and Genomes. Differentially expressed genes from the Ganoderma lucidum mycelium and fruiting body stage were analyzed, resulting in the identification of 13 unigenes which are involved in the terpenoid backbone biosynthesis pathway. Quantitative real-time PCR was used to confirm the expression levels of these unigenes. Ganoderma lucidum was also studied for wood degrading activity and a total of 22 putative FOLymes (fungal oxidative lignin enzymes) and 120 CAZymes (carbohydrate-active enzymes) were predicted from our Ganoderma lucidum transcriptome. Our study provides comprehensive gene expression information on Ganoderma lucidum at the transcriptional level, which will form the foundation for functional genomics studies in this fungus. The use of Illumina sequencing technology has made de novo transcriptome assembly and gene expression analysis possible in species that lack full genome information.
Deep Insight into the Ganoderma lucidum by Comprehensive Analysis of Its Transcriptome
Yu, Guo-Jun; Wang, Man; Huang, Jie; Yin, Ya-Lin; Chen, Yi-Jie; Jiang, Shuai; Jin, Yan-Xia; Lan, Xian-Qing; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui
2012-01-01
Background Ganoderma lucidum is a basidiomycete white rot fungus and is of medicinal importance in China, Japan and other countries in the Asiatic region. To date, much research has been performed in identifying the medicinal ingredients in Ganoderma lucidum. Despite its important therapeutic effects in disease, little is known about Ganoderma lucidum at the genomic level. In order to gain a molecular understanding of this fungus, we utilized Illumina high-throughput technology to sequence and analyze the transcriptome of Ganoderma lucidum. Methodology/Principal Findings We obtained 6,439,690 and 6,416,670 high-quality reads from the mycelium and fruiting body of Ganoderma lucidum, and these were assembled to form 18,892 and 27,408 unigenes, respectively. A similarity search was performed against the NCBI non-redundant nucleotide database and a customized database composed of five fungal genomes. 11,098 and 8, 775 unigenes were matched to the NCBI non-redundant nucleotide database and our customized database, respectively. All unigenes were subjected to annotation by Gene Ontology, Eukaryotic Orthologous Group terms and Kyoto Encyclopedia of Genes and Genomes. Differentially expressed genes from the Ganoderma lucidum mycelium and fruiting body stage were analyzed, resulting in the identification of 13 unigenes which are involved in the terpenoid backbone biosynthesis pathway. Quantitative real-time PCR was used to confirm the expression levels of these unigenes. Ganoderma lucidum was also studied for wood degrading activity and a total of 22 putative FOLymes (fungal oxidative lignin enzymes) and 120 CAZymes (carbohydrate-active enzymes) were predicted from our Ganoderma lucidum transcriptome. Conclusions Our study provides comprehensive gene expression information on Ganoderma lucidum at the transcriptional level, which will form the foundation for functional genomics studies in this fungus. The use of Illumina sequencing technology has made de novo transcriptome assembly and gene expression analysis possible in species that lack full genome information. PMID:22952861
Chen, Honglin; Wang, Lixia; Liu, Xiaoyan; Hu, Liangliang; Wang, Suhua; Cheng, Xuzhen
2017-07-11
Cowpea [Vigna unguiculata (L.) Walp.] is one of the most important legumes in tropical and semi-arid regions. However, there is relatively little genomic information available for genetic research on and breeding of cowpea. The objectives of this study were to analyse the cowpea transcriptome and develop genic molecular markers for future genetic studies of this genus. Approximately 54 million high-quality cDNA sequence reads were obtained from cowpea based on Illumina paired-end sequencing technology and were de novo assembled to generate 47,899 unigenes with an N50 length of 1534 bp. Sequence similarity analysis revealed 36,289 unigenes (75.8%) with significant similarity to known proteins in the non-redundant (Nr) protein database, 23,471 unigenes (49.0%) with BLAST hits in the Swiss-Prot database, and 20,654 unigenes (43.1%) with high similarity in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Further analysis identified 5560 simple sequence repeats (SSRs) as potential genic molecular markers. Validating a random set of 500 SSR markers yielded 54 polymorphic markers among 32 cowpea accessions. This transcriptomic analysis of cowpea provided a valuable set of genomic data for characterizing genes with important agronomic traits in Vigna unguiculata and a new set of genic SSR markers for further genetic studies and breeding in cowpea and related Vigna species.
De novo RNA-seq and functional annotation of Ornithonyssus bacoti.
Niu, DongLing; Wang, RuiLing; Zhao, YaE; Yang, Rui; Hu, Li
2018-06-01
Ornithonyssus bacoti (Hirst) (Acari: Macronyssidae) is a vector and reservoir of pathogens causing serious infectious diseases, such as epidemic hemorrhagic fever, endemic typhus, tularemia, and leptospirosis. Its genome and transcriptome data are lacking in public databases. In this study, total RNA was extracted from live O. bacoti to conduct RNA-seq, functional annotation, coding domain sequence (CDS) prediction and simple sequence repeats (SSRs) detection. The results showed that 65.8 million clean reads were generated and assembled into 72,185 unigenes, of which 49.4% were annotated by seven functional databases. 23,121 unigenes were annotated and assigned to 457 species by non-redundant protein sequence database. The BLAST top-two hit species were Metaseiulus occidentalis and Ixodes scapularis. The procedure detected 12,426 SSRs, of which tri- and di-nucleotides were the most abundant types and the representative motifs were AAT/ATT and AC/GT. 26,936 CDS were predicted with a mean length of 711 bp. 87 unigenes of 30 functional genes, which are usually involved in stress responses, drug resistance, movement, metabolism and allergy, were further identified by bioinformatics methods. The unigenes putatively encoding cytochrome P450 proteins were further analyzed phylogenetically. In conclusion, this study completed the RNA-seq and functional annotation of O. bacoti successfully, which provides reliable molecular data for its future studies of gene function and molecular markers.
Rawal, Hukam C.; Kumar, Shrawan; Mithra S.V., Amitha; Solanke, Amolkumar U.; Saxena, Swati; Tyagi, Anshika; V., Sureshkumar; Yadav, Neelam R.; Kalia, Pritam; Singh, Narendra Pratap; Singh, Nagendra Kumar; Sharma, Tilak Raj; Gaikwad, Kishor
2017-01-01
Clusterbean (Cyamopsis tetragonoloba L. Taub), is an important industrial, vegetable and forage crop. This crop owes its commercial importance to the presence of guar gum (galactomannans) in its endosperm which is used as a lubricant in a range of industries. Despite its relevance to agriculture and industry, genomic resources available in this crop are limited. Therefore, the present study was undertaken to generate RNA-Seq based transcriptome from leaf, shoot, and flower tissues. A total of 145 million high quality Illumina reads were assembled using Trinity into 127,706 transcripts and 48,007 non-redundant high quality (HQ) unigenes. We annotated 79% unigenes against Plant Genes from the National Center for Biotechnology Information (NCBI), Swiss-Prot, Pfam, gene ontology (GO) and KEGG databases. Among the annotated unigenes, 30,020 were assigned with 116,964 GO terms, 9984 with EC and 6111 with 137 KEGG pathways. At different fragments per kilobase of transcript per millions fragments sequenced (FPKM) levels, genes were found expressed higher in flower tissue followed by shoot and leaf. Additionally, we identified 8687 potential simple sequence repeats (SSRs) with an average frequency of one SSR per 8.75 kb. A total of 28 amplified SSRs in 21 clusterbean genotypes resulted in polymorphism in 13 markers with average polymorphic information content (PIC) of 0.21. We also constructed a database named ‘ClustergeneDB’ for easy retrieval of unigenes and the microsatellite markers. The tissue specific genes identified and the molecular marker resources developed in this study is expected to aid in genetic improvement of clusterbean for its end use. PMID:29120386
Park, So Young; Patnaik, Bharat Bhusan; Kang, Se Won; Hwang, Hee-Ju; Chung, Jong Min; Song, Dae Kwon; Sang, Min Kyu; Patnaik, Hongray Howrelia; Lee, Jae Bong; Noh, Mi Young; Kim, Changmu; Kim, Soonok; Park, Hong Seog; Lee, Jun Sang; Han, Yeon Soo; Lee, Yong Seok
2016-01-01
An aquatic gastropod belonging to the family Neritidae, Clithon retropictus is listed as an endangered class II species in South Korea. The lack of information on its genomic background limits the ability to obtain functional data resources and inhibits informed conservation planning for this species. In the present study, the transcriptomic sequencing and de novo assembly of C. retropictus generated a total of 241,696,750 high-quality reads. These assembled to 282,838 unigenes with mean and N50 lengths of 736.9 and 1201 base pairs, respectively. Of these, 125,616 unigenes were subjected to annotation analysis with known proteins in Protostome DB, COG, GO, and KEGG protein databases (BLASTX; E ≤ 0.00001) and with known nucleotides in the Unigene database (BLASTN; E ≤ 0.00001). The GO analysis indicated that cellular process, cell, and catalytic activity are the predominant GO terms in the biological process, cellular component, and molecular function categories, respectively. In addition, 2093 unigenes were distributed in 107 different KEGG pathways. Furthermore, 49,280 simple sequence repeats were identified in the unigenes (>1 kilobase sequences). This is the first report on the identification of transcriptomic and microsatellite resources for C. retropictus, which opens up the possibility of exploring traits related to the adaptation and acclimatization of this species. PMID:27455329
Liu, Shanshan; Chen, Guanxing; Xu, Haidong; Zou, Weibin; Yan, Wenrui; Wang, Qianqian; Deng, Hengwei; Zhang, Heqian; Yu, Guojiao; He, Jianguo; Weng, Shaoping
2017-01-01
Mud crab (Scylla paramamosain) is an economically important marine cultured species in China's coastal area. Mud crab reovirus (MCRV) is the most important pathogen of mud crab, resulting in large economic losses in crab farming. In this paper, next-generation sequencing technology and bioinformatics analysis are used to study transcriptome differences between MCRV-infected mud crab and normal control. A total of 104.3 million clean reads were obtained, including 52.7 million and 51.6 million clean reads from MCRV-infected (CA) and controlled (HA) mud crabs respectively. 81,901, 70,059 and 67,279 unigenes were gained respectively from HA reads, CA reads and HA&CA reads. A total of 32,547 unigenes from HA&CA reads called All-Unigenes were matched to at least one database among Nr, Nt, Swiss-prot, COG, GO and KEGG databases. Among these, 13,039, 20,260 and 11,866 unigenes belonged to the 3, 258 and 25 categories of GO, KEGG pathway, and COG databases, respectively. Solexa/Illumina's DGE platform was also used, and about 13,856 differentially expressed genes (DEGs), including 4444 significantly upregulated and 9412 downregulated DEGs were detected in diseased crabs compared with the control. KEGG pathway analysis revealed that DEGs were obviously enriched in the pathways related to different diseases or infections. This transcriptome analysis provided valuable information on gene functions associated with the response to MCRV in mud crab, as well as detail information for identifying novel genes in the absence of the mud crab genome database. Copyright © 2016. Published by Elsevier Ltd.
Lin, Qiang; Luo, Wei; Wan, Shiming; Gao, Zexia
2016-01-01
Seahorse conservation has been performed utilizing various strategies for many decades, and the deeper understanding of genomic information is necessary to more efficiently protect the germplasm resources of seahorse species. However, little genetic information about seahorses currently exists in the public databases. In this study, high-throughput RNA sequencing for two seahorse species, Hippocampus erectus and H. mohnikei, was carried out, and de novo assembly generated 37,506 unigenes for H. erectus and 36,113 unigenes for H. mohnikei. Among them, 17,338 (46.23%) unigenes for H. erectus and 17,900 (49.57%) for H. mohnikei were successfully annotated based on the information available from the public databases. Through comparing the unigenes of two seahorse species, 7,802 candidate orthologous genes were identified and 5,268 genes among them could be annotated. In addition, gene ontology analysis of two species was similarly performed on biological processes, cellular components, and molecular functions. Twenty-four and twenty-one unigenes in H. erectus and H. mohnikei were annotated in the biosynthesis of unsaturated fatty acids pathways, and both seahorses lacked the Δ12 and Δ15 desaturases. Total of 8,992 and 9,116 SSR loci were obtained from H. erectus and H. mohnikei unigenes, respectively. Dozens of SSR were developed and then applied to assess the population genetic diversity, as well as cross-amplified in a related species, H. trimaculatus. The HO and HE values of the tested populations for H. erectus, H. mohnikei, and H. trimaculatus were medium. These resources would facilitate the conservation of the species through a better understanding of the genomics and comparative genome analysis within the Hippocampus genus. PMID:27128031
Lin, Qiang; Luo, Wei; Wan, Shiming; Gao, Zexia
2016-01-01
Seahorse conservation has been performed utilizing various strategies for many decades, and the deeper understanding of genomic information is necessary to more efficiently protect the germplasm resources of seahorse species. However, little genetic information about seahorses currently exists in the public databases. In this study, high-throughput RNA sequencing for two seahorse species, Hippocampus erectus and H. mohnikei, was carried out, and de novo assembly generated 37,506 unigenes for H. erectus and 36,113 unigenes for H. mohnikei. Among them, 17,338 (46.23%) unigenes for H. erectus and 17,900 (49.57%) for H. mohnikei were successfully annotated based on the information available from the public databases. Through comparing the unigenes of two seahorse species, 7,802 candidate orthologous genes were identified and 5,268 genes among them could be annotated. In addition, gene ontology analysis of two species was similarly performed on biological processes, cellular components, and molecular functions. Twenty-four and twenty-one unigenes in H. erectus and H. mohnikei were annotated in the biosynthesis of unsaturated fatty acids pathways, and both seahorses lacked the Δ12 and Δ15 desaturases. Total of 8,992 and 9,116 SSR loci were obtained from H. erectus and H. mohnikei unigenes, respectively. Dozens of SSR were developed and then applied to assess the population genetic diversity, as well as cross-amplified in a related species, H. trimaculatus. The HO and HE values of the tested populations for H. erectus, H. mohnikei, and H. trimaculatus were medium. These resources would facilitate the conservation of the species through a better understanding of the genomics and comparative genome analysis within the Hippocampus genus.
Zhang, Jianxia; He, Chunmei; Wu, Kunlin; Teixeira da Silva, Jaime A.; Zeng, Songjun; Zhang, Xinhua; Yu, Zhenming; Xia, Haoqiang; Duan, Jun
2016-01-01
Dendrobium officinale is one of the most important Chinese medicinal herbs. Polysaccharides are one of the main active ingredients of D. officinale. To identify the genes that maybe related to polysaccharides synthesis, two cDNA libraries were prepared from juvenile and adult D. officinale, and were named Dendrobium-1 and Dendrobium-2, respectively. Illumina sequencing for Dendrobium-1 generated 102 million high quality reads that were assembled into 93,881 unigenes with an average sequence length of 790 base pairs. The sequencing for Dendrobium-2 generated 86 million reads that were assembled into 114,098 unigenes with an average sequence length of 695 base pairs. Two transcriptome databases were integrated and assembled into a total of 145,791 unigenes. Among them, 17,281 unigenes were assigned to 126 KEGG pathways while 135 unigenes were involved in fructose and mannose metabolism. Gene Ontology analysis revealed that the majority of genes were associated with metabolic and cellular processes. Furthermore, 430 glycosyltransferase and 89 cellulose synthase genes were identified. Comparative analysis of both transcriptome databases revealed a total of 32,794 differential expression genes (DEGs), including 22,051 up-regulated and 10,743 down-regulated genes in Dendrobium-2 compared to Dendrobium-1. Furthermore, a total of 1142 and 7918 unigenes showed unique expression in Dendrobium-1 and Dendrobium-2, respectively. These DEGs were mainly correlated with metabolic pathways and the biosynthesis of secondary metabolites. In addition, 170 DEGs belonged to glycosyltransferase genes, 37 DEGs were related to cellulose synthase genes and 627 DEGs encoded transcription factors. This study substantially expands the transcriptome information for D. officinale and provides valuable clues for identifying candidate genes involved in polysaccharide biosynthesis and elucidating the mechanism of polysaccharide biosynthesis. PMID:26904032
Kang, Se Won; Patnaik, Bharat Bhusan; Hwang, Hee-Ju; Park, So Young; Chung, Jong Min; Song, Dae Kwon; Patnaik, Hongray Howrelia; Lee, Jae Bong; Kim, Changmu; Kim, Soonok; Park, Hong Seog; Park, Seung-Hwan; Park, Young-Su; Han, Yeon Soo; Lee, Jun Sang; Lee, Yong Seok
2017-03-01
Satsuma myomphala is critically endangered through loss of natural habitats, predation by natural enemies, and indiscriminate collection. It is a protected species in Korea but lacks genomic resources for an understanding of varied functional processes attributable to evolutionary success under natural habitats. For assessing the genetic information of S. myomphala, we performed for the first time, de novo transcriptome sequencing and functional annotation of expressed sequences using Illumina Next-Generation Sequencing (NGS) platform and bioinformatics analysis. We identified 103,774 unigenes of which 37,959, 12,890, and 17,699 were annotated in the PANM (Protostome DB), Unigene, and COG (Clusters of Orthologous Groups) databases, respectively. In addition, 14,451 unigenes were predicted under Gene Ontology functional categories, with 4581 assigned to a single category. Furthermore, 3369 sequences with 646 having Enzyme Commission (EC) numbers were mapped to 122 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. The prominent protein domains included the Zinc finger (C2H2-like), Reverse Transcriptase, Thioredoxin-like fold, and RNA recognition motif domain. Many unigenes with homology to immunity, defense, and reproduction-related genes were screened in the transcriptome. We also detected 3120 putative simple sequence repeats (SSRs) encompassing dinucleotide to hexanucleotide repeat motifs from >1kb unigene sequences. A list of PCR primers of SSR loci have been identified to study the genetic polymorphisms. The transcriptome data represents a valuable resource for further investigations on the species genome structure and biology. The unigenes information and microsatellites would provide an indispensable tool for conservation of the species in natural and adaptive environments. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
AmpuBase: a transcriptome database for eight species of apple snails (Gastropoda: Ampullariidae).
Ip, Jack C H; Mu, Huawei; Chen, Qian; Sun, Jin; Ituarte, Santiago; Heras, Horacio; Van Bocxlaer, Bert; Ganmanee, Monthon; Huang, Xin; Qiu, Jian-Wen
2018-03-05
Gastropoda, with approximately 80,000 living species, is the largest class of Mollusca. Among gastropods, apple snails (family Ampullariidae) are globally distributed in tropical and subtropical freshwater ecosystems and many species are ecologically and economically important. Ampullariids exhibit various morphological and physiological adaptations to their respective habitats, which make them ideal candidates for studying adaptation, population divergence, speciation, and larger-scale patterns of diversity, including the biogeography of native and invasive populations. The limited availability of genomic data, however, hinders in-depth ecological and evolutionary studies of these non-model organisms. Using Illumina Hiseq platforms, we sequenced 1220 million reads for seven species of apple snails. Together with the previously published RNA-Seq data of two apple snails, we conducted de novo transcriptome assembly of eight species that belong to five genera of Ampullariidae, two of which represent Old World lineages and the other three New World lineages. There were 20,730 to 35,828 unigenes with predicted open reading frames for the eight species, with N50 (shortest sequence length at 50% of the unigenes) ranging from 1320 to 1803 bp. 69.7% to 80.2% of these unigenes were functionally annotated by searching against NCBI's non-redundant, Gene Ontology database and the Kyoto Encyclopaedia of Genes and Genomes. With these data we developed AmpuBase, a relational database that features online BLAST functionality for DNA/protein sequences, keyword searching for unigenes/functional terms, and download functions for sequences and whole transcriptomes. In summary, we have generated comprehensive transcriptome data for multiple ampullariid genera and species, and created a publicly accessible database with a user-friendly interface to facilitate future basic and applied studies on ampullariids, and comparative molecular studies with other invertebrates.
Liu, Le; Zhang, Shijie; Lian, Chunlan
2015-01-01
Japanese red pine (Pinus densiflora) is extensively cultivated in Japan, Korea, China, and Russia and is harvested for timber, pulpwood, garden, and paper markets. However, genetic information and molecular markers were very scarce for this species. In this study, over 51 million sequencing clean reads from P. densiflora mRNA were produced using Illumina paired-end sequencing technology. It yielded 83,913 unigenes with a mean length of 751 bp, of which 54,530 (64.98%) unigenes showed similarity to sequences in the NCBI database. Among which the best matches in the NCBI Nr database were Picea sitchensis (41.60%), Amborella trichopoda (9.83%), and Pinus taeda (4.15%). A total of 1953 putative microsatellites were identified in 1784 unigenes using MISA (MicroSAtellite) software, of which the tri-nucleotide repeats were most abundant (50.18%) and 629 EST-SSR (expressed sequence tag- simple sequence repeats) primer pairs were successfully designed. Among 20 EST-SSR primer pairs randomly chosen, 17 markers yielded amplification products of the expected size in P. densiflora. Our results will provide a valuable resource for gene-function analysis, germplasm identification, molecular marker-assisted breeding and resistance-related gene(s) mapping for pine for P. densiflora. PMID:26690126
Zhang, Shu; Sui, Zhenghong; Chang, Lianpeng; Kang, Kyoungho; Ma, Jinhua; Kong, Fanna; Zhou, Wei; Wang, Jinguo; Guo, Liliang; Geng, Huili; Zhong, Jie; Ma, Qingxia
2014-03-10
In this article, high-throughput de novo transcriptomic sequencing was performed in Alexandrium catenella, which provided the first view of the gene repertoire in this dinoflagellate based on next-generation sequencing (NGS) technologies. A total of 118,304 unigenes were identified with an average length of 673bp (base pair). Of these unigenes, 77,936 (65.9%) were annotated with known proteins based on sequence similarities, among which 24,149 and 22,956 unigenes were assigned to gene ontology categories (GO) and clusters of orthologous groups (COGs), respectively. Furthermore, 16,467 unigenes were mapped onto 322 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). We also detected 1143 simple sequence repeats (SSRs), in which the tri-nucleotide repeat motif (69.3%) was the most abundant. The genetic facts and significance derived from the transcriptome dataset were suggested and discussed. All four core nucleosomal histones and linker histones were detected, in addition to the unigenes involved in histone modifications.190 unigenes were identified as being involved in the endocytosis pathway, and clathrin-dependent endocytosis was suggested to play a role in the heterotrophy of A. catenella. A conserved 22-nt spliced leader (SL) was identified in 21 unigenes which suggested the existence of trans-splicing processing of mRNA in A. catenella. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
MELOGEN: an EST database for melon functional genomics
Gonzalez-Ibeas, Daniel; Blanca, José; Roig, Cristina; González-To, Mireia; Picó, Belén; Truniger, Verónica; Gómez, Pedro; Deleu, Wim; Caño-Delgado, Ana; Arús, Pere; Nuez, Fernando; Garcia-Mas, Jordi; Puigdomènech, Pere; Aranda, Miguel A
2007-01-01
Background Melon (Cucumis melo L.) is one of the most important fleshy fruits for fresh consumption. Despite this, few genomic resources exist for this species. To facilitate the discovery of genes involved in essential traits, such as fruit development, fruit maturation and disease resistance, and to speed up the process of breeding new and better adapted melon varieties, we have produced a large collection of expressed sequence tags (ESTs) from eight normalized cDNA libraries from different tissues in different physiological conditions. Results We determined over 30,000 ESTs that were clustered into 16,637 non-redundant sequences or unigenes, comprising 6,023 tentative consensus sequences (contigs) and 10,614 unclustered sequences (singletons). Many potential molecular markers were identified in the melon dataset: 1,052 potential simple sequence repeats (SSRs) and 356 single nucleotide polymorphisms (SNPs) were found. Sixty-nine percent of the melon unigenes showed a significant similarity with proteins in databases. Functional classification of the unigenes was carried out following the Gene Ontology scheme. In total, 9,402 unigenes were mapped to one or more ontology. Remarkably, the distributions of melon and Arabidopsis unigenes followed similar tendencies, suggesting that the melon dataset is representative of the whole melon transcriptome. Bioinformatic analyses primarily focused on potential precursors of melon micro RNAs (miRNAs) in the melon dataset, but many other genes potentially controlling disease resistance and fruit quality traits were also identified. Patterns of transcript accumulation were characterised by Real-Time-qPCR for 20 of these genes. Conclusion The collection of ESTs characterised here represents a substantial increase on the genetic information available for melon. A database (MELOGEN) which contains all EST sequences, contig images and several tools for analysis and data mining has been created. This set of sequences constitutes also the basis for an oligo-based microarray for melon that is being used in experiments to further analyse the melon transcriptome. PMID:17767721
Yang, Deying; Fu, Yan; Wu, Xuhang; Xie, Yue; Nie, Huaming; Chen, Lin; Nong, Xiang; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yan, Ning; Zhang, Runhui; Zheng, Wanpeng; Yang, Guangyou
2012-01-01
Background Taenia pisiformis is one of the most common intestinal tapeworms and can cause infections in canines. Adult T. pisiformis (canines as definitive hosts) and Cysticercus pisiformis (rabbits as intermediate hosts) cause significant health problems to the host and considerable socio-economic losses as a consequence. No complete genomic data regarding T. pisiformis are currently available in public databases. RNA-seq provides an effective approach to analyze the eukaryotic transcriptome to generate large functional gene datasets that can be used for further studies. Methodology/Principal Findings In this study, 2.67 million sequencing clean reads and 72,957 unigenes were generated using the RNA-seq technique. Based on a sequence similarity search with known proteins, a total of 26,012 unigenes (no redundancy) were identified after quality control procedures via the alignment of four databases. Overall, 15,920 unigenes were mapped to 203 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Through analyzing the glycolysis/gluconeogenesis and axonal guidance pathways, we achieved an in-depth understanding of the biochemistry of T. pisiformis. Here, we selected four unigenes at random and obtained their full-length cDNA clones using RACE PCR. Functional distribution characteristics were gained through comparing four cestode species (72,957 unigenes of T. pisiformis, 30,700 ESTs of T. solium, 1,058 ESTs of Eg+Em [conserved ESTs between Echinococcus granulosus and Echinococcus multilocularis]), with the cluster of orthologous groups (COG) and gene ontology (GO) functional classification systems. Furthermore, the conserved common genes in these four cestode species were obtained and aligned by the KEGG database. Conclusion This study provides an extensive transcriptome dataset obtained from the deep sequencing of T. pisiformis in a non-model whole genome. The identification of conserved genes may provide novel approaches for potential drug targets and vaccinations against cestode infections. Research can now accelerate into the functional genomics, immunity and gene expression profiles of cestode species. PMID:22514598
Xia, Jia; Yang, Lili; Chen, Jialin; Wu, Yuping; Yi, Meisheng
2013-01-01
Background The Indo-Pacific humpback dolphin (Sousa chinensis), a marine mammal species inhabited in the waters of Southeast Asia, South Africa and Australia, has attracted much attention because of the dramatic decline in population size in the past decades, which raises the concern of extinction. So far, this species is poorly characterized at molecular level due to little sequence information available in public databases. Recent advances in large-scale RNA sequencing provide an efficient approach to generate abundant sequences for functional genomic analyses in the species with un-sequenced genomes. Principal Findings We performed a de novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome by Illumina sequencing. 108,751 high quality sequences from 47,840,388 paired-end reads were generated, and 48,868 and 46,587 unigenes were functionally annotated by BLAST search against the NCBI non-redundant and Swiss-Prot protein databases (E-value<10−5), respectively. In total, 16,467 unigenes were clustered into 25 functional categories by searching against the COG database, and BLAST2GO search assigned 37,976 unigenes to 61 GO terms. In addition, 36,345 unigenes were grouped into 258 KEGG pathways. We also identified 9,906 simple sequence repeats and 3,681 putative single nucleotide polymorphisms as potential molecular markers in our assembled sequences. A large number of unigenes were predicted to be involved in immune response, and many genes were predicted to be relevant to adaptive evolution and cetacean-specific traits. Conclusion This study represented the first transcriptome analysis of the Indo-Pacific humpback dolphin, an endangered species. The de novo transcriptome analysis of the unique transcripts will provide valuable sequence information for discovery of new genes, characterization of gene expression, investigation of various pathways and adaptive evolution, as well as identification of genetic markers. PMID:24015242
Gui, Duan; Jia, Kuntong; Xia, Jia; Yang, Lili; Chen, Jialin; Wu, Yuping; Yi, Meisheng
2013-01-01
The Indo-Pacific humpback dolphin (Sousa chinensis), a marine mammal species inhabited in the waters of Southeast Asia, South Africa and Australia, has attracted much attention because of the dramatic decline in population size in the past decades, which raises the concern of extinction. So far, this species is poorly characterized at molecular level due to little sequence information available in public databases. Recent advances in large-scale RNA sequencing provide an efficient approach to generate abundant sequences for functional genomic analyses in the species with un-sequenced genomes. We performed a de novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome by Illumina sequencing. 108,751 high quality sequences from 47,840,388 paired-end reads were generated, and 48,868 and 46,587 unigenes were functionally annotated by BLAST search against the NCBI non-redundant and Swiss-Prot protein databases (E-value<10(-5)), respectively. In total, 16,467 unigenes were clustered into 25 functional categories by searching against the COG database, and BLAST2GO search assigned 37,976 unigenes to 61 GO terms. In addition, 36,345 unigenes were grouped into 258 KEGG pathways. We also identified 9,906 simple sequence repeats and 3,681 putative single nucleotide polymorphisms as potential molecular markers in our assembled sequences. A large number of unigenes were predicted to be involved in immune response, and many genes were predicted to be relevant to adaptive evolution and cetacean-specific traits. This study represented the first transcriptome analysis of the Indo-Pacific humpback dolphin, an endangered species. The de novo transcriptome analysis of the unique transcripts will provide valuable sequence information for discovery of new genes, characterization of gene expression, investigation of various pathways and adaptive evolution, as well as identification of genetic markers.
A New Omics Data Resource of Pleurocybella porrigens for Gene Discovery
Dohra, Hideo; Someya, Takumi; Takano, Tomoyuki; Harada, Kiyonori; Omae, Saori; Hirai, Hirofumi; Yano, Kentaro; Kawagishi, Hirokazu
2013-01-01
Background Pleurocybella porrigens is a mushroom-forming fungus, which has been consumed as a traditional food in Japan. In 2004, 55 people were poisoned by eating the mushroom and 17 people among them died of acute encephalopathy. Since then, the Japanese government has been alerting Japanese people to take precautions against eating the P . porrigens mushroom. Unfortunately, despite efforts, the molecular mechanism of the encephalopathy remains elusive. The genome and transcriptome sequence data of P . porrigens and the related species, however, are not stored in the public database. To gain the omics data in P . porrigens , we sequenced genome and transcriptome of its fruiting bodies and mycelia by next generation sequencing. Methodology/Principal Findings Short read sequences of genomic DNAs and mRNAs in P . porrigens were generated by Illumina Genome Analyzer. Genome short reads were de novo assembled into scaffolds using Velvet. Comparisons of genome signatures among Agaricales showed that P . porrigens has a unique genome signature. Transcriptome sequences were assembled into contigs (unigenes). Biological functions of unigenes were predicted by Gene Ontology and KEGG pathway analyses. The majority of unigenes would be novel genes without significant counterparts in the public omics databases. Conclusions Functional analyses of unigenes present the existence of numerous novel genes in the basidiomycetes division. The results mean that the omics information such as genome, transcriptome and metabolome in basidiomycetes is short in the current databases. The large-scale omics information on P . porrigens , provided from this research, will give a new data resource for gene discovery in basidiomycetes. PMID:23936076
Ouyang, Kunxi; Li, Juncheng; Zhao, Xianhai; Que, Qingmin; Li, Pei; Huang, Hao; Deng, Xiaomei; Singh, Sunil Kumar; Wu, Ai-Min; Chen, Xiaoyang
2016-01-01
Neolamarckia cadamba is a fast-growing tropical hardwood tree that is used extensively for plywood and pulp production, light furniture fabrication, building materials, and as a raw material for the preparation of certain indigenous medicines. Lack of genomic resources hampers progress in the molecular breeding and genetic improvement of this multipurpose tree species. In this study, transcriptome profiling of differentiating stems was performed to understand N. cadamba xylogenesis. The N. cadamba transcriptome was sequenced using Illumina paired-end sequencing technology. This generated 42.49 G of raw data that was then de novo assembled into 55,432 UniGenes with a mean length of 803.2bp. Approximately 47.8% of the UniGenes (26,487) were annotated against publically available protein databases, among which 21,699 and 7,754 UniGenes were assigned to Gene Ontology categories (GO) and Clusters of Orthologous Groups (COG), respectively. 5,589 UniGenes could be mapped onto 116 pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Among 6,202 UniGenes exhibiting differential expression during xylogenesis, 1,634 showed significantly higher levels of expression in the basal and middle stem segments compared to the apical stem segment. These genes included NAC and MYB transcription factors related to secondary cell wall biosynthesis, genes related to most metabolic steps of lignin biosynthesis, and CesA genes involved in cellulose biosynthesis. This study lays the foundation for further screening of key genes associated with xylogenesis in N. cadamba as well as enhancing our understanding of the mechanism of xylogenesis in fast-growing trees.
Zhou, Fengyan; Zhang, Yong; Tang, Wei; Wang, Mei; Gao, Tongchun
2017-12-06
Asia minor bluegrass (Polypogon fugax, P. fugax), a weed that is both distributed across China and associated with winter crops, has evolved resistance to acetyl-CoA carboxylase (ACCase) herbicides, but the resistance mechanism remains unclear. The goal of this study was to analyze the transcriptome between resistant and sensitive populations of P. fugax at the flowering stage. Populations resistant and susceptible to clodinafop-propargyl showed distinct transcriptome profiles. A total of 206,041 unigenes were identified; 165,901 unique sequences were annotated using BLASTX alignment databases. Among them, 5904 unigenes were classified into 58 transcription factor families. Nine families were related to the regulation of plant growth and development and to stress responses. Twelve unigenes were differentially expressed between the clodinafop-propargyl-sensitive and clodinafop-propargyl-resistant populations at the early flowering stage; among those unigenes, three belonged to the ABI3VP1, BHLH, and GRAS families, while the remaining nine belonged to the MADS family. Compared with the clodinafop-propargyl-sensitive plants, the resistant plants exhibited different expression pattern of these 12 unigenes. This study identified differentially expressed unigenes related to ACCase-resistant P. fugax and thus provides a genomic resource for understanding the molecular basis of early flowering.
He, Miao; Wang, Ying; Hua, Wenping; Zhang, Yuan; Wang, Zhezhi
2012-01-01
Background Hypericum perforatum L. (St. John’s wort) is a medicinal plant with pharmacological properties that are antidepressant, anti-inflammatory, antiviral, anti-cancer, and antibacterial. Its major active metabolites are hypericins, hyperforins, and melatonin. However, little genetic information is available for this species, especially that concerning the biosynthetic pathways for active ingredients. Methodology/Principal Findings Using de novo transcriptome analysis, we obtained 59,184 unigenes covering the entire life cycle of these plants. In all, 40,813 unigenes (68.86%) were annotated and 2,359 were assigned to secondary metabolic pathways. Among them, 260 unigenes are involved in the production of hypericin, hyperforin, and melatonin. Another 2,291 unigenes are classified as potential Type III polyketide synthase. Our BlastX search against the AGRIS database reveals 1,772 unigenes that are homologous to 47 known Arabidopsis transcription factor families. Further analysis shows that 10.61% (6,277) of these unigenes contain 7,643 SSRs. Conclusion We have identified a set of putative genes involved in several secondary metabolism pathways, especially those related to the synthesis of its active ingredients. Our results will serve as an important platform for public information about gene expression, genomics, and functional genomics in H. perforatum. PMID:22860059
2013-01-01
Background Longan is a tropical/subtropical fruit tree of great economic importance in Southeast Asia. Progress in understanding molecular mechanisms of longan embryogenesis, which is the primary influence on fruit quality and yield, is slowed by lack of transcriptomic and genomic information. Illumina second generation sequencing, which is suitable for generating enormous numbers of transcript sequences that can be used for functional genomic analysis of longan. Results In this study, a longan embryogenic callus (EC) cDNA library was sequenced using an Illumina HiSeq 2000 system. A total of 64,876,258 clean reads comprising 5.84 Gb of nucleotides were assembled into 68,925 unigenes of 448-bp mean length, with unigenes ≥1000 bp accounting for 8.26% of the total. Using BLASTx, 40,634 unigenes were found to have significant similarity with accessions in Nr and Swiss- Prot databases. Of these, 38,845 unigenes were assigned to 43 GO sub-categories and 17,118 unigenes were classified into 25 COG sub-groups. In addition, 17,306 unigenes mapped to 199 KEGG pathways, with the categories of Metabolic pathways, Plant-pathogen interaction, Biosynthesis of secondary metabolites, and Genetic information processing being well represented. Analyses of unigenes ≥1000 bp revealed 328 embryogenesis-related unigenes as well as numerous unigenes expressed in EC associated with functions of reproductive growth, such as flowering, gametophytogenesis, and fertility, and vegetative growth, such as root and shoot growth. Furthermore, 23 unigenes related to embryogenesis and reproductive and vegetative growth were validated by quantitative real time PCR (qPCR) in samples from different stages of longan somatic embryogenesis (SE); their differentially expressions in the various embryogenic cultures indicated their possible roles in longan SE. Conclusions The quantity and variety of expressed EC genes identified in this study is sufficient to serve as a global transcriptome dataset for longan EC and to provide more molecular resources for longan functional genomics. PMID:23957614
Wei, Hairong; Chen, Xin; Zong, Xiaojuan; Shu, Huairui; Gao, Dongsheng; Liu, Qingzhong
2015-01-01
Background Fruit color is one of the most important economic traits of the sweet cherry (Prunus avium L.). The red coloration of sweet cherry fruit is mainly attributed to anthocyanins. However, limited information is available regarding the molecular mechanisms underlying anthocyanin biosynthesis and its regulation in sweet cherry. Methodology/Principal Findings In this study, a reference transcriptome of P. avium L. was sequenced and annotated to identify the transcriptional determinants of fruit color. Normalized cDNA libraries from red and yellow fruits were sequenced using the next-generation Illumina/Solexa sequencing platform and de novo assembly. Over 66 million high-quality reads were assembled into 43,128 unigenes using a combined assembly strategy. Then a total of 22,452 unigenes were compared to public databases using homology searches, and 20,095 of these unigenes were annotated in the Nr protein database. Furthermore, transcriptome differences between the four stages of fruit ripening were analyzed using Illumina digital gene expression (DGE) profiling. Biological pathway analysis revealed that 72 unigenes were involved in anthocyanin biosynthesis. The expression patterns of unigenes encoding phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavanone 3’-hydroxylase (F3’H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP glucose: flavonol 3-O-glucosyltransferase (UFGT) during fruit ripening differed between red and yellow fruit. In addition, we identified some transcription factor families (such as MYB, bHLH and WD40) that may control anthocyanin biosynthesis. We confirmed the altered expression levels of eighteen unigenes that encode anthocyanin biosynthetic enzymes and transcription factors using quantitative real-time PCR (qRT-PCR). Conclusions/Significance The obtained sweet cherry transcriptome and DGE profiling data provide comprehensive gene expression information that lends insights into the molecular mechanisms underlying anthocyanin biosynthesis. These results will provide a platform for further functional genomic research on this fruit crop. PMID:25799516
Wei, Lin; Li, Shenghua; Liu, Shenggui; He, Anna; Wang, Dan; Wang, Jie; Tang, Yulian; Wu, Xianjin
2014-01-01
Houttuynia cordata Thunb. is an important traditional medical herb in China and other Asian countries, with high medicinal and economic value. However, a lack of available genomic information has become a limitation for research on this species. Thus, we carried out high-throughput transcriptomic sequencing of H. cordata to generate an enormous transcriptome sequence dataset for gene discovery and molecular marker development. Illumina paired-end sequencing technology produced over 56 million sequencing reads from H. cordata mRNA. Subsequent de novo assembly yielded 63,954 unigenes, 39,982 (62.52%) and 26,122 (40.84%) of which had significant similarity to proteins in the NCBI nonredundant protein and Swiss-Prot databases (E-value <10(-5)), respectively. Of these annotated unigenes, 30,131 and 15,363 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. In addition, 24,434 (38.21%) unigenes were mapped onto 128 pathways using the KEGG pathway database and 17,964 (44.93%) unigenes showed homology to Vitis vinifera (Vitaceae) genes in BLASTx analysis. Furthermore, 4,800 cDNA SSRs were identified as potential molecular markers. Fifty primer pairs were randomly selected to detect polymorphism among 30 samples of H. cordata; 43 (86%) produced fragments of expected size, suggesting that the unigenes were suitable for specific primer design and of high quality, and the SSR marker could be widely used in marker-assisted selection and molecular breeding of H. cordata in the future. This is the first application of Illumina paired-end sequencing technology to investigate the whole transcriptome of H. cordata and to assemble RNA-seq reads without a reference genome. These data should help researchers investigating the evolution and biological processes of this species. The SSR markers developed can be used for construction of high-resolution genetic linkage maps and for gene-based association analyses in H. cordata. This work will enable future functional genomic research and research into the distinctive active constituents of this genus.
High-Throughput Sequencing and De Novo Assembly of the Isatis indigotica Transcriptome
Tang, Xiaoqing; Xiao, Yunhua; Lv, Tingting; Wang, Fangquan; Zhu, QianHao; Zheng, Tianqing; Yang, Jie
2014-01-01
Background Isatis indigotica, the source of the traditional Chinese medicine Radix isatidis (Ban-Lan-Gen), is an extremely important economical crop in China. To facilitate biological, biochemical and molecular research on the medicinal chemicals in I. indigotica, here we report the first I. indigotica transcriptome generated by RNA sequencing (RNA-seq). Results RNA-seq library was created using RNA extracted from a mixed sample including leaf and root. A total of 33,238 unigenes were assembled from more than 28 million of high quality short reads. The quality of the assembly was experimentally examined by cDNA sequencing of seven randomly selected unigenes. Based on blast search 28,184 unigenes had a hit in at least one of the protein and nucleotide databases used in this study, and 8 unigenes were found to be associated with biosynthesis of indole and its derivatives. According to Gene Ontology classification, 22,365 unigenes were categorized into 48 functional groups. Furthermore, Clusters of Orthologous Group and Swiss-Port annotation were assigned for 7,707 and 18,679 unigenes, respectively. Analysis of repeat motifs identified 6,400 simple sequence repeat markers in 4,509 unigenes. Conclusion Our data provide a comprehensive sequence resource for molecular study of I. indigotica. Our results will facilitate studies on the functions of genes involved in the indole alkaloid biosynthesis pathway and on metabolism of nitrogen and indole alkaloids in I. indigotica and its related species. PMID:25259890
Song, Huwei; Zhao, Xiangxiang; Hu, Weicheng; Wang, Xinfeng; Shen, Ting; Yang, Liming
2016-11-04
Loquat ( Eriobotrya japonica Lindl.) is an important non-climacteric fruit and rich in essential nutrients such as minerals and carotenoids. During fruit development and ripening, thousands of the differentially expressed genes (DEGs) from various metabolic pathways cause a series of physiological and biochemical changes. To better understand the underlying mechanism of fruit development, the Solexa/Illumina RNA-seq high-throughput sequencing was used to evaluate the global changes of gene transcription levels. More than 51,610,234 high quality reads from ten runs of fruit development were sequenced and assembled into 48,838 unigenes. Among 3256 DEGs, 2304 unigenes could be annotated to the Gene Ontology database. These DEGs were distributed into 119 pathways described in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A large number of DEGs were involved in carbohydrate metabolism, hormone signaling, and cell-wall degradation. The real-time reverse transcription (qRT)-PCR analyses revealed that several genes related to cell expansion, auxin signaling and ethylene response were differentially expressed during fruit development. Other members of transcription factor families were also identified. There were 952 DEGs considered as novel genes with no annotation in any databases. These unigenes will serve as an invaluable genetic resource for loquat molecular breeding and postharvest storage.
NASA Astrophysics Data System (ADS)
Tong, Yanli; Sun, Xiuqin; Wang, Bo; Wang, Ling; Li, Yan; Tian, Jinhu; Zheng, Fengrong; Zheng, Minggang
2015-01-01
Platichthys stellatus is an economically important marine bony fish species that is cultured in China on a large scale. However, very little is known about its immune-related genes. In this study, the transcriptome of the immune organs of P. stellatus that were intraperitoneally challenged with the pathogen E dwardsiella ictaluri JCM1680 is analyzed. Total RNA from four tissues (spleen, kidney, liver, and intestine) was mixed equally and then sequenced on an Illumina HiSeq 2000 platform. Overall, 28 465 813 quality reads were generated and assembled into 43 061 unigenes. Similarity searches against public protein sequence databases were used to annotate 28 291 unigenes (65.7% of the total), 368 of which were associated with immunoregulation, including 188 related to immunity response. Additionally, the transcript levels of immunity response unigenes annotated as related to tumor necrosis factor (TNF), TNF receptor, chemokine, major histocompatibility complex, and interleukin-6 were investigated in the different tissues of normal and infected P. stellatus by real-time quantitative PCR. The results confirmed that the unigenes identified in the transcriptome database were indeed expressed and up-regulated in infected P. stellatus. To our knowledge, this is the first report of the sequencing and analysis of the transcriptome of P. stellatus. These findings provide insights into the transcriptomics and immunogenetics of bony fish.
Chen, Xin; Zhang, Jin; Liu, Qingzhong; Guo, Wei; Zhao, Tiantian; Ma, Qinghua; Wang, Guixi
2014-01-01
The genus Corylus is an important woody species in Northeast China. Its products, hazelnuts, constitute one of the most important raw materials for the pastry and chocolate industry. However, limited genetic research has focused on Corylus because of the lack of genomic resources. The advent of high-throughput sequencing technologies provides a turning point for Corylus research. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive database for the Corylus heterophylla Fisch floral buds. The C. heterophylla Fisch floral buds transcriptome was sequenced using the Illumina paired-end sequencing technology. We produced 28,930,890 raw reads and assembled them into 82,684 contigs. A total of 40,941 unigenes were identified, among which 30,549 were annotated in the NCBI Non-redundant (Nr) protein database and 18,581 were annotated in the Swiss-Prot database. Of these annotated unigenes, 25,311 and 10,514 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. We could map 17,207 unigenes onto 128 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database. Additionally, based on the transcriptome, we constructed a candidate cold tolerance gene set of C. heterophylla Fisch floral buds. The expression patterns of selected genes during four stages of cold acclimation suggested that these genes might be involved in different cold responsive stages in C. heterophylla Fisch floral buds. The transcriptome of C. heterophylla Fisch floral buds was deep sequenced, de novo assembled, and annotated, providing abundant data to better understand the C. heterophylla Fisch floral buds transcriptome. Candidate genes potentially involved in cold tolerance were identified, providing a material basis for future molecular mechanism analysis of C. heterophylla Fisch floral buds tolerant to cold stress.
dbWFA: a web-based database for functional annotation of Triticum aestivum transcripts
Vincent, Jonathan; Dai, Zhanwu; Ravel, Catherine; Choulet, Frédéric; Mouzeyar, Said; Bouzidi, M. Fouad; Agier, Marie; Martre, Pierre
2013-01-01
The functional annotation of genes based on sequence homology with genes from model species genomes is time-consuming because it is necessary to mine several unrelated databases. The aim of the present work was to develop a functional annotation database for common wheat Triticum aestivum (L.). The database, named dbWFA, is based on the reference NCBI UniGene set, an expressed gene catalogue built by expressed sequence tag clustering, and on full-length coding sequences retrieved from the TriFLDB database. Information from good-quality heterogeneous sources, including annotations for model plant species Arabidopsis thaliana (L.) Heynh. and Oryza sativa L., was gathered and linked to T. aestivum sequences through BLAST-based homology searches. Even though the complexity of the transcriptome cannot yet be fully appreciated, we developed a tool to easily and promptly obtain information from multiple functional annotation systems (Gene Ontology, MapMan bin codes, MIPS Functional Categories, PlantCyc pathway reactions and TAIR gene families). The use of dbWFA is illustrated here with several query examples. We were able to assign a putative function to 45% of the UniGenes and 81% of the full-length coding sequences from TriFLDB. Moreover, comparison of the annotation of the whole T. aestivum UniGene set along with curated annotations of the two model species assessed the accuracy of the annotation provided by dbWFA. To further illustrate the use of dbWFA, genes specifically expressed during the early cell division or late storage polymer accumulation phases of T. aestivum grain development were identified using a clustering analysis and then annotated using dbWFA. The annotation of these two sets of genes was consistent with previous analyses of T. aestivum grain transcriptomes and proteomes. Database URL: urgi.versailles.inra.fr/dbWFA/ PMID:23660284
Zhu, Chen; Ai, Lin; Wang, Li; Yin, Pingping; Liu, Chenglan; Li, Shanshan; Zeng, Huiming
2016-01-01
Zoysia japonica brown spot was caused by necrotrophic fungus Rhizoctonia solani invasion, which led to severe financial loss in city lawn and golf ground maintenance. However, little was known about the molecular mechanism of R. solani pathogenicity in Z. japonica. In this study we examined early stage interaction between R. solani AG1 IA strain and Z. japonica cultivar "Zenith" root by cell ultra-structure analysis, pathogenesis-related proteins assay and transcriptome analysis to explore molecular clues for AG1 IA strain pathogenicity in Z. japonica. No obvious cell structure damage was found in infected roots and most pathogenesis-related protein activities showedg a downward trend especially in 36 h post inoculation, which exhibits AG1 IA strain stealthy invasion characteristic. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database classification, most DEGs in infected "Zenith" roots dynamically changed especially in three aspects, signal transduction, gene translation, and protein synthesis. Total 3422 unigenes of "Zenith" root were predicted into 14 kinds of resistance (R) gene class. Potential fungal resistance related unigenes of "Zenith" root were involved in ligin biosynthesis, phytoalexin synthesis, oxidative burst, wax biosynthesis, while two down-regulated unigenes encoding leucine-rich repeat receptor protein kinase and subtilisin-like protease might be important for host-derived signal perception to AG1 IA strain invasion. According to Pathogen Host Interaction (PHI) database annotation, 1508 unigenes of AG1 IA strain were predicted and classified into 37 known pathogen species, in addition, unigenes encoding virulence, signaling, host stress tolerance, and potential effector were also predicted. This research uncovered transcriptional profiling during the early phase interaction between R. solani AG1 IA strain and Z. japonica, and will greatly help identify key pathogenicity of AG1 IA strain.
Deep RNA-Seq to unlock the gene bank of floral development in Sinapis arvensis.
Liu, Jia; Mei, Desheng; Li, Yunchang; Huang, Shunmou; Hu, Qiong
2014-01-01
Sinapis arvensis is a weed with strong biological activity. Despite being a problematic annual weed that contaminates agricultural crop yield, it is a valuable alien germplasm resource. It can be utilized for broadening the genetic background of Brassica crops with desirable agricultural traits like resistance to blackleg (Leptosphaeria maculans), stem rot (Sclerotinia sclerotium) and pod shatter (caused by FRUITFULL gene). However, few genetic studies of S. arvensis were reported because of the lack of genomic resources. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive dataset for S. arvensis for the first time. We used Illumina paired-end sequencing technology to sequence the S. arvensis flower transcriptome and generated 40,981,443 reads that were assembled into 131,278 transcripts. We de novo assembled 96,562 high quality unigenes with an average length of 832 bp. A total of 33,662 full-length ORF complete sequences were identified, and 41,415 unigenes were mapped onto 128 pathways using the KEGG Pathway database. The annotated unigenes were compared against Brassica rapa, B. oleracea, B. napus and Arabidopsis thaliana. Among these unigenes, 76,324 were identified as putative homologs of annotated sequences in the public protein databases, of which 1194 were associated with plant hormone signal transduction and 113 were related to gibberellin homeostasis/signaling. Unigenes that did not match any of those sequence datasets were considered to be unique to S. arvensis. Furthermore, 21,321 simple sequence repeats were found. Our study will enhance the currently available resources for Brassicaceae and will provide a platform for future genomic studies for genetic improvement of Brassica crops.
Deep RNA-Seq to Unlock the Gene Bank of Floral Development in Sinapis arvensis
Liu, Jia; Mei, Desheng; Li, Yunchang; Huang, Shunmou; Hu, Qiong
2014-01-01
Sinapis arvensis is a weed with strong biological activity. Despite being a problematic annual weed that contaminates agricultural crop yield, it is a valuable alien germplasm resource. It can be utilized for broadening the genetic background of Brassica crops with desirable agricultural traits like resistance to blackleg (Leptosphaeria maculans), stem rot (Sclerotinia sclerotium) and pod shatter (caused by FRUITFULL gene). However, few genetic studies of S. arvensis were reported because of the lack of genomic resources. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive dataset for S. arvensis for the first time. We used Illumina paired-end sequencing technology to sequence the S. arvensis flower transcriptome and generated 40,981,443 reads that were assembled into 131,278 transcripts. We de novo assembled 96,562 high quality unigenes with an average length of 832 bp. A total of 33,662 full-length ORF complete sequences were identified, and 41,415 unigenes were mapped onto 128 pathways using the KEGG Pathway database. The annotated unigenes were compared against Brassica rapa, B. oleracea, B. napus and Arabidopsis thaliana. Among these unigenes, 76,324 were identified as putative homologs of annotated sequences in the public protein databases, of which 1194 were associated with plant hormone signal transduction and 113 were related to gibberellin homeostasis/signaling. Unigenes that did not match any of those sequence datasets were considered to be unique to S. arvensis. Furthermore, 21,321 simple sequence repeats were found. Our study will enhance the currently available resources for Brassicaceae and will provide a platform for future genomic studies for genetic improvement of Brassica crops. PMID:25192023
Xia, Wei; Mason, Annaliese S.; Xia, Zhihui; Qiao, Fei; Zhao, Songlin; Tang, Haoru
2013-01-01
Background Cocos nucifera (coconut), a member of the Arecaceae family, is an economically important woody palm grown in tropical regions. Despite its agronomic importance, previous germplasm assessment studies have relied solely on morphological and agronomical traits. Molecular biology techniques have been scarcely used in assessment of genetic resources and for improvement of important agronomic and quality traits in Cocos nucifera, mostly due to the absence of available sequence information. Methodology/Principal Findings To provide basic information for molecular breeding and further molecular biological analysis in Cocos nucifera, we applied RNA-seq technology and de novo assembly to gain a global overview of the Cocos nucifera transcriptome from mixed tissue samples. Using Illumina sequencing, we obtained 54.9 million short reads and conducted de novo assembly to obtain 57,304 unigenes with an average length of 752 base pairs. Sequence comparison between assembled unigenes and released cDNA sequences of Cocos nucifera and Elaeis guineensis indicated that the assembled sequences were of high quality. Approximately 99.9% of unigenes were novel compared to the released coconut EST sequences. Using BLASTX, 68.2% of unigenes were successfully annotated based on the Genbank non-redundant (Nr) protein database. The annotated unigenes were then further classified using the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Conclusions/Significance Our study provides a large quantity of novel genetic information for Cocos nucifera. This information will act as a valuable resource for further molecular genetic studies and breeding in coconut, as well as for isolation and characterization of functional genes involved in different biochemical pathways in this important tropical crop species. PMID:23555859
Fan, Haikuo; Xiao, Yong; Yang, Yaodong; Xia, Wei; Mason, Annaliese S; Xia, Zhihui; Qiao, Fei; Zhao, Songlin; Tang, Haoru
2013-01-01
Cocos nucifera (coconut), a member of the Arecaceae family, is an economically important woody palm grown in tropical regions. Despite its agronomic importance, previous germplasm assessment studies have relied solely on morphological and agronomical traits. Molecular biology techniques have been scarcely used in assessment of genetic resources and for improvement of important agronomic and quality traits in Cocos nucifera, mostly due to the absence of available sequence information. To provide basic information for molecular breeding and further molecular biological analysis in Cocos nucifera, we applied RNA-seq technology and de novo assembly to gain a global overview of the Cocos nucifera transcriptome from mixed tissue samples. Using Illumina sequencing, we obtained 54.9 million short reads and conducted de novo assembly to obtain 57,304 unigenes with an average length of 752 base pairs. Sequence comparison between assembled unigenes and released cDNA sequences of Cocos nucifera and Elaeis guineensis indicated that the assembled sequences were of high quality. Approximately 99.9% of unigenes were novel compared to the released coconut EST sequences. Using BLASTX, 68.2% of unigenes were successfully annotated based on the Genbank non-redundant (Nr) protein database. The annotated unigenes were then further classified using the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Our study provides a large quantity of novel genetic information for Cocos nucifera. This information will act as a valuable resource for further molecular genetic studies and breeding in coconut, as well as for isolation and characterization of functional genes involved in different biochemical pathways in this important tropical crop species.
Zhang, Zongying; Jiang, Shenghui; Wang, Nan; Li, Min; Ji, Xiaohao; Sun, Shasha; Liu, Jingxuan; Wang, Deyun; Xu, Haifeng; Qi, Sumin; Wu, Shujing; Fei, Zhangjun; Feng, Shouqian; Chen, Xuesen
2015-01-01
Apple is one of the most economically important horticultural fruit crops worldwide. It is critical to gain insights into fruit ripening and softening to improve apple fruit quality and extend shelf life. In this study, forward and reverse suppression subtractive hybridization libraries were generated from ‘Taishanzaoxia’ apple fruits sampled around the ethylene climacteric to isolate ripening- and softening-related genes. A set of 648 unigenes were derived from sequence alignment and cluster assembly of 918 expressed sequence tags. According to gene ontology functional classification, 390 out of 443 unigenes (88%) were assigned to the biological process category, 356 unigenes (80%) were classified in the molecular function category, and 381 unigenes (86%) were allocated to the cellular component category. A total of 26 unigenes differentially expressed during fruit development period were analyzed by quantitative RT-PCR. These genes were involved in cell wall modification, anthocyanin biosynthesis, aroma production, stress response, metabolism, transcription, or were non-annotated. Some genes associated with cell wall modification, anthocyanin biosynthesis and aroma production were up-regulated and significantly correlated with ethylene production, suggesting that fruit texture, coloration and aroma may be regulated by ethylene in ‘Taishanzaoxia’. Some of the identified unigenes associated with fruit ripening and softening have not been characterized in public databases. The results contribute to an improved characterization of changes in gene expression during apple fruit ripening and softening. PMID:26719904
Gupta, S K; Gopalakrishna, T
2010-07-01
Unigene sequences available in public databases provide a cost-effective and valuable source for the development of molecular markers. In this study, the identification and development of unigene-based SSR markers in cowpea (Vigna unguiculata (L.) Walp.) is presented. A total of 1071 SSRs were identified in 15 740 cowpea unigene sequences downloaded from the National Center for Biotechnology Information. The most frequent SSR motifs present in the unigenes were trinucleotides (59.7%), followed by dinucleotides (34.8%), pentanucleotides (4%), and tetranucleotides (1.5%). The copy number varied from 6 to 33 for dinucleotide, 5 to 29 for trinucleotide, 5 to 7 for tetranucleotide, and 4 to 6 for pentanucleotide repeats. Primer pairs were successfully designed for 803 SSR motifs and 102 SSR markers were finally characterized and validated. Putative function was assigned to 64.7% of the unigene SSR markers based on significant homology to reported proteins. About 31.7% of the SSRs were present in coding sequences and 68.3% in untranslated regions of the genes. About 87% of the SSRs located in the coding sequences were trinucleotide repeats. Allelic variation at 32 SSR loci produced 98 alleles in 20 cowpea genotypes. The polymorphic information content for the SSR markers varied from 0.10 to 0.83 with an average of 0.53. These unigene SSR markers showed a high rate of transferability (88%) across other Vigna species, thereby expanding their utility. Alignment of unigene sequences with soybean genomic sequences revealed the presence of introns in amplified products of some of the SSR markers. This study presents the distribution of SSRs in the expressed portion of the cowpea genome and is the first report of the development of functional unigene-based SSR markers in cowpea. These SSR markers would play an important role in molecular mapping, comparative genomics, and marker-assisted selection strategies in cowpea and other Vigna species.
Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J; Quan, Guoxing
2015-01-01
The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR< 0.01 and log2 FC>2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects.
Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J.; Quan, Guoxing
2015-01-01
Background The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. Methodology and Principal Findings High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR< 0.01 and log2 FC>2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. Conclusions and Significance This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects. PMID:26244979
Liu, S; Liu, L; Tang, Y; Xiong, S; Long, J; Liu, Z; Tian, N
2017-07-01
The regulatory mechanism of flavonoids, which synergise anti-malarial and anti-cancer compounds in Artemisia annua, is still unclear. In this study, an anthocyanidin-accumulating mutant callus was induced from A. annua and comparative transcriptomic analysis of wild-type and mutant calli performed, based on the next-generation Illumina/Solexa sequencing platform and de novo assembly. A total of 82,393 unigenes were obtained and 34,764 unigenes were annotated in the public database. Among these, 87 unigenes were assigned to 14 structural genes involved in the flavonoid biosynthetic pathway and 37 unigenes were assigned to 17 structural genes related to metabolism of flavonoids. More than 30 unigenes were assigned to regulatory genes, including R2R3-MYB, bHLH and WD40, which might regulate flavonoid biosynthesis. A further 29 unigenes encoding flavonoid biosynthetic enzymes or transcription factors were up-regulated in the mutant, while 19 unigenes were down-regulated, compared with the wild type. Expression levels of nine genes involved in the flavonoid pathway were compared using semi-quantitative RT-PCR, and results were consistent with comparative transcriptomic analysis. Finally, a putative flavonol synthase gene (AaFLS1) was identified from enzyme assay in vitro and in vivo through heterogeneous expression, and confirmed comparative transcriptomic analysis of wild-type and mutant callus. The present work has provided important target genes for the regulation of flavonoid biosynthesis in A. annua. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Chen, Jingchao; Huang, Hongjuan; Wei, Shouhui; Huang, Zhaofeng; Wang, Xu; Zhang, Chaoxian
2017-01-01
Glyphosate is an important non-selective herbicide that is in common use worldwide. However, evolved glyphosate-resistant (GR) weeds significantly affect crop yields. Unfortunately, the mechanisms underlying resistance in GR weeds, such as goosegrass (Eleusine indica (L.) Gaertn.), an annual weed found worldwide, have not been fully elucidated. In this study, transcriptome analysis was conducted to further assess the potential mechanisms of glyphosate resistance in goosegrass. The RNA sequencing libraries generated 24 597 462 clean reads. De novo assembly analysis produced 48 852 UniGenes with an average length of 847 bp. All UniGenes were annotated using seven databases. Sixteen candidate differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time PCR (qRT-PCR). Among these UniGenes, the EPSPS and PFK genes were constitutively up-regulated in resistant (R) individuals and showed a higher copy number than that in susceptible (S) individuals. The expressions of four UniGenes relevant to photosynthesis were inhibited by glyphosate in S individuals, and this toxic response was confirmed by gas exchange analysis. Two UniGenes annotated as glutathione transferase (GST) were constitutively up-regulated in R individuals, and were induced by glyphosate both in R and S. In addition, the GST activities in R individuals were higher than in S. Our research confirmed that two UniGenes (PFK, EPSPS) were strongly associated with target resistance, and two GST-annotated UniGenes may play a role in metabolic glyphosate resistance in goosegrass. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Bi, Lei; Guan, Chun-jie; Yang, Guan-e; Yang, Fei; Yan, Hong-yu; Li, Qing-shan
2016-04-01
The purple photosynthetic bacterium Rhodopseudomonas palustris has been widely applied to enhance the therapeutic effects of traditional Chinese medicine using novel biotransformation technology. However, comprehensive studies of the R. palustris biotransformation mechanism are rare. Therefore, investigation of the expression patterns of genes involved in metabolic pathways that are active during the biotransformation process is essential to elucidate this complicated mechanism. To promote further study of the biotransformation of R. palustris, we assembled all R. palustris transcripts using Trinity software and performed differential expression analysis of the resulting unigenes. A total of 9725, 7341 and 10,963 unigenes were obtained by assembling the alpha-rhamnetin-3-rhamnoside-treated R. palustris (RPB) reads, control R. palustris (RPS) reads and combined RPB&RPS reads, respectively. A total of 9971 unigenes assembled from the RPB&RPS reads were mapped to the nr, nt, Swiss-Prot, Gene Ontology (GO), Clusters of Orthologous Groups (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (E-value <0.00001) databases using BLAST software. A total of 3360 unique differentially expressed genes (DEGs) in RPB versus RPS were identified, among which 922 unigenes were up-regulated and 2438 were down-regulated. The unigenes were mapped to the KEGG database, resulting in the identification of 7676 pathways among all annotated unigenes and 2586 pathways among the DEGs. Some sets of functional unigenes annotated to important metabolic pathways and environmental information processing were differentially expressed between the RPS and RPB samples, including those involved in energy metabolism (18.4% of total DEGs), carbohydrate metabolism (36.0% of total DEGs), ABC transport (6.0% of total DEGs), the two-component system (8.6% of total DEGs), cell motility (4.3% of total DEGs) and the cell cycle (1.5% of total DEGs). We also identified 19 transcripts annotated as hydrolytic enzymes and other enzymes involved in ARR catabolism in R. palustris. We present the first comparative transcriptome profiles of RPB and RPS samples to facilitate elucidation of the molecular mechanism of biotransformation in R. palustris. Furthermore, we propose two putative ARR biotransformation mechanisms in R. palustris. These analytical results represent a useful genomic resource for in-depth research into the molecular basis of biotransformation and genetic modification in R. palustris. Copyright © 2016 Elsevier GmbH. All rights reserved.
Wang, Haibin; Jiang, Jiafu; Chen, Sumei; Qi, Xiangyu; Peng, Hui; Li, Pirui; Song, Aiping; Guan, Zhiyong; Fang, Weimin; Liao, Yuan; Chen, Fadi
2013-01-01
Background Simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Chrysanthemum is one of the largest genera in the Asteraceae family. Only few Chrysanthemum expressed sequence tag (EST) sequences have been acquired to date, so the number of available EST-SSR markers is very low. Methodology/Principal Findings Illumina paired-end sequencing technology produced over 53 million sequencing reads from C. nankingense mRNA. The subsequent de novo assembly yielded 70,895 unigenes, of which 45,789 (64.59%) unigenes showed similarity to the sequences in NCBI database. Out of 45,789 sequences, 107 have hits to the Chrysanthemum Nr protein database; 679 and 277 sequences have hits to the database of Helianthus and Lactuca species, respectively. MISA software identified a large number of putative EST-SSRs, allowing 1,788 primer pairs to be designed from the de novo transcriptome sequence and a further 363 from archival EST sequence. Among 100 primer pairs randomly chosen, 81 markers have amplicons and 20 are polymorphic for genotypes analysis in Chrysanthemum. The results showed that most (but not all) of the assays were transferable across species and that they exposed a significant amount of allelic diversity. Conclusions/Significance SSR markers acquired by transcriptome sequencing are potentially useful for marker-assisted breeding and genetic analysis in the genus Chrysanthemum and its related genera. PMID:23626799
Vigna, Bianca Baccili Zanotto; de Oliveira, Fernanda Ancelmo; de Toledo-Silva, Guilherme; da Silva, Carla Cristina; do Valle, Cacilda Borges; de Souza, Anete Pereira
2016-11-11
Urochloa humidicola (Koronivia grass) is a polyploid (6x to 9x) species that is used as forage in the tropics. Facultative apospory apomixis is present in most of the genotypes of this species, although one individual has been described as sexual. Molecular studies have been restricted to molecular marker approaches for genetic diversity estimations and linkage map construction. The objectives of the present study were to describe and compare the leaf transcriptome of two important genotypes that are highly divergent in terms of their phenotypes and reproduction modes: the sexual BH031 and the aposporous apomictic cultivar BRS Tupi. We sequenced the leaf transcriptome of Koronivia grass using an Illumina GAIIx system, which produced 13.09 Gb of data that consisted of 163,575,526 paired-end reads between the two libraries. We de novo-assembled 76,196 transcripts with an average length of 1,152 bp and filtered 35,093 non-redundant unigenes. A similarity search against the non-redundant National Center of Biotechnology Information (NCBI) protein database returned 65 % hits. We annotated 24,133 unigenes in the Phytozome database and 14,082 unigenes in the UniProtKB/Swiss-Prot database, assigned 108,334 gene ontology terms to 17,255 unigenes and identified 5,324 unigenes in 327 known metabolic pathways. Comparisons with other grasses via a reciprocal BLAST search revealed a larger number of orthologous genes for the Panicum species. The unigenes were involved in C4 photosynthesis, lignocellulose biosynthesis and flooding stress responses. A search for functional molecular markers revealed 4,489 microsatellites and 560,298 single nucleotide polymorphisms (SNPs). A quantitative real-time PCR analysis validated the RNA-seq expression analysis and allowed for the identification of transcriptomic differences between the two evaluated genotypes. Moreover, 192 unannotated sequences were classified as containing complete open reading frames, suggesting that the new, potentially exclusive genes should be further investigated. The present study represents the first whole-transcriptome sequencing of U. humidicola leaves, providing an important public information source of transcripts and functional molecular markers. The qPCR analysis indicated that the expression of certain transcripts confirmed the differential expression observed in silico, which demonstrated that RNA-seq is useful for identifying differentially expressed and unique genes. These results corroborate the findings from previous studies and suggest a hybrid origin for BH031.
Cui, Kai; Wang, Haiying; Liao, Shengxi; Tang, Qi; Li, Li; Cui, Yongzhong; He, Yuan
2016-01-01
Dendrocalamus sinicus is the world’s largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs) and 81,534 single-nucleotide polymorphism (SNPs) were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT) specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized as antenna proteins that regarded as the main tool for capturing light of plants, implying stem photosynthesis plays a key role during culm elongation due to the unavailability of its leaf. By real-time quantitative PCR, the expression level of 6 unigenes was detected. The results showed the expression level of all genes accorded with the transcriptome data, which confirm the reliability of the transcriptome data. As we know, this is the first study underline the D. sinicus transcriptome, which will deepen the understanding of the molecular mechanisms of culm development. The results may help variety improvement and resource utilization of bamboos. PMID:27304219
Cui, Kai; Wang, Haiying; Liao, Shengxi; Tang, Qi; Li, Li; Cui, Yongzhong; He, Yuan
2016-01-01
Dendrocalamus sinicus is the world's largest bamboo species with strong woody culms, and known for its fast-growing culms. As an economic bamboo species, it was popularized for multi-functional applications including furniture, construction, and industrial paper pulp. To comprehensively elucidate the molecular processes involved in its culm elongation, Illumina paired-end sequencing was conducted. About 65.08 million high-quality reads were produced, and assembled into 81,744 unigenes with an average length of 723 bp. A total of 64,338 (79%) unigenes were annotated for their functions, of which, 56,587 were annotated in the NCBI non-redundant protein database and 35,262 were annotated in the Swiss-Prot database. Also, 42,508 and 21,009 annotated unigenes were allocated to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. By searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG), 33,920 unigenes were assigned to 128 KEGG pathways. Meanwhile, 8,553 simple sequence repeats (SSRs) and 81,534 single-nucleotide polymorphism (SNPs) were identified, respectively. Additionally, 388 transcripts encoding lignin biosynthesis were detected, among which, 27 transcripts encoding Shikimate O-hydroxycinnamoyltransferase (HCT) specifically expressed in D. sinicus when compared to other bamboo species and rice. The phylogenetic relationship between D. sinicus and other plants was analyzed, suggesting functional diversity of HCT unigenes in D. sinicus. We conjectured that HCT might lead to the high lignin content and giant culm. Given that the leaves are not yet formed and culm is covered with sheaths during culm elongation, the existence of photosynthesis of bamboo culm is usually neglected. Surprisedly, 109 transcripts encoding photosynthesis were identified, including photosystem I and II, cytochrome b6/f complex, photosynthetic electron transport and F-type ATPase, and 24 transcripts were characterized as antenna proteins that regarded as the main tool for capturing light of plants, implying stem photosynthesis plays a key role during culm elongation due to the unavailability of its leaf. By real-time quantitative PCR, the expression level of 6 unigenes was detected. The results showed the expression level of all genes accorded with the transcriptome data, which confirm the reliability of the transcriptome data. As we know, this is the first study underline the D. sinicus transcriptome, which will deepen the understanding of the molecular mechanisms of culm development. The results may help variety improvement and resource utilization of bamboos.
Wei, Lin; Li, Shenghua; Liu, Shenggui; He, Anna; Wang, Dan; Wang, Jie; Tang, Yulian; Wu, Xianjin
2014-01-01
Background Houttuynia cordata Thunb. is an important traditional medical herb in China and other Asian countries, with high medicinal and economic value. However, a lack of available genomic information has become a limitation for research on this species. Thus, we carried out high-throughput transcriptomic sequencing of H. cordata to generate an enormous transcriptome sequence dataset for gene discovery and molecular marker development. Principal Findings Illumina paired-end sequencing technology produced over 56 million sequencing reads from H. cordata mRNA. Subsequent de novo assembly yielded 63,954 unigenes, 39,982 (62.52%) and 26,122 (40.84%) of which had significant similarity to proteins in the NCBI nonredundant protein and Swiss-Prot databases (E-value <10−5), respectively. Of these annotated unigenes, 30,131 and 15,363 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. In addition, 24,434 (38.21%) unigenes were mapped onto 128 pathways using the KEGG pathway database and 17,964 (44.93%) unigenes showed homology to Vitis vinifera (Vitaceae) genes in BLASTx analysis. Furthermore, 4,800 cDNA SSRs were identified as potential molecular markers. Fifty primer pairs were randomly selected to detect polymorphism among 30 samples of H. cordata; 43 (86%) produced fragments of expected size, suggesting that the unigenes were suitable for specific primer design and of high quality, and the SSR marker could be widely used in marker-assisted selection and molecular breeding of H. cordata in the future. Conclusions This is the first application of Illumina paired-end sequencing technology to investigate the whole transcriptome of H. cordata and to assemble RNA-seq reads without a reference genome. These data should help researchers investigating the evolution and biological processes of this species. The SSR markers developed can be used for construction of high-resolution genetic linkage maps and for gene-based association analyses in H. cordata. This work will enable future functional genomic research and research into the distinctive active constituents of this genus. PMID:24392108
Wang, Chongbin; Zou, Tonglei; Xu, Nianjun; Sun, Xue
2017-01-01
Culturing the economically important macroalga Gracilariopsis lemaneiformis (Rhodophyta) is limited due to the high temperatures in the summertime on the southern Chinese coast. Previous studies have demonstrated that two phytohormones, salicylic acid (SA) and methyl jasmonate (MJ), can alleviate the adverse effects of high-temperature stress on Gp. lemaneiformis. To elucidate the molecular mechanisms underlying SA- and MJ-mediated heat tolerance, we performed comprehensive analyses of transcriptome-wide gene expression profiles using RNA sequencing (RNA-seq) technology. A total of 14,644 unigenes were assembled, and 10,501 unigenes (71.71%) were annotated to the reference databases. In the SA, MJ and SA/MJ treatment groups, 519, 830, and 974 differentially expressed unigenes were detected, respectively. Unigenes related to photosynthesis and glycometabolism were enriched by SA, while unigenes associated with glycometabolism, protein synthesis, heat shock and signal transduction were increased by MJ. A crosstalk analysis revealed that 216 genes were synergistically regulated, while 18 genes were antagonistically regulated by SA and MJ. The results indicated that the two phytohormones could mitigate the adverse effects of heat on multiple pathways, and they predominantly acted synergistically to resist heat stress. These results will provide new insights into how SA and MJ modulate the molecular mechanisms that counteract heat stress in algae. PMID:28464018
Zhao, M; Wang, T; Adamson, K J; Storey, K B; Cummins, S F
2016-02-08
The land snail Theba pisana is native to the Mediterranean region but has become one of the most abundant invasive species worldwide. Here, we present three transcriptomes of this agriculture pest derived from three tissues: the central nervous system, hepatopancreas (digestive gland), and foot muscle. Sequencing of the three tissues produced 339,479,092 high quality reads and a global de novo assembly generated a total of 250,848 unique transcripts (unigenes). BLAST analysis mapped 52,590 unigenes to NCBI non-redundant protein databases and further functional analysis annotated 21,849 unigenes with gene ontology. We report that T. pisana transcripts have representatives in all functional classes and a comparison of differentially expressed transcripts amongst all three tissues demonstrates enormous differences in their potential metabolic activities. The genes differentially expressed include those with sequence similarity to those genes associated with multiple bacterial diseases and neurological diseases. To provide a valuable resource that will assist functional genomics study, we have implemented a user-friendly web interface, ThebaDB (http://thebadb.bioinfo-minzhao.org/). This online database allows for complex text queries, sequence searches, and data browsing by enriched functional terms and KEGG mapping.
Estrogen alters the profile of the transcriptome in river snail Bellamya aeruginosa.
Lei, Kun; Liu, Ruizhi; An, Li-Hui; Luo, Ying-Feng; LeBlanc, Gerald A
2015-03-01
We evaluated the transcriptome dynamics of the freshwater river snail Bellamya aeruginosa exposed to 17β-estradiol (E2) using the Roche/454 GS-FLX platform. In total, 41,869 unigenes, with an average length of 586 bp, representing 36,181 contigs and 5,688 singlets were obtained. Among them, 18.08, 36.85, and 25.47 % matched sequences in the GenBank non-redundant nucleic acid database, non-redundant protein database, and Swiss protein database, respectively. Annotation of the unigenes with gene ontology, and then mapping them to biological pathways, revealed large groups of genes related to growth, development, reproduction, signal transduction, and defense mechanisms. Significant differences were found in gene expression in both liver and testicular tissues between control and E2-exposed organisms. These changes in gene expression will help in understanding the molecular mechanisms of the response to physiological stress in the river snail exposed to estrogen, and will facilitate research into biological processes and underlying physiological adaptations to xenoestrogen exposure in gastropods.
Yang, Minglei; Wu, Ying; Jin, Shan; Hou, Jinyan; Mao, Yingji; Liu, Wenbo; Shen, Yangcheng; Wu, Lifang
2015-01-01
Sapium sebiferum (Linn.) Roxb. (Chinese Tallow Tree) is a perennial woody tree and its seeds are rich in oil which hold great potential for biodiesel production. Despite a traditional woody oil plant, our understanding on S. sebiferum genetics and molecular biology remains scant. In this study, the first comprehensive transcriptome of S. sebiferum flower has been generated by sequencing and de novo assembly. A total of 149,342 unigenes were generated from raw reads, of which 24,289 unigenes were successfully matched to public database. A total of 61 MADS box genes and putative pathways involved in S. sebiferum flower development have been identified. Abiotic stress response network was also constructed in this work, where 2,686 unigenes are involved in the pathway. As for lipid biosynthesis, 161 unigenes have been identified in fatty acid (FA) and triacylglycerol (TAG) biosynthesis. Besides, the G-Quadruplexes in RNA of S. sebiferum also have been predicted. An interesting finding is that the stress-induced flowering was observed in S. sebiferum for the first time. According to the results of semi-quantitative PCR, expression tendencies of flowering-related genes, GA1, AP2 and CRY2, accorded with stress-related genes, such as GRX50435 and PRXⅡ39562. This transcriptome provides functional genomic information for further research of S. sebiferum, especially for the genetic engineering to shorten the juvenile period and improve yield by regulating flower development. It also offers a useful database for the research of other Euphorbiaceae family plants.
Qu, Cheng; Fu, Ningning; Xu, Yihua
2016-01-01
The sycamore lace bug, Corythucha ciliata (Hemiptera: Tingidae), is an invasive forestry pest rapidly expanding in many countries. This pest poses a considerable threat to the urban forestry ecosystem, especially to Platanus spp. However, its molecular biology and biochemistry are poorly understood. This study reports the first C. ciliata transcriptome, encompassing three different life stages (Nymphs, adults female (AF) and adults male (AM)). In total, 26.53 GB of clean data and 60,879 unigenes were obtained from three RNA-seq libraries. These unigenes were annotated and classified by Nr (NCBI non-redundant protein sequences), Nt (NCBI non-redundant nucleotide sequences), Pfam (Protein family), KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (A manually annotated and reviewed protein sequence database), and KO (KEGG Ortholog database). After all pairwise comparisons between these three different samples, a large number of differentially expressed genes were revealed. The dramatic differences in global gene expression profiles were found between distinct life stages (nymphs and AF, nymphs and AM) and sex difference (AF and AM), with some of the significantly differentially expressed genes (DEGs) being related to metamorphosis, digestion, immune and sex difference. The different express of unigenes were validated through quantitative Real-Time PCR (qRT-PCR) for 16 randomly selected unigenes. In addition, 17,462 potential simple sequence repeat molecular markers were identified in these transcriptome resources. These comprehensive C. ciliata transcriptomic information can be utilized to promote the development of environmentally friendly methodologies to disrupt the processes of metamorphosis, digestion, immune and sex differences. PMID:27494615
Transcriptomic analysis of Aegilops tauschii during long-term salinity stress.
Mansouri, Mehdi; Naghavi, Mohammad Reza; Alizadeh, Hoshang; Mohammadi-Nejad, Ghasem; Mousavi, Seyed Ahmad; Salekdeh, Ghasem Hosseini; Tada, Yuichi
2018-06-21
Aegilops tauschii is the diploid progenitor of the bread wheat D-genome. It originated from Iran and is a source of abiotic stress tolerance genes. However, little is known about the molecular events of salinity tolerance in Ae. tauschii. This study investigates the leaf transcriptional changes associated with long-term salt stress. Total RNA extracted from leaf tissues of control and salt-treated samples was sequenced using the Illumina technology, and more than 98 million high-quality reads were assembled into 255,446 unigenes with an average length of 1398 bp and an N50 of 2269 bp. Functional annotation of the unigenes showed that 93,742 (36.69%) had at least a significant BLAST hit in the SwissProt database, while 174,079 (68.14%) showed significant similarity to proteins in the NCBI nr database. Differential expression analysis identified 4506 salt stress-responsive unigenes. Bioinformatic analysis of the differentially expressed unigenes (DEUs) revealed a number of biological processes and pathways involved in the establishment of ion homeostasis, signaling processes, carbohydrate metabolism, and post-translational modifications. Fine regulation of starch and sucrose content may be important features involved in salt tolerance in Ae. tauschii. Moreover, 82% of DEUs mapped to the D-subgenome, including known QTL for salt tolerance, and these DEUs showed similar salt stress responses in other accessions of Ae. tauschii. These results could provide fundamental insight into the regulatory process underlying salt tolerance in Ae. tauschii and wheat and facilitate identification of genes involved in their salt tolerance mechanisms.
2012-01-01
Background In rubber tree, bark is one of important agricultural and biological organs. However, the molecular mechanism involved in the bark formation and development in rubber tree remains largely unknown, which is at least partially due to lack of bark transcriptomic and genomic information. Therefore, it is necessary to carried out high-throughput transcriptome sequencing of rubber tree bark to generate enormous transcript sequences for the functional characterization and molecular marker development. Results In this study, more than 30 million sequencing reads were generated using Illumina paired-end sequencing technology. In total, 22,756 unigenes with an average length of 485 bp were obtained with de novo assembly. The similarity search indicated that 16,520 and 12,558 unigenes showed significant similarities to known proteins from NCBI non-redundant and Swissprot protein databases, respectively. Among these annotated unigenes, 6,867 and 5,559 unigenes were separately assigned to Gene Ontology (GO) and Clusters of Orthologous Group (COG). When 22,756 unigenes searched against the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database, 12,097 unigenes were assigned to 5 main categories including 123 KEGG pathways. Among the main KEGG categories, metabolism was the biggest category (9,043, 74.75%), suggesting the active metabolic processes in rubber tree bark. In addition, a total of 39,257 EST-SSRs were identified from 22,756 unigenes, and the characterizations of EST-SSRs were further analyzed in rubber tree. 110 potential marker sites were randomly selected to validate the assembly quality and develop EST-SSR markers. Among 13 Hevea germplasms, PCR success rate and polymorphism rate of 110 markers were separately 96.36% and 55.45% in this study. Conclusion By assembling and analyzing de novo transcriptome sequencing data, we reported the comprehensive functional characterization of rubber tree bark. This research generated a substantial fraction of rubber tree transcriptome sequences, which were very useful resources for gene annotation and discovery, molecular markers development, genome assembly and annotation, and microarrays development in rubber tree. The EST-SSR markers identified and developed in this study will facilitate marker-assisted selection breeding in rubber tree. Moreover, this study also supported that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for transcriptome characterization and molecular marker development in non-model species, especially those with large and complex genomes. PMID:22607098
Zhang, Yu-Juan; Hao, Youjin; Si, Fengling; Ren, Shuang; Hu, Ganyu; Shen, Li; Chen, Bin
2014-01-01
The onion maggot Delia antiqua is a major insect pest of cultivated vegetables, especially the onion, and a good model to investigate the molecular mechanisms of diapause. To better understand the biology and diapause mechanism of the insect pest species, D. antiqua, the transcriptome was sequenced using Illumina paired-end sequencing technology. Approximately 54 million reads were obtained, trimmed, and assembled into 29,659 unigenes, with an average length of 607 bp and an N50 of 818 bp. Among these unigenes, 21,605 (72.8%) were annotated in the public databases. All unigenes were then compared against Drosophila melanogaster and Anopheles gambiae. Codon usage bias was analyzed and 332 simple sequence repeats (SSRs) were detected in this organism. These data represent the most comprehensive transcriptomic resource currently available for D. antiqua and will facilitate the study of genetics, genomics, diapause, and further pest control of D. antiqua. PMID:24615268
Yan, Guoyong; Zhang, Gen; Huang, Jiaomei; Lan, Yi; Sun, Jin; Zeng, Cong; Wang, Yong; Qian, Pei-Yuan; He, Lisheng
2017-10-27
Megabalanus barnacle is one of the model organisms for marine biofouling research. However, further elucidation of molecular mechanisms underlying larval settlement has been hindered due to the lack of genomic information thus far. In the present study, cDNA libraries were constructed for cyprids, the key stage for larval settlement, and adults of Megabalanus volcano . After high-throughput sequencing and de novo assembly, 42,620 unigenes were obtained with a N50 value of 1532 bp. These unigenes were annotated by blasting against the NCBI non-redundant (nr), Swiss-Prot, Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, 19,522, 15,691, 14,459, and 10,914 unigenes were identified correspondingly. There were 22,158 differentially expressed genes (DEGs) identified between two stages. Compared with the cyprid stage, 8241 unigenes were down-regulated and 13,917 unigenes were up-regulated at the adult stage. The neuroactive ligand-receptor interaction pathway (ko04080) was significantly enriched by KEGG enrichment analysis of the DEGs, suggesting that it possibly involved in larval settlement. Potential functions of three conserved allatostatin neuropeptide-receptor pairs and two light-sensitive opsin proteins were further characterized, indicating that they might regulate attachment and metamorphosis at cyprid stage. These results provided a deeper insight into the molecular mechanisms underlying larval settlement of barnacles.
Yan, Guoyong; Huang, Jiaomei; Lan, Yi; Zeng, Cong; Wang, Yong; Qian, Pei-Yuan; He, Lisheng
2017-01-01
Megabalanus barnacle is one of the model organisms for marine biofouling research. However, further elucidation of molecular mechanisms underlying larval settlement has been hindered due to the lack of genomic information thus far. In the present study, cDNA libraries were constructed for cyprids, the key stage for larval settlement, and adults of Megabalanus volcano. After high-throughput sequencing and de novo assembly, 42,620 unigenes were obtained with a N50 value of 1532 bp. These unigenes were annotated by blasting against the NCBI non-redundant (nr), Swiss-Prot, Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Finally, 19,522, 15,691, 14,459, and 10,914 unigenes were identified correspondingly. There were 22,158 differentially expressed genes (DEGs) identified between two stages. Compared with the cyprid stage, 8241 unigenes were down-regulated and 13,917 unigenes were up-regulated at the adult stage. The neuroactive ligand-receptor interaction pathway (ko04080) was significantly enriched by KEGG enrichment analysis of the DEGs, suggesting that it possibly involved in larval settlement. Potential functions of three conserved allatostatin neuropeptide-receptor pairs and two light-sensitive opsin proteins were further characterized, indicating that they might regulate attachment and metamorphosis at cyprid stage. These results provided a deeper insight into the molecular mechanisms underlying larval settlement of barnacles. PMID:29077039
2012-01-01
Background Chinese fir (Cunninghamia lanceolata) is an important timber species that accounts for 20–30% of the total commercial timber production in China. However, the available genomic information of Chinese fir is limited, and this severely encumbers functional genomic analysis and molecular breeding in Chinese fir. Recently, major advances in transcriptome sequencing have provided fast and cost-effective approaches to generate large expression datasets that have proven to be powerful tools to profile the transcriptomes of non-model organisms with undetermined genomes. Results In this study, the transcriptomes of nine tissues from Chinese fir were analyzed using the Illumina HiSeq™ 2000 sequencing platform. Approximately 40 million paired-end reads were obtained, generating 3.62 gigabase pairs of sequencing data. These reads were assembled into 83,248 unique sequences (i.e. Unigenes) with an average length of 449 bp, amounting to 37.40 Mb. A total of 73,779 Unigenes were supported by more than 5 reads, 42,663 (57.83%) had homologs in the NCBI non-redundant and Swiss-Prot protein databases, corresponding to 27,224 unique protein entries. Of these Unigenes, 16,750 were assigned to Gene Ontology classes, and 14,877 were clustered into orthologous groups. A total of 21,689 (29.40%) were mapped to 119 pathways by BLAST comparison against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The majority of the genes encoding the enzymes in the biosynthetic pathways of cellulose and lignin were identified in the Unigene dataset by targeted searches of their annotations. And a number of candidate Chinese fir genes in the two metabolic pathways were discovered firstly. Eighteen genes related to cellulose and lignin biosynthesis were cloned for experimental validating of transcriptome data. Overall 49 Unigenes, covering different regions of these selected genes, were found by alignment. Their expression patterns in different tissues were analyzed by qRT-PCR to explore their putative functions. Conclusions A substantial fraction of transcript sequences was obtained from the deep sequencing of Chinese fir. The assembled Unigene dataset was used to discover candidate genes of cellulose and lignin biosynthesis. This transcriptome dataset will provide a comprehensive sequence resource for molecular genetics research of C. lanceolata. PMID:23171398
Ng, C Y; Wickneswari, R; Choong, C Y
2014-08-07
Calamus palustris Griff. is an economically important dioecious rattan species in Southeast Asia. However, dioecy and onset of flowering at 3-4 years old render uncertainties in desired female:male seedling ratios to establish a productive seed orchard for this rattan species. We constructed a subtractive library for male floral tissue to understand the genetic mechanism for gender determination in C. palustris. The subtractive library produced 1536 clones with 1419 clones of high quality. Reverse Northern screening showed 313 clones with differential expression, and sequence analyses clustered them into 205 unigenes, including 32 contigs and 173 singletons. The subtractive library was further validated with reverse transcription-quantitative polymerase chain reaction analysis. Homology identification classified the unigenes into 12 putative functional proteins with 83% unigenes showing significant match to proteins in databases. Functional annotations of these unigenes revealed genes involved in male flower development, including MADS-box genes, pollen-related genes, phytohormones for flower development, and male flower organ development. Our results showed that the male floral genes may play a vital role in sex determination in C. palustris. The identified genes can be exploited to understand the molecular basis of sex determination in C. palustris.
Zhu, Fengjiao; Yang, Zongying; Zhang, Yiliu; Hu, Kun; Fang, Wenhong
2017-01-01
Enrofloxacin is the most commonly used antibiotic to control diseases in aquatic animals caused by A. hydrophila. This study conducted de novo transcriptome sequencing and compared the global transcriptomes of enrofloxacin-resistant and enrofloxacin-susceptible strains. We got a total of 4,714 unigenes were assembled. Of these, 4,122 were annotated. A total of 3,280 unigenes were assigned to GO, 3,388 unigenes were classified into Cluster of Orthologous Groups of proteins (COG) using BLAST and BLAST2GO software, and 2,568 were mapped onto pathways using the Kyoto Encyclopedia of Gene and Genomes Pathway database. Furthermore, 218 unigenes were deemed to be DEGs. After enrofloxacin treatment, 135 genes were upregulated and 83 genes were downregulated. The GO terms biological process (126 genes) and metabolic process (136 genes) were the most enriched, and the terms for protein folding, response to stress, and SOS response were also significantly enriched. This study identified enrofloxacin treatment affects multiple biological functions of A. hydrophila. Enrofloxacin resistance in A. hydrophila is closely related to the reduction of intracellular drug accumulation caused by ABC transporters and increased expression of topoisomerase IV.
Yang, Zongying; Zhang, Yiliu; Hu, Kun; Fang, Wenhong
2017-01-01
Enrofloxacin is the most commonly used antibiotic to control diseases in aquatic animals caused by A. hydrophila. This study conducted de novo transcriptome sequencing and compared the global transcriptomes of enrofloxacin-resistant and enrofloxacin-susceptible strains. We got a total of 4,714 unigenes were assembled. Of these, 4,122 were annotated. A total of 3,280 unigenes were assigned to GO, 3,388 unigenes were classified into Cluster of Orthologous Groups of proteins (COG) using BLAST and BLAST2GO software, and 2,568 were mapped onto pathways using the Kyoto Encyclopedia of Gene and Genomes Pathway database. Furthermore, 218 unigenes were deemed to be DEGs. After enrofloxacin treatment, 135 genes were upregulated and 83 genes were downregulated. The GO terms biological process (126 genes) and metabolic process (136 genes) were the most enriched, and the terms for protein folding, response to stress, and SOS response were also significantly enriched. This study identified enrofloxacin treatment affects multiple biological functions of A. hydrophila. Enrofloxacin resistance in A. hydrophila is closely related to the reduction of intracellular drug accumulation caused by ABC transporters and increased expression of topoisomerase IV. PMID:28708867
Li, Xihong; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen; Shi, Guohui
2013-01-01
Background The Chinese mitten crab Eriocheir sinensis is an important economic crustacean and has been seriously attacked by various diseases, which requires more and more information for immune relevant genes on genome background. Recently, high-throughput RNA sequencing (RNA-seq) technology provides a powerful and efficient method for transcript analysis and immune gene discovery. Methods/Principal Findings A cDNA library from hepatopancreas of E. sinensis challenged by a mixture of three pathogen strains (Gram-positive bacteria Micrococcus luteus, Gram-negative bacteria Vibrio alginolyticus and fungi Pichia pastoris; 108 cfu·mL−1) was constructed and randomly sequenced using Illumina technique. Totally 39.76 million clean reads were assembled to 70,300 unigenes. After ruling out short-length and low-quality sequences, 52,074 non-redundant unigenes were compared to public databases for homology searching and 17,617 of them showed high similarity to sequences in NCBI non-redundant protein (Nr) database. For function classification and pathway assignment, 18,734 (36.00%) unigenes were categorized to three Gene Ontology (GO) categories, 12,243 (23.51%) were classified to 25 Clusters of Orthologous Groups (COG), and 8,983 (17.25%) were assigned to six Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Potentially, 24, 14, 47 and 132 unigenes were characterized to be involved in Toll, IMD, JAK-STAT and MAPK pathways, respectively. Conclusions/Significance This is the first systematical transcriptome analysis of components relating to innate immune pathways in E. sinensis. Functional genes and putative pathways identified here will contribute to better understand immune system and prevent various diseases in crab. PMID:23874555
Guan, Qijie; Yu, Jiaojiao; Zhu, Wei; Yang, Bingxian; Li, Yaohan; Zhang, Lin; Tian, Jingkui
2018-03-01
Ultraviolet-B (UVB) irradiation induces oxidative stress in plant cells due to the generation of excessive reactive oxygen species. Morus alba L. (M. abla) is an important medicinal plant used for the treatment of human diseases. Also, its leaves are widely used as food for silkworms. In our previous research, we found that a high level of UVB irradiation with dark incubation led to the accumulation of secondary metabolites in M. abla leaf. The aim of the present study was to describe and compare M. alba leaf transcriptomics with different treatments (control, UVB, UVB+dark). Leaf transcripts from M. alba were sequenced using an Illumina Hiseq 2000 system, which produced 14.27Gb of data including 153,204,462 paired-end reads among the three libraries. We de novo assembled 133,002 transcripts with an average length of 1270bp and filtered 69,728 non-redundant unigenes. A similarity search was performed against the non-redundant National Center of Biotechnology Information (NCBI) protein database, which returned 41.08% hits. Among the 20,040 unigenes annotated in UniProtKB/SwissProt database, 16,683 unigenes were assigned 102,232 gene ontology terms and 6667 unigenes were identified in 287 known metabolic pathways. Results of differential gene expression analysis together with real-time quantitative PCR tests indicated that UVB irradiation with dark incubation enhanced the flavonoid biosynthesis in M. alba leaf. Our findings provided a valuable proof for a better understanding of the metabolic mechanism under abiotic stresses in M. alba leaf. Copyright © 2017 Elsevier B.V. All rights reserved.
De novo assembly and transcriptomic profiling of the grazing response in Stipa grandis.
Wan, Dongli; Wan, Yongqing; Hou, Xiangyang; Ren, Weibo; Ding, Yong; Sa, Rula
2015-01-01
Stipa grandis (Poaceae) is one of the dominant species in a typical steppe of the Inner Mongolian Plateau. However, primarily due to heavy grazing, the grasslands have become seriously degraded, and S. grandis has developed a special growth-inhibition phenotype against the stressful habitat. Because of the lack of transcriptomic and genomic information, the understanding of the molecular mechanisms underlying the grazing response of S. grandis has been prohibited. Using the Illumina HiSeq 2000 platform, two libraries prepared from non-grazing (FS) and overgrazing samples (OS) were sequenced. De novo assembly produced 94,674 unigenes, of which 65,047 unigenes had BLAST hits in the National Center for Biotechnology Information (NCBI) non-redundant (nr) database (E-value < 10-5). In total, 47,747, 26,156 and 40,842 unigenes were assigned to the Gene Ontology (GO), Clusters of Orthologous Group (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. A total of 13,221 unigenes showed significant differences in expression under the overgrazing condition, with a threshold false discovery rate ≤ 0.001 and an absolute value of log2Ratio ≥ 1. These differentially expressed genes (DEGs) were assigned to 43,257 GO terms and were significantly enriched in 32 KEGG pathways (q-value ≤ 0.05). The alterations in the wound-, drought- and defense-related genes indicate that stressors have an additive effect on the growth inhibition of this species. This first large-scale transcriptome study will provide important information for further gene expression and functional genomics studies, and it facilitated our investigation of the molecular mechanisms of the S. grandis grazing response and the associated morphological and physiological characteristics.
De novo Assembly and Transcriptomic Profiling of the Grazing Response in Stipa grandis
Hou, Xiangyang; Ren, Weibo; Ding, Yong; Sa, Rula
2015-01-01
Background Stipa grandis (Poaceae) is one of the dominant species in a typical steppe of the Inner Mongolian Plateau. However, primarily due to heavy grazing, the grasslands have become seriously degraded, and S. grandis has developed a special growth-inhibition phenotype against the stressful habitat. Because of the lack of transcriptomic and genomic information, the understanding of the molecular mechanisms underlying the grazing response of S. grandis has been prohibited. Results Using the Illumina HiSeq 2000 platform, two libraries prepared from non-grazing (FS) and overgrazing samples (OS) were sequenced. De novo assembly produced 94,674 unigenes, of which 65,047 unigenes had BLAST hits in the National Center for Biotechnology Information (NCBI) non-redundant (nr) database (E-value < 10-5). In total, 47,747, 26,156 and 40,842 unigenes were assigned to the Gene Ontology (GO), Clusters of Orthologous Group (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. A total of 13,221 unigenes showed significant differences in expression under the overgrazing condition, with a threshold false discovery rate ≤ 0.001 and an absolute value of log2Ratio ≥ 1. These differentially expressed genes (DEGs) were assigned to 43,257 GO terms and were significantly enriched in 32 KEGG pathways (q-value ≤ 0.05). The alterations in the wound-, drought- and defense-related genes indicate that stressors have an additive effect on the growth inhibition of this species. Conclusions This first large-scale transcriptome study will provide important information for further gene expression and functional genomics studies, and it facilitated our investigation of the molecular mechanisms of the S. grandis grazing response and the associated morphological and physiological characteristics. PMID:25875617
Li, You-Zhi; Pan, Ying-Hua; Sun, Chang-Bin; Dong, Hai-Tao; Luo, Xing-Lu; Wang, Zhi-Qiang; Tang, Ji-Liang; Chen, Baoshan
2010-12-01
A cDNA library was constructed from the root tissues of cassava variety Huanan 124 at the root bulking stage. A total of 9,600 cDNA clones from the library were sequenced with single-pass from the 5'-terminus to establish a catalogue of expressed sequence tags (ESTs). Assembly of the resulting EST sequences resulted in 2,878 putative unigenes. Blastn analysis showed that 62.6% of the unigenes matched with known cassava ESTs and the rest had no 'hits' against the cassava database in the integrative PlantGDB database. Blastx analysis showed that 1,715 (59.59%) of the unigenes matched with one or more GenBank protein entries and 1,163 (40.41%) had no 'hits'. A cDNA microarray with 2,878 unigenes was developed and used to analyze gene expression profiling of Huanan 124 at key growth stages including seedling, formation of root system, root bulking, and starch maturity. Array data analysis revealed that (1) the higher ratio of up-regulated ribosome-related genes was accompanied by a high ratio of up-regulated ubiquitin, proteasome-related and protease genes in cassava roots; (2) starch formation and degradation simultaneously occur at the early stages of root development but starch degradation is declined partially due to decrease in UDP-glucose dehydrogenase activity with root maturity; (3) starch may also be synthesized in situ in roots; (4) starch synthesis, translocation, and accumulation are also associated probably with signaling pathways that parallel Wnt, LAM, TCS and ErbB signaling pathways in animals; (5) constitutive expression of stress-responsive genes may be due to the adaptation of cassava to harsh environments during long-term evolution.
Nigam, Deepti; Saxena, Swati; Ramakrishna, G.; Singh, Archana; Singh, N. K.; Gaikwad, Kishor
2017-01-01
Pigeonpea [Cajanus cajan (L.) Millsp.] is a heat and drought resilient legume crop grown mostly in Asia and Africa. Pigeonpea is affected by various biotic (diseases and insect pests) and abiotic stresses (salinity and water logging) which limit the yield potential of this crop. However, resistance to all these constraints is not readily available in the cultivated genotypes and some of the wild relatives have been found to withstand these resistances. Thus, the utilization of crop wild relatives (CWR) in pigeonpea breeding has been effective in conferring resistance, quality and breeding efficiency traits to this crop. Bud and leaf tissue of Cajanus scarabaeoides, a wild relative of pigeon pea were used for transcriptome profiling. Approximately 30 million clean reads filtered from raw reads by removal of adaptors, ambiguous reads and low-quality reads (3.02 gigabase pairs) were generated by Illumina paired-end RNA-seq technology. All of these clean reads were pooled and assembled de novo into 1,17,007 transcripts using the Trinity. Finally, a total of 98,664 unigenes were derived with mean length of 396 bp and N50 values of 1393. The assembly produced significant mapping results (73.68%) in BLASTN searches of the Glycine max CDS sequence database (Ensembl). Further, uniprot database of Viridiplantae was used for unigene annotation; 81,799 of 98,664 (82.90%) unigenes were finally annotated with gene descriptions or conserved protein domains. Further, a total of 23,475 SSRs were identified in 27,321 unigenes. This data will provide useful information for mining of functionally important genes and SSR markers for pigeonpea improvement. PMID:28748187
Wang, Wenlei; Li, Huanqin; Lin, Xiangzhi; Yang, Shanjun; Wang, Zhaokai; Fang, Baishan
2015-12-11
Tissue culture could solve the problems associated with Gracilaria cultivation, including the consistent supply of high-quality seed stock, strain improvement, and efficient mass culture of high-yielding commercial strains. However, STC lags behind that of higher plants because of the paucity of genomic information. Transcriptome analysis and the identification of potential unigenes involved in the formation and regeneration of callus or direct induction of ABs are essential. Herein, the CK, EWAB and NPA G. lichenoides transcriptomes were analyzed using the Illumina sequencing platform in first time. A total of 17,922,453,300 nucleotide clean bases were generated and assembled into 21,294 unigenes, providing a total gene space of 400,912,038 nucleotides with an average length of 1,883 and N 50 of 5,055 nucleotides and a G + C content of 52.02%. BLAST analysis resulted in the assignment of 13,724 (97.5%), 3,740 (26.6%), 9,934 (70.6%), 10,611 (75.4%), 9,490 (67.4%), and 7,773 (55.2%) unigenes were annotated to the NR, NT, Swiss-Prot, KEGG, COG, and GO databases, respectively, and the total of annotated unigenes was 14,070. A total of 17,099 transcripts were predicted to possess open reading frames, including 3,238 predicted and 13,861 blasted based on protein databases. In addition, 3,287 SSRs were detected in G.lichenoides, providing further support for genetic variation and marker-assisted selection in the future. Our results suggest that auxin polar transport, auxin signal transduction, crosstalk with other endogenous plant hormones and antioxidant systems, play important roles for ABs formation in G. lichenoides explants in vitro. The present findings will facilitate further studies on gene discovery and on the molecular mechanisms underlying the tissue culture of seaweed.
De novo transcriptome assembly databases for the butterfly orchid Phalaenopsis equestris
Niu, Shan-Ce; Xu, Qing; Zhang, Guo-Qiang; Zhang, Yong-Qiang; Tsai, Wen-Chieh; Hsu, Jui-Ling; Liang, Chieh-Kai; Luo, Yi-Bo; Liu, Zhong-Jian
2016-01-01
Orchids are renowned for their spectacular flowers and ecological adaptations. After the sequencing of the genome of the tropical epiphytic orchid Phalaenopsis equestris, we combined Illumina HiSeq2000 for RNA-Seq and Trinity for de novo assembly to characterize the transcriptomes for 11 diverse P. equestris tissues representing the root, stem, leaf, flower buds, column, lip, petal, sepal and three developmental stages of seeds. Our aims were to contribute to a better understanding of the molecular mechanisms driving the analysed tissue characteristics and to enrich the available data for P. equestris. Here, we present three databases. The first dataset is the RNA-Seq raw reads, which can be used to execute new experiments with different analysis approaches. The other two datasets allow different types of searches for candidate homologues. The second dataset includes the sets of assembled unigenes and predicted coding sequences and proteins, enabling a sequence-based search. The third dataset consists of the annotation results of the aligned unigenes versus the Nonredundant (Nr) protein database, Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) databases with low e-values, enabling a name-based search. PMID:27673730
Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin
2013-01-01
Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus. PMID:23437293
Long, Yong; Li, Qing; Zhou, Bolan; Song, Guili; Li, Tao; Cui, Zongbin
2013-01-01
Fish skin serves as the first line of defense against a wide variety of chemical, physical and biological stressors. Secretion of mucus is among the most prominent characteristics of fish skin and numerous innate immune factors have been identified in the epidermal mucus. However, molecular mechanisms underlying the mucus secretion and immune activities of fish skin remain largely unclear due to the lack of genomic and transcriptomic data for most economically important fish species. In this study, we characterized the skin transcriptome of mud loach using Illumia paired-end sequencing. A total of 40364 unigenes were assembled from 86.6 million (3.07 gigabases) filtered reads. The mean length, N50 size and maximum length of assembled transcripts were 387, 611 and 8670 bp, respectively. A total of 17336 (43.76%) unigenes were annotated by blast searches against the NCBI non-redundant protein database. Gene ontology mapping assigned a total of 108513 GO terms to 15369 (38.08%) unigenes. KEGG orthology mapping annotated 9337 (23.23%) unigenes. Among the identified KO categories, immune system is the largest category that contains various components of multiple immune pathways such as chemokine signaling, leukocyte transendothelial migration and T cell receptor signaling, suggesting the complexity of immune mechanisms in fish skin. As for mucin biosynthesis, 37 unigenes were mapped to 7 enzymes of the mucin type O-glycan biosynthesis pathway and 8 members of the polypeptide N-acetylgalactosaminyltransferase family were identified. Additionally, 38 unigenes were mapped to 23 factors of the SNARE interactions in vesicular transport pathway, indicating that the activity of this pathway is required for the processes of epidermal mucus storage and release. Moreover, 1754 simple sequence repeats (SSRs) were detected in 1564 unigenes and dinucleotide repeats represented the most abundant type. These findings have laid the foundation for further understanding the secretary processes and immune functions of loach skin mucus.
Rai, Amit; Kamochi, Hidetaka; Suzuki, Hideyuki; Nakamura, Michimi; Takahashi, Hiroki; Hatada, Tomoki; Saito, Kazuki; Yamazaki, Mami
2017-01-01
Lonicera japonica is one of the most important medicinal plants with applications in traditional Chinese and Japanese medicine for thousands of years. Extensive studies on the constituents of L. japonica extracts have revealed an accumulation of pharmaceutically active metabolite classes, such as chlorogenic acid, luteolin and other flavonoids, and secoiridoids, which impart characteristic medicinal properties. Despite being a rich source of pharmaceutically active metabolites, little is known about the biosynthetic enzymes involved, and their expression profile across different tissues of L. japonica. In this study, we performed de novo transcriptome assembly for L. japonica, representing transcripts from nine different tissues. A total of 22 Gbps clean RNA-seq reads from nine tissues of L. japonica were used, resulting in 243,185 unigenes, with 99,938 unigenes annotated based on a homology search using blastx against the NCBI-nr protein database. Unsupervised principal component analysis and correlation studies using transcript expression data from all nine tissues of L. japonica showed relationships between tissues, explaining their association at different developmental stages. Homologs for all genes associated with chlorogenic acid, luteolin, and secoiridoid biosynthesis pathways were identified in the L. japonica transcriptome assembly. Expression of unigenes associated with chlorogenic acid was enriched in stems and leaf-2, unigenes from luteolin were enriched in stems and flowers, while unigenes from secoiridoid metabolic pathways were enriched in leaf-1 and shoot apex. Our results showed that different tissues of L. japonica are enriched with sets of unigenes associated with specific pharmaceutically important metabolic pathways and, therefore, possess unique medicinal properties. The present study will serve as a resource for future attempts for functional characterization of enzyme coding genes within key metabolic processes.
Lee, Xuezhu; Yi, Yang; Weng, Shaoping; Zeng, Jie; Zhang, Hetong; He, Jianguo; Dong, Chuanfu
2016-02-01
Cyprinid Herpesvirus 3 (CyHV-3) can infect and specifically cause a huge economic loss in both common carp (Cyprinus carpio) and its ornamental koi variety. The molecular mechanisms underlying CyHV-3 infection are not well understood. In this study, koi spleen tissues of both mock and CyHV-3 infection groups were collected, and high-throughput sequencing technology was used to analyze the differentially expressed genes (DEGs) at the transcriptome level. A total of 105,356,188 clean reads from two libraries were obtained. After the de novo assembly of the transcripts, 129,314 unigenes were generated. Of these unigenes, 70,655 unigenes were matched to the known proteins in the database, while 2190 unigenes were predicted by ESTScan software. Comparing the infection group to the mock group, a total of 23,029 significantly differentially expressed unigenes were identified, including 10,493 up-regulated DEGs and 12,536 down-regulated DEGs. GO (Gene Ontology) annotation and functional enrichment analysis indicated that all of the DEGs were annotated into GO terms in three main GO categories: biological process, cellular component and molecular function. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of the DEGs showed that a total of 12,002 DEG unigenes were annotated into 256 pathways classified into 6 main categories. Additionally, 20 differentially expressed genes were validated by quantitative real-time PCR. As the first report of a transcriptome analysis of koi carp with CyHV-3 infection, the data presented here provide knowledge of the innate immune response against CyHV-3 in koi carp and useful data for further research of the molecular mechanism of CyHV-3 infection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fatty Acid Profile and Unigene-Derived Simple Sequence Repeat Markers in Tung Tree (Vernicia fordii)
Zhang, Lin; Jia, Baoguang; Tan, Xiaofeng; Thammina, Chandra S.; Long, Hongxu; Liu, Min; Wen, Shanna; Song, Xianliang; Cao, Heping
2014-01-01
Tung tree (Vernicia fordii) provides the sole source of tung oil widely used in industry. Lack of fatty acid composition and molecular markers hinders biochemical, genetic and breeding research. The objectives of this study were to determine fatty acid profiles and develop unigene-derived simple sequence repeat (SSR) markers in tung tree. Fatty acid profiles of 41 accessions showed that the ratio of α-eleostearic acid was increasing continuously with a parallel trend to the amount of tung oil accumulation while the ratios of other fatty acids were decreasing in different stages of the seeds and that α-eleostearic acid (18∶3) consisted of 77% of the total fatty acids in tung oil. Transcriptome sequencing identified 81,805 unigenes from tung cDNA library constructed using seed mRNA and discovered 6,366 SSRs in 5,404 unigenes. The di- and tri-nucleotide microsatellites accounted for 92% of the SSRs with AG/CT and AAG/CTT being the most abundant SSR motifs. Fifteen polymorphic genic-SSR markers were developed from 98 unigene loci tested in 41 cultivated tung accessions by agarose gel and capillary electrophoresis. Genbank database search identified 10 of them putatively coding for functional proteins. Quantitative PCR demonstrated that all 15 polymorphic SSR-associated unigenes were expressed in tung seeds and some of them were highly correlated with oil composition in the seeds. Dendrogram revealed that most of the 41 accessions were clustered according to the geographic region. These new polymorphic genic-SSR markers will facilitate future studies on genetic diversity, molecular fingerprinting, comparative genomics and genetic mapping in tung tree. The lipid profiles in the seeds of 41 tung accessions will be valuable for biochemical and breeding studies. PMID:25167054
Analysis of Litopenaeus vannamei Transcriptome Using the Next-Generation DNA Sequencing Technique
Li, Chaozheng; Weng, Shaoping; Chen, Yonggui; Yu, Xiaoqiang; Lü, Ling; Zhang, Haiqing; He, Jianguo; Xu, Xiaopeng
2012-01-01
Background Pacific white shrimp (Litopenaeus vannamei), the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. Methodology/Principal Findings This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp) with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG) categories, 8171 unigenes were assigned into 51 Gene ontology (GO) functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. Conclusions/Significance The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei. PMID:23071809
De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum)
Hu, Lisong; Hao, Chaoyun; Fan, Rui; Wu, Baoduo; Tan, Lehe; Wu, Huasong
2015-01-01
Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper. PMID:26121657
De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum).
Hu, Lisong; Hao, Chaoyun; Fan, Rui; Wu, Baoduo; Tan, Lehe; Wu, Huasong
2015-01-01
Black pepper is one of the most popular and oldest spices in the world and valued for its pungent constituent alkaloids. Pinerine is the main bioactive compound in pepper alkaloids, which perform unique physiological functions. However, the mechanisms of piperine synthesis are poorly understood. This study is the first to describe the fruit transcriptome of black pepper by sequencing on Illumina HiSeq 2000 platform. A total of 56,281,710 raw reads were obtained and assembled. From these raw reads, 44,061 unigenes with an average length of 1,345 nt were generated. During functional annotation, 40,537 unigenes were annotated in Gene Ontology categories, Kyoto Encyclopedia of Genes and Genomes pathways, Swiss-Prot database, and Nucleotide Collection (NR/NT) database. In addition, 8,196 simple sequence repeats (SSRs) were detected. In a detailed analysis of the transcriptome, housekeeping genes for quantitative polymerase chain reaction internal control, polymorphic SSRs, and lysine/ornithine metabolism-related genes were identified. These results validated the availability of our database. Our study could provide useful data for further research on piperine synthesis in black pepper.
Zhou, Fan; Wang, Guirong; An, Chunju
2014-01-01
Background The Asian corn borer (Ostrinia furnacalis (Guenée)) is one of the most serious corn pests in Asia. Control of this pest with entomopathogenic fungus Beauveria bassiana has been proposed. However, the molecular mechanisms involved in the interactions between O. furnacalis and B. bassiana are unclear, especially under the conditions that the genomic information of O. furnacalis is currently unavailable. So we sequenced and characterized the transcriptome of O. furnacalis larvae infected by B. bassiana with special emphasis on immunity-related genes. Methodology/Principal Findings Illumina Hiseq2000 was used to sequence 4.64 and 4.72 Gb of the transcriptome from water-injected and B. bassiana-injected O. furnacalis larvae, respectively. De novo assembly generated 62,382 unigenes with mean length of 729 nt. All unigenes were searched against Nt, Nr, Swiss-Prot, COG, and KEGG databases for annotations using BLASTN or BLASTX algorithm with an E-value cut-off of 10−5. A total of 35,700 (57.2%) unigenes were annotated to at least one database. Pairwise comparisons resulted in 13,890 differentially expressed genes, with 5,843 up-regulated and 8,047 down-regulated. Based on sequence similarity to homologs known to participate in immune responses, we totally identified 190 potential immunity-related unigenes. They encode 45 pattern recognition proteins, 33 modulation proteins involved in the prophenoloxidase activation cascade, 46 signal transduction molecules, and 66 immune responsive effectors, respectively. The obtained transcriptome contains putative orthologs for nearly all components of the Toll, Imd, and JAK/STAT pathways. We randomly selected 24 immunity-related unigenes and investigated their expression profiles using quantitative RT-PCR assay. The results revealed variant expression patterns in response to the infection of B. bassiana. Conclusions/Significance This study provides the comprehensive sequence resource and expression profiles of the immunity-related genes of O. furnacalis. The obtained data gives an insight into better understanding the molecular mechanisms of innate immune processes in O. furnacalis larvae against B. bassiana. PMID:24466095
Sun, Xiaoning; Cai, Ruibo; Jin, Xuelin; Shafer, Aaron B A; Hu, Xiaolong; Yang, Shuang; Li, Yimeng; Qi, Lei; Liu, Shuqiang; Hu, Defu
2018-01-12
Forest musk deer (Moschus berezovskii; FMD) are both economically valuable and highly endangered. A problem for FMD captive breeding programs has been the susceptibility of FMD to abscesses. To investigate the mechanisms of abscess development in FMD, the blood transcriptomes of three purulent and three healthy individuals were generated. A total of ~39.68 Gb bases were generated using Illumina HiSeq 4000 sequencing technology and 77,752 unigenes were identified after assembling. All the unigenes were annotated, with 63,531 (81.71%) mapping to at least one database. Based on these functional annotations, 45,798 coding sequences (CDS) were detected, along with 12,697 simple sequence repeats (SSRs) and 65,536 single nucleotide polymorphisms (SNPs). A total of 113 unigenes were found to be differentially expressed between healthy and purulent individuals. Functional annotation indicated that most of these differentially expressed genes were involved in the regulation of immune system processes, particularly those associated with parasitic and bacterial infection pathways.
Zhang, Yu-Juan; Hao, Youjin; Si, Fengling; Ren, Shuang; Hu, Ganyu; Shen, Li; Chen, Bin
2014-03-10
The onion maggot Delia antiqua is a major insect pest of cultivated vegetables, especially the onion, and a good model to investigate the molecular mechanisms of diapause. To better understand the biology and diapause mechanism of the insect pest species, D. antiqua, the transcriptome was sequenced using Illumina paired-end sequencing technology. Approximately 54 million reads were obtained, trimmed, and assembled into 29,659 unigenes, with an average length of 607 bp and an N50 of 818 bp. Among these unigenes, 21,605 (72.8%) were annotated in the public databases. All unigenes were then compared against Drosophila melanogaster and Anopheles gambiae. Codon usage bias was analyzed and 332 simple sequence repeats (SSRs) were detected in this organism. These data represent the most comprehensive transcriptomic resource currently available for D. antiqua and will facilitate the study of genetics, genomics, diapause, and further pest control of D. antiqua. Copyright © 2014 Zhang et al.
Zhang, Xiaodong; Allan, Andrew C.; Li, Caixia; Wang, Yuanzhong; Yao, Qiuyang
2015-01-01
Gentiana rigescens is an important medicinal herb in China. The main validated medicinal component gentiopicroside is synthesized in shoots, but is mainly found in the plant’s roots. The gentiopicroside biosynthetic pathway and its regulatory control remain to be elucidated. Genome resources of gentian are limited. Next-generation sequencing (NGS) technologies can aid in supplying global gene expression profiles. In this study we present sequence and transcript abundance data for the root and leaf transcriptome of G. rigescens, obtained using the Illumina Hiseq2000. Over fifty million clean reads were obtained from leaf and root libraries. This yields 76,717 unigenes with an average length of 753 bp. Among these, 33,855 unigenes were identified as putative homologs of annotated sequences in public protein and nucleotide databases. Digital abundance analysis identified 3306 unigenes differentially enriched between leaf and root. Unigenes found in both tissues were categorized according to their putative functional categories. Of the differentially expressed genes, over 130 were annotated as related to terpenoid biosynthesis. This work is the first study of global transcriptome analyses in gentian. These sequences and putative functional data comprise a resource for future investigation of terpenoid biosynthesis in Gentianaceae species and annotation of the gentiopicroside biosynthetic pathway and its regulatory mechanisms. PMID:26006235
Identification of genes differentially expressed during ripening of banana.
Manrique-Trujillo, Sandra Mabel; Ramírez-López, Ana Cecilia; Ibarra-Laclette, Enrique; Gómez-Lim, Miguel Angel
2007-08-01
The banana (Musa acuminata, subgroup Cavendish 'Grand Nain') is a climacteric fruit of economic importance. A better understanding of the banana ripening process is needed to improve fruit quality and to extend shelf life. Eighty-four up-regulated unigenes were identified by differential screening of a banana fruit cDNA subtraction library at a late ripening stage. The ripening stages in this study were defined according to the peel color index (PCI). Unigene sequences were analyzed with different databases to assign a putative identification. The expression patterns of 36 transcripts confirmed as positive by differential screening were analyzed comparing the PCI 1, PCI 5 and PCI 7 ripening stages. Expression profiles were obtained for unigenes annotated as orcinol O-methyltransferase, putative alcohol dehydrogenase, ubiquitin-protein ligase, chorismate mutase and two unigenes with non-significant matches with any reported sequence. Similar expression profiles were observed in banana pulp and peel. Our results show differential expression of a group of genes involved in processes associated with fruit ripening, such as stress, detoxification, cytoskeleton and biosynthesis of volatile compounds. Some of the identified genes had not been characterized in banana fruit. Besides providing an overview of gene expression programs and metabolic pathways at late stages of banana fruit ripening, this study contributes to increasing the information available on banana fruit ESTs.
Physiological and transcriptome response to cadmium in cosmos (Cosmos bipinnatus Cav.) seedlings.
Liu, Yujing; Yu, Xiaofang; Feng, Yimei; Zhang, Chao; Wang, Chao; Zeng, Jian; Huang, Zhuo; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Gao, Suping; Chen, Qibing
2017-10-31
To date, several species of Asteraceae have been considered as Cd-accumulators. However, little information on the Cd tolerance and associated mechanisms of Asteraceae species Cosmos bipinnatus, is known. Presently, several physiological indexes and transcriptome profiling under Cd stress were investigated. C. bipinnatus exhibited strong Cd tolerance and recommended as a Cd-accumulator, although the biomasses were reduced by Cd. Meanwhile, Cd stresses reduced Zn and Ca uptake, but increased Fe uptake. Subcellular distribution indicated that the vacuole sequestration in root mainly detoxified Cd under lower Cd stress. Whilst, cell wall binding and vacuole sequestration in root co-detoxified Cd under high Cd exposure. Meanwhile, 66,407 unigenes were assembled and 41,674 (62.75%) unigenes were annotated in at least one database. 2,658 DEGs including 1,292 up-regulated unigenes and 1,366 down-regulated unigenes were identified under 40 μmol/L Cd stress. Among of these DEGs, ZIPs, HMAs, NRAMPs and ABC transporters might participate in Cd uptake, translocation and accumulation. Many DEGs participating in several processes such as cell wall biosynthesis, GSH metabolism, TCA cycle and antioxidant system probably play critical roles in cell wall binding, vacuole sequestration and detoxification. These results provided a novel insight into the physiological and transcriptome response to Cd in C. bipinnatus seedlings.
Generation and analysis of expressed sequence tags from the bone marrow of Chinese Sika deer.
Yao, Baojin; Zhao, Yu; Zhang, Mei; Li, Juan
2012-03-01
Sika deer is one of the best-known and highly valued animals of China. Despite its economic, cultural, and biological importance, there has not been a large-scale sequencing project for Sika deer to date. With the ultimate goal of sequencing the complete genome of this organism, we first established a bone marrow cDNA library for Sika deer and generated a total of 2,025 reads. After processing the sequences, 2,017 high-quality expressed sequence tags (ESTs) were obtained. These ESTs were assembled into 1,157 unigenes, including 238 contigs and 919 singletons. Comparative analyses indicated that 888 (76.75%) of the unigenes had significant matches to sequences in the non-redundant protein database, In addition to highly expressed genes, such as stearoyl-CoA desaturase, cytochrome c oxidase, adipocyte-type fatty acid-binding protein, adiponectin and thymosin beta-4, we also obtained vascular endothelial growth factor-A and heparin-binding growth-associated molecule, both of which are of great importance for angiogenesis research. There were 244 (21.09%) unigenes with no significant match to any sequence in current protein or nucleotide databases, and these sequences may represent genes with unknown function in Sika deer. Open reading frame analysis of the sequences was performed using the getorf program. In addition, the sequences were functionally classified using the gene ontology hierarchy, clusters of orthologous groups of proteins and Kyoto encyclopedia of genes and genomes databases. Analysis of ESTs described in this paper provides an important resource for the transcriptome exploration of Sika deer, and will also facilitate further studies on functional genomics, gene discovery and genome annotation of Sika deer.
Candidate gene database and transcript map for peach, a model species for fruit trees.
Horn, Renate; Lecouls, Anne-Claire; Callahan, Ann; Dandekar, Abhaya; Garay, Lilibeth; McCord, Per; Howad, Werner; Chan, Helen; Verde, Ignazio; Main, Doreen; Jung, Sook; Georgi, Laura; Forrest, Sam; Mook, Jennifer; Zhebentyayeva, Tatyana; Yu, Yeisoo; Kim, Hye Ran; Jesudurai, Christopher; Sosinski, Bryon; Arús, Pere; Baird, Vance; Parfitt, Dan; Reighard, Gregory; Scorza, Ralph; Tomkins, Jeffrey; Wing, Rod; Abbott, Albert Glenn
2005-05-01
Peach (Prunus persica) is a model species for the Rosaceae, which includes a number of economically important fruit tree species. To develop an extensive Prunus expressed sequence tag (EST) database for identifying and cloning the genes important to fruit and tree development, we generated 9,984 high-quality ESTs from a peach cDNA library of developing fruit mesocarp. After assembly and annotation, a putative peach unigene set consisting of 3,842 ESTs was defined. Gene ontology (GO) classification was assigned based on the annotation of the single "best hit" match against the Swiss-Prot database. No significant homology could be found in the GenBank nr databases for 24.3% of the sequences. Using core markers from the general Prunus genetic map, we anchored bacterial artificial chromosome (BAC) clones on the genetic map, thereby providing a framework for the construction of a physical and transcript map. A transcript map was developed by hybridizing 1,236 ESTs from the putative peach unigene set and an additional 68 peach cDNA clones against the peach BAC library. Hybridizing ESTs to genetically anchored BACs immediately localized 11.2% of the ESTs on the genetic map. ESTs showed a clustering of expressed genes in defined regions of the linkage groups. [The data were built into a regularly updated Genome Database for Rosaceae (GDR), available at (http://www.genome.clemson.edu/gdr/).].
EuroPineDB: a high-coverage web database for maritime pine transcriptome
2011-01-01
Background Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases. Description EuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided. Conclusions The EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome. PMID:21762488
NASA Astrophysics Data System (ADS)
Zhang, Hui; Zhai, Yuxiu; Yao, Lin; Jiang, Yanhua; Li, Fengling
2017-05-01
Chlamys farreri is an economically important mollusk that can accumulate excessive amounts of cadmium (Cd). Studying the molecular mechanism of Cd accumulation in bivalves is difficult because of the lack of genome background. Transcriptomic analysis based on high-throughput RNA sequencing has been shown to be an efficient and powerful method for the discovery of relevant genes in non-model and genome reference-free organisms. Here, we constructed two cDNA libraries (control and Cd exposure groups) from the digestive gland of C. farreri and compared the transcriptomic data between them. A total of 227 673 transcripts were assembled into 105 071 unigenes, most of which shared high similarity with sequences in the NCBI non-redundant protein database. For functional classification, 24 493 unigenes were assigned to Gene Ontology terms. Additionally, EuKaryotic Ortholog Groups and Kyoto Encyclopedia of Genes and Genomes analyses assigned 12 028 unigenes to 26 categories and 7 849 unigenes to five pathways, respectively. Comparative transcriptomics analysis identified 3 800 unigenes that were differentially expressed in the Cd-treated group compared with the control group. Among them, genes associated with heavy metal accumulation were screened, including metallothionein, divalent metal transporter, and metal tolerance protein. The functional genes and predicted pathways identified in our study will contribute to a better understanding of the metabolic and immune system in the digestive gland of C. farreri. In addition, the transcriptomic data will provide a comprehensive resource that may contribute to the understanding of molecular mechanisms that respond to marine pollutants in bivalves.
Rai, Amit; Yamazaki, Mami; Takahashi, Hiroki; Nakamura, Michimi; Kojoma, Mareshige; Suzuki, Hideyuki; Saito, Kazuki
2016-01-01
The Panax genus has been a source of natural medicine, benefitting human health over the ages, among which the Panax japonicus represents an important species. Our understanding of several key pathways and enzymes involved in the biosynthesis of ginsenosides, a pharmacologically active class of metabolites and a major chemical constituents of the rhizome extracts from the Panax species, are limited. Limited genomic information, and lack of studies on comparative transcriptomics across the Panax species have restricted our understanding of the biosynthetic mechanisms of these and many other important classes of phytochemicals. Herein, we describe Illumina based RNA sequencing analysis to characterize the transcriptome and expression profiles of genes expressed in the five tissues of P. japonicus, and its comparison with other Panax species. RNA sequencing and de novo transcriptome assembly for P. japonicus resulted in a total of 135,235 unigenes with 78,794 (58.24%) unigenes being annotated using NCBI-nr database. Transcriptome profiling, and gene ontology enrichment analysis for five tissues of P. japonicus showed that although overall processes were evenly conserved across all tissues. However, each tissue was characterized by several unique unigenes with the leaves showing the most unique unigenes among the tissues studied. A comparative analysis of the P. japonicus transcriptome assembly with publically available transcripts from other Panax species, namely, P. ginseng, P. notoginseng, and P. quinquefolius also displayed high sequence similarity across all Panax species, with P. japonicus showing highest similarity with P. ginseng. Annotation of P. japonicus transcriptome resulted in the identification of putative genes encoding all enzymes from the triterpene backbone biosynthetic pathways, and identified 24 and 48 unigenes annotated as cytochrome P450 (CYP) and glycosyltransferases (GT), respectively. These CYPs and GTs annotated unigenes were conserved across all Panax species and co-expressed with other the transcripts involved in the triterpenoid backbone biosynthesis pathways. Unigenes identified in this study represent strong candidates for being involved in the triterpenoid saponins biosynthesis, and can serve as a basis for future validation studies. PMID:27148308
PipeOnline 2.0: automated EST processing and functional data sorting.
Ayoubi, Patricia; Jin, Xiaojing; Leite, Saul; Liu, Xianghui; Martajaja, Jeson; Abduraham, Abdurashid; Wan, Qiaolan; Yan, Wei; Misawa, Eduardo; Prade, Rolf A
2002-11-01
Expressed sequence tags (ESTs) are generated and deposited in the public domain, as redundant, unannotated, single-pass reactions, with virtually no biological content. PipeOnline automatically analyses and transforms large collections of raw DNA-sequence data from chromatograms or FASTA files by calling the quality of bases, screening and removing vector sequences, assembling and rewriting consensus sequences of redundant input files into a unigene EST data set and finally through translation, amino acid sequence similarity searches, annotation of public databases and functional data. PipeOnline generates an annotated database, retaining the processed unigene sequence, clone/file history, alignments with similar sequences, and proposed functional classification, if available. Functional annotation is automatic and based on a novel method that relies on homology of amino acid sequence multiplicity within GenBank records. Records are examined through a function ordered browser or keyword queries with automated export of results. PipeOnline offers customization for individual projects (MyPipeOnline), automated updating and alert service. PipeOnline is available at http://stress-genomics.org.
Li, Guoxi; Zhao, Yinli; Liu, Zhonghu; Gao, Chunsheng; Yan, Fengbin; Liu, Bianzhi; Feng, Jianxin
2015-06-01
Common carp (Cyprinus carpio) is one of the most important aquacultured species of the family Cyprinidae, and breeding this species for disease resistance is becoming more and more important. However, at the genome or transcriptome levels, study of the immunogenetics of disease resistance in the common carp is lacking. In this study, 60,316,906 and 75,200,328 paired-end clean reads were obtained from two cDNA libraries of the common carp spleen by Illumina paired-end sequencing technology. Totally, 130,293 unique transcript fragments (unigenes) were assembled, with an average length of 1400.57 bp. Approximately 105,612 (81.06%) unigenes could be annotated according to their homology with matches in the Nr, Nt, Swiss-Prot, COG, GO, or KEGG databases, and they were found to represent 46,747 non-redundant genes. Comparative analysis showed that 59.82% of the unigenes have significant similarity to zebrafish Refseq proteins. Gene expression comparison revealed that 10,432 and 6889 annotated unigenes were, respectively, up- and down-regulated with at least twofold changes between two developmental stages of the common carp spleen. Gene ontology and KEGG analysis were performed to classify all unigenes into functional categories for understanding gene functions and regulation pathways. In addition, 46,847 simple sequence repeats (SSRs) were detected from 35,618 unigenes, and a large number of single nucleotide polymorphism (SNP) and insertion/deletion (INDEL) sites were identified in the spleen transcriptome of common carp. This study has characterized the spleen transcriptome of the common carp for the first time, providing a valuable resource for a better understanding of the common carp immune system and defense mechanisms. This knowledge will also facilitate future functional studies on common carp immunogenetics that may eventually be applied in breeding programs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jia, Tianqi; Wei, Danfeng; Meng, Shan; Allan, Andrew C.; Zeng, Lihui
2014-01-01
Longan (Dimocarpus longan L.) is a tropical/subtropical fruit tree of significant economic importance in Southeast Asia. However, a lack of transcriptomic and genomic information hinders research on longan traits, such as the control of flowering. In this study, high-throughput RNA sequencing (RNA-Seq) was used to investigate differentially expressed genes between a unique longan cultivar ‘Sijimi’(S) which flowers throughout the year and a more typical cultivar ‘Lidongben’(L) which flowers only once in the season, with the aim of identifying candidate genes associated with continuous flowering. 36,527 and 40,982 unigenes were obtained by de novo assembly of the clean reads from cDNA libraries of L and S cultivars. Additionally 40,513 unigenes were assembled from combined reads of these libraries. A total of 32,475 unigenes were annotated by BLAST search to NCBI non-redundant protein (NR), Swiss-Prot, Clusters of Orthologous Groups (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Of these, almost fifteen thousand unigenes were identified as significantly differentially expressed genes (DEGs) by using Reads Per kb per Million reads (RPKM) method. A total of 6,415 DEGs were mapped to 128 KEGG pathways, and 8,743 DEGs were assigned to 54 Gene Ontology categories. After blasting the DEGs to public sequence databases, 539 potential flowering-related DEGs were identified. In addition, 107 flowering-time genes were identified in longan, their expression levels between two longan samples were compared by RPKM method, of which the expression levels of 15 were confirmed by real-time quantitative PCR. Our results suggest longan homologues of SHORT VEGETATIVE PHASE (SVP), GIGANTEA (GI), F-BOX 1 (FKF1) and EARLY FLOWERING 4 (ELF4) may be involved this flowering trait and ELF4 may be a key gene. The identification of candidate genes related to continuous flowering will provide new insight into the molecular process of regulating flowering time in woody plants. PMID:25479005
Wu, Qing-jun; Wang, Shao-li; Yang, Xin; Yang, Ni-na; Li, Ru-mei; Jiao, Xiao-guo; Pan, Hui-peng; Liu, Bai-ming; Su, Qi; Xu, Bao-yun; Hu, Song-nian; Zhou, Xu-guo; Zhang, You-jun
2012-01-01
Background Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes. Methodology and Principal Findings Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340 megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including 30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity to the non-redundant database in GenBank with a cut-off E-value of 10–5. Among them, 40,611 unigenes were assigned to one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison to its susceptible counterparts. Conclusions This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis. PMID:22558125
Transcriptome Analysis and Comparison of Marmota monax and Marmota himalayana.
Liu, Yanan; Wang, Baoju; Wang, Lu; Vikash, Vikash; Wang, Qin; Roggendorf, Michael; Lu, Mengji; Yang, Dongliang; Liu, Jia
2016-01-01
The Eastern woodchuck (Marmota monax) is a classical animal model for studying hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) in humans. Recently, we found that Marmota himalayana, an Asian animal species closely related to Marmota monax, is susceptible to woodchuck hepatitis virus (WHV) infection and can be used as a new mammalian model for HBV infection. However, the lack of genomic sequence information of both Marmota models strongly limited their application breadth and depth. To address this major obstacle of the Marmota models, we utilized Illumina RNA-Seq technology to sequence the cDNA libraries of liver and spleen samples of two Marmota monax and four Marmota himalayana. In total, over 13 billion nucleotide bases were sequenced and approximately 1.5 billion clean reads were obtained. Following assembly, 106,496 consensus sequences of Marmota monax and 78,483 consensus sequences of Marmota himalayana were detected. For functional annotation, in total 73,603 Unigenes of Marmota monax and 78,483 Unigenes of Marmota himalayana were identified using different databases (NR, NT, Swiss-Prot, KEGG, COG, GO). The Unigenes were aligned by blastx to protein databases to decide the coding DNA sequences (CDS) and in total 41,247 CDS of Marmota monax and 34,033 CDS of Marmota himalayana were predicted. The single nucleotide polymorphisms (SNPs) and the simple sequence repeats (SSRs) were also analyzed for all Unigenes obtained. Moreover, a large-scale transcriptome comparison was performed and revealed a high similarity in transcriptome sequences between the two marmota species. Our study provides an extensive amount of novel sequence information for Marmota monax and Marmota himalayana. This information may serve as a valuable genomics resource for further molecular, developmental and comparative evolutionary studies, as well as for the identification and characterization of functional genes that are involved in WHV infection and HCC development in the woodchuck model.
Transcriptome Analysis and Comparison of Marmota monax and Marmota himalayana
Wang, Lu; Vikash, Vikash; Wang, Qin; Roggendorf, Michael; Lu, Mengji; Yang, Dongliang; Liu, Jia
2016-01-01
The Eastern woodchuck (Marmota monax) is a classical animal model for studying hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC) in humans. Recently, we found that Marmota himalayana, an Asian animal species closely related to Marmota monax, is susceptible to woodchuck hepatitis virus (WHV) infection and can be used as a new mammalian model for HBV infection. However, the lack of genomic sequence information of both Marmota models strongly limited their application breadth and depth. To address this major obstacle of the Marmota models, we utilized Illumina RNA-Seq technology to sequence the cDNA libraries of liver and spleen samples of two Marmota monax and four Marmota himalayana. In total, over 13 billion nucleotide bases were sequenced and approximately 1.5 billion clean reads were obtained. Following assembly, 106,496 consensus sequences of Marmota monax and 78,483 consensus sequences of Marmota himalayana were detected. For functional annotation, in total 73,603 Unigenes of Marmota monax and 78,483 Unigenes of Marmota himalayana were identified using different databases (NR, NT, Swiss-Prot, KEGG, COG, GO). The Unigenes were aligned by blastx to protein databases to decide the coding DNA sequences (CDS) and in total 41,247 CDS of Marmota monax and 34,033 CDS of Marmota himalayana were predicted. The single nucleotide polymorphisms (SNPs) and the simple sequence repeats (SSRs) were also analyzed for all Unigenes obtained. Moreover, a large-scale transcriptome comparison was performed and revealed a high similarity in transcriptome sequences between the two marmota species. Our study provides an extensive amount of novel sequence information for Marmota monax and Marmota himalayana. This information may serve as a valuable genomics resource for further molecular, developmental and comparative evolutionary studies, as well as for the identification and characterization of functional genes that are involved in WHV infection and HCC development in the woodchuck model. PMID:27806133
Gao, Huanhuan; Zhai, Yifan; Wang, Wenbo; Chen, Hao; Zhou, Xianhong; Zhuang, Qianying; Yu, Yi; Li, Rumei
2016-01-01
Bradysia odoriphaga (Diptera: Sciaridae) is the most important pest of Chinese chive (Allium tuberosum) in Asia; however, the molecular genetics are poorly understood. To explore the molecular biological mechanism of development, Illumina sequencing and de novo assembly were performed in the third-instar, fourth-instar, and pupal B. odoriphaga. The study resulted in 16.2 Gb of clean data and 47,578 unigenes (≥125 bp) contained in 7,632,430 contigs, 46.21% of which were annotated from non-redundant protein (NR), Gene Ontology (GO), Clusters of Orthologous Groups (COG), Eukaryotic Orthologous Groups (KOG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. It was found that 19.67% of unigenes matched the homologous species mainly, including Aedes aegypti, Culex quinquefasciatus, Ceratitis capitata, and Anopheles gambiae. According to differentially expressed gene (DEG) analysis, 143, 490, and 309 DEGs were annotated as involved in the developmental process in the GO database respectively, in the comparisons of third-instar and fourth-instar larvae, third-instar larvae and pupae, and fourth-instar larvae and pupae. Twenty-five genes were closely related to these processes, including developmental process, reproduction process, and reproductive organs development and programmed cell death (PCD). The information of unigenes assembled in B. odoriphaga through transcriptome and DEG analyses could provide a detailed genetic basis and regulated information for elaborating the developmental mechanism from the larval, pre-pupal to pupal stages of B. odoriphaga.
Genome-wide transcriptome profiling reveals novel insights into Luffa cylindrica browning.
Chen, Xia; Tan, Taiming; Xu, Changcheng; Huang, Shuping; Tan, Jie; Zhang, Min; Wang, Chunli; Xie, Conghua
2015-08-07
Luffa cylindrica (sponge gourd) is one of the most popular vegetables in China. Production and consumption of L. cylindrica are limited due to postharvest browning; however, little is known about the genetic regulation of the browning process. In the present study, transcriptome profiles of L. cylindrica cultivars, YLB05 (browning resistant) and XTR05 (browning sensitive), were analyzed using next-generation sequencing to clarify the genes and mechanisms associated with browning. A total of 9.1 Gb of valid data including 116,703 unigenes (>200 bp) were obtained and 39,473 sequences were annotated by alignment against five public databases. Of these, there were 27,407 genes assigned to 747 Gene Ontology functional categories; and 12,350 genes were annotated with 25 Eukaryotic Orthologous Groups (KOG) categories with 343 KOG functional terms. Additionally, by searching against the Kyoto Encyclopedia of Genes and Genomes database, 8689 unigenes were mapped to 189 pathways. Furthermore, there were 24,556 sequences found to be differentially regulated, including 4344 annotated unigenes. Several genes potentially associated with phenolic oxidation, carbohydrate and hormone metabolism were found differentially regulated between the cultivars of different browning sensitivities. Our results suggest that elements involved in enzymatic processes and other pathways might be responsible for L. cylindrica browning. The present study provides a comprehensive transcriptome sequence resource, which will facilitate further studies on gene discovery and exploiting the fruit browning mechanism of L. cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.
Ma, Yuewen; Li, Qiulei; Hu, Guibing; Qin, Yonghua
2017-04-20
Seedlessness is an excellent economical trait, and self-incompatibility (SI) is one of important factors resulting in seedless fruit in Citrus. However, SI molecular mechanism in Citrus is still unclear. In this study, RNA-Seq technology was used to identify differentially expressed genes related to SI reaction of 'Wuzishatangju' (Citrus reticulata Blanco). A total of 35.67GB raw RNA-Seq data was generated and was de novo assembled into 50,364 unigenes with an average length of 897bp and N50 value of 1549. Twenty-three candidate unigenes related to SI were analyzed using qPCR at different tissues and stages after self- and cross-pollination. Seven pollen S genes (Unigene0050323, Unigene0001060, Unigene0004230, Unigene0004222, Unigene0012037, Unigene0048889 and Unigene0004272), three pistil S genes (Unigene0019191, Unigene0040115, Unigene0036542) and three genes (Unigene0038751, Unigene0031435 and Unigene0029897) associated with the pathway of ubiquitin-mediated proteolysis were identified. Unigene0031435, Unigene0038751 and Unigene0029897 are probably involved in SI reaction of 'Wuzishatangju' based on expression analyses. The present study provides a new insight into the molecular mechanism of SI in Citrus at the transcriptional level. Copyright © 2017 Elsevier B.V. All rights reserved.
Yan, Hongwei; Cui, Xin; Shen, Xufang; Wang, Lianshun; Jiang, Linan; Liu, Haiying; Liu, Ying; Liu, Qi; Jiang, Chen
2018-06-01
The mantis shrimp Oratosquilla oratoria is a widely distributed, commercially important crustacean species. Although its conservation and the development of successful artificial breeding technologies have recently received considerable attention, there are currently no available data regarding the molecular mechanisms in controlling reproduction. In this study, we performed transcriptome sequencing of the testis, ovary, female and male eyestalks and the androgenic gland of O. oratoria, and compared the expression pattern of transcripts from the testis and ovary libraries to identify genes involved in gonadal development. A total of 147,130,937 clean reads were retrieved after removing the adapters in reads and filtering out low-quality data. All the reads were assembled into 94,990 unigenes (23,133 in testis and ovary) with an average length of 783 base pairs (bp) and N50 of 1502 bp. A search of all-unigenes against COG, GO, KEGG, KOG, Pfam, Swiss-Prot and Nr databases resulted in a total of 19,404 annotated unigenes. Comparison of the sequences in the ovary and testis libraries revealed that 1188 unigenes were up-regulated in the ovary and 2732 were up-regulated in the testis. Twenty ovary-up-regulated and 21 testis-up-regulated unigenes were confirmed by quantitative real-time PCR. Additionally, 13,437 simple sequence repeats (SSRs) and 275,799 putative single nucleotide polymorphisms (SNPs) were identified. The important functional genes and pathways identified here provide a valuable dataset for understanding the molecular mechanisms controlling gonad development in O. oratoria, and the numerous (13,437 SSRs and 275,799 SNPs) molecular markers obtained here will provide fundamental basis for functional genomic and population genetic studies of O. oratoria. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Gaisheng; Ju, Lan; Zhang, Jiao; Yu, Yongang; Niu, Na; Wang, Junwei; Ma, Shoucai
2015-01-01
Wheat (Triticum aestivum L.), one of the world’s most important food crops, is a strictly autogamous (self-pollinating) species with exclusively perfect flowers. Male sterility induced by chemical hybridizing agents has increasingly attracted attention as a tool for hybrid seed production in wheat; however, the molecular mechanisms of male sterility induced by the agent SQ-1 remain poorly understood due to limited whole transcriptome data. Therefore, a comparative analysis of wheat anther transcriptomes for male fertile wheat and SQ-1–induced male sterile wheat was carried out using next-generation sequencing technology. In all, 42,634,123 sequence reads were generated and were assembled into 82,356 high-quality unigenes with an average length of 724 bp. Of these, 1,088 unigenes were significantly differentially expressed in the fertile and sterile wheat anthers, including 643 up-regulated unigenes and 445 down-regulated unigenes. The differentially expressed unigenes with functional annotations were mapped onto 60 pathways using the Kyoto Encyclopedia of Genes and Genomes database. They were mainly involved in coding for the components of ribosomes, photosynthesis, respiration, purine and pyrimidine metabolism, amino acid metabolism, glutathione metabolism, RNA transport and signal transduction, reactive oxygen species metabolism, mRNA surveillance pathways, protein processing in the endoplasmic reticulum, protein export, and ubiquitin-mediated proteolysis. This study is the first to provide a systematic overview comparing wheat anther transcriptomes of male fertile wheat with those of SQ-1–induced male sterile wheat and is a valuable source of data for future research in SQ-1–induced wheat male sterility. PMID:25898130
Ren, Yipeng; Xue, Junli; Yang, Huanhuan; Pan, Baoping; Bu, Wenjun
2017-05-01
The Manila clam, Ruditapes philippinarum, is one of the most economically important aquatic clams that are harvested on a large scale by the mariculture industry in China. However, increasing reports of bacterial pathogenic diseases have had a negative effect on the aquaculture industry of R. philippinarum. In the present study, the two transcriptome libraries of untreated (termed H) and challenged Vibrio anguillarum (termed HV) hepatopancreas were constructed and sequenced from Manila clam using an Illumina-based paired-end sequencing platform. In total, 75,302,886 and 66,578,976 high-quality clean reads were assembled from 101,080,746 and 99,673,538 raw data points from the two transcriptome libraries described above, respectively. Furthermore, 156,116 unigenes were generated from 210,685 transcripts, with an N50 length of 1125 bp, and from the annotated SwissProt, NR, NT, KO, GO, KOG and KEGG databases. Moreover, a total of 4071 differentially expressed unigenes (HV vs H) were detected, including 903 up-regulated and 3168 down-regulated genes. Among these differentially expressed unigenes, 226 unigenes were annotated using KEGG annotation in 16 immune-related signaling pathways, including Toll-like receptor, NF-kappa B, MAPK, NOD-like receptor, RIG-I-like receptor, and the TNF and chemokine signaling pathways. Finally, 20,341 simple sequence repeats (SSRs) and 214,430 potential single nucleotide polymorphisms (SNPs) were detected from the H and HV transcriptome libraries. In conclusion, these studies identified many candidate immune-related genes and signaling pathways and conducted a comparative analysis of the differentially expressed unigenes from Manila clam hepatopancreas in response to V. anguillarum stimulation. These data laid the foundation for studying the innate immune systems and defense mechanisms in R. philippinarum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rouigari, Maedeh; Dehbashi, Moein; Ghaedi, Kamran; Pourhossein, Meraj
2018-07-01
For the first time, we used molecular signaling pathway enrichment analysis to determine possible involvement of miR-126 and IRS-1 in neurotrophin pathway. In this prospective study, Validated and predicted targets (targetome) of miR-126 were collected following searching miRtarbase (http://mirtarbase.mbc.nctu.edu.tw/) and miRWalk 2.0 databases, respectively. Then, approximate expression of miR-126 targeting in Glioma tissue was examined using UniGene database (http://www.ncbi. nlm.nih.gov/unigene). In silico molecular pathway enrichment analysis was carried out by DAVID 6.7 database (http://david. abcc.ncifcrf.gov/) to explore which signaling pathway is related to miR-126 targeting and how miR-126 attributes to glioma development. MiR-126 exerts a variety of functions in cancer pathogenesis via suppression of expression of target gene including PI3K, KRAS, EGFL7, IRS-1 and VEGF. Our bioinformatic studies implementing DAVID database, showed the involvement of miR-126 target genes in several signaling pathways including cancer pathogenesis, neurotrophin functions, Glioma formation, insulin function, focal adhesion production, chemokine synthesis and secretion and regulation of the actin cytoskeleton. Taken together, we concluded that miR-126 enhances the formation of glioma cancer stem cell probably via down regulation of IRS-1 in neurotrophin signaling pathway. Copyright© by Royan Institute. All rights reserved.
Fungal genome resources at NCBI.
Robbertse, B; Tatusova, T
2011-09-01
The National Center for Biotechnology Information (NCBI) is well known for the nucleotide sequence archive, GenBank and sequence analysis tool BLAST. However, NCBI integrates many types of biomolecular data from variety of sources and makes it available to the scientific community as interactive web resources as well as organized releases of bulk data. These tools are available to explore and compare fungal genomes. Searching all databases with Fungi [organism] at http://www.ncbi.nlm.nih.gov/ is the quickest way to find resources of interest with fungal entries. Some tools though are resources specific and can be indirectly accessed from a particular database in the Entrez system. These include graphical viewers and comparative analysis tools such as TaxPlot, TaxMap and UniGene DDD (found via UniGene Homepage). Gene and BioProject pages also serve as portals to external data such as community annotation websites, BioGrid and UniProt. There are many different ways of accessing genomic data at NCBI. Depending on the focus and goal of research projects or the level of interest, a user would select a particular route for accessing genomic databases and resources. This review article describes methods of accessing fungal genome data and provides examples that illustrate the use of analysis tools.
Duan, Xinle; Wang, Kang; Su, Sha; Tian, Ruizheng; Li, Yuting; Chen, Maohua
2017-01-01
The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most abundant aphid pests of cereals and has a global distribution. Next-generation sequencing (NGS) is a rapid and efficient method for developing molecular markers. However, transcriptomic and genomic resources of R. padi have not been investigated. In this study, we used transcriptome information obtained by RNA-Seq to develop polymorphic microsatellites for investigating population genetics in this species. The transcriptome of R. padi was sequenced on an Illumina HiSeq 2000 platform. A total of 114.4 million raw reads with a GC content of 40.03% was generated. The raw reads were cleaned and assembled into 29,467 unigenes with an N50 length of 1,580 bp. Using several public databases, 82.47% of these unigenes were annotated. Of the annotated unigenes, 8,022 were assigned to COG pathways, 9,895 were assigned to GO pathways, and 14,586 were mapped to 257 KEGG pathways. A total of 7,936 potential microsatellites were identified in 5,564 unigenes, 60 of which were selected randomly and amplified using specific primer pairs. Fourteen loci were found to be polymorphic in the four R. padi populations. The transcriptomic data presented herein will facilitate gene discovery, gene analyses, and development of molecular markers for future studies of R. padi and other closely related aphid species.
Rebeca, Carballar-Lejarazú; Zhu, Xiaoli; Guo, Yajie; Lin, Qiannan; Hu, Xia; Wang, Rong; Liang, Guanghong; Guan, Xiong
2017-01-01
The pine aphid Cinara pinitabulaeformis Zhang et Zhang is the main pine pest in China, it causes pine needles to produce dense dew (honeydew) which can lead to sooty mold (black filamentous saprophytic ascomycetes). Although common chemical and physical strategies are used to prevent the disease caused by C. pinitabulaeformis Zhang et Zhang, new strategies based on biological and/or genetic approaches are promising to control and eradicate the disease. However, there is no information about genomics, proteomics or transcriptomics to allow the design of new control strategies for this pine aphid. We used next generation sequencing technology to sequence the transcriptome of C. pinitabulaeformis Zhang et Zhang and built a transcriptome database. We identified 80,259 unigenes assigned for Gene Ontology (GO) terms and information for a total of 11,609 classified unigenes was obtained in the Clusters of Orthologous Groups (COGs). A total of 10,806 annotated unigenes were analyzed to identify the represented biological pathways, among them 8,845 unigenes matched with 228 KEGG pathways. In addition, our data describe propagative viruses, nutrition-related genes, detoxification related molecules, olfactory related receptors, stressed-related protein, putative insecticide resistance genes and possible insecticide targets. Moreover, this study provides valuable information about putative insecticide resistance related genes and for the design of new genetic/biological based strategies to manage and control C. pinitabulaeformis Zhang et Zhang populations. PMID:28570707
Zheng, Yao; Wu, Wei; Hu, Gengdong; Zhao, Zhixiang; Meng, Shunlong; Fan, Limin; Song, Chao; Qiu, Liping; Chen, Jiazhang
2018-01-01
The GIFT (Genetically Improved Farmed Tilapia) tilapia, Oreochromis niloticus, is cultured widely for the production of freshwater fish in China. Streptococcosis, which is related to pathogenic infections, occurs frequently in juvenile and adult female GIFT individuals. Resveratrol (RES) has been used in feed to control these infections in freshwater tilapia. To address the effects of RES on tilapia, we used high-throughput RNA sequencing technology (RNA-Seq, HiSeq. 2500) to explore the global transcriptomic response and specific involvement of hepatic mRNA of juvenile O. niloticus fed with diets containing different concentrations of (0, 0.025, 0.05, and 0.1g/kg) RES. A total of > 24,513,018 clean reads were generated and then assembled into 23,244 unigenes. The unigenes were annotated by comparing them against non-redundant protein sequence (Nr), non-redundant nucleotide (Nt), Swiss-Prot, Pfam, Gene Ontology database (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and 12,578 unigenes were annotated to the GO database. A total of 1444 (0.025g/kg RES), 1526 (0.05g/kg RES), and 3135 (0.1g/kg RES) genes were detected as significant differentially expressed genes (DEGs), when compared with the controls. A total of 6 (0.025 vs 0.05g/kg RES), 19 (0.025 vs 0.1g/kg RES), and 124 (0.05 vs 0.1g/kg RES) genes were detected as significant DEGs. Six genes, including dnah7x1, sox4, fam46a, hsp90a, ddit4, and nmrk2, were associated with an immune response. These findings provide information on the innate immunity of GIFT and might contribute to the development of strategies for the effective management of diseases and long-term sustainability of O. niloticus culture. Copyright © 2017 Elsevier Inc. All rights reserved.
Wei, Dan-Dan; Chen, Er-Hu; Ding, Tian-Bo; Chen, Shi-Chun; Dou, Wei; Wang, Jin-Jun
2013-01-01
Background As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels. Methodology/Principal Findings We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61%) unigenes were matched to known proteins in the NCBI non-redundant (Nr) protein database. These unigenes were further functionally annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST) genes, 19 putative carboxyl/cholinesterase (CCE) genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp) genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future. Conclusions/Significance We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying insecticide resistance or environmental stress, and will facilitate studies on population genetics for psocids, as well as providing useful information for functional genomic research in the future. PMID:24244605
NASA Astrophysics Data System (ADS)
Sun, Xiujun; Li, Dongming; Liu, Zhihong; Zhou, Liqing; Wu, Biao; Yang, Aiguo
2017-10-01
The pen shell ( Atrina pectinata) is a large wedge-shaped bivalve, which belongs to family Pinnidae. Due to its large and nutritious adductor muscle, it is the popular seafood with high commercial value in Asia-Pacific countries. However, limiting genomic and transcriptomic data have hampered its genetic investigations. In this study, the transcriptome of A. pectinata was deeply sequenced using Illumina pair-end sequencing technology. After assembling, a total of 127263 unigenes were obtained. Functional annotation indicated that the highest percentage of unigenes (18.60%) was annotated on GO database, followed by 18.44% on PFAM database and 17.04% on NR database. There were 270 biological pathways matched with those in KEGG database. Furthermore, a total of 23452 potential simple sequence repeats (SSRs) were identified, of them the most abundant type was mono-nucleotide repeats (12902, 55.01%), which was followed by di-nucleotide (8132, 34.68%), tri-nucleotide (2010, 8.57%), tetra-nucleotide (401, 1.71%), and penta-nucleotide (7, 0.03%) repeats. Sixty SSRs were selected for validating and developing genic SSR markers, of them 23 showed polymorphism in a cultured population with the average observed and expected heterozygosities of 0.412 and 0.579, respectively. In this study, we established the first comprehensive transcript dataset of A. pectinata genes. Our results demonstrated that RNA-Seq is a fast and cost-effective method for genic SSR development in non-model species.
Zhao, Daqiu; Jiang, Yao; Ning, Chuanlong; Meng, Jiasong; Lin, Shasha; Ding, Wen; Tao, Jun
2014-08-19
Herbaceous peony (Paeonia lactiflora Pall.) is a traditional flower in China and a wedding attractive flower in worldwide. In its flower colour, yellow is the rarest which is ten times the price of the other colours. However, the breeding of new yellow P. lactiflora varieties using genetic engineering is severely limited due to the little-known biochemical and molecular mechanisms underlying its characteristic formation. In this study, two cDNA libraries generated from P. lactiflora chimaera with red outer-petal and yellow inner-petal were sequenced using an Illumina HiSeq™ 2000 platform. 66,179,398 and 65,481,444 total raw reads from red outer-petal and yellow inner-petal cDNA libraries were generated, which were assembled into 61,431 and 70,359 Unigenes with an average length of 628 and 617 nt, respectively. Moreover, 61,408 non-redundant All-unigenes were obtained, with 37,511 All-unigenes (61.08%) annotated in public databases. In addition, 6,345 All-unigenes were differentially expressed between the red outer-petal and yellow inner-petal, with 3,899 up-regulated and 2,446 down-regulated All-unigenes, and the flavonoid metabolic pathway related to colour development was identified using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of 10 candidate differentially expressed genes (DEGs) involved in the flavonoid metabolic pathway were examined, and flavonoids were qualitatively and quantitatively analysed. Numerous anthoxanthins (flavone and flavonol) and a few anthocyanins were detected in the yellow inner-petal, which were all lower than those in the red outer-petal due to the low expression levels of the phenylalanine ammonialyase gene (PlPAL), flavonol synthase gene (PlFLS), dihydroflavonol 4-reductase gene (PlDFR), anthocyanidin synthase gene (PlANS), anthocyanidin 3-O-glucosyltransferase gene (Pl3GT) and anthocyanidin 5-O-glucosyltransferase gene (Pl5GT). Transcriptome sequencing (RNA-Seq) analysis based on the high throughput sequencing technology was an efficient approach to identify critical genes in P. lactiflora and other non-model plants. The flavonoid metabolic pathway and glucide metabolic pathway were identified as relatived yellow formation in P. lactiflora, PlPAL, PlFLS, PlDFR, PlANS, Pl3GT and Pl5GT were selected as potential candidates involved in flavonoid metabolic pathway, which inducing inhibition of anthocyanin biosynthesis mediated yellow formation in P. lactiflora. This study could lay a theoretical foundation for breeding new yellow P. lactiflora varieties.
Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine
Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson
2011-01-01
Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...
A method for the further assembly of targeted unigenes in a transcriptome after assembly by Trinity
Xiao, Xinlong; Ma, Jinbiao; Sun, Yufang; Yao, Yinan
2015-01-01
RNA-sequencing has been widely used to obtain high throughput transcriptome sequences in various species, but the assembly of a full set of complete transcripts is still a significant challenge. Judging by the number of expected transcripts and assembled unigenes in a transcriptome library, we believe that some unigenes could be reassembled. In this study, using the nitrate transporter (NRT) gene family and phosphate transporter (PHT) gene family in Salicornia europaea as examples, we introduced an approach to further assemble unigenes found in transcriptome libraries which had been previously generated by Trinity. To find the unigenes of a particular transcript that contained gaps, we respectively selected 16 NRT candidate unigene pairs and 12 PHT candidate unigene pairs for which the two unigenes had the same annotations, the same expression patterns among various RNA-seq samples, and different positions of the proteins coded as mapped to a reference protein. To fill a gap between the two unigenes, PCR was performed using primers that mapped to the two unigenes and the PCR products were sequenced, which demonstrated that 5 unigene pairs of NRT and 3 unigene pairs of PHT could be reassembled when the gaps were filled using the corresponding PCR product sequences. This fast and simple method will reduce the redundancy of targeted unigenes and allow acquisition of complete coding sequences (CDS). PMID:26528307
Sun, Yepeng; Wang, Fawei; Wang, Nan; Dong, Yuanyuan; Liu, Qi; Zhao, Lei; Chen, Huan; Liu, Weican; Yin, Hailong; Zhang, Xiaomei; Yuan, Yanxi; Li, Haiyan
2013-01-01
Background Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. Results We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO3). A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of “log2 Ratio ≥1”, there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. Conclusions This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and constituted a database for future studies. PMID:23365637
Xu, Xing-Li; Cheng, Tian-Yin; Yang, Hu; Yan, Fen; Yang, Ya
2015-06-01
Saliva plays an important role in feeding and pathogen transmission, identification and analysis of tick salivary gland (SG) proteins is considered as a hot spot in anti-tick researching area. Herein, we present the first description of SG transcriptome of Haemaphysalis flava using next-generation sequencing (NGS). A total of over 143 million high-quality reads were assembled into 54,357 unigenes, of which 20,145 (37.06%) had significant similarities to proteins in the Swiss-Prot database. 13,513 annotated sequences were associated with GO terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 14,280 unigenes were assigned to 279 KEGG pathways in total. Reads per kb per million reads (RPKM) analysis showed that there were 3035 down-regulated unigenes and 2260 up-regulated unigenes in the engorged ticks (ET) compared with the semi-engorged one (SET). Several important genes are associated with blood feeding and ingestion as secreted salivary proteins, concluding cysteine, longipain, 4D8, calreticulin, metalloproteases, serine protease inhibitor, enolase, heat shock protein and AV422 in SG, were identified. The qRT-PCR results confirmed that patterns of these genes (except for the longipain gene) expression were consistent with RNA-seq results. This de novo assembly of SG transcriptome of H. flava not only provides more chance for screening and cloning functional genes, but also forms a solid basis for further insight into the changes of salivary proteins during blood-feeding. Copyright © 2015 Elsevier B.V. All rights reserved.
Transcriptome analysis of sika deer in China.
Jia, Bo-Yin; Ba, Heng-Xing; Wang, Gui-Wu; Yang, Ying; Cui, Xue-Zhe; Peng, Ying-Hua; Zheng, Jun-Jun; Xing, Xiu-Mei; Yang, Fu-He
2016-10-01
Sika deer is of great commercial value because their antlers are used in tonics and alternative medicine and their meat is healthy and delicious. The goal of this study was to generate transcript sequences from sika deer for functional genomic analyses and to identify the transcripts that demonstrate tissue-specific, age-dependent differential expression patterns. These sequences could enhance our understanding of the molecular mechanisms underlying sika deer growth and development. In the present study, we performed de novo transcriptome assembly and profiling analysis across ten tissue types and four developmental stages (juvenile, adolescent, adult, and aged) of sika deer, using Illumina paired-end tag (PET) sequencing technology. A total of 1,752,253 contigs with an average length of 799 bp were generated, from which 1,348,618 unigenes with an average length of 590 bp were defined. Approximately 33.2 % of these (447,931 unigenes) were then annotated in public protein databases. Many sika deer tissue-specific, age-dependent unigenes were identified. The testes have the largest number of tissue-enriched unigenes, and some of them were prone to develop new functions for other tissues. Additionally, our transcriptome revealed that the juvenile-adolescent transition was the most complex and important stage of the sika deer life cycle. The present work represents the first multiple tissue transcriptome analysis of sika deer across four developmental stages. The generated data not only provide a functional genomics resource for future biological research on sika deer but also guide the selection and manipulation of genes controlling growth and development.
Guo, Wei-Li; Chen, Ru-Gang; Gong, Zhen-Hui; Yin, Yan-Xu; Li, Da-Wei
2013-01-01
Low temperature is one of the major factors limiting pepper (Capsicum annuum L.) production during winter and early spring in non-tropical regions. Application of exogenous abscisic acid (ABA) effectively alleviates the symptoms of chilling injury, such as wilting and formation of necrotic lesions on pepper leaves; however, the underlying molecular mechanism is not understood. The aim of this study was to identify genes that are differentially up- or downregulated in ABA-pretreated hot pepper seedlings incubated at 6°C for 48 h, using a suppression subtractive hybridization (SSH) method. A total of 235 high-quality ESTs were isolated, clustered and assembled into a collection of 73 unigenes including 18 contigs and 55 singletons. A total of 37 unigenes (50.68%) showed similarities to genes with known functions in the non-redundant database; the other 36 unigenes (49.32%) showed low similarities or unknown functions. Gene ontology analysis revealed that the 37 unigenes could be classified into nine functional categories. The expression profiles of 18 selected genes were analyzed using quantitative RT-PCR; the expression levels of 10 of these genes were at least two-fold higher in the ABA-pretreated seedlings under chilling stress than water-pretreated (control) plants under chilling stress. In contrast, the other eight genes were downregulated in ABA-pretreated seedlings under chilling stress, with expression levels that were one-third or less of the levels observed in control seedlings under chilling stress. These results suggest that ABA can positively and negatively regulate genes in pepper plants under chilling stress.
Jia, Zhiying; Wang, Qiai; Wu, Kaikai; Wei, Zhenlin; Zhou, Zunchun; Liu, Xiaolin
2017-09-01
Strongylocentrotus nudus is an edible sea urchin, mainly harvested in China. Correlation studies indicated that S. nudus with larger diameter have a prolonged marketing time and better palatability owing to their precocious gonads and extended maturation process. However, the molecular mechanism underlying this phenomenon is still unknown. Here, transcriptome sequencing was applied to study the ovaries of adult S. nudus with different shell diameters to explore the possible mechanism. In this study, four independent cDNA libraries were constructed, including two from the big size urchins and two from the small ones using a HiSeq™2500 platform. A total of 88,581 unigenes were acquired with a mean length of 1354bp, of which 66,331 (74.88%) unigenes could be annotated using six major publicly available databases. Comparative analysis revealed that 353 unigenes were differentially expressed (with log2(ratio)≥1, FDR≤0.001) between the two groups. Of these, 20 differentially expressed genes (DEGs) were selected to confirm the accuracy of RNA-seq data by quantitative real-time RT-PCR. Furthermore, gene ontology and KEGG pathway enrichment analyses were performed to find the putative genes and pathways related to ovarian maturity. Eight unigenes were identified as significant DEGs involved in reproduction related pathways; these included Mos, Cdc20, Rec8, YP30, cytochrome P450 2U1, ovoperoxidase, proteoliaisin, and rendezvin. Our research fills the gap in the studies on the S. nudus ovaries using transcriptome analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus.
An, Hong; Yang, Zonghui; Yi, Bin; Wen, Jing; Shen, Jinxiong; Tu, Jinxing; Ma, Chaozhi; Fu, Tingdong
2014-04-03
The Polima (pol) system of cytoplasmic male sterility (CMS) and its fertility restoration gene Rfp have been used in hybrid breeding in Brassica napus, which has greatly improved the yield of rapeseed. However, the mechanism of the male sterility transition in pol CMS remains to be determined. To investigate the transcriptome during the male sterility transition in pol CMS, a near-isogenic line (NIL) of pol CMS was constructed. The phenotypic features and sterility stage were confirmed by anatomical analysis. Subsequently, we compared the genomic expression profiles of fertile and sterile young flower buds by RNA-Seq. A total of 105,481,136 sequences were successfully obtained. These reads were assembled into 112,770 unigenes, which composed the transcriptome of the bud. Among these unigenes, 72,408 (64.21%) were annotated using public protein databases and classified into functional clusters. In addition, we investigated the changes in expression of the fertile and sterile buds; the RNA-seq data showed 1,148 unigenes had significantly different expression and they were mainly distributed in metabolic and protein synthesis pathways. Additionally, some unigenes controlling anther development were dramatically down-regulated in sterile buds. These results suggested that an energy deficiency caused by orf224/atp6 may inhibit a series of genes that regulate pollen development through nuclear-mitochondrial interaction. This results in the sterility of pol CMS by leading to the failure of sporogenous cell differentiation. This study may provide assistance for detailed molecular analysis and a better understanding of pol CMS in B. napus.
Tong, Jun; Dong, Yanfang; Xu, Dongyun; Mao, Jing; Zhou, Yuan
2017-01-01
Rhododendron spp. is an important ornamental species that is widely cultivated for landscape worldwide. Heat stress is a major obstacle for its cultivation in south China. Previous studies on rhododendron principally focused on its physiological and biochemical processes, which are involved in a series of stress tolerance. However, molecular or genetic properties of rhododendron’s response to heat stress are still poorly understood. The phenotype and chlorophyll fluorescence kinetics parameters of four rhododendron cultivars were compared under normal or heat stress conditions, and a cultivar with highest heat tolerance, “Yanzhimi” (R. obtusum) was selected for transcriptome sequencing. A total of 325,429,240 high quality reads were obtained and assembled into 395,561 transcripts and 92,463 unigenes. Functional annotation showed that 38,724 unigenes had sequence similarity to known genes in at least one of the proteins or nucleotide databases used in this study. These 38,724 unigenes were categorized into 51 functional groups based on Gene Ontology classification and were blasted to 24 known cluster of orthologous groups. A total of 973 identified unigenes belonged to 57 transcription factor families, including the stress-related HSF, DREB, ZNF, and NAC genes. Photosynthesis was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes pathway, and the changed expression pattern was illustrated. The key pathways and signaling components that contribute to heat tolerance in rhododendron were revealed. These results provide a potentially valuable resource that can be used for heat-tolerance breeding. PMID:29059200
Zhou, Rongqiong; Xia, Qingyou; Huang, Hancheng; Lai, Min; Wang, Zhenxin
2011-10-01
Toxocara canis is a widespread intestinal nematode parasite of dogs, which can also cause disease in humans. We employed an expressed sequence tag (EST) strategy in order to study gene-expression including development, digestion and reproduction of T. canis. ESTs provided a rapid way to identify genes, particularly in organisms for which we have very little molecular information. In this study, a cDNA library was constructed from a female adult of T. canis and 215 high-quality ESTs from 5'-ends of the cDNA clones representing 79 unigenes were obtained. The titer of the primary cDNA library was 1.83×10(6)pfu/mL with a recombination rate of 99.33%. Most of the sequences ranged from 300 to 900bp with an average length of 656bp. Cluster analysis of these ESTs allowed identification of 79 unique sequences containing 28 contigs and 51 singletons. BLASTX searches revealed that 18 unigenes (22.78% of the total) or 70 ESTs (32.56% of the total) were novel genes that had no significant matches to any protein sequences in the public databases. The rest of the 61 unigenes (77.22% of the total) or 145 ESTs (67.44% of the total) were closely matched to the known genes or sequences deposited in the public databases. These genes were classified into seven groups based on their known or putative biological functions. We also confirmed the gene expression patterns of several immune-related genes using RT-PCR examination. This work will provide a valuable resource for the further investigations in the stage-, sex- and tissue-specific gene transcription or expression. Copyright © 2011. Published by Elsevier Inc.
Transcriptome Sequencing and Positive Selected Genes Analysis of Bombyx mandarina
Wu, Yuqian; Long, Renwen; Liu, Chun; Xia, Qingyou
2015-01-01
The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG) and posterior silk gland (PSG). Three sericin genes (sericin 1, sericin 2, and sericin 3) were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25) were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs) and 361 insertion-deletions (INDELs) were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research. PMID:25806526
Pleurochrysome: A Web Database of Pleurochrysis Transcripts and Orthologs Among Heterogeneous Algae
Fujiwara, Shoko; Takatsuka, Yukiko; Hirokawa, Yasutaka; Tsuzuki, Mikio; Takano, Tomoyuki; Kobayashi, Masaaki; Suda, Kunihiro; Asamizu, Erika; Yokoyama, Koji; Shibata, Daisuke; Tabata, Satoshi; Yano, Kentaro
2016-01-01
Pleurochrysis is a coccolithophorid genus, which belongs to the Coccolithales in the Haptophyta. The genus has been used extensively for biological research, together with Emiliania in the Isochrysidales, to understand distinctive features between the two coccolithophorid-including orders. However, molecular biological research on Pleurochrysis such as elucidation of the molecular mechanism behind coccolith formation has not made great progress at least in part because of lack of comprehensive gene information. To provide such information to the research community, we built an open web database, the Pleurochrysome (http://bioinf.mind.meiji.ac.jp/phapt/), which currently stores 9,023 unique gene sequences (designated as UNIGENEs) assembled from expressed sequence tag sequences of P. haptonemofera as core information. The UNIGENEs were annotated with gene sequences sharing significant homology, conserved domains, Gene Ontology, KEGG Orthology, predicted subcellular localization, open reading frames and orthologous relationship with genes of 10 other algal species, a cyanobacterium and the yeast Saccharomyces cerevisiae. This sequence and annotation information can be easily accessed via several search functions. Besides fundamental functions such as BLAST and keyword searches, this database also offers search functions to explore orthologous genes in the 12 organisms and to seek novel genes. The Pleurochrysome will promote molecular biological and phylogenetic research on coccolithophorids and other haptophytes by helping scientists mine data from the primary transcriptome of P. haptonemofera. PMID:26746174
Azolla domestication towards a biobased economy?
Brouwer, Paul; Bräutigam, Andrea; Külahoglu, Canan; Tazelaar, Anne O E; Kurz, Samantha; Nierop, Klaas G J; van der Werf, Adrie; Weber, Andreas P M; Schluepmann, Henriette
2014-05-01
Due to its phenomenal growth requiring neither nitrogen fertilizer nor arable land and its biomass composition, the mosquito fern Azolla is a candidate crop to yield food, fuels and chemicals sustainably. To advance Azolla domestication, we research its dissemination, storage and transcriptome. Methods for dissemination, cross-fertilization and cryopreservation of the symbiosis Azolla filiculoides-Nostoc azollae are tested based on the fern spores. To study molecular processes in Azolla including spore induction, a database of 37 649 unigenes from RNAseq of microsporocarps, megasporocarps and sporophytes was assembled, then validated. Spores obtained year-round germinated in vitro within 26 d. In vitro fertilization rates reached 25%. Cryopreservation permitted storage for at least 7 months. The unigene database entirely covered central metabolism and to a large degree covered cellular processes and regulatory networks. Analysis of genes engaged in transition to sexual reproduction revealed a FLOWERING LOCUS T-like protein in ferns with special features induced in sporulating Azolla fronds. Although domestication of a fern-cyanobacteria symbiosis may seem a daunting task, we conclude that the time is ripe and that results generated will serve to more widely access biochemicals in fern biomass for a biobased economy. No claim to original European Union works. New Phytologist © 2014 New Phytologist Trust.
Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi
2016-01-01
Kenaf (Hibiscus cannabinus L.) is an economically important natural fiber crop grown worldwide. However, only 20 expressed tag sequences (ESTs) for kenaf are available in public databases. The aim of this study was to develop large-scale simple sequence repeat (SSR) markers to lay a solid foundation for the construction of genetic linkage maps and marker-assisted breeding in kenaf. We used Illumina paired-end sequencing technology to generate new EST-simple sequences and MISA software to mine SSR markers. We identified 71,318 unigenes with an average length of 1143 nt and annotated these unigenes using four different protein databases. Overall, 9324 complementary pairs were designated as EST-SSR markers, and their quality was validated using 100 randomly selected SSR markers. In total, 72 primer pairs reproducibly amplified target amplicons, and 61 of these primer pairs detected significant polymorphism among 28 kenaf accessions. Thus, in this study, we have developed large-scale SSR markers for kenaf, and this new resource will facilitate construction of genetic linkage maps, investigation of fiber growth and development in kenaf, and also be of value to novel gene discovery and functional genomic studies. PMID:26960153
Fan, R; Ling, P; Hao, C Y; Li, F P; Huang, L F; Wu, B D; Wu, H S
2015-10-19
Black pepper is a perennial climbing vine. It is widely cultivated because its berries can be utilized not only as a spice in food but also for medicinal use. This study aimed to construct a standardized, high-quality cDNA library to facilitated identification of new Piper hainanense transcripts. For this, 262 unigenes were used to generate raw reads. The average length of these 262 unigenes was 774.8 bp. Of these, 94 genes (35.9%) were newly identified, according to the NCBI protein database. Thus, identification of new genes may broaden the molecular knowledge of P. hainanense on the basis of Clusters of Orthologous Groups and Gene Ontology categories. In addition, certain basic genes linked to physiological processes, which can contribute to disease resistance and thereby to the breeding of black pepper. A total of 26 unigenes were found to be SSR markers. Dinucleotide SSR was the main repeat motif, accounting for 61.54%, followed by trinucleotide SSR (23.07%). Eight primer pairs successfully amplified DNA fragments and detected significant amounts of polymorphism among twenty-one piper germplasm. These results present a novel sequence information of P. hainanense, which can serve as the foundation for further genetic research on this species.
Li, Xinguo; Wu, Harry X; Dillon, Shannon K; Southerton, Simon G
2009-01-01
Background Wood is a major renewable natural resource for the timber, fibre and bioenergy industry. Pinus radiata D. Don is the most important commercial plantation tree species in Australia and several other countries; however, genomic resources for this species are very limited in public databases. Our primary objective was to sequence a large number of expressed sequence tags (ESTs) from genes involved in wood formation in radiata pine. Results Six developing xylem cDNA libraries were constructed from earlywood and latewood tissues sampled at juvenile (7 yrs), transition (11 yrs) and mature (30 yrs) ages, respectively. These xylem tissues represent six typical development stages in a rotation period of radiata pine. A total of 6,389 high quality ESTs were collected from 5,952 cDNA clones. Assembly of 5,952 ESTs from 5' end sequences generated 3,304 unigenes including 952 contigs and 2,352 singletons. About 97.0% of the 5,952 ESTs and 96.1% of the unigenes have matches in the UniProt and TIGR databases. Of the 3,174 unigenes with matches, 42.9% were not assigned GO (Gene Ontology) terms and their functions are unknown or unclassified. More than half (52.1%) of the 5,952 ESTs have matches in the Pfam database and represent 772 known protein families. About 18.0% of the 5,952 ESTs matched cell wall related genes in the MAIZEWALL database, representing all 18 categories, 91 of all 174 families and possibly 557 genes. Fifteen cell wall-related genes are ranked in the 30 most abundant genes, including CesA, tubulin, AGP, SAMS, actin, laccase, CCoAMT, MetE, phytocyanin, pectate lyase, cellulase, SuSy, expansin, chitinase and UDP-glucose dehydrogenase. Based on the PlantTFDB database 41 of the 64 transcription factor families in the poplar genome were identified as being involved in radiata pine wood formation. Comparative analysis of GO term abundance revealed a distinct transcriptome in juvenile earlywood formation compared to other stages of wood development. Conclusion The first large scale genomic resource in radiata pine was generated from six developing xylem cDNA libraries. Cell wall-related genes and transcription factors were identified. Juvenile earlywood has a distinct transcriptome, which is likely to contribute to the undesirable properties of juvenile wood in radiata pine. The publicly available resource of radiata pine will also be valuable for gene function studies and comparative genomics in forest trees. PMID:19159482
Zhang, Jia-Jin; Shu, Li-Ping; Zhang, Wei; Long, Guang-Qiang; Liu, Tao; Meng, Zheng-Gui; Chen, Jun-Wen; Yang, Sheng-Chao
2014-01-01
Background Erigeron breviscapus (Vant.) Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable. Principal Findings Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37%) were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors) were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR) were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40%) primer pairs were successfully amplified and 19 (52.78%) primer pairs exhibited polymorphisms. Conclusion Using next generation sequencing (NGS) technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb. PMID:24956277
Huang, Lin; Li, Guiyang; Mo, Zhaolan; Xiao, Peng; Li, Jie; Huang, Jie
2015-01-01
Background Japanese flounder (Paralichthys olivaceus) is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity. Methodology/Principal Findings A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14%) were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45%) unigenes were categorized into three Gene Ontology groups, 19,547 (91.38%) were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78%) were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways. Conclusions/Significance The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder. PMID:25723398
Gene Discovery through Transcriptome Sequencing for the Invasive Mussel Limnoperna fortunei
Uliano-Silva, Marcela; Americo, Juliana Alves; Brindeiro, Rodrigo; Dondero, Francesco; Prosdocimi, Francisco; de Freitas Rebelo, Mauro
2014-01-01
The success of the Asian bivalve Limnoperna fortunei as an invader in South America is related to its high acclimation capability. It can inhabit waters with a wide range of temperatures and salinity and handle long-term periods of air exposure. We describe the transcriptome of L. fortunei aiming to give a first insight into the phenotypic plasticity that allows non-native taxa to become established and widespread. We sequenced 95,219 reads from five main tissues of the mussel L. fortunei using Roche’s 454 and assembled them to form a set of 84,063 unigenes (contigs and singletons) representing partial or complete gene sequences. We annotated 24,816 unigenes using a BLAST sequence similarity search against a NCBI nr database. Unigenes were divided into 20 eggNOG functional categories and 292 KEGG metabolic pathways. From the total unigenes, 1,351 represented putative full-length genes of which 73.2% were functionally annotated. We described the first partial and complete gene sequences in order to start understanding bivalve invasiveness. An expansion of the hsp70 gene family, seen also in other bivalves, is present in L. fortunei and could be involved in its adaptation to extreme environments, e.g. during intertidal periods. The presence of toll-like receptors gives a first insight into an immune system that could be more complex than previously assumed and may be involved in the prevention of disease and extinction when population densities are high. Finally, the apparent lack of special adaptations to extremely low O2 levels is a target worth pursuing for the development of a molecular control approach. PMID:25047650
Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.
Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong
2014-05-01
We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.
Gong, Zhen-Hui; Yin, Yan-Xu; Li, Da-Wei
2013-01-01
Low temperature is one of the major factors limiting pepper (Capsicum annuum L.) production during winter and early spring in non-tropical regions. Application of exogenous abscisic acid (ABA) effectively alleviates the symptoms of chilling injury, such as wilting and formation of necrotic lesions on pepper leaves; however, the underlying molecular mechanism is not understood. The aim of this study was to identify genes that are differentially up- or downregulated in ABA-pretreated hot pepper seedlings incubated at 6°C for 48 h, using a suppression subtractive hybridization (SSH) method. A total of 235 high-quality ESTs were isolated, clustered and assembled into a collection of 73 unigenes including 18 contigs and 55 singletons. A total of 37 unigenes (50.68%) showed similarities to genes with known functions in the non-redundant database; the other 36 unigenes (49.32%) showed low similarities or unknown functions. Gene ontology analysis revealed that the 37 unigenes could be classified into nine functional categories. The expression profiles of 18 selected genes were analyzed using quantitative RT-PCR; the expression levels of 10 of these genes were at least two-fold higher in the ABA-pretreated seedlings under chilling stress than water-pretreated (control) plants under chilling stress. In contrast, the other eight genes were downregulated in ABA-pretreated seedlings under chilling stress, with expression levels that were one-third or less of the levels observed in control seedlings under chilling stress. These results suggest that ABA can positively and negatively regulate genes in pepper plants under chilling stress. PMID:23825555
Sun, Haiyue; Liu, Yushan; Gai, Yuzhuo; Geng, Jinman; Chen, Li; Liu, Hongdi; Kang, Limin; Tian, Youwen; Li, Yadong
2015-09-02
Cranberries (Vaccinium macrocarpon Ait.), renowned for their excellent health benefits, are an important berry crop. Here, we performed transcriptome sequencing of one cranberry cultivar, from fruits at two different developmental stages, on the Illumina HiSeq 2000 platform. Our main goals were to identify putative genes for major metabolic pathways of bioactive compounds and compare the expression patterns between white fruit (W) and red fruit (R) in cranberry. In this study, two cDNA libraries of W and R were constructed. Approximately 119 million raw sequencing reads were generated and assembled de novo, yielding 57,331 high quality unigenes with an average length of 739 bp. Using BLASTx, 38,460 unigenes were identified as putative homologs of annotated sequences in public protein databases, including NCBI NR, NT, Swiss-Prot, KEGG, COG and GO. Of these, 21,898 unigenes mapped to 128 KEGG pathways, with the metabolic pathways, secondary metabolites, glycerophospholipid metabolism, ether lipid metabolism, starch and sucrose metabolism, purine metabolism, and pyrimidine metabolism being well represented. Among them, many candidate genes were involved in flavonoid biosynthesis, transport and regulation. Furthermore, digital gene expression (DEG) analysis identified 3,257 unigenes that were differentially expressed between the two fruit developmental stages. In addition, 14,473 simple sequence repeats (SSRs) were detected. Our results present comprehensive gene expression information about the cranberry fruit transcriptome that could facilitate our understanding of the molecular mechanisms of fruit development in cranberries. Although it will be necessary to validate the functions carried out by these genes, these results could be used to improve the quality of breeding programs for the cranberry and related species.
NASA Astrophysics Data System (ADS)
Shi, Pengju; Dong, Shihang; Zhang, Huanjun; Wang, Peiliang; Niu, Zhuang; Fang, Yan
2018-03-01
Polybrominated diphenyl ethers (PBDEs) are ubiquitous global pollutants, which are known to have immune, development, reproduction, and endocrine toxicity in aquatic organisms, including bivalves. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is the predominant PBDE congener detected in environmental samples and the tissues of organisms. However, the mechanism of its toxicity remains unclear. In this study, high-throughput sequencing was performed using the clam Mactra veneriformis, a good model for toxicological research, to clarify the transcriptomic response to BDE-47 and the mechanism responsible for the toxicity of BDE-47. The clams were exposed to 5 μg/L BDE-47 for 3 days and the digestive glands were sampled for high-throughput sequencing analysis. We obtained 127 648, 154 225, and 124 985 unigenes by de novo assembly of the control group reads (CG), BDE-47 group reads (BDEG), and control and BDE-47 reads (CG & BDEG), respectively. We annotated 32 176 unigenes from the CG & BDEG reads using the NR database. We categorized 24 401 unigenes into 25 functional COG clusters and 21 749 unigenes were assigned to 259 KEGG pathways. Moreover, 17 625 differentially expressed genes (DEGs) were detected, with 10 028 upregulated DEGs and 7 597 downregulated DEGs. Functional enrichment analysis showed that the DEGs were involved with detoxification, antioxidant defense, immune response, apoptosis, and other functions. The mRNA expression levels of 26 DEGs were verified by quantitative real-time PCR, which demonstrated the high agreement between the two methods. These results provide a good basis for future research using the M. veneriformis model into the mechanism of PBDEs toxicity and molecular biomarkers for BDE-47 pollution. The regulation and interaction of the DEGs would be studied in the future for clarifying the mechanism of PBDEs toxicity.
Yan, Xiuqin; Zhang, Xue; Lu, Min; He, Yong; An, Huaming
2015-04-25
Rosa roxburghii Tratt. is a well-known ornamental rose species native to China. In addition, the fruits of this species are valued for their nutritional and medicinal characteristics, especially their high ascorbic acid (AsA) levels. Nevertheless, AsA biosynthesis in R. roxburghii fruit has not been explored in detail because of a lack of genomic resources for this species. High-throughput transcriptomic sequencing generating large volumes of transcript sequence data can aid in gene discovery and molecular marker development. In this study, we generated more than 53 million clean reads using Illumina paired-end sequencing technology. De novo assembly yielded 106,590 unigenes, with an average length of 343 bp. On the basis of sequence similarity to known proteins, 9301 and 2393 unigenes were classified into Gene Ontology and Clusters of Orthologous Group categories, respectively. There were 7480 unigenes assigned to 124 pathways in the Kyoto Encyclopedia of Gene and Genome pathway database. BLASTx searches identified 498 unique putative transcripts encoding various transcription factors, some known to regulate fruit development. qRT-PCR validated the expressions of most of the genes encoding the main enzymes involved in ascorbate biosynthesis. In addition, 9131 potential simple sequence repeat (SSR) loci were identified among the unigenes. One hundred and two primer pairs were synthesized and 71 pairs produced an amplification product during initial screening. Among the amplified products, 30 were polymorphic in the 16 R. roxburghii germplasms tested. Our study was the first to produce a large volume of transcriptome data from R. roxburghii. The resulting sequence collection is a valuable resource for gene discovery and marker-assisted selective breeding in this rose species. Copyright © 2015 Elsevier B.V. All rights reserved.
Jiang, Ni-Hao; Zhang, Guang-Hui; Zhang, Jia-Jin; Shu, Li-Ping; Zhang, Wei; Long, Guang-Qiang; Liu, Tao; Meng, Zheng-Gui; Chen, Jun-Wen; Yang, Sheng-Chao
2014-01-01
Erigeron breviscapus (Vant.) Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable. Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37%) were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors) were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR) were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40%) primer pairs were successfully amplified and 19 (52.78%) primer pairs exhibited polymorphisms. Using next generation sequencing (NGS) technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb.
Xue, Shuxia; Liu, Yichen; Zhang, Yichen; Sun, Yan; Geng, Xuyun; Sun, Jinsheng
2013-01-01
White spot syndrome virus (WSSV) is a causative pathogen found in most shrimp farming areas of the world and causes large economic losses to the shrimp aquaculture. The mechanism underlying the molecular pathogenesis of the highly virulent WSSV remains unknown. To better understand the virus-host interactions at the molecular level, the transcriptome profiles in hemocytes of unchallenged and WSSV-challenged shrimp (Litopenaeus vannamei) were compared using a short-read deep sequencing method (Illumina). RNA-seq analysis generated more than 25.81 million clean pair end (PE) reads, which were assembled into 52,073 unigenes (mean size = 520 bp). Based on sequence similarity searches, 23,568 (45.3%) genes were identified, among which 6,562 and 7,822 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 14,941 (63.4%) unigenes to 240 KEGG pathways. Among all the annotated unigenes, 1,179 were associated with immune-related genes. Digital gene expression (DGE) analysis revealed that the host transcriptome profile was slightly changed in the early infection (5 hours post injection) of the virus, while large transcriptional differences were identified in the late infection (48 hpi) of WSSV. The differentially expressed genes mainly involved in pattern recognition genes and some immune response factors. The results indicated that antiviral immune mechanisms were probably involved in the recognition of pathogen-associated molecular patterns. This study provided a global survey of host gene activities against virus infection in a non-model organism, pacific white shrimp. Results can contribute to the in-depth study of candidate genes in white shrimp, and help to improve the current understanding of host-pathogen interactions.
Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.
Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin
2013-01-01
Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.
Zhang, Yanzhao; Xu, Shuzhen; Cheng, Yanwei; Peng, Zhengfeng; Han, Jianming
2018-01-01
Red leaf lettuce ( Lactuca sativa L.) is popular due to its high anthocyanin content, but poor leaf coloring often occurs under low light intensity. In order to reveal the mechanisms of anthocyanins affected by light intensity, we compared the transcriptome of L. sativa L. var. capitata under light intensities of 40 and 100 μmol m -2 s -1 . A total of 62,111 unigenes were de novo assembled with an N50 of 1,681 bp, and 48,435 unigenes were functionally annotated in public databases. A total of 3,899 differentially expressed genes (DEGs) were detected, of which 1,377 unigenes were up-regulated and 2,552 unigenes were down-regulated in the high light samples. By Kyoto Encyclopedia of Genes and Genomes enrichment analysis, the DEGs were significantly enriched in 14 pathways. Using gene annotation and phylogenetic analysis, we identified seven anthocyanin structural genes, including CHS , CHI , F3H , F3'H , DFR , ANS , and 3GT , and two anthocyanin transport genes, GST and MATE . In terms of anthocyanin regulatory genes, five MYBs and one bHLH gene were identified. An HY5 gene was discovered, which may respond to light-signaling and regulate anthocyanin structural genes. These genes showed a log2FC of 2.7-9.0 under high irradiance, and were validated using quantitative real-time-PCR. In conclusion, our results indicated transcriptome variance in red leaf lettuce under low and high light intensity, and observed a anthocyanin biosynthesis and regulation pattern. The data should further help to unravel the molecular mechanisms of anthocyanins influenced by light intensity.
Nishimura, Osamu; Hirao, Yukako; Tarui, Hiroshi; Agata, Kiyokazu
2012-06-29
Planarians are considered to be among the extant animals close to one of the earliest groups of organisms that acquired a central nervous system (CNS) during evolution. Planarians have a bilobed brain with nine lateral branches from which a variety of external signals are projected into different portions of the main lobes. Various interneurons process different signals to regulate behavior and learning/memory. Furthermore, planarians have robust regenerative ability and are attracting attention as a new model organism for the study of regeneration. Here we conducted large-scale EST analysis of the head region of the planarian Dugesia japonica to construct a database of the head-region transcriptome, and then performed comparative analyses among related species. A total of 54,752 high-quality EST reads were obtained from a head library of the planarian Dugesia japonica, and 13,167 unigene sequences were produced by de novo assembly. A new method devised here revealed that proteins related to metabolism and defense mechanisms have high flexibility of amino-acid substitutions within the planarian family. Eight-two CNS-development genes were found in the planarian (cf. C. elegans 3; chicken 129). Comparative analysis revealed that 91% of the planarian CNS-development genes could be mapped onto the schistosome genome, but one-third of these shared genes were not expressed in the schistosome. We constructed a database that is a useful resource for comparative planarian transcriptome studies. Analysis comparing homologous genes between two planarian species showed that the potential of genes is important for accumulation of amino-acid substitutions. The presence of many CNS-development genes in our database supports the notion that the planarian has a fundamental brain with regard to evolution and development at not only the morphological/functional, but also the genomic, level. In addition, our results indicate that the planarian CNS-development genes already existed before the divergence of planarians and schistosomes from their common ancestor.
2014-01-01
Background Syntrichia caninervis is a desiccation-tolerant moss and the dominant bryophyte of the Biological Soil Crusts (BSCs) found in the Mojave and Gurbantunggut deserts. Next generation high throughput sequencing technologies offer an efficient and economic choice for characterizing non-model organism transcriptomes with little or no prior molecular information available. Results In this study, we employed next generation, high-throughput, Illumina RNA-Seq to analyze the poly-(A) + mRNA from hydrated, dehydrating and desiccated S. caninervis gametophores. Approximately 58.0 million paired-end short reads were obtained and 92,240 unigenes were assembled with an average size of 493 bp, N50 value of 662 bp and a total size of 45.48 Mbp. Sequence similarity searches against five public databases (NR, Swiss-Prot, COSMOSS, KEGG and COG) found 54,125 unigenes (58.7%) with significant similarity to an existing sequence (E-value ≤ 1e-5) and could be annotated. Gene Ontology (GO) annotation assigned 24,183 unigenes to the three GO terms: Biological Process, Cellular Component or Molecular Function. GO comparison between P. patens and S. caninervis demonstrated similar sequence enrichment across all three GO categories. 29,370 deduced polypeptide sequences were assigned Pfam domain information and categorized into 4,212 Pfam domains/families. Using the PlantTFDB, 778 unigenes were predicted to be involved in the regulation of transcription and were classified into 49 transcription factor families. Annotated unigenes were mapped to the KEGG pathways and further annotated using MapMan. Comparative genomics revealed that 44% of protein families are shared in common by S. caninervis, P. patens and Arabidopsis thaliana and that 80% are shared by both moss species. Conclusions This study is one of the first comprehensive transcriptome analyses of the moss S. caninervis. Our data extends our knowledge of bryophyte transcriptomes, provides an insight to plants adapted to the arid regions of central Asia, and continues the development of S. caninervis as a model for understanding the molecular aspects of desiccation-tolerance. PMID:25086984
Yang, Wei; Yang, Chunping; Zhang, Jin; Yang, Yang; Wang, Baoxin; Guan, Fengrong
2018-01-01
The white-striped longhorn beetle Batocera horsfieldi (Coleoptera: Cerambycidae) is a polyphagous wood-boring pest that causes substantial damage to the lumber industry. Moreover olfactory proteins are crucial components to function in related processes, but the B. horsfieldi genome is not readily available for olfactory proteins analysis. In the present study, developmental transcriptomes of larvae from the first instar to the prepupal stage, pupae, and adults (females and males) from emergence to mating were built by RNA sequencing to establish a genetic background that may help understand olfactory genes. Approximately 199 million clean reads were obtained and assembled into 171,664 transcripts, which were classified into 23,380, 26,511, 22,393, 30,270, and 87, 732 unigenes for larvae, pupae, females, males, and combined datasets, respectively. The unigenes were annotated against NCBI’s non-redundant nucleotide and protein sequences, Swiss-Prot, Gene Ontology (GO), Pfam, Clusters of Eukaryotic Orthologous Groups (KOG), and KEGG Orthology (KO) databases. A total of 43,197 unigenes were annotated into 55 sub-categories under the three main GO categories; 25,237 unigenes were classified into 26 functional KOG categories, and 25,814 unigenes were classified into five functional KEGG Pathway categories. RSEM software identified 2,983, 3,097, 870, 2,437, 5,161, and 2,882 genes that were differentially expressed between larvae and males, larvae and pupae, larvae and females, males and females, males and pupae, and females and pupae, respectively. Among them, genes encoding seven candidate odorant binding proteins (OBPs) and three chemosensory proteins (CSPs) were identified. RT-PCR and RT-qPCR analyses showed that BhorOBP3, BhorCSP2, and BhorOBPC1/C3/C4 were highly expressed in the antenna of males, indicating these genes may may play key roles in foraging and host-orientation in B. horsfieldi. Our results provide valuable molecular information about the olfactory system in B. horsfieldi and will help guide future functional studies on olfactory genes. PMID:29474419
De Novo Adult Transcriptomes of Two European Brittle Stars: Spotlight on Opsin-Based Photoreception
Mallefet, Jérôme; Flammang, Patrick
2016-01-01
Next generation sequencing (NGS) technology allows to obtain a deeper and more complete view of transcriptomes. For non-model or emerging model marine organisms, NGS technologies offer a great opportunity for rapid access to genetic information. In this study, paired-end Illumina HiSeqTM technology has been employed to analyse transcriptomes from the arm tissues of two European brittle star species, Amphiura filiformis and Ophiopsila aranea. About 48 million Illumina reads were generated and 136,387 total unigenes were predicted from A. filiformis arm tissues. For O. aranea arm tissues, about 47 million reads were generated and 123,324 total unigenes were obtained. Twenty-four percent of the total unigenes from A. filiformis show significant matches with sequences present in reference online databases, whereas, for O. aranea, this percentage amounts to 23%. In both species, around 50% of the predicted annotated unigenes were significantly similar to transcripts from the purple sea urchin, the closest species to date that has undergone complete genome sequencing and annotation. GO, COG and KEGG analyses were performed on predicted brittle star unigenes. We focused our analyses on the phototransduction actors involved in light perception. Firstly, two new echinoderm opsins were identified in O. aranea: one rhabdomeric opsin (homologous to vertebrate melanopsin) and one RGR opsin. The RGR-opsin is supposed to be involved in retinal regeneration while the r-opsin is suspected to play a role in visual-like behaviour. Secondly, potential phototransduction actors were identified in both transcriptomes using the fly (rhabdomeric) and mammal (ciliary) classical phototransduction pathways as references. Finally, the sensitivity of O.aranea to monochromatic light was investigated to complement data available for A. filiformis. The presence of microlens-like structures at the surface of dorsal arm plate of O. aranea could potentially explain phototactic behaviour differences between the two species. The results confirm (i) the ability of these brittle stars to perceive light using opsin-based photoreception, (ii) suggest the co-occurrence of both rhabdomeric and ciliary photoreceptors, and (iii) emphasise the complexity of light perception in this echinoderm class. PMID:27119739
Hwang, Jee Youn; Markkandan, Kesavan; Kwon, Mun Gyeong; Seo, Jung Soo; Yoo, Seung-Il; Hwang, Seong Don; Son, Maeng-Hyun; Park, Junhyung
2018-05-01
Olive flounder (Paralichthys olivaceus) is one of the most valuable marine aquatic species in South Korea and faces tremendous exposure to the viral hemorrhagic septicemia virus (VHSV). Given the growing importance of flounder, it is therefore essential to understand the host defense of P. olivaceus against VHSV infection, but studies on its immune mechanism are hindered by the lack of genomic resources. In this study, the P. olivaceus was infected with disease-causing VHSV isolates, ADC-VHS2012-11 and ADC-VHS2014-5 which showed moderate virulent (20% mortality) and high virulent (65% mortality), in order to investigate the effect of difference in pathogenicity in head kidney during 1, 3, 7 days of post-infection using Illumina sequencing. After removing low-quality sequences, we obtained 144,933,160 high quality reads from thirty-six libraries which were further assembled into 53,384 unigenes with an average length of 563 bp with a range of 200 to 9605 bp. Transcriptome annotation revealed that 30,475 unigenes with a cut-off e-value of 10 -5 were functionally annotated. In total, 10,046 unigenes were clustered into 26 functional categories by searching against the eggNOG database, and 22,233 unigenes to 52 GO terms. In addition, 12,985 unigenes were grouped into 387 KEGG pathways. Among the 13,270 differently expressed genes, 6578 and 6692 were differentially expressed only in moderate and high virulent, respectively. Based on our sequence analysis, many candidate genes with fundamental roles in innate immune system including, pattern recognition receptors (TLRs & RLRs), Mx, complement proteins, lectins, and cytokines (chemokines, IFN, IRF, IL, TRF) were differentially expressed. Furthermore, GO enrichment analysis for these genes revealed gene response to defense response to virus, apoptotic process and transcription factor activity. In summary, this study identifies several putative immune pathways and candidate genes deserving further investigation in the context of novel gene discovery, gene expression and regulation studies and lays the foundation for fish immunology especially in P. olivaceus against VHSV. Copyright © 2018. Published by Elsevier Ltd.
Flores-Monterroso, Aranzazu; Canales, Javier; de la Torre, Fernando; Ávila, Concepción; Cánovas, Francisco M
2013-06-01
Ectomycorrhizal associations are of major ecological importance in temperate and boreal forests. The development of a functional ectomycorrhiza requires many genetic and biochemical changes. In this study, suppressive subtraction hybridization was used to identify differentially expressed genes in the roots of maritime pine (Pinus pinaster Aiton) inoculated with Laccaria bicolor, a mycorrhizal fungus. A total number of 200 unigenes were identified as being differentially regulated in maritime pine roots during the development of mycorrhiza. These unigenes were classified into 10 categories according to the function of their homologues in the GenBank database. Approximately, 40 % of the differentially expressed transcripts were genes that coded for unknown proteins in the databases or that had no homology to known genes. A group of these differentially expressed genes was selected to validate the results using quantitative real-time PCR. The transcript levels of the representative genes were compared between the non-inoculated and inoculated plants at 1, 5, 15 and 30 days after inoculation. The observed expression patterns indicate (1) changes in the composition of the wall cell, (2) tight regulation of defence genes during the development of mycorrhiza and (3) changes in carbon and nitrogen metabolism. Ammonium excess or deficiency dramatically affected the stability of ectomycorrhiza and altered gene expression in maritime pine roots.
Du, Wenxiao; Zeng, Fanrong
2016-12-14
Adults of the lady beetle species Harmonia axyridis (Pallas) are bred artificially en masse for classic biological control, which requires egg-laying by the H. axyridis ovary. Development-related genes may impact the growth of the H. axyridis adult ovary but have not been reported. Here, we used integrative time-series RNA-seq analysis of the ovary in H. axyridis adults to detect development-related genes. A total of 28,558 unigenes were functionally annotated using seven types of databases to obtain an annotated unigene database for ovaries in H. axyridis adults. We also analysed differentially expressed genes (DEGs) between samples. Based on a combination of the results of this bioinformatics analysis with literature reports and gene expression level changes in four different stages, we focused on the development of oocyte reproductive stem cell and yolk formation process and identified 26 genes with high similarity to development-related genes. 20 DEGs were randomly chosen for quantitative real-time PCR (qRT-PCR) to validate the accuracy of the RNA-seq results. This study establishes a robust pipeline for the discovery of key genes using high-throughput sequencing and the identification of a class of development-related genes for characterization.
Huang, Haijiao; Chen, Su; Li, Huiyu; Jiang, Jing
2015-09-01
Overexpression of BpAP1 could cause early flowering in birch. BpAP1 affected the expression of many flowering-related unigenes and diterpenoid biosynthesis in transgenic birch, and BpPI was a putative target gene of BpAP1. APETALA1 (AP1) is an MADS-box transcription factor that is involved in the flowering process in plants and has been a focus of genetic studies examining flower development. Here, we carried out transcriptome analysis of birch (Betula platyphylla Suk.), including BpAP1 overexpression lines, BpAP1 suppression lines, and non-transgenic line (NT). Compared with NT, we detected 8302 and 7813 differentially expressed unigenes in 35S::BpAP1 and 35S::BpAP1RNAi transgenic lines, respectively. Overexpression and suppression of BpAP1 in birch affected diterpenoid biosynthesis and altered expression of many flowering-related unigenes. Moreover, combining information from the RNA-seq database and the birch genome, we predicted downstream target genes of BpAP1. Among the 166 putative target genes of BpAP1, there was a positive correlation between BpAP1 and BpPI. These results provide references for further examining the relationship between BpAP1 and its target genes, and reveal that BpAP1 functions as a transcription regulator in birch.
Gene discovery using next-generation pyrosequencing to develop ESTs for Phalaenopsis orchids
2011-01-01
Background Orchids are one of the most diversified angiosperms, but few genomic resources are available for these non-model plants. In addition to the ecological significance, Phalaenopsis has been considered as an economically important floriculture industry worldwide. We aimed to use massively parallel 454 pyrosequencing for a global characterization of the Phalaenopsis transcriptome. Results To maximize sequence diversity, we pooled RNA from 10 samples of different tissues, various developmental stages, and biotic- or abiotic-stressed plants. We obtained 206,960 expressed sequence tags (ESTs) with an average read length of 228 bp. These reads were assembled into 8,233 contigs and 34,630 singletons. The unigenes were searched against the NCBI non-redundant (NR) protein database. Based on sequence similarity with known proteins, these analyses identified 22,234 different genes (E-value cutoff, e-7). Assembled sequences were annotated with Gene Ontology, Gene Family and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these annotations, over 780 unigenes encoding putative transcription factors were identified. Conclusion Pyrosequencing was effective in identifying a large set of unigenes from Phalaenopsis. The informative EST dataset we developed constitutes a much-needed resource for discovery of genes involved in various biological processes in Phalaenopsis and other orchid species. These transcribed sequences will narrow the gap between study of model organisms with many genomic resources and species that are important for ecological and evolutionary studies. PMID:21749684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jian; Luo, Mao; Zhu, Ye
2015-03-27
Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries ofmore » untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR.« less
Liu, Su; Rao, Xiang-Jun; Li, Mao-Ye; Feng, Ming-Feng; He, Meng-Zhu; Li, Shi-Guang
2015-03-01
We present the first antennal transcriptome sequencing information for the yellow mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). Analysis of the transcriptome dataset obtained 52,216,616 clean reads, from which 35,363 unigenes were assembled. Of these, 18,820 unigenes showed significant similarity (E-value <10(-5)) to known proteins in the NCBI non-redundant protein database. Gene ontology (GO) and Cluster of Orthologous Groups (COG) analyses were used for functional classification of these unigenes. We identified 19 putative odorant-binding protein (OBP) genes, 12 chemosensory protein (CSP) genes, 20 olfactory receptor (OR) genes, 6 ionotropic receptor (IR) genes and 2 sensory neuron membrane protein (SNMP) genes. BLASTX best hit results indicated that these chemosensory genes were most identical to their respective orthologs from Tribolium castaneum. Phylogenetic analyses also revealed that the T. molitor OBPs and CSPs are closely related to those of T. castaneum. Real-time quantitative PCR assays showed that eight TmolOBP genes were antennae-specific. Of these, TmolOBP5, TmolOBP7 and TmolOBP16 were found to be predominantly expressed in male antennae, while TmolOBP17 was expressed mainly in the legs of males. Several other genes were identified that were neither tissue-specific nor sex-specific. These results establish a firm foundation for future studies of the chemosensory genes in T. molitor. Copyright © 2015 Elsevier Inc. All rights reserved.
Calcitonin intranasal--unigene: Salcatonin intranasal--unigene.
2004-01-01
An intranasal spray formulation of recombinant salmon calcitonin [salcatonin] is in development with Unigene Laboratories as therapy for postmenopausal osteoporosis. Calcitonin is an endogenous polypeptide hormone that regulates calcium and bone metabolism. It is produced by the parafollicular cells of the thyroid gland in humans and other species. Calcitonin inhibits bone loss through the suppression of osteoclast activity. Salmon calcitonin is approximately 40-50 times more potent than natural human calcitonin at inhibiting osteoclast function. It can be obtained naturally from salmon or can be synthesised with the same chemical structure. Calcitonin was originally available only as an injectable formulation, but in recent years more convenient formulations have become available. Unigene is actively seeking to license its intranasal calcitonin product in Europe and other territories outside the US. nigene licensed its intranasal calcitonin product to Upsher-Smith Laboratories in December 2002, under a $US10 million exclusive US licensing agreement. Under the terms of the agreement, Unigene received an upfront payment of $US3 million from Upsher-Smith and will be eligible to receive milestone payments and royalty payments on product sales. Unigene will be responsible for manufacturing the product at its Boonton facility in New Jersey, USA, and will sell finished calcitonin product to Upsher-Smith. Upsher-Smith will package, market and distribute the product nationwide. Unigene granted an exclusive license to Faran Laboratories in September 2003 for its intranasal calcitonin osteoporosis product in Greece. Unigene will sell the finished product to Faran, who will promote and market it throughout the country after Unigene obtains European regulatory approval and local pricing approval. Unigene will receive an upfront payment and is eligible to receive milestone payments prior to product launch. Faran will pay Unigene a fixed price for each unit of product received. Qingdao General Pharmaceutical Company was a licensee for Unigene's injectable and intranasal calcitonin products in the People's Republic of China, and Unigene had received initial payments from Qingdao General Pharmaceutical in 1996. However, in June 2000, Unigene announced that it has entered into a joint venture with Shijiazhuang Pharmaceutical Group Company for the manufacture and distribution of injectable and intranasal calcitonin for the treatment of osteoporosis in China. Unigene initially will be responsible for supplying bulk calcitonin manufactured in its production facility in New Jersey and the joint venture will be responsible for filling, packaging, promoting and marketing the products. Unigene owns 45% of the contractual joint venture. Unigene is also developing oral and injectable formulations of calcitonin. In January 2004, Unigene announced it had received an approvable letter from the US FDA to market its calcitonin intranasal spray for the treatment of osteoporosis. The letter indicates that the FDA will approve the NDA upon finalisation of the labelling and resolution of specific remaining issues, including the submission of additional information and clinical data. Unigene filed the NDA in March 2003. Using the results from a pilot study completed in the UK, Unigene filed an IND with the FDA and began clinical testing of this intranasal calcitonin in the US. Clinical studies were successfully completed by year end 2001, demonstrating significant bone marker activity and similar serum concentrations between this product and that of an existing nasal calcitonin product. The European Union's regulatory authority, the Committee for Proprietary Medicinal Products (CPMP), has confirmed the efficacy of calcitonin formulations for the treatment of postmenopausal osteoporosis and other bone disorders. The CPMP has recommended revisions to and harmonisation within the European Union of the authorised indications for calcitonin formulations. The CPMP has determined that authorised indications for intranasal calcitonin will be approved for "treatment of established post-menopausal osteoporosis in order to reduce the risk of vertebral fractures", and new prescribing information will clarify that intranasal calcitonin does not appear to reduce the number of hip fractures. These recommendations will be implemented in the near future and will eliminate discrepancies between countries and between formulations. The Chinese regulatory authorities have granted Unigene an import license for calcitonin, and Unigene and Shijiazhuang have submitted an NDA in China. If this NDA is approved, the joint venture will have up to 6 years' market exclusivity for intranasal and injectable calcitonin. Unigene was granted a US patent for the intranasal formulation of calcitonin in 2002.
Li, Yun-He; Zhang, Hong-Na; Wu, Qing-Song; Muday, Gloria K
2017-06-01
A total of 74,745 unigenes were generated and 1975 DEGs were identified. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment were revealed. Adventitious root formation is a crucial step in plant vegetative propagation, but the molecular mechanism of adventitious root formation remains unclear. Adventitious roots formed only at the proximal cut surface (PCS) of mango cotyledon segments, whereas no roots were formed on the opposite, distal cut surface (DCS). To identify the transcript abundance changes linked to adventitious root development, RNA was isolated from PCS and DCS at 0, 4 and 7 days after culture, respectively. Illumina sequencing of libraries generated from these samples yielded 62.36 Gb high-quality reads that were assembled into 74,745 unigenes with an average sequence length of 807 base pairs, and 33,252 of the assembled unigenes at least had homologs in one of the public databases. Comparative analysis of these transcriptome databases revealed that between the different time points at PCS there were 1966 differentially expressed genes (DEGs), while there were only 51 DEGs for the PCS vs. DCS when time-matched samples were compared. Of these DEGs, 1636 were assigned to gene ontology (GO) classes, the majority of that was involved in cellular processes, metabolic processes and single-organism processes. Candidate genes that may be involved in the adventitious root formation of mango cotyledon segment are predicted to encode polar auxin transport carriers, auxin-regulated proteins, cell wall remodeling enzymes and ethylene-related proteins. In order to validate RNA-sequencing results, we further analyzed the expression profiles of 20 genes by quantitative real-time PCR. This study expands the transcriptome information for Mangifera indica and identifies candidate genes involved in adventitious root formation in cotyledon segments of mango.
Shao, En-Si; Lin, Gui-Fang; Liu, Sijun; Ma, Xiao-Li; Chen, Ming-Feng; Lin, Li; Wu, Song-Qing; Sha, Li; Liu, Zhao-Xia; Hu, Xiao-Hua; Guan, Xiong; Zhang, Ling-Ling
2017-01-01
Tea production has been significantly impacted by the false-eye leafhopper, Empoasca vitis (Göthe), around Asia. To identify the key genes which are responsible for nutrition absorption, xenobiotic metabolism and immune response, the transcriptome of either alimentary tracts or bodies minus alimentary tract of E. vitis was sequenced and analyzed. Over 31 million reads were obtained from Illumina sequencing. De novo sequence assembly resulted in 52,182 unigenes with a mean size of 848nt. The assembled unigenes were then annotated using various databases. Transcripts of at least 566 digestion-, 224 detoxification-, and 288 immune-related putative genes in E. vitis were identified. In addition, relative expression of highly abundant transcripts was verified through quantitative real-time PCR. Results from this investigation provide genomic information about E. vitis, which will be helpful in further study of E. vitis biology and in the development of novel strategies to control this devastating pest. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Quanquan; Niu, Zubiao; Bao, Yinguang; Tian, Qiuju; Wang, Honggang; Kong, Lingrang; Feng, Deshun
2016-09-15
Wheat powdery mildew, which is mainly caused by Blumeria graminis f. sp. tritici (Bgt), seriously damages wheat production. The wheat-Thinopyrum intermedium alien addition disomic line germplasm SN6306, being one of the important sources of genes for wheat resistance, is highly resistant to Bgt E09 and to many other powdery mildew physiological races. However, knowledge on the resistance mechanism of SN6306 remains limited. Our study employed high-throughput RNA sequencing based on next-generation sequencing technology (Illumina) to obtain an overview of the transcriptome characteristics of SN6306 and its parent wheat Yannong 15 (YN15) during Bgt infection. The sequencing generated 104,773 unigenes, 9909 of which showed varied expression levels. Among the 9909 unigenes, 1678 unigenes showed 0 reads in YN15. The expression levels in Bgt-inoculated SN6306 and YN15 of exactly 39 unigenes that showed 0 or considerably low reads in YN15 were validated to identify the genes involved in Bgt resistance. Among the 39 unigenes, 12 unigenes were upregulated in SN6306 by 3-45 times. These unigenes mainly encoded kinase, synthase, proteases, and signal transduction proteins, which may play an important role in the resistance against Bgt. To confirm whether the unigenes that showed 0 reads in YN15 are really unique to SN6306, 8 unigenes were cloned and sequenced. Results showed that the selected unigenes are more similar to SN6306 and Th. intermedium than to the wheat cultivar YN15. The sequencing results further confirmed that the unigenes showing 0 reads in YN15 are unique to SN6306 and are most likely derived from Th. intermedium (Host) Nevski. Thus, the genes from Th. intermedium most probably conferred the resistance of SN6306 to Bgt. Copyright © 2016 Elsevier B.V. All rights reserved.
Database resources of the National Center for Biotechnology Information: 2002 update
Wheeler, David L.; Church, Deanna M.; Lash, Alex E.; Leipe, Detlef D.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Tatusova, Tatiana A.; Wagner, Lukas; Rapp, Barbara A.
2002-01-01
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, Human¡VMouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:11752242
Gupta, Yogesh; Pathak, Ashish K; Singh, Kashmir; Mantri, Shrikant S; Singh, Sudhir P; Tuli, Rakesh
2015-02-14
Annona squamosa L., a popular fruit tree, is the most widely cultivated species of the genus Annona. The lack of transcriptomic and genomic information limits the scope of genome investigations in this important shrub. It bears aggregate fruits with numerous seeds. A few rare accessions with very few seeds have been reported for Annona. A massive pyrosequencing (Roche, 454 GS FLX+) of transcriptome from early stages of fruit development (0, 4, 8 and 12 days after pollination) was performed to produce expression datasets in two genotypes, Sitaphal and NMK-1, that show a contrast in the number of seeds set in fruits. The data reported here is the first source of genome-wide differential transcriptome sequence in two genotypes of A. squamosa, and identifies several candidate genes related to seed development. Approximately 1.9 million high-quality clean reads were obtained in the cDNA library from the developing fruits of both the genotypes, with an average length of about 568 bp. Quality-reads were assembled de novo into 2074 to 11004 contigs in the developing fruit samples at different stages of development. The contig sequence data of all the four stages of each genotype were combined into larger units resulting into 14921 (Sitaphal) and 14178 (NMK-1) unigenes, with a mean size of more than 1 Kb. Assembled unigenes were functionally annotated by querying against the protein sequences of five different public databases (NCBI non redundant, Prunus persica, Vitis vinifera, Fragaria vesca, and Amborella trichopoda), with an E-value cut-off of 10(-5). A total of 4588 (Sitaphal) and 2502 (NMK-1) unigenes did not match any known protein in the NR database. These sequences could be genes specific to Annona sp. or belong to untranslated regions. Several of the unigenes representing pathways related to primary and secondary metabolism, and seed and fruit development expressed at a higher level in Sitaphal, the densely seeded cultivar in comparison to the poorly seeded NMK-1. A total of 2629 (Sitaphal) and 3445 (NMK-1) Simple Sequence Repeat (SSR) motifs were identified respectively in the two genotypes. These could be potential candidates for transcript based microsatellite analysis in A. squamosa. The present work provides early-stage fruit specific transcriptome sequence resource for A. squamosa. This repository will serve as a useful resource for investigating the molecular mechanisms of fruit development, and improvement of fruit related traits in A. squamosa and related species.
A genome-wide 20 K citrus microarray for gene expression analysis
Martinez-Godoy, M Angeles; Mauri, Nuria; Juarez, Jose; Marques, M Carmen; Santiago, Julia; Forment, Javier; Gadea, Jose
2008-01-01
Background Understanding of genetic elements that contribute to key aspects of citrus biology will impact future improvements in this economically important crop. Global gene expression analysis demands microarray platforms with a high genome coverage. In the last years, genome-wide EST collections have been generated in citrus, opening the possibility to create new tools for functional genomics in this crop plant. Results We have designed and constructed a publicly available genome-wide cDNA microarray that include 21,081 putative unigenes of citrus. As a functional companion to the microarray, a web-browsable database [1] was created and populated with information about the unigenes represented in the microarray, including cDNA libraries, isolated clones, raw and processed nucleotide and protein sequences, and results of all the structural and functional annotation of the unigenes, like general description, BLAST hits, putative Arabidopsis orthologs, microsatellites, putative SNPs, GO classification and PFAM domains. We have performed a Gene Ontology comparison with the full set of Arabidopsis proteins to estimate the genome coverage of the microarray. We have also performed microarray hybridizations to check its usability. Conclusion This new cDNA microarray replaces the first 7K microarray generated two years ago and allows gene expression analysis at a more global scale. We have followed a rational design to minimize cross-hybridization while maintaining its utility for different citrus species. Furthermore, we also provide access to a website with full structural and functional annotation of the unigenes represented in the microarray, along with the ability to use this site to directly perform gene expression analysis using standard tools at different publicly available servers. Furthermore, we show how this microarray offers a good representation of the citrus genome and present the usefulness of this genomic tool for global studies in citrus by using it to catalogue genes expressed in citrus globular embryos. PMID:18598343
Mohanty, Jatindra Nath; Nayak, Sanghamitra; Jha, Sumita; Joshi, Raj Kumar
2017-08-30
Dioecious species offer an inclusive structure to study the molecular basis of sexual dimorphism in angiosperms. Despite having a small genome and heteromorphic sex chromosomes, Coccinia grandis is a highly neglected dioecious species with little information available on its physical state, genetic orientation and key sex-defining elements. In the present study, we performed RNA-Seq and DGE analysis of male (MB) and female (FB) buds in C. grandis to gain insights into the molecular basis of sex determination in this plant. De novo assembly of 75 million clean reads resulted in 72,479 unigenes for male library and 63,308 unigenes for female library with a mean length of 736bp. 61,458 (85.57%) unigenes displayed significant similarity with protein sequences from publicly available databases. Comparative transcriptome analyses revealed 1410 unigenes as differentially expressed (DEGs) between MB and FB samples. A consistent correlation between the expression levels of DEGs was observed for the RNA-Seq pattern and qRT-PCR validation. Functional annotation showed high enrichment of DEGs involved in phytohormone biosynthesis, hormone signaling and transduction, transcriptional regulation and methyltransferase activity. High induction of hormone responsive genes such as ARF6, ACC synthase1, SNRK2 and BRI1-associated receptor kinase 1 (BAK1) suggest that multiple phytohormones and their signaling crosstalk play crucial role in sex determination in this species. Beside, the transcription factors such as zinc fingers, homeodomain leucine zippers and MYBs were identified as major determinants of male specific expression. Moreover, the detection of multiple DEGs as the miRNA target site implies that a small RNA mediated gene silencing cascade may also be regulating gender differentiation in C. grandis. Overall, the present transcriptome resources provide us a large number of DEGs involved in sex expression and could form the groundwork for unravelling the molecular mechanism of sex determination in C. grandis. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Yan; Li, Kui; Zheng, Baoqiang; Miao, Kun
2015-01-01
Tree peony (Paeonia suffruticosa Andrews) is a very famous traditional ornamental plant in China. P. delavayi is a species endemic to Southwest China that has aroused great interest from researchers as a precious genetic resource for flower color breeding. However, the current understanding of the molecular mechanisms of flower pigmentation in this plant is limited, hindering the genetic engineering of novel flower color in tree peonies. In this study, we conducted a large-scale transcriptome analysis based on Illumina HiSeq sequencing of cDNA libraries generated from yellow and purple-red P. delavayi petals. A total of 90,202 unigenes were obtained by de novo assembly, with an average length of 721 nt. Using Blastx, 44,811 unigenes (49.68%) were found to have significant similarity to accessions in the NR, NT, and Swiss-Prot databases. We also examined COG, GO and KEGG annotations to better understand the functions of these unigenes. Further analysis of the two digital transcriptomes revealed that 6,855 unigenes were differentially expressed between yellow and purple-red flower petals, with 3,430 up-regulated and 3,425 down-regulated. According to the RNA-Seq data and qRT-PCR analysis, we proposed that four up-regulated key structural genes, including F3H, DFR, ANS and 3GT, might play an important role in purple-red petal pigmentation, while high co-expression of THC2'GT, CHI and FNS II ensures the accumulation of pigments contributing to the yellow color. We also found 50 differentially expressed transcription factors that might be involved in flavonoid biosynthesis. This study is the first to report genetic information for P. delavayi. The large number of gene sequences produced by transcriptome sequencing and the candidate genes identified using pathway mapping and expression profiles will provide a valuable resource for future association studies aimed at better understanding the molecular mechanisms underlying flower pigmentation in tree peonies. PMID:26267644
Gao, Jinjun; Yu, Xinxin; Ma, Fengming; Li, Jing
2014-01-01
Background Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10–100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts’ functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. Results A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04–89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20–130 times higher. These results along with the previous reports about these genes’ studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. Conclusion Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide new insight into the genomic research of this species and its relatives. PMID:24586398
Gao, Jinjun; Yu, Xinxin; Ma, Fengming; Li, Jing
2014-01-01
Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10-100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts' functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04-89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20-130 times higher. These results along with the previous reports about these genes' studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide new insight into the genomic research of this species and its relatives.
Liu, Dan; Wang, Qianqian; Ruan, Zengliang; He, Qian; Zhang, Liming
2015-01-01
Background Jellyfish contain diverse toxins and other bioactive components. However, large-scale identification of novel toxins and bioactive components from jellyfish has been hampered by the low efficiency of traditional isolation and purification methods. Results We performed de novo transcriptome sequencing of the tentacle tissue of the jellyfish Cyanea capillata. A total of 51,304,108 reads were obtained and assembled into 50,536 unigenes. Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences. Functional annotation of the unigenes also revealed general gene expression profile characteristics in the tentacle of C. capillata. A primary goal of this study was to identify putative toxin transcripts. As expected, we screened many transcripts encoding proteins similar to several well-known toxin families including phospholipases, metalloproteases, serine proteases and serine protease inhibitors. In addition, some transcripts also resembled molecules with potential toxic activities, including cnidarian CfTX-like toxins with hemolytic activity, plancitoxin-1, venom toxin-like peptide-6, histamine-releasing factor, neprilysin, dipeptidyl peptidase 4, vascular endothelial growth factor A, angiotensin-converting enzyme-like and endothelin-converting enzyme 1-like proteins. Most of these molecules have not been previously reported in jellyfish. Interestingly, we also characterized a number of transcripts with similarities to proteins relevant to several degenerative diseases, including Huntington’s, Alzheimer’s and Parkinson’s diseases. This is the first description of degenerative disease-associated genes in jellyfish. Conclusion We obtained a well-categorized and annotated transcriptome of C. capillata tentacle that will be an important and valuable resource for further understanding of jellyfish at the molecular level and information on the underlying molecular mechanisms of jellyfish stinging. The findings of this study may also be used in comparative studies of gene expression profiling among different jellyfish species. PMID:26551022
Liu, Guoyan; Zhou, Yonghong; Liu, Dan; Wang, Qianqian; Ruan, Zengliang; He, Qian; Zhang, Liming
2015-01-01
Jellyfish contain diverse toxins and other bioactive components. However, large-scale identification of novel toxins and bioactive components from jellyfish has been hampered by the low efficiency of traditional isolation and purification methods. We performed de novo transcriptome sequencing of the tentacle tissue of the jellyfish Cyanea capillata. A total of 51,304,108 reads were obtained and assembled into 50,536 unigenes. Of these, 21,357 unigenes had homologues in public databases, but the remaining unigenes had no significant matches due to the limited sequence information available and species-specific novel sequences. Functional annotation of the unigenes also revealed general gene expression profile characteristics in the tentacle of C. capillata. A primary goal of this study was to identify putative toxin transcripts. As expected, we screened many transcripts encoding proteins similar to several well-known toxin families including phospholipases, metalloproteases, serine proteases and serine protease inhibitors. In addition, some transcripts also resembled molecules with potential toxic activities, including cnidarian CfTX-like toxins with hemolytic activity, plancitoxin-1, venom toxin-like peptide-6, histamine-releasing factor, neprilysin, dipeptidyl peptidase 4, vascular endothelial growth factor A, angiotensin-converting enzyme-like and endothelin-converting enzyme 1-like proteins. Most of these molecules have not been previously reported in jellyfish. Interestingly, we also characterized a number of transcripts with similarities to proteins relevant to several degenerative diseases, including Huntington's, Alzheimer's and Parkinson's diseases. This is the first description of degenerative disease-associated genes in jellyfish. We obtained a well-categorized and annotated transcriptome of C. capillata tentacle that will be an important and valuable resource for further understanding of jellyfish at the molecular level and information on the underlying molecular mechanisms of jellyfish stinging. The findings of this study may also be used in comparative studies of gene expression profiling among different jellyfish species.
Transcriptomic Immune Response of Tenebrio molitor Pupae to Parasitization by Scleroderma guani
Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin
2013-01-01
Background Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. Methodology/Principal Findings In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. Conclusions/Significance obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction. PMID:23342153
Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)).
Liu, Feng; Wang, Yu; Ding, Zhaotang; Zhao, Lei; Xiao, Jun; Wang, Linjun; Ding, Shibo
2017-10-05
Flowering is a critical and complicated process in plant development, involving interactions of numerous endogenous and environmental factors, but little is known about the complex network regulating flower development in tea plants. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptomic analysis assembles gene-related information involved in reproductive growth of C. sinensis. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction were enriched among the DEGs. Furthermore, 207 flowering-associated unigenes were identified from our database. Some transcription factors, such as WRKY, ERF, bHLH, MYB and MADS-box were shown to be up-regulated in floral transition, which might play the role of progression of flowering. Furthermore, 14 genes were selected for confirmation of expression levels using quantitative real-time PCR (qRT-PCR). The comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in C. sinensis. Our data also provided a useful database for further research of tea and other species of plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Wen-Zhao; Zhang, Yan-Mei; Lu, Jun-Ying; Li, Jun-Feng
2012-01-01
To provide a resource of sisal-specific expressed sequence data and facilitate this powerful approach in new gene research, the preparation of normalized cDNA libraries enriched with full-length sequences is necessary. Four libraries were produced with RNA pooled from Agave sisalana multiple tissues to increase efficiency of normalization and maximize the number of independent genes by SMART™ method and the duplex-specific nuclease (DSN). This procedure kept the proportion of full-length cDNAs in the subtracted/normalized libraries and dramatically enhanced the discovery of new genes. Sequencing of 3875 cDNA clones of libraries revealed 3320 unigenes with an average insert length about 1.2 kb, indicating that the non-redundancy of libraries was about 85.7%. These unigene functions were predicted by comparing their sequences to functional domain databases and extensively annotated with Gene Ontology (GO) terms. Comparative analysis of sisal unigenes and other plant genomes revealed that four putative MADS-box genes and knotted-like homeobox (knox) gene were obtained from a total of 1162 full-length transcripts. Furthermore, real-time PCR showed that the characteristics of their transcripts mainly depended on the tight expression regulation of a number of genes during the leaf and flower development. Analysis of individual library sequence data indicated that the pooled-tissue approach was highly effective in discovering new genes and preparing libraries for efficient deep sequencing. PMID:23202944
Zhang, Yong; Zhang, Shu-Fei; Lin, Lin; Wang, Da-Zhi
2014-01-01
The dinoflagellates and cyanobacteria are two major kingdoms of life producing paralytic shellfish toxins (PSTs), a large group of neurotoxic alkaloids causing paralytic shellfish poisonings around the world. In contrast to the well elucidated PST biosynthetic genes in cyanobacteria, little is known about the dinoflagellates. This study compared transcriptome profiles of a toxin-producing dinoflagellate, Alexandrium catenella (ACHK-T), and its non-toxic mutant form (ACHK-NT) using RNA-seq. All clean reads were assembled de novo into a total of 113,674 unigenes, and 66,812 unigenes were annotated in the known databases. Out of them, 35 genes were found to express differentially between the two strains. The up-regulated genes in ACHK-NT were involved in photosynthesis, carbon fixation and amino acid metabolism processes, indicating that more carbon and energy were utilized for cell growth. Among the down-regulated genes, expression of a unigene assigned to the long isoform of sxtA, the initiator of toxin biosynthesis in cyanobacteria, was significantly depressed, suggesting that this long transcript of sxtA might be directly involved in toxin biosynthesis and its depression resulted in the loss of the ability to synthesize PSTs in ACHK-NT. In addition, 101 putative homologs of 12 cyanobacterial sxt genes were identified, and the sxtO and sxtZ genes were identified in dinoflagellates for the first time. The findings of this study should shed light on the biosynthesis of PSTs in the dinoflagellates. PMID:25421324
Li, Lingli; Zhang, Hehua; Liu, Zhongshuai; Cui, Xiaoyue; Zhang, Tong; Li, Yanfang; Zhang, Lingyun
2016-10-12
Blueberry is an economically important fruit crop in Ericaceae family. The substantial quantities of flavonoids in blueberry have been implicated in a broad range of health benefits. However, the information regarding fruit development and flavonoid metabolites based on the transcriptome level is still limited. In the present study, the transcriptome and gene expression profiling over berry development, especially during color development were initiated. A total of approximately 13.67 Gbp of data were obtained and assembled into 186,962 transcripts and 80,836 unigenes from three stages of blueberry fruit and color development. A large number of simple sequence repeats (SSRs) and candidate genes, which are potentially involved in plant development, metabolic and hormone pathways, were identified. A total of 6429 sequences containing 8796 SSRs were characterized from 15,457 unigenes and 1763 unigenes contained more than one SSR. The expression profiles of key genes involved in anthocyanin biosynthesis were also studied. In addition, a comparison between our dataset and other published results was carried out. Our high quality reads produced in this study are an important advancement and provide a new resource for the interpretation of high-throughput data for blueberry species whether regarding sequencing data depth or species extension. The use of this transcriptome data will serve as a valuable public information database for the studies of blueberry genome and would greatly boost the research of fruit and color development, flavonoid metabolisms and regulation and breeding of more healthful blueberries.
2013-01-01
Background Although banana (Musa sp.) is an important edible crop, contributing towards poverty alleviation and food security, limited transcriptome datasets are available for use in accelerated molecular-based breeding in this genus. 454 GS-FLX Titanium technology was employed to determine the sequence of gene transcripts in genotypes of Musa acuminata ssp. burmannicoides Calcutta 4 and M. acuminata subgroup Cavendish cv. Grande Naine, contrasting in resistance to the fungal pathogen Mycosphaerella musicola, causal organism of Sigatoka leaf spot disease. To enrich for transcripts under biotic stress responses, full length-enriched cDNA libraries were prepared from whole plant leaf materials, both uninfected and artificially challenged with pathogen conidiospores. Results The study generated 846,762 high quality sequence reads, with an average length of 334 bp and totalling 283 Mbp. De novo assembly generated 36,384 and 35,269 unigene sequences for M. acuminata Calcutta 4 and Cavendish Grande Naine, respectively. A total of 64.4% of the unigenes were annotated through Basic Local Alignment Search Tool (BLAST) similarity analyses against public databases. Assembled sequences were functionally mapped to Gene Ontology (GO) terms, with unigene functions covering a diverse range of molecular functions, biological processes and cellular components. Genes from a number of defense-related pathways were observed in transcripts from each cDNA library. Over 99% of contig unigenes mapped to exon regions in the reference M. acuminata DH Pahang whole genome sequence. A total of 4068 genic-SSR loci were identified in Calcutta 4 and 4095 in Cavendish Grande Naine. A subset of 95 potential defense-related gene-derived simple sequence repeat (SSR) loci were validated for specific amplification and polymorphism across M. acuminata accessions. Fourteen loci were polymorphic, with alleles per polymorphic locus ranging from 3 to 8 and polymorphism information content ranging from 0.34 to 0.82. Conclusions A large set of unigenes were characterized in this study for both M. acuminata Calcutta 4 and Cavendish Grande Naine, increasing the number of public domain Musa ESTs. This transcriptome is an invaluable resource for furthering our understanding of biological processes elicited during biotic stresses in Musa. Gene-based markers will facilitate molecular breeding strategies, forming the basis of genetic linkage mapping and analysis of quantitative trait loci. PMID:23379821
Schwarz, Jodi A; Brokstein, Peter B; Voolstra, Christian; Terry, Astrid Y; Miller, David J; Szmant, Alina M; Coffroth, Mary Alice; Medina, Mónica
2008-01-01
Background Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Results We generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembled into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. Conclusion Partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies. PMID:18298846
Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling
Shu, Bo; Li, Weicai; Liu, Liqin; Wei, Yongzan; Shi, Shengyou
2016-01-01
Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinensis Sonn.). However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM) remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol, and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes) and AM fungi unigenes (33,120 unigenes) were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG) showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin ligase complex SCF subunit scon-3 and polyubiquitin of AM fungi were upregulated at the perceived stages. This occurrence suggested that ubiquitination plays an important role in perceiving carbohydrate decrease in AM fungi. The transcription of cytochrome b-245 and leucine-rich repeat was detected in the DEG database, implying that the transcripts were involved in AM fungal adaptation under carbohydrate starvation. The transcriptome data might suggest novel functions of unigenes in carbohydrate shortage of mycorrhizal roots. PMID:27065972
Yang, Wei; Yang, Chunping; Lu, Lin; Chen, Zhangming
2017-01-01
Cyrtotrachelus buqueti is an extremely harmful bamboo borer, and the larvae of this pest attack clumping bamboo shoots. Pheromone-binding proteins (PBPs) play an important role in identifying insect sex pheromones, but the C. buqueti genome is not readily available for PBP analysis. Developmental transcriptomes of eggs, larvae from the first instar to the prepupal stage, pupae, and adults (females and males) from emergence to mating were built by RNA sequencing (RNA-Seq) in the present study to establish a sequence background of C. buqueti to help understand PBPs. Approximately 164.8 million clean reads were obtained and annotated into 108,854 transcripts. These were assembled into 24,338, 21,597, 24,798, 21,886, 24,642, and 83,115 unigenes for eggs, larvae, pupae, females, males, and the combined datasets, respectively. Unigenes were annotated against NCBI non-redundant protein sequences, NCBI non-redundant nucleotide sequences, Gene Ontology (GO), Protein family, Clusters of Orthologous Groups of Proteins/ Clusters of Eukaryotic Orthologous Groups (KOG), Swiss-Prot, and KEGG Orthology databases. A total of 17,213 unigenes were annotated into 55 sub-categories belonging to three main GO categories; 10,672 unigenes were classified into 26 functional categories by KOG classification, and 8,063 unigenes were classified into five functional KEGG categories. RSEM software for RNA sequencing showed that 4,816, 3,176, 3,661, 2,898, 4,316, 8,019, 7,273, 5,922, 5,844, and 4,570 genes were differentially expressed between larvae and males, larvae and eggs, larvae and pupae, larvae and females, males and females, males and eggs, males and pupae, females and eggs, females and pupae, and eggs and pupae, respectively. Of these, three were confirmed to be significantly differentially expressed between larvae, females, and males. Furthermore, PBP Cbuq7577_g1 was highly expressed in the antenna of males. A comprehensive sequence resource of a desirable quality was constructed from developmental transcriptomes of C. buqueti eggs, larvae, pupae, and adults. This work enriches the genomic data of C. buqueti, and facilitates our understanding of its metamorphosis, development, and response to environmental change. The identified candidate PBP Cbuq7577_g1 might play a crucial role in identifying sex pheromones, and could be used as a targeted gene to control C. buqueti numbers by disrupting sex pheromone communication. PMID:28662071
Schwarz, Jodi A.; Brokstein, Peter B.; Voolstra, Christian R.; ...
2008-02-25
Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Here we generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembledmore » into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. In conclusion, partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, CY; Yang, H; Wei, CL
Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Using high-throughput Illumina RNA-seq, the transcriptome from poly (A){sup +} RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled intomore » 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real time PCR (qRT-PCR). An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, Jodi A.; Brokstein, Peter B.; Voolstra, Christian R.
Scleractinian corals are the foundation of reef ecosystems in tropical marine environments. Their great success is due to interactions with endosymbiotic dinoflagellates (Symbiodinium spp.), with which they are obligately symbiotic. To develop a foundation for studying coral biology and coral symbiosis, we have constructed a set of cDNA libraries and generated and annotated ESTs from two species of corals, Acropora palmata and Montastraea faveolata. Here we generated 14,588 (Ap) and 3,854 (Mf) high quality ESTs from five life history/symbiosis stages (spawned eggs, early-stage planula larvae, late-stage planula larvae either infected with symbionts or uninfected, and adult coral). The ESTs assembledmore » into a set of primarily stage-specific clusters, producing 4,980 (Ap), and 1,732 (Mf) unigenes. The egg stage library, relative to the other developmental stages, was enriched in genes functioning in cell division and proliferation, transcription, signal transduction, and regulation of protein function. Fifteen unigenes were identified as candidate symbiosis-related genes as they were expressed in all libraries constructed from the symbiotic stages and were absent from all of the non symbiotic stages. These include several DNA interacting proteins, and one highly expressed unigene (containing 17 cDNAs) with no significant protein-coding region. A significant number of unigenes (25) encode potential pattern recognition receptors (lectins, scavenger receptors, and others), as well as genes that may function in signaling pathways involved in innate immune responses (toll-like signaling, NFkB p105, and MAP kinases). Comparison between the A. palmata and an A. millepora EST dataset identified ferritin as a highly expressed gene in both datasets that appears to be undergoing adaptive evolution. Five unigenes appear to be restricted to the Scleractinia, as they had no homology to any sequences in the nr databases nor to the non-scleractinian cnidarians Nematostella vectensis and Hydra magnipapillata. In conclusion, partial sequencing of 5 cDNA libraries each for A. palmata and M. faveolata has produced a rich set of candidate genes (4,980 genes from A. palmata, and 1,732 genes from M. faveolata) that we can use as a starting point for examining the life history and symbiosis of these two species, as well as to further expand the dataset of cnidarian genes for comparative genomics and evolutionary studies.« less
Transcriptomes of Arbuscular Mycorrhizal Fungi and Litchi Host Interaction after Tree Girdling.
Shu, Bo; Li, Weicai; Liu, Liqin; Wei, Yongzan; Shi, Shengyou
2016-01-01
Trunk girdling can increase carbohydrate content above the girdling site and is an important strategy for inhibiting new shoot growth to promote flowering in cultivated litchi (Litchi chinensis Sonn.). However, girdling inhibits carbohydrate transport to the root in nearly all of the fruit development periods and consequently decreases root absorption. The mechanism through which carbohydrates regulate root development in arbuscular mycorrhiza (AM) remains largely unknown. Carbohydrate content, AM colonization, and transcriptome in the roots were analyzed to elucidate the interaction between host litchi and AM fungi when carbohydrate content decreases. Girdling decreased glucose, fructose, sucrose, quebrachitol, and starch contents in the litchi mycorrhizal roots, thereby reducing AM colonization. RNA-seq achieved approximately 60 million reads of each sample, with an average length of reads reaching 100 bp. Assembly of all the reads of the 30 samples produced 671,316 transcripts and 381,429 unigenes, with average lengths of 780 and 643 bp, respectively. Litchi (54,100 unigenes) and AM fungi unigenes (33,120 unigenes) were achieved through sequence annotation during decreased carbohydrate content. Analysis of differentially expressed genes (DEG) showed that flavonoids, alpha-linolenic acid, and linoleic acid are the main factors that regulate AM colonization in litchi. However, flavonoids may play a role in detecting the stage at which carbohydrate content decreases; alpha-linolenic acid or linoleic acid may affect AM formation under the adaptation process. Litchi trees stimulated the expression of defense-related genes and downregulated symbiosis signal-transduction genes to inhibit new AM colonization. Moreover, transcription factors of the AP2, ERF, Myb, WRKY, bHLH families, and lectin genes altered maintenance of litchi mycorrhizal roots in the post-symbiotic stage for carbohydrate starvation. Similar to those of the litchi host, the E3 ubiquitin ligase complex SCF subunit scon-3 and polyubiquitin of AM fungi were upregulated at the perceived stages. This occurrence suggested that ubiquitination plays an important role in perceiving carbohydrate decrease in AM fungi. The transcription of cytochrome b-245 and leucine-rich repeat was detected in the DEG database, implying that the transcripts were involved in AM fungal adaptation under carbohydrate starvation. The transcriptome data might suggest novel functions of unigenes in carbohydrate shortage of mycorrhizal roots.
2011-01-01
Background Tea is one of the most popular non-alcoholic beverages worldwide. However, the tea plant, Camellia sinensis, is difficult to culture in vitro, to transform, and has a large genome, rendering little genomic information available. Recent advances in large-scale RNA sequencing (RNA-seq) provide a fast, cost-effective, and reliable approach to generate large expression datasets for functional genomic analysis, which is especially suitable for non-model species with un-sequenced genomes. Results Using high-throughput Illumina RNA-seq, the transcriptome from poly (A)+ RNA of C. sinensis was analyzed at an unprecedented depth (2.59 gigabase pairs). Approximate 34.5 million reads were obtained, trimmed, and assembled into 127,094 unigenes, with an average length of 355 bp and an N50 of 506 bp, which consisted of 788 contig clusters and 126,306 singletons. This number of unigenes was 10-fold higher than existing C. sinensis sequences deposited in GenBank (as of August 2010). Sequence similarity analyses against six public databases (Uniprot, NR and COGs at NCBI, Pfam, InterPro and KEGG) found 55,088 unigenes that could be annotated with gene descriptions, conserved protein domains, or gene ontology terms. Some of the unigenes were assigned to putative metabolic pathways. Targeted searches using these annotations identified the majority of genes associated with several primary metabolic pathways and natural product pathways that are important to tea quality, such as flavonoid, theanine and caffeine biosynthesis pathways. Novel candidate genes of these secondary pathways were discovered. Comparisons with four previously prepared cDNA libraries revealed that this transcriptome dataset has both a high degree of consistency with previous EST data and an approximate 20 times increase in coverage. Thirteen unigenes related to theanine and flavonoid synthesis were validated. Their expression patterns in different organs of the tea plant were analyzed by RT-PCR and quantitative real time PCR (qRT-PCR). Conclusions An extensive transcriptome dataset has been obtained from the deep sequencing of tea plant. The coverage of the transcriptome is comprehensive enough to discover all known genes of several major metabolic pathways. This transcriptome dataset can serve as an important public information platform for gene expression, genomics, and functional genomic studies in C. sinensis. PMID:21356090
Hyun, Tae Kyung; Lee, Sarah; Kumar, Dhinesh; Rim, Yeonggil; Kumar, Ritesh; Lee, Sang Yeol; Lee, Choong Hwan; Kim, Jae-Yean
2014-10-01
Using Illumina sequencing technology, we have generated the large-scale transcriptome sequencing data containing abundant information on genes involved in the metabolic pathways in R. idaeus cv. Nova fruits. Rubus idaeus (Red raspberry) is one of the important economical crops that possess numerous nutrients, micronutrients and phytochemicals with essential health benefits to human. The molecular mechanism underlying the ripening process and phytochemical biosynthesis in red raspberry is attributed to the changes in gene expression, but very limited transcriptomic and genomic information in public databases is available. To address this issue, we generated more than 51 million sequencing reads from R. idaeus cv. Nova fruit using Illumina RNA-Seq technology. After de novo assembly, we obtained 42,604 unigenes with an average length of 812 bp. At the protein level, Nova fruit transcriptome showed 77 and 68 % sequence similarities with Rubus coreanus and Fragaria versa, respectively, indicating the evolutionary relationship between them. In addition, 69 % of assembled unigenes were annotated using public databases including NCBI non-redundant, Cluster of Orthologous Groups and Gene ontology database, suggesting that our transcriptome dataset provides a valuable resource for investigating metabolic processes in red raspberry. To analyze the relationship between several novel transcripts and the amounts of metabolites such as γ-aminobutyric acid and anthocyanins, real-time PCR and target metabolite analysis were performed on two different ripening stages of Nova. This is the first attempt using Illumina sequencing platform for RNA sequencing and de novo assembly of Nova fruit without reference genome. Our data provide the most comprehensive transcriptome resource available for Rubus fruits, and will be useful for understanding the ripening process and for breeding R. idaeus cultivars with improved fruit quality.
Tanase, Koji; Nishitani, Chikako; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Ohmiya, Akemi; Onozaki, Takashi
2012-07-02
Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. We constructed a normalized cDNA library and a 3'-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.
2012-01-01
Background Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. Results We constructed a normalized cDNA library and a 3’-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. Conclusions We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant. PMID:22747974
Liu, Jingjing; Yin, Tongming; Ye, Ning; Chen, Yingnan; Yin, Tingting; Liu, Min; Hassani, Danial
2013-01-01
Background The dioecious system is relatively rare in plants. Shrub willow is an annual flowering dioecious woody plant, and possesses many characteristics that lend it as a great model for tracking the missing pieces of sex determination evolution. To gain a global view of the genes differentially expressed in the male and female shrub willows and to develop a database for further studies, we performed a large-scale transcriptome sequencing of flower buds which were separately collected from two types of sexes. Results Totally, 1,201,931 high quality reads were obtained, with an average length of 389 bp and a total length of 467.96 Mb. The ESTs were assembled into 29,048 contigs, and 132,709 singletons. These unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 291 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified 806 differentially expressed genes between the male and female flower buds. And 33 of them located on the incipient sex chromosome of Salicaceae, among which, 12 genes might involve in plant sex determination empirically. These genes were worthy of special notification in future studies. Conclusions In this study, a large number of EST sequences were generated from the flower buds of a male and a female shrub willow. We also reported the differentially expressed genes between the two sex-type flowers. This work provides valuable information and sequence resources for uncovering the sex determining genes and for future functional genomics analysis of Salicaceae spp. PMID:23560075
Milnthorpe, Andrew T; Soloviev, Mikhail
2011-04-15
The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used.
2011-01-01
Background The Cancer Genome Anatomy Project (CGAP) xProfiler and cDNA Digital Gene Expression Displayer (DGED) have been made available to the scientific community over a decade ago and since then were used widely to find genes which are differentially expressed between cancer and normal tissues. The tissue types are usually chosen according to the ontology hierarchy developed by NCBI. The xProfiler uses an internally available flat file database to determine the presence or absence of genes in the chosen libraries, while cDNA DGED uses the publicly available UniGene Expression and Gene relational databases to count the sequences found for each gene in the presented libraries. Results We discovered that the CGAP approach often includes libraries from dependent or irrelevant tissues (one third of libraries were incorrect on average, with some tissue searches no correct libraries being selected at all). We also discovered that the CGAP approach reported genes from outside the selected libraries and may omit genes found within the libraries. Other errors include the incorrect estimation of the significance values and inaccurate settings for the library size cut-off values. We advocated a revised approach to finding libraries associated with tissues. In doing so, libraries from dependent or irrelevant tissues do not get included in the final library pool. We also revised the method for determining the presence or absence of a gene by searching the UniGene relational database, revised calculation of statistical significance and sorted the library cut-off filter. Conclusion Our results justify re-evaluation of all previously reported results where NCBI CGAP expression data and tools were used. PMID:21496233
2012-01-01
Background Roses (Rosa sp.), which belong to the family Rosaceae, are the most economically important ornamental plants—making up 30% of the floriculture market. However, given high demand for roses, rose breeding programs are limited in molecular resources which can greatly enhance and speed breeding efforts. A better understanding of important genes that contribute to important floral development and desired phenotypes will lead to improved rose cultivars. For this study, we analyzed rose miRNAs and the rose flower transcriptome in order to generate a database to expound upon current knowledge regarding regulation of important floral characteristics. A rose genetic database will enable comprehensive analysis of gene expression and regulation via miRNA among different Rosa cultivars. Results We produced more than 0.5 million reads from expressed sequences, totalling more than 110 million bp. From these, we generated 35,657, 31,434, 34,725, and 39,722 flower unigenes from Rosa hybrid: ‘Vital’, ‘Maroussia’, and ‘Sympathy’ and Rosa rugosa Thunb. , respectively. The unigenes were assigned functional annotations, domains, metabolic pathways, Gene Ontology (GO) terms, Plant Ontology (PO) terms, and MIPS Functional Catalogue (FunCat) terms. Rose flower transcripts were compared with genes from whole genome sequences of Rosaceae members (apple, strawberry, and peach) and grape. We also produced approximately 40 million small RNA reads from flower tissue for Rosa, representing 267 unique miRNA tags. Among identified miRNAs, 25 of them were novel and 242 of them were conserved miRNAs. Statistical analyses of miRNA profiles revealed both shared and species-specific miRNAs, which presumably effect flower development and phenotypes. Conclusions In this study, we constructed a Rose miRNA and transcriptome database, and we analyzed the miRNAs and transcriptome generated from the flower tissues of four Rosa cultivars. The database provides a comprehensive genetic resource which can be used to better understand rose flower development and to identify candidate genes for important phenotypes. PMID:23171001
Kim, Jungeun; Park, June Hyun; Lim, Chan Ju; Lim, Jae Yun; Ryu, Jee-Youn; Lee, Bong-Woo; Choi, Jae-Pil; Kim, Woong Bom; Lee, Ha Yeon; Choi, Yourim; Kim, Donghyun; Hur, Cheol-Goo; Kim, Sukweon; Noh, Yoo-Sun; Shin, Chanseok; Kwon, Suk-Yoon
2012-11-21
Roses (Rosa sp.), which belong to the family Rosaceae, are the most economically important ornamental plants--making up 30% of the floriculture market. However, given high demand for roses, rose breeding programs are limited in molecular resources which can greatly enhance and speed breeding efforts. A better understanding of important genes that contribute to important floral development and desired phenotypes will lead to improved rose cultivars. For this study, we analyzed rose miRNAs and the rose flower transcriptome in order to generate a database to expound upon current knowledge regarding regulation of important floral characteristics. A rose genetic database will enable comprehensive analysis of gene expression and regulation via miRNA among different Rosa cultivars. We produced more than 0.5 million reads from expressed sequences, totalling more than 110 million bp. From these, we generated 35,657, 31,434, 34,725, and 39,722 flower unigenes from Rosa hybrid: 'Vital', 'Maroussia', and 'Sympathy' and Rosa rugosa Thunb., respectively. The unigenes were assigned functional annotations, domains, metabolic pathways, Gene Ontology (GO) terms, Plant Ontology (PO) terms, and MIPS Functional Catalogue (FunCat) terms. Rose flower transcripts were compared with genes from whole genome sequences of Rosaceae members (apple, strawberry, and peach) and grape. We also produced approximately 40 million small RNA reads from flower tissue for Rosa, representing 267 unique miRNA tags. Among identified miRNAs, 25 of them were novel and 242 of them were conserved miRNAs. Statistical analyses of miRNA profiles revealed both shared and species-specific miRNAs, which presumably effect flower development and phenotypes. In this study, we constructed a Rose miRNA and transcriptome database, and we analyzed the miRNAs and transcriptome generated from the flower tissues of four Rosa cultivars. The database provides a comprehensive genetic resource which can be used to better understand rose flower development and to identify candidate genes for important phenotypes.
Li, Jitao; Li, Jian; Chen, Ping; Liu, Ping; He, Yuying
2015-01-01
The ridgetail white prawn Exopalaemon carinicauda is one of major economic mariculture species in eastern China. The deficiency of genomic and transcriptomic data is becoming the bottleneck of further researches on its good traits. In the present study, 454 pyrosequencing was undertaken to investigate the transcriptome profiles of E. carinicauda. A collection of 1,028,710 sequence reads (459.59 Mb) obtained from cDNA prepared from eyestalk and hemocytes was assembled into 162,056 expressed sequence tags (ESTs). Of these, 29.88 % of 48,428 contigs and 70.12 % of 113,628 singlets possessed high similarities to sequences in the GenBank non-redundant database, with most significant (E value <1e(-10)) unigenes matches occurring with crustacean and insect sequences. KEGG analysis of unigenes identified putative members of biological pathways related to growth and immunity. In addition, we obtained a total of putative 125,112 SNPs and 13,467 microsatellites. These results will contribute to the understanding of the genome makeup and provide useful information for future functional genomic research in E. carinicauda.
Zhang, Zhijun; Zhang, Pengjun; Li, Weidi; Zhang, Jinming; Huang, Fang; Yang, Jian; Bei, Yawei; Lu, Yaobin
2013-05-01
The western flower thrips (WFT), Frankliniella occidentalis, a world-wide invasive insect, causes agricultural damage by directly feeding and by indirectly vectoring Tospoviruses, such as Tomato spotted wilt virus (TSWV). We characterized the transcriptome of WFT and analyzed global gene expression of WFT response to TSWV infection using Illumina sequencing platform. We compiled 59,932 unigenes, and identified 36,339 unigenes by similarity analysis against public databases, most of which were annotated using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Within these annotated transcripts, we collected 278 sequences related to insecticide resistance. GO and KEGG analysis of different expression genes between TSWV-infected and non-infected WFT population revealed that TSWV can regulate cellular process and immune response, which might lead to low virus titers in thrips cells and no detrimental effects on F. occidentalis. This data-set not only enriches genomic resource for WFT, but also benefits research into its molecular genetics and functional genomics. Copyright © 2013 Elsevier Inc. All rights reserved.
Database resources of the National Center for Biotechnology Information
Wheeler, David L.; Barrett, Tanya; Benson, Dennis A.; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Kenton, David L.; Khovayko, Oleg; Lipman, David J.; Madden, Thomas L.; Maglott, Donna R.; Ostell, James; Pruitt, Kim D.; Schuler, Gregory D.; Schriml, Lynn M.; Sequeira, Edwin; Sherry, Stephen T.; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Suzek, Tugba O.; Tatusov, Roman; Tatusova, Tatiana A.; Wagner, Lukas; Yaschenko, Eugene
2006-01-01
In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Retroviral Genotyping Tools, HIV-1, Human Protein Interaction Database, SAGEmap, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of the resources can be accessed through the NCBI home page at: . PMID:16381840
Database resources of the National Center for Biotechnology Information.
Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; Dicuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian
2012-01-01
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
Database resources of the National Center for Biotechnology Information
Acland, Abigail; Agarwala, Richa; Barrett, Tanya; Beck, Jeff; Benson, Dennis A.; Bollin, Colleen; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Church, Deanna M.; Clark, Karen; DiCuccio, Michael; Dondoshansky, Ilya; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Gorelenkov, Viatcheslav; Hoeppner, Marilu; Johnson, Mark; Kelly, Christopher; Khotomlianski, Viatcheslav; Kimchi, Avi; Kimelman, Michael; Kitts, Paul; Krasnov, Sergey; Kuznetsov, Anatoliy; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Karsch-Mizrachi, Ilene; Murphy, Terence; Ostell, James; O'Sullivan, Christopher; Panchenko, Anna; Phan, Lon; Pruitt, Don Preussm Kim D.; Rubinstein, Wendy; Sayers, Eric W.; Schneider, Valerie; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Siyan, Karanjit; Slotta, Douglas; Soboleva, Alexandra; Soussov, Vladimir; Starchenko, Grigory; Tatusova, Tatiana A.; Trawick, Bart W.; Vakatov, Denis; Wang, Yanli; Ward, Minghong; John Wilbur, W.; Yaschenko, Eugene; Zbicz, Kerry
2014-01-01
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, PubReader, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Primer-BLAST, COBALT, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, ClinVar, MedGen, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page. PMID:24259429
Database resources of the National Center for Biotechnology Information
Wheeler, David L.; Church, Deanna M.; Lash, Alex E.; Leipe, Detlef D.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Tatusova, Tatiana A.; Wagner, Lukas; Rapp, Barbara A.
2001-01-01
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources that operate on the data in GenBank and a variety of other biological data made available through NCBI’s Web site. NCBI data retrieval resources include Entrez, PubMed, LocusLink and the Taxonomy Browser. Data analysis resources include BLAST, Electronic PCR, OrfFinder, RefSeq, UniGene, HomoloGene, Database of Single Nucleotide Polymorphisms (dbSNP), Human Genome Sequencing, Human MapViewer, GeneMap’99, Human–Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes, Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, Cancer Genome Anatomy Project (CGAP), SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB) and the Conserved Domain Database (CDD). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov. PMID:11125038
Database resources of the National Center for Biotechnology
Wheeler, David L.; Church, Deanna M.; Federhen, Scott; Lash, Alex E.; Madden, Thomas L.; Pontius, Joan U.; Schuler, Gregory D.; Schriml, Lynn M.; Sequeira, Edwin; Tatusova, Tatiana A.; Wagner, Lukas
2003-01-01
In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides data analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, PubMed, PubMed Central (PMC), LocusLink, the NCBITaxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR (e-PCR), Open Reading Frame (ORF) Finder, References Sequence (RefSeq), UniGene, HomoloGene, ProtEST, Database of Single Nucleotide Polymorphisms (dbSNP), Human/Mouse Homology Map, Cancer Chromosome Aberration Project (CCAP), Entrez Genomes and related tools, the Map Viewer, Model Maker (MM), Evidence Viewer (EV), Clusters of Orthologous Groups (COGs) database, Retroviral Genotyping Tools, SAGEmap, Gene Expression Omnibus (GEO), Online Mendelian Inheritance in Man (OMIM), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), and the Conserved Domain Architecture Retrieval Tool (CDART). Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at: http://www.ncbi.nlm.nih.gov. PMID:12519941
Zhang, Chan; Liang, Jian; Yang, Le; Sun, Baoguo; Wang, Chengtao
2017-01-01
Monascus purpureus is an important medicinal and edible microbial resource. To facilitate biological, biochemical, and molecular research on medicinal components of M. purpureus, we investigated the M. purpureus transcriptome by RNA sequencing (RNA-seq). An RNA-seq library was created using RNA extracted from a mixed sample of M. purpureus expressing different levels of monacolin K output. In total 29,713 unigenes were assembled from more than 60 million high-quality short reads. A BLAST search revealed hits for 21,331 unigenes in at least one of the protein or nucleotide databases used in this study. The 22,365 unigenes were categorized into 48 functional groups based on Gene Ontology classification. Owing to the economic and medicinal importance of M. purpureus, most studies on this organism have focused on the pharmacological activity of chemical components and the molecular function of genes involved in their biogenesis. In this study, we performed quantitative real-time PCR to detect the expression of genes related to monacolin K (mokA-mokI) at different phases (2, 5, 8, and 12 days) of M. purpureus M1 and M1-36. Our study found that mokF modulates monacolin K biogenesis in M. purpureus. Nine genes were suggested to be associated with the monacolin K biosynthesis. Studies on these genes could provide useful information on secondary metabolic processes in M. purpureus. These results indicate a detailed resource through genetic engineering of monacolin K biosynthesis in M. purpureus and related species. PMID:28114365
Transcriptome Analysis of Salt Tolerant Common Bean (Phaseolus vulgaris L.) under Saline Conditions
Hiz, Mahmut Can; Canher, Balkan; Niron, Harun; Turet, Muge
2014-01-01
Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs) and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values) was performed by qRT-PCR (Quantitative Reverse Transcription PCR) analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies. PMID:24651267
Gao, Jian Ping; Wang, Dong; Cao, Ling Ya; Sun, Hai Feng
2015-01-01
Background Codonopsis pilosula (Franch.) Nannf. is one of the most widely used medicinal plants. Although chemical and pharmacological studies have shown that codonopsis polysaccharides (CPPs) are bioactive compounds and that their composition is variable, their biosynthetic pathways remain largely unknown. Next-generation sequencing is an efficient and high-throughput technique that allows the identification of candidate genes involved in secondary metabolism. Principal Findings To identify the components involved in CPP biosynthesis, a transcriptome library, prepared using root and other tissues, was assembled with the help of Illumina sequencing. A total of 9.2 Gb of clean nucleotides was obtained comprising 91,175,044 clean reads, 102,125 contigs, and 45,511 unigenes. After aligning the sequences to the public protein databases, 76.1% of the unigenes were annotated. Among these annotated unigenes, 26,189 were assigned to Gene Ontology categories, 11,415 to Clusters of Orthologous Groups, and 18,848 to Kyoto Encyclopedia of Genes and Genomes pathways. Analysis of abundance of transcripts in the library showed that genes, including those encoding metallothionein, aquaporin, and cysteine protease that are related to stress responses, were in the top list. Among genes involved in the biosynthesis of CPP, those responsible for the synthesis of UDP-L-arabinose and UDP-xylose were highly expressed. Significance To our knowledge, this is the first study to provide a public transcriptome dataset prepared from C. pilosula and an outline of the biosynthetic pathway of polysaccharides in a medicinal plant. Identified candidate genes involved in CPP biosynthesis provide understanding of the biosynthesis and regulation of CPP at the molecular level. PMID:25719364
He, Xueying; Wang, Huan; Yang, Jinfen; Deng, Ke; Wang, Teng
2018-02-01
Amomum villosum Lour. is an important Chinese medicinal plant that has diverse medicinal functions, and mainly contains volatile terpenes. This study aims to explore the WRKY transcription factors (TFs) and terpene synthase (TPS) unigenes that might be involved in terpene biosynthesis in A. villosum, and thus providing some new information on the regulation of terpenes in plants. RNA sequencing of A. villosum induced by methyl jasmonate (MeJA) revealed that the WRKY family was the second largest TF family in the transcriptome. Thirty-six complete WRKY domain sequences were expressed in response to MeJA. Further, six WRKY unigenes were highly correlated with eight deduced TPS unigenes. Ultimately, we combined the terpene abundance with the expression of candidate WRKY TFs and TPS unigenes to presume a possible model wherein AvWRKY61, AvWRKY28, and AvWRKY40 might coordinately trans-activate the AvNeoD promoter. We propose an approach to further investigate TF unigenes that might be involved in terpenoid biosynthesis, and identified four unigenes for further analyses.
Database resources of the National Center for Biotechnology Information
2015-01-01
The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:25398906
Database resources of the National Center for Biotechnology Information
2016-01-01
The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:26615191
Chen, Wei-Hua; Wang, Xue-Xia; Lin, Wei; He, Xiao-Wei; Wu, Zhen-Qiang; Lin, Ying; Hu, Song-Nian; Wang, Xiao-Ning
2006-01-01
Background The cynomolgus monkey (Macaca fascicularis) is one of the most widely used surrogate animal models for an increasing number of human diseases and vaccines, especially immune-system-related ones. Towards a better understanding of the gene expression background upon its immunogenetics, we constructed a cDNA library from Epstein-Barr virus (EBV)-transformed B lymphocytes of a cynomolgus monkey and sequenced 10,000 randomly picked clones. Results After processing, 8,312 high-quality expressed sequence tags (ESTs) were generated and assembled into 3,728 unigenes. Annotations of these uniquely expressed transcripts demonstrated that out of the 2,524 open reading frame (ORF) positive unigenes (mitochondrial and ribosomal sequences were not included), 98.8% shared significant similarities (E-value less than 1e-10) with the NCBI nucleotide (nt) database, while only 67.7% (E-value less than 1e-5) did so with the NCBI non-redundant protein (nr) database. Further analysis revealed that 90.0% of the unigenes that shared no similarities to the nr database could be assigned to human chromosomes, in which 75 did not match significantly to any cynomolgus monkey and human ESTs. The mapping regions to known human genes on the human genome were described in detail. The protein family and domain analysis revealed that the first, second and fourth of the most abundantly expressed protein families were all assigned to immunoglobulin and major histocompatibility complex (MHC)-related proteins. The expression profiles of these genes were compared with that of homologous genes in human blood, lymph nodes and a RAMOS cell line, which demonstrated expression changes after transformation with EBV. The degree of sequence similarity of the MHC class I and II genes to the human reference sequences was evaluated. The results indicated that class I molecules showed weak amino acid identities (<90%), while class II showed slightly higher ones. Conclusion These results indicated that the genes expressed in the cynomolgus monkey could be used to identify novel protein-coding genes and revise those incomplete or incorrect annotations in the human genome by comparative methods, since the old world monkeys and humans share high similarities at the molecular level, especially within coding regions. The identification of multiple genes involved in the immune response, their sequence variations to the human homologues, and their responses to EBV infection could provide useful information to improve our understanding of the cynomolgus monkey immune system. PMID:16618371
Zhang, Cheng-Cai; Wang, Li-Yuan; Wei, Kang; Wu, Li-Yun; Li, Hai-Lin; Zhang, Fen; Cheng, Hao; Ni, De-Jiang
2016-05-17
Self-incompatibility (SI) is under genetic control and prevents inbreeding depression in angiosperms. SI mechanisms are quite complicated and still poorly understood in many plants. Tea (Camellia sinensis L.) belonging to the family of Theaceae, exhibits high levels of SI and high heterozygosity. Uncovering the molecular basis of SI of the tea plant may enhance breeding and simplify genomics research for the whole family. The growth of pollen tubes following selfing and crossing was observed using fluorescence microscopy. Self-pollen tubes grew slower than cross treatments from 24 h to 72 h after pollination. RNA-seq was employed to explore the molecular mechanisms of SI and to identify SI-related genes in C. sinensis. Self and cross-pollinated styles were collected at 24 h, 48 h and 72 h after pollination. Six RNA-seq libraries (SP24, SP48, SP72, CP24 CP48 and CP72; SP = self-pollinated, CP = cross-pollinated) were constructed and separately sequenced. In total, 299.327 million raw reads were generated. Following assembly, 63,762 unigenes were identified, and 27,264 (42.76 %) unigenes were annotated in five public databases: NR, KOG, KEGG, Swiss-Port and GO. To identify SI-related genes, the fragments per kb per million mapped reads (FPKM) values of each unigene were evaluated. Comparisons of CP24 vs. SP24, CP48 vs. SP48 and CP72 vs. SP72 revealed differential expression of 3,182, 3,575 and 3,709 genes, respectively. Consequently, several ubiquitin-mediated proteolysis, Ca(2+) signaling, apoptosis and defense-associated genes were obtained. The temporal expression pattern of genes following CP and SP was analyzed; 6 peroxidase, 1 polyphenol oxidase and 7 salicylic acid biosynthetic process-related genes were identified. The RNA-seq data were validated by qRT-PCR of 15 unigenes. Finally, a unigene (CL25983Contig1) with strong homology to the S-RNase was analyzed. It was mainly expressed in styles, with dramatically higher expression in self-pollinated versus cross-pollinated tissues at 24 h post-pollination. The present study reports the transcriptome of styles after cross- and self-pollination in tea and offers novel insights into the molecular mechanism behind SI in C. sinensis. We believe that this RNA-seq dataset will be useful for improvement in C. sinensis as well as other plants in the Theaceae family.
Database resources of the National Center for Biotechnology Information
Wheeler, David L.; Barrett, Tanya; Benson, Dennis A.; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Khovayko, Oleg; Landsman, David; Lipman, David J.; Madden, Thomas L.; Maglott, Donna R.; Miller, Vadim; Ostell, James; Pruitt, Kim D.; Schuler, Gregory D.; Shumway, Martin; Sequeira, Edwin; Sherry, Steven T.; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusov, Roman L.; Tatusova, Tatiana A.; Wagner, Lukas; Yaschenko, Eugene
2008-01-01
In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:18045790
Liu, Qiuxu; Qi, Xiao; Yan, Haidong; Huang, Linkai; Nie, Gang; Zhang, Xinquan
2018-01-16
To select the most stable reference genes in annual ryegrass ( Lolium multiflorum ), we studied annual ryegrass leaf tissues exposed to various abiotic stresses by qRT-PCR and selected 11 candidate reference genes, i.e., 18S rRNA, E2, GAPDH, eIF4A, HIS3, SAMDC, TBP-1, Unigene71, Unigene77, Unigene755, and Unigene14912. We then used GeNorm, NormFinder, and BestKeeper to analyze the expression stability of these 11 genes, and used RefFinder to comprehensively rank genes according to stability. Under different stress conditions, the most suitable reference genes for studies of leaf tissues of annual ryegrass were different. The expression of the eIF4A gene was the most stable under drought stress. Under saline-alkali stress, Unigene14912 has the highest expression stability. Under acidic aluminum stress, SAMDC expression stability was highest. Under heavy metal stress, Unigene71 expression had the highest stability. According to the software analyses, Unigene14912, HIS3, and eIF4A were the most suitable for analyses of abiotic stress in tissues of annual ryegrass. GAPDH was the least suitable reference gene. In conclusion, selecting appropriate reference genes under abiotic stress not only improves the accuracy of annual ryegrass gene expression analyses, but also provides a theoretical reference for the development of reference genes in plants of the genus Lolium .
Ghangal, Rajesh; Raghuvanshi, Saurabh; Sharma, Prakash C
2012-02-01
A cDNA library was constructed from the mature leaves of seabuckthorn (Hippophae rhamnoides). Expressed Sequence Tags (ESTs) were generated by single pass sequencing of 4500 cDNA clones. We submitted 3412 ESTs to dbEST of NCBI. Clustering of these ESTs yielded 1665 unigenes comprising of 345 contigs and 1320 singletons. Out of 1665 unigenes, 1278 unigenes were annotated by similarity search while the remaining 387 unannotated unigenes were considered as organism specific. Gene Ontology (GO) analysis of the unigene dataset showed 691 unigenes related to biological processes, 727 to molecular functions and 588 to cellular component category. On the basis of similarity search and GO annotation, 43 unigenes were found responsive to biotic and abiotic stresses. To validate this observation, 13 genes that are known to be associated with cold stress tolerance from previous studies in Arabidopsis and 3 novel transcripts were examined by Real time RT-PCR to understand the change in expression pattern under cold/freeze stress. In silico study of occurrence of microsatellites in these ESTs revealed the presence of 62 Simple Sequence Repeats (SSRs), some of which are being explored to assess genetic diversity among seabuckthorn collections. This is the first report of generation of transcriptome data providing information about genes involved in managing plant abiotic stress in seabuckthorn, a plant known for its enormous medicinal and ecological value. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Chen, Jie; Tan, Ren-Ke; Guo, Xiao-Juan; Fu, Zheng-Li; Wang, Zheng; Zhang, Zhi-Yan; Tan, Xiao-Li
2015-01-01
Brassica napus seed is a lipid storage organ containing approximately 40% oil, while its leaves contain many kinds of lipids for many biological roles, but the overall amounts are less than in seeds. Thus, lipid biosynthesis in the developing seeds and the leaves is strictly regulated which results the final difference of lipids. However, there are few reports about the molecular mechanism controlling the difference in lipid biosynthesis between developing seeds and leaves. In this study, we tried to uncover this mechanism by analyzing the transcriptome data for lipid biosynthesis. The transcriptome data were de novo assembled and a total of 47216 unigenes were obtained, which had an N50 length and median of 1271 and 755 bp, respectively. Among these unigenes, 36368 (about 77.02%) were annotated and there were 109 up-regulated unigenes and 72 down-regulated unigenes in the developing seeds lipid synthetic pathway after comparing with leaves. In the oleic acid pathway, 23 unigenes were up-regulated and four unigenes were down-regulated. During triacylglycerol (TAG) synthesis, the key unigenes were all up-regulated, such as phosphatidate phosphatase and diacylglycerol O-acyltransferase. During palmitic acid, palmitoleic acid, stearic acid, linoleic acid and linolenic acid synthesis in leaves, the unigenes were nearly all up-regulated, which indicated that the biosynthesis of these particular fatty acids were more important in leaves. In the developing seeds, almost all the unigenes in the ABI3VP1, RKD, CPP, E2F-DP, GRF, JUMONJI, MYB-related, PHD and REM transcript factorfamilies were up-regulated, which helped us to discern the regulation mechanism underlying lipid biosynthesis. The differential up/down-regulation of the genes and TFs involved in lipid biosynthesis in developing seeds and leaves provided direct evidence that allowed us to map the network that regulates lipid biosynthesis, and the identification of new TFs that are up-regulated in developing seeds will help us to further elucidate the lipids biosynthesis pathway in developing seeds and leaves. PMID:25965272
Lin, Yuli; Zou, Weikun; Lin, Shiqiang; Onofua, Dennis; Yang, Zhijian; Chen, Haizhou; Wang, Songliang; Chen, Xuanyang
2017-01-01
Sweet potato production is constrained by Fusarium wilt, which is caused by Fusarium oxysporum f. sp. batatas (Fob). The identification of genes related to disease resistance and the underlying mechanisms will contribute to improving disease resistance via sweet potato breeding programs. In the present study, we performed de novo transcriptome assembly and digital gene expression (DGE) profiling of sweet potato challenged with Fob using Illumina HiSeq technology. In total, 89,944,188 clean reads were generated from 12 samples and assembled into 101,988 unigenes with an average length of 666 bp; of these unigenes, 62,605 (61.38%) were functionally annotated in the NCBI non-redundant protein database by BLASTX with a cutoff E-value of 10-5. Clusters of Orthologous Groups (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were examined to explore the unigenes' functions. We constructed four DGE libraries for the sweet potato cultivars JinShan57 (JS57, highly resistant) and XinZhongHua (XZH, highly susceptible), which were challenged with pathogenic Fob. Genes that were differentially expressed in the four libraries were identified by comparing the transcriptomes. Various genes that were differentially expressed during defense, including chitin elicitor receptor kinase 1 (CERK), mitogen-activated protein kinase (MAPK), WRKY, NAC, MYB, and ethylene-responsive transcription factor (ERF), as well as resistance genes, pathogenesis-related genes, and genes involved in salicylic acid (SA) and jasmonic acid (JA) signaling pathways, were identified. These data represent a sequence resource for genetic and genomic studies of sweet potato that will enhance the understanding of the mechanism of disease resistance.
Wu, Qi; Bai, Xue; Zhao, Wei; Xiang, Dabing; Wan, Yan; Yan, Jun; Zou, Liang; Zhao, Gang
2017-01-01
Soil salinization has been a tremendous obstacle for agriculture production. The regulatory networks underlying salinity adaption in model plants have been extensively explored. However, limited understanding of the salt response mechanisms has hindered the planting and production in Fagopyrum tataricum, an economic and health-beneficial plant mainly distributing in southwest China. In this study, we performed physiological analysis and found that salt stress of 200 mM NaCl solution significantly affected the relative water content (RWC), electrolyte leakage (EL), malondialdehyde (MDA) content, peroxidase (POD) and superoxide dismutase (SOD) activities in tartary buckwheat seedlings. Further, we conducted transcriptome comparison between control and salt treatment to identify potential regulatory components involved in F. tataricum salt responses. A total of 53.15 million clean reads from control and salt-treated libraries were produced via an Illumina sequencing approach. Then we de novo assembled these reads into a transcriptome dataset containing 57,921 unigenes with N50 length of 1400 bp and total length of 44.5 Mb. A total of 36,688 unigenes could find matches in public databases. GO, KEGG and KOG classification suggested the enrichment of these unigenes in 56 sub-categories, 25 KOG, and 273 pathways, respectively. Comparison of the transcriptome expression patterns between control and salt treatment unveiled 455 differentially expressed genes (DEGs). Further, we found the genes encoding for protein kinases, phosphatases, heat shock proteins (HSPs), ATP-binding cassette (ABC) transporters, glutathione S-transferases (GSTs), abiotic-related transcription factors and circadian clock might be relevant to the salinity adaption of this species. Thus, this study offers an insight into salt tolerance mechanisms, and will serve as useful genetic information for tolerant elite breeding programs in future. PMID:28972562
Wang, Yanjie; Dong, Chunlan; Xue, Zeyun; Jin, Qijiang; Xu, Yingchun
2016-01-15
Paeonia ostii, an important ornamental and medicinal plant, grows normally on copper (Cu) mines with widespread Cu contamination of soils, and it has the ability to lower Cu contents in the Cu-contaminated soils. However, very little molecular information concerned with Cu resistance of P. ostii is available. In this study, high-throughput de novo transcriptome sequencing was carried out for P. ostii with and without Cu treatment using Illumina HiSeq 2000 platform. A total of 77,704 All-unigenes were obtained with a mean length of 710 bp. Of these unigenes, 47,461 were annotated with public databases based on sequence similarities. Comparative transcript profiling allowed the discovery of 4324 differentially expressed genes (DEGs), with 2207 up-regulated and 2117 down-regulated unigenes in Cu-treated library as compared to the control counterpart. Based on these DEGs, Gene Ontology (GO) enrichment analysis indicated Cu stress-relevant terms, such as 'membrane' and 'antioxidant activity'. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis uncovered some important pathways, including 'biosynthesis of secondary metabolites' and 'metabolic pathways'. In addition, expression patterns of 12 selected DEGs derived from quantitative real-time polymerase chain reaction (qRT-PCR) were consistent with their transcript abundance changes obtained by transcriptomic analyses, suggesting that all the 12 genes were authentically involved in Cu tolerance in P. ostii. This is the first report to identify genes related to Cu stress responses in P. ostii, which could offer valuable information on the molecular mechanisms of Cu resistance, and provide a basis for further genomics research on this and related ornamental species for phytoremediation. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi.
Song, Zhangyong; Yin, Youping; Jiang, Shasha; Liu, Juanjuan; Chen, Huan; Wang, Zhongkang
2013-06-19
Nomuraea rileyi is used as an environmental-friendly biopesticide. However, mass production and commercialization of this organism are limited due to its fastidious growth and sporulation requirements. When cultured in amended medium, we found that N. rileyi could produce microsclerotia bodies, replacing conidiophores as the infectious agent. However, little is known about the genes involved in microsclerotia development. In the present study, the transcriptomes were analyzed using next-generation sequencing technology to find the genes involved in microsclerotia development. A total of 4.69 Gb of clean nucleotides comprising 32,061 sequences was obtained, and 20,919 sequences were annotated (about 65%). Among the annotated sequences, only 5928 were annotated with 34 gene ontology (GO) functional categories, and 12,778 sequences were mapped to 165 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Furthermore, we assessed the transcriptomic differences between cultures grown in minimal and amended medium. In total, 4808 sequences were found to be differentially expressed; 719 differentially expressed unigenes were assigned to 25 GO classes and 1888 differentially expressed unigenes were assigned to 161 KEGG pathways, including 25 enrichment pathways. Subsequently, we examined the up-regulation or uniquely expressed genes following amended medium treatment, which were also expressed on the enrichment pathway, and found that most of them participated in mediating oxidative stress homeostasis. To elucidate the role of oxidative stress in microsclerotia development, we analyzed the diversification of unigenes using quantitative reverse transcription-PCR (RT-qPCR). Our findings suggest that oxidative stress occurs during microsclerotia development, along with a broad metabolic activity change. Our data provide the most comprehensive sequence resource available for the study of N. rileyi. We believe that the transcriptome datasets will serve as an important public information platform to accelerate studies on N. rileyi microsclerotia.
Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.
Zhang, Xia; Liao, Maoseng; Chang, Dan; Zhang, Fuchun
2014-12-17
Much attention has been given to the potential of halophytes as sources of tolerance traits for introduction into cereals. However, a great deal remains unknown about the diverse mechanisms employed by halophytes to cope with salinity. To characterize salt tolerance mechanisms underlying Karelinia caspica, an Asteraceae halophyte, we performed Large-scale transcriptomic analysis using a high-throughput Illumina sequencing platform. Comparative gene expression analysis was performed to correlate the effects of salt stress and ABA regulation at the molecular level. Total sequence reads generated by pyrosequencing were assembled into 287,185 non-redundant transcripts with an average length of 652 bp. Using the BLAST function in the Swiss-Prot, NCBI nr, GO, KEGG, and KOG databases, a total of 216,416 coding sequences associated with known proteins were annotated. Among these, 35,533 unigenes were classified into 69 gene ontology categories, and 18,378 unigenes were classified into 202 known pathways. Based on the fold changes observed when comparing the salt stress and control samples, 60,127 unigenes were differentially expressed, with 38,122 and 22,005 up- and down-regulated, respectively. Several of the differentially expressed genes are known to be involved in the signaling pathway of the plant hormone ABA, including ABA metabolism, transport, and sensing as well as the ABA signaling cascade. Transcriptome profiling of K. caspica contribute to a comprehensive understanding of K. caspica at the molecular level. Moreover, the global survey of differentially expressed genes in this species under salt stress and analyses of the effects of salt stress and ABA regulation will contribute to the identification and characterization of genes and molecular mechanisms underlying salt stress responses in Asteraceae plants.
Zhou, Yingying; Kang, Lei; Liao, Shiying; Pan, Qi; Ge, Xianhong; Li, Zaiyun
2015-01-01
The giant organs and enhanced concentrations of secondary metabolites realized by autopolyploidy are attractive for breeding the respective medicinal and agricultural plants and studying the genetic mechanisms. The traditional medicinal plant Chinese woad (Isatis indigotica Fort., 2n = 2x = 14) is now still largely used for the diseases caused by bacteria and viruses in China. In this study, its autopolyploids (3x, 4x) were produced and characterized together with the 2x donor for their phenotype and transcriptomic alterations by using high-throughput RNA sequencing. With the increase of genome dosage, the giantism in cells and organs was obvious and the photosynthetic rate was higher. The 4x plants showed predominantly the normal meiotic chromosome pairing (bivalents and quadrivalents) and equal segregation and then produced the majority of 4x progeny. The total 70136 All-unigenes were de novo assembled, and 56,482 (80.53%) unigenes were annotated based on BLASTx searches of the public databases. From pair-wise comparisons between transcriptomic data of 2x, 3x, 4x plants, 1856 (2.65%)(2x vs 4x), 693(0.98%)(2x vs 3x), 1045(1.48%)(3x vs 4x) unigenes were detected to differentially expressed genes (DEGs), including both up- and down-regulated ones. These DEGs were mainly involved in cell growth (synthesis of expansin and pectin), cell wall organization, secondary metabolite biosynthesis, response to stress and photosynthetic pathways. The up-regulation of some DEGs for metabolic pathways of functional compounds in the induced autotetraploids substantiates the promising new type of this medicinal plant with the increased biomass and targeted metabolites. PMID:25739089
Dong, Yongcheng; Desneux, Nicolas; Lei, Chaoliang; Niu, Changying
2014-01-01
Bactrocera minax is a major citrus pest distributed in China, Bhutan and India. The long pupal diapause duration of this fly is a major bottleneck for artificial rearing and underlying mechanisms remain unknown. Genetic information on B. minax transcriptome and gene expression profiles are needed to understand its pupal diapause. High-throughput RNA-seq technology was used to characterize the B. minax transcriptome and to identify differentially expressed genes during pupal diapause development. A total number of 52,519,948 reads were generated and assembled into 47,217 unigenes. 26,843 unigenes matched to proteins in the NCBI database using the BLAST search. Four digital gene expression (DGE) libraries were constructed for pupae at early diapause, late diapause, post-diapause and diapause terminated developmental status. 4,355 unigenes showing the differences expressed across four libraries revealed major shifts in cellular functions of cell proliferation, protein processing and export, metabolism and stress response in pupal diapause. When diapause was terminated by 20-hydroxyecdysone (20E), many genes involved in ribosome and metabolism were differentially expressed which may mediate diapause transition. The gene sets involved in protein and energy metabolisms varied throughout early-, late- and post-diapause. A total of 15 genes were selected to verify the DGE results through quantitative real-time PCR (qRT-PCR); qRT-PCR expression levels strongly correlated with the DGE data. The results provided the extensive sequence resources available for B. minax and increased our knowledge on its pupal diapause development and they shed new light on the possible mechanisms involved in pupal diapause in this species. PMID:25285037
Zhang, Xiangmei; Xia, Qianqian; Zhao, Xinmei; Ahn, Youngjoon; Ahmed, Nevin; Cosoveanu, Andreea; Wang, Mo; Wang, Jialu; Shu, Shaohua
2015-01-01
Huperzine A is important in the treatment of Alzheimer’s disease. There are major challenges for the mass production of huperzine A from plants due to the limited number of huperzine-A-producing plants, as well as the low content of huperzine A in these plants. Various endophytic fungi produce huperzine A. Colletotrichum gloeosporioides ES026 was previously isolated from a huperzine-A-producing plant Huperzia serrata, and this fungus also produces huperzine A. In this study, de novo RNA sequencing of C. gloeosporioides ES026 was carried out with an Illumina HiSeq2000. A total of 4,324,299,051 bp from 50,442,617 high-quality sequence reads of ES026 were obtained. These raw data were assembled into 24,998 unigenes, 40,536,684 residues and 19,790 genes. The majority of the unique sequences were assigned to corresponding putative functions based on BLAST searches of public databases. The molecular functions, biological processes and biochemical pathways of these unique sequences were determined using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assignments. A gene encoding copper amine oxidase (CAO) (unigene 9322) was annotated for the conversion of cadaverine to 5-aminopentanal in the biosynthesis of huperzine A. This gene was also detected in the root, stem and leaf of H. serrata. Furthermore, a close relationship was observed between expression of the CAO gene (unigene 9322) and quantity of crude huperzine A extracted from ES026. Therefore, CAO might be involved in the biosynthesis of huperzine A and it most likely plays a key role in regulating the content of huperzine A in ES026. PMID:25799531
Zhou, Chao; Carotenuto, Ylenia; Vitiello, Valentina; Wu, Changwen; Zhang, Jianshe; Buttino, Isabella
2018-06-14
The calanoid copepod Acartia tonsa is a reference species in standardized ecotoxicology bioassay. Despite this interest, there is a lack of knowledge on molecular responses of A. tonsa to contaminants. We generated a de novo assembled transcriptome of A. tonsa exposed 4 days to 8.5 and 17 mg/L nickel nanoparticles (NiNPs), which have been shown to reduce egg hatching success and larval survival but had no effects on the adults. Aims of our study were to 1) improve the knowledge on the molecular responses of A. tonsa copepod and 2) increase the genomic resources of this copepod for further identification of potential biomarkers of NP exposure. The de novo assembled transcriptome of A. tonsa consisted of 53,619 unigenes, which were further annotated to nr, GO, KOG and KEGG databases. In particular, most unigenes were assigned to Metabolic and Cellular processes (34-45%) GO terms, and to Human disease (28%) and Organismal systems (23%) KEGG categories. Comparison among treatments showed that 373 unigenes were differentially expressed in A. tonsa exposed to NiNPs at 8.5 and 17 mg/L, with respect to control. Most of these genes were downregulated and took part in ribosome biogenesis, translation and protein turnover, thus suggesting that NiNPs could affect the copepod ribosome synthesis machinery and functioning. Overall, our study highlights the potential of toxicogenomic approach in gaining more mechanistic and functional information about the mode of action of emerging compounds on marine organisms, for biomarker discovering in crustaceans. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gao, Meiping; Zhang, Shangwen; Luo, Cong; He, Xinhua; Wei, Shaolong; Jiang, Wen; He, Fanglian; Lin, Zhicheng; Yan, Meixin; Dong, Weiqong
2018-04-05
Sagittaria sagittifolia L is an important bulb vegetable that has high nutritional and medical value. Bulb formation and development are crucial to Sagittaria sagittifolia; however, its sucrose metabolism is poorly understood and there are a lack of sufficient transcriptomic and genomic data available to fully understand the molecular mechanisms underlying bulb formation and development as well as the bulb transcriptome. Five cDNA libraries were constructed at different developmental stages and sequenced using high-throughput Illumina RNA sequencing. From approximately 63.53 Gb clean reads, a total of 60,884 unigenes, with an average length of 897.34 bp and N50 of 1.368 kb, were obtained. A total of 36,590 unigenes were successfully annotated using five public databases. Across different developmental stages, 4195, 827, 832, 851, and 1494 were differentially expressed in T02, T03, T04, T05, and T06 libraries, respectively. Gene ontology (GO) analysis revealed several differentially-expressed genes (DEGs) associated with catalytic activity, binding, and transporter activity. The Kyoto encyclopedia of genes and genomes (KEGG) revealed that these DEGs are involved in physiological and biochemical processes. RT-qPCR was used to profile the expression of these unigenes and revealed that the expression patterns of the DEGs were consistent with the transcriptome data. In this study, we conducted a comparative gene expression analysis at the transcriptional level using RNA-seq across the different developmental stages of Sagittaria sagittifolia. We identified a set of genes that might contribute to starch and sucrose metabolism, and the genetic mechanisms related to bulblet development were also explored. This study provides important data for future studies of the genetic and molecular mechanisms underlying bulb formation and development in Sagittaria sagittifolia. Copyright © 2018. Published by Elsevier B.V.
Detailed transcriptome description of the neglected cestode Taenia multiceps.
Wu, Xuhang; Fu, Yan; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Hao, Guiying; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou
2012-01-01
The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS) of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. We obtained a total of 31,282 unigenes (mean length 920 bp) using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam). We identified 26,110 (83.47%) unigenes and inferred 20,896 (66.8%) coding sequences (CDS). Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis) and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum) showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of the biology of T. multiceps, and helps in the identification of drug targets and parasite-host interaction studies.
Scaglione, Davide; Acquadro, Alberto; Portis, Ezio; Taylor, Christopher A; Lanteri, Sergio; Knapp, Steven J
2009-01-01
Background The globe artichoke (Cynara cardunculus var. scolymus L.) is a significant crop in the Mediterranean basin. Despite its commercial importance and its both dietary and pharmaceutical value, knowledge of its genetics and genomics remains scant. Microsatellite markers have become a key tool in genetic and genomic analysis, and we have exploited recently acquired EST (expressed sequence tag) sequence data (Composite Genome Project - CGP) to develop an extensive set of microsatellite markers. Results A unigene assembly was created from over 36,000 globe artichoke EST sequences, containing 6,621 contigs and 12,434 singletons. Over 12,000 of these unigenes were functionally assigned on the basis of homology with Arabidopsis thaliana reference proteins. A total of 4,219 perfect repeats, located within 3,308 unigenes was identified and the gene ontology (GO) analysis highlighted some GO term's enrichments among different classes of microsatellites with respect to their position. Sufficient flanking sequence was available to enable the design of primers to amplify 2,311 of these microsatellites, and a set of 300 was tested against a DNA panel derived from 28 C. cardunculus genotypes. Consistent amplification and polymorphism was obtained from 236 of these assays. Their polymorphic information content (PIC) ranged from 0.04 to 0.90 (mean 0.66). Between 176 and 198 of the assays were informative in at least one of the three available mapping populations. Conclusion EST-based microsatellites have provided a large set of de novo genetic markers, which show significant amounts of polymorphism both between and within the three taxa of C. cardunculus. They are thus well suited as assays for phylogenetic analysis, the construction of genetic maps, marker-assisted breeding, transcript mapping and other genomic applications in the species. PMID:19785740
Zeng, Digang; Chen, Xiuli; Xie, Daxiang; Zhao, Yongzhen; Yang, Chunling; Li, Yongmei; Ma, Ning; Peng, Min; Yang, Qiong; Liao, Zhenping; Wang, Hui; Chen, Xiaohan
2013-01-01
The Pacific white shrimp, Litopenaeus vannamei, is a worldwide cultured crustacean species with important commercial value. Over the last two decades, Taura syndrome virus (TSV) has seriously threatened the shrimp aquaculture industry in the Western Hemisphere. To better understand the interaction between shrimp immune and TSV, we performed a transcriptome analysis in the hepatopancreas of L. vannamei challenged with TSV, using the 454 pyrosequencing (Roche) technology. We obtained 126919 and 102181 high-quality reads from TSV-infected and non-infected (control) L. vannamei cDNA libraries, respectively. The overall de novo assembly of cDNA sequence data generated 15004 unigenes, with an average length of 507 bp. Based on BLASTX search (E-value <10-5) against NR, Swissprot, GO, COG and KEGG databases, 10425 unigenes (69.50% of all unigenes) were annotated with gene descriptions, gene ontology terms, or metabolic pathways. In addition, we identified 770 microsatellites and designed 497 sets of primers. Comparative genomic analysis revealed that 1311 genes differentially expressed in the infected shrimp compared to the controls, including 559 up- and 752 down- regulated genes. Among the differentially expressed genes, several are involved in various animal immune functions, such as antiviral, antimicrobial, proteases, protease inhibitors, signal transduction, transcriptional control, cell death and cell adhesion. This study provides valuable information on shrimp gene activities against TSV infection. Results can contribute to the in-depth study of candidate genes in shrimp immunity, and improves our current understanding of this host-virus interaction. In addition, the large amount of transcripts reported in this study provide a rich source for identification of novel genes in shrimp.
Database resources of the National Center for Biotechnology Information
Sayers, Eric W.; Barrett, Tanya; Benson, Dennis A.; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M.; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M.; Geer, Lewis Y.; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D.; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A.; Wagner, Lukas; Wang, Yanli; Wilbur, W. John; Yaschenko, Eugene; Ye, Jian
2012-01-01
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:22140104
Database resources of the National Center for Biotechnology Information
2013-01-01
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page. PMID:23193264
Database resources of the National Center for Biotechnology Information.
Wheeler, David L; Barrett, Tanya; Benson, Dennis A; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Geer, Lewis Y; Kapustin, Yuri; Khovayko, Oleg; Landsman, David; Lipman, David J; Madden, Thomas L; Maglott, Donna R; Ostell, James; Miller, Vadim; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Steven T; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusov, Roman L; Tatusova, Tatiana A; Wagner, Lukas; Yaschenko, Eugene
2007-01-01
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through NCBI's Web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link(BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace and Assembly Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Viral Genotyping Tools, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. These resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
Database resources of the National Center for Biotechnology Information.
Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Edgar, Ron; Federhen, Scott; Feolo, Michael; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Landsman, David; Lipman, David J; Madden, Thomas L; Maglott, Donna R; Miller, Vadim; Mizrachi, Ilene; Ostell, James; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Yaschenko, Eugene; Ye, Jian
2009-01-01
In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the web applications is custom implementation of the BLAST program optimized to search specialized data sets. All of the resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
Xie, Qi; Niu, Jun; Xu, Xilin; Xu, Lixin; Zhang, Yinbing; Fan, Bo; Liang, Xiaohong; Zhang, Lijuan; Yin, Shuxia; Han, Liebao
2015-01-01
Japanese lawngrass (Zoysia japonica Steud.) is an important warm-season turfgrass that is able to survive in a range of soils, from infertile sands to clays, and to grow well under saline conditions. However, little is known about the molecular mechanisms involved in its resistance to salt stress. Here, we used high-throughput RNA sequencing (RNA-seq) to investigate the changes in gene expression of Zoysia grass at high NaCl concentrations. We first constructed two sequencing libraries, including control and NaCl-treated samples, and sequenced them using the Illumina HiSeq™ 2000 platform. Approximately 157.20 million paired-end reads with a total length of 68.68 Mb were obtained. Subsequently, 32,849 unigenes with an N50 length of 1781 bp were assembled using Trinity. Furthermore, three public databases, the Kyoto Encyclopedia of Genes and Genomes (KEGG), Swiss-prot, and Clusters of Orthologous Groups (COGs), were used for gene function analysis and enrichment. The annotated genes included 57 Gene Ontology (GO) terms, 120 KEGG pathways, and 24 COGs. Compared with the control, 1455 genes were significantly different (false discovery rate ≤0.01, |log2Ratio |≥1) in the NaCl-treated samples. These genes were enriched in 10 KEGG pathways and 73 GO terms, and subjected to 25 COG categories. Using high-throughput next-generation sequencing, we built a database as a global transcript resource for Z. japonica Steud. roots. The results of this study will advance our understanding of the early salt response in Japanese lawngrass roots. PMID:26347751
2013-01-01
Backgroud Isatis indigotica is a widely used herb for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine (TCM). Various structural classes of compounds have been identified as effective ingredients. However, little is known at genetics level about these active metabolites. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive dataset of I. indigotica. Results A database of 36,367 unigenes (average length = 1,115.67 bases) was generated by performing transcriptome sequencing. Based on the gene annotation of the transcriptome, 104 unigenes were identified covering most of the catalytic steps in the general biosynthetic pathways of indole, terpenoid, and phenylpropanoid. Subsequently, the organ-specific expression patterns of the genes involved in these pathways, and their responses to methyl jasmonate (MeJA) induction, were investigated. Metabolites profile of effective phenylpropanoid showed accumulation pattern of secondary metabolites were mostly correlated with the transcription of their biosynthetic genes. According to the analysis of UDP-dependent glycosyltransferases (UGT) family, several flavonoids were indicated to exist in I. indigotica and further identified by metabolic profile using UPLC/Q-TOF. Moreover, applying transcriptome co-expression analysis, nine new, putative UGTs were suggested as flavonol glycosyltransferases and lignan glycosyltransferases. Conclusions This database provides a pool of candidate genes involved in biosynthesis of effective metabolites in I. indigotica. Furthermore, the comprehensive analysis and characterization of the significant pathways are expected to give a better insight regarding the diversity of chemical composition, synthetic characteristics, and the regulatory mechanism which operate in this medical herb. PMID:24308360
Groves, Ryan A.; Hagel, Jillian M.; Zhang, Ye; Kilpatrick, Korey; Levy, Asaf; Marsolais, Frédéric; Lewinsohn, Efraim; Sensen, Christoph W.; Facchini, Peter J.
2015-01-01
Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications. PMID:25806807
Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi
2015-01-01
Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance. PMID:26270529
Zhao, Tian-Tian; Zhang, Jin; Liang, Li-Song; Ma, Qing-Hua; Chen, Xin; Zong, Jian-Wei; Wang, Gui-Xi
2015-01-01
Plant WRKY transcription factors are known to regulate various biotic and abiotic stress responses. In this study we identified a total of 30 putative WRKY unigenes in a transcriptome dataset of the Chinese wild Hazel, Corylus heterophylla, a species that is noted for its cold tolerance. Thirteen full-length of these ChWRKY genes were cloned and found to encode complete protein sequences, and they were divided into three groups, based on the number of WRKY domains and the pattern of zinc finger structures. Representatives of each of the groups, Unigene25835 (group I), Unigene37641 (group II) and Unigene20441 (group III), were transiently expressed as fusion proteins with yellow fluorescent fusion protein in Nicotiana benthamiana, where they were observed to accumulate in the nucleus, in accordance with their predicted roles as transcriptional activators. An analysis of the expression patterns of all 30 WRKY genes revealed differences in transcript abundance profiles following exposure to cold, drought and high salinity conditions. Among the stress-inducible genes, 23 were up-regulated by all three abiotic stresses and the WRKY genes collectively exhibited four different patterns of expression in flower buds during the overwintering period from November to April. The organ/tissue related expression analysis showed that 18 WRKY genes were highly expressed in stem but only 2 (Unigene9262 and Unigene43101) were greatest in male anthotaxies. The expression of Unigene37641, a member of the group II WRKY genes, was substantially up-regulated by cold, drought and salinity treatments, and its overexpression in Arabidopsis thaliana resulted in better seedling growth, compared with wild type plants, under cold treatment conditions. The transgenic lines also had exhibited higher soluble protein content, superoxide dismutase and peroxidase activiety and lower levels of malondialdehyde, which collectively suggets that Unigene37641 expression promotes cold tolerance.
NASA Astrophysics Data System (ADS)
Wu, Kun; Huang, Chao; Shi, Xi; Chen, Feng; Xu, Yi-Huan; Pan, Ya-Xiong; Luo, Zhi; Liu, Xu
2016-12-01
Previous studies have investigated the physiological responses in the liver of Synechogobius hasta exposed to waterborne zinc (Zn). However, at present, very little is known about the underlying molecular mechanisms of these responses. In this study, RNA sequencing (RNA-seq) was performed to analyse the differences in the hepatic transcriptomes between control and Zn-exposed S. hasta. A total of 36,339 unigenes and 1,615 bp of unigene N50 were detected. These genes were further annotated to the Nonredundant protein (NR), Nonredundant nucleotide (Nt), Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases. After 60 days of Zn exposure, 708 and 237 genes were significantly up- and down-regulated, respectively. Many differentially expressed genes (DEGs) involved in energy metabolic pathways were identified, and their expression profiles suggested increased catabolic processes and reduced biosynthetic processes. These changes indicated that waterborne Zn exposure increased the energy production and requirement, which was related to the activation of the AMPK signalling pathway. Furthermore, using the primary hepatocytes of S. hasta, we identified the role of the AMPK signalling pathway in Zn-influenced energy metabolism.
Deng, Yu; Li, Fei; Rieske, Lynne K; Sun, Li-Li; Sun, Shou-Hui
2018-08-20
Fall webworm, Hyphantria cunea Drury (Lepidoptera: Arctiidae) is extremely adaptable and highly invasive in China as a defoliator of ornamental and forest trees. Both voltinism and diapause strategies of fall webworm in China are variable, and this variability contributes to it invasiveness. Little is known about molecular regulation of diapause in fall webworm. To gain insight into possible mechanisms of diapause induction, high-throughput RNA-seq data were generated from non-diapause pupae (NDP) and diapause pupae (DP). A total of 58,151 unigenes were assembled and researched against nine public databases. In total, 29,013 up-regulated and 3451 down-regulated unigenes were differentially expressed by DP when compared with those of NDP. Genes encoding proteins such as UDP-glycosyl transferase (UGT), cytochrome P450 and Hsp70 were predicted to be involved in diapause. Moreover, GO function and KEGG pathway enrichments were performed on all differentially expressed genes (DEGs) and showed that cell cycle and insulin signaling pathways may be related to the diapause of the fall webworm. This study provides valuable information about the fall webworm transcriptome for future gene function research, especially as it relates to diapause. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi
2018-04-11
Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.
Huang, Xiaoyun; Zang, Xiaonan; Wu, Fei; Jin, Yuming; Wang, Haitao; Liu, Chang; Ding, Yating; He, Bangxiang; Xiao, Dongfang; Song, Xinwei; Liu, Zhu
2017-01-01
Gracilariopsis lemaneiformis (aka Gracilaria lemaneiformis) is a red macroalga rich in phycoerythrin, which can capture light efficiently and transfer it to photosystemⅡ. However, little is known about the synthesis of optically active phycoerythrinin in G. lemaneiformis at the molecular level. With the advent of high-throughput sequencing technology, analysis of genetic information for G. lemaneiformis by transcriptome sequencing is an effective means to get a deeper insight into the molecular mechanism of phycoerythrin synthesis. Illumina technology was employed to sequence the transcriptome of two strains of G. lemaneiformis- the wild type and a green-pigmented mutant. We obtained a total of 86915 assembled unigenes as a reference gene set, and 42884 unigenes were annotated in at least one public database. Taking the above transcriptome sequencing as a reference gene set, 4041 differentially expressed genes were screened to analyze and compare the gene expression profiles of the wild type and green mutant. By GO and KEGG pathway analysis, we concluded that three factors, including a reduction in the expression level of apo-phycoerythrin, an increase of chlorophyll light-harvesting complex synthesis, and reduction of phycoerythrobilin by competitive inhibition, caused the reduction of optically active phycoerythrin in the green-pigmented mutant.
Wang, Pingping; Zheng, Min; Liu, Jian; Liu, Yongzhuang; Lu, Jianguo; Sun, Xiaowen
2016-08-26
In this study, we performed a comprehensive analysis of the transcriptome of one- and two-year-old male and female brains of Cynoglossus semilaevis by high-throughput Illumina sequencing. A total of 77,066 transcripts, corresponding to 21,475 unigenes, were obtained with a N50 value of 4349 bp. Of these unigenes, 33 genes were found to have significant differential expression and potentially associated with growth, from which 18 genes were down-regulated and 12 genes were up-regulated in two-year-old males, most of these genes had no significant differences in expression among one-year-old males and females and two-year-old females. A similar analysis was conducted to look for genes associated with reproduction; 25 genes were identified, among them, five genes were found to be down regulated and 20 genes up regulated in two-year-old males, again, most of the genes had no significant expression differences among the other three. The performance of up regulated genes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was significantly different between two-year-old males and females. Males had a high gene expression in genetic information processing, while female's highly expressed genes were mainly enriched on organismal systems. Our work identified a set of sex-biased genes potentially associated with growth and reproduction that might be the candidate factors affecting sexual dimorphism of tongue sole, laying the foundation to understand the complex process of sex determination of this economic valuable species.
Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Yu, Shuxun
2013-01-01
Background Cotton (Gossypium hirsutum L.) is one of the world’s most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. Methodology/Principal Findings In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR), which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. Conclusions/Significance These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence assembly and annotation in G. hirsutum and comparative genomics among Gossypium species. PMID:24146870
Xianjun, Peng; Linhong, Teng; Xiaoman, Wang; Yucheng, Wang; Shihua, Shen
2014-01-01
The paper mulberry is one of the multifunctional tree species in agroforestry systems and is also commonly utilized in traditional medicine in China and other Asian countries. However, little is known about its molecular genetics, which hinders research on and exploitation of this valuable resource. To discern the correlation between gene expression and the essential properties of the paper mulberry, we performed a transcriptomics analysis, assembling a total of 37,725 unigenes from 54,638,676 reads generated by RNA-seq. Among these, 22,692 unigenes showed greater than 60% similarity with genes from other species. The lengths of 13,566 annotated unigenes were longer than 1,000 bp. Functional clustering analysis with COG (Cluster of Orthologous Groups) revealed that 17,184 unigenes are primarily involved in transcription, translation, signal transduction, carbohydrate metabolism, secondary metabolism, and energy metabolism. GO (Gene Ontology) annotation suggests enrichment of genes encoding antioxidant activity, transporter activity, biosynthesis, metabolism and stress response, with a total of 30,659 unigenes falling in these categories. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway analysis showed that 7,199 unigenes are associated with 119 metabolic pathways. In addition to the basic metabolism, these genes are enriched for plant pathogen interaction, flavonoid metabolism and other secondary metabolic processes. Furthermore, differences in the transcriptomes of leaf, stem and root tissues were analyzed and 7,233 specifically expressed unigenes were identified. This global expression analysis provided novel insights about the molecular mechanisms of the biosynthesis of flavonoid, lignin and cellulose, as well as on the response to biotic and abiotic stresses including the remediation of contaminated soil by the paper mulberry.
Genome sequence analysis of a flocculant-producing bacterium, Paenibacillus shenyangensis.
Fu, Lili; Jiang, Binhui; Liu, Jinliang; Zhao, Xin; Liu, Qian; Hu, Xiaomin
2016-03-01
To explore the metabolic process of Paenibacillus shenyangensis that is an efficient bioflocculant-producing bacterium. The biosynthesis mechanism of bioflocculation was used to enrich the genome of Paenibacillus shenyangensis and provide a basis for molecular genetics and functional genomics analyses. According to the analysis of de novo assembly, a total of 5,501,467 bp clean reads were generated, and were assembled into 92 contigs. 4800 unigenes were predicted of which 4393 were annotated showing a specific gene function in the NCBI-Nr database. 3423 genes were found in the database of cluster of orthologous groups. Among the 168 Kyoto Encyclopedia of Genes and Genomes database, cell growth and metabolism were the main biological processes, and a potential metabolic pathway was predicted from glucose to exopolysaccharide within the starch and sucrose metabolism pathway. By using the high-throughput sequencing technology, we provide a genome analysis of Paenibacillus shenyangensis that predicts the main metabolic processes and a potential pathway of exopolysaccharide biosynthesis.
Yang, Lei; Cheng, Tian-Yin; Zhao, Fei-Yan
2017-02-22
Although Pomacea canaliculata is native to South and Central America, it has become one of the most abundant invasive species worldwide and causes extensive damage to agriculture and horticulture. Conventional physical and chemical techniques have been used to eliminate P. canaliculata, but the effects are not ideal. Therefore, it is important to devise a new method based on a greater understanding of the biology of P. canaliculata. However, the molecular mechanisms underlying digestion and absorption in P. canaliculata are not well understood due to the lack of available genomic information for this species, particularly for digestive enzyme genes. In the present study, hepatopancreas transcriptome sequencing produced over 223 million high-quality reads, and a global de novo assembly generated a total of 87,766 unique transcripts (unigenes), of which 19,942 (22.7%) had significant similarities to proteins in the UniProt database. In addition, 296,675 annotated sequences were associated with Gene Ontology (GO) terms. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was performed for the unique unigenes, and 262 pathways (p-value < 10 -5 ) in P. canaliculata were found to be predominantly related to plant consumption and coarse fiber digestion and absorption. These transcripts were classified into four large categories: hydrolase, transferase, isomerase and cytochrome P450. The Reads Per Kilobase of transcript per Million mapped reads (RPKM) analysis showed that there were 523 down-regulated unigenes and 406 up-regulated unigenes in the starving apple snails compared with the satiated apple snails. Several important genes are associated with digestion and absorption in plants: endo-beta-1, 4-glucanase, xylanase, cellulase, cellulase EGX1, cellulase EGX3 and G-type lysozyme genes were identified. The qRT-PCR results confirmed that the expression patterns of these genes (except for the longipain gene) were consistent with the RNA-Seq results. Our results provide a more comprehensive understanding of the molecular genes associated with hepatopancreas functioning. Differentially expressed genes corresponding to critical metabolic pathways were detected in the transcriptome of starving apple snails compared with satiated apple snails. In addition to the cellulase gene, other genes were identified that may be important factors in plant matter metabolism in P. canaliculata, and this information has the potential to expedite the study of digestive physiology in apple snails.
Sahu, Binod B; Shaw, Birendra P
2009-01-01
Background Despite wealth of information generated on salt tolerance mechanism, its basics still remain elusive. Thus, there is a need of continued effort to understand the salt tolerance mechanism using suitable biotechnological techniques and test plants (species) to enable development of salt tolerant cultivars of interest. Therefore, the present study was undertaken to generate information on salt stress responsive genes in a natural halophyte, Suaeda maritima, using PCR-based suppression subtractive hybridization (PCR-SSH) technique. Results Forward and reverse SSH cDNA libraries were constructed after exposing the young plants to 425 mM NaCl for 24 h. From the forward SSH cDNA library, 429 high quality ESTs were obtained. BLASTX search and TIGR assembler programme revealed overexpression of 167 unigenes comprising 89 singletons and 78 contigs with ESTs redundancy of 81.8%. Among the unigenes, 32.5% were found to be of special interest, indicating novel function of these genes with regard to salt tolerance. Literature search for the known unigenes revealed that only 17 of them were salt-inducible. A comparative analysis of the existing SSH cDNA libraries for NaCl stress in plants showed that only a few overexpressing unigenes were common in them. Moreover, the present study also showed increased expression of phosphoethanolamine N-methyltransferase gene, indicating the possible accumulation of a much studied osmoticum, glycinebetaine, in halophyte under salt stress. Functional categorization of the proteins as per the Munich database in general revealed that salt tolerance could be largely determined by the proteins involved in transcription, signal transduction, protein activity regulation and cell differentiation and organogenesis. Conclusion The study provided a clear indication of possible vital role of glycinebetaine in the salt tolerance process in S. maritima. However, the salt-induced expression of a large number of genes involved in a wide range of cellular functions was indicative of highly complex nature of the process as such. Most of the salt inducible genes, nonetheless, appeared to be species-specific. In light of the observations made, it is reasonable to emphasize that a comparative analysis of ESTs from SSH cDNA libraries generated systematically for a few halophytes with varying salt exposure time may clearly identify the key salt tolerance determinant genes to a minimum number, highly desirable for any genetic manipulation adventure. PMID:19497134
Li, Weiguo; Zhang, Lihui; Ding, Zhan; Wang, Guodong; Zhang, Yandi; Gong, Hongmei; Chang, Tianjun; Zhang, Yanwen
2017-02-28
Taihangia rupestris, an andromonoecious plant species, bears both male and hermaphroditic flowers within the same individual. However, the establishment and development of male and hermaphroditic flowers in andromonoecious Taihangia remain poorly understood, due to the limited genetic and sequence information. To investigate the potential molecular mechanism in the regulation of Taihangia flower formation, we used de novo RNA sequencing to compare the transcriptome profiles of male and hermaphroditic flowers at early and late developmental stages. Four cDNA libraries, including male floral bud, hermaphroditic floral bud, male flower, and hermaphroditic flower, were constructed and sequenced by using the Illumina RNA-Seq method. Totally, 84,596,426 qualified Illumina reads were obtained and then assembled into 59,064 unigenes, of which 24,753 unigenes were annotated in the NCBI non-redundant protein database. In addition, 12,214, 7,153, and 8,115 unigenes were assigned into 53 Gene Ontology (GO) functional groups, 25 Clusters of Orthologous Group (COG) categories, and 126 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, respectively. By pairwise comparison of unigene abundance between the samples, we identified 1,668 differential expressed genes (DEGs), including 176 transcription factors (TFs) between the male and hermaphroditic flowers. At the early developmental stage, we found 263 up-regulated genes and 436 down-regulated genes expressed in hermaphroditic floral buds, while 844 up-regulated genes and 314 down-regulated genes were detected in hermaphroditic flowers at the late developmental stage. GO and KEGG enrichment analyses showed that a large number of DEGs were associated with a wide range of functions, including cell cycle, epigenetic processes, flower development, and biosynthesis of unsaturated fatty acid pathway. Finally, real-time quantitative PCR was conducted to validate the DEGs identified in the present study. In this study, transcriptome data of this rare andromonoecious Taihangia were reported for the first time. Comparative transcriptome analysis revealed the significant differences in gene expression profiles between male and hermaphroditic flowers at early and late developmental stages. The transcriptome data of Taihangia would be helpful to improve the understanding of the underlying molecular mechanisms in regulation of flower formation and unisexual flower establishment in andromonoecious plants.
Zhan, Chuansong; Li, Xiaohua; Zhao, Zeying; Yang, Tewu; Wang, Xuekui; Luo, Biaobiao; Zhang, Qiyun; Hu, Yanru; Hu, Xuebo
2016-01-01
Background: Anemone flaccida Fr. Shmidt (Ranunculaceae), commonly known as ‘Di Wu’ in China, is a perennial herb with limited distribution. The rhizome of A. flaccida has long been used to treat arthritis as a tradition in China. Studies disclosed that the plant contains a rich source of triterpenoid saponins. However, little is known about triterpenoid saponins biosynthesis in A. flaccida. Results: In this study, we conducted the tandem transcriptome and proteome profiling of a non-model medicinal plant, A. flaccida. Using Illumina HiSeq 2000 sequencing and iTRAQ technique, a total of 46,962 high-quality unigenes were obtained with an average sequence length of 1,310 bp, along with 1473 unique proteins from A. flaccida. Among the A. flaccida transcripts, 36,617 (77.97%) showed significant similarity (E-value < 1e-5) to the known proteins in the public database. Of the total 46,962 unigenes, 36,617 open reading frame (ORFs) were predicted. By the fragments per kilobases per million reads (FPKM) statistics, 14,004 isoforms/unigenes were found to be upregulated, and 14,090 isoforms/unigenes were down-regulated in the rhizomes as compared to those in the leaves. Based on the bioinformatics analysis, all possible enzymes involved in the triterpenoid saponins biosynthetic pathway of A. flaccida were identified, including cytosolic mevalonate pathway (MVA) and the plastidial methylerythritol pathway (MEP). Additionally, a total of 126 putative cytochrome P450 (CYP450) and 32 putative UDP glycosyltransferases were selected as the candidates of triterpenoid saponins modifiers. Among them, four of them were annotated as the gene of CYP716A subfamily, the key enzyme in the oleanane-type triterpenoid saponins biosynthetic pathway. Furthermore, based on RNA-Seq and proteome analysis, as well as quantitative RT-PCR verification, the expression level of gene and protein committed to triterpenoids biosynthesis in the leaf versus the rhizome was compared. Conclusion: A combination of the de novo transcriptome and proteome profiling based on the Illumina HiSeq 2000 sequencing platform and iTRAQ technique was shown to be a powerful method for the discovery of candidate genes, which encoded enzymes that were responsible for the biosynthesis of novel secondary metabolites in a non-model plant. The transcriptome data of our study provides a very important resource for the understanding of the triterpenoid saponins biosynthesis of A. flaccida. PMID:27504115
2009-01-01
Background Chickpea (Cicer arietinum L.), an important grain legume crop of the world is seriously challenged by terminal drought and salinity stresses. However, very limited number of molecular markers and candidate genes are available for undertaking molecular breeding in chickpea to tackle these stresses. This study reports generation and analysis of comprehensive resource of drought- and salinity-responsive expressed sequence tags (ESTs) and gene-based markers. Results A total of 20,162 (18,435 high quality) drought- and salinity- responsive ESTs were generated from ten different root tissue cDNA libraries of chickpea. Sequence editing, clustering and assembly analysis resulted in 6,404 unigenes (1,590 contigs and 4,814 singletons). Functional annotation of unigenes based on BLASTX analysis showed that 46.3% (2,965) had significant similarity (≤1E-05) to sequences in the non-redundant UniProt database. BLASTN analysis of unique sequences with ESTs of four legume species (Medicago, Lotus, soybean and groundnut) and three model plant species (rice, Arabidopsis and poplar) provided insights on conserved genes across legumes as well as novel transcripts for chickpea. Of 2,965 (46.3%) significant unigenes, only 2,071 (32.3%) unigenes could be functionally categorised according to Gene Ontology (GO) descriptions. A total of 2,029 sequences containing 3,728 simple sequence repeats (SSRs) were identified and 177 new EST-SSR markers were developed. Experimental validation of a set of 77 SSR markers on 24 genotypes revealed 230 alleles with an average of 4.6 alleles per marker and average polymorphism information content (PIC) value of 0.43. Besides SSR markers, 21,405 high confidence single nucleotide polymorphisms (SNPs) in 742 contigs (with ≥ 5 ESTs) were also identified. Recognition sites for restriction enzymes were identified for 7,884 SNPs in 240 contigs. Hierarchical clustering of 105 selected contigs provided clues about stress- responsive candidate genes and their expression profile showed predominance in specific stress-challenged libraries. Conclusion Generated set of chickpea ESTs serves as a resource of high quality transcripts for gene discovery and development of functional markers associated with abiotic stress tolerance that will be helpful to facilitate chickpea breeding. Mapping of gene-based markers in chickpea will also add more anchoring points to align genomes of chickpea and other legume species. PMID:19912666
Database resources of the National Center for Biotechnology Information.
2016-01-04
The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Database resources of the National Center for Biotechnology Information.
2015-01-01
The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank(®) nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Tang, Pei-An; Wu, Hai-Jing; Xue, Hao; Ju, Xing-Rong; Song, Wei; Zhang, Qi-Lin; Yuan, Ming-Long
2017-07-30
The Indian meal moth Plodia interpunctella (Lepidoptera: Pyralidae) is a worldwide pest that causes serious damage to stored foods. Although many efforts have been conducted on this species due to its economic importance, the study of genetic basis of development, behavior and insecticide resistance has been greatly hampered due to lack of genomic information. In this study, we used high throughput sequencing platform to perform a de novo transcriptome assembly and tag-based digital gene expression profiling (DGE) analyses across four different developmental stages of P. interpunctella (egg, third-instar larvae, pupae and adult). We obtained approximate 9gigabyte (GB) of clean data and recovered 84,938 unigenes, including 37,602 clusters and 47,336 singletons. These unigenes were annotated using BLAST against the non-redundant protein databases and then functionally classified based on Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes databases (KEGG). A large number of differentially expressed genes were identified by pairwise comparisons among different developmental stages. Gene expression profiles dramatically changed between developmental stage transitions. Some of these differentially expressed genes were related to digestion and cuticularization. Quantitative real-time PCR results of six randomly selected genes conformed the findings in the DGEs. Furthermore, we identified over 8000 microsatellite markers and 97,648 single nucleotide polymorphisms which will be useful for population genetics studies of P. interpunctella. This transcriptomic information provided insight into the developmental basis of P. interpunctella and will be helpful for establishing integrated management strategies and developing new targets of insecticides for this serious pest. Copyright © 2017 Elsevier B.V. All rights reserved.
Database resources of the National Center for Biotechnology Information.
Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; DiCuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian
2011-01-01
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Electronic PCR, OrfFinder, Splign, ProSplign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), IBIS, Biosystems, Peptidome, OMSSA, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
Wang, Limin; Yang, Haijiao; Liu, Rongning; Fan, Guoqiang
2015-08-01
Toxic metal pollution is a major environmental problem that has received wide attention. Platanus acerifolia (London plane tree) is an important greening tree species that can adapt to environmental pollution. The genetic basis and molecular mechanisms associated with the ability of P. acerifolia to respond lead (Pb) stress have not been reported so far. In this study, 16,246 unigenes differentially expressed unigenes that were obtained from P. acerifolia under Pb stress using next-generation sequencing. Essential pathways such as photosynthesis, and gibberellins and glutathione metabolism were enriched among the differentially expressed unigenes. Furthermore, many important unigenes, including antioxidant enzymes, plants chelate compounds, and metal transporters involved in defense and detoxification mechanisms, were differentially expressed in response to Pb stress. The unigenes encoding the oxygen-evolving enhancer Psb and OEE protein families were downregulated in Pb-stressed plants, implying that oxygen production might decrease in plants under Pb stress. The relationship between gibberellin and P. acerifolia flowering is also discussed. The information and new insights obtained in this study will contribute to further investigations into the molecular regulation mechanisms of Pb accumulation and tolerance in greening tree species.
Lei, Yanyuan; Zhu, Xun; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Guo, Zhaojiang; Xu, Baoyun; Li, Xianchun; Zhou, Xuguo; Zhang, Youjun
2014-01-01
To investigate the response of Plutella xylostella transcriptome in defending against a Bt toxin, high-throughput RNA-sequencing was carried out to examine Cry1Ac-susceptible and -resistant strains. The comparative analysis indentified over 2900 differentially expressed unigenes (DEUs) between these two strains. Gene Ontology analysis placed these unigenes primarily into cell, cell part, organelle, binding, catalytic, cellular process, metabolic process, and response to stimulus categories. Based on pathway analyses, DEUs were enriched in oxidoreductase activity and membrane lipid metabolic processes, and they were also significantly enriched in pathways related to the metabolic and biosynthesis of secondary metabolites. Most of the unigenes involved in the metabolic pathway were up-regulated in resistant strains. Within the ABC transporter pathway, majority of the down-regulated unigenes belong to ABCC2 and ABCC10, respectively, while up-regulated unigenes were mainly categorized as ABCG2. Furthermore, two aminopeptidases, and four cadherins encoding genes were significantly elevated as well. This study provides a transcriptome foundation for the identification and functional characterization of genes involved in the Bt resistance in an agriculturally important insect pest, P. xylostella. © 2013 Elsevier B.V. All rights reserved.
Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin
2015-01-01
Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future. PMID:26403200
Ma, Zengxin; Tan, Yanzhen; Cui, Guzhen; Feng, Yingang; Cui, Qiu; Song, Xiaojin
2015-09-25
Aurantiochytrium is a promising docosahexaenoic acid (DHA) production candidate due to its fast growth rate and high proportions of lipid and DHA content. In this study, high-throughput RNA sequencing technology was employed to explore the acclimatization of this DHA producer under cold stress at the transcriptional level. The overall de novo assembly of the cDNA sequence data generated 29,783 unigenes, with an average length of 1,200 bp. In total, 13,245 unigenes were annotated in at least one database. A comparative genomic analysis between normal conditions and cold stress revealed that 2,013 genes were differentially expressed during the growth stage, while 2,071 genes were differentially expressed during the lipid accumulation stage. Further functional categorization and analyses showed some differentially expressed genes were involved in processes crucial to cold acclimation, such as signal transduction, cellular component biogenesis, and carbohydrate and lipid metabolism. A brief survey of the transcripts obtained in response to cold stress underlines the survival strategy of Aurantiochytrium; of these transcripts, many directly or indirectly influence the lipid composition. This is the first study to perform a transcriptomic analysis of the Aurantiochytrium under low temperature conditions. Our results will help to enhance DHA production by Aurantiochytrium in the future.
NASA Astrophysics Data System (ADS)
Tian, Caihong; Tek Tay, Wee; Feng, Hongqiang; Wang, Ying; Hu, Yongmin; Li, Guoping
2015-06-01
Adelphocoris suturalis is one of the most serious pest insects of Bt cotton in China, however its molecular genetics, biochemistry and physiology are poorly understood. We used high throughput sequencing platform to perform de novo transcriptome assembly and gene expression analyses across different developmental stages (eggs, 2nd and 5th instar nymphs, female and male adults). We obtained 20 GB of clean data and revealed 88,614 unigenes, including 23,830 clusters and 64,784 singletons. These unigene sequences were annotated and classified by Gene Ontology, Clusters of Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes databases. A large number of differentially expressed genes were discovered through pairwise comparisons between these developmental stages. Gene expression profiles were dramatically different between life stage transitions, with some of these most differentially expressed genes being associated with sex difference, metabolism and development. Quantitative real-time PCR results confirm deep-sequencing findings based on relative expression levels of nine randomly selected genes. Furthermore, over 791,390 single nucleotide polymorphisms and 2,682 potential simple sequence repeats were identified. Our study provided comprehensive transcriptional gene expression information for A. suturalis that will form the basis to better understanding of development pathways, hormone biosynthesis, sex differences and wing formation in mirid bugs.
Tian, Caihong; Tek Tay, Wee; Feng, Hongqiang; Wang, Ying; Hu, Yongmin; Li, Guoping
2015-01-01
Adelphocoris suturalis is one of the most serious pest insects of Bt cotton in China, however its molecular genetics, biochemistry and physiology are poorly understood. We used high throughput sequencing platform to perform de novo transcriptome assembly and gene expression analyses across different developmental stages (eggs, 2nd and 5th instar nymphs, female and male adults). We obtained 20 GB of clean data and revealed 88,614 unigenes, including 23,830 clusters and 64,784 singletons. These unigene sequences were annotated and classified by Gene Ontology, Clusters of Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes databases. A large number of differentially expressed genes were discovered through pairwise comparisons between these developmental stages. Gene expression profiles were dramatically different between life stage transitions, with some of these most differentially expressed genes being associated with sex difference, metabolism and development. Quantitative real-time PCR results confirm deep-sequencing findings based on relative expression levels of nine randomly selected genes. Furthermore, over 791,390 single nucleotide polymorphisms and 2,682 potential simple sequence repeats were identified. Our study provided comprehensive transcriptional gene expression information for A. suturalis that will form the basis to better understanding of development pathways, hormone biosynthesis, sex differences and wing formation in mirid bugs. PMID:26047353
Zhu, Jia-Hong; Cao, Tian-Jun; Dai, Hao-Fu; Li, Hui-Liang; Guo, Dong; Mei, Wen-Li; Peng, Shi-Qing
2016-12-06
Dragon's blood is a red resin mainly extracted from Dracaena plants, and has been widely used as a traditional medicine in East and Southeast Asia. The major components of dragon's blood are flavonoids. Owing to a lack of Dracaena plants genomic information, the flavonoids biosynthesis and regulation in Dracaena plants remain unknown. In this study, three cDNA libraries were constructed from the stems of D. cambodiana after injecting the inducer. Approximately 266.57 million raw sequencing reads were de novo assembled into 198,204 unigenes, of which 34,873 unique sequences were annotated in public protein databases. Many candidate genes involved in flavonoid accumulation were identified. Differential expression analysis identified 20 genes involved in flavonoid biosynthesis, 27 unigenes involved in flavonoid modification and 68 genes involved in flavonoid transport that were up-regulated in the stems of D. cambodiana after injecting the inducer, consistent with the accumulation of flavonoids. Furthermore, we have revealed the differential expression of transcripts encoding for transcription factors (MYB, bHLH and WD40) involved in flavonoid metabolism. These de novo transcriptome data sets provide insights on pathways and molecular regulation of flavonoid biosynthesis and transport, and improve our understanding of molecular mechanisms of dragon's blood formation in D. cambodiana.
Zhu, Jia-Hong; Cao, Tian-Jun; Dai, Hao-Fu; Li, Hui-Liang; Guo, Dong; Mei, Wen-Li; Peng, Shi-Qing
2016-01-01
Dragon’s blood is a red resin mainly extracted from Dracaena plants, and has been widely used as a traditional medicine in East and Southeast Asia. The major components of dragon’s blood are flavonoids. Owing to a lack of Dracaena plants genomic information, the flavonoids biosynthesis and regulation in Dracaena plants remain unknown. In this study, three cDNA libraries were constructed from the stems of D. cambodiana after injecting the inducer. Approximately 266.57 million raw sequencing reads were de novo assembled into 198,204 unigenes, of which 34,873 unique sequences were annotated in public protein databases. Many candidate genes involved in flavonoid accumulation were identified. Differential expression analysis identified 20 genes involved in flavonoid biosynthesis, 27 unigenes involved in flavonoid modification and 68 genes involved in flavonoid transport that were up-regulated in the stems of D. cambodiana after injecting the inducer, consistent with the accumulation of flavonoids. Furthermore, we have revealed the differential expression of transcripts encoding for transcription factors (MYB, bHLH and WD40) involved in flavonoid metabolism. These de novo transcriptome data sets provide insights on pathways and molecular regulation of flavonoid biosynthesis and transport, and improve our understanding of molecular mechanisms of dragon’s blood formation in D. cambodiana. PMID:27922066
Analysis of Expressed Sequence Tags (EST) in Date Palm.
Al-Faifi, Sulieman A; Migdadi, Hussein M; Algamdi, Salem S; Khan, Mohammad Altaf; Al-Obeed, Rashid S; Ammar, Megahed H; Jakse, Jerenj
2017-01-01
Expressed sequence tags (EST) were generated from a normalized cDNA library of the date palm Sukkari cv. to understand the high-quality and better field performance of this well-known commercial cultivar. A total of 6943 high-quality ESTs were generated, out of them 6671 are submitted to the GenBank dbEST (LIBEST_028537). The generated ESTs were assembled into 6362 unigenes, consisting of 494 (14.4%) contigs and 5868 (84.53%) singletons. The functional annotation shows that the majority of the ESTs are associated with binding (44%), catalytic (40%), transporter (5%), and structural molecular (5%) activities. The blastx results show that 73% of unigenes are significantly similar to known plant genes and 27% are novel. The latter could be of particular interest in date palm genetic studies. Further analysis shows that some ESTs are categorized as stress/defense- and fruit development-related genes. These newly generated ESTs could significantly enhance date palm EST databases in the public domain and are available to scientists and researchers across the globe. This knowledge will facilitate the discovery of candidate genes that govern important developmental and agronomical traits in date palm. It will provide important resources for developing genetic tools, comparative genomics, and genome evolution among date palm cultivars.
EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries
Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P
2008-01-01
Background Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. Results We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. Conclusion EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects. PMID:18402700
Novel Insights into the Transcriptome of Dirofilaria immitis
Zhang, Zhihe; Hou, Rong; Wu, Xuhang; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Yang, Zhi; Wang, Chengdong; Luo, Li; Liu, Li; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou
2012-01-01
Background The heartworm Dirofilaria immitis is the causal agent of cardiopulmonary dirofilariosis in dogs and cats, and also infects a wide range of wild mammals as well as humans. One bottleneck for the design of fundamentally new intervention and management strategies against D. immitis may be the currently limited knowledge of fundamental molecular aspects of D. immitis. Methodology/Principal Findings A next-generation sequencing platform combining computational approaches was employed to assess a global view of the heartworm transcriptome. A total of 20,810 unigenes (mean length = 1,270 bp) were assembled from 22.3 million clean reads. From these, 15,698 coding sequences (CDS) were inferred, and about 85% of the unigenes had orthologs/homologs in public databases. Comparative transcriptomic study uncovered 4,157 filarial-specific genes as well as 3,795 genes potentially involved in filarial-Wolbachia symbiosis. In addition, the potential intestine transcriptome of D. immitis (1,101 genes) was mined for the first time, which might help to discover ‘hidden antigens’. Conclusions/Significance This study provides novel insights into the transcriptome of D. immitis and sheds light on its molecular processes and survival mechanisms. Furthermore, it provides a platform to discover new vaccine candidates and potential targets for new drugs against dirofilariosis. PMID:22911833
EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries.
Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P
2008-04-10
Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.
Gao, Yuan; He, Xiaoli; Wu, Bin; Long, Qiliang; Shao, Tianwei; Wang, Zi; Wei, Jianhe; Li, Yong; Ding, Wanlong
2016-01-01
Panax ginseng C. A. Meyer is a highly valued medicinal plant. Cylindrocarpon destructans is a destructive pathogen that causes root rot and significantly reduces the quality and yield of P. ginseng. However, an efficient method to control root rot remains unavailable because of insufficient understanding of the molecular mechanism underlying C. destructans-P. ginseng interaction. In this study, C. destructans-induced transcriptomes at different time points were investigated using RNA sequencing (RNA-Seq). De novo assembly produced 73,335 unigenes for the P. ginseng transcriptome after C. destructans infection, in which 3,839 unigenes were up-regulated. Notably, the abundance of the up-regulated unigenes sharply increased at 0.5 d postinoculation to provide effector-triggered immunity. In total, 24 of 26 randomly selected unigenes can be validated using quantitative reverse transcription (qRT)-PCR. Gene ontology enrichment analysis of these unigenes showed that "defense response to fungus", "defense response" and "response to stress" were enriched. In addition, differentially expressed transcription factors involved in the hormone signaling pathways after C. destructans infection were identified. Finally, differentially expressed unigenes involved in reactive oxygen species and ginsenoside biosynthetic pathway during C. destructans infection were indentified. To our knowledge, this study is the first to report on the dynamic transcriptome triggered by C. destructans. These results improve our understanding of disease resistance in P. ginseng and provide a useful resource for quick detection of induced markers in P. ginseng before the comprehensive outbreak of this disease caused by C. destructans.
Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi
2013-01-01
Background Nomuraea rileyi is used as an environmental-friendly biopesticide. However, mass production and commercialization of this organism are limited due to its fastidious growth and sporulation requirements. When cultured in amended medium, we found that N. rileyi could produce microsclerotia bodies, replacing conidiophores as the infectious agent. However, little is known about the genes involved in microsclerotia development. In the present study, the transcriptomes were analyzed using next-generation sequencing technology to find the genes involved in microsclerotia development. Results A total of 4.69 Gb of clean nucleotides comprising 32,061 sequences was obtained, and 20,919 sequences were annotated (about 65%). Among the annotated sequences, only 5928 were annotated with 34 gene ontology (GO) functional categories, and 12,778 sequences were mapped to 165 pathways by searching against the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) database. Furthermore, we assessed the transcriptomic differences between cultures grown in minimal and amended medium. In total, 4808 sequences were found to be differentially expressed; 719 differentially expressed unigenes were assigned to 25 GO classes and 1888 differentially expressed unigenes were assigned to 161 KEGG pathways, including 25 enrichment pathways. Subsequently, we examined the up-regulation or uniquely expressed genes following amended medium treatment, which were also expressed on the enrichment pathway, and found that most of them participated in mediating oxidative stress homeostasis. To elucidate the role of oxidative stress in microsclerotia development, we analyzed the diversification of unigenes using quantitative reverse transcription-PCR (RT-qPCR). Conclusion Our findings suggest that oxidative stress occurs during microsclerotia development, along with a broad metabolic activity change. Our data provide the most comprehensive sequence resource available for the study of N. rileyi. We believe that the transcriptome datasets will serve as an important public information platform to accelerate studies on N. rileyi microsclerotia. PMID:23777366
Liu, Yulin; Huang, Zhedong; Ao, Yan; Li, Wei; Zhang, Zhixiang
2013-01-01
Background Yellow horn (Xanthoceras sorbifolia Bunge) is an oil-rich seed shrub that grows well in cold, barren environments and has great potential for biodiesel production in China. However, the limited genetic data means that little information about the key genes involved in oil biosynthesis is available, which limits further improvement of this species. In this study, we describe sequencing and de novo transcriptome assembly to produce the first comprehensive and integrated genomic resource for yellow horn and identify the pathways and key genes related to oil accumulation. In addition, potential molecular markers were identified and compiled. Methodology/Principal Findings Total RNA was isolated from 30 plants from two regions, including buds, leaves, flowers and seeds. Equal quantities of RNA from these tissues were pooled to construct a cDNA library for 454 pyrosequencing. A total of 1,147,624 high-quality reads with total and average lengths of 530.6 Mb and 462 bp, respectively, were generated. These reads were assembled into 51,867 unigenes, corresponding to a total of 36.1 Mb with a mean length, N50 and median of 696, 928 and 570 bp, respectively. Of the unigenes, 17,541 (33.82%) were unmatched in any public protein databases. We identified 281 unigenes that may be involved in de novo fatty acid (FA) and triacylglycerol (TAG) biosynthesis and metabolism. Furthermore, 6,707 SSRs, 16,925 SNPs and 6,201 InDels with high-confidence were also identified in this study. Conclusions This transcriptome represents a new functional genomics resource and a foundation for further studies on the metabolic engineering of yellow horn to increase oil content and modify oil composition. The potential molecular markers identified in this study provide a basis for polymorphism analysis of Xanthoceras, and even Sapindaceae; they will also accelerate the process of breeding new varieties with better agronomic characteristics. PMID:24040247
Chang, Yaqing; Zhao, Wenming; Du, Zhenlin; Hao, Zhenlin
2015-01-01
Shell color is an important trait that is used in breeding the Japanese scallop Patinopecten yessoensis, the most economically important scallop species in China. We constructed four transcriptome libraries from different shell color lines of P. yessoensis: the left and right shell mantles of ordinary strains of P. yessoensis and the left shell mantles of the ‘Ivory’ and ‘Maple’ strains. These four libraries were paired-end sequenced using the Illumina HiSeq 2000 platform and contained 54,802,692 sequences, 40,798,962 sequences, 74,019,262 sequences, and 44,466,166 sequences, respectively. A total of 214,087,082 expressed sequence tags were assembled into 73,522 unigenes with an average size of 1,163 bp. When the data were compared against the public Nr and Swiss-Prot databases using BlastX, nearly 30.55% (22,458) of the unigenes were significantly matched to known unique proteins. Gene Ontology annotation and pathway mapping analysis using the Kyoto Encyclopedia of Genes and Genomes categorized unigenes according to their diverse biological functions and processes and identified candidate genes that were potentially involved in growth, pigmentation, metal transcription, and immunity. Expression profile analysis was performed on all four libraries and many differentially expressed genes were identified. In addition, 5,772 simple sequence repeats were obtained from the P. yessoensis transcriptomes, and 464,197, 395,646, and 310,649 single nucleotide polymorphisms were revealed in the ordinary strains, the ‘Ivory’ strain, and the ‘Maple’ strain, respectively. These results provide valuable information for future genomic studies on P. yessoensis and improve our understanding of the molecular mechanisms involved in the growth, immunity, shell coloring, and shell biomineralization of this species. These resources also may be used in a variety of applications, such as trait mapping, marker-assisted breeding, studies of population genetics and genomics, and work on functional genomics. PMID:25680107
Yang, Fengxi; Zhu, Genfa
2015-01-01
Cymbidium ensifolium belongs to the genus Cymbidium of the orchid family. Owing to its spectacular flower morphology, C. ensifolium has considerable ecological and cultural value. However, limited genetic data is available for this non-model plant, and the molecular mechanism underlying floral organ identity is still poorly understood. In this study, we characterize the floral transcriptome of C. ensifolium and present, for the first time, extensive sequence and transcript abundance data of individual floral organs. After sequencing, over 10 Gb clean sequence data were generated and assembled into 111,892 unigenes with an average length of 932.03 base pairs, including 1,227 clusters and 110,665 singletons. Assembled sequences were annotated with gene descriptions, gene ontology, clusters of orthologous group terms, the Kyoto Encyclopedia of Genes and Genomes, and the plant transcription factor database. From these annotations, 131 flowering-associated unigenes, 61 CONSTANS-LIKE (COL) unigenes and 90 floral homeotic genes were identified. In addition, four digital gene expression libraries were constructed for the sepal, petal, labellum and gynostemium, and 1,058 genes corresponding to individual floral organ development were identified. Among them, eight MADS-box genes were further investigated by full-length cDNA sequence analysis and expression validation, which revealed two APETALA1/AGL9-like MADS-box genes preferentially expressed in the sepal and petal, two AGAMOUS-like genes particularly restricted to the gynostemium, and four DEF-like genes distinctively expressed in different floral organs. The spatial expression of these genes varied distinctly in different floral mutant corresponding to different floral morphogenesis, which validated the specialized roles of them in floral patterning and further supported the effectiveness of our in silico analysis. This dataset generated in our study provides new insights into the molecular mechanisms underlying floral patterning of Cymbidium and supports a valuable resource for molecular breeding of the orchid plant. PMID:26580566
NASA Astrophysics Data System (ADS)
Yang, Wei; Chen, Huapu; Cui, Xuefan; Zhang, Kewei; Jiang, Dongneng; Deng, Siping; Zhu, Chunhua; Li, Guangli
2017-09-01
Spotted scat (Scatophagus argus) is an economically important farmed fish, particularly in East and Southeast Asia. Because there has been little research on reproductive development and regulation in this species, the lack of a mature artificial reproduction technology remains a barrier for the sustainable development of the aquaculture industry. More genetic and genomic background knowledge is urgently needed for an in-depth understanding of the molecular mechanism of reproductive process and identification of functional genes related to sexual differentiation, gonad maturation and gametogenesis. For these reasons, we performed transcriptomic analysis on spotted scat using a multiple tissue sample mixing strategy. The Illumina RNA sequencing generated 118 510 486 raw reads. After trimming, de novo assembly was performed and yielded 99 888 unigenes with an average length of 905.75 bp. A total of 45 015 unigenes were successfully annotated to the Nr, Swiss-Prot, KOG and KEGG databases. Additionally, 23 783 and 27 183 annotated unigenes were assigned to 56 Gene Ontology (GO) functional groups and 228 KEGG pathways, respectively. Subsequently, 2 474 transcripts associated with reproduction were selected using GO term and KEGG pathway assignments, and a number of reproduction-related genes involved in sex differentiation, gonad development and gametogenesis were identified. Furthermore, 22 279 simple sequence repeat (SSR) loci were discovered and characterized. The comprehensive transcript dataset described here greatly increases the genetic information available for spotted scat and contributes valuable sequence resources for functional gene mining and analysis. Candidate transcripts involved in reproduction would make good starting points for future studies on reproductive mechanisms, and the putative sex differentiation-related genes will be helpful for sex-determining gene identification and sex-specific marker isolation. Lastly, the SSRs can serve as marker resources for future research into genetics, marker-assisted selection (MAS) and conservation biology.
Detailed Transcriptome Description of the Neglected Cestode Taenia multiceps
Wu, Xuhang; Fu, Yan; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Hao, Guiying; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou
2012-01-01
Background The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS) of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. Methodology/Principal Findings We obtained a total of 31,282 unigenes (mean length 920 bp) using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam). We identified 26,110 (83.47%) unigenes and inferred 20,896 (66.8%) coding sequences (CDS). Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis) and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum) showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. Conclusions/Significance This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of the biology of T. multiceps, and helps in the identification of drug targets and parasite-host interaction studies. PMID:23049872
De novo transcriptomic analysis during Lentinula edodes fruiting body growth.
Wang, Yingzhu; Zeng, Xianlu; Liu, Wenguang
2018-01-30
The fruiting body of Lentinula edodes is a popular edible mushroom, and extracts from the mycelium and the fruiting body of this species have diverse therapeutic potential. To gain insights into the molecular mechanisms underlying the fruiting body growth of L. edodes from the early bud stage (EBS), through the intermediate developing stage (IDS), to the fully developed stage (FDS), we performed de novo transcriptomic analysis using high-throughput Illumina RNA-sequencing. First, we generated three cDNA libraries representative of the three respective stages. We then obtained 38,933,148, 44,594,472, and 37,905,646 high-quality reads from the respective libraries and assembled the reads into 25,104 transcriptional contigs, containing 15,199 unigenes. We found that only 9331 of the unigenes had been annotated in the NCBI non-redundant protein database, and we functionally annotated 4758 of them through Gene Ontology (GO) analysis and 2921 of them through Clusters of Orthologous Groups of proteins (COGs) analysis. We also assigned 3995 unigenes to metabolic pathways by using the Kyoto Encyclopedia of Genes and Genomes (KEGG). We further identified 399 differentially expressed genes (DEGs) between EBS and IDS, 1428 between IDS and FDS, and 1830 between EBS and FDS, uncovering 769 DEGs in multiple metabolic and signaling pathways. Interestingly, there were a limited number of DEGs whose expression was dramatically associated with FDS. Finally, genes, whose expression was either highly up-regulated in FDS or remained at a high level during fruiting body growth, were annotated specifically in the pathways of purine metabolism, unsaturated fatty acid metabolism and meiosis, suggesting that these key molecular events were actively occurring in the fruiting body. Our work is the first high-throughput transcriptome study on the growth of L. edodes fruiting bodies, and the results uncovered candidate genes for future gene identification and utilization of this commercially and medically important mushroom. Copyright © 2017 Elsevier B.V. All rights reserved.
Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang
2017-01-01
Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The 'Tunisia' variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate.
Xue, Hui; Cao, Shangyin; Li, Haoxian; Zhang, Jie; Niu, Juan; Chen, Lina; Zhang, Fuhong; Zhao, Diguang
2017-01-01
Pomegranate (Punica granatum L.) belongs to Punicaceae, and is valued for its social, ecological, economic, and aesthetic values, as well as more recently for its health benefits. The ‘Tunisia’ variety has softer seeds and big arils that are easily swallowed. It is a widely popular fruit; however, the molecular mechanisms of the formation of hard and soft seeds is not yet clear. We conducted a de novo assembly of the seed transcriptome in P. granatum L. and revealed differential gene expression between the soft-seed and hard-seed pomegranate varieties. A total of 35.1 Gb of data were acquired in this study, including 280,881,106 raw reads. Additionally, de novo transcriptome assembly generated 132,287 transcripts and 105,743 representative unigenes; approximately 13,805 unigenes (37.7%) were longer than 1,000 bp. Using bioinformatics annotation libraries, a total of 76,806 unigenes were annotated and, among the high-quality reads, 72.63% had at least one significant match to an existing gene model. Gene expression and differentially expressed genes were analyzed. The seed formation of the two pomegranate cultivars involves lignin biosynthesis and metabolism, including some genes encoding laccase and peroxidase, WRKY, MYB, and NAC transcription factors. In the hard-seed pomegranate, lignin-related genes and cellulose synthesis-related genes were highly expressed; in soft-seed pomegranates, expression of genes related to flavonoids and programmed cell death was slightly higher. We validated selection of the identified genes using qRT-PCR. This is the first transcriptome analysis of P. granatum L. This transcription sequencing greatly enriched the pomegranate molecular database, and the high-quality SSRs generated in this study will aid the gene cloning from pomegranate in the future. It provides important insights into the molecular mechanisms underlying the formation of soft seeds in pomegranate. PMID:28594931
Li, Jingtao; Sun, Xinhua; Yu, Gang; Jia, Chengguo; Liu, Jinliang; Pan, Hongyu
2014-01-01
Little information is available on gene expression profiling of halophyte A. canescens. To elucidate the molecular mechanism for stress tolerance in A. canescens, a full-length complementary DNA library was generated from A. canescens exposed to 400 mM NaCl, and provided 343 high-quality ESTs. In an evaluation of 343 valid EST sequences in the cDNA library, 197 unigenes were assembled, among which 190 unigenes (83.1% ESTs) were identified according to their significant similarities with proteins of known functions. All the 343 EST sequences have been deposited in the dbEST GenBank under accession numbers JZ535802 to JZ536144. According to Arabidopsis MIPS functional category and GO classifications, we identified 193 unigenes of the 311 annotations EST, representing 72 non-redundant unigenes sharing similarities with genes related to the defense response. The sets of ESTs obtained provide a rich genetic resource and 17 up-regulated genes related to salt stress resistance were identified by qRT-PCR. Six of these genes may contribute crucially to earlier and later stage salt stress resistance. Additionally, among the 343 unigenes sequences, 22 simple sequence repeats (SSRs) were also identified contributing to the study of A. canescens resources. PMID:24960361
Genes expressed during the development and ripening of watermelon fruit.
Levi, A; Davis, A; Hernandez, A; Wechter, P; Thimmapuram, J; Trebitsh, T; Tadmor, Y; Katzir, N; Portnoy, V; King, S
2006-11-01
A normalized cDNA library was constructed using watermelon flesh mRNA from three distinct developmental time-points and was subtracted by hybridization with leaf cDNA. Random cDNA clones of the watermelon flesh subtraction library were sequenced from the 5' end in order to identify potentially informative genes associated with fruit setting, development, and ripening. One-thousand and forty-six 5'-end sequences (expressed sequence tags; ESTs) were assembled into 832 non-redundant sequences, designated as "EST-unigenes". Of these 832 "EST-unigenes", 254 ( approximately 30%) have no significant homology to sequences published so far for other plant species. Additionally, 168 "EST-unigenes" ( approximately 20%) correspond to genes with unknown function, whereas 410 "EST-unigenes" ( approximately 50%) correspond to genes with known function in other plant species. These "EST-unigenes" are mainly associated with metabolism, membrane transport, cytoskeleton synthesis and structure, cell wall formation and cell division, signal transduction, nucleic acid binding and transcription factors, defense and stress response, and secondary metabolism. This study provides the scientific community with novel genetic information for watermelon as well as an expanded pool of genes associated with fruit development in watermelon. These genes will be useful targets in future genetic and functional genomic studies of watermelon and its development.
Chen, Chengyu; Wang, Cuicui; Liu, Ying; Shi, Xueyan; Gao, Xiwu
2018-02-07
Pesticide tolerance poses many challenges for pest control, particularly for destructive pests such as Bradysia odoriphaga. Imidacloprid has been used to control B. odoriphaga since 2013, however, imidacloprid resistance in B. odoriphaga has developed in recent years. Identifying actual and potential genes involved in detoxification metabolism of imidacloprid could offer solutions for controlling this insect. In this study, RNA-seq was used to explore differentially expressed genes in B. odoriphaga that respond to imidacloprid treatment. Differential expression data between imidacloprid treatment and the control revealed 281 transcripts (176 with annotations) showing upregulation and 394 transcripts (235 with annotations) showing downregulation. Among them, differential expression levels of seven P450 unigenes were associated with imidacloprid detoxification mechanism, with 4 unigenes that were upregulated and 3 unigenes that were downregulated. The qRT-PCR results of the seven differential expression P450 unigenes after imidacloprid treatment were consistent with RNA-Seq data. Furthermore, oral delivery mediated RNA interference of these four upregulated P450 unigenes followed by an insecticide bioassay significantly increased the mortality of imidacloprid-treated B. odoriphaga. This result indicated that the four upregulated P450s are involved in detoxification of imidacloprid. This study provides a genetic basis for further exploring P450 genes for imidacloprid detoxification in B. odoriphaga.
2011-01-01
Background The genus Silene is widely used as a model system for addressing ecological and evolutionary questions in plants, but advances in using the genus as a model system are impeded by the lack of available resources for studying its genome. Massively parallel sequencing cDNA has recently developed into an efficient method for characterizing the transcriptomes of non-model organisms, generating massive amounts of data that enable the study of multiple species in a comparative framework. The sequences generated provide an excellent resource for identifying expressed genes, characterizing functional variation and developing molecular markers, thereby laying the foundations for future studies on gene sequence and gene expression divergence. Here, we report the results of a comparative transcriptome sequencing study of eight individuals representing four Silene and one Dianthus species as outgroup. All sequences and annotations have been deposited in a newly developed and publicly available database called SiESTa, the Silene EST annotation database. Results A total of 1,041,122 EST reads were generated in two runs on a Roche GS-FLX 454 pyrosequencing platform. EST reads were analyzed separately for all eight individuals sequenced and were assembled into contigs using TGICL. These were annotated with results from BLASTX searches and Gene Ontology (GO) terms, and thousands of single-nucleotide polymorphisms (SNPs) were characterized. Unassembled reads were kept as singletons and together with the contigs contributed to the unigenes characterized in each individual. The high quality of unigenes is evidenced by the proportion (49%) that have significant hits in similarity searches with the A. thaliana proteome. The SiESTa database is accessible at http://www.siesta.ethz.ch. Conclusion The sequence collections established in the present study provide an important genomic resource for four Silene and one Dianthus species and will help to further develop Silene as a plant model system. The genes characterized will be useful for future research not only in the species included in the present study, but also in related species for which no genomic resources are yet available. Our results demonstrate the efficiency of massively parallel transcriptome sequencing in a comparative framework as an approach for developing genomic resources in diverse groups of non-model organisms. PMID:21791039
2010-01-01
Background The small brown planthopper (Laodelphax striatellus) is an important agricultural pest that not only damages rice plants by sap-sucking, but also acts as a vector that transmits rice stripe virus (RSV), which can cause even more serious yield loss. Despite being a model organism for studying entomology, population biology, plant protection, molecular interactions among plants, viruses and insects, only a few genomic sequences are available for this species. To investigate its transcriptome and determine the differences between viruliferous and naïve L. striatellus, we employed 454-FLX high-throughput pyrosequencing to generate EST databases of this insect. Results We obtained 201,281 and 218,681 high-quality reads from viruliferous and naïve L. striatellus, respectively, with an average read length as 230 bp. These reads were assembled into contigs and two EST databases were generated. When all reads were combined, 16,885 contigs and 24,607 singletons (a total of 41,492 unigenes) were obtained, which represents a transcriptome of the insect. BlastX search against the NCBI-NR database revealed that only 6,873 (16.6%) of these unigenes have significant matches. Comparison of the distribution of GO classification among viruliferous, naïve, and combined EST databases indicated that these libraries are broadly representative of the L. striatellus transcriptomes. Functionally diverse transcripts from RSV, endosymbiotic bacteria Wolbachia and yeast-like symbiotes were identified, which reflects the possible lifestyles of these microbial symbionts that live in the cells of the host insect. Comparative genomic analysis revealed that L. striatellus encodes similar innate immunity regulatory systems as other insects, such as RNA interference, JAK/STAT and partial Imd cascades, which might be involved in defense against viral infection. In addition, we determined the differences in gene expression between vector and naïve samples, which generated a list of candidate genes that are potentially involved in the symbiosis of L. striatellus and RSV. Conclusions To our knowledge, the present study is the first description of a genomic project for L. striatellus. The identification of transcripts from RSV, Wolbachia, yeast-like symbiotes and genes abundantly expressed in viruliferous insect, provided a starting-point for investigating the molecular basis of symbiosis among these organisms. PMID:20462456
Yamamoto, Naoki; Takano, Tomoyuki; Tanaka, Keisuke; Ishige, Taichiro; Terashima, Shin; Endo, Chisato; Kurusu, Takamitsu; Yajima, Shunsuke; Yano, Kentaro; Tada, Yuichi
2015-01-01
The turf grass Sporobolus virginicus is halophyte and has high salinity tolerance. To investigate the molecular basis of its remarkable tolerance, we performed Illumina high-throughput RNA sequencing on roots and shoots of a S. virginicus genotype under normal and saline conditions. The 130 million short reads were assembled into 444,242 unigenes. A comparative analysis of the transcriptome with rice and Arabidopsis transcriptome revealed six turf grass-specific unigenes encoding transcription factors. Interestingly, all of them showed root specific expression and five of them encode bZIP type transcription factors. Another remarkable transcriptional feature of S. virginicus was activation of specific pathways under salinity stress. Pathway enrichment analysis suggested transcriptional activation of amino acid, pyruvate, and phospholipid metabolism. Up-regulation of several unigenes, previously shown to respond to salt stress in other halophytes was also observed. Gene Ontology enrichment analysis revealed that unigenes assigned as proteins in response to water stress, such as dehydrin and aquaporin, and transporters such as cation, amino acid, and citrate transporters, and H+-ATPase, were up-regulated in both shoots and roots under salinity. A correspondence analysis of the enriched pathways in turf grass cells, but not in rice cells, revealed two groups of unigenes similarly up-regulated in the turf grass in response to salt stress; one of the groups, showing excessive up-regulation under salinity, included unigenes homologos to salinity responsive genes in other halophytes. Thus, the present study identified candidate genes involved in salt tolerance of S. virginicus. This genetic resource should be valuable for understanding the mechanisms underlying high salt tolerance in S. virginicus. This information can also provide insight into salt tolerance in other halophytes. PMID:25954282
Yang, Mengquan; You, Wenjing; Wu, Shiwen; Fan, Zhen; Xu, Baofu; Zhu, Mulan; Li, Xuan; Xiao, Youli
2017-03-22
Huperzia serrata (H. serrata) is an economically important traditional Chinese herb with the notably medicinal value. As a representative member of the Lycopodiaceae family, the H. serrata produces various types of effectively bioactive lycopodium alkaloids, especially the huperzine A (HupA) which is a promising drug for Alzheimer's disease. Despite their medicinal importance, the public genomic and transcriptomic resources are very limited and the biosynthesis of HupA is largely unknown. Previous studies on comparison of 454-ESTs from H. serrata and Phlegmariurus carinatus predicted putative genes involved in lycopodium alkaloid biosynthesis, such as lysine decarboxylase like (LDC-like) protein and some CYP450s. However, these gene annotations were not carried out with further biochemical characterizations. To understand the biosynthesis of HupA and its regulation in H. serrata, a global transcriptome analysis on H. Serrata tissues was performed. In this study, we used the Illumina Highseq4000 platform to generate a substantial RNA sequencing dataset of H. serrata. A total of 40.1 Gb clean data was generated from four different tissues: root, stem, leaf, and sporangia and assembled into 181,141 unigenes. The total length, average length, N50 and GC content of unigenes were 219,520,611 bp, 1,211 bp, 2,488 bp and 42.51%, respectively. Among them, 105,516 unigenes (58.25%) were annotated by seven public databases (NR, NT, Swiss-Prot, KEGG, COG, Interpro, GO), and 54 GO terms and 3,391 transcription factors (TFs) were functionally classified, respectively. KEGG pathway analysis revealed that 72,230 unigenes were classified into 21 functional pathways. Three types of candidate enzymes, LDC, CAO and PKS, responsible for the biosynthesis of precursors of HupA were all identified in the transcripts. Four hundred and fifty-seven CYP450 genes in H. serrata were also analyzed and compared with tissue-specific gene expression. Moreover, two key classes of CYP450 genes BBE and SLS, with 23 members in total, for modification of the lycopodium alkaloid scaffold in the late two stages of biosynthesis of HupA were further evaluated. This study is the first report of global transcriptome analysis on all tissues of H. serrata, and critical genes involved in the biosynthesis of precursors and scaffold modifications of HupA were discovered and predicted. The transcriptome data from this work not only could provide an important resource for further investigating on metabolic pathways in H. serrata, but also shed light on synthetic biology study of HupA.
Zhong, Y D; Sun, X Y; Liu, E Y; Li, Y Q; Gao, Z; Yu, F X
2016-06-24
Liriodendron hybrids (Liriodendron chinense x L. tulipifera) are important landscaping and afforestation hardwood trees. To date, little genomic research on adventitious rooting has been reported in these hybrids, as well as in the genus Liriodendron. In the present study, we used adventitious roots to construct the first cDNA library for Liriodendron hybrids. A total of 5176 expressed sequence tags (ESTs) were generated and clustered into 2921 unigenes. Among these unigenes, 2547 had significant homology to the non-redundant protein database representing a wide variety of putative functions. Homologs of these genes regulated many aspects of adventitious rooting, including those for auxin signal transduction and root hair development. Results of quantitative real-time polymerase chain reaction showed that AUX1, IRE, and FB1 were highly expressed in adventitious roots and the expression of AUX1, ARF1, NAC1, RHD1, and IRE increased during the development of adventitious roots. Additionally, 181 simple sequence repeats were identified from 166 ESTs and more than 91.16% of these were dinucleotide and trinucleotide repeats. To the best of our knowledge, the present study reports the identification of the genes associated with adventitious rooting in the genus Liriodendron for the first time and provides a valuable resource for future genomic studies. Expression analysis of selected genes could allow us to identify regulatory genes that may be essential for adventitious rooting.
2010-01-01
Background Cutaneous mycoses are common human infections among healthy and immunocompromised hosts, and the anthropophilic fungus Trichophyton rubrum is the most prevalent microorganism isolated from such clinical cases worldwide. The aim of this study was to determine the transcriptional profile of T. rubrum exposed to various stimuli in order to obtain insights into the responses of this pathogen to different environmental challenges. Therefore, we generated an expressed sequence tag (EST) collection by constructing one cDNA library and nine suppression subtractive hybridization libraries. Results The 1388 unigenes identified in this study were functionally classified based on the Munich Information Center for Protein Sequences (MIPS) categories. The identified proteins were involved in transcriptional regulation, cellular defense and stress, protein degradation, signaling, transport, and secretion, among other functions. Analysis of these unigenes revealed 575 T. rubrum sequences that had not been previously deposited in public databases. Conclusion In this study, we identified novel T. rubrum genes that will be useful for ORF prediction in genome sequencing and facilitating functional genome analysis. Annotation of these expressed genes revealed metabolic adaptations of T. rubrum to carbon sources, ambient pH shifts, and various antifungal drugs used in medical practice. Furthermore, challenging T. rubrum with cytotoxic drugs and ambient pH shifts extended our understanding of the molecular events possibly involved in the infectious process and resistance to antifungal drugs. PMID:20144196
Sheng, Sheng; Liao, Cheng-Wu; Zheng, Yu; Zhou, Yu; Xu, Yan; Song, Wen-Miao; He, Peng; Zhang, Jian; Wu, Fu-An
2017-06-01
Meteorus pulchricornis is an endoparasitoid wasp which attacks the larvae of various lepidopteran pests. We present the first antennal transcriptome dataset for M. pulchricornis. A total of 48,845,072 clean reads were obtained and 34,967 unigenes were assembled. Of these, 15,458 unigenes showed a significant similarity (E-value <10 -5 ) to known proteins in the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to classify the functions of M. pulchricornis antennae genes. We identified 16 putative odorant-binding protein (OBP) genes, eight chemosensory protein (CSP) genes, 99 olfactory receptor (OR) genes, 19 ionotropic receptor (IR) genes and one sensory neuron membrane protein (SNMP) gene. BLASTx best hit results and phylogenetic analysis both indicated that these chemosensory genes were most closely related to those found in other hymenopteran species. Real-time quantitative PCR assays showed that 14 MpulOBP genes were antennae-specific. Of these, MpulOBP6, MpulOBP9, MpulOBP10, MpulOBP12, MpulOBP15 and MpulOBP16 were found to have greater expression in the antennae than in other body parts, while MpulOBP2 and MpulOBP3 were expressed predominately in the legs and abdomens, respectively. These results might provide a foundation for future studies of olfactory genes and chemoreception in M. pulchricornis. Copyright © 2017 Elsevier Inc. All rights reserved.
2013-01-01
Background The yeast Metschnikowia fructicola is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penicillium digitatum. Results More than 26 million sequencing reads were assembled into 9,674 unigenes. Approximately 50% of the unigenes could be annotated based on homology matches in the NCBI database. Based on homology, sequences were annotated with a gene description, gene ontology (GO term), and clustered into functional groups. An analysis of differential expression when the yeast was interacting with the fruit vs. the pathogen revealed more than 250 genes with specific expression responses. In the antagonist-pathogen interaction, genes related to transmembrane, multidrug transport and to amino acid metabolism were induced. In the antagonist-fruit interaction, expression of genes involved in oxidative stress, iron homeostasis, zinc homeostasis, and lipid metabolism were induced. Patterns of gene expression in the two interactions were examined at the individual transcript level by quantitative real-time PCR analysis (RT-qPCR). Conclusion This study provides new insight into the biology of the tritrophic interactions that occur in a biocontrol system such as the use of the yeast, M. fructicola for the control of green mold on citrus caused by P. digitatum. PMID:23496978
Gao, Lei; He, Chongbo; Bao, Xiangbo; Tian, Meilin; Ma, Zhen
2017-01-01
The sea cucumber (Apostichopus japonicus) is an economically important aquaculture species in China. However, the serious individual growth variation often caused financial losses to farmers and the genetic mechanisms are poorly understood. In the present study, the extensively analysis at the transcriptome level for individual growth variation in sea cucumber was carried out. A total of 118946 unigenes were assembled from 255861 transcripts, with N50 of 1700. Of all unigenes, about 23% were identified with at least one significant match to known databases. In all four pair of comparison, 1840 genes were found to be expressed differently. Global hypometabolism was found to be occurred in the slow growing population, based on which the hypothesis was raised that growth retardation in individual growth variation of sea cucumber is one type of dormancy which is used to be against to adverse circumstances. Besides, the pathways such as ECM-receptor interaction and focal adhesion were enriched in the maintenance of cell and tissue structure and communication. Further, 76645 SSRs, 765242 SNPs and 146886 ins-dels were detected in the current study providing an extensive set of data for future studies of genetic mapping and selective breeding. In summary, these results will provides deep insight into the molecular basis of individual growth variation in marine invertebrates, and be valuable for understanding the physiological differences of growth process.
USDA-ARS?s Scientific Manuscript database
Jasmonic acid is a natural plant hormone that induces native defense responses in plants. Sugarbeet (Beta vulgaris L.) root unigenes that were differentially expressed 2 and 60 days after a postharvest jasmonic acid treatment are presented. Data include changes in unigene expression relative to wate...
Zheng, Xiasheng; Xu, Hui; Ma, Xinye; Zhan, Ruoting; Chen, Weiwen
2014-01-01
Ilex asprella, which contains abundant α-amyrin type triterpenoid saponins, is an anti-influenza herbal drug widely used in south China. In this work, we first analysed the transcriptome of the I. asprella root using RNA-Seq, which provided a dataset for functional gene mining. mRNA was isolated from the total RNA of the I. asprella root and reverse-transcribed into cDNA. Then, the cDNA library was sequenced using an Illumina HiSeq™ 2000, which generated 55,028,452 clean reads. De novo assembly of these reads generated 51,865 unigenes, in which 39,269 unigenes were annotated (75.71% yield). According to the structures of the triterpenoid saponins of I. asprella, a putative biosynthetic pathway downstream of 2,3-oxidosqualene was proposed and candidate unigenes in the transcriptome data that were potentially involved in the pathway were screened using homology-based BLAST and phylogenetic analysis. Further amplification and functional analysis of these putative unigenes will provide insight into the biosynthesis of Ilex triterpenoid saponins. PMID:24722569
Li, Fang; Xu, Zijian; Sun, Mengli; Cong, Hanqing; Qiao, Fei; Zhong, Xiaohong
2017-01-01
Hedera helix L. is an important traditional medicinal plant in Europe. The main active components are triterpenoid saponins, but none of the potential enzymes involved in triterpenoid saponins biosynthesis have been discovered and annotated. Here is reported the first study of global transcriptome analyses using the Illumina HiSeq™ 2500 platform for H. helix. In total, over 24 million clean reads were produced and 96,333 unigenes were assembled, with an average length of 1385 nt; more than 79,085 unigenes had at least one significant match to an existing gene model. Differentially Expressed Gene analysis identified 6,222 and 7,012 unigenes which were expressed either higher or lower in leaf samples when compared with roots. After functional annotation and classification, two pathways and 410 unigenes related to triterpenoid saponins biosynthesis were discovered. The accuracy of these de novo sequences was validated by RT-qPCR analysis and a RACE clone. These data will enrich our knowledge of triterpenoid saponin biosynthesis and provide a theoretical foundation for molecular research on H. helix. PMID:28771546
Sun, Peipei; Mao, Yunxiang; Li, Guiyang; Cao, Min; Kong, Fanna; Wang, Li; Bi, Guiqi
2015-06-17
Pyropia yezoensis is a model organism often used to investigate the mechanisms underlying stress tolerance in intertidal zones. The digital gene expression (DGE) approach was used to characterize a genome-wide comparative analysis of differentially expressed genes (DEGs) that influence the physiological, developmental or biochemical processes in samples subjected to 4 treatments: high-temperature stress (HT), chilling stress (CS), freezing stress (FS) and normal temperature (NT). Equal amounts of total RNAs collected from 8 samples (two biological replicates per treatment) were sequenced using the Illumina/Solexa platform. Compared with NT, a total of 2202, 1334 and 592 differentially expressed unigenes were detected in HT, CS and FS respectively. Clustering analysis suggested P. yezoensis acclimates to low and high-temperature stress condition using different mechanisms: In heat stress, the unigenes related to replication and repair of DNA and protein processing in endoplasmic reticulum were active; however at low temperature stresses, unigenes related to carbohydrate metabolism and energy metabolism were active. Analysis of gene differential expression showed that four categories of DEGs functioning as temperature sensors were found, including heat shock proteins, H2A, histone deacetylase complex and transcription factors. Heat stress caused chloroplast genes down-regulated and unigenes encoding metacaspases up-regulated, which is an important regulator of PCD. Cold stress caused an increase in the expression of FAD to improve the proportion of polyunsaturated fatty acids. An up-regulated unigene encoding farnesyl pyrophosphate synthase was found in cold stress, indicating that the plant hormone ABA also played an important role in responding to temperature stress in P. yezoensis. The variation of amount of unigenes and different gene expression pattern under different temperature stresses indicated the complicated and diverse regulation mechanism in response to temperature stress in P. yezoensis. Several common metabolism pathways were found both in P. yezoensis and in higher plants, such as FAD in low-temperature stress and HSP in heat stress. Meanwhile, many chloroplast genes and unigene related to the synthesis of abscisic acid were detected, revealing its unique temperature-regulation mechanism in this intertidal species. This sequencing dataset and analysis may serve as a valuable resource to study the mechanisms involved in abiotic stress tolerance in intertidal seaweeds.
GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data
Jung, Sook; Staton, Margaret; Lee, Taein; Blenda, Anna; Svancara, Randall; Abbott, Albert; Main, Dorrie
2008-01-01
The Genome Database for Rosaceae (GDR) is a central repository of curated and integrated genetics and genomics data of Rosaceae, an economically important family which includes apple, cherry, peach, pear, raspberry, rose and strawberry. GDR contains annotated databases of all publicly available Rosaceae ESTs, the genetically anchored peach physical map, Rosaceae genetic maps and comprehensively annotated markers and traits. The ESTs are assembled to produce unigene sets of each genus and the entire Rosaceae. Other annotations include putative function, microsatellites, open reading frames, single nucleotide polymorphisms, gene ontology terms and anchored map position where applicable. Most of the published Rosaceae genetic maps can be viewed and compared through CMap, the comparative map viewer. The peach physical map can be viewed using WebFPC/WebChrom, and also through our integrated GDR map viewer, which serves as a portal to the combined genetic, transcriptome and physical mapping information. ESTs, BACs, markers and traits can be queried by various categories and the search result sites are linked to the mapping visualization tools. GDR also provides online analysis tools such as a batch BLAST/FASTA server for the GDR datasets, a sequence assembly server and microsatellite and primer detection tools. GDR is available at http://www.rosaceae.org. PMID:17932055
Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut
Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun
2012-01-01
The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense. As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current sequencing effort greatly enriched the existing P. xylostella EST database, and makes RNAseq a viable option in the future genomic analysis. PMID:23091412
Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut.
Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun
2012-01-01
The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416 bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10(-5). Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis identified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current sequencing effort greatly enriched the existing P. xylostella EST database, and makes RNAseq a viable option in the future genomic analysis.
Raju, Nikku L; Gnanesh, Belaghihalli N; Lekha, Pazhamala; Jayashree, Balaji; Pande, Suresh; Hiremath, Pavana J; Byregowda, Munishamappa; Singh, Nagendra K; Varshney, Rajeev K
2010-03-11
Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs). A total of 16 cDNA libraries were constructed from four pigeonpea genotypes that are resistant and susceptible to FW ('ICPL 20102' and 'ICP 2376') and SMD ('ICP 7035' and 'TTB 7') and a total of 9,888 (9,468 high quality) ESTs were generated and deposited in dbEST of GenBank under accession numbers GR463974 to GR473857 and GR958228 to GR958231. Clustering and assembly analyses of these ESTs resulted into 4,557 unique sequences (unigenes) including 697 contigs and 3,860 singletons. BLASTN analysis of 4,557 unigenes showed a significant identity with ESTs of different legumes (23.2-60.3%), rice (28.3%), Arabidopsis (33.7%) and poplar (35.4%). As expected, pigeonpea ESTs are more closely related to soybean (60.3%) and cowpea ESTs (43.6%) than other plant ESTs. Similarly, BLASTX similarity results showed that only 1,603 (35.1%) out of 4,557 total unigenes correspond to known proteins in the UniProt database (
2010-01-01
Background Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs). Results A total of 16 cDNA libraries were constructed from four pigeonpea genotypes that are resistant and susceptible to FW ('ICPL 20102' and 'ICP 2376') and SMD ('ICP 7035' and 'TTB 7') and a total of 9,888 (9,468 high quality) ESTs were generated and deposited in dbEST of GenBank under accession numbers GR463974 to GR473857 and GR958228 to GR958231. Clustering and assembly analyses of these ESTs resulted into 4,557 unique sequences (unigenes) including 697 contigs and 3,860 singletons. BLASTN analysis of 4,557 unigenes showed a significant identity with ESTs of different legumes (23.2-60.3%), rice (28.3%), Arabidopsis (33.7%) and poplar (35.4%). As expected, pigeonpea ESTs are more closely related to soybean (60.3%) and cowpea ESTs (43.6%) than other plant ESTs. Similarly, BLASTX similarity results showed that only 1,603 (35.1%) out of 4,557 total unigenes correspond to known proteins in the UniProt database (≤ 1E-08). Functional categorization of the annotated unigenes sequences showed that 153 (3.3%) genes were assigned to cellular component category, 132 (2.8%) to biological process, and 132 (2.8%) in molecular function. Further, 19 genes were identified differentially expressed between FW- responsive genotypes and 20 between SMD- responsive genotypes. Generated ESTs were compiled together with 908 ESTs available in public domain, at the time of analysis, and a set of 5,085 unigenes were defined that were used for identification of molecular markers in pigeonpea. For instance, 3,583 simple sequence repeat (SSR) motifs were identified in 1,365 unigenes and 383 primer pairs were designed. Assessment of a set of 84 primer pairs on 40 elite pigeonpea lines showed polymorphism with 15 (28.8%) markers with an average of four alleles per marker and an average polymorphic information content (PIC) value of 0.40. Similarly, in silico mining of 133 contigs with ≥ 5 sequences detected 102 single nucleotide polymorphisms (SNPs) in 37 contigs. As an example, a set of 10 contigs were used for confirming in silico predicted SNPs in a set of four genotypes using wet lab experiments. Occurrence of SNPs were confirmed for all the 6 contigs for which scorable and sequenceable amplicons were generated. PCR amplicons were not obtained in case of 4 contigs. Recognition sites for restriction enzymes were identified for 102 SNPs in 37 contigs that indicates possibility of assaying SNPs in 37 genes using cleaved amplified polymorphic sequences (CAPS) assay. Conclusion The pigeonpea EST dataset generated here provides a transcriptomic resource for gene discovery and development of functional markers associated with biotic stress resistance. Sequence analyses of this dataset have showed conservation of a considerable number of pigeonpea transcripts across legume and model plant species analysed as well as some putative pigeonpea specific genes. Validation of identified biotic stress responsive genes should provide candidate genes for allele mining as well as candidate markers for molecular breeding. PMID:20222972
PRGdb: a bioinformatics platform for plant resistance gene analysis
Sanseverino, Walter; Roma, Guglielmo; De Simone, Marco; Faino, Luigi; Melito, Sara; Stupka, Elia; Frusciante, Luigi; Ercolano, Maria Raffaella
2010-01-01
PRGdb is a web accessible open-source (http://www.prgdb.org) database that represents the first bioinformatic resource providing a comprehensive overview of resistance genes (R-genes) in plants. PRGdb holds more than 16 000 known and putative R-genes belonging to 192 plant species challenged by 115 different pathogens and linked with useful biological information. The complete database includes a set of 73 manually curated reference R-genes, 6308 putative R-genes collected from NCBI and 10463 computationally predicted putative R-genes. Thanks to a user-friendly interface, data can be examined using different query tools. A home-made prediction pipeline called Disease Resistance Analysis and Gene Orthology (DRAGO), based on reference R-gene sequence data, was developed to search for plant resistance genes in public datasets such as Unigene and Genbank. New putative R-gene classes containing unknown domain combinations were discovered and characterized. The development of the PRG platform represents an important starting point to conduct various experimental tasks. The inferred cross-link between genomic and phenotypic information allows access to a large body of information to find answers to several biological questions. The database structure also permits easy integration with other data types and opens up prospects for future implementations. PMID:19906694
Bergamino, Maurizio; Hamilton, David J; Castelletti, Lara; Barletta, Laura; Castellan, Lucio
2015-03-01
In this study, we describe the development and utilization of a relational database designed to manage the clinical and radiological data of patients with brain tumors. The Brain Tumor Database was implemented using MySQL v.5.0, while the graphical user interface was created using PHP and HTML, thus making it easily accessible through a web browser. This web-based approach allows for multiple institutions to potentially access the database. The BT Database can record brain tumor patient information (e.g. clinical features, anatomical attributes, and radiological characteristics) and be used for clinical and research purposes. Analytic tools to automatically generate statistics and different plots are provided. The BT Database is a free and powerful user-friendly tool with a wide range of possible clinical and research applications in neurology and neurosurgery. The BT Database graphical user interface source code and manual are freely available at http://tumorsdatabase.altervista.org. © The Author(s) 2013.
Lu, Qi-Huan; Wang, Ya-Qi; Song, Jin-Nan; Yang, Hong-Bing
2018-06-01
Common buckwheat (F. esculentum), annually herbaceous crop, is prevalent in people's daily life with the increasing development of economics. Compared with wheat, it is highly praised with high content of rutin and flavonoid. Common buckwheat is recognized as healthy food with good taste, and the product price of which such as noodles, flour, bread and so on are higher than wheat, and the seeds of which are bigger than that of tartary buckwheat, so if common buckwheat are planted more widely, people will spend less money on this healthy and delicious food. However, soil salinity has been a giant problem for agriculture production. The cultivation of salt tolerant crop varieties is an effective way to make full use of saline alkali land, and the highest salinity that the common buckwheat can sow is at 6.0%, so we chose 100 mM as the concentration of NaCl for treatment. Then we conducted transcriptome comparison between control and treatment groups. Potential regulatory genes related salt stress in common buckwheat were identified. A total of 29.36 million clean reads were produced via an illumina sequencing approach. We de novo assembled these reads into a transcriptome dataset containing 43,772 unigenes with N50 length of 1778 bp. A total of 26,672 unigenes could be found matches in public databases. GO, KEGG and Swiss-Prot classification suggested the enrichment of these unigenes in 47 sub-categories, 25 KOG and 129 pathways, respectively. We got 385 differentially expressed genes (DEGs) after comparing the transcriptome data between salt treatment and control groups. There are some genes encoded for responsing to stimulus, cell killing, metabolic process, signaling, multi-organism process, growth and cellular process might be relevant to salt stress in common buckwheat, which will provide a valuable references for the study on mechanism of salt tolerance and will be used as a genetic information for cultivating strong salt tolerant common buckwheat varieties in the future. Copyright © 2018. Published by Elsevier Masson SAS.
Zhang, Jiaping; Wang, Guanqun; Li, Xin; Xia, Yiping
2015-01-01
Paeonia lactiflora is one of the most famous species of herbaceous peonies with gorgeous flowers. Bud dormancy is a crucial developmental process that allows P. lactiflora to survive unfavorable environmental conditions. However, little information is available on the molecular mechanism of the bud dormancy in P. lactiflora. We performed de novo transcriptome sequencing using the Illumina RNA sequencing platform for the underground renewal buds of P. lactiflora ‘Hangbaishao’ to study the molecular mechanism underlying its bud dormancy transition (the period from endodormancy to ecodormancy) and release (the period from ecodormancy to bud elongation and sprouting). Approximately 300 million high-quality clean reads were generated and assembled into 207,827 (mean length = 828 bp) and 51,481 (mean length = 1250 bp) unigenes using two assembly methods named “Trinity” and “Trinity+PRICE”, respectively. Based on the data obtained by the latter method, 32,316 unigenes were annotated by BLAST against various databases. Approximately 1,251 putative transcription factors were obtained, of which the largest number of unique transcripts belonged to the basic helix-loop-helix protein (bHLH) transcription factor family, and five of the top ten highly expressed transcripts were annotated as dehydrin (DHN). A total of 17,705 simple sequence repeat (SSR) motifs distributed in 13,797 sequences were obtained. The budbreak morphology, levels of indole-3-acetic acid (IAA) and abscisic acid (ABA), and activities of guaiacol peroxidase (POD) and catalase (CAT) were observed. The expression of 20 interested unigenes, which annotated as DHN, heat shock protein (HSP), histone, late elongated hypocotyl (LHY), and phytochrome (PHY), and so on, were also analyzed. These studies were based on morphological, physiological, biochemical, and molecular levels and provide comprehensive insight into the mechanism of dormancy transition and release in P. lactiflora. Transcriptome dataset can be highly valuable for future investigation on gene expression networks in P. lactiflora as well as research on dormancy in other non-model perennial horticultural crops of commercial significance. PMID:25790307
Rai, Amit; Nakaya, Taiki; Shimizu, Yohei; Rai, Megha; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami
2018-05-29
Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale , consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale . Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization. Georg Thieme Verlag KG Stuttgart · New York.
The Spatial and Temporal Transcriptomic Landscapes of Ginseng, Panax ginseng C. A. Meyer.
Wang, Kangyu; Jiang, Shicui; Sun, Chunyu; Lin, Yanping; Yin, Rui; Wang, Yi; Zhang, Meiping
2015-12-11
Ginseng, including Asian ginseng (Panax ginseng C. A. Meyer) and American ginseng (P. quinquefolius L.), is one of the most important medicinal herbs in Asia and North America, but significantly understudied. This study sequenced and characterized the transcriptomes and expression profiles of genes expressed in 14 tissues and four different aged roots of Asian ginseng. A total of 265.2 million 100-bp clean reads were generated using the high-throughput sequencing platform HiSeq 2000, representing >8.3x of the 3.2-Gb ginseng genome. From the sequences, 248,993 unigenes were assembled for whole plant, 61,912-113,456 unigenes for each tissue and 54,444-65,412 unigenes for different year-old roots. We comprehensively analyzed the unigene sets and gene expression profiles. We found that the number of genes allocated to each functional category is stable across tissues or developmental stages, while the expression profiles of different genes of a gene family or involved in ginsenoside biosynthesis dramatically diversified spatially and temporally. These results provide an overall insight into the spatial and temporal transcriptome dynamics and landscapes of Asian ginseng, and comprehensive resources for advanced research and breeding of ginseng and related species.
Chen, Wei Wei; Xu, Jia Meng; Jin, Jian Feng; Lou, He Qiang; Fan, Wei
2017-01-01
Being an Al-accumulating crop, buckwheat detoxifies and tolerates Al not only in roots but also in leaves. While much progress has recently been made toward Al toxicity and resistance mechanisms in roots, little is known about the molecular basis responsible for detoxification and tolerance processes in leaves. Here, we carried out transcriptome analysis of buckwheat leaves in response to Al stress (20 µM, 24 h). We obtained 33,931 unigenes with 26,300 unigenes annotated in the NCBI database, and identified 1063 upregulated and 944 downregulated genes under Al stress. Functional category analysis revealed that genes related to protein translation, processing, degradation and metabolism comprised the biological processes most affected by Al, suggesting that buckwheat leaves maintain flexibility under Al stress by rapidly reprogramming their physiology and metabolism. Analysis of genes related to transcription regulation revealed that a large proportion of chromatin-regulation genes are specifically downregulated by Al stress, whereas transcription factor genes are overwhelmingly upregulated. Furthermore, we identified 78 upregulated and 22 downregulated genes that encode transporters. Intriguingly, only a few genes were overlapped with root Al-regulated transporter genes, which include homologs of AtMATE, ALS1, STAR1, ALS3 and a divalent ion symporter. In addition, we identified a subset of genes involved in development, in which genes associated with flowering regulation were important. Based on these data, it is proposed that buckwheat leaves develop conserved and distinct mechanisms to cope with Al toxicity. PMID:28846612
Guo, Rui; Landis, Jacob B.; Moore, Michael J.; Meng, Aiping; Jian, Shuguang; Yao, Xiaohong; Wang, Hengchang
2017-01-01
Actinidia eriantha Benth. is a diploid perennial woody vine native to China and is recognized as a valuable species for commercial kiwifruit improvement with high levels of ascorbic acid as well as having been used in traditional Chinese medicine. Due to the lack of genomic resources for the species, microsatellite markers for population genetics studies are scarce. In this study, RNASeq was conducted on fruit tissue of A. eriantha, yielding 5,678,129 reads with a total output of 3.41 Gb. De novo assembly yielded 69,783 non-redundant unigenes (41.3 Mb), of which 21,730 were annotated using protein databases. A total of 8,658 EST-SSR loci were identified in 7,495 unigene sequences, for which primer pairs were successfully designed for 3,842 loci (44.4%). Among these, 183 primer pairs were assayed for PCR amplification, yielding 69 with detectable polymorphism in A. eriantha. Additionally, 61 of the 69 polymorphic loci could be successfully amplified in at least one other Actinidia species. Of these, 14 polymorphic loci (mean NA = 6.07 ± 2.30) were randomly selected for assessing levels of genetic diversity and population structure within A. eriantha. Finally, a neighbor-joining tree and Bayesian clustering analysis showed distinct clustering into two groups (K = 2), agreeing with the geographical distributions of these populations. Overall, our results will facilitate further studies of genetic diversity within A. eriantha and will aid in discriminating outlier loci involved in local adaptation. PMID:28890721
Xie, Feng-Yun; Feng, Yu-Long; Wang, Hong-Hui; Ma, Yun-Feng; Yang, Yang; Wang, Yin-Chao; Shen, Wei; Pan, Qing-Jie; Yin, Shen; Sun, Yu-Jiang; Ma, Jun-Yu
2015-01-01
Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement. PMID:26208029
Xie, Feng-Yun; Feng, Yu-Long; Wang, Hong-Hui; Ma, Yun-Feng; Yang, Yang; Wang, Yin-Chao; Shen, Wei; Pan, Qing-Jie; Yin, Shen; Sun, Yu-Jiang; Ma, Jun-Yu
2015-01-01
Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.
Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing
Wang, Wei; Wang, Yejun; Zhang, Qing; Qi, Yan; Guo, Dianjing
2009-01-01
Background Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species. Results We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes. Conclusion The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua. PMID:19818120
Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun
2013-01-01
The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies.
Liu, Shaoqun; Li, Wanshun; Wu, Yimin; Chen, Changming; Lei, Jianjun
2013-01-01
The capsaicinoids are a group of compounds produced by chili pepper fruits and are used widely in many fields, especially in medical purposes. The capsaicinoid biosynthetic pathway has not yet been established clearly. To understand more knowledge in biosynthesis of capsaicinoids, we applied RNA-seq for the mixture of placenta and pericarp of pungent pepper (Capsicum frutescens L.). We have assessed the effect of various assembly parameters using different assembly software, and obtained one of the best strategies for de novo assembly of transcriptome data. We obtained a total 54,045 high-quality unigenes (transcripts) using Trinity software. About 92.65% of unigenes showed similarity to the public protein sequences, genome of potato and tomato and pepper (C. annuum) ESTs databases. Our results predicted 3 new structural genes (DHAD, TD, PAT), which filled gaps of the capsaicinoid biosynthetic pathway predicted by Mazourek, and revealed new candidate genes involved in capsaicinoid biosynthesis based on KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. A significant number of SSR (Simple Sequence Repeat) and SNP (Single Nucleotide Polymorphism) markers were predicted in C. frutescens and C. annuum sequences, which will be helpful in the identification of polymorphisms within chili pepper populations. These data will provide new insights to the pathway of capsaicinoid biosynthesis and subsequent research of chili peppers. In addition, our strategy of de novo transcriptome assembly is applicable to a wide range of similar studies. PMID:23349661
Chen, Wei Wei; Xu, Jia Meng; Jin, Jian Feng; Lou, He Qiang; Fan, Wei; Yang, Jian Li
2017-08-27
Being an Al-accumulating crop, buckwheat detoxifies and tolerates Al not only in roots but also in leaves. While much progress has recently been made toward Al toxicity and resistance mechanisms in roots, little is known about the molecular basis responsible for detoxification and tolerance processes in leaves. Here, we carried out transcriptome analysis of buckwheat leaves in response to Al stress (20 µM, 24 h). We obtained 33,931 unigenes with 26,300 unigenes annotated in the NCBI database, and identified 1063 upregulated and 944 downregulated genes under Al stress. Functional category analysis revealed that genes related to protein translation, processing, degradation and metabolism comprised the biological processes most affected by Al, suggesting that buckwheat leaves maintain flexibility under Al stress by rapidly reprogramming their physiology and metabolism. Analysis of genes related to transcription regulation revealed that a large proportion of chromatin-regulation genes are specifically downregulated by Al stress, whereas transcription factor genes are overwhelmingly upregulated. Furthermore, we identified 78 upregulated and 22 downregulated genes that encode transporters. Intriguingly, only a few genes were overlapped with root Al-regulated transporter genes, which include homologs of AtMATE , ALS1 , STAR1 , ALS3 and a divalent ion symporter. In addition, we identified a subset of genes involved in development, in which genes associated with flowering regulation were important. Based on these data, it is proposed that buckwheat leaves develop conserved and distinct mechanisms to cope with Al toxicity.
Huang, Ruimin; Huang, Youjun; Sun, Zhichao; Huang, Jianqin; Wang, Zhengjia
2017-05-24
Pecan (Carya illinoinensis) is an important woody tree species because of the high content of healthy oil in its nut. Thus far, the pathways and key genes related to oil biosynthesis in developing pecan seeds remain largely unclear. Our analyses revealed that mature pecan embryo accumulated more than 80% oil, in which 90% was unsaturated fatty acids with abundant oleic acid. RNA sequencing generated 84,643 unigenes in three cDNA libraries prepared from pecan embryos collected at 105, 120, and 165 days after flowering (DAF). We identified 153 unigenes associated with lipid biosynthesis, including 107 unigenes for fatty acid biosynthesis, 34 for triacylglycerol biosynthesis, 7 for oil bodies, and 5 for transcription factors involved in oil synthesis. The genes associated with fatty acid synthesis were the most abundantly expressed genes at 120 DAF. Additionally, the biosynthesis of oil began to increase while crude fat contents increased from 16.61 to 74.45% (165 DAF). We identified four SAD, two FAD2, one FAD6, two FAD7, and two FAD8 unigenes responsible for unsaturated fatty acid biosynthesis. However, FAD3 homologues were not detected. Consequently, we inferred that the linolenic acid in developing pecan embryos is generated by FAD7 and FAD8 in plastids rather than FAD3 in endoplasmic reticula. During pecan embryo development, different unigenes are expressed for plastidial and cytosolic glycolysis. Plastidial glycolysis is more relevant to lipid synthesis than cytosolic glycolysis. The 18 most important genes associated with lipid biosynthesis were evaluated in five stages of developing embryos using quantitative PCR (qPCR). The qPCR data were well consistent with their expression in transcriptomic analyses. Our data would be important for the metabolic engineering of pecans to increase oil contents and modify fatty acid composition.
Gao, Yi; Wei, Jiankai; Yuan, Jianbo; Zhang, Xiaojun; Li, Fuhua; Xiang, Jianhai
2017-04-24
Exoskeleton construction is an important issue in shrimp. To better understand the molecular mechanism of exoskeleton formation, development and reconstruction, the transcriptome of the entire developmental process in Litopenaeus vannamei, including nine early developmental stages and eight adult-moulting stages, was sequenced and analysed using Illumina RNA-seq technology. A total of 117,539 unigenes were obtained, with 41.2% unigenes predicting the full-length coding sequence. Gene Ontology, Clusters of Orthologous Group (COG), the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and functional annotation of all unigenes gave a better understanding of the exoskeleton developmental process in L. vannamei. As a result, more than six hundred unigenes related to exoskeleton development were identified both in the early developmental stages and adult-moulting. A cascade of sequential expression events of exoskeleton-related genes were summarized, including exoskeleton formation, regulation, synthesis, degradation, mineral absorption/reabsorption, calcification and hardening. This new insight on major transcriptional events provide a deep understanding for exoskeleton formation and reconstruction in L. vannamei. In conclusion, this is the first study that characterized the integrated transcriptomic profiles cover the entire exoskeleton development from zygote to adult-moulting in a crustacean, and these findings will serve as significant references for exoskeleton developmental biology and aquaculture research.
Sukhinin, Dmitrii I.; Engel, Andreas K.; Manger, Paul; Hilgetag, Claus C.
2016-01-01
Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity. PMID:27242503
Sukhinin, Dmitrii I; Engel, Andreas K; Manger, Paul; Hilgetag, Claus C
2016-01-01
Databases of structural connections of the mammalian brain, such as CoCoMac (cocomac.g-node.org) or BAMS (https://bams1.org), are valuable resources for the analysis of brain connectivity and the modeling of brain dynamics in species such as the non-human primate or the rodent, and have also contributed to the computational modeling of the human brain. Another animal model that is widely used in electrophysiological or developmental studies is the ferret; however, no systematic compilation of brain connectivity is currently available for this species. Thus, we have started developing a database of anatomical connections and architectonic features of the ferret brain, the Ferret(connect)ome, www.Ferretome.org. The Ferretome database has adapted essential features of the CoCoMac methodology and legacy, such as the CoCoMac data model. This data model was simplified and extended in order to accommodate new data modalities that were not represented previously, such as the cytoarchitecture of brain areas. The Ferretome uses a semantic parcellation of brain regions as well as a logical brain map transformation algorithm (objective relational transformation, ORT). The ORT algorithm was also adopted for the transformation of architecture data. The database is being developed in MySQL and has been populated with literature reports on tract-tracing observations in the ferret brain using a custom-designed web interface that allows efficient and validated simultaneous input and proofreading by multiple curators. The database is equipped with a non-specialist web interface. This interface can be extended to produce connectivity matrices in several formats, including a graphical representation superimposed on established ferret brain maps. An important feature of the Ferretome database is the possibility to trace back entries in connectivity matrices to the original studies archived in the system. Currently, the Ferretome contains 50 reports on connections comprising 20 injection reports with more than 150 labeled source and target areas, the majority reflecting connectivity of subcortical nuclei and 15 descriptions of regional brain architecture. We hope that the Ferretome database will become a useful resource for neuroinformatics and neural modeling, and will support studies of the ferret brain as well as facilitate advances in comparative studies of mesoscopic brain connectivity.
Mohamed Yusoff, Aini; Tan, Tze King; Hari, Ranjeev; Koepfli, Klaus-Peter; Wee, Wei Yee; Antunes, Agostinho; Sitam, Frankie Thomas; Rovie-Ryan, Jeffrine Japning; Karuppannan, Kayal Vizi; Wong, Guat Jah; Lipovich, Leonard; Warren, Wesley C.; O’Brien, Stephen J.; Choo, Siew Woh
2016-01-01
Pangolins are scale-covered mammals, containing eight endangered species. Maintaining pangolins in captivity is a significant challenge, in part because little is known about their genetics. Here we provide the first large-scale sequencing of the critically endangered Manis javanica transcriptomes from eight different organs using Illumina HiSeq technology, yielding ~75 Giga bases and 89,754 unigenes. We found some unigenes involved in the insect hormone biosynthesis pathway and also 747 lipids metabolism-related unigenes that may be insightful to understand the lipid metabolism system in pangolins. Comparative analysis between M. javanica and other mammals revealed many pangolin-specific genes significantly over-represented in stress-related processes, cell proliferation and external stimulus, probably reflecting the traits and adaptations of the analyzed pregnant female M. javanica. Our study provides an invaluable resource for future functional works that may be highly relevant for the conservation of pangolins. PMID:27618997
Qi, Xiao-Hua; Xu, Xue-Wen; Lin, Xiao-Jian; Zhang, Wen-Jie; Chen, Xue-Hao
2012-03-01
High-throughput tag-sequencing (Tag-seq) analysis based on the Solexa Genome Analyzer platform was applied to analyze the gene expression profiling of cucumber plant at 5 time points over a 24h period of waterlogging treatment. Approximately 5.8 million total clean sequence tags per library were obtained with 143013 distinct clean tag sequences. Approximately 23.69%-29.61% of the distinct clean tags were mapped unambiguously to the unigene database, and 53.78%-60.66% of the distinct clean tags were mapped to the cucumber genome database. Analysis of the differentially expressed genes revealed that most of the genes were down-regulated in the waterlogging stages, and the differentially expressed genes mainly linked to carbon metabolism, photosynthesis, reactive oxygen species generation/scavenging, and hormone synthesis/signaling. Finally, quantitative real-time polymerase chain reaction using nine genes independently verified the tag-mapped results. This present study reveals the comprehensive mechanisms of waterlogging-responsive transcription in cucumber. Copyright © 2011 Elsevier Inc. All rights reserved.
Mardi, Mohsen; Karimi Farsad, Laleh; Gharechahi, Javad; Salekdeh, Ghasem Hosseini
2015-01-01
Witches' broom disease of acid lime greatly affects the production of Mexican lime in Iran. It is caused by a phytoplasma (Candidatus Phytoplasma aurantifolia). However, the molecular mechanisms that underlie phytoplasma pathogenicity and the mode of interactions with host plants are largely unknown. Here, high-throughput transcriptome sequencing was conducted to explore gene expression signatures associated with phytoplasma infection in Mexican lime trees. We assembled 78,185 unique transcript sequences (unigenes) with an average length of 530 nt. Of these, 41,805 (53.4%) were annotated against the NCBI non-redundant (nr) protein database using a BLASTx search (e-value ≤ 1e-5). When the abundances of unigenes in healthy and infected plants were compared, 2,805 transcripts showed significant differences (false discovery rate ≤ 0.001 and log2 ratio ≥ 1.5). These differentially expressed genes (DEGs) were significantly enriched in 43 KEGG metabolic and regulatory pathways. The up-regulated DEGs were mainly categorized into pathways with possible implication in plant-pathogen interaction, including cell wall biogenesis and degradation, sucrose metabolism, secondary metabolism, hormone biosynthesis and signalling, amino acid and lipid metabolism, while down-regulated DEGs were predominantly enriched in ubiquitin proteolysis and oxidative phosphorylation pathways. Our analysis provides novel insight into the molecular pathways that are deregulated during the host-pathogen interaction in Mexican lime trees infected by phytoplasma. The findings can be valuable for unravelling the molecular mechanisms of plant-phytoplasma interactions and can pave the way for engineering lime trees with resistance to witches' broom disease.
Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin
2015-08-04
Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.
Xu, Zhifeng; Zhu, Wenyi; Liu, Yanchao; Liu, Xing; Chen, Qiushuang; Peng, Miao; Wang, Xiangzun; Shen, Guangmao; He, Lin
2014-01-01
The carmine spider mite (CSM), Tetranychus cinnabarinus, is an important pest mite in agriculture, because it can develop insecticide resistance easily. To gain valuable gene information and molecular basis for the future insecticide resistance study of CSM, the first transcriptome analysis of CSM was conducted. A total of 45,016 contigs and 25,519 unigenes were generated from the de novo transcriptome assembly, and 15,167 unigenes were annotated via BLAST querying against current databases, including nr, SwissProt, the Clusters of Orthologous Groups (COGs), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Aligning the transcript to Tetranychus urticae genome, the 19255 (75.45%) of the transcripts had significant (e-value <10-5) matches to T. urticae DNA genome, 19111 sequences matched to T. urticae proteome with an average protein length coverage of 42.55%. Core Eukaryotic Genes Mapping Approach (CEGMA) analysis identified 435 core eukaryotic genes (CEGs) in the CSM dataset corresponding to 95% coverage. Ten gene categories that relate to insecticide resistance in arthropod were generated from CSM transcriptome, including 53 P450-, 22 GSTs-, 23 CarEs-, 1 AChE-, 7 GluCls-, 9 nAChRs-, 8 GABA receptor-, 1 sodium channel-, 6 ATPase- and 12 Cyt b genes. We developed significant molecular resources for T. cinnabarinus putatively involved in insecticide resistance. The transcriptome assembly analysis will significantly facilitate our study on the mechanism of adapting environmental stress (including insecticide) in CSM at the molecular level, and will be very important for developing new control strategies against this pest mite.
Zhang, Shuwei; Ding, Feng; He, Xinhua; Luo, Cong; Huang, Guixiang; Hu, Ying
2015-02-01
Seedlessness is a desirable character in lemons and other citrus species. Seedless fruit can be induced in many ways, including through self-incompatibility (SI). SI is widely used as an intraspecific reproductive barrier that prevents self-fertilization in flowering plants. Although there have been many studies on SI, its mechanism remains unclear. The 'Xiangshui' lemon is an important seedless cultivar whose seedlessness has been caused by SI. It is essential to identify genes involved in SI in 'Xiangshui' lemon to clarify its molecular mechanism. In this study, candidate genes associated with SI were identified using high-throughput Illumina RNA sequencing (RNA-seq). A total of 61,224 unigenes were obtained (average, 948 bp; N50 of 1,457 bp), among which 47,260 unigenes were annotated by comparison to six public databases (Nr, Nt, Swiss-Prot, KEGG, COG, and GO). Differentially expressed genes were identified by comparing the transcriptomes of no-, self-, and cross-pollinated stigmas with styles of the 'Xiangshui' lemon. Several differentially expressed genes that might be associated with SI were identified, such as those involved in pollen tube growth, programmed cell death, signal transduction, and transcription. NADPH oxidase genes associated with apoptosis were highly upregulated in the self-pollinated transcriptome. The expression pattern of 12 genes was analyzed by quantitative real-time polymerase chain reaction. A putative S-RNase gene was identified that had not been previously associated with self-pollen rejection in lemon or citrus. This study provided a transcriptome dataset for further studies of SI and seedless lemon breeding.
Sun, Cheng; Yu, Guoliang; Bao, Manzhu; Zheng, Bo; Ning, Guogui
2014-06-27
Odd traits in few of plant species usually implicate potential biology significances in plant evolutions. The genus Helwingia Willd, a dioecious medical shrub in Aquifoliales order, has an odd floral architecture-epiphyllous inflorescence. The potential significances and possible evolutionary origin of this specie are not well understood due to poorly available data of biological and genetic studies. In addition, the advent of genomics-based technologies has widely revolutionized plant species with unknown genomic information. Morphological and biological pattern were detailed via anatomical and pollination analyses. An RNA sequencing based transcriptomic analysis were undertaken and a high-resolution phylogenetic analysis was conducted based on single-copy genes in more than 80 species of seed plants, including H. japonica. It is verified that a potential fusion of rachis to the leaf midvein facilitates insect pollination. RNA sequencing yielded a total of 111450 unigenes; half of them had significant similarity with proteins in the public database, and 20281 unigenes were mapped to 119 pathways. Deduced from the phylogenetic analysis based on single-copy genes, the group of Helwingia is closer with Euasterids II and rather than Euasterids, congruent with previous reports using plastid sequences. The odd flower architecture make H. Willd adapt to insect pollination by hosting those insects larger than the flower in size via leave, which has little common character that other insect pollination plants hold. Further the present transcriptome greatly riches genomics information of Helwingia species and nucleus genes based phylogenetic analysis also greatly improve the resolution and robustness of phylogenetic reconstruction in H. japonica.
Transcriptomic survey of the midgut of Anthonomus grandis (Coleoptera: Curculionidae).
Salvador, Ricardo; Príncipi, Darío; Berretta, Marcelo; Fernández, Paula; Paniego, Norma; Sciocco-Cap, Alicia; Hopp, Esteban
2014-01-01
Anthonomus grandis Boheman is a key pest in cotton crops in the New World. Its larval stage develops within the flower bud using it as food and as protection against its predators. This behavior limits the effectiveness of its control using conventional insecticide applications and biocontrol techniques. In spite of its importance, little is known about its genome sequence and, more important, its specific expression in key organs like the midgut. Total mRNA isolated from larval midguts was used for pyrosequencing. Sequence reads were assembled and annotated to generate a unigene data set. In total, 400,000 reads from A. grandis midgut with an average length of 237 bp were assembled and combined into 20,915 contigs. The assembled reads fell into 6,621 genes models. BlastX search using the NCBI-NR database showed that 3,006 unigenes had significant matches to known sequences. Gene Ontology (GO) mapping analysis evidenced that A. grandis is able to transcripts coding for proteins involved in catalytic processing of macromolecules that allows its adaptation to very different feeding source scenarios. Furthermore, transcripts encoding for proteins involved in detoxification mechanisms such as p450 genes, glutathione-S-transferase, and carboxylesterases are also expressed. This is the first report of a transcriptomic study in A. grandis and the largest set of sequence data reported for this species. These data are valuable resources to expand the knowledge of this insect group and could be used in the design of new control strategies based in molecular information. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
Transcriptomic Survey of the Midgut of Anthonomus grandis (Coleoptera: Curculionidae)
Salvador, Ricardo; Príncipi, Darío; Berretta, Marcelo; Fernández, Paula; Paniego, Norma; Sciocco-Cap, Alicia; Hopp, Esteban
2014-01-01
Abstract Anthonomus grandis Boheman is a key pest in cotton crops in the New World. Its larval stage develops within the flower bud using it as food and as protection against its predators. This behavior limits the effectiveness of its control using conventional insecticide applications and biocontrol techniques. In spite of its importance, little is known about its genome sequence and, more important, its specific expression in key organs like the midgut. Total mRNA isolated from larval midguts was used for pyrosequencing. Sequence reads were assembled and annotated to generate a unigene data set. In total, 400,000 reads from A. grandis midgut with an average length of 237 bp were assembled and combined into 20,915 contigs. The assembled reads fell into 6,621 genes models. BlastX search using the NCBI-NR database showed that 3,006 unigenes had significant matches to known sequences. Gene Ontology (GO) mapping analysis evidenced that A. grandis is able to transcripts coding for proteins involved in catalytic processing of macromolecules that allows its adaptation to very different feeding source scenarios. Furthermore, transcripts encoding for proteins involved in detoxification mechanisms such as p450 genes, glutathione-S-transferase , and carboxylesterases are also expressed. This is the first report of a transcriptomic study in A. grandis and the largest set of sequence data reported for this species. These data are valuable resources to expand the knowledge of this insect group and could be used in the design of new control strategies based in molecular information. PMID:25473064
Ji, Rui; Wang, Yujun; Cheng, Yanbin; Zhang, Meiping; Zhang, Hong-Bin; Zhu, Li; Fang, Jichao; Zhu-Salzman, Keyan
2016-01-01
Green peach aphid (Myzus persicae) and pea aphid (Acyrthosiphon pisum) are two phylogenetically closely related agricultural pests. While pea aphid is restricted to Fabaceae, green peach aphid feeds on hundreds of plant species from more than 40 families. Transcriptome comparison could shed light on the genetic factors underlying the difference in host range between the two species. Furthermore, a large scale study contrasting gene expression between immature nymphs and fully developed adult aphids would fill a previous knowledge gap. Here, we obtained transcriptomic sequences of green peach aphid nymphs and adults, respectively, using Illumina sequencing technology. A total of 2244 genes were found to be differentially expressed between the two developmental stages, many of which were associated with detoxification, hormone production, cuticle formation, metabolism, food digestion, and absorption. When searched against publically available pea aphid mRNA sequences, 13,752 unigenes were found to have no homologous counterparts. Interestingly, many of these unigenes that could be annotated in other databases were involved in the “xenobiotics biodegradation and metabolism” pathway, suggesting the two aphids differ in their adaptation to secondary metabolites of host plants. Conversely, 3989 orthologous gene pairs between the two species were subjected to calculations of synonymous and nonsynonymous substitutions, and 148 of the genes potentially evolved in response to positive selection. Some of these genes were predicted to be associated with insect-plant interactions. Our study has revealed certain molecular events related to aphid development, and provided some insight into biological variations in two aphid species, possibly as a result of host plant adaptation. PMID:27812361
Identification, validation and cross-species transferability of novel Lavandula EST-SSRs.
Adal, Ayelign M; Demissie, Zerihun A; Mahmoud, Soheil S
2015-04-01
We identified and characterized EST-SSRs with strong discrimination power against Lavandula angustifolia and Lavandula x intermedia . The markers also showed considerable cross-species transferability rate into six related Lavandula species. Lavenders (Lavandula) are important economical crops grown around the globe for essential oil production. In an attempt to develop genetic markers for these plants, we analyzed over 13,000 unigenes developed from L. angustifolia and L. x intermedia EST databases, and identified 3,459 simple sequence repeats (SSR), which were dominated by trinucleotides (41.2 %) and dinucleotides (31.45 %). Approximately, 19 % of the unigenes contained at least one SSR marker, over 60 % of which were localized in the UTRs. Only 252 EST-SSRs were 18 bp or longer from which 31 loci were validated, and 24 amplified discrete fragments with 85 % polymorphism in L. x intermedia and L. angustifolia. The average number of alleles in L. x intermedia and L. angustifolia were 3.42 and 3.71 per marker with average PIC values of 0.47 and 0.52, respectively. These values suggest a moderate to strong level of informativeness for the markers, with some loci producing unique fingerprints. The cross-species transferability rate of the markers ranges 50-100 % across eight species. The utility of these markers was assessed in eight Lavandula species and 15 L. angustifolia and L. x intermedia cultivars, and the dendrogram deduced from their similarity indexes successfully delineated the species into their respective sections and the cultivars into their respective species. These markers have potential for application in fingerprinting, diversity studies and marker-assisted breeding of Lavandula.
Huang, Qianqian; Huang, Xiao; Deng, Juan; Liu, Hegang; Liu, Yanwen; Yu, Kun; Huang, Bisheng
2016-01-01
The rhizome of Atractylodes lancea is extensively used in the practice of Traditional Chinese Medicine because of its broad pharmacological activities. This study was designed to characterize the transcriptome profiling of the rhizome and leaf of Atractylodes lancea in an attempt to uncover the molecular mechanisms regulating rhizome formation and growth. Over 270 million clean reads were assembled into 92,366 unigenes, 58% of which are homologous with sequences in public protein databases (NR, Swiss-Prot, GO, and KEGG). Analysis of expression levels showed that genes involved in photosynthesis, stress response, and translation were the most abundant transcripts in the leaf, while transcripts involved in stress response, transcription regulation, translation, and metabolism were dominant in the rhizome. Tissue-specific gene analysis identified distinct gene families active in the leaf and rhizome. Differential gene expression analysis revealed a clear difference in gene expression pattern, identifying 1518 up-regulated genes and 3464 down-regulated genes in the rhizome compared with the leaf, including a series of genes related to signal transduction, primary and secondary metabolism. Transcription factor (TF) analysis identified 42 TF families, with 67 and 60 TFs up-regulated in the rhizome and leaf, respectively. A total of 104 unigenes were identified as candidates for regulating rhizome formation and development. These data offer an overview of the gene expression pattern of the rhizome and leaf and provide essential information for future studies on the molecular mechanisms of controlling rhizome formation and growth. The extensive transcriptome data generated in this study will be a valuable resource for further functional genomics studies of A. lancea. PMID:27066021
Wei, Dong; Tian, Chuan-Bei; Liu, Shi-Huo; Wang, Tao; Smagghe, Guy; Jia, Fu-Xian; Dou, Wei; Wang, Jin-Jun
2016-06-01
In the male reproductive system of insects, the male accessory glands and ejaculatory duct (MAG/ED) are important organs and their primary function is to enhance the fertility of spermatozoa. Proteins secreted by the MAG/ED are also known to induce post-mating changes and immunity responses in the female insect. To understand the gene expression profile in the MAG/ED of the oriental fruit fly Bactrocera dorsalis (Hendel), that is an important pest in fruits, we performed an Illumina-based deep sequencing of mRNA. This yielded 54,577,630 clean reads corresponding to 4.91Gb total nucleotides that were assembled and clustered to 30,669 unigenes (average 645bp). Among them, 20,419 unigenes were functionally annotated to known proteins/peptides in Gene Orthology, Clusters of Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes pathway databases. Typically, many genes were involved in immunity and these included microbial recognition proteins and antimicrobial peptides. Subsequently, the inducible expression of these immunity-related genes was confirmed by qRT-PCR analysis when insects were challenged with immunity-inducible factors, suggesting their function in guaranteeing fertilization success. Besides, we identified some important reproductive genes such as juvenile hormone- and ecdysteroid-related genes in this de novo assembly. In conclusion, this transcriptomic sequencing of B. dorsalis MAG/ED provides insights to facilitate further functional research of reproduction, immunity and molecular evolution of reproductive proteins in this important agricultural pest. Copyright © 2015 Elsevier Inc. All rights reserved.
The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing.
Hao, Da-Cheng; Zhang, Cai-Rong; Xiao, Pei-Gen
2018-06-01
In the present study, the shotgun high throughput metagenomic sequencing was implemented to globally capture the features of Taxus rhizosphere microbiome. Total reads could be assigned to 6925 species belonging to 113 bacteria phyla and 301 species of nine fungi phyla. For archaea and virus, 263 and 134 species were for the first time identified, respectively. More than 720,000 Unigenes were identified by clean reads assembly. The top five assigned phyla were Actinobacteria (363,941 Unigenes), Proteobacteria (182,053), Acidobacteria (44,527), Ascomycota (fungi; 18,267), and Chloroflexi (15,539). KEGG analysis predicted numerous functional genes; 7101 Unigenes belong to "Xenobiotics biodegradation and metabolism." A total of 12,040 Unigenes involved in defense mechanisms (e.g., xenobiotic metabolism) were annotated by eggNOG. Talaromyces addition could influence not only the diversity and structure of microbial communities of Taxus rhizosphere, but also the relative abundance of functional genes, including metabolic genes, antibiotic resistant genes, and genes involved in pathogen-host interaction, bacterial virulence, and bacterial secretion system. The structure and function of rhizosphere microbiome could be sensitive to non-native microbe addition, which could impact on the pollutant degradation. This study, complementary to the amplicon sequencing, more objectively reflects the native microbiome of Taxus rhizosphere and its response to environmental pressure, and lays a foundation for potential combination of phytoremediation and bioaugmentation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cao, Zhe; Deng, Zhanao
2017-01-01
Roots are vital to plant survival and crop yield, yet few efforts have been made to characterize the expressed genes in the roots of non-model plants (root transcriptomes). This study was conducted to sequence, assemble, annotate, and characterize the root transcriptomes of three caladium cultivars (Caladium × hortulanum) using RNA-Seq. The caladium cultivars used in this study have different levels of resistance to Pythium myriotylum, the most damaging necrotrophic pathogen to caladium roots. Forty-six to 61 million clean reads were obtained for each caladium root transcriptome. De novo assembly of the reads resulted in approximately 130,000 unigenes. Based on bioinformatic analysis, 71,825 (52.3%) caladium unigenes were annotated for putative functions, 48,417 (67.4%) and 31,417 (72.7%) were assigned to Gene Ontology (GO) and Clusters of Orthologous Groups (COG), respectively, and 46,406 (64.6%) unigenes were assigned to 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 4518 distinct unigenes were observed only in Pythium-resistant “Candidum” roots, of which 98 seemed to be involved in disease resistance and defense responses. In addition, 28,837 simple sequence repeat sites and 44,628 single nucleotide polymorphism sites were identified among the three caladium cultivars. These root transcriptome data will be valuable for further genetic improvement of caladium and related aroids. PMID:28346370
[SSR loci information analysis in transcriptome of Andrographis paniculata].
Li, Jun-Ren; Chen, Xiu-Zhen; Tang, Xiao-Ting; He, Rui; Zhan, Ruo-Ting
2018-06-01
To study the SSR loci information and develop molecular markers, a total of 43 683 Unigenes in transcriptome of Andrographis paniculata were used to explore SSR. The distribution frequency of SSR and the basic characteristics of repeat motifs were analyzed using MicroSAtellite software, SSR primers were designed by Primer 3.0 software and then validated by PCR. Moreover, the gene function analysis of SSR Unigene was obtained by Blast. The results showed that 14 135 SSR loci were found in the transcriptome of A. paniculata, which distributed in 9 973 Unigenes with a distribution frequency of 32.36%. Di-nucleotide and Tri-nucleotide repeat were the main types, accounted for 75.54% of all SSRs. The repeat motifs of AT/AT and CCG/CGG were the predominant repeat types of Di-nucleotide and Tri-nucleotide, respectively. A total of 4 740 pairs of SSR primers with the potential to produce polymorphism were designed for maker development. Ten pairs of primers in 20 pairs of randomly picked primers produced fragments with expected molecular size. The gene function of Unigenes containing SSR were mostly related to the basic metabolism function of A. paniculata. The SSR markers in transcriptome of A. paniculata show rich type, strong specificity and high potential of polymorphism, which will benefit the candidate gene mining and marker-assisted breeding. Copyright© by the Chinese Pharmaceutical Association.
2015-01-01
Background Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao (A. mongolicus, family Leguminosae) is one of the most important traditional Chinese herbs. Among many secondary metabolites it produces, the effective bioactive constituents include isoflavonoids and triterpene saponins. The genomic resources regarding the biosynthesis of these metabolites in A. mongolicus are limited. Although roots are the primary material harvested for medical use, the biosynthesis of the bioactive compounds and its regulation in A. mongolicus are not well understood. Therefore, a global transcriptome analysis on A. mongolicus tissues was performed to identify the genes essential for the metabolism and to profile their expression patterns in greater details. Results RNA-sequencing was performed for three different A. mongolicus tissues: leaf, stem, and root, using the Illumina Hiseq2000 platform. A total of 159.5 million raw sequence reads were generated, and assembled into 186,324 unigenes with an N50 of 1,524bp. Among them, 129,966 unigenes (~69.7%) were annotated using four public databases (Swiss-Prot, TrEMBL, CDD, Pfam), and 90,202, 63,946, and 78,326 unigenes were found to express in leaves, roots, and stems, respectively. A total of 8,025 transcription factors (TFs) were identified, in which the four largest families, bHLH, MYB, C3H, and WRKY, were implicated in regulation of tissue development, metabolisms, stress response, etc. Unigenes associated with secondary metabolism, especially those with isolavonoids and triterpene saponins biosynthesis were characterized and profiled. Most genes involved in the isoflavonoids biosynthesis had the lowest expression in the leaves, and the highest in the stems. For triterpene saponin biosynthesis, we found the genes in MVA and non-MVA pathways were differentially expressed among three examined tissues, indicating the parallel but compartmentally separated biosynthesis pathways of IPP and DMAPP in A. mongolicus. The first committed enzyme in triterpene saponin biosynthesis from A. mongolicus, cycloartenol synthase (AmCAS), which belongs to the oxidosqualene cyclase family, was cloned by us to study the astragalosides biosynthesis. Further co-expression analysis indicated the candidate CYP450s and glycosyltransferases (GTs) in the cascade of triterpene saponins biosynthesis. The presence of the large CYP450 families in A. mongolicus was further compared with those from Medicago truncatula and Arabidopsis thaliana, and the diversity and phylegenetic relationships of the CYP450 families were established. Conclusion A transcriptome study was performed for A. mongolicus tissues to construct and profile their metabolic pathways, especially for the important bioactive molecules. The results revealed a comprehensive profile for metabolic activities among tissues, pointing to the equal importance of leaf, stem, and root in A. mongolicus for the production of bioactive compounds. This work provides valuable resources for bioengineering and in vitro synthesis of the natural compounds for medical research and for potential drug development. PMID:26099797
KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella.
Jouraku, Akiya; Yamamoto, Kimiko; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Narukawa, Junko; Miyamoto, Kazuhisa; Kurita, Kanako; Kanamori, Hiroyuki; Katayose, Yuichi; Matsumoto, Takashi; Noda, Hiroaki
2013-07-09
The diamondback moth (DBM), Plutella xylostella, is one of the most harmful insect pests for crucifer crops worldwide. DBM has rapidly evolved high resistance to most conventional insecticides such as pyrethroids, organophosphates, fipronil, spinosad, Bacillus thuringiensis, and diamides. Therefore, it is important to develop genomic and transcriptomic DBM resources for analysis of genes related to insecticide resistance, both to clarify the mechanism of resistance of DBM and to facilitate the development of insecticides with a novel mode of action for more effective and environmentally less harmful insecticide rotation. To contribute to this goal, we developed KONAGAbase, a genomic and transcriptomic database for DBM (KONAGA is the Japanese word for DBM). KONAGAbase provides (1) transcriptomic sequences of 37,340 ESTs/mRNAs and 147,370 RNA-seq contigs which were clustered and assembled into 84,570 unigenes (30,695 contigs, 50,548 pseudo singletons, and 3,327 singletons); and (2) genomic sequences of 88,530 WGS contigs with 246,244 degenerate contigs and 106,455 singletons from which 6,310 de novo identified repeat sequences and 34,890 predicted gene-coding sequences were extracted. The unigenes and predicted gene-coding sequences were clustered and 32,800 representative sequences were extracted as a comprehensive putative gene set. These sequences were annotated with BLAST descriptions, Gene Ontology (GO) terms, and Pfam descriptions, respectively. KONAGAbase contains rich graphical user interface (GUI)-based web interfaces for easy and efficient searching, browsing, and downloading sequences and annotation data. Five useful search interfaces consisting of BLAST search, keyword search, BLAST result-based search, GO tree-based search, and genome browser are provided. KONAGAbase is publicly available from our website (http://dbm.dna.affrc.go.jp/px/) through standard web browsers. KONAGAbase provides DBM comprehensive transcriptomic and draft genomic sequences with useful annotation information with easy-to-use web interfaces, which helps researchers to efficiently search for target sequences such as insect resistance-related genes. KONAGAbase will be continuously updated and additional genomic/transcriptomic resources and analysis tools will be provided for further efficient analysis of the mechanism of insecticide resistance and the development of effective insecticides with a novel mode of action for DBM.
Transcriptomic Analysis of the Primary Roots of Alhagi sparsifolia in Response to Water Stress
Pei, Xinwu; Zhang, Chao; Jia, Shirong; Li, Weimin
2015-01-01
Background Alhagi sparsifolia is a typical desert phreatophyte and has evolved to withstand extreme dry, cold and hot weather. While A. sparsifolia represents an ideal model to study the molecular mechanism of plant adaption to abiotic stress, no research has been done in this aspect to date. Here we took advantage of Illumina platform to survey transcriptome in primary roots of A. sparsifolia under water stress conditions in aim to facilitate the exploration of its genetic basis for drought tolerance. Methodology and Principal Findings We sequenced four primary roots samples individually collected at 0, 6, 24 and 30h from the A. sparsifolia seedlings in the course of 24h of water stress following 6h of rehydration. The resulting 38,763,230, 67,511,150, 49,259,804 and 54,744,906 clean reads were pooled and assembled into 33,255 unigenes with an average length of 1,057 bp. All-unigenes were subjected to functional annotation by searching against the public databases. Based on the established transcriptome database, we further evaluated the gene expression profiles in the four different primary roots samples, and identified numbers of differently expressed genes (DEGs) reflecting the early response to water stress (6h vs. 0h), the late response to water stress (24h vs. 0h) and the response to post water stress rehydration (30h vs. 24h). Moreover, the DEGs specifically regulated at 6, 24 and 30h were captured in order to depict the dynamic changes of gene expression during water stress and subsequent rehydration. Functional categorization of the DEGs indicated the activation of oxidoreductase system, and particularly emphasized the significance of the ‘Glutathione metabolism pathway’ in response to water stress. Conclusions This is the first description of the genetic makeup of A. sparsifolia, thus providing a substantial contribution to the sequence resources for this species. The identified DEGs offer a deep insight into the molecular mechanism of A. sparsifolia in response to water stress, and merit further investigation. PMID:25822368
Li, Xiaobai; Jin, Feng; Jin, Liang; Jackson, Aaron; Huang, Cheng; Li, Kehu; Shu, Xiaoli
2014-12-05
Cymbidium is a genus of 68 species in the orchid family, with extremely high ornamental value. Marker-assisted selection has proven to be an effective strategy in accelerating plant breeding for many plant species. Analysis of cymbidiums genetic background by molecular markers can be of great value in assisting parental selection and breeding strategy design, however, in plants such as cymbidiums limited genomic resources exist. In order to obtain efficient markers, we deep sequenced the C. ensifolium transcriptome to identify simple sequence repeats derived from gene regions (genic-SSR). The 7,936 genic-SSR markers were identified. A total of 80 genic-SSRs were selected, and primers were designed according to their flanking sequences. Of the 80 genic-SSR primer sets, 62 were amplified in C. ensifolium successfully, and 55 showed polymorphism when cross-tested among 9 Cymbidium species comprising 59 accessions. Unigenes containing the 62 genic-SSRs were searched against Non-redundant (Nr), Gene Ontology database (GO), eukaryotic orthologous groups (KOGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The search resulted in 53 matching Nr sequences, of which 39 had GO terms, 18 were assigned to KOGs, and 15 were annotated with KEGG. Genetic diversity and population structure were analyzed based on 55 polymorphic genic-SSR data among 59 accessions. The genetic distance averaged 0.3911, ranging from 0.016 to 0.618. The polymorphic index content (PIC) of 55 polymorphic markers averaged 0.407, ranging from 0.033 to 0.863. A model-based clustering analysis revealed that five genetic groups existed in the collection. Accessions from the same species were typically grouped together; however, C. goeringii accessions did not always form a separate cluster, suggesting that C. goeringii accessions were polyphyletic. The genic-SSR identified in this study constitute a set of markers that can be applied across multiple Cymbidium species and used for the evaluation of genetic relationships as well as qualitative and quantitative trait mapping studies. Genic-SSR's coupled with the functional annotations provided by the unigenes will aid in mapping candidate genes of specific function.
Argout, Xavier; Fouet, Olivier; Wincker, Patrick; Gramacho, Karina; Legavre, Thierry; Sabau, Xavier; Risterucci, Ange Marie; Da Silva, Corinne; Cascardo, Julio; Allegre, Mathilde; Kuhn, David; Verica, Joseph; Courtois, Brigitte; Loor, Gaston; Babin, Regis; Sounigo, Olivier; Ducamp, Michel; Guiltinan, Mark J; Ruiz, Manuel; Alemanno, Laurence; Machado, Regina; Phillips, Wilberth; Schnell, Ray; Gilmour, Martin; Rosenquist, Eric; Butler, David; Maximova, Siela; Lanaud, Claire
2008-01-01
Background Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Results Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species. Gene Ontology (GO) annotation was applied to distribute the ESTs among the main GO categories. A specific information system (ESTtik) was constructed to process, store and manage this EST collection allowing the user to query a database. To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection. A large collection of new genetic markers was provided by this ESTs collection. Conclusion This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow the construction of a high density gene map of T. cacao. This EST collection represents a unique and important molecular resource for T. cacao study and improvement, facilitating the discovery of candidate genes for important T. cacao trait variation. PMID:18973681
Gene expression analysis of flax seed development
2011-01-01
Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well. PMID:21529361
Argout, Xavier; Fouet, Olivier; Wincker, Patrick; Gramacho, Karina; Legavre, Thierry; Sabau, Xavier; Risterucci, Ange Marie; Da Silva, Corinne; Cascardo, Julio; Allegre, Mathilde; Kuhn, David; Verica, Joseph; Courtois, Brigitte; Loor, Gaston; Babin, Regis; Sounigo, Olivier; Ducamp, Michel; Guiltinan, Mark J; Ruiz, Manuel; Alemanno, Laurence; Machado, Regina; Phillips, Wilberth; Schnell, Ray; Gilmour, Martin; Rosenquist, Eric; Butler, David; Maximova, Siela; Lanaud, Claire
2008-10-30
Theobroma cacao L., is a tree originated from the tropical rainforest of South America. It is one of the major cash crops for many tropical countries. T. cacao is mainly produced on smallholdings, providing resources for 14 million farmers. Disease resistance and T. cacao quality improvement are two important challenges for all actors of cocoa and chocolate production. T. cacao is seriously affected by pests and fungal diseases, responsible for more than 40% yield losses and quality improvement, nutritional and organoleptic, is also important for consumers. An international collaboration was formed to develop an EST genomic resource database for cacao. Fifty-six cDNA libraries were constructed from different organs, different genotypes and different environmental conditions. A total of 149,650 valid EST sequences were generated corresponding to 48,594 unigenes, 12,692 contigs and 35,902 singletons. A total of 29,849 unigenes shared significant homology with public sequences from other species.Gene Ontology (GO) annotation was applied to distribute the ESTs among the main GO categories.A specific information system (ESTtik) was constructed to process, store and manage this EST collection allowing the user to query a database.To check the representativeness of our EST collection, we looked for the genes known to be involved in two different metabolic pathways extensively studied in other plant species and important for T. cacao qualities: the flavonoid and the terpene pathways. Most of the enzymes described in other crops for these two metabolic pathways were found in our EST collection.A large collection of new genetic markers was provided by this ESTs collection. This EST collection displays a good representation of the T. cacao transcriptome, suitable for analysis of biochemical pathways based on oligonucleotide microarrays derived from these ESTs. It will provide numerous genetic markers that will allow the construction of a high density gene map of T. cacao. This EST collection represents a unique and important molecular resource for T. cacao study and improvement, facilitating the discovery of candidate genes for important T. cacao trait variation.
Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon
2011-01-01
Background Melon (Cucumis melo), an economically important vegetable crop, belongs to the Cucurbitaceae family which includes several other important crops such as watermelon, cucumber, and pumpkin. It has served as a model system for sex determination and vascular biology studies. However, genomic resources currently available for melon are limited. Result We constructed eleven full-length enriched and four standard cDNA libraries from fruits, flowers, leaves, roots, cotyledons, and calluses of four different melon genotypes, and generated 71,577 and 22,179 ESTs from full-length enriched and standard cDNA libraries, respectively. These ESTs, together with ~35,000 ESTs available in public domains, were assembled into 24,444 unigenes, which were extensively annotated by comparing their sequences to different protein and functional domain databases, assigning them Gene Ontology (GO) terms, and mapping them onto metabolic pathways. Comparative analysis of melon unigenes and other plant genomes revealed that 75% to 85% of melon unigenes had homologs in other dicot plants, while approximately 70% had homologs in monocot plants. The analysis also identified 6,972 gene families that were conserved across dicot and monocot plants, and 181, 1,192, and 220 gene families specific to fleshy fruit-bearing plants, the Cucurbitaceae family, and melon, respectively. Digital expression analysis identified a total of 175 tissue-specific genes, which provides a valuable gene sequence resource for future genomics and functional studies. Furthermore, we identified 4,068 simple sequence repeats (SSRs) and 3,073 single nucleotide polymorphisms (SNPs) in the melon EST collection. Finally, we obtained a total of 1,382 melon full-length transcripts through the analysis of full-length enriched cDNA clones that were sequenced from both ends. Analysis of these full-length transcripts indicated that sizes of melon 5' and 3' UTRs were similar to those of tomato, but longer than many other dicot plants. Codon usages of melon full-length transcripts were largely similar to those of Arabidopsis coding sequences. Conclusion The collection of melon ESTs generated from full-length enriched and standard cDNA libraries is expected to play significant roles in annotating the melon genome. The ESTs and associated analysis results will be useful resources for gene discovery, functional analysis, marker-assisted breeding of melon and closely related species, comparative genomic studies and for gaining insights into gene expression patterns. PMID:21599934
2010-01-01
Background The Fagaceae family comprises about 1,000 woody species worldwide. About half belong to the Quercus family. These oaks are often a source of raw material for biomass wood and fiber. Pedunculate and sessile oaks, are among the most important deciduous forest tree species in Europe. Despite their ecological and economical importance, very few genomic resources have yet been generated for these species. Here, we describe the development of an EST catalogue that will support ecosystem genomics studies, where geneticists, ecophysiologists, molecular biologists and ecologists join their efforts for understanding, monitoring and predicting functional genetic diversity. Results We generated 145,827 sequence reads from 20 cDNA libraries using the Sanger method. Unexploitable chromatograms and quality checking lead us to eliminate 19,941 sequences. Finally a total of 125,925 ESTs were retained from 111,361 cDNA clones. Pyrosequencing was also conducted for 14 libraries, generating 1,948,579 reads, from which 370,566 sequences (19.0%) were eliminated, resulting in 1,578,192 sequences. Following clustering and assembly using TGICL pipeline, 1,704,117 EST sequences collapsed into 69,154 tentative contigs and 153,517 singletons, providing 222,671 non-redundant sequences (including alternative transcripts). We also assembled the sequences using MIRA and PartiGene software and compared the three unigene sets. Gene ontology annotation was then assigned to 29,303 unigene elements. Blast search against the SWISS-PROT database revealed putative homologs for 32,810 (14.7%) unigene elements, but more extensive search with Pfam, Refseq_protein, Refseq_RNA and eight gene indices revealed homology for 67.4% of them. The EST catalogue was examined for putative homologs of candidate genes involved in bud phenology, cuticle formation, phenylpropanoids biosynthesis and cell wall formation. Our results suggest a good coverage of genes involved in these traits. Comparative orthologous sequences (COS) with other plant gene models were identified and allow to unravel the oak paleo-history. Simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs) were searched, resulting in 52,834 SSRs and 36,411 SNPs. All of these are available through the Oak Contig Browser http://genotoul-contigbrowser.toulouse.inra.fr:9092/Quercus_robur/index.html. Conclusions This genomic resource provides a unique tool to discover genes of interest, study the oak transcriptome, and develop new markers to investigate functional diversity in natural populations. PMID:21092232
2012-01-01
Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is considered the most lethal disease of Cavendish bananas in the world. The disease can be managed in the field by planting resistant Cavendish plants generated by somaclonal variation. However, little information is available on the genetic basis of plant resistance to Foc TR4. To a better understand the defense response of resistant banana plants to the Fusarium wilt pathogen, the transcriptome profiles in roots of resistant and susceptible Cavendish banana challenged with Foc TR4 were compared. Results RNA-seq analysis generated more than 103 million 90-bp clean pair end (PE) reads, which were assembled into 88,161 unigenes (mean size = 554 bp). Based on sequence similarity searches, 61,706 (69.99%) genes were identified, among which 21,273 and 50,410 unigenes were assigned to gene ontology (GO) categories and clusters of orthologous groups (COG), respectively. Searches in the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) mapped 33,243 (37.71%) unigenes to 119 KEGG pathways. A total of 5,008 genes were assigned to plant-pathogen interactions, including disease defense and signal transduction. Digital gene expression (DGE) analysis revealed large differences in the transcriptome profiles of the Foc TR4-resistant somaclonal variant and its susceptible wild-type. Expression patterns of genes involved in pathogen-associated molecular pattern (PAMP) recognition, activation of effector-triggered immunity (ETI), ion influx, and biosynthesis of hormones as well as pathogenesis-related (PR) genes, transcription factors, signaling/regulatory genes, cell wall modification genes and genes with other functions were analyzed and compared. The results indicated that basal defense mechanisms are involved in the recognition of PAMPs, and that high levels of defense-related transcripts may contribute to Foc TR4 resistance in banana. Conclusions This study generated a substantial amount of banana transcript sequences and compared the defense responses against Foc TR4 between resistant and susceptible Cavendish bananas. The results contribute to the identification of candidate genes related to plant resistance in a non-model organism, banana, and help to improve the current understanding of host-pathogen interactions. PMID:22863187
Cushion, Melanie T; Smulian, A George; Slaven, Bradley E; Sesterhenn, Tom; Arnold, Jonathan; Staben, Chuck; Porollo, Aleksey; Adamczak, Rafal; Meller, Jarek
2007-05-09
Members of the genus Pneumocystis are fungal pathogens that cause pneumonia in a wide variety of mammals with debilitated immune systems. Little is known about their basic biological functions, including life cycle, since no species can be cultured continuously outside the mammalian lung. To better understand the pathological process, about 4500 ESTS derived from sequencing of the poly(A) tail ends of P. carinii mRNAs during fulminate infection were annotated and functionally characterized as unassembled reads, and then clustered and reduced to a unigene set with 1042 members. Because of the presence of sequences from other microbial genomes and the rat host, the analysis and compression to a unigene set was necessarily an iterative process. BLASTx analysis of the unassembled reads (UR) vs. the Uni-Prot and TREMBL databases revealed 56% had similarities to existing polypeptides at E values of
Sesterhenn, Tom; Arnold, Jonathan; Staben, Chuck; Porollo, Aleksey; Adamczak, Rafal; Meller, Jarek
2007-01-01
Members of the genus Pneumocystis are fungal pathogens that cause pneumonia in a wide variety of mammals with debilitated immune systems. Little is known about their basic biological functions, including life cycle, since no species can be cultured continuously outside the mammalian lung. To better understand the pathological process, about 4500 ESTS derived from sequencing of the poly(A) tail ends of P. carinii mRNAs during fulminate infection were annotated and functionally characterized as unassembled reads, and then clustered and reduced to a unigene set with 1042 members. Because of the presence of sequences from other microbial genomes and the rat host, the analysis and compression to a unigene set was necessarily an iterative process. BLASTx analysis of the unassembled reads (UR) vs. the Uni-Prot and TREMBL databases revealed 56% had similarities to existing polypeptides at E values of≤10−6, with the remainder lacking any significant homology. The most abundant transcripts in the UR were associated with stress responses, energy production, transcription and translation. Most (70%) of the UR had similarities to proteins from filamentous fungi (e.g., Aspergillus, Neurospora) and existing P. carinii gene products. In contrast, similarities to proteins of the yeast-like fungi, Schizosaccharomyces pombe and Saccharomyces cerevisiae, predominated in the unigene set. Gene Ontology analysis using BLAST2GO revealed P. carinii dedicated most of its transcripts to cellular and physiological processes (∼80%), molecular binding and catalytic activities (∼70%), and were primarily derived from cell and organellar compartments (∼80%). KEGG Pathway mapping showed the putative P. carinii genes represented most standard metabolic pathways and cellular processes, including the tricarboxylic acid cycle, glycolysis, amino acid biosynthesis, cell cycle and mitochondrial function. Several gene homologs associated with mating, meiosis, and sterol biosynthesis in fungi were identified. Genes encoding the major surface glycoprotein family (MSG), heat shock (HSP70), and proteases (PROT/KEX) were the most abundantly expressed of known P. carinii genes. The apparent presence of many metabolic pathways in P. carinii, sexual reproduction within the host, and lack of an invasive infection process in the immunologically intact host suggest members of the genus Pneumocystis may be adapted parasites and have a compatible relationship with their mammalian hosts. This study represents the first characterization of the expressed genes of a non-culturable fungal pathogen of mammals during the infective process. PMID:17487271
Kaur, Sukhjiwan; Cogan, Noel O I; Pembleton, Luke W; Shinozuka, Maiko; Savin, Keith W; Materne, Michael; Forster, John W
2011-05-25
Lentil (Lens culinaris Medik.) is a cool-season grain legume which provides a rich source of protein for human consumption. In terms of genomic resources, lentil is relatively underdeveloped, in comparison to other Fabaceae species, with limited available data. There is hence a significant need to enhance such resources in order to identify novel genes and alleles for molecular breeding to increase crop productivity and quality. Tissue-specific cDNA samples from six distinct lentil genotypes were sequenced using Roche 454 GS-FLX Titanium technology, generating c. 1.38 × 106 expressed sequence tags (ESTs). De novo assembly generated a total of 15,354 contigs and 68,715 singletons. The complete unigene set was sequence-analysed against genome drafts of the model legume species Medicago truncatula and Arabidopsis thaliana to identify 12,639, and 7,476 unique matches, respectively. When compared to the genome of Glycine max, a total of 20,419 unique hits were observed corresponding to c. 31% of the known gene space. A total of 25,592 lentil unigenes were subsequently annoated from GenBank. Simple sequence repeat (SSR)-containing ESTs were identified from consensus sequences and a total of 2,393 primer pairs were designed. A subset of 192 EST-SSR markers was screened for validation across a panel 12 cultivated lentil genotypes and one wild relative species. A total of 166 primer pairs obtained successful amplification, of which 47.5% detected genetic polymorphism. A substantial collection of ESTs has been developed from sequence analysis of lentil genotypes using second-generation technology, permitting unigene definition across a broad range of functional categories. As well as providing resources for functional genomics studies, the unigene set has permitted significant enhancement of the number of publicly-available molecular genetic markers as tools for improvement of this species.
dbMDEGA: a database for meta-analysis of differentially expressed genes in autism spectrum disorder.
Zhang, Shuyun; Deng, Libin; Jia, Qiyue; Huang, Shaoting; Gu, Junwang; Zhou, Fankun; Gao, Meng; Sun, Xinyi; Feng, Chang; Fan, Guangqin
2017-11-16
Autism spectrum disorders (ASD) are hereditary, heterogeneous and biologically complex neurodevelopmental disorders. Individual studies on gene expression in ASD cannot provide clear consensus conclusions. Therefore, a systematic review to synthesize the current findings from brain tissues and a search tool to share the meta-analysis results are urgently needed. Here, we conducted a meta-analysis of brain gene expression profiles in the current reported human ASD expression datasets (with 84 frozen male cortex samples, 17 female cortex samples, 32 cerebellum samples and 4 formalin fixed samples) and knock-out mouse ASD model expression datasets (with 80 collective brain samples). Then, we applied R language software and developed an interactive shared and updated database (dbMDEGA) displaying the results of meta-analysis of data from ASD studies regarding differentially expressed genes (DEGs) in the brain. This database, dbMDEGA ( https://dbmdega.shinyapps.io/dbMDEGA/ ), is a publicly available web-portal for manual annotation and visualization of DEGs in the brain from data from ASD studies. This database uniquely presents meta-analysis values and homologous forest plots of DEGs in brain tissues. Gene entries are annotated with meta-values, statistical values and forest plots of DEGs in brain samples. This database aims to provide searchable meta-analysis results based on the current reported brain gene expression datasets of ASD to help detect candidate genes underlying this disorder. This new analytical tool may provide valuable assistance in the discovery of DEGs and the elucidation of the molecular pathogenicity of ASD. This database model may be replicated to study other disorders.
Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng
2016-01-01
Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.
Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang
2018-01-01
Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan. PMID:29694395
Xu, Zheng; Ni, Jun; Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang; Fu, Songling
2018-01-01
Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan.
Construction and comparative evaluation of different activity detection methods in brain FDG-PET.
Buchholz, Hans-Georg; Wenzel, Fabian; Gartenschläger, Martin; Thiele, Frank; Young, Stewart; Reuss, Stefan; Schreckenberger, Mathias
2015-08-18
We constructed and evaluated reference brain FDG-PET databases for usage by three software programs (Computer-aided diagnosis for dementia (CAD4D), Statistical Parametric Mapping (SPM) and NEUROSTAT), which allow a user-independent detection of dementia-related hypometabolism in patients' brain FDG-PET. Thirty-seven healthy volunteers were scanned in order to construct brain FDG reference databases, which reflect the normal, age-dependent glucose consumption in human brain, using either software. Databases were compared to each other to assess the impact of different stereotactic normalization algorithms used by either software package. In addition, performance of the new reference databases in the detection of altered glucose consumption in the brains of patients was evaluated by calculating statistical maps of regional hypometabolism in FDG-PET of 20 patients with confirmed Alzheimer's dementia (AD) and of 10 non-AD patients. Extent (hypometabolic volume referred to as cluster size) and magnitude (peak z-score) of detected hypometabolism was statistically analyzed. Differences between the reference databases built by CAD4D, SPM or NEUROSTAT were observed. Due to the different normalization methods, altered spatial FDG patterns were found. When analyzing patient data with the reference databases created using CAD4D, SPM or NEUROSTAT, similar characteristic clusters of hypometabolism in the same brain regions were found in the AD group with either software. However, larger z-scores were observed with CAD4D and NEUROSTAT than those reported by SPM. Better concordance with CAD4D and NEUROSTAT was achieved using the spatially normalized images of SPM and an independent z-score calculation. The three software packages identified the peak z-scores in the same brain region in 11 of 20 AD cases, and there was concordance between CAD4D and SPM in 16 AD subjects. The clinical evaluation of brain FDG-PET of 20 AD patients with either CAD4D-, SPM- or NEUROSTAT-generated databases from an identical reference dataset showed similar patterns of hypometabolism in the brain regions known to be involved in AD. The extent of hypometabolism and peak z-score appeared to be influenced by the calculation method used in each software package rather than by different spatial normalization parameters.
Tian, Xin-Jie; Long, Yan; Wang, Jiao; Zhang, Jing-Wen; Wang, Yan-Yan; Li, Wei-Min; Peng, Yu-Fa; Yuan, Qian-Hua; Pei, Xin-Wu
2015-01-01
The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.
Fan, Huiyan; Zhang, Yongliang; Sun, Haiwen; Liu, Junying; Wang, Ying; Wang, Xianbing; Li, Dawei; Yu, Jialin; Han, Chenggui
2015-01-01
Rhizomania is one of the most devastating diseases of sugar beet. It is caused by Beet necrotic yellow vein virus (BNYVV) transmitted by the obligate root-infecting parasite Polymyxa betae. Beta macrocarpa, a wild beet species widely used as a systemic host in the laboratory, can be rub-inoculated with BNYVV to avoid variation associated with the presence of the vector P. betae. To better understand disease and resistance between beets and BNYVV, we characterized the transcriptome of B. macrocarpa and analyzed global gene expression of B. macrocarpa in response to BNYVV infection using the Illumina sequencing platform. The overall de novo assembly of cDNA sequence data generated 75,917 unigenes, with an average length of 1054 bp. Based on a BLASTX search (E-value ≤ 10-5) against the non-redundant (NR, NCBI) protein, Swiss-Prot, the Gene Ontology (GO), Clusters of Orthologous Groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, there were 39,372 unigenes annotated. In addition, 4,834 simple sequence repeats (SSRs) were also predicted, which could serve as a foundation for various applications in beet breeding. Furthermore, comparative analysis of the two transcriptomes revealed that 261 genes were differentially expressed in infected compared to control plants, including 128 up- and 133 down-regulated genes. GO analysis showed that the changes in the differently expressed genes were mainly enrichment in response to biotic stimulus and primary metabolic process. Our results not only provide a rich genomic resource for beets, but also benefit research into the molecular mechanisms of beet- BNYV Vinteraction.
Hu, Zhuang; Zhang, Tian; Gao, Xiao-Xiao; Wang, Yang; Zhang, Qiang; Zhou, Hui-Juan; Zhao, Gui-Fang; Wang, Ma-Li; Woeste, Keith E; Zhao, Peng
2016-04-01
Manchurian walnut (Juglans mandshurica Maxim.) is a vulnerable, temperate deciduous tree valued for its wood and nut, but transcriptomic and genomic data for the species are very limited. Next generation sequencing (NGS) has made it possible to develop molecular markers for this species rapidly and efficiently. Our goal is to use transcriptome information from RNA-Seq to understand development in J. mandshurica and develop polymorphic simple sequence repeats (SSRs, microsatellites) to understand the species' population genetics. In this study, more than 47.7 million clean reads were generated using Illumina sequencing technology. De novo assembly yielded 99,869 unigenes with an average length of 747 bp. Based on sequence similarity search with known proteins, a total of 39,708 (42.32 %) genes were identified. Searching against the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG) identified 15,903 (16.9 %) unigenes. Further, we identified and characterized 63 new transcriptome-derived microsatellite markers. By testing the markers on 4 to 14 individuals from four populations, we found that 20 were polymorphic and easily amplified. The number of alleles per locus ranged from 2 to 8. The observed and expected heterozygosity per locus ranged from 0.209 to 0.813 and 0.335 to 0.842, respectively. These twenty microsatellite markers will be useful for studies of population genetics, diversity, and genetic structure, and they will undoubtedly benefit future breeding studies of this walnut species. Moreover, the information uncovered in this research will also serve as a useful genetic resource for understanding the transcriptome and development of J. mandshurica and other Juglans species.
Cheng, Yunqing; Liu, Jianfeng; Zhang, Huidi; Wang, Ju; Zhao, Yixin; Geng, Wanting
2015-01-01
A high ratio of blank fruit in hazelnut (Corylus heterophylla Fisch) is a very common phenomenon that causes serious yield losses in northeast China. The development of blank fruit in the Corylus genus is known to be associated with embryo abortion. However, little is known about the molecular mechanisms responsible for embryo abortion during the nut development stage. Genomic information for C. heterophylla Fisch is not available; therefore, data related to transcriptome and gene expression profiling of developing and abortive ovules are needed. In this study, de novo transcriptome sequencing and RNA-seq analysis were conducted using short-read sequencing technology (Illumina HiSeq 2000). The results of the transcriptome assembly analysis revealed genetic information that was associated with the fruit development stage. Two digital gene expression libraries were constructed, one for a full (normally developing) ovule and one for an empty (abortive) ovule. Transcriptome sequencing and assembly results revealed 55,353 unigenes, including 18,751 clusters and 36,602 singletons. These results were annotated using the public databases NR, NT, Swiss-Prot, KEGG, COG, and GO. Using digital gene expression profiling, gene expression differences in developing and abortive ovules were identified. A total of 1,637 and 715 unigenes were significantly upregulated and downregulated, respectively, in abortive ovules, compared with developing ovules. Quantitative real-time polymerase chain reaction analysis was used in order to verify the differential expression of some genes. The transcriptome and digital gene expression profiling data of normally developing and abortive ovules in hazelnut provide exhaustive information that will improve our understanding of the molecular mechanisms of abortive ovule formation in hazelnut.
Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.
Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin
2016-01-01
In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba.
Dang, Yunfei; Xu, Xiaoyan; Shen, Yubang; Hu, Moyan; Zhang, Meng; Li, Lisen; Lv, Liqun; Li, Jiale
2016-01-01
The grass carp (Ctenopharyngodon idella) is an important commercial farmed herbivorous fish species in China, but is susceptible to Aeromonas hydrophila infections. In the present study, we performed de novo RNA-Seq sequencing of spleen tissue from specimens of a disease-resistant family, which were given intra-peritoneal injections containing PBS with or without a dose of A. hydrophila. The fish were sampled from the control group at 0 h, and from the experimental group at 4, 8, 12, 24, 48 and 72 h. 122.18 million clean reads were obtained from the normalized cDNA libraries; these were assembled into 425,260 contigs and then 191,795 transcripts. Of those, 52,668 transcripts were annotated with the NCBI Nr database, and 41,347 of the annotated transcripts were assigned into 90 functional groups. 20,569 unigenes were classified into six main categories, including 38 secondary KEGG pathways. 2,992 unigenes were used in the analysis of differentially expressed genes (DEGs). 89 of the putative DEGs were related to the immune system and 41 of them were involved in the complement and coagulation cascades pathway. This study provides insights into the complement and complement-related pathways involved in innate immunity, through expression profile analysis of the genomic resources in C. idella. We conclude that complement and complement-related genes play important roles during defense against A. hydrophila infection. The immune response is activated at 4 h after the bacterial injections, indicating that the complement pathways are activated at the early stage of bacterial infection. The study has improved our understanding of the immune response mechanisms in C. idella to bacterial pathogens. PMID:27383749
Tang, Bin; Liu, Xiao-Jun; Shi, Zuo-Kun; Shen, Qi-Da; Xu, Yan-Xia; Wang, Su; Zhang, Fan; Wang, Shi-Gui
2017-06-01
Harmonia axyridis is an important predatory lady beetle that is a natural enemy of agricultural and forestry pests. In this research, the cold hardiness induced genes and their expression changes in H. axyridis were screened and detected by the way of the transcriptome and qualitative real-time PCR under normal and low temperatures, using high-throughput transcriptome and digital gene-expression-tag technologies. We obtained a 10Gb transcriptome and an 8Mb gene expression tag pool using Illumina deep sequencing technology and RNA-Seq analysis (accession number SRX540102). Of the 46,980 non-redundant unigenes identified, 28,037 (59.7%) were matched to known genes in GenBank, 21,604 (46.0%) in Swiss-Prot, 19,482 (41.5%) in Kyoto Encyclopedia of Genes and Genomes and 13,193 (28.1%) in Gene Ontology databases. Seventy-five percent of the unigene sequences had top matches with gene sequences from Tribolium castaneum. Results indicated that 60 genes regulated the entire cold-acclimation response, and, of these, seven genes were always up-regulated and five genes always down-regulated. Further screening revealed that six cold-resistant genes, E3 ubiquitin-protein ligase, transketolase, trehalase, serine/arginine repetitive matrix protein 2, glycerol kinase and sugar transporter SWEET1-like, play key roles in the response. Expression from a number of the differentially expressed genes was confirmed with quantitative real-time PCR (HaCS_Trans). The paper attempted to identify cold-resistance response genes, and study the potential mechanism by which cold acclimation enhances the insect's cold endurance. Information on these cold-resistance response genes will improve the development of low-temperature storage technology of natural enemy insects for future use in biological control. Copyright © 2017 Elsevier Inc. All rights reserved.
Luo, Hui; Xiao, Shijun; Ye, Hua; Zhang, Zhengshi; Lv, Changhuan; Zheng, Shuming; Wang, Zhiyong; Wang, Xiaoqing
2016-01-01
Schizothorax prenanti (S. prenanti) is mainly distributed in the upstream regions of the Yangtze River and its tributaries in China. This species is indigenous and commercially important. However, in recent years, wild populations and aquacultures have faced the serious challenges of germplasm variation loss and an increased susceptibility to a range of pathogens. Currently, the genetics and immune mechanisms of S. prenanti are unknown, partly due to a lack of genome and transcriptome information. Here, we sought to identify genes related to immune functions and to identify molecular markers to study the function of these genes and for trait mapping. To this end, the transcriptome from spleen tissues of S. prenanti was analyzed and sequenced. Using paired-end reads from the Illumina Hiseq2500 platform, 48,517 transcripts were isolated from the spleen transcriptome. These transcripts could be clustered into 37,785 unigenes with an N50 length of 2,539 bp. The majority of the unigenes (35,653, 94.4%) were successfully annotated using non-redundant nucleotide sequence analysis (nt), and the non-redundant protein (nr), Swiss-Prot, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. KEGG pathway assignment identified more than 500 immune-related genes. Furthermore, 7,545 putative simple sequence repeats (SSRs), 857,535 single nucleotide polymorphisms (SNPs), and 53,481 insertion/deletion (InDels) were detected from the transcriptome. This is the first reported high-throughput transcriptome analysis of S. prenanti, and it provides valuable genetic resources for the investigation of immune mechanisms, conservation of germplasm, and molecular marker-assisted breeding of S. prenanti.
Zhong, Shengping; Mao, Yong; Wang, Jun; Liu, Min; Zhang, Man; Su, Yongquan
2017-11-01
Kuruma shrimp (Marsupenaeus japonicus) is one of the most valuable crustacean species in capture fisheries and mariculture in the Indo-West Pacific. White spot syndrome virus (WSSV) is a highly virulent pathogen which has seriously threatened Kuruma shrimp aquaculture sector. However, little information is available in relation to underlying mechanisms of host-virus interaction in Kuruma shrimp. In this study, we performed a transcriptome analysis from the hepatopancreas of Kuruma shrimp challenged by WSSV, using Illumina-based RNA-Seq. A total of 39,084,942 pair end (PE) reads, including 19,566,190 reads from WSSV-infected group and 19,518,752 reads from non-infected (control) group, were obtained and assembled into 33,215 unigenes with an average length of 503.7 bp and N50 of 601 bp. Approximately 17,000 unigenes were predicted and classified based on homology search, gene ontology, clusters of orthologous groups of proteins, and biological pathway mapping. Differentially expressed genes (DEGs), including 2150 up-regulated and 1931 down-regulated, were found. Among those, 805 DEGs were identified and categorized into 14 groups based on their possible functions. Many genes associated with JAK-STAT signaling pathways, Integrin-mediated signal transduction, Ras signaling pathways, apoptosis and phagocytosis were positively modified after WSSV challenge. The proteolytic cascades including Complement-like activation and Hemolymph coagulations likely participated in antiviral immune response. The transcriptome data from hepatopancreas of Kuruma shrimp under WSSV challenge provided comprehensive information for identifying novel immune related genes in this valuable crustacean species despite the absence of the genome database of crustaceans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transcriptome Profile Analysis from Different Sex Types of Ginkgo biloba L.
Du, Shuhui; Sang, Yalin; Liu, Xiaojing; Xing, Shiyan; Li, Jihong; Tang, Haixia; Sun, Limin
2016-01-01
In plants, sex determination is a comprehensive process of correlated events, which involves genes that are differentially and/or specifically expressed in distinct developmental phases. Exploring gene expression profiles from different sex types will contribute to fully understanding sex determination in plants. In this study, we conducted RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes potentially related to sex determination in this species. Approximately 60 Gb of clean reads were obtained from eight cDNA libraries. De novo assembly of the clean reads generated 108,307 unigenes with an average length of 796 bp. Among these unigenes, 51,953 (47.97%) had at least one significant match with a gene sequence in the public databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs) were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant hormone signal and transduction as well as those encoding DNA methyltransferase were found to be differentially expressed between different sex types. Their potential roles in sex determination of G. biloba were discussed. Pistil-related genes were expressed in male buds while anther-specific genes were identified in female buds, suggesting that dioecism in G. biloba was resulted from the selective arrest of reproductive primordia. High correlation of expression level was found between the RNA-Seq and quantitative real-time PCR results. The transcriptome resources that we generated allowed us to characterize gene expression profiles and examine differential expression profiles, which provided foundations for identifying functional genes associated with sex determination in G. biloba. PMID:27379148
Chen, Hui; Zhao, Mingwen; Shi, Liang; Chen, Mingjie; Wang, Hong; Feng, Zhiyong
2015-01-01
To elucidate the mechanisms of fruit body development in H. marmoreus, a total of 43609521 high-quality RNA-seq reads were obtained from four developmental stages, including the mycelial knot (H-M), mycelial pigmentation (H-V), primordium (H-P) and fruiting body (H-F) stages. These reads were assembled to obtain 40568 unigenes with an average length of 1074 bp. A total of 26800 (66.06%) unigenes were annotated and analyzed with the Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Eukaryotic Orthologous Group (KOG) databases. Differentially expressed genes (DEGs) from the four transcriptomes were analyzed. The KEGG enrichment analysis revealed that the mycelium pigmentation stage was associated with the MAPK, cAMP, and blue light signal transduction pathways. In addition, expression of the two-component system members changed with the transition from H-M to H-V, suggesting that light affected the expression of genes related to fruit body initiation in H. marmoreus. During the transition from H-V to H-P, stress signals associated with MAPK, cAMP and ROS signals might be the most important inducers. Our data suggested that nitrogen starvation might be one of the most important factors in promoting fruit body maturation, and nitrogen metabolism and mTOR signaling pathway were associated with this process. In addition, 30 genes of interest were analyzed by quantitative real-time PCR to verify their expression profiles at the four developmental stages. This study advances our understanding of the molecular mechanism of fruiting body development in H. marmoreus by identifying a wealth of new genes that may play important roles in mushroom morphogenesis. PMID:25837428
Li, De-Zhu; Guo, Zhen-Hua
2012-01-01
Background Transcriptome sequencing can be used to determine gene sequences and transcript abundance in non-model species, and the advent of next-generation sequencing (NGS) technologies has greatly decreased the cost and time required for this process. Transcriptome data are especially desirable in bamboo species, as certain members constitute an economically and culturally important group of mostly semelparous plants with remarkable flowering features, yet little bamboo genomic research has been performed. Here we present, for the first time, extensive sequence and transcript abundance data for the floral transcriptome of a key bamboo species, Dendrocalamus latiflorus, obtained using the Illumina GAII sequencing platform. Our further goal was to identify patterns of gene expression during bamboo flower development. Results Approximately 96 million sequencing reads were generated and assembled de novo, yielding 146,395 high quality unigenes with an average length of 461 bp. Of these, 80,418 were identified as putative homologs of annotated sequences in the public protein databases, of which 290 were associated with the floral transition and 47 were related to flower development. Digital abundance analysis identified 26,529 transcripts differentially enriched between two developmental stages, young flower buds and older developing flowers. Unigenes found at each stage were categorized according to their putative functional categories. These sequence and putative function data comprise a resource for future investigation of the floral transition and flower development in bamboo species. Conclusions Our results present the first broad survey of a bamboo floral transcriptome. Although it will be necessary to validate the functions carried out by these genes, these results represent a starting point for future functional research on D. latiflorus and related species. PMID:22916120
Wang, Ying; Yang, Liandong; Wu, Bo; Song, Zhaobin; He, Shunping
2015-07-10
Triplophysa dalaica, endemic species of Qinghai-Tibetan Plateau, is informative for understanding the genetic basis of adaptation to hypoxic conditions of high altitude habitats. Here, a comprehensive gene repertoire for this plateau fish was generated using the Illumina deep paired-end high-throughput sequencing technology. De novo assembly yielded 145, 256 unigenes with an average length of 1632 bp. Blast searches against GenBank non-redundant database annotated 74,594 (51.4%) unigenes encoding for 30,047 gene descriptions in T. dalaica. Functional annotation and classification of assembled sequences were performed using Gene Ontology (GO), clusters of euKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. After comparison with other fish transcriptomes, including silver carp (Hypophthalmichthys molitrix) and mud loach (Misgurnus anguillicaudatus), 2621 high-quality orthologous gene alignments were constructed among these species. 61 (2.3%) of the genes were identified as having undergone positive selection in the T. dalaica lineage. Within the positively selected genes, 13 genes were involved in hypoxia response, of which 11 were listed in HypoxiaDB. Furthermore, duplicated hif-α (hif-1αA/B and hif-2αA/B), EGLN1 and PPARA candidate genes involved in adaptation to hypoxia were identified in T. dalaica transcriptome. Branch-site model in PAML validated that hif-1αB and hif-2αA genes have undergone positive selection in T.dalaica. Finally, 37,501 simple sequence repeats (SSRs) and 19,497 high-quality single nucleotide polymorphisms (SNPs) were identified in T. dalaica. The identified SSR and SNP markers will facilitate the genetic structure, population geography and ecological studies of Triplophysa fishes. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Xin; Long, Hai; Gao, Ping; Deng, Guangbing; Pan, Zhifen; Liang, Junjun; Tang, Yawei; Tashi, Nyima; Yu, Maoqun
2014-01-01
Background Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. Methodology/Principal Findings In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan) were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. Conclusions/Significance We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1–3;1–4)-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley. PMID:24871534
Windows on the brain: the emerging role of atlases and databases in neuroscience
NASA Technical Reports Server (NTRS)
Van Essen, David C.; VanEssen, D. C. (Principal Investigator)
2002-01-01
Brain atlases and associated databases have great potential as gateways for navigating, accessing, and visualizing a wide range of neuroscientific data. Recent progress towards realizing this potential includes the establishment of probabilistic atlases, surface-based atlases and associated databases, combined with improvements in visualization capabilities and internet access.
Rudd, Stephen
2005-01-01
The public expressed sequence tag collections are continually being enriched with high-quality sequences that represent an ever-expanding range of taxonomically diverse plant species. While these sequence collections provide biased insight into the populations of expressed genes available within individual species and their associated tissues, the information is conceivably of wider relevance in a comparative context. When we consider the available expressed sequence tag (EST) collections of summer 2004, most of the major plant taxonomic clades are at least superficially represented. Investigation of the five million available plant ESTs provides a wealth of information that has applications in modelling the routes of plant genome evolution and the identification of lineage-specific genes and gene families. Over four million ESTs from over 50 distinct plant species have been collated within an EST analysis pipeline called openSputnik. The ESTs were resolved down into approximately one million unigene sequences. These have been annotated using orthology-based annotation transfer from reference plant genomes and using a variety of contemporary bioinformatics methods to assign peptide, structural and functional attributes. The openSputnik database is available at http://sputnik.btk.fi.
Exercises in Anatomy, Connectivity, and Morphology using Neuromorpho.org and the Allen Brain Atlas.
Chu, Philip; Peck, Joshua; Brumberg, Joshua C
2015-01-01
Laboratory instruction of neuroscience is often limited by the lack of physical resources and supplies (e.g., brains specimens, dissection kits, physiological equipment). Online databases can serve as supplements to material labs by providing professionally collected images of brain specimens and their underlying cellular populations with resolution and quality that is extremely difficult to access for strictly pedagogical purposes. We describe a method using two online databases, the Neuromorpho.org and the Allen Brain Atlas (ABA), that freely provide access to data from working brain scientists that can be modified for laboratory instruction/exercises. Neuromorpho.org is the first neuronal morphology database that provides qualitative and quantitative data from reconstructed cells analyzed in published scientific reports. The Neuromorpho.org database contains cross species and multiple neuronal phenotype datasets which allows for comparative examinations. The ABA provides modules that allow students to study the anatomy of the rodent brain, as well as observe the different cellular phenotypes that exist using histochemical labeling. Using these tools in conjunction, advanced students can ask questions about qualitative and quantitative neuronal morphology, then examine the distribution of the same cell types across the entire brain to gain a full appreciation of the magnitude of the brain's complexity.
Niu, Jun; An, Jiyong; Wang, Libing; Fang, Chengliang; Ha, Denglong; Fu, Chengyu; Qiu, Lin; Yu, Haiyan; Zhao, Haiyan; Hou, Xinyu; Xiang, Zheng; Zhou, Sufan; Zhang, Zhixiang; Feng, Xinyi; Lin, Shanzhi
2015-01-01
Siberian apricot (Prunus sibirica L.) has emerged as a novel potential source of biodiesel in China, but the molecular regulatory mechanism of oil accumulation in Siberian apricot seed kernels (SASK) is still unknown at present. To better develop SASK oil as woody biodiesel, it is essential to profile transcriptome and to identify the full repertoire of potential unigenes involved in the formation and accumulation of oil SASK during the different developing stages. We firstly detected the temporal patterns for oil content and fatty acid (FA) compositions of SASK in 7 different developing stages. The best time for obtaining the high quality and quantity of SASK oil was characterized at 60 days after flowering (DAF), and the representative periods (10, 30, 50, 60, and 70 DAF) were selected for transcriptomic analysis. By Illumina/Solexa sequencings, approximately 65 million short reads (average length = 96 bp) were obtained, and then assembled into 124,070 unigenes by Trinity strategy (mean size = 829.62 bp). A total of 3,000, 2,781, 2,620, and 2,675 differentially expressed unigenes were identified at 30, 50, 60, and 70 DAF (10 DAF as the control) by DESeq method, respectively. The relationship between the unigene transcriptional profiles and the oil dynamic patterns in developing SASK was comparatively analyzed, and the specific unigenes encoding some known enzymes and transcription factors involved in acetyl-coenzyme A (acetyl-CoA) formation and oil accumulation were determined. Additionally, 5 key metabolic genes implicated in SASK oil accumulation were experimentally validated by quantitative real-time PCR (qRT-PCR). Our findings could help to construction of oil accumulated pathway and to elucidate the molecular regulatory mechanism of increased oil production in developing SASK. This is the first study of oil temporal patterns, transcriptome sequencings, and differential profiles in developing SASK. All our results will serve as the important foundation to further deeply explore the regulatory mechanism of SASK high-quality oil accumulation, and may also provide some reference for researching the woody biodiesel plants.
Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng
2016-01-01
Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides. PMID:27625674
Li, Qianqian; Liu, Jianguo; Zhang, Litao; Liu, Qian
2014-01-01
Background Algae in the order Trentepohliales have a broad geographic distribution and are generally characterized by the presence of abundant β-carotene. The many monographs published to date have mainly focused on their morphology, taxonomy, phylogeny, distribution and reproduction; molecular studies of this order are still rare. High-throughput RNA sequencing (RNA-Seq) technology provides a powerful and efficient method for transcript analysis and gene discovery in Trentepohlia jolithus. Methods/Principal Findings Illumina HiSeq 2000 sequencing generated 55,007,830 Illumina PE raw reads, which were assembled into 41,328 assembled unigenes. Based on NR annotation, 53.28% of the unigenes (22,018) could be assigned to gene ontology classes with 54 subcategories and 161,451 functional terms. A total of 26,217 (63.44%) assembled unigenes were mapped to 128 KEGG pathways. Furthermore, a set of 5,798 SSRs in 5,206 unigenes and 131,478 putative SNPs were identified. Moreover, the fact that all of the C4 photosynthesis genes exist in T. jolithus suggests a complex carbon acquisition and fixation system. Similarities and differences between T. jolithus and other algae in carotenoid biosynthesis are also described in depth. Conclusions/Significance This is the first broad transcriptome survey for T. jolithus, increasing the amount of molecular data available for the class Ulvophyceae. As well as providing resources for functional genomics studies, the functional genes and putative pathways identified here will contribute to a better understanding of carbon fixation and fatty acid and carotenoid biosynthesis in T. jolithus. PMID:25254555
Niu, Donghong; Wang, Fei; Xie, Shumei; Sun, Fanyue; Wang, Ze; Peng, Maoxiao; Li, Jiale
2016-04-01
The razor clam Sinonovacula constricta is an important commercial species. The deficiency of developmental transcriptomic data is becoming the bottleneck of further researches on the mechanisms underlying settlement and metamorphosis in early development. In this study, de novo transcriptome sequencing was performed for S. constricta at different early developmental stages by using Illumina HiSeq 2000 paired-end (PE) sequencing technology. A total of 112,209,077 PE clean reads were generated. De novo assembly generated 249,795 contigs with an average length of 585 bp. Gene annotation resulted in the identification of 22,870 unigene hits against the NCBI database. Eight unique sequences related to metamorphosis were identified and analyzed using real-time PCR. The razor clam reference transcriptome would provide useful information on early developmental and metamorphosis mechanisms and could be used in the genetic breeding of shellfish.
Transcriptomic Analysis of Flower Blooming in Jasminum sambac through De Novo RNA Sequencing.
Li, Yong-Hua; Zhang, Wei; Li, Yong
2015-06-10
Flower blooming is a critical and complicated plant developmental process in flowering plants. However, insufficient information is available about the complex network that regulates flower blooming in Jasminum sambac. In this study, we used the RNA-Seq platform to analyze the molecular regulation of flower blooming in J. sambac by comparing the transcript profiles at two flower developmental stages: budding and blooming. A total of 4577 differentially-expressed genes (DEGs) were identified between the two floral stages. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the DEGs in the "oxidation-reduction process", "extracellular region", "steroid biosynthesis", "glycosphingolipid biosynthesis", "plant hormone signal transduction" and "pentose and glucuronate interconversions" might be associated with flower development. A total of 103 and 92 unigenes exhibited sequence similarities to the known flower development and floral scent genes from other plants. Among these unigenes, five flower development and 19 floral scent unigenes exhibited at least four-fold differences in expression between the two stages. Our results provide abundant genetic resources for studying the flower blooming mechanisms and molecular breeding of J. sambac.
Wang, Long; Chen, Yun; Wang, Suke; Xue, Huabai; Su, Yanli; Yang, Jian; Li, Xiugen
2018-01-01
Pear ( Pyrus spp.) is a popular fruit that is commercially cultivated in most temperate regions. In fruits, sugar metabolism and accumulation are important factors for fruit organoleptic quality. Post-harvest ripening is a special feature of 'Red Clapp's Favorite'. In this study, transcriptome sequencing based on the Illumina platform generated 23.8 - 35.8 million unigenes of nine cDNA libraries constructed using RNAs from the 'Red Clapp's Favorite' pear variety with different treatments, in which 2629 new genes were discovered, and 2121 of them were annotated. A total of 2146 DEGs, 3650 DEGs, 1830 DEGs from each comparison were assembled. Moreover, the gene expression patterns of 8 unigenes related to sugar metabolism revealed by qPCR. The main constituents of soluble sugars were fructose and glucose after pear fruit post-harvest ripening, and five unigenes involved in sugar metabolism were discovered. Our study not only provides a large-scale assessment of transcriptome resources of 'Red Clapp's Favorite' but also lays the foundation for further research into genes correlated with sugar metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laramore, G.E.; Griffin, B.R.; Spence, A.
The purpose of this work is to establish and maintain a database for patients from the United States who have received BNCT in Japan for malignant gliomas of the brain. This database will serve as a resource for the DOE to aid in decisions relating to BNCT research in the United States, as well as assisting the design and implementation of clinical trials of BNCT for brain cancer patients in this country. The database will also serve as an information resource for patients with brain tumors and their families who are considering this form of therapy.
2011-01-01
Background Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. Results We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development. Conclusion We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology. PMID:21936920
Guo, Shaogui; Liu, Jingan; Zheng, Yi; Huang, Mingyun; Zhang, Haiying; Gong, Guoyi; He, Hongju; Ren, Yi; Zhong, Silin; Fei, Zhangjun; Xu, Yong
2011-09-21
Cultivated watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues. We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. De novo assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development. We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology.
Jeena, Gajendra Singh; Fatima, Shahnoor; Tripathi, Pragya; Upadhyay, Swati; Shukla, Rakesh Kumar
2017-06-28
Bacopa monnieri commonly known as Brahmi is utilized in Ayurveda to improve memory and many other human health benefits. Bacosides enriched standardized extract of Bacopa monnieri is being marketed as a memory enhancing agent. In spite of its well known pharmacological properties it is not much studied in terms of transcripts involved in biosynthetic pathway and its regulation that controls the secondary metabolic pathway in this plant. The aim of this study was to identify the potential transcripts and provide a framework of identified transcripts involved in bacosides production through transcriptome assembly. We performed comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri in two independent biological replicate and obtained 22.48 million and 22.0 million high quality processed reads in shoot and root respectively. After de novo assembly and quantitative assessment total 26,412 genes got annotated in root and 18,500 genes annotated in shoot sample. Quality of raw reads was determined by using SeqQC-V2.2. Assembled sequences were annotated using BLASTX against public database such as NR or UniProt. Searching against the KEGG pathway database indicated that 37,918 unigenes from root and 35,130 unigenes from shoot were mapped to 133 KEGG pathways. Based on the DGE data we found that most of the transcript related to CYP450s and UDP-glucosyltransferases were specifically upregulated in shoot tissue as compared to root tissue. Finally, we have selected 43 transcripts related to secondary metabolism including transcription factor families which are differentially expressed in shoot and root tissues were validated by qRT-PCR and their expression level were monitored after MeJA treatment and wounding for 1, 3 and 5 h. This study not only represents the first de novo transcriptome analysis of Bacopa monnieri but also provides information about the identification, expression and differential tissues specific distribution of transcripts related to triterpenoid sapogenin which is one of the most important pharmacologically active secondary metabolite present in Bacopa monnieri. The identified transcripts in this study will establish a foundation for future studies related to carrying out the metabolic engineering for increasing the bacosides biosynthesis and its regulation for human health benefits.
Wu, Shuanghua; Lei, Jianjun; Chen, Guoju; Chen, Hancai; Cao, Bihao; Chen, Changming
2017-01-01
Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues. PMID:28228764
An, Jing; Shen, Xuefeng; Ma, Qibin; Yang, Cunyi; Liu, Simin; Chen, Yong
2014-01-01
Goosegrass (Eleusine indica L.), a serious annual weed in the world, has evolved resistance to several herbicides including paraquat, a non-selective herbicide. The mechanism of paraquat resistance in weeds is only partially understood. To further study the molecular mechanism underlying paraquat resistance in goosegrass, we performed transcriptome analysis of susceptible and resistant biotypes of goosegrass with or without paraquat treatment. The RNA-seq libraries generated 194,716,560 valid reads with an average length of 91.29 bp. De novo assembly analysis produced 158,461 transcripts with an average length of 1153.74 bp and 100,742 unigenes with an average length of 712.79 bp. Among these, 25,926 unigenes were assigned to 65 GO terms that contained three main categories. A total of 13,809 unigenes with 1,208 enzyme commission numbers were assigned to 314 predicted KEGG metabolic pathways, and 12,719 unigenes were categorized into 25 KOG classifications. Furthermore, our results revealed that 53 genes related to reactive oxygen species scavenging, 10 genes related to polyamines and 18 genes related to transport were differentially expressed in paraquat treatment experiments. The genes related to polyamines and transport are likely potential candidate genes that could be further investigated to confirm their roles in paraquat resistance of goosegrass. This is the first large-scale transcriptome sequencing of E. indica using the Illumina platform. Potential genes involved in paraquat resistance were identified from the assembled sequences. The transcriptome data may serve as a reference for further analysis of gene expression and functional genomics studies, and will facilitate the study of paraquat resistance at the molecular level in goosegrass.
An, Jing; Shen, Xuefeng; Ma, Qibin; Yang, Cunyi; Liu, Simin; Chen, Yong
2014-01-01
Background Goosegrass (Eleusine indica L.), a serious annual weed in the world, has evolved resistance to several herbicides including paraquat, a non-selective herbicide. The mechanism of paraquat resistance in weeds is only partially understood. To further study the molecular mechanism underlying paraquat resistance in goosegrass, we performed transcriptome analysis of susceptible and resistant biotypes of goosegrass with or without paraquat treatment. Results The RNA-seq libraries generated 194,716,560 valid reads with an average length of 91.29 bp. De novo assembly analysis produced 158,461 transcripts with an average length of 1153.74 bp and 100,742 unigenes with an average length of 712.79 bp. Among these, 25,926 unigenes were assigned to 65 GO terms that contained three main categories. A total of 13,809 unigenes with 1,208 enzyme commission numbers were assigned to 314 predicted KEGG metabolic pathways, and 12,719 unigenes were categorized into 25 KOG classifications. Furthermore, our results revealed that 53 genes related to reactive oxygen species scavenging, 10 genes related to polyamines and 18 genes related to transport were differentially expressed in paraquat treatment experiments. The genes related to polyamines and transport are likely potential candidate genes that could be further investigated to confirm their roles in paraquat resistance of goosegrass. Conclusion This is the first large-scale transcriptome sequencing of E. indica using the Illumina platform. Potential genes involved in paraquat resistance were identified from the assembled sequences. The transcriptome data may serve as a reference for further analysis of gene expression and functional genomics studies, and will facilitate the study of paraquat resistance at the molecular level in goosegrass. PMID:24927422
Jiang, Qiang; Yang, Chun Hong; Zhang, Yan; Sun, Yan; Li, Rong Ling; Wang, Chang Fa; Zhong, Ji Feng; Huang, Jin Ming
2016-01-01
Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine–cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5′ splicing and alternative 3ʹ splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis. PMID:27459697
Fukushima, Atsushi; Nakamura, Michimi; Suzuki, Hideyuki; Yamazaki, Mami; Knoch, Eva; Mori, Tetsuya; Umemoto, Naoyuki; Morita, Masaki; Hirai, Go; Sodeoka, Mikiko; Saito, Kazuki
2016-01-01
The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include P. alkekengi (Chinese-lantern plant, hôzuki in Japanese) used for medicinal and for decorative purposes, and P. peruviana, also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana. All unigenes were annotated with gene ontology (GO), Enzyme Commission (EC) numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana. To measure the variability of the withanolides including physalins and provide insights into their chemical diversity in Physalis, we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at five different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species. PMID:28066454
Fukushima, Atsushi; Nakamura, Michimi; Suzuki, Hideyuki; Yamazaki, Mami; Knoch, Eva; Mori, Tetsuya; Umemoto, Naoyuki; Morita, Masaki; Hirai, Go; Sodeoka, Mikiko; Saito, Kazuki
2016-01-01
The genus Physalis in the Solanaceae family contains several species of benefit to humans. Examples include P. alkekengi (Chinese-lantern plant, hôzuki in Japanese) used for medicinal and for decorative purposes, and P. peruviana , also known as Cape gooseberry, which bears an edible, vitamin-rich fruit. Members of the Physalis genus are a valuable resource for phytochemicals needed for the development of medicines and functional foods. To fully utilize the potential of these phytochemicals we need to understand their biosynthesis, and for this we need genomic data, especially comprehensive transcriptome datasets for gene discovery. We report the de novo assembly of the transcriptome from leaves of P. alkekengi and P. peruviana using Illumina RNA-seq technologies. We identified 75,221 unigenes in P. alkekengi and 54,513 in P. peruviana . All unigenes were annotated with gene ontology (GO), Enzyme Commission (EC) numbers, and pathway information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). We classified unigenes encoding enzyme candidates putatively involved in the secondary metabolism and identified more than one unigenes for each step in terpenoid backbone- and steroid biosynthesis in P. alkekengi and P. peruviana . To measure the variability of the withanolides including physalins and provide insights into their chemical diversity in Physalis , we also analyzed the metabolite content in leaves of P. alkekengi and P. peruviana at five different developmental stages by liquid chromatography-mass spectrometry. We discuss that comprehensive transcriptome approaches within a family can yield a clue for gene discovery in Physalis and provide insights into their complex chemical diversity. The transcriptome information we submit here will serve as an important public resource for further studies of the specialized metabolism of Physalis species.
Analysis and Exchange of Multimedia Laboratory Data Using the Brain Database
Wertheim, Steven L.
1990-01-01
Two principal goals of the Brain Database are: 1) to support laboratory data collection and analysis of multimedia information about the nervous system and 2) to support exchange of these data among researchers and clinicians who may be physically distant. This has been achieved by an implementation of experimental and clinical records within a relational database. An Image Series Editor has been created that provides a graphical interface to these data for the purposes of annotation, quantification and other analyses. Cooperating laboratories each maintain their own copies of the Brain Database to which they may add private data. Although the data in a given experimental or patient record will be distributed among many tables and external image files, the user can treat each record as a unit that can be extracted from the local database and sent to a distant colleague.
Transcriptome Analysis and Development of SSR Molecular Markers in Glycyrrhiza uralensis Fisch.
Liu, Yaling; Zhang, Pengfei; Song, Meiling; Hou, Junling; Qing, Mei; Wang, Wenquan; Liu, Chunsheng
2015-01-01
Licorice is an important traditional Chinese medicine with clinical and industrial applications. Genetic resources of licorice are insufficient for analysis of molecular biology and genetic functions; as such, transcriptome sequencing must be conducted for functional characterization and development of molecular markers. In this study, transcriptome sequencing on the Illumina HiSeq 2500 sequencing platform generated a total of 5.41 Gb clean data. De novo assembly yielded a total of 46,641 unigenes. Comparison analysis using BLAST showed that the annotations of 29,614 unigenes were conserved. Further study revealed 773 genes related to biosynthesis of secondary metabolites of licorice, 40 genes involved in biosynthesis of the terpenoid backbone, and 16 genes associated with biosynthesis of glycyrrhizic acid. Analysis of unigenes larger than 1 Kb with a length of 11,702 nt presented 7,032 simple sequence repeats (SSR). Sixty-four of 69 randomly designed and synthesized SSR pairs were successfully amplified, 33 pairs of primers were polymorphism in in Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat., Glycyrrhiza glabra L. and Glycyrrhiza pallidiflora Maxim. This study not only presents the molecular biology data of licorice but also provides a basis for genetic diversity research and molecular marker-assisted breeding of licorice. PMID:26571372
De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing.
Zhong, Mintao; Liu, Ben; Wang, Xiaoli; Liu, Lei; Lun, Yongzhi; Li, Xingyun; Ning, Anhong; Cao, Jing; Huang, Min
2013-02-01
Lentinula edodes, has been utilized as food, as well as, in popular medicine, moreover, its extract isolated from its mycelium and fruiting body have shown several therapeutic properties. Yet little is understood about its genes involved in these properties, and the absence of L.edodes genomes has been a barrier to the development of functional genomics research. However, high throughput sequencing technologies are now being widely applied to non-model species. To facilitate research on L.edodes, we leveraged Solexa sequencing technology in de novo assembly of L.edodes C(91-3) transcriptome. In a single run, we produced more than 57 million sequencing reads. These reads were assembled into 28,923 unigene sequences (mean size=689bp) including 18,120 unigenes with coding sequence (CDS). Based on similarity search with known proteins, assembled unigene sequences were annotated with gene descriptions, gene ontology (GO) and clusters of orthologous group (COG) terms. Our data provides the first comprehensive sequence resource available for functional genomics studies in L.edodes, and demonstrates the utility of Illumina/Solexa sequencing for de novo transcriptome characterization and gene discovery in a non-model mushroom. Copyright © 2012 Elsevier Inc. All rights reserved.
Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen
2015-01-01
Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis.
2013-01-01
Background Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms responsible for floral development in this orchid. Moreover, genome references for entire transcriptome sequences do not currently exist for C. sinense. Thus, transcriptome and expression profiling data for this species are needed as an important resource to identify genes and to better understand the biological mechanisms of floral development in C. sinense. Results In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptome analysis assembles gene-related information related to vegetative and reproductive growth of C. sinense. Illumina sequencing generated 54,248,006 high quality reads that were assembled into 83,580 unigenes with an average sequence length of 612 base pairs, including 13,315 clusters and 70,265 singletons. A total of 41,687 (49.88%) unique sequences were annotated, 23,092 of which were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Furthermore, 120 flowering-associated unigenes, 73 MADS-box unigenes and 28 CONSTANS-LIKE (COL) unigenes were identified from our collection. In addition, three digital gene expression (DGE) libraries were constructed for the vegetative phase (VP), floral differentiation phase (FDP) and reproductive phase (RP). The specific expression of many genes in the three development phases was also identified. 32 genes among three sub-libraries with high differential expression were selected as candidates connected with flower development. Conclusion RNA-seq and DGE profiling data provided comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms of floral development at three development phases of C. sinense. This data could be used as an important resource for investigating the genetics of the flowering pathway and various biological mechanisms in this orchid. PMID:23617896
Huang, Xianzhong; Yang, Lifei; Jin, Yuhuan; Lin, Jun; Liu, Fang
2017-01-01
Arabidopsis pumila is an ephemeral plant, and a close relative of the model plant Arabidopsis thaliana , but it possesses higher photosynthetic efficiency, higher propagation rate, and higher salinity tolerance compared to those A. thaliana , thus providing a candidate plant system for gene mining for environmental adaption and salt tolerance. However, A. pumila is an under-explored resource for understanding the genetic mechanisms underlying abiotic stress adaptation. To improve our understanding of the molecular and genetic mechanisms of salt stress adaptation, more than 19,900 clones randomly selected from a cDNA library constructed previously from leaf tissue exposed to high-salinity shock were sequenced. A total of 16,014 high-quality expressed sequence tags (ESTs) were generated, which have been deposited in the dbEST GenBank under accession numbers JZ932319 to JZ948332. Clustering and assembly of these ESTs resulted in the identification of 8,835 unique sequences, consisting of 2,469 contigs and 6,366 singletons. The blastx results revealed 8,011 unigenes with significant similarity to known genes, while only 425 unigenes remained uncharacterized. Functional classification demonstrated an abundance of unigenes involved in binding, catalytic, structural or transporter activities, and in pathways of energy, carbohydrate, amino acid, or lipid metabolism. At least seven main classes of genes were related to salt-tolerance among the 8,835 unigenes. Many previously reported salt tolerance genes were also manifested in this library, for example VP1, H + -ATPase, NHX1, SOS2, SOS3, NAC, MYB, ERF, LEA, P5CS1 . In addition, 251 transcription factors were identified from the library, classified into 42 families. Lastly, changes in expression of the 12 most abundant unigenes, 12 transcription factor genes, and 19 stress-related genes in the first 24 h of exposure to high-salinity stress conditions were monitored by qRT-PCR. The large-scale EST library obtained in this study provides first-hand information on gene sequences expressed in young leaves of A. pumila exposed to salt shock. The rapid discovery of known or unknown genes related to salinity stress response in A. pumila will facilitate the understanding of complex adaptive mechanisms for ephemerals.
Zhang, Jianxia; Wu, Kunlin; Zeng, Songjun; Teixeira da Silva, Jaime A; Zhao, Xiaolan; Tian, Chang-En; Xia, Haoqiang; Duan, Jun
2013-04-24
Cymbidium sinense belongs to the Orchidaceae, which is one of the most abundant angiosperm families. C. sinense, a high-grade traditional potted flower, is most prevalent in China and some Southeast Asian countries. The control of flowering time is a major bottleneck in the industrialized development of C. sinense. Little is known about the mechanisms responsible for floral development in this orchid. Moreover, genome references for entire transcriptome sequences do not currently exist for C. sinense. Thus, transcriptome and expression profiling data for this species are needed as an important resource to identify genes and to better understand the biological mechanisms of floral development in C. sinense. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. Transcriptome analysis assembles gene-related information related to vegetative and reproductive growth of C. sinense. Illumina sequencing generated 54,248,006 high quality reads that were assembled into 83,580 unigenes with an average sequence length of 612 base pairs, including 13,315 clusters and 70,265 singletons. A total of 41,687 (49.88%) unique sequences were annotated, 23,092 of which were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with metabolic and cellular processes, cell and cell parts, catalytic activity and binding. Furthermore, 120 flowering-associated unigenes, 73 MADS-box unigenes and 28 CONSTANS-LIKE (COL) unigenes were identified from our collection. In addition, three digital gene expression (DGE) libraries were constructed for the vegetative phase (VP), floral differentiation phase (FDP) and reproductive phase (RP). The specific expression of many genes in the three development phases was also identified. 32 genes among three sub-libraries with high differential expression were selected as candidates connected with flower development. RNA-seq and DGE profiling data provided comprehensive gene expression information at the transcriptional level that could facilitate our understanding of the molecular mechanisms of floral development at three development phases of C. sinense. This data could be used as an important resource for investigating the genetics of the flowering pathway and various biological mechanisms in this orchid.
2011-01-01
Background Cucurbita pepo belongs to the Cucurbitaceae family. The "Zucchini" types rank among the highest-valued vegetables worldwide, and other C. pepo and related Cucurbita spp., are food staples and rich sources of fat and vitamins. A broad range of genomic tools are today available for other cucurbits that have become models for the study of different metabolic processes. However, these tools are still lacking in the Cucurbita genus, thus limiting gene discovery and the process of breeding. Results We report the generation of a total of 512,751 C. pepo EST sequences, using 454 GS FLX Titanium technology. ESTs were obtained from normalized cDNA libraries (root, leaves, and flower tissue) prepared using two varieties with contrasting phenotypes for plant, flowering and fruit traits, representing the two C. pepo subspecies: subsp. pepo cv. Zucchini and subsp. ovifera cv Scallop. De novo assembling was performed to generate a collection of 49,610 Cucurbita unigenes (average length of 626 bp) that represent the first transcriptome of the species. Over 60% of the unigenes were functionally annotated and assigned to one or more Gene Ontology terms. The distributions of Cucurbita unigenes followed similar tendencies than that reported for Arabidopsis or melon, suggesting that the dataset may represent the whole Cucurbita transcriptome. About 34% unigenes were detected to have known orthologs of Arabidopsis or melon, including genes potentially involved in disease resistance, flowering and fruit quality. Furthermore, a set of 1,882 unigenes with SSR motifs and 9,043 high confidence SNPs between Zucchini and Scallop were identified, of which 3,538 SNPs met criteria for use with high throughput genotyping platforms, and 144 could be detected as CAPS. A set of markers were validated, being 80% of them polymorphic in a set of variable C. pepo and C. moschata accessions. Conclusion We present the first broad survey of gene sequences and allelic variation in C. pepo, where limited prior genomic information existed. The transcriptome provides an invaluable new tool for biological research. The developed molecular markers are the basis for future genetic linkage and quantitative trait loci analysis, and will be essential to speed up the process of breeding new and better adapted squash varieties. PMID:21310031
HypoxiaDB: a database of hypoxia-regulated proteins
Khurana, Pankaj; Sugadev, Ragumani; Jain, Jaspreet; Singh, Shashi Bala
2013-01-01
There has been intense interest in the cellular response to hypoxia, and a large number of differentially expressed proteins have been identified through various high-throughput experiments. These valuable data are scattered, and there have been no systematic attempts to document the various proteins regulated by hypoxia. Compilation, curation and annotation of these data are important in deciphering their role in hypoxia and hypoxia-related disorders. Therefore, we have compiled HypoxiaDB, a database of hypoxia-regulated proteins. It is a comprehensive, manually-curated, non-redundant catalog of proteins whose expressions are shown experimentally to be altered at different levels and durations of hypoxia. The database currently contains 72 000 manually curated entries taken on 3500 proteins extracted from 73 peer-reviewed publications selected from PubMed. HypoxiaDB is distinctive from other generalized databases: (i) it compiles tissue-specific protein expression changes under different levels and duration of hypoxia. Also, it provides manually curated literature references to support the inclusion of the protein in the database and establish its association with hypoxia. (ii) For each protein, HypoxiaDB integrates data on gene ontology, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, protein–protein interactions, protein family (Pfam), OMIM (Online Mendelian Inheritance in Man), PDB (Protein Data Bank) structures and homology to other sequenced genomes. (iii) It also provides pre-compiled information on hypoxia-proteins, which otherwise requires tedious computational analysis. This includes information like chromosomal location, identifiers like Entrez, HGNC, Unigene, Uniprot, Ensembl, Vega, GI numbers and Genbank accession numbers associated with the protein. These are further cross-linked to respective public databases augmenting HypoxiaDB to the external repositories. (iv) In addition, HypoxiaDB provides an online sequence-similarity search tool for users to compare their protein sequences with HypoxiaDB protein database. We hope that HypoxiaDB will enrich our knowledge about hypoxia-related biology and eventually will lead to the development of novel hypothesis and advancements in diagnostic and therapeutic activities. HypoxiaDB is freely accessible for academic and non-profit users via http://www.hypoxiadb.com. Database URL: http://www.hypoxiadb.com PMID:24178989
miBLAST: scalable evaluation of a batch of nucleotide sequence queries with BLAST
Kim, You Jung; Boyd, Andrew; Athey, Brian D.; Patel, Jignesh M.
2005-01-01
A common task in many modern bioinformatics applications is to match a set of nucleotide query sequences against a large sequence dataset. Exis-ting tools, such as BLAST, are designed to evaluate a single query at a time and can be unacceptably slow when the number of sequences in the query set is large. In this paper, we present a new algorithm, called miBLAST, that evaluates such batch workloads efficiently. At the core, miBLAST employs a q-gram filtering and an index join for efficiently detecting similarity between the query sequences and database sequences. This set-oriented technique, which indexes both the query and the database sets, results in substantial performance improvements over existing methods. Our results show that miBLAST is significantly faster than BLAST in many cases. For example, miBLAST aligned 247 965 oligonucleotide sequences in the Affymetrix probe set against the Human UniGene in 1.26 days, compared with 27.27 days with BLAST (an improvement by a factor of 22). The relative performance of miBLAST increases for larger word sizes; however, it decreases for longer queries. miBLAST employs the familiar BLAST statistical model and output format, guaranteeing the same accuracy as BLAST and facilitating a seamless transition for existing BLAST users. PMID:16061938
DBMap: a TreeMap-based framework for data navigation and visualization of brain research registry
NASA Astrophysics Data System (ADS)
Zhang, Ming; Zhang, Hong; Tjandra, Donny; Wong, Stephen T. C.
2003-05-01
The purpose of this study is to investigate and apply a new, intuitive and space-conscious visualization framework to facilitate efficient data presentation and exploration of large-scale data warehouses. We have implemented the DBMap framework for the UCSF Brain Research Registry. Such a novel utility would facilitate medical specialists and clinical researchers in better exploring and evaluating a number of attributes organized in the brain research registry. The current UCSF Brain Research Registry consists of a federation of disease-oriented database modules, including Epilepsy, Brain Tumor, Intracerebral Hemorrphage, and CJD (Creuzfeld-Jacob disease). These database modules organize large volumes of imaging and non-imaging data to support Web-based clinical research. While the data warehouse supports general information retrieval and analysis, there lacks an effective way to visualize and present the voluminous and complex data stored. This study investigates whether the TreeMap algorithm can be adapted to display and navigate categorical biomedical data warehouse or registry. TreeMap is a space constrained graphical representation of large hierarchical data sets, mapped to a matrix of rectangles, whose size and color represent interested database fields. It allows the display of a large amount of numerical and categorical information in limited real estate of computer screen with an intuitive user interface. The paper will describe, DBMap, the proposed new data visualization framework for large biomedical databases. Built upon XML, Java and JDBC technologies, the prototype system includes a set of software modules that reside in the application server tier and provide interface to backend database tier and front-end Web tier of the brain registry.
2010-01-01
Background Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates an improved linkage between genes, enzymes, and pathway components. The proteome database represents the most relevant alkaloid-producing enzymes, compared with the much deeper and more complete transcriptome library. The transcript database contained full-length mRNAs encoding most alkaloid biosynthetic enzymes, which is a key requirement for the functional characterization of novel gene candidates. PMID:21083930
Vaccarino, Anthony L; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M; Stuss, Donald T; Theriault, Elizabeth; Evans, Kenneth R
2018-01-01
Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute's "Brain-CODE" is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care.
Vaccarino, Anthony L.; Dharsee, Moyez; Strother, Stephen; Aldridge, Don; Arnott, Stephen R.; Behan, Brendan; Dafnas, Costas; Dong, Fan; Edgecombe, Kenneth; El-Badrawi, Rachad; El-Emam, Khaled; Gee, Tom; Evans, Susan G.; Javadi, Mojib; Jeanson, Francis; Lefaivre, Shannon; Lutz, Kristen; MacPhee, F. Chris; Mikkelsen, Jordan; Mikkelsen, Tom; Mirotchnick, Nicholas; Schmah, Tanya; Studzinski, Christa M.; Stuss, Donald T.; Theriault, Elizabeth; Evans, Kenneth R.
2018-01-01
Historically, research databases have existed in isolation with no practical avenue for sharing or pooling medical data into high dimensional datasets that can be efficiently compared across databases. To address this challenge, the Ontario Brain Institute’s “Brain-CODE” is a large-scale neuroinformatics platform designed to support the collection, storage, federation, sharing and analysis of different data types across several brain disorders, as a means to understand common underlying causes of brain dysfunction and develop novel approaches to treatment. By providing researchers access to aggregated datasets that they otherwise could not obtain independently, Brain-CODE incentivizes data sharing and collaboration and facilitates analyses both within and across disorders and across a wide array of data types, including clinical, neuroimaging and molecular. The Brain-CODE system architecture provides the technical capabilities to support (1) consolidated data management to securely capture, monitor and curate data, (2) privacy and security best-practices, and (3) interoperable and extensible systems that support harmonization, integration, and query across diverse data modalities and linkages to external data sources. Brain-CODE currently supports collaborative research networks focused on various brain conditions, including neurodevelopmental disorders, cerebral palsy, neurodegenerative diseases, epilepsy and mood disorders. These programs are generating large volumes of data that are integrated within Brain-CODE to support scientific inquiry and analytics across multiple brain disorders and modalities. By providing access to very large datasets on patients with different brain disorders and enabling linkages to provincial, national and international databases, Brain-CODE will help to generate new hypotheses about the biological bases of brain disorders, and ultimately promote new discoveries to improve patient care. PMID:29875648
Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing
Jin, Hangxia; Dong, Dekun; Yang, Qinghua; Zhu, Danhua
2016-01-01
Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted. PMID:26930632
Bian, Hai-Xu; Ma, Hong-Fang; Zheng, Xi-Xi; Peng, Ming-Hui; Li, Yu-Ping; Su, Jun-Fang; Wang, Huan; Li, Qun; Xia, Run-Xi; Liu, Yan-Qun; Jiang, Xing-Fu
2017-05-24
The oriental armyworm Mythimna separate is an economically important insect with a wide distribution and strong migratory activity. However, knowledge about the molecular mechanisms regulating the physiological and behavioural responses of the oriental armyworm is scarce. In the present study, we took a transcriptomic approach to characterize the gene network in the adult head of M. separate. The sequencing and de novo assembly yielded 63,499 transcripts, which were further assembled into 46,459 unigenes with an N50 of 1,153 bp. In the head transcriptome data, unigenes involved in the 'signal transduction mechanism' are the most abundant. In total, 937 signal transduction unigenes were assigned to 22 signalling pathways. The circadian clock, melanin synthesis, and non-receptor protein of olfactory gene families were then identified, and phylogenetic analyses were performed with these M. separate genes, the model insect Bombyx mori and other insects. Furthermore, 1,372 simple sequence repeats of 2-6 bp in unit length were identified. The transcriptome data represent a comprehensive molecular resource for the adult head of M. separate, and these identified genes can be valid targets for further gene function research to address the molecular mechanisms regulating the migratory and olfaction genes of the oriental armyworm.
Tran, Hung Bao; Lee, Yen-Hung; Guo, Jiin-Ju; Cheng, Ta-Chih
2018-06-01
Cobia, Rachycentron canadum, one of the most important aquatic species in Taiwan, has suffered heavy losses from Photobacterium damselae subsp. piscicida, which is the causal agent of photobacteriosis. In this study, the transcriptomic profiles of livers and spleens from Pdp-infected and non-infected cobia were obtained for the first time by Illumina-based paired-end sequencing method with a focus on immune-related genes. In total, 164,882 high quality unigenes were obtained in four libraries. Following Pdp infection, 7302 differentially expressed unigenes from liver and 8600 differentially expressed unigenes from spleen were identified. Twenty-seven of the differently expressed genes were further validated by RT-qPCR (average correlation coefficient 0.839, p-value <0.01). Results indicated a negative regulation of complement components and increased expression of genes involved in MyD88-independent pathway. Moreover, a remarkable finding was the increased expression of IL-10, implying an inadequacy of immune responses. This study not only characterized several putative immune pathways, but also provided a better understanding of the molecular responses to photobacteriosis in cobia. Copyright © 2018 Elsevier Ltd. All rights reserved.
Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco
2015-01-01
Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. PMID:25324298
Wang, Yonglin; Xiong, Dianguang; Jiang, Ning; Li, Xuewu; Yang, Qiqing; Tian, Chengming
2016-01-01
Arceuthobium (dwarf mistletoes) are hemiparasites that may cause great damage to infected trees belonging to Pinaceae and Cupressaceae. Currently, dwarf mistletoe control involves the use of the ethylene-producing product ethephon (ETH), which acts by inducing dwarf mistletoe shoot abscission. However, the process by which ETH functions is mostly unknown. Therefore, the transcriptome of the ETH-exposed plants was compared to non-exposed controls to identify genes associated with the response to ethephon. In this study, the reference transcriptome was contained 120,316 annotated unigenes, with a total of 21,764 ETH-responsive differentially expressed unigenes were identified. These ETH-associated genes clustered into 20 distinctly expressed pattern groups, providing a view of molecular events with good spatial and temporal resolution. As expected, the greatest number of unigenes with changed expression were observed at the onset of abscission, suggesting induction by ethylene. ETH also affected genes associated with shoot abscission processes including hormone biosynthesis and signaling, cell wall hydrolysis and modification, lipid transference, and more. The comprehensive transcriptome data set provides a wealth of genomic resources for dwarf mistletoe communities and contributes to a better understanding of the molecular regulatory mechanism of ethylene-caused shoots abscission. PMID:27941945
Transcriptomes That Confer to Plant Defense against Powdery Mildew Disease in Lagerstroemia indica
Shi, Weibing; Rinehart, Timothy
2015-01-01
Transcriptome analysis was conducted in two popular Lagerstroemia cultivars: “Natchez” (NAT), a white flower and powdery mildew resistant interspecific hybrid and “Carolina Beauty” (CAB), a red flower and powdery mildew susceptible L. indica cultivar. RNA-seq reads were generated from Erysiphe australiana infected leaves and de novo assembled. A total of 37,035 unigenes from 224,443 assembled contigs in both genotypes were identified. Approximately 85% of these unigenes have known function. Of them, 475 KEGG genes were found significantly different between the two genotypes. Five of the top ten differentially expressed genes (DEGs) involved in the biosynthesis of secondary metabolites (plant defense) and four in flavonoid biosynthesis pathway (antioxidant activities or flower coloration). Furthermore, 5 of the 12 assembled unigenes in benzoxazinoid biosynthesis and 7 of 11 in flavonoid biosynthesis showed higher transcript abundance in NAT. The relative abundance of transcripts for 16 candidate DEGs (9 from CAB and 7 from NAT) detected by qRT-PCR showed general agreement with the abundances of the assembled transcripts in NAT. This study provided the first transcriptome analyses in L. indica. The differential transcript abundance between two genotypes indicates that it is possible to identify candidate genes that are associated with the plant defenses or flower coloration. PMID:26247009
Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng
2014-01-01
Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.
Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng
2014-01-01
Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research. PMID:25268141
Zhou, Xiaoxu; Wang, Hongdi; Cui, Jun; Qiu, Xuemei; Chang, Yaqing; Wang, Xiuli
2016-12-01
Tube foot as one of the ambulacral appendages types in Aspidochirote holothurioids, is known for their functions in locomotion, feeding, chemoreception, light sensitivity and respiration. In this study, we explored the characteristic of transcriptome in the tube foot of sea cucumber (Apostichopus japonicus). Our results showed that among 390 unigenes which specifically expressed in the tube foot, 190 of them were annotated. Based on the assembly transcriptome, we found 219,860 SNPs from 34,749 unigenes, 97,683, 53,624, 27,767 and 40,786 were located in CDSs, 5'-UTRs, 3'-UTRs and non-CDS separately. Furthermore, 12,114 SSRs were detected from 7394 unigenes. Target genes of four specifically expressed miRNAs (miR-29a, miR-29b, miR-278-3p and miR-2005) in tube foot were also predicted based on the transcriptome, which contain immune-related factors (MBL, VLRA, AjC3, MyD88, CFB), skin pigmentation (MITF), candidate regeneration factor (TRP) and holothurians autolysis-related factor (CL). These results develop a relatively large number of molecular markers and transcriptome resources, and will provide a foundation for further analyses on the function and molecular mechanisms underlying A. japonicas tube foot. Copyright © 2016 Elsevier Inc. All rights reserved.
Transcriptome and Gene Expression Analysis of the Rice Leaf Folder, Cnaphalocrosis medinalis
Li, Shang-Wei; Yang, Hong; Liu, Yue-Feng; Liao, Qi-Rong; Du, Juan; Jin, Dao-Chao
2012-01-01
Background The rice leaf folder (RLF), Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae), is one of the most destructive pests affecting rice in Asia. Although several studies have been performed on the ecological and physiological aspects of this species, the molecular mechanisms underlying its developmental regulation, behavior, and insecticide resistance remain largely unknown. Presently, there is a lack of genomic information for RLF; therefore, studies aimed at profiling the RLF transcriptome expression would provide a better understanding of its biological function at the molecular level. Principal Findings De novo assembly of the RLF transcriptome was performed via the short read sequencing technology (Illumina). In a single run, we produced more than 23 million sequencing reads that were assembled into 44,941 unigenes (mean size = 474 bp) by Trinity. Through a similarity search, 25,281 (56.82%) unigenes matched known proteins in the NCBI Nr protein database. The transcriptome sequences were annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and KEGG orthology (KO). Additionally, we profiled gene expression during RLF development using a tag-based digital gene expression (DGE) system. Five DGE libraries were constructed, and variations in gene expression were compared between collected samples: eggs vs. 3rd instar larvae, 3rd instar larvae vs. pupae, pupae vs. adults. The results demonstrated that thousands of genes were significantly differentially expressed during various developmental stages. A number of the differentially expressed genes were confirmed by quantitative real-time PCR (qRT-PCR). Conclusions The RLF transcriptome and DGE data provide a comprehensive and global gene expression profile that would further promote our understanding of the molecular mechanisms underlying various biological characteristics, including development, elevated fecundity, flight, sex differentiation, olfactory behavior, and insecticide resistance in RLF. Therefore, these findings could help elucidate the intrinsic factors involved in the RLF-mediated destruction of rice and offer sustainable insect pest management. PMID:23185238
Lv, Jianjian; Liu, Ping; Gao, Baoquan; Wang, Yu; Wang, Zheng; Chen, Ping; Li, Jian
2014-01-01
Background The swimming crab, Portunus trituberculatus, is an important farmed species in China, has been attracting extensive studies, which require more and more genome background knowledge. To date, the sequencing of its whole genome is unavailable and transcriptomic information is also scarce for this species. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset for major tissues of Portunus trituberculatus by the Illumina paired-end sequencing technology. Results Total RNA was isolated from eyestalk, gill, heart, hepatopancreas and muscle. Equal quantities of RNA from each tissue were pooled to construct a cDNA library. Using the Illumina paired-end sequencing technology, we generated a total of 120,137 transcripts with an average length of 1037 bp. Further assembly analysis showed that all contigs contributed to 87,100 unigenes, of these, 16,029 unigenes (18.40% of the total) can be matched in the GenBank non-redundant database. Potential genes and their functions were predicted by GO, KEGG pathway mapping and COG analysis. Based on our sequence analysis and published literature, many putative genes with fundamental roles in growth and muscle development, including actin, myosin, tropomyosin, troponin and other potentially important candidate genes were identified for the first time in this specie. Furthermore, 22,673 SSRs and 66,191 high-confidence SNPs were identified in this EST dataset. Conclusion The transcriptome provides an invaluable new data for a functional genomics resource and future biological research in Portunus trituberculatus. The data will also instruct future functional studies to manipulate or select for genes influencing growth that should find practical applications in aquaculture breeding programs. The molecular markers identified in this study will provide a material basis for future genetic linkage and quantitative trait loci analyses, and will be essential for accelerating aquaculture breeding programs with this species. PMID:24722690
Meng, Xian-liang; Liu, Ping; Jia, Fu-long; Li, Jian; Gao, Bao-Quan
2015-01-01
The swimming crab Portunus trituberculatus is a commercially important crab species in East Asia countries. Gonadal development is a physiological process of great significance to the reproduction as well as commercial seed production for P. trituberculatus. However, little is currently known about the molecular mechanisms governing the developmental processes of gonads in this species. To open avenues of molecular research on P. trituberculatus gonadal development, Illumina paired-end sequencing technology was employed to develop deep-coverage transcriptome sequencing data for its gonads. Illumina sequencing generated 58,429,148 and 70,474,978 high-quality reads from the ovary and testis cDNA library, respectively. All these reads were assembled into 54,960 unigenes with an average sequence length of 879 bp, of which 12,340 unigenes (22.45% of the total) matched sequences in GenBank non-redundant database. Based on our transcriptome analysis as well as published literature, a number of candidate genes potentially involved in the regulation of gonadal development of P. trituberculatus were identified, such as FAOMeT, mPRγ, PGMRC1, PGDS, PGER4, 3β-HSD and 17β-HSDs. Differential expression analysis generated 5,919 differentially expressed genes between ovary and testis, among which many genes related to gametogenesis and several genes previously reported to be critical in differentiation and development of gonads were found, including Foxl2, Wnt4, Fst, Fem-1 and Sox9. Furthermore, 28,534 SSRs and 111,646 high-quality SNPs were identified in this transcriptome dataset. This work represents the first transcriptome analysis of P. trituberculatus gonads using the next generation sequencing technology and provides a valuable dataset for understanding molecular mechanisms controlling development of gonads and facilitating future investigation of reproductive biology in this species. The molecular markers obtained in this study will provide a fundamental basis for population genetics and functional genomics in P. trituberculatus and other closely related species. PMID:26042806
Sun, Quan; Zhou, Guanfan; Cai, Yingfan; Fan, Yonghong; Zhu, Xiaoyan; Liu, Yihua; He, Xiaohong; Shen, Jinjuan; Jiang, Huaizhong; Hu, Daiwen; Pan, Zheng; Xiang, Liuxin; He, Guanghua; Dong, Daiwen; Yang, Jianping
2012-04-21
Tumourous stem mustard (Brassica juncea var. tumida Tsen et Lee) is an economically and nutritionally important vegetable crop of the Cruciferae family that also provides the raw material for Fuling mustard. The genetics breeding, physiology, biochemistry and classification of mustards have been extensively studied, but little information is available on tumourous stem mustard at the molecular level. To gain greater insight into the molecular mechanisms underlying stem swelling in this vegetable and to provide additional information for molecular research and breeding, we sequenced the transcriptome of tumourous stem mustard at various stem developmental stages and compared it with that of a mutant variety lacking swollen stems. Using Illumina short-read technology with a tag-based digital gene expression (DGE) system, we performed de novo transcriptome assembly and gene expression analysis. In our analysis, we assembled genetic information for tumourous stem mustard at various stem developmental stages. In addition, we constructed five DGE libraries, which covered the strains Yong'an and Dayejie at various development stages. Illumina sequencing identified 146,265 unigenes, including 11,245 clusters and 135,020 singletons. The unigenes were subjected to a BLAST search and annotated using the GO and KO databases. We also compared the gene expression profiles of three swollen stem samples with those of two non-swollen stem samples. A total of 1,042 genes with significantly different expression levels occurring simultaneously in the six comparison groups were screened out. Finally, the altered expression levels of a number of randomly selected genes were confirmed by quantitative real-time PCR. Our data provide comprehensive gene expression information at the transcriptional level and the first insight into the understanding of the molecular mechanisms and regulatory pathways of stem swelling and development in this plant, and will help define new mechanisms of stem development in non-model plant organisms.
Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming
2013-01-01
Background Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. Results In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. Conclusions This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas. PMID:24349370
Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming
2013-01-01
Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas.
Zhang, Xiao-Xuan; Cong, Wei; Elsheikha, Hany M; Liu, Guo-Hua; Ma, Jian-Gang; Huang, Wei-Yi; Zhao, Quan; Zhu, Xing-Quan
2017-07-01
Fasciola gigantica is regarded as the major liver fluke causing fasciolosis in livestock in tropical countries. Despite the significant economic and public health impacts of F. gigantica there are few studies on the pathogenesis of this parasite and our understanding is further limited by the lack of genome and transcriptome information. In this study, de novo Illumina RNA sequencing (RNA-seq) was performed to obtain a comprehensive transcriptome profile of the juvenile (42days post infection) and adult stages of F. gigantica. A total of 49,720 unigenes were produced from juvenile and adult stages of F. gigantica, with an average length of 1286 nucleotides (nt) and N50 of 2076nt. A total of 27,862 (56.03%) unigenes were annotated by BLAST similarity searches against the NCBI non-redundant protein database. Because F. gigantica needs to feed and/or digest host tissues, some proteases (including cysteine proteases and aspartic proteases), which play a role in the degradation of host tissues (protein), have been paid more attention in the present study. A total of 6511 distinct genes were found differentially expressed between juveniles and adults, of which 3993 genes were up-regulated and 2518 genes were down-regulated in adults versus juveniles, respectively. Moreover, stage-specific differentially expressed genes were identified in juvenile (17,009) and adult (6517) F. gigantica. The significantly divergent pathways of differentially expressed genes included cAMP signaling pathway (226; 4.12%), proteoglycans in cancer (256; 4.67%) and focal adhesion (199; 3.63%). The transcription pattern also revealed two egg-laying-associated pathways: cGMP-PKG signaling pathway and TGF-β signaling pathway. This study provides the first comparative transcriptomic data concerning juvenile and adult stages of F. gigantica that will be of great value for future research efforts into understanding parasite pathogenesis and developing vaccines against this important parasite. Copyright © 2017 Elsevier B.V. All rights reserved.
Hu, Ruibo; Yu, Changjiang; Wang, Xiaoyu; Jia, Chunlin; Pei, Shengqiang; He, Kang; He, Guo; Kong, Yingzhen; Zhou, Gongke
2017-01-01
HIGHLIGHT De novo transcriptome profiling of five tissues reveals candidate genes putatively involved in rhizome development in M. lutarioriparius. Miscanthus lutarioriparius is a promising lignocellulosic feedstock for second-generation bioethanol production. However, the genomic resource for this species is relatively limited thus hampers our understanding of the molecular mechanisms underlying many important biological processes. In this study, we performed the first de novo transcriptome analysis of five tissues (leaf, stem, root, lateral bud and rhizome bud) of M. lutarioriparius with an emphasis to identify putative genes involved in rhizome development. Approximately 66 gigabase (GB) paired-end clean reads were obtained and assembled into 169,064 unigenes with an average length of 759 bp. Among these unigenes, 103,899 (61.5%) were annotated in seven public protein databases. Differential gene expression profiling analysis revealed that 4,609, 3,188, 1,679, 1,218, and 1,077 genes were predominantly expressed in root, leaf, stem, lateral bud, and rhizome bud, respectively. Their expression patterns were further classified into 12 distinct clusters. Pathway enrichment analysis revealed that genes predominantly expressed in rhizome bud were mainly involved in primary metabolism and hormone signaling and transduction pathways. Noteworthy, 19 transcription factors (TFs) and 16 hormone signaling pathway-related genes were identified to be predominantly expressed in rhizome bud compared with the other tissues, suggesting putative roles in rhizome formation and development. In addition, a predictive regulatory network was constructed between four TFs and six auxin and abscisic acid (ABA) -related genes. Furthermore, the expression of 24 rhizome-specific genes was further validated by quantitative real-time RT-PCR (qRT-PCR) analysis. Taken together, this study provide a global portrait of gene expression across five different tissues and reveal preliminary insights into rhizome growth and development. The data presented will contribute to our understanding of the molecular mechanisms underlying rhizome development in M. lutarioriparius and remarkably enrich the genomic resources of Miscanthus. PMID:28446913
Deep Sequencing Reveals the Effect of MeJA on Scutellarin Biosynthesis in Erigeron breviscapus
Xiao, Ying; Zhang, Feng; Chen, Jun-feng; Ji, Qian; Tan, He-Xin; Huang, Xin; Feng, Hao; Huang, Bao-Kang; Chen, Wan-Sheng; Zhang, Lei
2015-01-01
Background Erigeron breviscapus, a well-known traditional Chinese medicinal herb, is broadly used in the treatment of cerebrovascular disease. Scutellarin, a kind of flavonoids, is considered as the material base of the pharmaceutical activities in E. breviscapus. The stable and high content of scutellarin is critical for the quality and efficiency of E. breviscapus in the clinical use. Therefore, understanding the molecular mechanism of scutellarin biosynthesis is crucial for metabolic engineering to increase the content of the active compound. However, there is virtually no study available yet concerning the genetic research of scutellarin biosynthesis in E. breviscapus. Results Using Illumina sequencing technology, we obtained over three billion bases of high-quality sequence data and conducted de novo assembly and annotation without prior genome information. A total of 182,527 unigenes (mean length = 738 bp) were found. 63,059 unigenes were functionally annotated with a cut-off E-value of 10−5. Next, a total of 238 (200 up-regulated and 38 down-regulated genes) and 513 (375 up-regulated and 138 down-regulated genes) differentially expressed genes were identified at different time points after methyl jasmonate (MeJA) treatment, which fell into categories of ‘metabolic process’ and ‘cellular process’ using GO database, suggesting that MeJA-induced activities of signal pathway in plant mainly led to re-programming of metabolism and cell activity. In addition, 13 predicted genes that might participate in the metabolism of flavonoids were found by two co-expression analyses in E. breviscapus. Conclusions Our study is the first to provide a transcriptome sequence resource for E. breviscapus plants after MeJA treatment and it reveals transcriptome re-programming upon elicitation. As the result, several putative unknown genes involved in the metabolism of flavonoids were predicted. These data provide a valuable resource for the genetic and genomic studies of special flavonoids metabolism and further metabolic engineering in E. breviscapus. PMID:26656917
Liu, Qinghua; Zhou, Zhichun; Wei, Yongcheng; Shen, Danyu; Feng, Zhongping; Hong, Shanping
2015-01-01
Masson pine is an important timber and resource for oleoresin in South China. Increasing yield of oleoresin in stems can raise economic benefits and enhance the resistance to bark beetles. However, the genetic mechanisms for regulating the yield of oleoresin were still unknown. Here, high-throughput sequencing technology was used to investigate the transcriptome and compare the gene expression profiles of high and low oleoresin-yielding genotypes. A total of 40,690,540 reads were obtained and assembled into 137,499 transcripts from the secondary xylem tissues. We identified 84,842 candidate unigenes based on sequence annotation using various databases and 96 unigenes were candidates for terpenoid backbone biosynthesis in pine. By comparing the expression profiles of high and low oleoresin-yielding genotypes, 649 differentially expressed genes (DEGs) were identified. GO enrichment analysis of DEGs revealed that multiple pathways were related to high yield of oleoresin. Nine candidate genes were validated by QPCR analysis. Among them, the candidate genes encoding geranylgeranyl diphosphate synthase (GGPS) and (-)-alpha/beta-pinene synthase were up-regulated in the high oleoresin-yielding genotype, while tricyclene synthase revealed lower expression level, which was in good agreement with the GC/MS result. In addition, DEG encoding ABC transporters, pathogenesis-related proteins (PR5 and PR9), phosphomethylpyrimidine synthase, non-specific lipid-transfer protein-like protein and ethylene responsive transcription factors (ERFs) were also confirmed to be critical for the biosynthesis of oleoresin. The next-generation sequencing strategy used in this study has proven to be a powerful means for analyzing transcriptome variation related to the yield of oleoresin in masson pine. The candidate genes encoding GGPS, (-)-alpha/beta-pinene, tricyclene synthase, ABC transporters, non-specific lipid-transfer protein-like protein, phosphomethylpyrimidine synthase, ERFs and pathogen responses may play important roles in regulating the yield of oleoresin. These DEGs are worthy of special attention in future studies. PMID:26167875
Fu, Minghui; Jiang, Lihua; Li, Yuanmei; Yan, Guohua; Zheng, Lijun; Jinping, Peng
2014-12-01
Eichhornia crassipes is an aquatic plant native to the Amazon River Basin. It has become a serious weed in freshwater habitats in rivers, lakes and reservoirs both in tropical and warm temperate areas worldwide. Some research has stated that it can be used for water phytoremediation, due to its strong assimilation of nitrogen and phosphorus, and the accumulation of heavy metals, and its growth and spread may play an important role in environmental ecology. In order to explore the molecular mechanism of E. crassipes to responses to nitrogen deficiency, we constructed forward and reversed subtracted cDNA libraries for E. crassipes roots under nitrogen deficient condition using a suppressive subtractive hybridization (SSH) method. The forward subtraction included 2,100 clones, and the reversed included 2,650 clones. One thousand clones were randomly selected from each library for sequencing. About 737 (527 unigenes) clones from the forward library and 757 (483 unigenes) clones from the reversed library were informative. Sequence BlastX analysis showed that there were more transporters and adenosylhomocysteinase-like proteins in E. crassipes cultured in nitrogen deficient medium; while, those cultured in nitrogen replete medium had more proteins such as UBR4-like e3 ubiquitin-protein ligase and fasciclin-like arabinogalactan protein 8-like, as well as more cytoskeletal proteins, including actin and tubulin. Cluster of Orthologous Group (COG) analysis also demonstrated that in the forward library, the most ESTs were involved in coenzyme transportation and metabolism. In the reversed library, cytoskeletal ESTs were the most abundant. Gene Ontology (GO) analysis categories demonstrated that unigenes involved in binding, cellular process and electron carrier were the most differentially expressed unigenes between the forward and reversed libraries. All these results suggest that E. crassipes can respond to different nitrogen status by efficiently regulating and controlling some transporter gene expressions, certain metabolism processes, specific signal transduction pathways and cytoskeletal construction.
Li, Fu-Gui; Chen, Jie; Jiang, Xia-Yun; Zou, Shu-Ming
2015-01-01
The blunt snout bream (Megalobrama amblycephala) is an important freshwater aquaculture species, but it is sensitive to hypoxia. No transcriptome data related to growth and hypoxia response are available for this species. In this study, we performed de novo transcriptome sequencing for the liver and gills of the fast-growth family and slow-growth family derived from ‘Pujiang No.1’ F10 blunt snout bream that were under hypoxic stress and normoxia, respectively. The fish were divided into the following 4 groups: fast-growth family under hypoxic stress, FH; slow-growth family under hypoxic stress, SH; fast-growth family under normoxia, FN; and slow-growth family under normoxia, SN. A total of 185 million high-quality reads were obtained from the normalized cDNA of the pooled samples, which were assembled into 465,582 contigs and 237,172 transcripts. A total of 31,338 transcripts from the same locus (unigenes) were annotated and assigned to 104 functional groups, and 23,103 unigenes were classified into seven main categories, including 45 secondary KEGG pathways. A total of 22,255 (71%) known putative unigenes were found to be shared across the genomes of five model fish species and mammals, and a substantial number (9.4%) of potentially novel genes were identified. When 6,639 unigenes were used in the analysis of differential expression (DE) genes, the number of putative DE genes related to growth pathways in FH, SH, SN and FN was 159, 118, 92 and 65 in both the liver and gills, respectively, and the number of DE genes related to hypoxic response was 57, 33, 23 and 21 in FH, FN, SH and SN, respectively. Our results suggest that growth performance of the fast-growth family should be due to complex mutual gene regulatory mechanisms of these putative DE genes between growth and hypoxia. PMID:26554582
Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen
2013-01-01
The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome-wide transcript-based markers to assess genetic and genomic features among Capsicum annuum. PMID:23409153
Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen
2013-01-01
The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome-wide transcript-based markers to assess genetic and genomic features among Capsicum annuum.
The Use of EST Expression Matrixes for the Quality Control of Gene Expression Data
Milnthorpe, Andrew T.; Soloviev, Mikhail
2012-01-01
EST expression profiling provides an attractive tool for studying differential gene expression, but cDNA libraries' origins and EST data quality are not always known or reported. Libraries may originate from pooled or mixed tissues; EST clustering, EST counts, library annotations and analysis algorithms may contain errors. Traditional data analysis methods, including research into tissue-specific gene expression, assume EST counts to be correct and libraries to be correctly annotated, which is not always the case. Therefore, a method capable of assessing the quality of expression data based on that data alone would be invaluable for assessing the quality of EST data and determining their suitability for mRNA expression analysis. Here we report an approach to the selection of a small generic subset of 244 UniGene clusters suitable for identification of the tissue of origin for EST libraries and quality control of the expression data using EST expression information alone. We created a small expression matrix of UniGene IDs using two rounds of selection followed by two rounds of optimisation. Our selection procedures differ from traditional approaches to finding “tissue-specific” genes and our matrix yields consistency high positive correlation values for libraries with confirmed tissues of origin and can be applied for tissue typing and quality control of libraries as small as just a few hundred total ESTs. Furthermore, we can pick up tissue correlations between related tissues e.g. brain and peripheral nervous tissue, heart and muscle tissues and identify tissue origins for a few libraries of uncharacterised tissue identity. It was possible to confirm tissue identity for some libraries which have been derived from cancer tissues or have been normalised. Tissue matching is affected strongly by cancer progression or library normalisation and our approach may potentially be applied for elucidating the stage of normalisation in normalised libraries or for cancer staging. PMID:22412959
Chi, Wei; Gao, Yu; Hu, Qing; Guo, Wei; Li, Dapeng
2017-01-01
The natural sex reversal severely affects the sex ratio and thus decreases the productivity of the rice field eel (Monopterus albus). How to understand and manipulate this process is one of the major issues for the rice field eel stocking. So far the genomics and transcriptomics data available for this species are still scarce. Here we provide a comprehensive study of transcriptomes of brain and gonad tissue in three sex stages (female, intersex and male) from the rice field eel to investigate changes in transcriptional level during the sex reversal process. Approximately 195 thousand unigenes were generated and over 44.4 thousand were functionally annotated. Comparative study between stages provided multiple differentially expressed genes in brain and gonad tissue. Overall 4668 genes were found to be of unequal abundance between gonad tissues, far more than that of the brain tissues (59 genes). These genes were enriched in several different signaling pathways. A number of 231 genes were found with different levels in gonad in each stage, with several reproduction-related genes included. A total of 19 candidate genes that could be most related to sex reversal were screened out, part of these genes' expression patterns were validated by RT-qPCR. The expression of spef2, maats1, spag6 and dmc1 were abundant in testis, but was barely detected in females, while the 17β-hsd12, zpsbp3, gal3 and foxn5 were only expressed in ovary. This study investigated the complexity of brain and gonad transcriptomes in three sex stages of the rice field eel. Integrated analysis of different gene expression and changes in signaling pathways, such as PI3K-Akt pathway, provided crucial data for further study of sex transformation mechanisms.
Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan; Zhou, Yuan
2016-01-12
Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data. The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.
Cornette, Richard; Kanamori, Yasushi; Watanabe, Masahiko; Nakahara, Yuichi; Gusev, Oleg; Mitsumasu, Kanako; Kadono-Okuda, Keiko; Shimomura, Michihiko; Mita, Kazuei; Kikawada, Takahiro; Okuda, Takashi
2010-01-01
Some organisms are able to survive the loss of almost all their body water content, entering a latent state known as anhydrobiosis. The sleeping chironomid (Polypedilum vanderplanki) lives in the semi-arid regions of Africa, and its larvae can survive desiccation in an anhydrobiotic form during the dry season. To unveil the molecular mechanisms of this resistance to desiccation, an anhydrobiosis-related Expressed Sequence Tag (EST) database was obtained from the sequences of three cDNA libraries constructed from P. vanderplanki larvae after 0, 12, and 36 h of desiccation. The database contained 15,056 ESTs distributed into 4,807 UniGene clusters. ESTs were classified according to gene ontology categories, and putative expression patterns were deduced for all clusters on the basis of the number of clones in each library; expression patterns were confirmed by real-time PCR for selected genes. Among up-regulated genes, antioxidants, late embryogenesis abundant (LEA) proteins, and heat shock proteins (Hsps) were identified as important groups for anhydrobiosis. Genes related to trehalose metabolism and various transporters were also strongly induced by desiccation. Those results suggest that the oxidative stress response plays a central role in successful anhydrobiosis. Similarly, protein denaturation and aggregation may be prevented by marked up-regulation of Hsps and the anhydrobiosis-specific LEA proteins. A third major feature is the predicted increase in trehalose synthesis and in the expression of various transporter proteins allowing the distribution of trehalose and other solutes to all tissues. PMID:20833722
Learning Computational Models of Video Memorability from fMRI Brain Imaging.
Han, Junwei; Chen, Changyuan; Shao, Ling; Hu, Xintao; Han, Jungong; Liu, Tianming
2015-08-01
Generally, various visual media are unequally memorable by the human brain. This paper looks into a new direction of modeling the memorability of video clips and automatically predicting how memorable they are by learning from brain functional magnetic resonance imaging (fMRI). We propose a novel computational framework by integrating the power of low-level audiovisual features and brain activity decoding via fMRI. Initially, a user study experiment is performed to create a ground truth database for measuring video memorability and a set of effective low-level audiovisual features is examined in this database. Then, human subjects' brain fMRI data are obtained when they are watching the video clips. The fMRI-derived features that convey the brain activity of memorizing videos are extracted using a universal brain reference system. Finally, due to the fact that fMRI scanning is expensive and time-consuming, a computational model is learned on our benchmark dataset with the objective of maximizing the correlation between the low-level audiovisual features and the fMRI-derived features using joint subspace learning. The learned model can then automatically predict the memorability of videos without fMRI scans. Evaluations on publically available image and video databases demonstrate the effectiveness of the proposed framework.
Bezgin, Gleb; Reid, Andrew T; Schubert, Dirk; Kötter, Rolf
2009-01-01
Brain atlases are widely used in experimental neuroscience as tools for locating and targeting specific brain structures. Delineated structures in a given atlas, however, are often difficult to interpret and to interface with database systems that supply additional information using hierarchically organized vocabularies (ontologies). Here we discuss the concept of volume-to-ontology mapping in the context of macroscopical brain structures. We present Java tools with which we have implemented this concept for retrieval of mapping and connectivity data on the macaque brain from the CoCoMac database in connection with an electronic version of "The Rhesus Monkey Brain in Stereotaxic Coordinates" authored by George Paxinos and colleagues. The software, including our manually drawn monkey brain template, can be downloaded freely under the GNU General Public License. It adds value to the printed atlas and has a wider (neuro-)informatics application since it can read appropriately annotated data from delineated sections of other species and organs, and turn them into 3D registered stacks. The tools provide additional features, including visualization and analysis of connectivity data, volume and centre-of-mass estimates, and graphical manipulation of entire structures, which are potentially useful for a range of research and teaching applications.
Multiple brain atlas database and atlas-based neuroimaging system.
Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A
1997-01-01
For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.
ERIC Educational Resources Information Center
Eppele, Ruth
This 27-item bibliography represents the variety of articles added to the ERIC database from 1983 through 1988 on left-brain/right-brain research, theory, and application as it relates to classroom incorporation. Included are conflicting opinions as to the usefulness of left-brain/right-brain studies and their application in the learning…
Design and deployment of a large brain-image database for clinical and nonclinical research
NASA Astrophysics Data System (ADS)
Yang, Guo Liang; Lim, Choie Cheio Tchoyoson; Banukumar, Narayanaswami; Aziz, Aamer; Hui, Francis; Nowinski, Wieslaw L.
2004-04-01
An efficient database is an essential component of organizing diverse information on image metadata and patient information for research in medical imaging. This paper describes the design, development and deployment of a large database system serving as a brain image repository that can be used across different platforms in various medical researches. It forms the infrastructure that links hospitals and institutions together and shares data among them. The database contains patient-, pathology-, image-, research- and management-specific data. The functionalities of the database system include image uploading, storage, indexing, downloading and sharing as well as database querying and management with security and data anonymization concerns well taken care of. The structure of database is multi-tier client-server architecture with Relational Database Management System, Security Layer, Application Layer and User Interface. Image source adapter has been developed to handle most of the popular image formats. The database has a user interface based on web browsers and is easy to handle. We have used Java programming language for its platform independency and vast function libraries. The brain image database can sort data according to clinically relevant information. This can be effectively used in research from the clinicians" points of view. The database is suitable for validation of algorithms on large population of cases. Medical images for processing could be identified and organized based on information in image metadata. Clinical research in various pathologies can thus be performed with greater efficiency and large image repositories can be managed more effectively. The prototype of the system has been installed in a few hospitals and is working to the satisfaction of the clinicians.
BrainMap VBM: An environment for structural meta-analysis.
Vanasse, Thomas J; Fox, P Mickle; Barron, Daniel S; Robertson, Michaela; Eickhoff, Simon B; Lancaster, Jack L; Fox, Peter T
2018-05-02
The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta-data, BrainMap facilitates coordinate-based meta-analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task-activation literature, BrainMap is now expanding to include voxel-based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole-brain, voxel-wise method that measures significant structural differences between or within groups which are reported as standardized, peak x-y-z coordinates. Here we describe BrainMap VBM, including the meta-data structure, current data volume, and automated reverse inference functions (region-to-disease profile) of this new community resource. CBMA offers a robust methodology for retaining true-positive and excluding false-positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use-case scenario for BrainMap VBM, we illustrate a trans-diagnostic data-mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data-redundancy effects inherent to any database, we demonstrate two data-filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network- and disease-specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches. © 2018 Wiley Periodicals, Inc.
Differentially expressed transcripts in stomach of Penaeus monodon in response to AHPND infection.
Soonthornchai, Wipasiri; Chaiyapechara, Sage; Klinbunga, Sirawut; Thongda, Wilawan; Tangphatsornruang, Sithichoke; Yoocha, Thippawan; Jarayabhand, Padermsak; Jiravanichpaisal, Pikul
2016-12-01
Acute Hepatopancreatic Necrosis Disease (AHPND) is an emerging disease in aquacultured shrimp caused by a pathogenic strain of Vibrio parahaemolyticus. As with several pathogenic bacteria, colonization of the stomach appeared to be the initial step of the infection for AHPND-causing Vibrio. To understand the immune responses in the stomach of black tiger shrimp (Penaeus monodon), differentially expressed transcripts (DETs) in the stomach during V. parahaemolyticus strain 3HP (VP3HP) infection was examined using Ion Torrent sequencing. From the total 42,998 contigs obtained, 1585 contigs representing 1513 unigenes were significantly differentially expressed with 1122 and 391 unigenes up- and down-regulated, respectively. Among the DETs, there were 141 immune-related unigenes in 10 functional categories: antimicrobial peptide, signal transduction pathway, proPO system, oxidative stress, proteinases/proteinase inhibitors, apoptotic tumor-related protein, pathogen recognition immune regulator, blood clotting system, adhesive protein and heat shock protein. Expression profiles of 20 of 22 genes inferred from RNA sequencing were confirmed with the results from qRT-PCR. Additionally, a novel isoform of anti-lipopolysaccharide factor, PmALF7 whose transcript was induced in the stomach after challenge with VP3HP was discovered. This study provided a fundamental information on the molecular response in the shrimp stomach during the AHPND infection that would be beneficial for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mahato, Ajay Kumar; Sharma, Nimisha; Singh, Akshay; Srivastav, Manish; Jaiprakash; Singh, Sanjay Kumar; Singh, Anand Kumar; Sharma, Tilak Raj; Singh, Nagendra Kumar
2016-01-01
Mango (Mangifera indica L.) is called "king of fruits" due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties 'Neelam', 'Dashehari' and their hybrid 'Amrapali' using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango.
Mahato, Ajay Kumar; Sharma, Nimisha; Singh, Akshay; Srivastav, Manish; Jaiprakash; Singh, Sanjay Kumar; Singh, Anand Kumar; Sharma, Tilak Raj; Singh, Nagendra Kumar
2016-01-01
Mango (Mangifera indica L.) is called “king of fruits” due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties ‘Neelam’, ‘Dashehari’ and their hybrid ‘Amrapali’ using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango. PMID:27736892
Leyva-Pérez, María de la O; Valverde-Corredor, Antonio; Valderrama, Raquel; Jiménez-Ruiz, Jaime; Muñoz-Merida, Antonio; Trelles, Oswaldo; Barroso, Juan Bautista; Mercado-Blanco, Jesús; Luque, Francisco
2015-02-01
Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.) cv. Picual. Biochemical stress markers and cold-stress symptoms were detected after the first 24 h as sagging leaves. After 5 days, the plants were found to have completely recovered. Control and cold-stressed plants were sequenced by Illumina HiSeq 1000 paired-end technique. We also assembled a new olive transcriptome comprising 157,799 unigenes and found 6,309 unigenes differentially expressed in response to cold. Three types of response that led to cold acclimation were found: short-term transient response, early long-term response, and late long-term response. These subsets of unigenes were related to different biological processes. Early responses involved many cold-stress-responsive genes coding for, among many other things, C-repeat binding factor transcription factors, fatty acid desaturases, wax synthesis, and oligosaccharide metabolism. After long-term exposure to cold, a large proportion of gene down-regulation was found, including photosynthesis and plant growth genes. Up-regulated genes after long-term cold exposure were related to organelle fusion, nucleus organization, and DNA integration, including retrotransposons. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
De Novo Transcriptome Analysis for Kentucky Bluegrass Dwarf Mutants Induced by Space Mutation
Gan, Lu; Di, Rong; Chao, Yuehui; Han, Liebao; Chen, Xingwu; Wu, Chao; Yin, Shuxia
2016-01-01
Kentucky bluegrass (Poa pratensis L.) is a major cool-season turfgrass requiring frequent mowing. Utilization of cultivars with slow growth is a promising method to decrease mowing frequency. In this study, two dwarf mutant selections of Kentucky bluegrass (A12 and A16) induced by space mutation were analyzed for the differentially expressed genes compared with the wild type (WT) by the high-throughput RNA-Seq technology. 253,909 unigenes were obtained by de novo assembly. 24.20% of the unigenes had a significant level of amino acid sequence identity to Brachypodium distachyon proteins, followed by Hordeum vulgare with 18.72% among the non-redundant (NR) Blastx top hits. Assembled unigenes were associated with 32 pathways using KEGG orthology terms and their respective KEGG maps. Between WT and A16 libraries, 4,203 differentially expressed genes (DEGs) were identified, whereas there were 883 DEGs between WT and A12 libraries. Further investigation revealed that the DEG pathways were mainly involved in terpenoid biosynthesis and plant hormone metabolism, which might account for the differences of plant height and leaf blade color between dwarf mutant and WT plants. Our study presents the first comprehensive transcriptomic data and gene function analysis of Poa pratensis L., providing a valuable resource for future studies in plant dwarfing breeding and comparative genome analysis for Pooideae plants. PMID:27010560
Serial analysis of gene expression (SAGE) in normal human trabecular meshwork.
Liu, Yutao; Munro, Drew; Layfield, David; Dellinger, Andrew; Walter, Jeffrey; Peterson, Katherine; Rickman, Catherine Bowes; Allingham, R Rand; Hauser, Michael A
2011-04-08
To identify the genes expressed in normal human trabecular meshwork tissue, a tissue critical to the pathogenesis of glaucoma. Total RNA was extracted from human trabecular meshwork (HTM) harvested from 3 different donors. Extracted RNA was used to synthesize individual SAGE (serial analysis of gene expression) libraries using the I-SAGE Long kit from Invitrogen. Libraries were analyzed using SAGE 2000 software to extract the 17 base pair sequence tags. The extracted sequence tags were mapped to the genome using SAGE Genie map. A total of 298,834 SAGE tags were identified from all HTM libraries (96,842, 88,126, and 113,866 tags, respectively). Collectively, there were 107,325 unique tags. There were 10,329 unique tags with a minimum of 2 counts from a single library. These tags were mapped to known unique Unigene clusters. Approximately 29% of the tags (orphan tags) did not map to a known Unigene cluster. Thirteen percent of the tags mapped to at least 2 Unigene clusters. Sequence tags from many glaucoma-related genes, including myocilin, optineurin, and WD repeat domain 36, were identified. This is the first time SAGE analysis has been used to characterize the gene expression profile in normal HTM. SAGE analysis provides an unbiased sampling of gene expression of the target tissue. These data will provide new and valuable information to improve understanding of the biology of human aqueous outflow.
Identification of genes associated with low furanocoumarin content in grapefruit.
Chen, Chunxian; Yu, Qibin; Wei, Xu; Cancalon, Paul F; Gmitter, Fred G
2014-10-01
Some furanocoumarins in grapefruit (Citrus paradisi) are associated with the so-called grapefruit juice effect. Previous phytochemical quantification and genetic analysis suggested that the synthesis of these furanocoumarins may be controlled by a single gene in the pathway. In this study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of fruit tissues was performed to identify the candidate gene(s) likely associated with low furanocoumarin content in grapefruit. Fifteen tentative differentially expressed fragments were cloned through the cDNA-AFLP analysis of the grapefruit variety Foster and its spontaneous low-furanocoumarin mutant Low Acid Foster. Sequence analysis revealed a cDNA-AFLP fragment, Contig 6, was homologous to a substrate-proved psoralen synthase gene, CYP71A22, and was part of citrus unigenes Cit.3003 and Csi.1332, and predicted genes Ciclev10004717m in mandarin and orange1.1g041507m in sweet orange. The two predicted genes contained the highly conserved motifs at one of the substrate recognition sites of CYP71A22. Digital gene expression profile showed the unigenes were expressed only in fruit and seed. Quantitative real-time PCR also proved Contig 6 was down-regulated in Low Acid Foster. These results showed the differentially expressed Contig 6 was related to the reduced furanocoumarin levels in the mutant. The identified fragment, homologs, unigenes, and genes may facilitate further furanocoumarin genetic study and grapefruit variety improvement.
Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain
Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich
2014-01-01
The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL: http://mouseidgenes.helmholtz-muenchen.de. PMID:25145340
Brenner, Eric D; Katari, Manpreet S; Stevenson, Dennis W; Rudd, Stephen A; Douglas, Andrew W; Moss, Walter N; Twigg, Richard W; Runko, Suzan J; Stellari, Giulia M; McCombie, WR; Coruzzi, Gloria M
2005-01-01
Background Ginkgo biloba L. is the only surviving member of one of the oldest living seed plant groups with medicinal, spiritual and horticultural importance worldwide. As an evolutionary relic, it displays many characters found in the early, extinct seed plants and extant cycads. To establish a molecular base to understand the evolution of seeds and pollen, we created a cDNA library and EST dataset from the reproductive structures of male (microsporangiate), female (megasporangiate), and vegetative organs (leaves) of Ginkgo biloba. Results RNA from newly emerged male and female reproductive organs and immature leaves was used to create three distinct cDNA libraries from which 6,434 ESTs were generated. These 6,434 ESTs from Ginkgo biloba were clustered into 3,830 unigenes. A comparison of our Ginkgo unigene set against the fully annotated genomes of rice and Arabidopsis, and all available ESTs in Genbank revealed that 256 Ginkgo unigenes match only genes among the gymnosperms and non-seed plants – many with multiple matches to genes in non-angiosperm plants. Conversely, another group of unigenes in Gingko had highly significant homology to transcription factors in angiosperms involved in development, including MADS box genes as well as post-transcriptional regulators. Several of the conserved developmental genes found in Ginkgo had top BLAST homology to cycad genes. We also note here the presence of ESTs in G. biloba similar to genes that to date have only been found in gymnosperms and an additional 22 Ginkgo genes common only to genes from cycads. Conclusion Our analysis of an EST dataset from G. biloba revealed genes potentially unique to gymnosperms. Many of these genes showed homology to fully sequenced clones from our cycad EST dataset found in common only with gymnosperms. Other Ginkgo ESTs are similar to developmental regulators in higher plants. This work sets the stage for future studies on Ginkgo to better understand seed and pollen evolution, and to resolve the ambiguous phylogenetic relationship of G. biloba among the gymnosperms. PMID:16225698
Zhang, Min; Zhou, Yuwen; Wang, Hui; Jones, Huw; Gao, Qiang; Wang, Dahai; Ma, Youzhi; Xia, Lanqin
2013-08-16
The grain aphid (Sitobion avenae F.) is a major agricultural pest which causes significant yield losses of wheat in China, Europe and North America annually. Transcriptome profiling of the grain aphid alimentary canal after feeding on wheat plants could provide comprehensive gene expression information involved in feeding, ingestion and digestion. Furthermore, selection of aphid-specific RNAi target genes would be essential for utilizing a plant-mediated RNAi strategy to control aphids via a non-toxic mode of action. However, due to the tiny size of the alimentary canal and lack of genomic information on grain aphid as a whole, selection of the RNAi targets is a challenging task that as far as we are aware, has never been documented previously. In this study, we performed de novo transcriptome assembly and gene expression analyses of the alimentary canals of grain aphids before and after feeding on wheat plants using Illumina RNA sequencing. The transcriptome profiling generated 30,427 unigenes with an average length of 664 bp. Furthermore, comparison of the transcriptomes of alimentary canals of pre- and post feeding grain aphids indicated that 5490 unigenes were differentially expressed, among which, diverse genes and/or pathways were identified and annotated. Based on the RPKM values of these unigenes, 16 of them that were significantly up or down-regulated upon feeding were selected for dsRNA artificial feeding assay. Of these, 5 unigenes led to higher mortality and developmental stunting in an artificial feeding assay due to the down-regulation of the target gene expression. Finally, by adding fluorescently labelled dsRNA into the artificial diet, the spread of fluorescence signal in the whole body tissues of grain aphid was observed. Comparison of the transcriptome profiles of the alimentary canals of pre- and post-feeding grain aphids on wheat plants provided comprehensive gene expression information that could facilitate our understanding of the molecular mechanisms underlying feeding, ingestion and digestion. Furthermore, five novel and effective potential RNAi target genes were identified in grain aphid for the first time. This finding would provide a fundamental basis for aphid control in wheat through plant mediated RNAi strategy.
2012-01-01
Background High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). Results We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. Conclusion By hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise comparisons, as well as a highly parallel method that compared all 52 genotypes simultaneously. PMID:22583801
Stoffel, Kevin; van Leeuwen, Hans; Kozik, Alexander; Caldwell, David; Ashrafi, Hamid; Cui, Xinping; Tan, Xiaoping; Hill, Theresa; Reyes-Chin-Wo, Sebastian; Truco, Maria-Jose; Michelmore, Richard W; Van Deynze, Allen
2012-05-14
High-resolution genetic maps are needed in many crops to help characterize the genetic diversity that determines agriculturally important traits. Hybridization to microarrays to detect single feature polymorphisms is a powerful technique for marker discovery and genotyping because of its highly parallel nature. However, microarrays designed for gene expression analysis rarely provide sufficient gene coverage for optimal detection of nucleotide polymorphisms, which limits utility in species with low rates of polymorphism such as lettuce (Lactuca sativa). We developed a 6.5 million feature Affymetrix GeneChip® for efficient polymorphism discovery and genotyping, as well as for analysis of gene expression in lettuce. Probes on the microarray were designed from 26,809 unigenes from cultivated lettuce and an additional 8,819 unigenes from four related species (L. serriola, L. saligna, L. virosa and L. perennis). Where possible, probes were tiled with a 2 bp stagger, alternating on each DNA strand; providing an average of 187 probes covering approximately 600 bp for each of over 35,000 unigenes; resulting in up to 13 fold redundancy in coverage per nucleotide. We developed protocols for hybridization of genomic DNA to the GeneChip® and refined custom algorithms that utilized coverage from multiple, high quality probes to detect single position polymorphisms in 2 bp sliding windows across each unigene. This allowed us to detect greater than 18,000 polymorphisms between the parental lines of our core mapping population, as well as numerous polymorphisms between cultivated lettuce and wild species in the lettuce genepool. Using marker data from our diversity panel comprised of 52 accessions from the five species listed above, we were able to separate accessions by species using both phylogenetic and principal component analyses. Additionally, we estimated the diversity between different types of cultivated lettuce and distinguished morphological types. By hybridizing genomic DNA to a custom oligonucleotide array designed for maximum gene coverage, we were able to identify polymorphisms using two approaches for pair-wise comparisons, as well as a highly parallel method that compared all 52 genotypes simultaneously.
Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Sun, Xiaoqing; Yuan, Jianbo; Li, Fuhua; Xiang, Jianhai
2015-01-01
Molting is one of the most important biological processes in shrimp growth and development. All shrimp undergo cyclic molting periodically to shed and replace their exoskeletons. This process is essential for growth, metamorphosis, and reproduction in shrimp. However, the molecular mechanisms underlying shrimp molting remain poorly understood. In this study, we investigated global expression changes in the transcriptomes of the Pacific white shrimp, Litopenaeus vannamei, the most commonly cultured shrimp species worldwide. The transcriptome of whole L. vannamei was investigated by RNA-sequencing (RNA-seq) throughout the molting cycle, including the inter-molt (C), pre-molt (D0, D1, D2, D3, D4), and post-molt (P1 and P2) stages, and 93,756 unigenes were identified. Among these genes, we identified 5,117 genes differentially expressed (log2ratio ≥1 and FDR ≤0.001) in adjacent molt stages. The results were compared against the National Center for Biotechnology Information (NCBI) non-redundant protein/nucleotide sequence database, Swiss-Prot, PFAM database, the Gene Ontology database, and the Kyoto Encyclopedia of Genes and Genomes database in order to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. The expression patterns for genes involved in several molecular events critical for molting, such as hormone regulation, triggering events, implementation phases, skelemin, immune responses were characterized and considered as mechanisms underlying molting in L. vannamei. Comparisons with transcriptomic analyses in other arthropods were also performed. The characterization of major transcriptional changes in genes involved in the molting cycle provides candidates for future investigation of the molecular mechanisms. The data generated in this study will serve as an important transcriptomic resource for the shrimp research community to facilitate gene and genome annotation and to characterize key molecular processes underlying shrimp development. PMID:26650402
LONI visualization environment.
Dinov, Ivo D; Valentino, Daniel; Shin, Bae Cheol; Konstantinidis, Fotios; Hu, Guogang; MacKenzie-Graham, Allan; Lee, Erh-Fang; Shattuck, David; Ma, Jeff; Schwartz, Craig; Toga, Arthur W
2006-06-01
Over the past decade, the use of informatics to solve complex neuroscientific problems has increased dramatically. Many of these research endeavors involve examining large amounts of imaging, behavioral, genetic, neurobiological, and neuropsychiatric data. Superimposing, processing, visualizing, or interpreting such a complex cohort of datasets frequently becomes a challenge. We developed a new software environment that allows investigators to integrate multimodal imaging data, hierarchical brain ontology systems, on-line genetic and phylogenic databases, and 3D virtual data reconstruction models. The Laboratory of Neuro Imaging visualization environment (LONI Viz) consists of the following components: a sectional viewer for imaging data, an interactive 3D display for surface and volume rendering of imaging data, a brain ontology viewer, and an external database query system. The synchronization of all components according to stereotaxic coordinates, region name, hierarchical ontology, and genetic labels is achieved via a comprehensive BrainMapper functionality, which directly maps between position, structure name, database, and functional connectivity information. This environment is freely available, portable, and extensible, and may prove very useful for neurobiologists, neurogenetisists, brain mappers, and for other clinical, pedagogical, and research endeavors.
Sander, Angelle M; Lequerica, Anthony H; Ketchum, Jessica M; Hammond, Flora M; Gary, Kelli Williams; Pappadis, Monique R; Felix, Elizabeth R; Johnson-Greene, Douglas; Bushnik, Tamara
2018-05-31
To investigate the contribution of race/ethnicity to retention in traumatic brain injury (TBI) research at 1 to 2 years postinjury. Community. With dates of injury between October 1, 2002, and March 31, 2013, 5548 whites, 1347 blacks, and 790 Hispanics enrolled in the Traumatic Brain Injury Model Systems National Database. Retrospective database analysis. Retention, defined as completion of at least 1 question on the follow-up interview by the person with TBI or a proxy. Retention rates 1 to 2 years post-TBI were significantly lower for Hispanic (85.2%) than for white (91.8%) or black participants (90.5%) and depended significantly on history of problem drug or alcohol use. Other variables associated with low retention included older age, lower education, violent cause of injury, and discharge to an institution versus private residence. The findings emphasize the importance of investigating retention rates separately for blacks and Hispanics rather than combining them or grouping either with other races or ethnicities. The results also suggest the need for implementing procedures to increase retention of Hispanics in longitudinal TBI research.
Brain Structure and Executive Functions in Children with Cerebral Palsy: A Systematic Review
ERIC Educational Resources Information Center
Weierink, Lonneke; Vermeulen, R. Jeroen; Boyd, Roslyn N.
2013-01-01
This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using…
Wu, Jinwei; Zhao, Hua-Bin; Yu, Dan; Xu, Xinwei
2017-01-31
Waterlogging or flooding is one of the most challenging abiotic stresses experienced by plants. Unlike many flooding-tolerant plants, floating-leaved aquatic plants respond actively to flooding stress by fast growth and elongation of its petioles to make leaves re-floating. However, the molecular mechanisms of this plant group responding to flood have not been investigated before. Here, we investigated the genetic basis of this adaptive response by characterizing the petiole transcriptomes of a floating-leaved species Nymphoides peltata under normal and flooding conditions. Clean reads under normal and flooding conditions with pooled sampling strategy were assembled into 124,302 unigenes. A total of 8883 unigenes were revealed to be differentially expressed between normal and flooding conditions. Among them, top ranked differentially expressed genes were mainly involved in antioxidant process, photosynthesis process and carbohydrate metabolism, including the glycolysis and a modified tricarboxylic acid cycle - alanine metabolism. Eight selected unigenes with significantly differentiated expression changes between normal and flooding conditions were validated by qRT-PCR. Among these processes, antioxidant process and glycolysis are commonly induced by waterlogging or flooding environment in plants, whereas photosynthesis and alanine metabolism are rarely occurred in other flooding-tolerant plants, suggesting the significant contributions of the two processes in the active response of N. peltata to flooding stress. Our results provide a valuable genomic resource for future studies on N. peltata and deepen our understanding of the genetic basis underlying the response to flooding stress in aquatic plants.
Zhang, Shi-Xin; Wu, Shao-Hua; Chen, Yue-Yi; Tian, Wei-Min
2015-01-01
The secondary laticifer in the secondary phloem is differentiated from the vascular cambia of the rubber tree (Hevea brasiliensis Muell. Arg.). The number of secondary laticifers is closely related to the rubber yield potential of Hevea. Pharmacological data show that jasmonic acid and its precursor linolenic acid are effective in inducing secondary laticifer differentiation in epicormic shoots of the rubber tree. In the present study, an experimental system of coronatine-induced laticifer differentiation was developed to perform SSH identification of genes with differential expression. A total of 528 positive clones were obtained by blue-white screening, of which 248 clones came from the forward SSH library while 280 clones came from the reverse SSH library. Approximately 215 of the 248 clones and 171 of the 280 clones contained cDNA inserts by colony PCR screening. A total of 286 of the 386 ESTs were detected to be differentially expressed by reverse northern blot and sequenced. Approximately 147 unigenes with an average length of 497 bp from the forward and 109 unigenes with an average length of 514 bp from the reverse SSH libraries were assembled and annotated. The unigenes were associated with the stress/defense response, plant hormone signal transduction and structure development. It is suggested that Ca2+ signal transduction and redox seem to be involved in differentiation, while PGA and EIF are associated with the division of cambium initials for COR-induced secondary laticifer differentiation in the rubber tree. PMID:26147807
Sun, Luchao; Rai, Amit; Rai, Megha; Nakamura, Michimi; Kawano, Noriaki; Yoshimatsu, Kayo; Suzuki, Hideyuki; Kawahara, Nobuo; Saito, Kazuki; Yamazaki, Mami
2018-05-07
The three Forsythia species, F. suspensa, F. viridissima and F. koreana, have been used as herbal medicines in China, Japan and Korea for centuries and they are known to be rich sources of numerous pharmaceutical metabolites, forsythin, forsythoside A, arctigenin, rutin and other phenolic compounds. In this study, de novo transcriptome sequencing and assembly was performed on these species. Using leaf and flower tissues of F. suspensa, F. viridissima and F. koreana, 1.28-2.45-Gbp sequences of Illumina based pair-end reads were obtained and assembled into 81,913, 88,491 and 69,458 unigenes, respectively. Classification of the annotated unigenes in gene ontology terms and KEGG pathways was used to compare the transcriptome of three Forsythia species. The expression analysis of orthologous genes across all three species showed the expression in leaf tissues being highly correlated. The candidate genes presumably involved in the biosynthetic pathway of lignans and phenylethanoid glycosides were screened as co-expressed genes. They express highly in the leaves of F. viridissima and F. koreana. Furthermore, the three unigenes annotated as acyltransferase were predicted to be associated with the biosynthesis of acteoside and forsythoside A from the expression pattern and phylogenetic analysis. This study is the first report on comparative transcriptome analyses of medicinally important Forsythia genus and will serve as an important resource to facilitate further studies on biosynthesis and regulation of therapeutic compounds in Forsythia species.
RNA-Seq reveals leaf cuticular wax-related genes in Welsh onion.
Liu, Qianchun; Wen, Changlong; Zhao, Hong; Zhang, Liying; Wang, Jian; Wang, Yongqin
2014-01-01
The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion.
RNA-Seq Reveals Leaf Cuticular Wax-Related Genes in Welsh Onion
Zhao, Hong; Zhang, Liying; Wang, Jian; Wang, Yongqin
2014-01-01
The waxy cuticle plays a very important role in plant resistance to various biotic and abiotic stresses and is an important characteristic of Welsh onions. Two different types of biangan Welsh onions (BG) were selected for this study: BG, a wild-type covered by wax, which forms a continuous lipid membrane on its epidermal cells, and GLBG, a glossy mutant of BG whose epidermal cells are not covered by wax. To elucidate the waxy cuticle-related gene expression changes, we used RNA-Seq to compare these two Welsh onion varieties with distinct differences in cuticular wax. The de novo assembly yielded 42,881 putative unigenes, 25.41% of which are longer than 1,000 bp. Among the high-quality unique sequences, 22,289 (52.0%) had at least one significant match to an existing gene model. A total of 798 genes, representing 1.86% of the total putative unigenes, were differentially expressed between these two Welsh onion varieties. The expression patterns of four important unigenes that are related to waxy cuticle biosynthesis were confirmed by RT-qPCR and COG class annotation, which demonstrated that these genes play an important role in defense mechanisms and lipid transport and metabolism. To our knowledge, this study is the first exploration of the Welsh onion waxy cuticle. These results may help to reveal the molecular mechanisms underlying the waxy cuticle and will be useful for waxy gene cloning, genetics and breeding as well as phylogenetic and evolutionary studies of the Welsh onion. PMID:25415343
Rodamilans, Bernardo; San León, David; Mühlberger, Louisa; Candresse, Thierry; Neumüller, Michael; Oliveros, Juan Carlos; García, Juan Antonio
2014-01-01
Plum pox virus (PPV) infects Prunus trees around the globe, posing serious fruit production problems and causing severe economic losses. One variety of Prunus domestica, named 'Jojo', develops a hypersensitive response to viral infection. Here we compared infected and non-infected samples using next-generation RNA sequencing to characterize the genetic complexity of the viral population in infected samples and to identify genes involved in development of the resistance response. Analysis of viral reads from the infected samples allowed reconstruction of a PPV-D consensus sequence. De novo reconstruction showed a second viral isolate of the PPV-Rec strain. RNA-seq analysis of PPV-infected 'Jojo' trees identified 2,234 and 786 unigenes that were significantly up- or downregulated, respectively (false discovery rate; FDR≤0.01). Expression of genes associated with defense was generally enhanced, while expression of those related to photosynthesis was repressed. Of the total of 3,020 differentially expressed unigenes, 154 were characterized as potential resistance genes, 10 of which were included in the NBS-LRR type. Given their possible role in plant defense, we selected 75 additional unigenes as candidates for further study. The combination of next-generation sequencing and a Prunus variety that develops a hypersensitive response to PPV infection provided an opportunity to study the factors involved in this plant defense mechanism. Transcriptomic analysis presented an overview of the changes that occur during PPV infection as a whole, and identified candidates suitable for further functional characterization.
Chen, Hanting; Deng, Cao; Nie, Hu; Fan, Gang; He, Yang
2017-01-01
Coptis chinensis Franch., the Chinese goldthread ('Weilian' in Chinese), one of the most important medicinal plants from the family Ranunculaceae, and its rhizome has been widely used in Traditional Chinese Medicine for centuries. Here, we analyzed the chemical components and the transcriptome of the Chinese goldthread from three biotopes, including Zhenping, Zunyi and Shizhu. We built comprehensive, high-quality de novo transcriptome assemblies of the Chinese goldthread from short-read RNA-Sequencing data, obtaining 155,710 transcripts and 56,071 unigenes. More than 98.39% and 95.97% of core eukaryotic genes were found in the transcripts and unigenes respectively, indicating that this unigene set capture the majority of the coding genes. A total of 520,462, 493,718, and 507,247 heterozygous SNPs were identified in the three accessions from Zhenping, Zunyi, and Shizhu respectively, indicating high polymorphism in coding regions of the Chinese goldthread (∼1%). Chemical analyses of the rhizome identified six major components, including berberine, palmatine, coptisine, epiberberine, columbamine, and jatrorrhizine. Berberine has the highest concentrations, followed by coptisine, palmatine, and epiberberine sequentially for all the three accessions. The drug quality of the accession from Shizhu may be the highest among these accessions. Differential analyses of the transcriptome identified four pivotal candidate enzymes, including aspartate aminotransferaseprotein, polyphenol oxidase, primary-amine oxidase, and tyrosine decarboxylase, were significantly differentially expressed and may be responsible for the difference of alkaloids contents in the accessions from different biotopes.
Yang, Zemao; Lu, Ruike; Dai, Zhigang; Yan, An; Tang, Qing; Cheng, Chaohua; Xu, Ying; Yang, Wenting; Su, Jianguang
2017-01-01
High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute. PMID:28927022
An architecture for a brain-image database
NASA Technical Reports Server (NTRS)
Herskovits, E. H.
2000-01-01
The widespread availability of methods for noninvasive assessment of brain structure has enabled researchers to investigate neuroimaging correlates of normal aging, cerebrovascular disease, and other processes; we designate such studies as image-based clinical trials (IBCTs). We propose an architecture for a brain-image database, which integrates image processing and statistical operators, and thus supports the implementation and analysis of IBCTs. The implementation of this architecture is described and results from the analysis of image and clinical data from two IBCTs are presented. We expect that systems such as this will play a central role in the management and analysis of complex research data sets.
Nakayama, Hokuto; Sakamoto, Tomoaki; Okegawa, Yuki; Kaminoyama, Kaori; Fujie, Manabu; Ichihashi, Yasunori; Kurata, Tetsuya; Motohashi, Ken; Al-Shehbaz, Ihsan; Sinha, Neelima; Kimura, Seisuke
2018-02-19
Because natural variation in wild species is likely the result of local adaptation, it provides a valuable resource for understanding plant-environmental interactions. Rorippa aquatica (Brassicaceae) is a semi-aquatic North American plant with morphological differences between several accessions, but little information available on any physiological differences. Here, we surveyed the transcriptomes of two R. aquatica accessions and identified cryptic physiological differences between them. We first reconstructed a Rorippa phylogeny to confirm relationships between the accessions. We performed large-scale RNA-seq and de novo assembly; the resulting 87,754 unigenes were then annotated via comparisons to different databases. Between-accession physiological variation was identified with transcriptomes from both accessions. Transcriptome data were analyzed with principal component analysis and self-organizing map. Results of analyses suggested that photosynthetic capability differs between the accessions. Indeed, physiological experiments revealed between-accession variation in electron transport rate and the redox state of the plastoquinone pool. These results indicated that one accession may have adapted to differences in temperature or length of the growing season.
Development of an Expressed Sequence Tag (EST) Resource for Wheat (Triticum aestivum L.)
Lazo, G. R.; Chao, S.; Hummel, D. D.; Edwards, H.; Crossman, C. C.; Lui, N.; Matthews, D. E.; Carollo, V. L.; Hane, D. L.; You, F. M.; Butler, G. E.; Miller, R. E.; Close, T. J.; Peng, J. H.; Lapitan, N. L. V.; Gustafson, J. P.; Qi, L. L.; Echalier, B.; Gill, B. S.; Dilbirligi, M.; Randhawa, H. S.; Gill, K. S.; Greene, R. A.; Sorrells, M. E.; Akhunov, E. D.; Dvořák, J.; Linkiewicz, A. M.; Dubcovsky, J.; Hossain, K. G.; Kalavacharla, V.; Kianian, S. F.; Mahmoud, A. A.; Miftahudin; Ma, X.-F.; Conley, E. J.; Anderson, J. A.; Pathan, M. S.; Nguyen, H. T.; McGuire, P. E.; Qualset, C. O.; Anderson, O. D.
2004-01-01
This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5′ and 3′ sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics. PMID:15514037
KP-CoT-23 (CCDC83) is a novel immunogenic cancer/testis antigen in colon cancer.
Song, Myung-Ha; Ha, Jin-Mok; Shin, Dong-Hoon; Lee, Chang-Hun; Old, Lloyd; Lee, Sang-Yull
2012-11-01
Cancer/testis (CT) antigens are considered target molecules for cancer immunotherapy. To identify novel CT antigens, immunoscreening of a testicular cDNA library was performed using serum obtained from a colon cancer patient who was immunized with a new dendritic cell vaccine. We isolated 64 positive cDNA clones comprised of 40 different genes, designated KP-CoT-1 through KP-CoT-40. Three of these putative antigens, including KP-CoT-23 (CCDC83), had testis-specific expression profiles in the Unigene database. RT-PCR analysis showed that the expression of 2 KP-Cot-23 variants was restricted to the testis in normal adult tissues. In addition, KP-CoT-23 variants were frequently expressed in a variety of tumors and cancer cell lines, including colon cancer. A serological western blot assay showed IgG antibodies to the KP-CoT-23 protein in 26 of 37 colon cancer patients and in 4 of 21 healthy patients. These data suggest that KP-CoT-23 is a novel CT antigen that may be useful for the diagnosis and immunotherapy of cancer.
Li, Zhao-Qun; Ma, Long; Yin, Qian; Cai, Xiao-Ming; Luo, Zong-Xiu; Bian, Lei; Xin, Zhao-Jun; He, Peng; Chen, Zong-Mao
2018-01-01
Moths can biosynthesize sex pheromones in the female sex pheromone glands (PGs) and can distinguish species-specific sex pheromones using their antennae. However, the biosynthesis and transportation mechanism for Type II sex pheromone components has rarely been documented in moths. In this study, we constructed a massive PG transcriptome database (14.72 Gb) from a moth species, Ectropis grisescens, which uses type II sex pheromones and is a major tea pest in China. We further identified putative sex pheromone biosynthesis and transportation-related unigenes: 111 cytochrome P450 monooxygenases (CYPs), 25 odorant-binding proteins (OBPs), and 20 chemosensory proteins (CSPs). Tissue expression and phylogenetic tree analyses showed that one CYP (EgriCYP341-fragment3), one OBP (EgriOBP4), and one CSP (EgriCSP10) gene displayed an enriched expression in the PGs, and that EgriOBP2, 3, and 25 are clustered in the moth pheromone-binding protein clade. We considered these our candidate genes. Our results yielded large-scale PG sequence information for further functional studies. PMID:29317471
Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.
Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich
2014-01-01
The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.
Walker, Lindsay; Chang, Lin-Ching; Nayak, Amritha; Irfanoglu, M Okan; Botteron, Kelly N; McCracken, James; McKinstry, Robert C; Rivkin, Michael J; Wang, Dah-Jyuu; Rumsey, Judith; Pierpaoli, Carlo
2016-01-01
The NIH MRI Study of normal brain development sought to characterize typical brain development in a population of infants, toddlers, children and adolescents/young adults, covering the socio-economic and ethnic diversity of the population of the United States. The study began in 1999 with data collection commencing in 2001 and concluding in 2007. The study was designed with the final goal of providing a controlled-access database; open to qualified researchers and clinicians, which could serve as a powerful tool for elucidating typical brain development and identifying deviations associated with brain-based disorders and diseases, and as a resource for developing computational methods and image processing tools. This paper focuses on the DTI component of the NIH MRI study of normal brain development. In this work, we describe the DTI data acquisition protocols, data processing steps, quality assessment procedures, and data included in the database, along with database access requirements. For more details, visit http://www.pediatricmri.nih.gov. This longitudinal DTI dataset includes raw and processed diffusion data from 498 low resolution (3 mm) DTI datasets from 274 unique subjects, and 193 high resolution (2.5 mm) DTI datasets from 152 unique subjects. Subjects range in age from 10 days (from date of birth) through 22 years. Additionally, a set of age-specific DTI templates are included. This forms one component of the larger NIH MRI study of normal brain development which also includes T1-, T2-, proton density-weighted, and proton magnetic resonance spectroscopy (MRS) imaging data, and demographic, clinical and behavioral data. Published by Elsevier Inc.
Xu, Jia Meng; Fan, Wei; Jin, Jian Feng; Lou, He Qiang; Chen, Wei Wei; Yang, Jian Li; Zheng, Shao Jian
2017-01-01
Relying on Al-activated root oxalate secretion, and internal detoxification and accumulation of Al, buckwheat is highly Al resistant. However, the molecular mechanisms responsible for these processes are still poorly understood. It is well-known that root apex is the critical region of Al toxicity that rapidly impairs a series of events, thus, resulting in inhibition of root elongation. Here, we carried out transcriptome analysis of the buckwheat root apex (0–1 cm) with regards to early response (first 6 h) to Al stress (20 μM), which is crucial for identification of both genes and processes involved in Al toxicity and tolerance mechanisms. We obtained 34,469 unigenes with 26,664 unigenes annotated in the NCBI database, and identified 589 up-regulated and 255 down-regulated differentially expressed genes (DEGs) under Al stress. Functional category analysis revealed that biological processes differ between up- and down-regulated genes, although ‘metabolic processes’ were the most affected category in both up- and down-regulated DEGs. Based on the data, it is proposed that Al stress affects a variety of biological processes that collectively contributes to the inhibition of root elongation. We identified 30 transporter genes and 27 transcription factor (TF) genes induced by Al. Gene homology analysis highlighted candidate genes encoding transporters associated with Al uptake, transport, detoxification, and accumulation. We also found that TFs play critical role in transcriptional regulation of Al resistance genes in buckwheat. In addition, gene duplication events are very common in the buckwheat genome, suggesting a possible role for gene duplication in the species’ high Al resistance. Taken together, the transcriptomic analysis of buckwheat root apex shed light on the processes that contribute to the inhibition of root elongation. Furthermore, the comprehensive analysis of both transporter genes and TF genes not only deep our understanding on the responses of buckwheat roots to Al toxicity but provide a good start for functional characterization of genes critical for Al tolerance. PMID:28702047
Tan, Huaqiang; Huang, Haitao; Tie, Manman; Tang, Yi; Lai, Yunsong; Li, Huanxiu
2016-01-01
Cowpea (V. unguiculata L. Walp.) is an important tropical grain legume. Asparagus bean (V. unguiculata ssp. sesquipedialis) is a distinctive subspecies of cowpea, which is considered one of the top ten Asian vegetables. It can be adapted to a wide range of environmental stimuli such as drought and heat. Nevertheless, it is an extremely cold-sensitive tropical species. Improvement of chilling tolerance in asparagus bean may significantly increase its production and prolong its supply. However, gene regulation and signaling pathways related to cold response in this crop remain unknown. Using Illumina sequencing technology, modification of global gene expression in response to chilling stress in two asparagus bean cultivars-"Dubai bean" and "Ningjiang-3", which are tolerant and sensitive to chilling, respectively-were investigated. More than 1.8 million clean reads were obtained from each sample. After de novo assembly, 88,869 unigenes were finally generated with a mean length of 635 bp. Of these unigenes, 41,925 (47.18%) had functional annotations when aligned to public protein databases. Further, we identified 3,510 differentially expressed genes (DEGs) in Dubai bean, including 2,103 up-regulated genes and 1,407 down-regulated genes. While in Ningjiang-3, we found 2,868 DEGs, 1,786 of which were increasing and the others were decreasing. 1,744 DEGs were commonly regulated in two cultivars, suggesting that some genes play fundamental roles in asparagus bean during cold stress. Functional classification of the DEGs in two cultivars using Mercator pipeline indicated that RNA, protein, signaling, stress and hormone metabolism were five major groups. In RNA group, analysis of TFs in DREB subfamily showed that ICE1-CBF3-COR cold responsive cascade may also exist in asparagus bean. Our study is the first to provide the transcriptome sequence resource for asparagus bean, which will accelerate breeding cold resistant asparagus bean varieties through genetic engineering, and advance our knowledge of the genes involved in the complex regulatory networks of this plant under cold stress.
2010-01-01
Background The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. Results We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof ~50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. Conclusions This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response. PMID:20226016
Chen, Haimei; Guo, Baolin; Liu, Chang
2017-01-01
Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels (“L”, “M” and “H”) with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31 FAR1, 17 MYB-related, 12 bHLH, and 5 WRKY, were differentially expressed after light induction. Finally, a model was proposed to explain the light-induced flavonoid production. This study provided valuable information to improve cultivation practices and produced the first comprehensive resource for E. pseudowushanense transcriptomes. PMID:28786984
Pan, Junqian; Chen, Haimei; Guo, Baolin; Liu, Chang
2017-01-01
Epimedium pseudowushanense B.L.Guo, a light-demanding shade herb, is used in traditional medicine to increase libido and strengthen muscles and bones. The recognition of the health benefits of Epimedium has increased its market demand. However, its resource recycling rate is low and environmentally dependent. Furthermore, its natural sources are endangered, further increasing prices. Commercial culture can address resource constraints of it.Understanding the effects of environmental factors on the production of its active components would improve the technology for cultivation and germplasm conservation. Here, we studied the effects of light intensities on the flavonoid production and revealed the molecular mechanism using RNA-seq analysis. Plants were exposed to five levels of light intensity through the periods of germination to flowering, the flavonoid contents were measured using HPLC. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that the flavonoid contents varied with different light intensity levels. And the largest amount of epimedin C was produced at light intensity level 4 (I4). Next, the leaves under the treatment of three light intensity levels ("L", "M" and "H") with the largest differences in the flavonoid content, were subjected to RNA-seq analysis. Transcriptome reconstruction identified 43,657 unigenes. All unigene sequences were annotated by searching against the Nr, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. In total, 4008, 5260, and 3591 significant differentially expressed genes (DEGs) were identified between the groups L vs. M, M vs. H and L vs. H. Particularly, twenty-one full-length genes involved in flavonoid biosynthesis were identified. The expression levels of the flavonol synthase, chalcone synthase genes were strongly associated with light-induced flavonoid abundance with the highest expression levels found in the H group. Furthermore, 65 transcription factors, including 31 FAR1, 17 MYB-related, 12 bHLH, and 5 WRKY, were differentially expressed after light induction. Finally, a model was proposed to explain the light-induced flavonoid production. This study provided valuable information to improve cultivation practices and produced the first comprehensive resource for E. pseudowushanense transcriptomes.
NASA Astrophysics Data System (ADS)
Zeng, Jiqing; Yu, Hui; Kjellberg, Finn
2018-07-01
The mutualism of figs and their pollinating fig wasps is widely regarded as a model for coevolved mutualism. A high degree of host specificity is ensured by female wasps only being attracted by their specific fig tree species through the volatile organic compounds (VOCs) released by the figs when they are ready to be pollinated. However, very little is known about the molecular mechanisms underlying the production of VOCs and how pollinators respond to these VOCs. Here we present transcriptome sequencing data from VOC-treated fig wasps and control fig wasps. Using Illumina paired-end sequencing, approximately 6.47 Gbp and 6.48 Gbp high quality reads were generated for fig wasps that had been exposed or not to VOCs of their host fig. After read trimming, the de novo assembly of both types of reads produced 58,192 unigenes with an average length of 817 bp. Then functional annotation and GO enrichment analysis was performed by aligning all-unigenes with public protein databases including NR, SwissProt, and KEGG. Differentially expressed genes (DEGs) were investigated using the RPKM method. Overall, 16 up-regulated genes and 13 down-regulated genes were identified. We further performed GO enrichment and metabolic pathway enrichment analyses. One gene involved in the synoptic vesicle cycle and two genes coding for odorant binding proteins (OBP) are likely to have potential impacts on the response of fig wasps to the VOCs emitted by their host figs. This is the first transcriptome sequencing of a fig wasp in the presence of VOCs of its host figs using the next-generation sequencing technology. Our studies suggest that the expression of some genes in the olfactory neural system of the fig wasps is affected by the VOCs released from the figs. This suggests the presence of a dynamic molecular system of detection and hence response to host plant VOCs. As such our findings provide indications for further mechanistic studies on the fig-fig wasp interactions.
Mali, Brahim; Grohme, Markus A; Förster, Frank; Dandekar, Thomas; Schnölzer, Martina; Reuter, Dirk; Wełnicz, Weronika; Schill, Ralph O; Frohme, Marcus
2010-03-12
The phenomenon of desiccation tolerance, also called anhydrobiosis, involves the ability of an organism to survive the loss of almost all cellular water without sustaining irreversible damage. Although there are several physiological, morphological and ecological studies on tardigrades, only limited DNA sequence information is available. Therefore, we explored the transcriptome in the active and anhydrobiotic state of the tardigrade Milnesium tardigradum which has extraordinary tolerance to desiccation and freezing. In this study, we present the first overview of the transcriptome of M. tardigradum and its response to desiccation and discuss potential parallels to stress responses in other organisms. We sequenced a total of 9984 expressed sequence tags (ESTs) from two cDNA libraries from the eutardigrade M. tardigradum in its active and inactive, anhydrobiotic (tun) stage. Assembly of these ESTs resulted in 3283 putative unique transcripts, whereof approximately 50% showed significant sequence similarity to known genes. The resulting unigenes were functionally annotated using the Gene Ontology (GO) vocabulary. A GO term enrichment analysis revealed several GOs that were significantly underrepresented in the inactive stage. Furthermore we compared the putative unigenes of M. tardigradum with ESTs from two other eutardigrade species that are available from public sequence databases, namely Richtersius coronifer and Hypsibius dujardini. The processed sequences of the three tardigrade species revealed similar functional content and the M. tardigradum dataset contained additional sequences from tardigrades not present in the other two. This study describes novel sequence data from the tardigrade M. tardigradum, which significantly contributes to the available tardigrade sequence data and will help to establish this extraordinary tardigrade as a model for studying anhydrobiosis. Functional comparison of active and anhydrobiotic tardigrades revealed a differential distribution of Gene Ontology terms associated with chromatin structure and the translation machinery, which are underrepresented in the inactive animals. These findings imply a widespread metabolic response of the animals on dehydration. The collective tardigrade transcriptome data will serve as a reference for further studies and support the identification and characterization of genes involved in the anhydrobiotic response.
Xu, Jia Meng; Fan, Wei; Jin, Jian Feng; Lou, He Qiang; Chen, Wei Wei; Yang, Jian Li; Zheng, Shao Jian
2017-01-01
Relying on Al-activated root oxalate secretion, and internal detoxification and accumulation of Al, buckwheat is highly Al resistant. However, the molecular mechanisms responsible for these processes are still poorly understood. It is well-known that root apex is the critical region of Al toxicity that rapidly impairs a series of events, thus, resulting in inhibition of root elongation. Here, we carried out transcriptome analysis of the buckwheat root apex (0-1 cm) with regards to early response (first 6 h) to Al stress (20 μM), which is crucial for identification of both genes and processes involved in Al toxicity and tolerance mechanisms. We obtained 34,469 unigenes with 26,664 unigenes annotated in the NCBI database, and identified 589 up-regulated and 255 down-regulated differentially expressed genes (DEGs) under Al stress. Functional category analysis revealed that biological processes differ between up- and down-regulated genes, although 'metabolic processes' were the most affected category in both up- and down-regulated DEGs. Based on the data, it is proposed that Al stress affects a variety of biological processes that collectively contributes to the inhibition of root elongation. We identified 30 transporter genes and 27 transcription factor (TF) genes induced by Al. Gene homology analysis highlighted candidate genes encoding transporters associated with Al uptake, transport, detoxification, and accumulation. We also found that TFs play critical role in transcriptional regulation of Al resistance genes in buckwheat. In addition, gene duplication events are very common in the buckwheat genome, suggesting a possible role for gene duplication in the species' high Al resistance. Taken together, the transcriptomic analysis of buckwheat root apex shed light on the processes that contribute to the inhibition of root elongation. Furthermore, the comprehensive analysis of both transporter genes and TF genes not only deep our understanding on the responses of buckwheat roots to Al toxicity but provide a good start for functional characterization of genes critical for Al tolerance.
Pang, Meixia; Luo, Weiwei; Yu, Xiaomu; Zhou, Ying; Tong, Jingou
2018-01-01
Feed efficiency is an economically crucial trait for cultured animals, however, progress has been scarcely made in the genetic analyses of feed conversion efficiency (FCE) in fish because of the difficulties in measurement of trait phenotypes. In the present investigation, we present the first application of RNA sequencing (RNA-Seq) combined with differentially expressed genes (DEGs) analysis for identification of functional determinants related to FCE at the gene level in an aquaculture fish, crucian carp (Carassius auratus). Brain tissues of six crucian carp with extreme FCE performances were subjected to transcriptome analysis. A total of 544,612 unigenes with a mean size of 644.38 bp were obtained from Low- and High-FCE groups, and 246 DEGs that may be involved in FCE traits were identified in these two groups. qPCR confirmed that genes previously identified as up- or down-regulated by RNA-Seq were effectively up- or down-regulated under the studied conditions. Thirteen key genes, whose functions are associated with metabolism (Dgkk, Mgst3 and Guk1b), signal transduction (Vdnccsa1b, Tgfα, Nr4a1 and Tacr2) and growth (Endog, Crebrtc2, Myh7, Myh1, Myh14 and Igfbp7) were identified according to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) annotations. Our novel findings provide useful pathway information and candidate genes for future studies of genetic mechanisms underlying FCE in crucian carp. PMID:29538345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos
Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tablesmore » of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.« less
The Brain Database: A Multimedia Neuroscience Database for Research and Teaching
Wertheim, Steven L.
1989-01-01
The Brain Database is an information tool designed to aid in the integration of clinical and research results in neuroanatomy and regional biochemistry. It can handle a wide range of data types including natural images, 2 and 3-dimensional graphics, video, numeric data and text. It is organized around three main entities: structures, substances and processes. The database will support a wide variety of graphical interfaces. Two sample interfaces have been made. This tool is intended to serve as one component of a system that would allow neuroscientists and clinicians 1) to represent clinical and experimental data within a common framework 2) to compare results precisely between experiments and among laboratories, 3) to use computing tools as an aid in collaborative work and 4) to contribute to a shared and accessible body of knowledge about the nervous system.
Chen, Jing; Zhang, Hanping; Feng, Mingfeng; Zuo, Dengpan; Hu, Yahui; Jiang, Tong
2016-07-13
Woodland strawberry (Fragaria vesca) infected with Strawberry vein banding virus (SVBV) exhibits chlorotic symptoms along the leaf veins. However, little is known about the molecular mechanism of strawberry disease caused by SVBV. We performed the next-generation sequencing (RNA-Seq) study to identify gene expression changes induced by SVBV in woodland strawberry using mock-inoculated plants as a control. Using RNA-Seq, we have identified 36,850 unigenes, of which 517 were differentially expressed in the virus-infected plants (DEGs). The unigenes were annotated and classified with Gene Ontology (GO), Clusters of Orthologous Group (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The KEGG pathway analysis of these genes suggested that strawberry disease caused by SVBV may affect multiple processes including pigment metabolism, photosynthesis and plant-pathogen interactions. Our research provides comprehensive transcriptome information regarding SVBV infection in strawberry.
Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids
Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng
2012-01-01
Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935
Munoz, Sergio; Guerrero, Felix D.; Kellogg, Anastasia; Heekin, Andrew M.
2017-01-01
The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller’s organ, located in the tick’s forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs) are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs) from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor. PMID:28231302
Munoz, Sergio; Guerrero, Felix D; Kellogg, Anastasia; Heekin, Andrew M; Leung, Ming-Ying
2017-01-01
The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller's organ, located in the tick's forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs) are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs) from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor.
Chen, Zexiong; Tang, Ning; You, Yuming; Lan, Jianbin; Liu, Yiqing; Li, Zhengguo
2015-01-01
Lonicera macranthoides Hand.-Mazz (L. macranthoides) is a medicinal herb that is widely distributed in southern China. The biosynthetic and metabolic pathways for a core secondary metabolite in L. macranthoides, chlorogenic acid (CGA), have been elucidated in many species. However, the mechanisms of CGA biosynthesis and the related gene regulatory network in L. macranthoides are still not well understood. In this study, CGA content was quantified by high performance liquid chromatography (HPLC), and CGA levels differed significantly among three tissues; specifically, the CGA content in young leaves (YL) was greater than that in young stems (YS), which was greater than that in mature flowers (MF). Transcriptome analysis of L. macranthoides yielded a total of 53,533,014 clean reads (average length 90 bp) and 76,453 unigenes (average length 703 bp). A total of 3,767 unigenes were involved in biosynthesis pathways of secondary metabolites. Of these unigenes, 80 were possibly related to CGA biosynthesis. Furthermore, differentially expressed genes (DEGs) were screened in different tissues including YL, MF and YS. In these tissues, 24 DEGs were found to be associated with CGA biosynthesis, including six phenylalanine ammonia lyase (PAL) genes, six 4-coumarate coenzyme A ligase (4CL) genes, four cinnamate 4-Hydroxylase (C4H) genes, seven hydroxycinnamoyl transferase/hydroxycinnamoyl-CoA quinate transferase HCT/HQT genes and one coumarate 3-hydroxylase (C3H) gene.These results further the understanding of CGA biosynthesis and the related regulatory network in L. macranthoides. PMID:26381882
Ye, Hua; Xiao, Shijun; Wang, Xiaoqing; Wang, Zhiyong; Zhang, Zhengshi; Zhu, Chengke; Hu, Bingjie; Lv, Changhuan; Zheng, Shuming; Luo, Hui
2018-04-01
Schizothorax prenanti (S. prenanti) is an indigenous fish species and is popularly cultured in southwestern China. In recent years, intensive farming of S. prenanti and water quality deterioration has increased the susceptibility of this fish to various pathogens, including Aeromonas hydrophila (A. hydrophila), which has caused severe damage to S. prenanti production. However, the understanding of molecular immune response of S. prenanti to A. hydrophila infection is still lacking. In order to better comprehend the S. prenanti time series immune response process against A. hydrophila, we conducted the first transcriptomic comparison in S. prenanti spleen at 4, 24, and 48 h after the infection challenge of A. hydrophila against their control counterparts. In total, 628 million clean reads were obtained from 18 libraries and assembled into 262,745 transcripts. After eliminating sequence redundancy, 69,373 unigenes with an average length of 1476 bp were obtained. Comparative analysis revealed 1890 unigenes with significantly differential expression, including 172, 455, 589 upregulated and 27, 676, 551 unigenes downregulated genes for 4, 24, and 48 h post-infection, respectively. Differentially expressed genes (DEGs) were validated using qPCR for 15 randomly selected genes. Enrichment and pathway analysis of DEGs was carried out to understand the functions of the immune-related genes. Our results revealed that many important functional genes relating to complement and coagulation cascades, chemokine signaling pathway, toll-like receptor signaling pathway, NOD-like receptor signaling pathway and leukocyte transendothelial migration were regulated during the infection of A. hydrophila, and the expression of those genes reflected the transcriptome profiles during the challenging stages.
2012-01-01
Background Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis. Panagrolaimus superbus is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that P. superbus uses to combat the potentially lethal effects of cellular dehydration may include the constitutive and inducible expression of protective molecules, along with behavioural and/or morphological adaptations that slow the rate of cellular water loss. In addition, inducible repair and revival programmes may also be required for successful rehydration and recovery from anhydrobiosis. Results To identify constitutively expressed candidate anhydrobiotic genes we obtained 9,216 ESTs from an unstressed mixed stage population of P. superbus. We derived 4,009 unigenes from these ESTs. These unigene annotations and sequences can be accessed at http://www.nematodes.org/nembase4/species_info.php?species=PSC. We manually annotated a set of 187 constitutively expressed candidate anhydrobiotic genes from P. superbus. Notable among those is a putative lineage expansion of the lea (late embryogenesis abundant) gene family. The most abundantly expressed sequence was a member of the nematode specific sxp/ral-2 family that is highly expressed in parasitic nematodes and secreted onto the surface of the nematodes' cuticles. There were 2,059 novel unigenes (51.7% of the total), 149 of which are predicted to encode intrinsically disordered proteins lacking a fixed tertiary structure. One unigene may encode an exo-β-1,3-glucanase (GHF5 family), most similar to a sequence from Phytophthora infestans. GHF5 enzymes have been reported from several species of plant parasitic nematodes, with horizontal gene transfer (HGT) from bacteria proposed to explain their evolutionary origin. This P. superbus sequence represents another possible HGT event within the Nematoda. The expression of five of the 19 putative stress response genes tested was upregulated in response to desiccation. These were the antioxidants glutathione peroxidase, dj-1 and 1-Cys peroxiredoxin, an shsp sequence and an lea gene. Conclusions P. superbus appears to utilise a strategy of combined constitutive and inducible gene expression in preparation for entry into anhydrobiosis. The apparent lineage expansion of lea genes, together with their constitutive and inducible expression, suggests that LEA3 proteins are important components of the anhydrobiotic protection repertoire of P. superbus. PMID:22281184
2013-01-01
Background The grain aphid (Sitobion avenae F.) is a major agricultural pest which causes significant yield losses of wheat in China, Europe and North America annually. Transcriptome profiling of the grain aphid alimentary canal after feeding on wheat plants could provide comprehensive gene expression information involved in feeding, ingestion and digestion. Furthermore, selection of aphid-specific RNAi target genes would be essential for utilizing a plant-mediated RNAi strategy to control aphids via a non-toxic mode of action. However, due to the tiny size of the alimentary canal and lack of genomic information on grain aphid as a whole, selection of the RNAi targets is a challenging task that as far as we are aware, has never been documented previously. Results In this study, we performed de novo transcriptome assembly and gene expression analyses of the alimentary canals of grain aphids before and after feeding on wheat plants using Illumina RNA sequencing. The transcriptome profiling generated 30,427 unigenes with an average length of 664 bp. Furthermore, comparison of the transcriptomes of alimentary canals of pre- and post feeding grain aphids indicated that 5490 unigenes were differentially expressed, among which, diverse genes and/or pathways were identified and annotated. Based on the RPKM values of these unigenes, 16 of them that were significantly up or down-regulated upon feeding were selected for dsRNA artificial feeding assay. Of these, 5 unigenes led to higher mortality and developmental stunting in an artificial feeding assay due to the down-regulation of the target gene expression. Finally, by adding fluorescently labelled dsRNA into the artificial diet, the spread of fluorescence signal in the whole body tissues of grain aphid was observed. Conclusions Comparison of the transcriptome profiles of the alimentary canals of pre- and post-feeding grain aphids on wheat plants provided comprehensive gene expression information that could facilitate our understanding of the molecular mechanisms underlying feeding, ingestion and digestion. Furthermore, five novel and effective potential RNAi target genes were identified in grain aphid for the first time. This finding would provide a fundamental basis for aphid control in wheat through plant mediated RNAi strategy. PMID:23957588
Distribution of cellular HSV-1 receptor expression in human brain.
Lathe, Richard; Haas, Juergen G
2017-06-01
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors. We investigated the expression of these receptor molecules in different areas of the adult and developing human brain using online transcriptome databases. Whereas all HSV-1 receptors showed distinct expression patterns in different brain areas, the Allan Brain Atlas (ABA) reported increased expression of both gD and gB receptors in the hippocampus. Specifically, for PVRL1, TNFRFS14, and MYH9, the differential z scores for hippocampal expression, a measure of relative levels of increased expression, rose to 2.9, 2.9, and 2.5, respectively, comparable to the z score for the archetypical hippocampus-enriched mineralocorticoid receptor (NR3C2, z = 3.1). These data were confirmed at the Human Brain Transcriptome (HBT) database, but HBT data indicate that MAG expression is also enriched in hippocampus. The HBT database allowed the developmental pattern of expression to be investigated; we report that all HSV1 receptors markedly increase in expression levels between gestation and the postnatal/adult periods. These results suggest that differential receptor expression levels of several HSV-1 gD and gB receptors in the adult hippocampus are likely to underlie the susceptibility of this brain region to HSV-1 infection.
Crasto, Chiquito J.; Marenco, Luis N.; Liu, Nian; Morse, Thomas M.; Cheung, Kei-Hoi; Lai, Peter C.; Bahl, Gautam; Masiar, Peter; Lam, Hugo Y.K.; Lim, Ernest; Chen, Huajin; Nadkarni, Prakash; Migliore, Michele; Miller, Perry L.; Shepherd, Gordon M.
2009-01-01
This article presents the latest developments in neuroscience information dissemination through the SenseLab suite of databases: NeuronDB, CellPropDB, ORDB, OdorDB, OdorMapDB, ModelDB and BrainPharm. These databases include information related to: (i) neuronal membrane properties and neuronal models, and (ii) genetics, genomics, proteomics and imaging studies of the olfactory system. We describe here: the new features for each database, the evolution of SenseLab’s unifying database architecture and instances of SenseLab database interoperation with other neuroscience online resources. PMID:17510162
Clinical review: Brain-body temperature differences in adults with severe traumatic brain injury
2013-01-01
Surrogate or 'proxy' measures of brain temperature are used in the routine management of patients with brain damage. The prevailing view is that the brain is 'hotter' than the body. The polarity and magnitude of temperature differences between brain and body, however, remains unclear after severe traumatic brain injury (TBI). The focus of this systematic review is on the adult patient admitted to intensive/neurocritical care with a diagnosis of severe TBI (Glasgow Coma Scale score of less than 8). The review considered studies that measured brain temperature and core body temperature. Articles published in English from the years 1980 to 2012 were searched in databases, CINAHL, PubMed, Scopus, Web of Science, Science Direct, Ovid SP, Mednar and ProQuest Dissertations & Theses Database. For the review, publications of randomised controlled trials, non-randomised controlled trials, before and after studies, cohort studies, case-control studies and descriptive studies were considered for inclusion. Of 2,391 records identified via the search strategies, 37 were retrieved for detailed examination (including two via hand searching). Fifteen were reviewed and assessed for methodological quality. Eleven studies were included in the systematic review providing 15 brain-core body temperature comparisons. The direction of mean brain-body temperature differences was positive (brain higher than body temperature) and negative (brain lower than body temperature). Hypothermia is associated with large brain-body temperature differences. Brain temperature cannot be predicted reliably from core body temperature. Concurrent monitoring of brain and body temperature is recommended in patients where risk of temperature-related neuronal damage is a cause for clinical concern and when deliberate induction of below-normal body temperature is instituted. PMID:23680353
CoCoMac 2.0 and the future of tract-tracing databases
Bakker, Rembrandt; Wachtler, Thomas; Diesmann, Markus
2012-01-01
The CoCoMac database contains the results of several hundred published axonal tract-tracing studies in the macaque monkey brain. The combined results are used for constructing the macaque macro-connectome. Here we discuss the redevelopment of CoCoMac and compare it to six connectome-related projects: two online resources that provide full access to raw tracing data in rodents, a connectome viewer for advanced 3D graphics, a partial but highly detailed rat connectome, a brain data management system that generates custom connectivity matrices, and a software package that covers the complete pipeline from connectivity data to large-scale brain simulations. The second edition of CoCoMac features many enhancements over the original. For example, a search wizard is provided for full access to all tables and their nested dependencies. Connectivity matrices can be computed on demand in a user-selected nomenclature. A new data entry system is available as a preview, and is to become a generic solution for community-driven data entry in manually collated databases. We conclude with the question whether neuronal tracing will remain the gold standard to uncover the wiring of brains, thereby highlighting developments in human connectome construction, tracer substances, polarized light imaging, and serial block-face scanning electron microscopy. PMID:23293600
CoCoMac 2.0 and the future of tract-tracing databases.
Bakker, Rembrandt; Wachtler, Thomas; Diesmann, Markus
2012-01-01
The CoCoMac database contains the results of several hundred published axonal tract-tracing studies in the macaque monkey brain. The combined results are used for constructing the macaque macro-connectome. Here we discuss the redevelopment of CoCoMac and compare it to six connectome-related projects: two online resources that provide full access to raw tracing data in rodents, a connectome viewer for advanced 3D graphics, a partial but highly detailed rat connectome, a brain data management system that generates custom connectivity matrices, and a software package that covers the complete pipeline from connectivity data to large-scale brain simulations. The second edition of CoCoMac features many enhancements over the original. For example, a search wizard is provided for full access to all tables and their nested dependencies. Connectivity matrices can be computed on demand in a user-selected nomenclature. A new data entry system is available as a preview, and is to become a generic solution for community-driven data entry in manually collated databases. We conclude with the question whether neuronal tracing will remain the gold standard to uncover the wiring of brains, thereby highlighting developments in human connectome construction, tracer substances, polarized light imaging, and serial block-face scanning electron microscopy.
Charron, Odelin; Lallement, Alex; Jarnet, Delphine; Noblet, Vincent; Clavier, Jean-Baptiste; Meyer, Philippe
2018-04-01
Stereotactic treatments are today the reference techniques for the irradiation of brain metastases in radiotherapy. The dose per fraction is very high, and delivered in small volumes (diameter <1 cm). As part of these treatments, effective detection and precise segmentation of lesions are imperative. Many methods based on deep-learning approaches have been developed for the automatic segmentation of gliomas, but very little for that of brain metastases. We adapted an existing 3D convolutional neural network (DeepMedic) to detect and segment brain metastases on MRI. At first, we sought to adapt the network parameters to brain metastases. We then explored the single or combined use of different MRI modalities, by evaluating network performance in terms of detection and segmentation. We also studied the interest of increasing the database with virtual patients or of using an additional database in which the active parts of the metastases are separated from the necrotic parts. Our results indicated that a deep network approach is promising for the detection and the segmentation of brain metastases on multimodal MRI. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bekelis, Kimon; Missios, Symeon; Roberts, David W
2013-11-01
Several groups have demonstrated the safety of ambulatory brain biopsies, with no patients experiencing complications related to early discharge. Although they appear to be safe, the reasons factoring into the selection of patients have not been investigated. We performed a cross-sectional study involving 504 patients who underwent outpatient and 10,328 patients who underwent inpatient brain biopsies and were registered in State Ambulatory Surgery Databases and State Inpatient Databases respectively for four US States (New York, California, Florida, North Carolina). In a multivariate analysis private insurance (OR 2.45, 95 % CI, 1.85, 3.24), was significantly associated with outpatient procedures. Higher Charlson Comorbidity Index (OR 0.16, 95 % CI, 0.08, 0.32), high income (OR 0.37, 95 % CI, 0.26, 0.53), and high volume hospitals (OR 0.30, 95 % CI, 0.23, 0.39) were associated with a decreased chance of outpatient procedures. No sex, or racial disparities were observed. Institutional charges were significantly less for outpatient brain biopsies. There was no difference in the rate of 30-day postoperative readmissions among inpatient and outpatient procedures. The median charge for inpatient surgery was 51,316 as compared to 12,266 for the outpatient setting (P < 0.0001, Student's t test). Access to ambulatory brain biopsies appears to be more common for patients with private insurance and less comorbidities, in the setting of lower volume hospitals. Further investigation is needed in the direction of mapping these disparities in resource utilization.